1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CGOpenMPRuntimeNVPTX.h" 16 #include "CodeGenFunction.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/DeclOpenMP.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/Basic/Cuda.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 24 #include "llvm/IR/IntrinsicsNVPTX.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 using namespace llvm::omp; 29 30 namespace { 31 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 32 class NVPTXActionTy final : public PrePostActionTy { 33 llvm::FunctionCallee EnterCallee = nullptr; 34 ArrayRef<llvm::Value *> EnterArgs; 35 llvm::FunctionCallee ExitCallee = nullptr; 36 ArrayRef<llvm::Value *> ExitArgs; 37 bool Conditional = false; 38 llvm::BasicBlock *ContBlock = nullptr; 39 40 public: 41 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 42 ArrayRef<llvm::Value *> EnterArgs, 43 llvm::FunctionCallee ExitCallee, 44 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 45 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 46 ExitArgs(ExitArgs), Conditional(Conditional) {} 47 void Enter(CodeGenFunction &CGF) override { 48 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 49 if (Conditional) { 50 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 51 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 52 ContBlock = CGF.createBasicBlock("omp_if.end"); 53 // Generate the branch (If-stmt) 54 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 55 CGF.EmitBlock(ThenBlock); 56 } 57 } 58 void Done(CodeGenFunction &CGF) { 59 // Emit the rest of blocks/branches 60 CGF.EmitBranch(ContBlock); 61 CGF.EmitBlock(ContBlock, true); 62 } 63 void Exit(CodeGenFunction &CGF) override { 64 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 65 } 66 }; 67 68 /// A class to track the execution mode when codegening directives within 69 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 70 /// to the target region and used by containing directives such as 'parallel' 71 /// to emit optimized code. 72 class ExecutionRuntimeModesRAII { 73 private: 74 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 75 CGOpenMPRuntimeGPU::EM_Unknown; 76 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 77 bool SavedRuntimeMode = false; 78 bool *RuntimeMode = nullptr; 79 80 public: 81 /// Constructor for Non-SPMD mode. 82 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 83 : ExecMode(ExecMode) { 84 SavedExecMode = ExecMode; 85 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 86 } 87 /// Constructor for SPMD mode. 88 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 89 bool &RuntimeMode, bool FullRuntimeMode) 90 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 91 SavedExecMode = ExecMode; 92 SavedRuntimeMode = RuntimeMode; 93 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 94 RuntimeMode = FullRuntimeMode; 95 } 96 ~ExecutionRuntimeModesRAII() { 97 ExecMode = SavedExecMode; 98 if (RuntimeMode) 99 *RuntimeMode = SavedRuntimeMode; 100 } 101 }; 102 103 /// GPU Configuration: This information can be derived from cuda registers, 104 /// however, providing compile time constants helps generate more efficient 105 /// code. For all practical purposes this is fine because the configuration 106 /// is the same for all known NVPTX architectures. 107 enum MachineConfiguration : unsigned { 108 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 109 /// specific Grid Values like GV_Warp_Size, GV_Warp_Size_Log2, 110 /// and GV_Warp_Size_Log2_Mask. 111 112 /// Global memory alignment for performance. 113 GlobalMemoryAlignment = 128, 114 115 /// Maximal size of the shared memory buffer. 116 SharedMemorySize = 128, 117 }; 118 119 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 120 RefExpr = RefExpr->IgnoreParens(); 121 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 122 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 123 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 124 Base = TempASE->getBase()->IgnoreParenImpCasts(); 125 RefExpr = Base; 126 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 127 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 129 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 130 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 131 Base = TempASE->getBase()->IgnoreParenImpCasts(); 132 RefExpr = Base; 133 } 134 RefExpr = RefExpr->IgnoreParenImpCasts(); 135 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 136 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 137 const auto *ME = cast<MemberExpr>(RefExpr); 138 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 139 } 140 141 142 static RecordDecl *buildRecordForGlobalizedVars( 143 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 144 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 145 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 146 &MappedDeclsFields, int BufSize) { 147 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 148 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 149 return nullptr; 150 SmallVector<VarsDataTy, 4> GlobalizedVars; 151 for (const ValueDecl *D : EscapedDecls) 152 GlobalizedVars.emplace_back( 153 CharUnits::fromQuantity(std::max( 154 C.getDeclAlign(D).getQuantity(), 155 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 156 D); 157 for (const ValueDecl *D : EscapedDeclsForTeams) 158 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 159 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 160 return L.first > R.first; 161 }); 162 163 // Build struct _globalized_locals_ty { 164 // /* globalized vars */[WarSize] align (max(decl_align, 165 // GlobalMemoryAlignment)) 166 // /* globalized vars */ for EscapedDeclsForTeams 167 // }; 168 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 169 GlobalizedRD->startDefinition(); 170 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 171 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 172 for (const auto &Pair : GlobalizedVars) { 173 const ValueDecl *VD = Pair.second; 174 QualType Type = VD->getType(); 175 if (Type->isLValueReferenceType()) 176 Type = C.getPointerType(Type.getNonReferenceType()); 177 else 178 Type = Type.getNonReferenceType(); 179 SourceLocation Loc = VD->getLocation(); 180 FieldDecl *Field; 181 if (SingleEscaped.count(VD)) { 182 Field = FieldDecl::Create( 183 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 184 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 185 /*BW=*/nullptr, /*Mutable=*/false, 186 /*InitStyle=*/ICIS_NoInit); 187 Field->setAccess(AS_public); 188 if (VD->hasAttrs()) { 189 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 190 E(VD->getAttrs().end()); 191 I != E; ++I) 192 Field->addAttr(*I); 193 } 194 } else { 195 llvm::APInt ArraySize(32, BufSize); 196 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 197 0); 198 Field = FieldDecl::Create( 199 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 200 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 201 /*BW=*/nullptr, /*Mutable=*/false, 202 /*InitStyle=*/ICIS_NoInit); 203 Field->setAccess(AS_public); 204 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 205 static_cast<CharUnits::QuantityType>( 206 GlobalMemoryAlignment))); 207 Field->addAttr(AlignedAttr::CreateImplicit( 208 C, /*IsAlignmentExpr=*/true, 209 IntegerLiteral::Create(C, Align, 210 C.getIntTypeForBitwidth(32, /*Signed=*/0), 211 SourceLocation()), 212 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 213 } 214 GlobalizedRD->addDecl(Field); 215 MappedDeclsFields.try_emplace(VD, Field); 216 } 217 GlobalizedRD->completeDefinition(); 218 return GlobalizedRD; 219 } 220 221 /// Get the list of variables that can escape their declaration context. 222 class CheckVarsEscapingDeclContext final 223 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 224 CodeGenFunction &CGF; 225 llvm::SetVector<const ValueDecl *> EscapedDecls; 226 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 227 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 228 RecordDecl *GlobalizedRD = nullptr; 229 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 230 bool AllEscaped = false; 231 bool IsForCombinedParallelRegion = false; 232 233 void markAsEscaped(const ValueDecl *VD) { 234 // Do not globalize declare target variables. 235 if (!isa<VarDecl>(VD) || 236 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 237 return; 238 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 239 // Use user-specified allocation. 240 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 241 return; 242 // Variables captured by value must be globalized. 243 if (auto *CSI = CGF.CapturedStmtInfo) { 244 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 245 // Check if need to capture the variable that was already captured by 246 // value in the outer region. 247 if (!IsForCombinedParallelRegion) { 248 if (!FD->hasAttrs()) 249 return; 250 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 251 if (!Attr) 252 return; 253 if (((Attr->getCaptureKind() != OMPC_map) && 254 !isOpenMPPrivate(Attr->getCaptureKind())) || 255 ((Attr->getCaptureKind() == OMPC_map) && 256 !FD->getType()->isAnyPointerType())) 257 return; 258 } 259 if (!FD->getType()->isReferenceType()) { 260 assert(!VD->getType()->isVariablyModifiedType() && 261 "Parameter captured by value with variably modified type"); 262 EscapedParameters.insert(VD); 263 } else if (!IsForCombinedParallelRegion) { 264 return; 265 } 266 } 267 } 268 if ((!CGF.CapturedStmtInfo || 269 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 270 VD->getType()->isReferenceType()) 271 // Do not globalize variables with reference type. 272 return; 273 if (VD->getType()->isVariablyModifiedType()) 274 EscapedVariableLengthDecls.insert(VD); 275 else 276 EscapedDecls.insert(VD); 277 } 278 279 void VisitValueDecl(const ValueDecl *VD) { 280 if (VD->getType()->isLValueReferenceType()) 281 markAsEscaped(VD); 282 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 283 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 284 const bool SavedAllEscaped = AllEscaped; 285 AllEscaped = VD->getType()->isLValueReferenceType(); 286 Visit(VarD->getInit()); 287 AllEscaped = SavedAllEscaped; 288 } 289 } 290 } 291 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 292 ArrayRef<OMPClause *> Clauses, 293 bool IsCombinedParallelRegion) { 294 if (!S) 295 return; 296 for (const CapturedStmt::Capture &C : S->captures()) { 297 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 298 const ValueDecl *VD = C.getCapturedVar(); 299 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 300 if (IsCombinedParallelRegion) { 301 // Check if the variable is privatized in the combined construct and 302 // those private copies must be shared in the inner parallel 303 // directive. 304 IsForCombinedParallelRegion = false; 305 for (const OMPClause *C : Clauses) { 306 if (!isOpenMPPrivate(C->getClauseKind()) || 307 C->getClauseKind() == OMPC_reduction || 308 C->getClauseKind() == OMPC_linear || 309 C->getClauseKind() == OMPC_private) 310 continue; 311 ArrayRef<const Expr *> Vars; 312 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 315 Vars = PC->getVarRefs(); 316 else 317 llvm_unreachable("Unexpected clause."); 318 for (const auto *E : Vars) { 319 const Decl *D = 320 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 321 if (D == VD->getCanonicalDecl()) { 322 IsForCombinedParallelRegion = true; 323 break; 324 } 325 } 326 if (IsForCombinedParallelRegion) 327 break; 328 } 329 } 330 markAsEscaped(VD); 331 if (isa<OMPCapturedExprDecl>(VD)) 332 VisitValueDecl(VD); 333 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 334 } 335 } 336 } 337 338 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 339 assert(!GlobalizedRD && 340 "Record for globalized variables is built already."); 341 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 342 unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 343 if (IsInTTDRegion) 344 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 345 else 346 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 347 GlobalizedRD = ::buildRecordForGlobalizedVars( 348 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 349 MappedDeclsFields, WarpSize); 350 } 351 352 public: 353 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 354 ArrayRef<const ValueDecl *> TeamsReductions) 355 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 356 } 357 virtual ~CheckVarsEscapingDeclContext() = default; 358 void VisitDeclStmt(const DeclStmt *S) { 359 if (!S) 360 return; 361 for (const Decl *D : S->decls()) 362 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 363 VisitValueDecl(VD); 364 } 365 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 366 if (!D) 367 return; 368 if (!D->hasAssociatedStmt()) 369 return; 370 if (const auto *S = 371 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 372 // Do not analyze directives that do not actually require capturing, 373 // like `omp for` or `omp simd` directives. 374 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 375 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 376 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 377 VisitStmt(S->getCapturedStmt()); 378 return; 379 } 380 VisitOpenMPCapturedStmt( 381 S, D->clauses(), 382 CaptureRegions.back() == OMPD_parallel && 383 isOpenMPDistributeDirective(D->getDirectiveKind())); 384 } 385 } 386 void VisitCapturedStmt(const CapturedStmt *S) { 387 if (!S) 388 return; 389 for (const CapturedStmt::Capture &C : S->captures()) { 390 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 391 const ValueDecl *VD = C.getCapturedVar(); 392 markAsEscaped(VD); 393 if (isa<OMPCapturedExprDecl>(VD)) 394 VisitValueDecl(VD); 395 } 396 } 397 } 398 void VisitLambdaExpr(const LambdaExpr *E) { 399 if (!E) 400 return; 401 for (const LambdaCapture &C : E->captures()) { 402 if (C.capturesVariable()) { 403 if (C.getCaptureKind() == LCK_ByRef) { 404 const ValueDecl *VD = C.getCapturedVar(); 405 markAsEscaped(VD); 406 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 407 VisitValueDecl(VD); 408 } 409 } 410 } 411 } 412 void VisitBlockExpr(const BlockExpr *E) { 413 if (!E) 414 return; 415 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 416 if (C.isByRef()) { 417 const VarDecl *VD = C.getVariable(); 418 markAsEscaped(VD); 419 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 420 VisitValueDecl(VD); 421 } 422 } 423 } 424 void VisitCallExpr(const CallExpr *E) { 425 if (!E) 426 return; 427 for (const Expr *Arg : E->arguments()) { 428 if (!Arg) 429 continue; 430 if (Arg->isLValue()) { 431 const bool SavedAllEscaped = AllEscaped; 432 AllEscaped = true; 433 Visit(Arg); 434 AllEscaped = SavedAllEscaped; 435 } else { 436 Visit(Arg); 437 } 438 } 439 Visit(E->getCallee()); 440 } 441 void VisitDeclRefExpr(const DeclRefExpr *E) { 442 if (!E) 443 return; 444 const ValueDecl *VD = E->getDecl(); 445 if (AllEscaped) 446 markAsEscaped(VD); 447 if (isa<OMPCapturedExprDecl>(VD)) 448 VisitValueDecl(VD); 449 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 450 if (VarD->isInitCapture()) 451 VisitValueDecl(VD); 452 } 453 void VisitUnaryOperator(const UnaryOperator *E) { 454 if (!E) 455 return; 456 if (E->getOpcode() == UO_AddrOf) { 457 const bool SavedAllEscaped = AllEscaped; 458 AllEscaped = true; 459 Visit(E->getSubExpr()); 460 AllEscaped = SavedAllEscaped; 461 } else { 462 Visit(E->getSubExpr()); 463 } 464 } 465 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 466 if (!E) 467 return; 468 if (E->getCastKind() == CK_ArrayToPointerDecay) { 469 const bool SavedAllEscaped = AllEscaped; 470 AllEscaped = true; 471 Visit(E->getSubExpr()); 472 AllEscaped = SavedAllEscaped; 473 } else { 474 Visit(E->getSubExpr()); 475 } 476 } 477 void VisitExpr(const Expr *E) { 478 if (!E) 479 return; 480 bool SavedAllEscaped = AllEscaped; 481 if (!E->isLValue()) 482 AllEscaped = false; 483 for (const Stmt *Child : E->children()) 484 if (Child) 485 Visit(Child); 486 AllEscaped = SavedAllEscaped; 487 } 488 void VisitStmt(const Stmt *S) { 489 if (!S) 490 return; 491 for (const Stmt *Child : S->children()) 492 if (Child) 493 Visit(Child); 494 } 495 496 /// Returns the record that handles all the escaped local variables and used 497 /// instead of their original storage. 498 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 499 if (!GlobalizedRD) 500 buildRecordForGlobalizedVars(IsInTTDRegion); 501 return GlobalizedRD; 502 } 503 504 /// Returns the field in the globalized record for the escaped variable. 505 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 506 assert(GlobalizedRD && 507 "Record for globalized variables must be generated already."); 508 auto I = MappedDeclsFields.find(VD); 509 if (I == MappedDeclsFields.end()) 510 return nullptr; 511 return I->getSecond(); 512 } 513 514 /// Returns the list of the escaped local variables/parameters. 515 ArrayRef<const ValueDecl *> getEscapedDecls() const { 516 return EscapedDecls.getArrayRef(); 517 } 518 519 /// Checks if the escaped local variable is actually a parameter passed by 520 /// value. 521 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 522 return EscapedParameters; 523 } 524 525 /// Returns the list of the escaped variables with the variably modified 526 /// types. 527 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 528 return EscapedVariableLengthDecls.getArrayRef(); 529 } 530 }; 531 } // anonymous namespace 532 533 /// Get the id of the warp in the block. 534 /// We assume that the warp size is 32, which is always the case 535 /// on the NVPTX device, to generate more efficient code. 536 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 537 CGBuilderTy &Bld = CGF.Builder; 538 unsigned LaneIDBits = 539 CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size_Log2); 540 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 541 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 542 } 543 544 /// Get the id of the current lane in the Warp. 545 /// We assume that the warp size is 32, which is always the case 546 /// on the NVPTX device, to generate more efficient code. 547 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 548 CGBuilderTy &Bld = CGF.Builder; 549 unsigned LaneIDMask = CGF.getContext().getTargetInfo().getGridValue( 550 llvm::omp::GV_Warp_Size_Log2_Mask); 551 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 552 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 553 "nvptx_lane_id"); 554 } 555 556 /// Get the value of the thread_limit clause in the teams directive. 557 /// For the 'generic' execution mode, the runtime encodes thread_limit in 558 /// the launch parameters, always starting thread_limit+warpSize threads per 559 /// CTA. The threads in the last warp are reserved for master execution. 560 /// For the 'spmd' execution mode, all threads in a CTA are part of the team. 561 static llvm::Value *getThreadLimit(CodeGenFunction &CGF, 562 bool IsInSPMDExecutionMode = false) { 563 CGBuilderTy &Bld = CGF.Builder; 564 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 565 llvm::Value *ThreadLimit = nullptr; 566 if (IsInSPMDExecutionMode) 567 ThreadLimit = RT.getGPUNumThreads(CGF); 568 else { 569 llvm::Value *GPUNumThreads = RT.getGPUNumThreads(CGF); 570 llvm::Value *GPUWarpSize = RT.getGPUWarpSize(CGF); 571 ThreadLimit = Bld.CreateNUWSub(GPUNumThreads, GPUWarpSize, "thread_limit"); 572 } 573 assert(ThreadLimit != nullptr && "Expected non-null ThreadLimit"); 574 return ThreadLimit; 575 } 576 577 /// Get the thread id of the OMP master thread. 578 /// The master thread id is the first thread (lane) of the last warp in the 579 /// GPU block. Warp size is assumed to be some power of 2. 580 /// Thread id is 0 indexed. 581 /// E.g: If NumThreads is 33, master id is 32. 582 /// If NumThreads is 64, master id is 32. 583 /// If NumThreads is 1024, master id is 992. 584 static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) { 585 CGBuilderTy &Bld = CGF.Builder; 586 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 587 llvm::Value *NumThreads = RT.getGPUNumThreads(CGF); 588 // We assume that the warp size is a power of 2. 