1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CodeGenFunction.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclOpenMP.h" 18 #include "clang/AST/StmtOpenMP.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Basic/Cuda.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 23 #include "llvm/Support/MathExtras.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 using namespace llvm::omp; 28 29 namespace { 30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 31 class NVPTXActionTy final : public PrePostActionTy { 32 llvm::FunctionCallee EnterCallee = nullptr; 33 ArrayRef<llvm::Value *> EnterArgs; 34