589 llvm::Value *Mask = Bld.CreateNUWSub(RT.getGPUWarpSize(CGF), Bld.getInt32(1)); 590 591 llvm::Value *NumThreadsSubOne = Bld.CreateNUWSub(NumThreads, Bld.getInt32(1)); 592 return Bld.CreateAnd(NumThreadsSubOne, Bld.CreateNot(Mask), "master_tid"); 593 } 594 595 CGOpenMPRuntimeGPU::WorkerFunctionState::WorkerFunctionState( 596 CodeGenModule &CGM, SourceLocation Loc) 597 : WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()), 598 Loc(Loc) { 599 createWorkerFunction(CGM); 600 } 601 602 void CGOpenMPRuntimeGPU::WorkerFunctionState::createWorkerFunction( 603 CodeGenModule &CGM) { 604 // Create an worker function with no arguments. 605 606 WorkerFn = llvm::Function::Create( 607 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 608 /*placeholder=*/"_worker", &CGM.getModule()); 609 CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI); 610 WorkerFn->setDoesNotRecurse(); 611 } 612 613 CGOpenMPRuntimeGPU::ExecutionMode 614 CGOpenMPRuntimeGPU::getExecutionMode() const { 615 return CurrentExecutionMode; 616 } 617 618 static CGOpenMPRuntimeGPU::DataSharingMode 619 getDataSharingMode(CodeGenModule &CGM) { 620 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 621 : CGOpenMPRuntimeGPU::Generic; 622 } 623 624 /// Check for inner (nested) SPMD construct, if any 625 static bool hasNestedSPMDDirective(ASTContext &Ctx, 626 const OMPExecutableDirective &D) { 627 const auto *CS = D.getInnermostCapturedStmt(); 628 const auto *Body = 629 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 630 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 631 632 if (const auto *NestedDir = 633 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 634 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 635 switch (D.getDirectiveKind()) { 636 case OMPD_target: 637 if (isOpenMPParallelDirective(DKind)) 638 return true; 639 if (DKind == OMPD_teams) { 640 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 641 /*IgnoreCaptured=*/true); 642 if (!Body) 643 return false; 644 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 645 if (const auto *NND = 646 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 647 DKind = NND->getDirectiveKind(); 648 if (isOpenMPParallelDirective(DKind)) 649 return true; 650 } 651 } 652 return false; 653 case OMPD_target_teams: 654 return isOpenMPParallelDirective(DKind); 655 case OMPD_target_simd: 656 case OMPD_target_parallel: 657 case OMPD_target_parallel_for: 658 case OMPD_target_parallel_for_simd: 659 case OMPD_target_teams_distribute: 660 case OMPD_target_teams_distribute_simd: 661 case OMPD_target_teams_distribute_parallel_for: 662 case OMPD_target_teams_distribute_parallel_for_simd: 663 case OMPD_parallel: 664 case OMPD_for: 665 case OMPD_parallel_for: 666 case OMPD_parallel_master: 667 case OMPD_parallel_sections: 668 case OMPD_for_simd: 669 case OMPD_parallel_for_simd: 670 case OMPD_cancel: 671 case OMPD_cancellation_point: 672 case OMPD_ordered: 673 case OMPD_threadprivate: 674 case OMPD_allocate: 675 case OMPD_task: 676 case OMPD_simd: 677 case OMPD_sections: 678 case OMPD_section: 679 case OMPD_single: 680 case OMPD_master: 681 case OMPD_critical: 682 case OMPD_taskyield: 683 case OMPD_barrier: 684 case OMPD_taskwait: 685 case OMPD_taskgroup: 686 case OMPD_atomic: 687 case OMPD_flush: 688 case OMPD_depobj: 689 case OMPD_scan: 690 case OMPD_teams: 691 case OMPD_target_data: 692 case OMPD_target_exit_data: 693 case OMPD_target_enter_data: 694 case OMPD_distribute: 695 case OMPD_distribute_simd: 696 case OMPD_distribute_parallel_for: 697 case OMPD_distribute_parallel_for_simd: 698 case OMPD_teams_distribute: 699 case OMPD_teams_distribute_simd: 700 case OMPD_teams_distribute_parallel_for: 701 case OMPD_teams_distribute_parallel_for_simd: 702 case OMPD_target_update: 703 case OMPD_declare_simd: 704 case OMPD_declare_variant: 705 case OMPD_begin_declare_variant: 706 case OMPD_end_declare_variant: 707 case OMPD_declare_target: 708 case OMPD_end_declare_target: 709 case OMPD_declare_reduction: 710 case OMPD_declare_mapper: 711 case OMPD_taskloop: 712 case OMPD_taskloop_simd: 713 case OMPD_master_taskloop: 714 case OMPD_master_taskloop_simd: 715 case OMPD_parallel_master_taskloop: 716 case OMPD_parallel_master_taskloop_simd: 717 case OMPD_requires: 718 case OMPD_unknown: 719 default: 720 llvm_unreachable("Unexpected directive."); 721 } 722 } 723 724 return false; 725 } 726 727 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 728 const OMPExecutableDirective &D) { 729 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 730 switch (DirectiveKind) { 731 case OMPD_target: 732 case OMPD_target_teams: 733 return hasNestedSPMDDirective(Ctx, D); 734 case OMPD_target_parallel: 735 case OMPD_target_parallel_for: 736 case OMPD_target_parallel_for_simd: 737 case OMPD_target_teams_distribute_parallel_for: 738 case OMPD_target_teams_distribute_parallel_for_simd: 739 case OMPD_target_simd: 740 case OMPD_target_teams_distribute_simd: 741 return true; 742 case OMPD_target_teams_distribute: 743 return false; 744 case OMPD_parallel: 745 case OMPD_for: 746 case OMPD_parallel_for: 747 case OMPD_parallel_master: 748 case OMPD_parallel_sections: 749 case OMPD_for_simd: 750 case OMPD_parallel_for_simd: 751 case OMPD_cancel: 752 case OMPD_cancellation_point: 753 case OMPD_ordered: 754 case OMPD_threadprivate: 755 case OMPD_allocate: 756 case OMPD_task: 757 case OMPD_simd: 758 case OMPD_sections: 759 case OMPD_section: 760 case OMPD_single: 761 case OMPD_master: 762 case OMPD_critical: 763 case OMPD_taskyield: 764 case OMPD_barrier: 765 case OMPD_taskwait: 766 case OMPD_taskgroup: 767 case OMPD_atomic: 768 case OMPD_flush: 769 case OMPD_depobj: 770 case OMPD_scan: 771 case OMPD_teams: 772 case OMPD_target_data: 773 case OMPD_target_exit_data: 774 case OMPD_target_enter_data: 775 case OMPD_distribute: 776 case OMPD_distribute_simd: 777 case OMPD_distribute_parallel_for: 778 case OMPD_distribute_parallel_for_simd: 779 case OMPD_teams_distribute: 780 case OMPD_teams_distribute_simd: 781 case OMPD_teams_distribute_parallel_for: 782 case OMPD_teams_distribute_parallel_for_simd: 783 case OMPD_target_update: 784 case OMPD_declare_simd: 785 case OMPD_declare_variant: 786 case OMPD_begin_declare_variant: 787 case OMPD_end_declare_variant: 788 case OMPD_declare_target: 789 case OMPD_end_declare_target: 790 case OMPD_declare_reduction: 791 case OMPD_declare_mapper: 792 case OMPD_taskloop: 793 case OMPD_taskloop_simd: 794 case OMPD_master_taskloop: 795 case OMPD_master_taskloop_simd: 796 case OMPD_parallel_master_taskloop: 797 case OMPD_parallel_master_taskloop_simd: 798 case OMPD_requires: 799 case OMPD_unknown: 800 default: 801 break; 802 } 803 llvm_unreachable( 804 "Unknown programming model for OpenMP directive on NVPTX target."); 805 } 806 807 /// Check if the directive is loops based and has schedule clause at all or has 808 /// static scheduling. 809 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 810 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 811 isOpenMPLoopDirective(D.getDirectiveKind()) && 812 "Expected loop-based directive."); 813 return !D.hasClausesOfKind<OMPOrderedClause>() && 814 (!D.hasClausesOfKind<OMPScheduleClause>() || 815 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 816 [](const OMPScheduleClause *C) { 817 return C->getScheduleKind() == OMPC_SCHEDULE_static; 818 })); 819 } 820 821 /// Check for inner (nested) lightweight runtime construct, if any 822 static bool hasNestedLightweightDirective(ASTContext &Ctx, 823 const OMPExecutableDirective &D) { 824 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 825 const auto *CS = D.getInnermostCapturedStmt(); 826 const auto *Body = 827 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 828 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 829 830 if (const auto *NestedDir = 831 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 832 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 833 switch (D.getDirectiveKind()) { 834 case OMPD_target: 835 if (isOpenMPParallelDirective(DKind) && 836 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 837 hasStaticScheduling(*NestedDir)) 838 return true; 839 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 840 return true; 841 if (DKind == OMPD_parallel) { 842 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 843 /*IgnoreCaptured=*/true); 844 if (!Body) 845 return false; 846 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 847 if (const auto *NND = 848 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 849 DKind = NND->getDirectiveKind(); 850 if (isOpenMPWorksharingDirective(DKind) && 851 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 852 return true; 853 } 854 } else if (DKind == OMPD_teams) { 855 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 856 /*IgnoreCaptured=*/true); 857 if (!Body) 858 return false; 859 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 860 if (const auto *NND = 861 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 862 DKind = NND->getDirectiveKind(); 863 if (isOpenMPParallelDirective(DKind) && 864 isOpenMPWorksharingDirective(DKind) && 865 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 866 return true; 867 if (DKind == OMPD_parallel) { 868 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 869 /*IgnoreCaptured=*/true); 870 if (!Body) 871 return false; 872 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 873 if (const auto *NND = 874 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 875 DKind = NND->getDirectiveKind(); 876 if (isOpenMPWorksharingDirective(DKind) && 877 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 878 return true; 879 } 880 } 881 } 882 } 883 return false; 884 case OMPD_target_teams: 885 if (isOpenMPParallelDirective(DKind) && 886 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 887 hasStaticScheduling(*NestedDir)) 888 return true; 889 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 890 return true; 891 if (DKind == OMPD_parallel) { 892 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 893 /*IgnoreCaptured=*/true); 894 if (!Body) 895 return false; 896 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 897 if (const auto *NND = 898 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 899 DKind = NND->getDirectiveKind(); 900 if (isOpenMPWorksharingDirective(DKind) && 901 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 902 return true; 903 } 904 } 905 return false; 906 case OMPD_target_parallel: 907 if (DKind == OMPD_simd) 908 return true; 909 return isOpenMPWorksharingDirective(DKind) && 910 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 911 case OMPD_target_teams_distribute: 912 case OMPD_target_simd: 913 case OMPD_target_parallel_for: 914 case OMPD_target_parallel_for_simd: 915 case OMPD_target_teams_distribute_simd: 916 case OMPD_target_teams_distribute_parallel_for: 917 case OMPD_target_teams_distribute_parallel_for_simd: 918 case OMPD_parallel: 919 case OMPD_for: 920 case OMPD_parallel_for: 921 case OMPD_parallel_master: 922 case OMPD_parallel_sections: 923 case OMPD_for_simd: 924 case OMPD_parallel_for_simd: 925 case OMPD_cancel: 926 case OMPD_cancellation_point: 927 case OMPD_ordered: 928 case OMPD_threadprivate: 929 case OMPD_allocate: 930 case OMPD_task: 931 case OMPD_simd: 932 case OMPD_sections: 933 case OMPD_section: 934 case OMPD_single: 935 case OMPD_master: 936 case OMPD_critical: 937 case OMPD_taskyield: 938 case OMPD_barrier: 939 case OMPD_taskwait: 940 case OMPD_taskgroup: 941 case OMPD_atomic: 942 case OMPD_flush: 943 case OMPD_depobj: 944 case OMPD_scan: 945 case OMPD_teams: 946 case OMPD_target_data: 947 case OMPD_target_exit_data: 948 case OMPD_target_enter_data: 949 case OMPD_distribute: 950 case OMPD_distribute_simd: 951 case OMPD_distribute_parallel_for: 952 case OMPD_distribute_parallel_for_simd: 953 case OMPD_teams_distribute: 954 case OMPD_teams_distribute_simd: 955 case OMPD_teams_distribute_parallel_for: 956 case OMPD_teams_distribute_parallel_for_simd: 957 case OMPD_target_update: 958 case OMPD_declare_simd: 959 case OMPD_declare_variant: 960 case OMPD_begin_declare_variant: 961 case OMPD_end_declare_variant: 962 case OMPD_declare_target: 963 case OMPD_end_declare_target: 964 case OMPD_declare_reduction: 965 case OMPD_declare_mapper: 966 case OMPD_taskloop: 967 case OMPD_taskloop_simd: 968 case OMPD_master_taskloop: 969 case OMPD_master_taskloop_simd: 970 case OMPD_parallel_master_taskloop: 971 case OMPD_parallel_master_taskloop_simd: 972 case OMPD_requires: 973 case OMPD_unknown: 974 default: 975 llvm_unreachable("Unexpected directive."); 976 } 977 } 978 979 return false; 980 } 981 982 /// Checks if the construct supports lightweight runtime. It must be SPMD 983 /// construct + inner loop-based construct with static scheduling. 984 static bool supportsLightweightRuntime(ASTContext &Ctx, 985 const OMPExecutableDirective &D) { 986 if (!supportsSPMDExecutionMode(Ctx, D)) 987 return false; 988 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 989 switch (DirectiveKind) { 990 case OMPD_target: 991 case OMPD_target_teams: 992 case OMPD_target_parallel: 993 return hasNestedLightweightDirective(Ctx, D); 994 case OMPD_target_parallel_for: 995 case OMPD_target_parallel_for_simd: 996 case OMPD_target_teams_distribute_parallel_for: 997 case OMPD_target_teams_distribute_parallel_for_simd: 998 // (Last|First)-privates must be shared in parallel region. 999 return hasStaticScheduling(D); 1000 case OMPD_target_simd: 1001 case OMPD_target_teams_distribute_simd: 1002 return true; 1003 case OMPD_target_teams_distribute: 1004 return false; 1005 case OMPD_parallel: 1006 case OMPD_for: 1007 case OMPD_parallel_for: 1008 case OMPD_parallel_master: 1009 case OMPD_parallel_sections: 1010 case OMPD_for_simd: 1011 case OMPD_parallel_for_simd: 1012 case OMPD_cancel: 1013 case OMPD_cancellation_point: 1014 case OMPD_ordered: 1015 case OMPD_threadprivate: 1016 case OMPD_allocate: 1017 case OMPD_task: 1018 case OMPD_simd: 1019 case OMPD_sections: 1020 case OMPD_section: 1021 case OMPD_single: 1022 case OMPD_master: 1023 case OMPD_critical: 1024 case OMPD_taskyield: 1025 case OMPD_barrier: 1026 case OMPD_taskwait: 1027 case OMPD_taskgroup: 1028 case OMPD_atomic: 1029 case OMPD_flush: 1030 case OMPD_depobj: 1031 case OMPD_scan: 1032 case OMPD_teams: 1033 case OMPD_target_data: 1034 case OMPD_target_exit_data: 1035 case OMPD_target_enter_data: 1036 case OMPD_distribute: 1037 case OMPD_distribute_simd: 1038 case OMPD_distribute_parallel_for: 1039 case OMPD_distribute_parallel_for_simd: 1040 case OMPD_teams_distribute: 1041 case OMPD_teams_distribute_simd: 1042 case OMPD_teams_distribute_parallel_for: 1043 case OMPD_teams_distribute_parallel_for_simd: 1044 case OMPD_target_update: 1045 case OMPD_declare_simd: 1046 case OMPD_declare_variant: 1047 case OMPD_begin_declare_variant: 1048 case OMPD_end_declare_variant: 1049 case OMPD_declare_target: 1050 case OMPD_end_declare_target: 1051 case OMPD_declare_reduction: 1052 case OMPD_declare_mapper: 1053 case OMPD_taskloop: 1054 case OMPD_taskloop_simd: 1055 case OMPD_master_taskloop: 1056 case OMPD_master_taskloop_simd: 1057 case OMPD_parallel_master_taskloop: 1058 case OMPD_parallel_master_taskloop_simd: 1059 case OMPD_requires: 1060 case OMPD_unknown: 1061 default: 1062 break; 1063 } 1064 llvm_unreachable( 1065 "Unknown programming model for OpenMP directive on NVPTX target."); 1066 } 1067 1068 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1069 StringRef ParentName, 1070 llvm::Function *&OutlinedFn, 1071 llvm::Constant *&OutlinedFnID, 1072 bool IsOffloadEntry, 1073 const RegionCodeGenTy &CodeGen) { 1074 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1075 EntryFunctionState EST; 1076 WorkerFunctionState WST(CGM, D.getBeginLoc()); 1077 Work.clear(); 1078 WrapperFunctionsMap.clear(); 1079 1080 // Emit target region as a standalone region. 1081 class NVPTXPrePostActionTy : public PrePostActionTy { 1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1083 CGOpenMPRuntimeGPU::WorkerFunctionState &WST; 1084 1085 public: 1086 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST, 1087 CGOpenMPRuntimeGPU::WorkerFunctionState &WST) 1088 : EST(EST), WST(WST) {} 1089 void Enter(CodeGenFunction &CGF) override { 1090 auto &RT = 1091 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1092 RT.emitNonSPMDEntryHeader(CGF, EST, WST); 1093 // Skip target region initialization. 1094 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1095 } 1096 void Exit(CodeGenFunction &CGF) override { 1097 auto &RT = 1098 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1099 RT.clearLocThreadIdInsertPt(CGF); 1100 RT.emitNonSPMDEntryFooter(CGF, EST); 1101 } 1102 } Action(EST, WST); 1103 CodeGen.setAction(Action); 1104 IsInTTDRegion = true; 1105 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1106 IsOffloadEntry, CodeGen); 1107 IsInTTDRegion = false; 1108 1109 // Now change the name of the worker function to correspond to this target 1110 // region's entry function. 1111 WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker")); 1112 1113 // Create the worker function 1114 emitWorkerFunction(WST); 1115 } 1116 1117 // Setup NVPTX threads for master-worker OpenMP scheme. 1118 void CGOpenMPRuntimeGPU::emitNonSPMDEntryHeader(CodeGenFunction &CGF, 1119 EntryFunctionState &EST, 1120 WorkerFunctionState &WST) { 1121 CGBuilderTy &Bld = CGF.Builder; 1122 1123 llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker"); 1124 llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck"); 1125 llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master"); 1126 EST.ExitBB = CGF.createBasicBlock(".exit"); 1127 1128 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1129 llvm::Value *GPUThreadID = RT.getGPUThreadID(CGF); 1130 llvm::Value *ThreadLimit = getThreadLimit(CGF); 1131 llvm::Value *IsWorker = Bld.CreateICmpULT(GPUThreadID, ThreadLimit); 1132 Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB); 1133 1134 CGF.EmitBlock(WorkerBB); 1135 emitCall(CGF, WST.Loc, WST.WorkerFn); 1136 CGF.EmitBranch(EST.ExitBB); 1137 1138 CGF.EmitBlock(MasterCheckBB); 1139 GPUThreadID = RT.getGPUThreadID(CGF); 1140 llvm::Value *MasterThreadID = getMasterThreadID(CGF); 1141 llvm::Value *IsMaster = Bld.CreateICmpEQ(GPUThreadID, MasterThreadID); 1142 Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB); 1143 1144 CGF.EmitBlock(MasterBB); 1145 IsInTargetMasterThreadRegion = true; 1146 // SEQUENTIAL (MASTER) REGION START 1147 // First action in sequential region: 1148 // Initialize the state of the OpenMP runtime library on the GPU. 1149 // TODO: Optimize runtime initialization and pass in correct value. 1150 llvm::Value *Args[] = {getThreadLimit(CGF), 1151 Bld.getInt16(/*RequiresOMPRuntime=*/1)}; 1152 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1153 CGM.getModule(), OMPRTL___kmpc_kernel_init), 1154 Args); 1155 1156 emitGenericVarsProlog(CGF, WST.Loc); 1157 } 1158 1159 void CGOpenMPRuntimeGPU::emitNonSPMDEntryFooter(CodeGenFunction &CGF, 1160 EntryFunctionState &EST) { 1161 IsInTargetMasterThreadRegion = false; 1162 if (!CGF.HaveInsertPoint()) 1163 return; 1164 1165 emitGenericVarsEpilog(CGF); 1166 1167 if (!EST.ExitBB) 1168 EST.ExitBB = CGF.createBasicBlock(".exit"); 1169 1170 llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier"); 1171 CGF.EmitBranch(TerminateBB); 1172 1173 CGF.EmitBlock(TerminateBB); 1174 // Signal termination condition. 1175 // TODO: Optimize runtime initialization and pass in correct value. 1176 llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)}; 1177 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1178 CGM.getModule(), OMPRTL___kmpc_kernel_deinit), 1179 Args); 1180 // Barrier to terminate worker threads. 1181 syncCTAThreads(CGF); 1182 // Master thread jumps to exit point. 1183 CGF.EmitBranch(EST.ExitBB); 1184 1185 CGF.EmitBlock(EST.ExitBB); 1186 EST.ExitBB = nullptr; 1187 } 1188 1189 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1190 StringRef ParentName, 1191 llvm::Function *&OutlinedFn, 1192 llvm::Constant *&OutlinedFnID, 1193 bool IsOffloadEntry, 1194 const RegionCodeGenTy &CodeGen) { 1195 ExecutionRuntimeModesRAII ModeRAII( 1196 CurrentExecutionMode, RequiresFullRuntime, 1197 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1198 !supportsLightweightRuntime(CGM.getContext(), D)); 1199 EntryFunctionState EST; 1200 1201 // Emit target region as a standalone region. 1202 class NVPTXPrePostActionTy : public PrePostActionTy { 1203 CGOpenMPRuntimeGPU &RT; 1204 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1205 const OMPExecutableDirective &D; 1206 1207 public: 1208 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1209 CGOpenMPRuntimeGPU::EntryFunctionState &EST, 1210 const OMPExecutableDirective &D) 1211 : RT(RT), EST(EST), D(D) {} 1212 void Enter(CodeGenFunction &CGF) override { 1213 RT.emitSPMDEntryHeader(CGF, EST, D); 1214 // Skip target region initialization. 1215 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1216 } 1217 void Exit(CodeGenFunction &CGF) override { 1218 RT.clearLocThreadIdInsertPt(CGF); 1219 RT.emitSPMDEntryFooter(CGF, EST); 1220 } 1221 } Action(*this, EST, D); 1222 CodeGen.setAction(Action); 1223 IsInTTDRegion = true; 1224 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1225 IsOffloadEntry, CodeGen); 1226 IsInTTDRegion = false; 1227 } 1228 1229 void CGOpenMPRuntimeGPU::emitSPMDEntryHeader( 1230 CodeGenFunction &CGF, EntryFunctionState &EST, 1231 const OMPExecutableDirective &D) { 1232 CGBuilderTy &Bld = CGF.Builder; 1233 1234 // Setup BBs in entry function. 1235 llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute"); 1236 EST.ExitBB = CGF.createBasicBlock(".exit"); 1237 1238 llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true), 1239 /*RequiresOMPRuntime=*/ 1240 Bld.getInt16(RequiresFullRuntime ? 1 : 0)}; 1241 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1242 CGM.getModule(), OMPRTL___kmpc_spmd_kernel_init), 1243 Args); 1244 1245 CGF.EmitBranch(ExecuteBB); 1246 1247 CGF.EmitBlock(ExecuteBB); 1248 1249 IsInTargetMasterThreadRegion = true; 1250 } 1251 1252 void CGOpenMPRuntimeGPU::emitSPMDEntryFooter(CodeGenFunction &CGF, 1253 EntryFunctionState &EST) { 1254 IsInTargetMasterThreadRegion = false; 1255 if (!CGF.HaveInsertPoint()) 1256 return; 1257 1258 if (!EST.ExitBB) 1259 EST.ExitBB = CGF.createBasicBlock(".exit"); 1260 1261 llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit"); 1262 CGF.EmitBranch(OMPDeInitBB); 1263 1264 CGF.EmitBlock(OMPDeInitBB); 1265 // DeInitialize the OMP state in the runtime; called by all active threads. 1266 llvm::Value *Args[] = {/*RequiresOMPRuntime=*/ 1267 CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)}; 1268 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1269 CGM.getModule(), OMPRTL___kmpc_spmd_kernel_deinit_v2), 1270 Args); 1271 CGF.EmitBranch(EST.ExitBB); 1272 1273 CGF.EmitBlock(EST.ExitBB); 1274 EST.ExitBB = nullptr; 1275 } 1276 1277 // Create a unique global variable to indicate the execution mode of this target 1278 // region. The execution mode is either 'generic', or 'spmd' depending on the 1279 // target directive. This variable is picked up by the offload library to setup 1280 // the device appropriately before kernel launch. If the execution mode is 1281 // 'generic', the runtime reserves one warp for the master, otherwise, all 1282 // warps participate in parallel work. 1283 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1284 bool Mode) { 1285 auto *GVMode = 1286 new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1287 llvm::GlobalValue::WeakAnyLinkage, 1288 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1), 1289 Twine(Name, "_exec_mode")); 1290 CGM.addCompilerUsedGlobal(GVMode); 1291 } 1292 1293 void CGOpenMPRuntimeGPU::emitWorkerFunction(WorkerFunctionState &WST) { 1294 ASTContext &Ctx = CGM.getContext(); 1295 1296 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 1297 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {}, 1298 WST.Loc, WST.Loc); 1299 emitWorkerLoop(CGF, WST); 1300 CGF.FinishFunction(); 1301 } 1302 1303 void CGOpenMPRuntimeGPU::emitWorkerLoop(CodeGenFunction &CGF, 1304 WorkerFunctionState &WST) { 1305 // 1306 // The workers enter this loop and wait for parallel work from the master. 1307 // When the master encounters a parallel region it sets up the work + variable 1308 // arguments, and wakes up the workers. The workers first check to see if 1309 // they are required for the parallel region, i.e., within the # of requested 1310 // parallel threads. The activated workers load the variable arguments and 1311 // execute the parallel work. 1312 // 1313 1314 CGBuilderTy &Bld = CGF.Builder; 1315 1316 llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work"); 1317 llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers"); 1318 llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel"); 1319 llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel"); 1320 llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel"); 1321 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); 1322 1323 CGF.EmitBranch(AwaitBB); 1324 1325 // Workers wait for work from master. 1326 CGF.EmitBlock(AwaitBB); 1327 // Wait for parallel work 1328 syncCTAThreads(CGF); 1329 1330 Address WorkFn = 1331 CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn"); 1332 Address ExecStatus = 1333 CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status"); 1334 CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0)); 1335 CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy)); 1336 1337 // TODO: Optimize runtime initialization and pass in correct value. 1338 llvm::Value *Args[] = {WorkFn.getPointer()}; 1339 llvm::Value *Ret = 1340 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1341 CGM.getModule(), OMPRTL___kmpc_kernel_parallel), 1342 Args); 1343 Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus); 1344 1345 // On termination condition (workid == 0), exit loop. 1346 llvm::Value *WorkID = Bld.CreateLoad(WorkFn); 1347 llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate"); 1348 Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB); 1349 1350 // Activate requested workers. 1351 CGF.EmitBlock(SelectWorkersBB); 1352 llvm::Value *IsActive = 1353 Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active"); 1354 Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB); 1355 1356 // Signal start of parallel region. 1357 CGF.EmitBlock(ExecuteBB); 1358 // Skip initialization. 1359 setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1360 1361 // Process work items: outlined parallel functions. 1362 for (llvm::Function *W : Work) { 1363 // Try to match this outlined function. 1364 llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy); 1365 1366 llvm::Value *WorkFnMatch = 1367 Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match"); 1368 1369 llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn"); 1370 llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next"); 1371 Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB); 1372 1373 // Execute this outlined function. 1374 CGF.EmitBlock(ExecuteFNBB); 1375 1376 // Insert call to work function via shared wrapper. The shared 1377 // wrapper takes two arguments: 1378 // - the parallelism level; 1379 // - the thread ID; 1380 emitCall(CGF, WST.Loc, W, 1381 {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)}); 1382 1383 // Go to end of parallel region. 1384 CGF.EmitBranch(TerminateBB); 1385 1386 CGF.EmitBlock(CheckNextBB); 1387 } 1388 // Default case: call to outlined function through pointer if the target 1389 // region makes a declare target call that may contain an orphaned parallel 1390 // directive. 1391 auto *ParallelFnTy = 1392 llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty}, 1393 /*isVarArg=*/false); 1394 llvm::Value *WorkFnCast = 1395 Bld.CreateBitCast(WorkID, ParallelFnTy->getPointerTo()); 1396 // Insert call to work function via shared wrapper. The shared 1397 // wrapper takes two arguments: 1398 // - the parallelism level; 1399 // - the thread ID; 1400 emitCall(CGF, WST.Loc, {ParallelFnTy, WorkFnCast}, 1401 {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)}); 1402 // Go to end of parallel region. 1403 CGF.EmitBranch(TerminateBB); 1404 1405 // Signal end of parallel region. 1406 CGF.EmitBlock(TerminateBB); 1407 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1408 CGM.getModule(), OMPRTL___kmpc_kernel_end_parallel), 1409 llvm::None); 1410 CGF.EmitBranch(BarrierBB); 1411 1412 // All active and inactive workers wait at a barrier after parallel region. 1413 CGF.EmitBlock(BarrierBB); 1414 // Barrier after parallel region. 1415 syncCTAThreads(CGF); 1416 CGF.EmitBranch(AwaitBB); 1417 1418 // Exit target region. 1419 CGF.EmitBlock(ExitBB); 1420 // Skip initialization. 1421 clearLocThreadIdInsertPt(CGF); 1422 } 1423 1424 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1425 llvm::Constant *Addr, 1426 uint64_t Size, int32_t, 1427 llvm::GlobalValue::LinkageTypes) { 1428 // TODO: Add support for global variables on the device after declare target 1429 // support. 1430 if (!isa<llvm::Function>(Addr)) 1431 return; 1432 llvm::Module &M = CGM.getModule(); 1433 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1434 1435 // Get "nvvm.annotations" metadata node 1436 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1437 1438 llvm::Metadata *MDVals[] = { 1439 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1440 llvm::ConstantAsMetadata::get( 1441 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1442 // Append metadata to nvvm.annotations 1443 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1444 } 1445 1446 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1447 const OMPExecutableDirective &D, StringRef ParentName, 1448 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1449 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1450 if (!IsOffloadEntry) // Nothing to do. 1451 return; 1452 1453 assert(!ParentName.empty() && "Invalid target region parent name!"); 1454 1455 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1456 if (Mode) 1457 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1458 CodeGen); 1459 else 1460 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1461 CodeGen); 1462 1463 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1464 } 1465 1466 namespace { 1467 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1468 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1469 enum ModeFlagsTy : unsigned { 1470 /// Bit set to 1 when in SPMD mode. 1471 KMP_IDENT_SPMD_MODE = 0x01, 1472 /// Bit set to 1 when a simplified runtime is used. 1473 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1474 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1475 }; 1476 1477 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1478 static const ModeFlagsTy UndefinedMode = 1479 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1480 } // anonymous namespace 1481 1482 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1483 switch (getExecutionMode()) { 1484 case EM_SPMD: 1485 if (requiresFullRuntime()) 1486 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1487 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1488 case EM_NonSPMD: 1489 assert(requiresFullRuntime() && "Expected full runtime."); 1490 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1491 case EM_Unknown: 1492 return UndefinedMode; 1493 } 1494 llvm_unreachable("Unknown flags are requested."); 1495 } 1496 1497 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1498 : CGOpenMPRuntime(CGM, "_", "$") { 1499 if (!CGM.getLangOpts().OpenMPIsDevice) 1500 llvm_unreachable("OpenMP NVPTX can only handle device code."); 1501 } 1502 1503 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1504 ProcBindKind ProcBind, 1505 SourceLocation Loc) { 1506 // Do nothing in case of SPMD mode and L0 parallel. 1507 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1508 return; 1509 1510 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1511 } 1512 1513 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1514 llvm::Value *NumThreads, 1515 SourceLocation Loc) { 1516 // Do nothing in case of SPMD mode and L0 parallel. 1517 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1518 return; 1519 1520 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); 1521 } 1522 1523 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1524 const Expr *NumTeams, 1525 const Expr *ThreadLimit, 1526 SourceLocation Loc) {} 1527 1528 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1529 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1530 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1531 // Emit target region as a standalone region. 1532 class NVPTXPrePostActionTy : public PrePostActionTy { 1533 bool &IsInParallelRegion; 1534 bool PrevIsInParallelRegion; 1535 1536 public: 1537 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1538 : IsInParallelRegion(IsInParallelRegion) {} 1539 void Enter(CodeGenFunction &CGF) override { 1540 PrevIsInParallelRegion = IsInParallelRegion; 1541 IsInParallelRegion = true; 1542 } 1543 void Exit(CodeGenFunction &CGF) override { 1544 IsInParallelRegion = PrevIsInParallelRegion; 1545 } 1546 } Action(IsInParallelRegion); 1547 CodeGen.setAction(Action); 1548 bool PrevIsInTTDRegion = IsInTTDRegion; 1549 IsInTTDRegion = false; 1550 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1551 IsInTargetMasterThreadRegion = false; 1552 auto *OutlinedFun = 1553 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1554 D, ThreadIDVar, InnermostKind, CodeGen)); 1555 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1556 IsInTTDRegion = PrevIsInTTDRegion; 1557 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1558 !IsInParallelRegion) { 1559 llvm::Function *WrapperFun = 1560 createParallelDataSharingWrapper(OutlinedFun, D); 1561 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1562 } 1563 1564 return OutlinedFun; 1565 } 1566 1567 /// Get list of lastprivate variables from the teams distribute ... or 1568 /// teams {distribute ...} directives. 1569 static void 1570 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1571 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1572 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1573 "expected teams directive."); 1574 const OMPExecutableDirective *Dir = &D; 1575 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1576 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1577 Ctx, 1578 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1579 /*IgnoreCaptured=*/true))) { 1580 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1581 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1582 Dir = nullptr; 1583 } 1584 } 1585 if (!Dir) 1586 return; 1587 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1588 for (const Expr *E : C->getVarRefs()) 1589 Vars.push_back(getPrivateItem(E)); 1590 } 1591 } 1592 1593 /// Get list of reduction variables from the teams ... directives. 1594 static void 1595 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1596 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1597 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1598 "expected teams directive."); 1599 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1600 for (const Expr *E : C->privates()) 1601 Vars.push_back(getPrivateItem(E)); 1602 } 1603 } 1604 1605 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1606 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1607 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1608 SourceLocation Loc = D.getBeginLoc(); 1609 1610 const RecordDecl *GlobalizedRD = nullptr; 1611 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1612 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1613 unsigned WarpSize = CGM.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 1614 // Globalize team reductions variable unconditionally in all modes. 1615 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1616 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1617 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1618 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1619 if (!LastPrivatesReductions.empty()) { 1620 GlobalizedRD = ::buildRecordForGlobalizedVars( 1621 CGM.getContext(), llvm::None, LastPrivatesReductions, 1622 MappedDeclsFields, WarpSize); 1623 } 1624 } else if (!LastPrivatesReductions.empty()) { 1625 assert(!TeamAndReductions.first && 1626 "Previous team declaration is not expected."); 1627 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1628 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1629 } 1630 1631 // Emit target region as a standalone region. 1632 class NVPTXPrePostActionTy : public PrePostActionTy { 1633 SourceLocation &Loc; 1634 const RecordDecl *GlobalizedRD; 1635 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1636 &MappedDeclsFields; 1637 1638 public: 1639 NVPTXPrePostActionTy( 1640 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1641 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1642 &MappedDeclsFields) 1643 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1644 MappedDeclsFields(MappedDeclsFields) {} 1645 void Enter(CodeGenFunction &CGF) override { 1646 auto &Rt = 1647 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1648 if (GlobalizedRD) { 1649 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1650 I->getSecond().MappedParams = 1651 std::make_unique<CodeGenFunction::OMPMapVars>(); 1652 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1653 for (const auto &Pair : MappedDeclsFields) { 1654 assert(Pair.getFirst()->isCanonicalDecl() && 1655 "Expected canonical declaration"); 1656 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1657 } 1658 } 1659 Rt.emitGenericVarsProlog(CGF, Loc); 1660 } 1661 void Exit(CodeGenFunction &CGF) override { 1662 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1663 .emitGenericVarsEpilog(CGF); 1664 } 1665 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1666 CodeGen.setAction(Action); 1667 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1668 D, ThreadIDVar, InnermostKind, CodeGen); 1669 1670 return OutlinedFun; 1671 } 1672 1673 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1674 SourceLocation Loc, 1675 bool WithSPMDCheck) { 1676 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1677 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1678 return; 1679 1680 CGBuilderTy &Bld = CGF.Builder; 1681 1682 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1683 if (I == FunctionGlobalizedDecls.end()) 1684 return; 1685 1686 for (auto &Rec : I->getSecond().LocalVarData) { 1687 const auto *VD = cast<VarDecl>(Rec.first); 1688 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1689 QualType VarTy = VD->getType(); 1690 1691 // Get the local allocation of a firstprivate variable before sharing 1692 llvm::Value *ParValue; 1693 if (EscapedParam) { 1694 LValue ParLVal = 1695 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1696 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1697 } 1698 1699 // Allocate space for the variable to be globalized 1700 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1701 llvm::Instruction *VoidPtr = 1702 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1703 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1704 AllocArgs, VD->getName()); 1705 1706 // Cast the void pointer and get the address of the globalized variable. 1707 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1708 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1709 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1710 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1711 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1712 Rec.second.GlobalizedVal = VoidPtr; 1713 1714 // Assign the local allocation to the newly globalized location. 1715 if (EscapedParam) { 1716 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1717 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1718 } 1719 if (auto *DI = CGF.getDebugInfo()) 1720 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1721 } 1722 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1723 // Use actual memory size of the VLA object including the padding 1724 // for alignment purposes. 1725 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1726 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1727 Size = Bld.CreateNUWAdd( 1728 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1729 llvm::Value *AlignVal = 1730 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1731 1732 Size = Bld.CreateUDiv(Size, AlignVal); 1733 Size = Bld.CreateNUWMul(Size, AlignVal); 1734 1735 // Allocate space for this VLA object to be globalized. 1736 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1737 llvm::Instruction *VoidPtr = 1738 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1739 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1740 AllocArgs, VD->getName()); 1741 1742 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(VoidPtr); 1743 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1744 CGM.getContext().getDeclAlign(VD), 1745 AlignmentSource::Decl); 1746 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1747 Base.getAddress(CGF)); 1748 } 1749 I->getSecond().MappedParams->apply(CGF); 1750 } 1751 1752 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1753 bool WithSPMDCheck) { 1754 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1755 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1756 return; 1757 1758 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1759 if (I != FunctionGlobalizedDecls.end()) { 1760 // Deallocate the memory for each globalized VLA object 1761 for (llvm::Value *Addr : 1762 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1763 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1764 CGM.getModule(), OMPRTL___kmpc_free_shared), 1765 Addr); 1766 } 1767 // Deallocate the memory for each globalized value 1768 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1769 I->getSecond().MappedParams->restore(CGF); 1770 1771 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1772 CGM.getModule(), OMPRTL___kmpc_free_shared), 1773 {Rec.second.GlobalizedVal}); 1774 } 1775 } 1776 } 1777 1778 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1779 const OMPExecutableDirective &D, 1780 SourceLocation Loc, 1781 llvm::Function *OutlinedFn, 1782 ArrayRef<llvm::Value *> CapturedVars) { 1783 if (!CGF.HaveInsertPoint()) 1784 return; 1785 1786 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1787 /*Name=*/".zero.addr"); 1788 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 1789 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1790 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1791 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1792 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1793 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1794 } 1795 1796 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1797 SourceLocation Loc, 1798 llvm::Function *OutlinedFn, 1799 ArrayRef<llvm::Value *> CapturedVars, 1800 const Expr *IfCond) { 1801 if (!CGF.HaveInsertPoint()) 1802 return; 1803 1804 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, 1805 IfCond](CodeGenFunction &CGF, PrePostActionTy &Action) { 1806 CGBuilderTy &Bld = CGF.Builder; 1807 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1808 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1809 if (WFn) { 1810 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1811 // Remember for post-processing in worker loop. 1812 Work.emplace_back(WFn); 1813 } 1814 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1815 1816 // Create a private scope that will globalize the arguments 1817 // passed from the outside of the target region. 1818 // TODO: Is that needed? 1819 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1820 1821 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1822 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1823 "captured_vars_addrs"); 1824 // There's something to share. 1825 if (!CapturedVars.empty()) { 1826 // Prepare for parallel region. Indicate the outlined function. 1827 ASTContext &Ctx = CGF.getContext(); 1828 unsigned Idx = 0; 1829 for (llvm::Value *V : CapturedVars) { 1830 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1831 llvm::Value *PtrV; 1832 if (V->getType()->isIntegerTy()) 1833 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1834 else 1835 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1836 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1837 Ctx.getPointerType(Ctx.VoidPtrTy)); 1838 ++Idx; 1839 } 1840 } 1841 1842 llvm::Value *IfCondVal = nullptr; 1843 if (IfCond) 1844 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1845 /* isSigned */ false); 1846 else 1847 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1848 1849 assert(IfCondVal && "Expected a value"); 1850 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1851 llvm::Value *Args[] = { 1852 RTLoc, 1853 getThreadID(CGF, Loc), 1854 IfCondVal, 1855 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1856 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1857 FnPtr, 1858 ID, 1859 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1860 CGF.VoidPtrPtrTy), 1861 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1862 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1863 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1864 Args); 1865 }; 1866 1867 RegionCodeGenTy RCG(ParallelGen); 1868 RCG(CGF); 1869 } 1870 1871 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1872 // Always emit simple barriers! 1873 if (!CGF.HaveInsertPoint()) 1874 return; 1875 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1876 // This function does not use parameters, so we can emit just default values. 1877 llvm::Value *Args[] = { 1878 llvm::ConstantPointerNull::get( 1879 cast<llvm::PointerType>(getIdentTyPointerTy())), 1880 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1881 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1882 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1883 Args); 1884 } 1885 1886 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1887 SourceLocation Loc, 1888 OpenMPDirectiveKind Kind, bool, 1889 bool) { 1890 // Always emit simple barriers! 1891 if (!CGF.HaveInsertPoint()) 1892 return; 1893 // Build call __kmpc_cancel_barrier(loc, thread_id); 1894 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1895 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1896 getThreadID(CGF, Loc)}; 1897 1898 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1899 CGM.getModule(), OMPRTL___kmpc_barrier), 1900 Args); 1901 } 1902 1903 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1904 CodeGenFunction &CGF, StringRef CriticalName, 1905 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1906 const Expr *Hint) { 1907 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1908 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1909 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1910 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1911 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1912 1913 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1914 1915 // Get the mask of active threads in the warp. 1916 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1917 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1918 // Fetch team-local id of the thread. 1919 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1920 1921 // Get the width of the team. 1922 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1923 1924 // Initialize the counter variable for the loop. 1925 QualType Int32Ty = 1926 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1927 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1928 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1929 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1930 /*isInit=*/true); 1931 1932 // Block checks if loop counter exceeds upper bound. 1933 CGF.EmitBlock(LoopBB); 1934 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1935 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1936 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1937 1938 // Block tests which single thread should execute region, and which threads 1939 // should go straight to synchronisation point. 1940 CGF.EmitBlock(TestBB); 1941 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1942 llvm::Value *CmpThreadToCounter = 1943 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1944 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1945 1946 // Block emits the body of the critical region. 1947 CGF.EmitBlock(BodyBB); 1948 1949 // Output the critical statement. 1950 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1951 Hint); 1952 1953 // After the body surrounded by the critical region, the single executing 1954 // thread will jump to the synchronisation point. 1955 // Block waits for all threads in current team to finish then increments the 1956 // counter variable and returns to the loop. 1957 CGF.EmitBlock(SyncBB); 1958 // Reconverge active threads in the warp. 1959 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1960 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1961 Mask); 1962 1963 llvm::Value *IncCounterVal = 1964 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1965 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1966 CGF.EmitBranch(LoopBB); 1967 1968 // Block that is reached when all threads in the team complete the region. 1969 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1970 } 1971 1972 /// Cast value to the specified type. 1973 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1974 QualType ValTy, QualType CastTy, 1975 SourceLocation Loc) { 1976 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1977 "Cast type must sized."); 1978 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1979 "Val type must sized."); 1980 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1981 if (ValTy == CastTy) 1982 return Val; 1983 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1984 CGF.getContext().getTypeSizeInChars(CastTy)) 1985 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1986 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1987 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1988 CastTy->hasSignedIntegerRepresentation()); 1989 Address CastItem = CGF.CreateMemTemp(CastTy); 1990 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1991 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1992 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1993 LValueBaseInfo(AlignmentSource::Type), 1994 TBAAAccessInfo()); 1995 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1996 LValueBaseInfo(AlignmentSource::Type), 1997 TBAAAccessInfo()); 1998 } 1999 2000 /// This function creates calls to one of two shuffle functions to copy 2001 /// variables between lanes in a warp. 2002 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 2003 llvm::Value *Elem, 2004 QualType ElemType, 2005 llvm::Value *Offset, 2006 SourceLocation Loc) { 2007 CodeGenModule &CGM = CGF.CGM; 2008 CGBuilderTy &Bld = CGF.Builder; 2009 CGOpenMPRuntimeGPU &RT = 2010 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 2011 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 2012 2013 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 2014 assert(Size.getQuantity() <= 8 && 2015 "Unsupported bitwidth in shuffle instruction."); 2016 2017 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 2018 ? OMPRTL___kmpc_shuffle_int32 2019 : OMPRTL___kmpc_shuffle_int64; 2020 2021 // Cast all types to 32- or 64-bit values before calling shuffle routines. 2022 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 2023 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 2024 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 2025 llvm::Value *WarpSize = 2026 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 2027 2028 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 2029 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 2030 {ElemCast, Offset, WarpSize}); 2031 2032 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 2033 } 2034 2035 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 2036 Address DestAddr, QualType ElemType, 2037 llvm::Value *Offset, SourceLocation Loc) { 2038 CGBuilderTy &Bld = CGF.Builder; 2039 2040 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 2041 // Create the loop over the big sized data. 2042 // ptr = (void*)Elem; 2043 // ptrEnd = (void*) Elem + 1; 2044 // Step = 8; 2045 // while (ptr + Step < ptrEnd) 2046 // shuffle((int64_t)*ptr); 2047 // Step = 4; 2048 // while (ptr + Step < ptrEnd) 2049 // shuffle((int32_t)*ptr); 2050 // ... 2051 Address ElemPtr = DestAddr; 2052 Address Ptr = SrcAddr; 2053 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 2054 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 2055 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 2056 if (Size < CharUnits::fromQuantity(IntSize)) 2057 continue; 2058 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 2059 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 2060 /*Signed=*/1); 2061 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 2062 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 2063 ElemPtr = 2064 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 2065 if (Size.getQuantity() / IntSize > 1) { 2066 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 2067 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 2068 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 2069 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 2070 CGF.EmitBlock(PreCondBB); 2071 llvm::PHINode *PhiSrc = 2072 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 2073 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 2074 llvm::PHINode *PhiDest = 2075 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 2076 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 2077 Ptr = Address(PhiSrc, Ptr.getAlignment()); 2078 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 2079 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 2080 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( 2081 Ptr.getPointer(), CGF.VoidPtrTy)); 2082 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 2083 ThenBB, ExitBB); 2084 CGF.EmitBlock(ThenBB); 2085 llvm::Value *Res = createRuntimeShuffleFunction( 2086 CGF, 2087 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 2088 LValueBaseInfo(AlignmentSource::Type), 2089 TBAAAccessInfo()), 2090 IntType, Offset, Loc); 2091 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 2092 LValueBaseInfo(AlignmentSource::Type), 2093 TBAAAccessInfo()); 2094 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 2095 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 2096 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 2097 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 2098 CGF.EmitBranch(PreCondBB); 2099 CGF.EmitBlock(ExitBB); 2100 } else { 2101 llvm::Value *Res = createRuntimeShuffleFunction( 2102 CGF, 2103 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 2104 LValueBaseInfo(AlignmentSource::Type), 2105 TBAAAccessInfo()), 2106 IntType, Offset, Loc); 2107 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 2108 LValueBaseInfo(AlignmentSource::Type), 2109 TBAAAccessInfo()); 2110 Ptr = Bld.CreateConstGEP(Ptr, 1); 2111 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 2112 } 2113 Size = Size % IntSize; 2114 } 2115 } 2116 2117 namespace { 2118 enum CopyAction : unsigned { 2119 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 2120 // the warp using shuffle instructions. 2121 RemoteLaneToThread, 2122 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 2123 ThreadCopy, 2124 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 2125 ThreadToScratchpad, 2126 // ScratchpadToThread: Copy from a scratchpad array in global memory 2127 // containing team-reduced data to a thread's stack. 2128 ScratchpadToThread, 2129 }; 2130 } // namespace 2131 2132 struct CopyOptionsTy { 2133 llvm::Value *RemoteLaneOffset; 2134 llvm::Value *ScratchpadIndex; 2135 llvm::Value *ScratchpadWidth; 2136 }; 2137 2138 /// Emit instructions to copy a Reduce list, which contains partially 2139 /// aggregated values, in the specified direction. 2140 static void emitReductionListCopy( 2141 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 2142 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 2143 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 2144 2145 CodeGenModule &CGM = CGF.CGM; 2146 ASTContext &C = CGM.getContext(); 2147 CGBuilderTy &Bld = CGF.Builder; 2148 2149 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 2150 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 2151 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 2152 2153 // Iterates, element-by-element, through the source Reduce list and 2154 // make a copy. 2155 unsigned Idx = 0; 2156 unsigned Size = Privates.size(); 2157 for (const Expr *Private : Privates) { 2158 Address SrcElementAddr = Address::invalid(); 2159 Address DestElementAddr = Address::invalid(); 2160 Address DestElementPtrAddr = Address::invalid(); 2161 // Should we shuffle in an element from a remote lane? 2162 bool ShuffleInElement = false; 2163 // Set to true to update the pointer in the dest Reduce list to a 2164 // newly created element. 2165 bool UpdateDestListPtr = false; 2166 // Increment the src or dest pointer to the scratchpad, for each 2167 // new element. 2168 bool IncrScratchpadSrc = false; 2169 bool IncrScratchpadDest = false; 2170 2171 switch (Action) { 2172 case RemoteLaneToThread: { 2173 // Step 1.1: Get the address for the src element in the Reduce list. 2174 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 2175 SrcElementAddr = CGF.EmitLoadOfPointer( 2176 SrcElementPtrAddr, 2177 C.getPointerType(Private->getType())->castAs<PointerType>()); 2178 2179 // Step 1.2: Create a temporary to store the element in the destination 2180 // Reduce list. 2181 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 2182 DestElementAddr = 2183 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 2184 ShuffleInElement = true; 2185 UpdateDestListPtr = true; 2186 break; 2187 } 2188 case ThreadCopy: { 2189 // Step 1.1: Get the address for the src element in the Reduce list. 2190 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 2191 SrcElementAddr = CGF.EmitLoadOfPointer( 2192 SrcElementPtrAddr, 2193 C.getPointerType(Private->getType())->castAs<PointerType>()); 2194 2195 // Step 1.2: Get the address for dest element. The destination 2196 // element has already been created on the thread's stack. 2197 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 2198 DestElementAddr = CGF.EmitLoadOfPointer( 2199 DestElementPtrAddr, 2200 C.getPointerType(Private->getType())->castAs<PointerType>()); 2201 break; 2202 } 2203 case ThreadToScratchpad: { 2204 // Step 1.1: Get the address for the src element in the Reduce list. 2205 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 2206 SrcElementAddr = CGF.EmitLoadOfPointer( 2207 SrcElementPtrAddr, 2208 C.getPointerType(Private->getType())->castAs<PointerType>()); 2209 2210 // Step 1.2: Get the address for dest element: 2211 // address = base + index * ElementSizeInChars. 2212 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2213 llvm::Value *CurrentOffset = 2214 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 2215 llvm::Value *ScratchPadElemAbsolutePtrVal = 2216 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 2217 ScratchPadElemAbsolutePtrVal = 2218 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 2219 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 2220 C.getTypeAlignInChars(Private->getType())); 2221 IncrScratchpadDest = true; 2222 break; 2223 } 2224 case ScratchpadToThread: { 2225 // Step 1.1: Get the address for the src element in the scratchpad. 2226 // address = base + index * ElementSizeInChars. 2227 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2228 llvm::Value *CurrentOffset = 2229 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 2230 llvm::Value *ScratchPadElemAbsolutePtrVal = 2231 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 2232 ScratchPadElemAbsolutePtrVal = 2233 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 2234 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 2235 C.getTypeAlignInChars(Private->getType())); 2236 IncrScratchpadSrc = true; 2237 2238 // Step 1.2: Create a temporary to store the element in the destination 2239 // Reduce list. 2240 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 2241 DestElementAddr = 2242 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 2243 UpdateDestListPtr = true; 2244 break; 2245 } 2246 } 2247 2248 // Regardless of src and dest of copy, we emit the load of src 2249 // element as this is required in all directions 2250 SrcElementAddr = Bld.CreateElementBitCast( 2251 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 2252 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 2253 SrcElementAddr.getElementType()); 2254 2255 // Now that all active lanes have read the element in the 2256 // Reduce list, shuffle over the value from the remote lane. 2257 if (ShuffleInElement) { 2258 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 2259 RemoteLaneOffset, Private->getExprLoc()); 2260 } else { 2261 switch (CGF.getEvaluationKind(Private->getType())) { 2262 case TEK_Scalar: { 2263 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2264 SrcElementAddr, /*Volatile=*/false, Private->getType(), 2265 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 2266 TBAAAccessInfo()); 2267 // Store the source element value to the dest element address. 2268 CGF.EmitStoreOfScalar( 2269 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 2270 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2271 break; 2272 } 2273 case TEK_Complex: { 2274 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 2275 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2276 Private->getExprLoc()); 2277 CGF.EmitStoreOfComplex( 2278 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2279 /*isInit=*/false); 2280 break; 2281 } 2282 case TEK_Aggregate: 2283 CGF.EmitAggregateCopy( 2284 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2285 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2286 Private->getType(), AggValueSlot::DoesNotOverlap); 2287 break; 2288 } 2289 } 2290 2291 // Step 3.1: Modify reference in dest Reduce list as needed. 2292 // Modifying the reference in Reduce list to point to the newly 2293 // created element. The element is live in the current function 2294 // scope and that of functions it invokes (i.e., reduce_function). 2295 // RemoteReduceData[i] = (void*)&RemoteElem 2296 if (UpdateDestListPtr) { 2297 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2298 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2299 DestElementPtrAddr, /*Volatile=*/false, 2300 C.VoidPtrTy); 2301 } 2302 2303 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2304 // address of the next element in scratchpad memory, unless we're currently 2305 // processing the last one. Memory alignment is also taken care of here. 2306 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2307 llvm::Value *ScratchpadBasePtr = 2308 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2309 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2310 ScratchpadBasePtr = Bld.CreateNUWAdd( 2311 ScratchpadBasePtr, 2312 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2313 2314 // Take care of global memory alignment for performance 2315 ScratchpadBasePtr = Bld.CreateNUWSub( 2316 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2317 ScratchpadBasePtr = Bld.CreateUDiv( 2318 ScratchpadBasePtr, 2319 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2320 ScratchpadBasePtr = Bld.CreateNUWAdd( 2321 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2322 ScratchpadBasePtr = Bld.CreateNUWMul( 2323 ScratchpadBasePtr, 2324 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2325 2326 if (IncrScratchpadDest) 2327 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2328 else /* IncrScratchpadSrc = true */ 2329 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2330 } 2331 2332 ++Idx; 2333 } 2334 } 2335 2336 /// This function emits a helper that gathers Reduce lists from the first 2337 /// lane of every active warp to lanes in the first warp. 2338 /// 2339 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2340 /// shared smem[warp_size]; 2341 /// For all data entries D in reduce_data: 2342 /// sync 2343 /// If (I am the first lane in each warp) 2344 /// Copy my local D to smem[warp_id] 2345 /// sync 2346 /// if (I am the first warp) 2347 /// Copy smem[thread_id] to my local D 2348 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2349 ArrayRef<const Expr *> Privates, 2350 QualType ReductionArrayTy, 2351 SourceLocation Loc) { 2352 ASTContext &C = CGM.getContext(); 2353 llvm::Module &M = CGM.getModule(); 2354 2355 // ReduceList: thread local Reduce list. 2356 // At the stage of the computation when this function is called, partially 2357 // aggregated values reside in the first lane of every active warp. 2358 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2359 C.VoidPtrTy, ImplicitParamDecl::Other); 2360 // NumWarps: number of warps active in the parallel region. This could 2361 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2362 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2363 C.getIntTypeForBitwidth(32, /* Signed */ true), 2364 ImplicitParamDecl::Other); 2365 FunctionArgList Args; 2366 Args.push_back(&ReduceListArg); 2367 Args.push_back(&NumWarpsArg); 2368 2369 const CGFunctionInfo &CGFI = 2370 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2371 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2372 llvm::GlobalValue::InternalLinkage, 2373 "_omp_reduction_inter_warp_copy_func", &M); 2374 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2375 Fn->setDoesNotRecurse(); 2376 CodeGenFunction CGF(CGM); 2377 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2378 2379 CGBuilderTy &Bld = CGF.Builder; 2380 2381 // This array is used as a medium to transfer, one reduce element at a time, 2382 // the data from the first lane of every warp to lanes in the first warp 2383 // in order to perform the final step of a reduction in a parallel region 2384 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2385 // for reduced latency, as well as to have a distinct copy for concurrently 2386 // executing target regions. The array is declared with common linkage so 2387 // as to be shared across compilation units. 2388 StringRef TransferMediumName = 2389 "__openmp_nvptx_data_transfer_temporary_storage"; 2390 llvm::GlobalVariable *TransferMedium = 2391 M.getGlobalVariable(TransferMediumName); 2392 unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 2393 if (!TransferMedium) { 2394 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2395 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2396 TransferMedium = new llvm::GlobalVariable( 2397 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2398 llvm::UndefValue::get(Ty), TransferMediumName, 2399 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2400 SharedAddressSpace); 2401 CGM.addCompilerUsedGlobal(TransferMedium); 2402 } 2403 2404 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2405 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2406 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2407 // nvptx_lane_id = nvptx_id % warpsize 2408 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2409 // nvptx_warp_id = nvptx_id / warpsize 2410 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2411 2412 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2413 Address LocalReduceList( 2414 Bld.CreatePointerBitCastOrAddrSpaceCast( 2415 CGF.EmitLoadOfScalar( 2416 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2417 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2418 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2419 CGF.getPointerAlign()); 2420 2421 unsigned Idx = 0; 2422 for (const Expr *Private : Privates) { 2423 // 2424 // Warp master copies reduce element to transfer medium in __shared__ 2425 // memory. 2426 // 2427 unsigned RealTySize = 2428 C.getTypeSizeInChars(Private->getType()) 2429 .alignTo(C.getTypeAlignInChars(Private->getType())) 2430 .getQuantity(); 2431 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2432 unsigned NumIters = RealTySize / TySize; 2433 if (NumIters == 0) 2434 continue; 2435 QualType CType = C.getIntTypeForBitwidth( 2436 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2437 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2438 CharUnits Align = CharUnits::fromQuantity(TySize); 2439 llvm::Value *Cnt = nullptr; 2440 Address CntAddr = Address::invalid(); 2441 llvm::BasicBlock *PrecondBB = nullptr; 2442 llvm::BasicBlock *ExitBB = nullptr; 2443 if (NumIters > 1) { 2444 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2445 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2446 /*Volatile=*/false, C.IntTy); 2447 PrecondBB = CGF.createBasicBlock("precond"); 2448 ExitBB = CGF.createBasicBlock("exit"); 2449 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2450 // There is no need to emit line number for unconditional branch. 2451 (void)ApplyDebugLocation::CreateEmpty(CGF); 2452 CGF.EmitBlock(PrecondBB); 2453 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2454 llvm::Value *Cmp = 2455 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2456 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2457 CGF.EmitBlock(BodyBB); 2458 } 2459 // kmpc_barrier. 2460 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2461 /*EmitChecks=*/false, 2462 /*ForceSimpleCall=*/true); 2463 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2464 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2465 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2466 2467 // if (lane_id == 0) 2468 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2469 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2470 CGF.EmitBlock(ThenBB); 2471 2472 // Reduce element = LocalReduceList[i] 2473 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2474 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2475 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2476 // elemptr = ((CopyType*)(elemptrptr)) + I 2477 Address ElemPtr = Address(ElemPtrPtr, Align); 2478 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2479 if (NumIters > 1) { 2480 ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt), 2481 ElemPtr.getAlignment()); 2482 } 2483 2484 // Get pointer to location in transfer medium. 2485 // MediumPtr = &medium[warp_id] 2486 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2487 TransferMedium->getValueType(), TransferMedium, 2488 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2489 Address MediumPtr(MediumPtrVal, Align); 2490 // Casting to actual data type. 2491 // MediumPtr = (CopyType*)MediumPtrAddr; 2492 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2493 2494 // elem = *elemptr 2495 //*MediumPtr = elem 2496 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2497 ElemPtr, /*Volatile=*/false, CType, Loc, 2498 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2499 // Store the source element value to the dest element address. 2500 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2501 LValueBaseInfo(AlignmentSource::Type), 2502 TBAAAccessInfo()); 2503 2504 Bld.CreateBr(MergeBB); 2505 2506 CGF.EmitBlock(ElseBB); 2507 Bld.CreateBr(MergeBB); 2508 2509 CGF.EmitBlock(MergeBB); 2510 2511 // kmpc_barrier. 2512 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2513 /*EmitChecks=*/false, 2514 /*ForceSimpleCall=*/true); 2515 2516 // 2517 // Warp 0 copies reduce element from transfer medium. 2518 // 2519 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2520 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2521 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2522 2523 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2524 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2525 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2526 2527 // Up to 32 threads in warp 0 are active. 2528 llvm::Value *IsActiveThread = 2529 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2530 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2531 2532 CGF.EmitBlock(W0ThenBB); 2533 2534 // SrcMediumPtr = &medium[tid] 2535 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2536 TransferMedium->getValueType(), TransferMedium, 2537 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2538 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2539 // SrcMediumVal = *SrcMediumPtr; 2540 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2541 2542 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2543 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2544 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2545 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2546 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2547 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2548 if (NumIters > 1) { 2549 TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt), 2550 TargetElemPtr.getAlignment()); 2551 } 2552 2553 // *TargetElemPtr = SrcMediumVal; 2554 llvm::Value *SrcMediumValue = 2555 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2556 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2557 CType); 2558 Bld.CreateBr(W0MergeBB); 2559 2560 CGF.EmitBlock(W0ElseBB); 2561 Bld.CreateBr(W0MergeBB); 2562 2563 CGF.EmitBlock(W0MergeBB); 2564 2565 if (NumIters > 1) { 2566 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2567 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2568 CGF.EmitBranch(PrecondBB); 2569 (void)ApplyDebugLocation::CreateEmpty(CGF); 2570 CGF.EmitBlock(ExitBB); 2571 } 2572 RealTySize %= TySize; 2573 } 2574 ++Idx; 2575 } 2576 2577 CGF.FinishFunction(); 2578 return Fn; 2579 } 2580 2581 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2582 /// in the same warp. It uses shuffle instructions to copy over data from 2583 /// a remote lane's stack. The reduction algorithm performed is specified 2584 /// by the fourth parameter. 2585 /// 2586 /// Algorithm Versions. 2587 /// Full Warp Reduce (argument value 0): 2588 /// This algorithm assumes that all 32 lanes are active and gathers 2589 /// data from these 32 lanes, producing a single resultant value. 2590 /// Contiguous Partial Warp Reduce (argument value 1): 2591 /// This algorithm assumes that only a *contiguous* subset of lanes 2592 /// are active. This happens for the last warp in a parallel region 2593 /// when the user specified num_threads is not an integer multiple of 2594 /// 32. This contiguous subset always starts with the zeroth lane. 2595 /// Partial Warp Reduce (argument value 2): 2596 /// This algorithm gathers data from any number of lanes at any position. 2597 /// All reduced values are stored in the lowest possible lane. The set 2598 /// of problems every algorithm addresses is a super set of those 2599 /// addressable by algorithms with a lower version number. Overhead 2600 /// increases as algorithm version increases. 2601 /// 2602 /// Terminology 2603 /// Reduce element: 2604 /// Reduce element refers to the individual data field with primitive 2605 /// data types to be combined and reduced across threads. 2606 /// Reduce list: 2607 /// Reduce list refers to a collection of local, thread-private 2608 /// reduce elements. 2609 /// Remote Reduce list: 2610 /// Remote Reduce list refers to a collection of remote (relative to 2611 /// the current thread) reduce elements. 2612 /// 2613 /// We distinguish between three states of threads that are important to 2614 /// the implementation of this function. 2615 /// Alive threads: 2616 /// Threads in a warp executing the SIMT instruction, as distinguished from 2617 /// threads that are inactive due to divergent control flow. 2618 /// Active threads: 2619 /// The minimal set of threads that has to be alive upon entry to this 2620 /// function. The computation is correct iff active threads are alive. 2621 /// Some threads are alive but they are not active because they do not 2622 /// contribute to the computation in any useful manner. Turning them off 2623 /// may introduce control flow overheads without any tangible benefits. 2624 /// Effective threads: 2625 /// In order to comply with the argument requirements of the shuffle 2626 /// function, we must keep all lanes holding data alive. But at most 2627 /// half of them perform value aggregation; we refer to this half of 2628 /// threads as effective. The other half is simply handing off their 2629 /// data. 2630 /// 2631 /// Procedure 2632 /// Value shuffle: 2633 /// In this step active threads transfer data from higher lane positions 2634 /// in the warp to lower lane positions, creating Remote Reduce list. 2635 /// Value aggregation: 2636 /// In this step, effective threads combine their thread local Reduce list 2637 /// with Remote Reduce list and store the result in the thread local 2638 /// Reduce list. 2639 /// Value copy: 2640 /// In this step, we deal with the assumption made by algorithm 2 2641 /// (i.e. contiguity assumption). When we have an odd number of lanes 2642 /// active, say 2k+1, only k threads will be effective and therefore k 2643 /// new values will be produced. However, the Reduce list owned by the 2644 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2645 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2646 /// that the contiguity assumption still holds. 2647 static llvm::Function *emitShuffleAndReduceFunction( 2648 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2649 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2650 ASTContext &C = CGM.getContext(); 2651 2652 // Thread local Reduce list used to host the values of data to be reduced. 2653 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2654 C.VoidPtrTy, ImplicitParamDecl::Other); 2655 // Current lane id; could be logical. 2656 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2657 ImplicitParamDecl::Other); 2658 // Offset of the remote source lane relative to the current lane. 2659 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2660 C.ShortTy, ImplicitParamDecl::Other); 2661 // Algorithm version. This is expected to be known at compile time. 2662 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2663 C.ShortTy, ImplicitParamDecl::Other); 2664 FunctionArgList Args; 2665 Args.push_back(&ReduceListArg); 2666 Args.push_back(&LaneIDArg); 2667 Args.push_back(&RemoteLaneOffsetArg); 2668 Args.push_back(&AlgoVerArg); 2669 2670 const CGFunctionInfo &CGFI = 2671 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2672 auto *Fn = llvm::Function::Create( 2673 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2674 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2675 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2676 Fn->setDoesNotRecurse(); 2677 2678 CodeGenFunction CGF(CGM); 2679 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2680 2681 CGBuilderTy &Bld = CGF.Builder; 2682 2683 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2684 Address LocalReduceList( 2685 Bld.CreatePointerBitCastOrAddrSpaceCast( 2686 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2687 C.VoidPtrTy, SourceLocation()), 2688 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2689 CGF.getPointerAlign()); 2690 2691 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2692 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2693 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2694 2695 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2696 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2697 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2698 2699 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2700 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2701 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2702 2703 // Create a local thread-private variable to host the Reduce list 2704 // from a remote lane. 2705 Address RemoteReduceList = 2706 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2707 2708 // This loop iterates through the list of reduce elements and copies, 2709 // element by element, from a remote lane in the warp to RemoteReduceList, 2710 // hosted on the thread's stack. 2711 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2712 LocalReduceList, RemoteReduceList, 2713 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2714 /*ScratchpadIndex=*/nullptr, 2715 /*ScratchpadWidth=*/nullptr}); 2716 2717 // The actions to be performed on the Remote Reduce list is dependent 2718 // on the algorithm version. 2719 // 2720 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2721 // LaneId % 2 == 0 && Offset > 0): 2722 // do the reduction value aggregation 2723 // 2724 // The thread local variable Reduce list is mutated in place to host the 2725 // reduced data, which is the aggregated value produced from local and 2726 // remote lanes. 2727 // 2728 // Note that AlgoVer is expected to be a constant integer known at compile 2729 // time. 2730 // When AlgoVer==0, the first conjunction evaluates to true, making 2731 // the entire predicate true during compile time. 2732 // When AlgoVer==1, the second conjunction has only the second part to be 2733 // evaluated during runtime. Other conjunctions evaluates to false 2734 // during compile time. 2735 // When AlgoVer==2, the third conjunction has only the second part to be 2736 // evaluated during runtime. Other conjunctions evaluates to false 2737 // during compile time. 2738 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2739 2740 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2741 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2742 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2743 2744 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2745 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2746 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2747 CondAlgo2 = Bld.CreateAnd( 2748 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2749 2750 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2751 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2752 2753 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2754 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2755 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2756 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2757 2758 CGF.EmitBlock(ThenBB); 2759 // reduce_function(LocalReduceList, RemoteReduceList) 2760 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2761 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2762 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2763 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2764 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2765 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2766 Bld.CreateBr(MergeBB); 2767 2768 CGF.EmitBlock(ElseBB); 2769 Bld.CreateBr(MergeBB); 2770 2771 CGF.EmitBlock(MergeBB); 2772 2773 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2774 // Reduce list. 2775 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2776 llvm::Value *CondCopy = Bld.CreateAnd( 2777 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2778 2779 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2780 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2781 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2782 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2783 2784 CGF.EmitBlock(CpyThenBB); 2785 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2786 RemoteReduceList, LocalReduceList); 2787 Bld.CreateBr(CpyMergeBB); 2788 2789 CGF.EmitBlock(CpyElseBB); 2790 Bld.CreateBr(CpyMergeBB); 2791 2792 CGF.EmitBlock(CpyMergeBB); 2793 2794 CGF.FinishFunction(); 2795 return Fn; 2796 } 2797 2798 /// This function emits a helper that copies all the reduction variables from 2799 /// the team into the provided global buffer for the reduction variables. 2800 /// 2801 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2802 /// For all data entries D in reduce_data: 2803 /// Copy local D to buffer.D[Idx] 2804 static llvm::Value *emitListToGlobalCopyFunction( 2805 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2806 QualType ReductionArrayTy, SourceLocation Loc, 2807 const RecordDecl *TeamReductionRec, 2808 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2809 &VarFieldMap) { 2810 ASTContext &C = CGM.getContext(); 2811 2812 // Buffer: global reduction buffer. 2813 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2814 C.VoidPtrTy, ImplicitParamDecl::Other); 2815 // Idx: index of the buffer. 2816 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2817 ImplicitParamDecl::Other); 2818 // ReduceList: thread local Reduce list. 2819 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2820 C.VoidPtrTy, ImplicitParamDecl::Other); 2821 FunctionArgList Args; 2822 Args.push_back(&BufferArg); 2823 Args.push_back(&IdxArg); 2824 Args.push_back(&ReduceListArg); 2825 2826 const CGFunctionInfo &CGFI = 2827 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2828 auto *Fn = llvm::Function::Create( 2829 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2830 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2831 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2832 Fn->setDoesNotRecurse(); 2833 CodeGenFunction CGF(CGM); 2834 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2835 2836 CGBuilderTy &Bld = CGF.Builder; 2837 2838 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2839 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2840 Address LocalReduceList( 2841 Bld.CreatePointerBitCastOrAddrSpaceCast( 2842 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2843 C.VoidPtrTy, Loc), 2844 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2845 CGF.getPointerAlign()); 2846 QualType StaticTy = C.getRecordType(TeamReductionRec); 2847 llvm::Type *LLVMReductionsBufferTy = 2848 CGM.getTypes().ConvertTypeForMem(StaticTy); 2849 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2850 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2851 LLVMReductionsBufferTy->getPointerTo()); 2852 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2853 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2854 /*Volatile=*/false, C.IntTy, 2855 Loc)}; 2856 unsigned Idx = 0; 2857 for (const Expr *Private : Privates) { 2858 // Reduce element = LocalReduceList[i] 2859 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2860 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2861 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2862 // elemptr = ((CopyType*)(elemptrptr)) + I 2863 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2864 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2865 Address ElemPtr = 2866 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2867 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2868 // Global = Buffer.VD[Idx]; 2869 const FieldDecl *FD = VarFieldMap.lookup(VD); 2870 LValue GlobLVal = CGF.EmitLValueForField( 2871 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2872 Address GlobAddr = GlobLVal.getAddress(CGF); 2873 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2874 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2875 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2876 switch (CGF.getEvaluationKind(Private->getType())) { 2877 case TEK_Scalar: { 2878 llvm::Value *V = CGF.EmitLoadOfScalar( 2879 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2880 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2881 CGF.EmitStoreOfScalar(V, GlobLVal); 2882 break; 2883 } 2884 case TEK_Complex: { 2885 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2886 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2887 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2888 break; 2889 } 2890 case TEK_Aggregate: 2891 CGF.EmitAggregateCopy(GlobLVal, 2892 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2893 Private->getType(), AggValueSlot::DoesNotOverlap); 2894 break; 2895 } 2896 ++Idx; 2897 } 2898 2899 CGF.FinishFunction(); 2900 return Fn; 2901 } 2902 2903 /// This function emits a helper that reduces all the reduction variables from 2904 /// the team into the provided global buffer for the reduction variables. 2905 /// 2906 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2907 /// void *GlobPtrs[]; 2908 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2909 /// ... 2910 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2911 /// reduce_function(GlobPtrs, reduce_data); 2912 static llvm::Value *emitListToGlobalReduceFunction( 2913 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2914 QualType ReductionArrayTy, SourceLocation Loc, 2915 const RecordDecl *TeamReductionRec, 2916 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2917 &VarFieldMap, 2918 llvm::Function *ReduceFn) { 2919 ASTContext &C = CGM.getContext(); 2920 2921 // Buffer: global reduction buffer. 2922 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2923 C.VoidPtrTy, ImplicitParamDecl::Other); 2924 // Idx: index of the buffer. 2925 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2926 ImplicitParamDecl::Other); 2927 // ReduceList: thread local Reduce list. 2928 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2929 C.VoidPtrTy, ImplicitParamDecl::Other); 2930 FunctionArgList Args; 2931 Args.push_back(&BufferArg); 2932 Args.push_back(&IdxArg); 2933 Args.push_back(&ReduceListArg); 2934 2935 const CGFunctionInfo &CGFI = 2936 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2937 auto *Fn = llvm::Function::Create( 2938 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2939 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2940 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2941 Fn->setDoesNotRecurse(); 2942 CodeGenFunction CGF(CGM); 2943 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2944 2945 CGBuilderTy &Bld = CGF.Builder; 2946 2947 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2948 QualType StaticTy = C.getRecordType(TeamReductionRec); 2949 llvm::Type *LLVMReductionsBufferTy = 2950 CGM.getTypes().ConvertTypeForMem(StaticTy); 2951 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2952 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2953 LLVMReductionsBufferTy->getPointerTo()); 2954 2955 // 1. Build a list of reduction variables. 2956 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2957 Address ReductionList = 2958 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2959 auto IPriv = Privates.begin(); 2960 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2961 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2962 /*Volatile=*/false, C.IntTy, 2963 Loc)}; 2964 unsigned Idx = 0; 2965 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2966 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2967 // Global = Buffer.VD[Idx]; 2968 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2969 const FieldDecl *FD = VarFieldMap.lookup(VD); 2970 LValue GlobLVal = CGF.EmitLValueForField( 2971 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2972 Address GlobAddr = GlobLVal.getAddress(CGF); 2973 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2974 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2975 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2976 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2977 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2978 // Store array size. 2979 ++Idx; 2980 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2981 llvm::Value *Size = CGF.Builder.CreateIntCast( 2982 CGF.getVLASize( 2983 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2984 .NumElts, 2985 CGF.SizeTy, /*isSigned=*/false); 2986 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2987 Elem); 2988 } 2989 } 2990 2991 // Call reduce_function(GlobalReduceList, ReduceList) 2992 llvm::Value *GlobalReduceList = 2993 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2994 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2995 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2996 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2997 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2998 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2999 CGF.FinishFunction(); 3000 return Fn; 3001 } 3002 3003 /// This function emits a helper that copies all the reduction variables from 3004 /// the team into the provided global buffer for the reduction variables. 3005 /// 3006 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 3007 /// For all data entries D in reduce_data: 3008 /// Copy buffer.D[Idx] to local D; 3009 static llvm::Value *emitGlobalToListCopyFunction( 3010 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3011 QualType ReductionArrayTy, SourceLocation Loc, 3012 const RecordDecl *TeamReductionRec, 3013 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 3014 &VarFieldMap) { 3015 ASTContext &C = CGM.getContext(); 3016 3017 // Buffer: global reduction buffer. 3018 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3019 C.VoidPtrTy, ImplicitParamDecl::Other); 3020 // Idx: index of the buffer. 3021 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 3022 ImplicitParamDecl::Other); 3023 // ReduceList: thread local Reduce list. 3024 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3025 C.VoidPtrTy, ImplicitParamDecl::Other); 3026 FunctionArgList Args; 3027 Args.push_back(&BufferArg); 3028 Args.push_back(&IdxArg); 3029 Args.push_back(&ReduceListArg); 3030 3031 const CGFunctionInfo &CGFI = 3032 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3033 auto *Fn = llvm::Function::Create( 3034 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3035 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 3036 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3037 Fn->setDoesNotRecurse(); 3038 CodeGenFunction CGF(CGM); 3039 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3040 3041 CGBuilderTy &Bld = CGF.Builder; 3042 3043 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3044 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 3045 Address LocalReduceList( 3046 Bld.CreatePointerBitCastOrAddrSpaceCast( 3047 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 3048 C.VoidPtrTy, Loc), 3049 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 3050 CGF.getPointerAlign()); 3051 QualType StaticTy = C.getRecordType(TeamReductionRec); 3052 llvm::Type *LLVMReductionsBufferTy = 3053 CGM.getTypes().ConvertTypeForMem(StaticTy); 3054 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3055 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 3056 LLVMReductionsBufferTy->getPointerTo()); 3057 3058 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 3059 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 3060 /*Volatile=*/false, C.IntTy, 3061 Loc)}; 3062 unsigned Idx = 0; 3063 for (const Expr *Private : Privates) { 3064 // Reduce element = LocalReduceList[i] 3065 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 3066 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 3067 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 3068 // elemptr = ((CopyType*)(elemptrptr)) + I 3069 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3070 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 3071 Address ElemPtr = 3072 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 3073 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 3074 // Global = Buffer.VD[Idx]; 3075 const FieldDecl *FD = VarFieldMap.lookup(VD); 3076 LValue GlobLVal = CGF.EmitLValueForField( 3077 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 3078 Address GlobAddr = GlobLVal.getAddress(CGF); 3079 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 3080 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 3081 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 3082 switch (CGF.getEvaluationKind(Private->getType())) { 3083 case TEK_Scalar: { 3084 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 3085 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 3086 LValueBaseInfo(AlignmentSource::Type), 3087 TBAAAccessInfo()); 3088 break; 3089 } 3090 case TEK_Complex: { 3091 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 3092 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 3093 /*isInit=*/false); 3094 break; 3095 } 3096 case TEK_Aggregate: 3097 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 3098 GlobLVal, Private->getType(), 3099 AggValueSlot::DoesNotOverlap); 3100 break; 3101 } 3102 ++Idx; 3103 } 3104 3105 CGF.FinishFunction(); 3106 return Fn; 3107 } 3108 3109 /// This function emits a helper that reduces all the reduction variables from 3110 /// the team into the provided global buffer for the reduction variables. 3111 /// 3112 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 3113 /// void *GlobPtrs[]; 3114 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 3115 /// ... 3116 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 3117 /// reduce_function(reduce_data, GlobPtrs); 3118 static llvm::Value *emitGlobalToListReduceFunction( 3119 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3120 QualType ReductionArrayTy, SourceLocation Loc, 3121 const RecordDecl *TeamReductionRec, 3122 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 3123 &VarFieldMap, 3124 llvm::Function *ReduceFn) { 3125 ASTContext &C = CGM.getContext(); 3126 3127 // Buffer: global reduction buffer. 3128 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3129 C.VoidPtrTy, ImplicitParamDecl::Other); 3130 // Idx: index of the buffer. 3131 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 3132 ImplicitParamDecl::Other); 3133 // ReduceList: thread local Reduce list. 3134 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3135 C.VoidPtrTy, ImplicitParamDecl::Other); 3136 FunctionArgList Args; 3137 Args.push_back(&BufferArg); 3138 Args.push_back(&IdxArg); 3139 Args.push_back(&ReduceListArg); 3140 3141 const CGFunctionInfo &CGFI = 3142 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3143 auto *Fn = llvm::Function::Create( 3144 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3145 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 3146 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3147 Fn->setDoesNotRecurse(); 3148 CodeGenFunction CGF(CGM); 3149 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3150 3151 CGBuilderTy &Bld = CGF.Builder; 3152 3153 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 3154 QualType StaticTy = C.getRecordType(TeamReductionRec); 3155 llvm::Type *LLVMReductionsBufferTy = 3156 CGM.getTypes().ConvertTypeForMem(StaticTy); 3157 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3158 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 3159 LLVMReductionsBufferTy->getPointerTo()); 3160 3161 // 1. Build a list of reduction variables. 3162 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3163 Address ReductionList = 3164 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3165 auto IPriv = Privates.begin(); 3166 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 3167 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 3168 /*Volatile=*/false, C.IntTy, 3169 Loc)}; 3170 unsigned Idx = 0; 3171 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 3172 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3173 // Global = Buffer.VD[Idx]; 3174 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 3175 const FieldDecl *FD = VarFieldMap.lookup(VD); 3176 LValue GlobLVal = CGF.EmitLValueForField( 3177 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 3178 Address GlobAddr = GlobLVal.getAddress(CGF); 3179 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 3180 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 3181 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 3182 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 3183 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3184 // Store array size. 3185 ++Idx; 3186 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3187 llvm::Value *Size = CGF.Builder.CreateIntCast( 3188 CGF.getVLASize( 3189 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3190 .NumElts, 3191 CGF.SizeTy, /*isSigned=*/false); 3192 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3193 Elem); 3194 } 3195 } 3196 3197 // Call reduce_function(ReduceList, GlobalReduceList) 3198 llvm::Value *GlobalReduceList = 3199 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 3200 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3201 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 3202 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 3203 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3204 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 3205 CGF.FinishFunction(); 3206 return Fn; 3207 } 3208 3209 /// 3210 /// Design of OpenMP reductions on the GPU 3211 /// 3212 /// Consider a typical OpenMP program with one or more reduction 3213 /// clauses: 3214 /// 3215 /// float foo; 3216 /// double bar; 3217 /// #pragma omp target teams distribute parallel for \ 3218 /// reduction(+:foo) reduction(*:bar) 3219 /// for (int i = 0; i < N; i++) { 3220 /// foo += A[i]; bar *= B[i]; 3221 /// } 3222 /// 3223 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 3224 /// all teams. In our OpenMP implementation on the NVPTX device an 3225 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 3226 /// within a team are mapped to CUDA threads within a threadblock. 3227 /// Our goal is to efficiently aggregate values across all OpenMP 3228 /// threads such that: 3229 /// 3230 /// - the compiler and runtime are logically concise, and 3231 /// - the reduction is performed efficiently in a hierarchical 3232 /// manner as follows: within OpenMP threads in the same warp, 3233 /// across warps in a threadblock, and finally across teams on 3234 /// the NVPTX device. 3235 /// 3236 /// Introduction to Decoupling 3237 /// 3238 /// We would like to decouple the compiler and the runtime so that the 3239 /// latter is ignorant of the reduction variables (number, data types) 3240 /// and the reduction operators. This allows a simpler interface 3241 /// and implementation while still attaining good performance. 3242 /// 3243 /// Pseudocode for the aforementioned OpenMP program generated by the 3244 /// compiler is as follows: 3245 /// 3246 /// 1. Create private copies of reduction variables on each OpenMP 3247 /// thread: 'foo_private', 'bar_private' 3248 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 3249 /// to it and writes the result in 'foo_private' and 'bar_private' 3250 /// respectively. 3251 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 3252 /// and store the result on the team master: 3253 /// 3254 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 3255 /// reduceData, shuffleReduceFn, interWarpCpyFn) 3256 /// 3257 /// where: 3258 /// struct ReduceData { 3259 /// double *foo; 3260 /// double *bar; 3261 /// } reduceData 3262 /// reduceData.foo = &foo_private 3263 /// reduceData.bar = &bar_private 3264 /// 3265 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 3266 /// auxiliary functions generated by the compiler that operate on 3267 /// variables of type 'ReduceData'. They aid the runtime perform 3268 /// algorithmic steps in a data agnostic manner. 3269 /// 3270 /// 'shuffleReduceFn' is a pointer to a function that reduces data 3271 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 3272 /// same warp. It takes the following arguments as input: 3273 /// 3274 /// a. variable of type 'ReduceData' on the calling lane, 3275 /// b. its lane_id, 3276 /// c. an offset relative to the current lane_id to generate a 3277 /// remote_lane_id. The remote lane contains the second 3278 /// variable of type 'ReduceData' that is to be reduced. 3279 /// d. an algorithm version parameter determining which reduction 3280 /// algorithm to use. 3281 /// 3282 /// 'shuffleReduceFn' retrieves data from the remote lane using 3283 /// efficient GPU shuffle intrinsics and reduces, using the 3284 /// algorithm specified by the 4th parameter, the two operands 3285 /// element-wise. The result is written to the first operand. 3286 /// 3287 /// Different reduction algorithms are implemented in different 3288 /// runtime functions, all calling 'shuffleReduceFn' to perform 3289 /// the essential reduction step. Therefore, based on the 4th 3290 /// parameter, this function behaves slightly differently to 3291 /// cooperate with the runtime to ensure correctness under 3292 /// different circumstances. 3293 /// 3294 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3295 /// reduced variables across warps. It tunnels, through CUDA 3296 /// shared memory, the thread-private data of type 'ReduceData' 3297 /// from lane 0 of each warp to a lane in the first warp. 3298 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3299 /// The last team writes the global reduced value to memory. 3300 /// 3301 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3302 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3303 /// scratchpadCopyFn, loadAndReduceFn) 3304 /// 3305 /// 'scratchpadCopyFn' is a helper that stores reduced 3306 /// data from the team master to a scratchpad array in 3307 /// global memory. 3308 /// 3309 /// 'loadAndReduceFn' is a helper that loads data from 3310 /// the scratchpad array and reduces it with the input 3311 /// operand. 3312 /// 3313 /// These compiler generated functions hide address 3314 /// calculation and alignment information from the runtime. 3315 /// 5. if ret == 1: 3316 /// The team master of the last team stores the reduced 3317 /// result to the globals in memory. 3318 /// foo += reduceData.foo; bar *= reduceData.bar 3319 /// 3320 /// 3321 /// Warp Reduction Algorithms 3322 /// 3323 /// On the warp level, we have three algorithms implemented in the 3324 /// OpenMP runtime depending on the number of active lanes: 3325 /// 3326 /// Full Warp Reduction 3327 /// 3328 /// The reduce algorithm within a warp where all lanes are active 3329 /// is implemented in the runtime as follows: 3330 /// 3331 /// full_warp_reduce(void *reduce_data, 3332 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3333 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3334 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3335 /// } 3336 /// 3337 /// The algorithm completes in log(2, WARPSIZE) steps. 3338 /// 3339 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3340 /// not used therefore we save instructions by not retrieving lane_id 3341 /// from the corresponding special registers. The 4th parameter, which 3342 /// represents the version of the algorithm being used, is set to 0 to 3343 /// signify full warp reduction. 3344 /// 3345 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3346 /// 3347 /// #reduce_elem refers to an element in the local lane's data structure 3348 /// #remote_elem is retrieved from a remote lane 3349 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3350 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3351 /// 3352 /// Contiguous Partial Warp Reduction 3353 /// 3354 /// This reduce algorithm is used within a warp where only the first 3355 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3356 /// number of OpenMP threads in a parallel region is not a multiple of 3357 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3358 /// 3359 /// void 3360 /// contiguous_partial_reduce(void *reduce_data, 3361 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3362 /// int size, int lane_id) { 3363 /// int curr_size; 3364 /// int offset; 3365 /// curr_size = size; 3366 /// mask = curr_size/2; 3367 /// while (offset>0) { 3368 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3369 /// curr_size = (curr_size+1)/2; 3370 /// offset = curr_size/2; 3371 /// } 3372 /// } 3373 /// 3374 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3375 /// 3376 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3377 /// if (lane_id < offset) 3378 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3379 /// else 3380 /// reduce_elem = remote_elem 3381 /// 3382 /// This algorithm assumes that the data to be reduced are located in a 3383 /// contiguous subset of lanes starting from the first. When there is 3384 /// an odd number of active lanes, the data in the last lane is not 3385 /// aggregated with any other lane's dat but is instead copied over. 3386 /// 3387 /// Dispersed Partial Warp Reduction 3388 /// 3389 /// This algorithm is used within a warp when any discontiguous subset of 3390 /// lanes are active. It is used to implement the reduction operation 3391 /// across lanes in an OpenMP simd region or in a nested parallel region. 3392 /// 3393 /// void 3394 /// dispersed_partial_reduce(void *reduce_data, 3395 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3396 /// int size, remote_id; 3397 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3398 /// do { 3399 /// remote_id = next_active_lane_id_right_after_me(); 3400 /// # the above function returns 0 of no active lane 3401 /// # is present right after the current lane. 3402 /// size = number_of_active_lanes_in_this_warp(); 3403 /// logical_lane_id /= 2; 3404 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3405 /// remote_id-1-threadIdx.x, 2); 3406 /// } while (logical_lane_id % 2 == 0 && size > 1); 3407 /// } 3408 /// 3409 /// There is no assumption made about the initial state of the reduction. 3410 /// Any number of lanes (>=1) could be active at any position. The reduction 3411 /// result is returned in the first active lane. 3412 /// 3413 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3414 /// 3415 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3416 /// if (lane_id % 2 == 0 && offset > 0) 3417 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3418 /// else 3419 /// reduce_elem = remote_elem 3420 /// 3421 /// 3422 /// Intra-Team Reduction 3423 /// 3424 /// This function, as implemented in the runtime call 3425 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3426 /// threads in a team. It first reduces within a warp using the 3427 /// aforementioned algorithms. We then proceed to gather all such 3428 /// reduced values at the first warp. 3429 /// 3430 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3431 /// data from each of the "warp master" (zeroth lane of each warp, where 3432 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3433 /// a mathematical sense) the problem of reduction across warp masters in 3434 /// a block to the problem of warp reduction. 3435 /// 3436 /// 3437 /// Inter-Team Reduction 3438 /// 3439 /// Once a team has reduced its data to a single value, it is stored in 3440 /// a global scratchpad array. Since each team has a distinct slot, this 3441 /// can be done without locking. 3442 /// 3443 /// The last team to write to the scratchpad array proceeds to reduce the 3444 /// scratchpad array. One or more workers in the last team use the helper 3445 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3446 /// the k'th worker reduces every k'th element. 3447 /// 3448 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3449 /// reduce across workers and compute a globally reduced value. 3450 /// 3451 void CGOpenMPRuntimeGPU::emitReduction( 3452 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3453 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3454 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3455 if (!CGF.HaveInsertPoint()) 3456 return; 3457 3458 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3459 #ifndef NDEBUG 3460 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3461 #endif 3462 3463 if (Options.SimpleReduction) { 3464 assert(!TeamsReduction && !ParallelReduction && 3465 "Invalid reduction selection in emitReduction."); 3466 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3467 ReductionOps, Options); 3468 return; 3469 } 3470 3471 assert((TeamsReduction || ParallelReduction) && 3472 "Invalid reduction selection in emitReduction."); 3473 3474 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3475 // RedList, shuffle_reduce_func, interwarp_copy_func); 3476 // or 3477 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3478 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3479 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3480 3481 llvm::Value *Res; 3482 ASTContext &C = CGM.getContext(); 3483 // 1. Build a list of reduction variables. 3484 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3485 auto Size = RHSExprs.size(); 3486 for (const Expr *E : Privates) { 3487 if (E->getType()->isVariablyModifiedType()) 3488 // Reserve place for array size. 3489 ++Size; 3490 } 3491 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3492 QualType ReductionArrayTy = 3493 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3494 /*IndexTypeQuals=*/0); 3495 Address ReductionList = 3496 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3497 auto IPriv = Privates.begin(); 3498 unsigned Idx = 0; 3499 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3500 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3501 CGF.Builder.CreateStore( 3502 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3503 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3504 Elem); 3505 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3506 // Store array size. 3507 ++Idx; 3508 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3509 llvm::Value *Size = CGF.Builder.CreateIntCast( 3510 CGF.getVLASize( 3511 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3512 .NumElts, 3513 CGF.SizeTy, /*isSigned=*/false); 3514 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3515 Elem); 3516 } 3517 } 3518 3519 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3520 ReductionList.getPointer(), CGF.VoidPtrTy); 3521 llvm::Function *ReductionFn = emitReductionFunction( 3522 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3523 LHSExprs, RHSExprs, ReductionOps); 3524 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3525 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3526 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3527 llvm::Value *InterWarpCopyFn = 3528 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3529 3530 if (ParallelReduction) { 3531 llvm::Value *Args[] = {RTLoc, 3532 ThreadId, 3533 CGF.Builder.getInt32(RHSExprs.size()), 3534 ReductionArrayTySize, 3535 RL, 3536 ShuffleAndReduceFn, 3537 InterWarpCopyFn}; 3538 3539 Res = CGF.EmitRuntimeCall( 3540 OMPBuilder.getOrCreateRuntimeFunction( 3541 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3542 Args); 3543 } else { 3544 assert(TeamsReduction && "expected teams reduction."); 3545 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3546 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3547 int Cnt = 0; 3548 for (const Expr *DRE : Privates) { 3549 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3550 ++Cnt; 3551 } 3552 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3553 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3554 C.getLangOpts().OpenMPCUDAReductionBufNum); 3555 TeamsReductions.push_back(TeamReductionRec); 3556 if (!KernelTeamsReductionPtr) { 3557 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3558 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3559 llvm::GlobalValue::InternalLinkage, nullptr, 3560 "_openmp_teams_reductions_buffer_$_$ptr"); 3561 } 3562 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3563 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3564 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3565 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3566 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3567 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3568 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3569 ReductionFn); 3570 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3571 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3572 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3573 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3574 ReductionFn); 3575 3576 llvm::Value *Args[] = { 3577 RTLoc, 3578 ThreadId, 3579 GlobalBufferPtr, 3580 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3581 RL, 3582 ShuffleAndReduceFn, 3583 InterWarpCopyFn, 3584 GlobalToBufferCpyFn, 3585 GlobalToBufferRedFn, 3586 BufferToGlobalCpyFn, 3587 BufferToGlobalRedFn}; 3588 3589 Res = CGF.EmitRuntimeCall( 3590 OMPBuilder.getOrCreateRuntimeFunction( 3591 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3592 Args); 3593 } 3594 3595 // 5. Build if (res == 1) 3596 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3597 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3598 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3599 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3600 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3601 3602 // 6. Build then branch: where we have reduced values in the master 3603 // thread in each team. 3604 // __kmpc_end_reduce{_nowait}(<gtid>); 3605 // break; 3606 CGF.EmitBlock(ThenBB); 3607 3608 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3609 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3610 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3611 auto IPriv = Privates.begin(); 3612 auto ILHS = LHSExprs.begin(); 3613 auto IRHS = RHSExprs.begin(); 3614 for (const Expr *E : ReductionOps) { 3615 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3616 cast<DeclRefExpr>(*IRHS)); 3617 ++IPriv; 3618 ++ILHS; 3619 ++IRHS; 3620 } 3621 }; 3622 llvm::Value *EndArgs[] = {ThreadId}; 3623 RegionCodeGenTy RCG(CodeGen); 3624 NVPTXActionTy Action( 3625 nullptr, llvm::None, 3626 OMPBuilder.getOrCreateRuntimeFunction( 3627 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3628 EndArgs); 3629 RCG.setAction(Action); 3630 RCG(CGF); 3631 // There is no need to emit line number for unconditional branch. 3632 (void)ApplyDebugLocation::CreateEmpty(CGF); 3633 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3634 } 3635 3636 const VarDecl * 3637 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3638 const VarDecl *NativeParam) const { 3639 if (!NativeParam->getType()->isReferenceType()) 3640 return NativeParam; 3641 QualType ArgType = NativeParam->getType(); 3642 QualifierCollector QC; 3643 const Type *NonQualTy = QC.strip(ArgType); 3644 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3645 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3646 if (Attr->getCaptureKind() == OMPC_map) { 3647 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3648 LangAS::opencl_global); 3649 } else if (Attr->getCaptureKind() == OMPC_firstprivate && 3650 PointeeTy.isConstant(CGM.getContext())) { 3651 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3652 LangAS::opencl_generic); 3653 } 3654 } 3655 ArgType = CGM.getContext().getPointerType(PointeeTy); 3656 QC.addRestrict(); 3657 enum { NVPTX_local_addr = 5 }; 3658 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3659 ArgType = QC.apply(CGM.getContext(), ArgType); 3660 if (isa<ImplicitParamDecl>(NativeParam)) 3661 return ImplicitParamDecl::Create( 3662 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3663 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3664 return ParmVarDecl::Create( 3665 CGM.getContext(), 3666 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3667 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3668 NativeParam->getIdentifier(), ArgType, 3669 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3670 } 3671 3672 Address 3673 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3674 const VarDecl *NativeParam, 3675 const VarDecl *TargetParam) const { 3676 assert(NativeParam != TargetParam && 3677 NativeParam->getType()->isReferenceType() && 3678 "Native arg must not be the same as target arg."); 3679 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3680 QualType NativeParamType = NativeParam->getType(); 3681 QualifierCollector QC; 3682 const Type *NonQualTy = QC.strip(NativeParamType); 3683 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3684 unsigned NativePointeeAddrSpace = 3685 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3686 QualType TargetTy = TargetParam->getType(); 3687 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3688 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3689 // First cast to generic. 3690 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3691 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3692 /*AddrSpace=*/0)); 3693 // Cast from generic to native address space. 3694 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3695 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3696 NativePointeeAddrSpace)); 3697 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3698 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3699 NativeParamType); 3700 return NativeParamAddr; 3701 } 3702 3703 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3704 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3705 ArrayRef<llvm::Value *> Args) const { 3706 SmallVector<llvm::Value *, 4> TargetArgs; 3707 TargetArgs.reserve(Args.size()); 3708 auto *FnType = OutlinedFn.getFunctionType(); 3709 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3710 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3711 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3712 break; 3713 } 3714 llvm::Type *TargetType = FnType->getParamType(I); 3715 llvm::Value *NativeArg = Args[I]; 3716 if (!TargetType->isPointerTy()) { 3717 TargetArgs.emplace_back(NativeArg); 3718 continue; 3719 } 3720 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3721 NativeArg, 3722 NativeArg->getType()->getPointerElementType()->getPointerTo()); 3723 TargetArgs.emplace_back( 3724 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3725 } 3726 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3727 } 3728 3729 /// Emit function which wraps the outline parallel region 3730 /// and controls the arguments which are passed to this function. 3731 /// The wrapper ensures that the outlined function is called 3732 /// with the correct arguments when data is shared. 3733 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3734 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3735 ASTContext &Ctx = CGM.getContext(); 3736 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3737 3738 // Create a function that takes as argument the source thread. 3739 FunctionArgList WrapperArgs; 3740 QualType Int16QTy = 3741 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3742 QualType Int32QTy = 3743 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3744 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3745 /*Id=*/nullptr, Int16QTy, 3746 ImplicitParamDecl::Other); 3747 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3748 /*Id=*/nullptr, Int32QTy, 3749 ImplicitParamDecl::Other); 3750 WrapperArgs.emplace_back(&ParallelLevelArg); 3751 WrapperArgs.emplace_back(&WrapperArg); 3752 3753 const CGFunctionInfo &CGFI = 3754 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3755 3756 auto *Fn = llvm::Function::Create( 3757 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3758 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3759 3760 // Ensure we do not inline the function. This is trivially true for the ones 3761 // passed to __kmpc_fork_call but the ones calles in serialized regions 3762 // could be inlined. This is not a perfect but it is closer to the invariant 3763 // we want, namely, every data environment starts with a new function. 3764 // TODO: We should pass the if condition to the runtime function and do the 3765 // handling there. Much cleaner code. 3766 Fn->addFnAttr(llvm::Attribute::NoInline); 3767 3768 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3769 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3770 Fn->setDoesNotRecurse(); 3771 3772 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3773 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3774 D.getBeginLoc(), D.getBeginLoc()); 3775 3776 const auto *RD = CS.getCapturedRecordDecl(); 3777 auto CurField = RD->field_begin(); 3778 3779 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3780 /*Name=*/".zero.addr"); 3781 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 3782 // Get the array of arguments. 3783 SmallVector<llvm::Value *, 8> Args; 3784 3785 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3786 Args.emplace_back(ZeroAddr.getPointer()); 3787 3788 CGBuilderTy &Bld = CGF.Builder; 3789 auto CI = CS.capture_begin(); 3790 3791 // Use global memory for data sharing. 3792 // Handle passing of global args to workers. 3793 Address GlobalArgs = 3794 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3795 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3796 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3797 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3798 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3799 DataSharingArgs); 3800 3801 // Retrieve the shared variables from the list of references returned 3802 // by the runtime. Pass the variables to the outlined function. 3803 Address SharedArgListAddress = Address::invalid(); 3804 if (CS.capture_size() > 0 || 3805 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3806 SharedArgListAddress = CGF.EmitLoadOfPointer( 3807 GlobalArgs, CGF.getContext() 3808 .getPointerType(CGF.getContext().getPointerType( 3809 CGF.getContext().VoidPtrTy)) 3810 .castAs<PointerType>()); 3811 } 3812 unsigned Idx = 0; 3813 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3814 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3815 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3816 Src, CGF.SizeTy->getPointerTo()); 3817 llvm::Value *LB = CGF.EmitLoadOfScalar( 3818 TypedAddress, 3819 /*Volatile=*/false, 3820 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3821 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3822 Args.emplace_back(LB); 3823 ++Idx; 3824 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3825 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3826 Src, CGF.SizeTy->getPointerTo()); 3827 llvm::Value *UB = CGF.EmitLoadOfScalar( 3828 TypedAddress, 3829 /*Volatile=*/false, 3830 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3831 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3832 Args.emplace_back(UB); 3833 ++Idx; 3834 } 3835 if (CS.capture_size() > 0) { 3836 ASTContext &CGFContext = CGF.getContext(); 3837 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3838 QualType ElemTy = CurField->getType(); 3839 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3840 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3841 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3842 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3843 /*Volatile=*/false, 3844 CGFContext.getPointerType(ElemTy), 3845 CI->getLocation()); 3846 if (CI->capturesVariableByCopy() && 3847 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3848 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3849 CI->getLocation()); 3850 } 3851 Args.emplace_back(Arg); 3852 } 3853 } 3854 3855 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3856 CGF.FinishFunction(); 3857 return Fn; 3858 } 3859 3860 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3861 const Decl *D) { 3862 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3863 return; 3864 3865 assert(D && "Expected function or captured|block decl."); 3866 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3867 "Function is registered already."); 3868 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3869 "Team is set but not processed."); 3870 const Stmt *Body = nullptr; 3871 bool NeedToDelayGlobalization = false; 3872 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3873 Body = FD->getBody(); 3874 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3875 Body = BD->getBody(); 3876 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3877 Body = CD->getBody(); 3878 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3879 if (NeedToDelayGlobalization && 3880 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3881 return; 3882 } 3883 if (!Body) 3884 return; 3885 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3886 VarChecker.Visit(Body); 3887 const RecordDecl *GlobalizedVarsRecord = 3888 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3889 TeamAndReductions.first = nullptr; 3890 TeamAndReductions.second.clear(); 3891 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3892 VarChecker.getEscapedVariableLengthDecls(); 3893 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3894 return; 3895 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3896 I->getSecond().MappedParams = 3897 std::make_unique<CodeGenFunction::OMPMapVars>(); 3898 I->getSecond().EscapedParameters.insert( 3899 VarChecker.getEscapedParameters().begin(), 3900 VarChecker.getEscapedParameters().end()); 3901 I->getSecond().EscapedVariableLengthDecls.append( 3902 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3903 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3904 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3905 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3906 Data.insert(std::make_pair(VD, MappedVarData())); 3907 } 3908 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3909 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3910 VarChecker.Visit(Body); 3911 I->getSecond().SecondaryLocalVarData.emplace(); 3912 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3913 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3914 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3915 Data.insert(std::make_pair(VD, MappedVarData())); 3916 } 3917 } 3918 if (!NeedToDelayGlobalization) { 3919 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3920 struct GlobalizationScope final : EHScopeStack::Cleanup { 3921 GlobalizationScope() = default; 3922 3923 void Emit(CodeGenFunction &CGF, Flags flags) override { 3924 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3925 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3926 } 3927 }; 3928 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3929 } 3930 } 3931 3932 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3933 const VarDecl *VD) { 3934 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3935 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3936 auto AS = LangAS::Default; 3937 switch (A->getAllocatorType()) { 3938 // Use the default allocator here as by default local vars are 3939 // threadlocal. 3940 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3941 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3942 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3943 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3944 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3945 // Follow the user decision - use default allocation. 3946 return Address::invalid(); 3947 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3948 // TODO: implement aupport for user-defined allocators. 3949 return Address::invalid(); 3950 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3951 AS = LangAS::cuda_constant; 3952 break; 3953 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3954 AS = LangAS::cuda_shared; 3955 break; 3956 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3957 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3958 break; 3959 } 3960 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3961 auto *GV = new llvm::GlobalVariable( 3962 CGM.getModule(), VarTy, /*isConstant=*/false, 3963 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3964 VD->getName(), 3965 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3966 CGM.getContext().getTargetAddressSpace(AS)); 3967 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3968 GV->setAlignment(Align.getAsAlign()); 3969 return Address( 3970 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3971 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3972 VD->getType().getAddressSpace()))), 3973 Align); 3974 } 3975 3976 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3977 return Address::invalid(); 3978 3979 VD = VD->getCanonicalDecl(); 3980 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3981 if (I == FunctionGlobalizedDecls.end()) 3982 return Address::invalid(); 3983 auto VDI = I->getSecond().LocalVarData.find(VD); 3984 if (VDI != I->getSecond().LocalVarData.end()) 3985 return VDI->second.PrivateAddr; 3986 if (VD->hasAttrs()) { 3987 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3988 E(VD->attr_end()); 3989 IT != E; ++IT) { 3990 auto VDI = I->getSecond().LocalVarData.find( 3991 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3992 ->getCanonicalDecl()); 3993 if (VDI != I->getSecond().LocalVarData.end()) 3994 return VDI->second.PrivateAddr; 3995 } 3996 } 3997 3998 return Address::invalid(); 3999 } 4000 4001 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 4002 FunctionGlobalizedDecls.erase(CGF.CurFn); 4003 CGOpenMPRuntime::functionFinished(CGF); 4004 } 4005 4006 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 4007 CodeGenFunction &CGF, const OMPLoopDirective &S, 4008 OpenMPDistScheduleClauseKind &ScheduleKind, 4009 llvm::Value *&Chunk) const { 4010 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 4011 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 4012 ScheduleKind = OMPC_DIST_SCHEDULE_static; 4013 Chunk = CGF.EmitScalarConversion( 4014 RT.getGPUNumThreads(CGF), 4015 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4016 S.getIterationVariable()->getType(), S.getBeginLoc()); 4017 return; 4018 } 4019 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 4020 CGF, S, ScheduleKind, Chunk); 4021 } 4022 4023 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 4024 CodeGenFunction &CGF, const OMPLoopDirective &S, 4025 OpenMPScheduleClauseKind &ScheduleKind, 4026 const Expr *&ChunkExpr) const { 4027 ScheduleKind = OMPC_SCHEDULE_static; 4028 // Chunk size is 1 in this case. 4029 llvm::APInt ChunkSize(32, 1); 4030 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 4031 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4032 SourceLocation()); 4033 } 4034 4035 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 4036 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 4037 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 4038 " Expected target-based directive."); 4039 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 4040 for (const CapturedStmt::Capture &C : CS->captures()) { 4041 // Capture variables captured by reference in lambdas for target-based 4042 // directives. 4043 if (!C.capturesVariable()) 4044 continue; 4045 const VarDecl *VD = C.getCapturedVar(); 4046 const auto *RD = VD->getType() 4047 .getCanonicalType() 4048 .getNonReferenceType() 4049 ->getAsCXXRecordDecl(); 4050 if (!RD || !RD->isLambda()) 4051 continue; 4052 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 4053 LValue VDLVal; 4054 if (VD->getType().getCanonicalType()->isReferenceType()) 4055 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 4056 else 4057 VDLVal = CGF.MakeAddrLValue( 4058 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 4059 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 4060 FieldDecl *ThisCapture = nullptr; 4061 RD->getCaptureFields(Captures, ThisCapture); 4062 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 4063 LValue ThisLVal = 4064 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 4065 llvm::Value *CXXThis = CGF.LoadCXXThis(); 4066 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 4067 } 4068 for (const LambdaCapture &LC : RD->captures()) { 4069 if (LC.getCaptureKind() != LCK_ByRef) 4070 continue; 4071 const VarDecl *VD = LC.getCapturedVar(); 4072 if (!CS->capturesVariable(VD)) 4073 continue; 4074 auto It = Captures.find(VD); 4075 assert(It != Captures.end() && "Found lambda capture without field."); 4076 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 4077 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 4078 if (VD->getType().getCanonicalType()->isReferenceType()) 4079 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 4080 VD->getType().getCanonicalType()) 4081 .getAddress(CGF); 4082 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 4083 } 4084 } 4085 } 4086 4087 unsigned CGOpenMPRuntimeGPU::getDefaultFirstprivateAddressSpace() const { 4088 return CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant); 4089 } 4090 4091 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 4092 LangAS &AS) { 4093 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 4094 return false; 4095 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 4096 switch(A->getAllocatorType()) { 4097 case OMPAllocateDeclAttr::OMPNullMemAlloc: 4098 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 4099 // Not supported, fallback to the default mem space. 4100 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 4101 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 4102 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 4103 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 4104 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 4105 AS = LangAS::Default; 4106 return true; 4107 case OMPAllocateDeclAttr::OMPConstMemAlloc: 4108 AS = LangAS::cuda_constant; 4109 return true; 4110 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 4111 AS = LangAS::cuda_shared; 4112 return true; 4113 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 4114 llvm_unreachable("Expected predefined allocator for the variables with the " 4115 "static storage."); 4116 } 4117 return false; 4118 } 4119 4120 // Get current CudaArch and ignore any unknown values 4121 static CudaArch getCudaArch(CodeGenModule &CGM) { 4122 if (!CGM.getTarget().hasFeature("ptx")) 4123 return CudaArch::UNKNOWN; 4124 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 4125 if (Feature.getValue()) { 4126 CudaArch Arch = StringToCudaArch(Feature.getKey()); 4127 if (Arch != CudaArch::UNKNOWN) 4128 return Arch; 4129 } 4130 } 4131 return CudaArch::UNKNOWN; 4132 } 4133 4134 /// Check to see if target architecture supports unified addressing which is 4135 /// a restriction for OpenMP requires clause "unified_shared_memory". 4136 void CGOpenMPRuntimeGPU::processRequiresDirective( 4137 const OMPRequiresDecl *D) { 4138 for (const OMPClause *Clause : D->clauselists()) { 4139 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 4140 CudaArch Arch = getCudaArch(CGM); 4141 switch (Arch) { 4142 case CudaArch::SM_20: 4143 case CudaArch::SM_21: 4144 case CudaArch::SM_30: 4145 case CudaArch::SM_32: 4146 case CudaArch::SM_35: 4147 case CudaArch::SM_37: 4148 case CudaArch::SM_50: 4149 case CudaArch::SM_52: 4150 case CudaArch::SM_53: { 4151 SmallString<256> Buffer; 4152 llvm::raw_svector_ostream Out(Buffer); 4153 Out << "Target architecture " << CudaArchToString(Arch) 4154 << " does not support unified addressing"; 4155 CGM.Error(Clause->getBeginLoc(), Out.str()); 4156 return; 4157 } 4158 case CudaArch::SM_60: 4159 case CudaArch::SM_61: 4160 case CudaArch::SM_62: 4161 case CudaArch::SM_70: 4162 case CudaArch::SM_72: 4163 case CudaArch::SM_75: 4164 case CudaArch::SM_80: 4165 case CudaArch::SM_86: 4166 case CudaArch::GFX600: 4167 case CudaArch::GFX601: 4168 case CudaArch::GFX602: 4169 case CudaArch::GFX700: 4170 case CudaArch::GFX701: 4171 case CudaArch::GFX702: 4172 case CudaArch::GFX703: 4173 case CudaArch::GFX704: 4174 case CudaArch::GFX705: 4175 case CudaArch::GFX801: 4176 case CudaArch::GFX802: 4177 case CudaArch::GFX803: 4178 case CudaArch::GFX805: 4179 case CudaArch::GFX810: 4180 case CudaArch::GFX900: 4181 case CudaArch::GFX902: 4182 case CudaArch::GFX904: 4183 case CudaArch::GFX906: 4184 case CudaArch::GFX908: 4185 case CudaArch::GFX909: 4186 case CudaArch::GFX90a: 4187 case CudaArch::GFX90c: 4188 case CudaArch::GFX1010: 4189 case CudaArch::GFX1011: 4190 case CudaArch::GFX1012: 4191 case CudaArch::GFX1013: 4192 case CudaArch::GFX1030: 4193 case CudaArch::GFX1031: 4194 case CudaArch::GFX1032: 4195 case CudaArch::GFX1033: 4196 case CudaArch::GFX1034: 4197 case CudaArch::GFX1035: 4198 case CudaArch::UNUSED: 4199 case CudaArch::UNKNOWN: 4200 break; 4201 case CudaArch::LAST: 4202 llvm_unreachable("Unexpected Cuda arch."); 4203 } 4204 } 4205 } 4206 CGOpenMPRuntime::processRequiresDirective(D); 4207 } 4208 4209 void CGOpenMPRuntimeGPU::clear() { 4210 4211 if (!TeamsReductions.empty()) { 4212 ASTContext &C = CGM.getContext(); 4213 RecordDecl *StaticRD = C.buildImplicitRecord( 4214 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 4215 StaticRD->startDefinition(); 4216 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 4217 QualType RecTy = C.getRecordType(TeamReductionRec); 4218 auto *Field = FieldDecl::Create( 4219 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 4220 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 4221 /*BW=*/nullptr, /*Mutable=*/false, 4222 /*InitStyle=*/ICIS_NoInit); 4223 Field->setAccess(AS_public); 4224 StaticRD->addDecl(Field); 4225 } 4226 StaticRD->completeDefinition(); 4227 QualType StaticTy = C.getRecordType(StaticRD); 4228 llvm::Type *LLVMReductionsBufferTy = 4229 CGM.getTypes().ConvertTypeForMem(StaticTy); 4230 // FIXME: nvlink does not handle weak linkage correctly (object with the 4231 // different size are reported as erroneous). 4232 // Restore CommonLinkage as soon as nvlink is fixed. 4233 auto *GV = new llvm::GlobalVariable( 4234 CGM.getModule(), LLVMReductionsBufferTy, 4235 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 4236 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 4237 "_openmp_teams_reductions_buffer_$_"); 4238 KernelTeamsReductionPtr->setInitializer( 4239 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4240 CGM.VoidPtrTy)); 4241 } 4242 CGOpenMPRuntime::clear(); 4243 } 4244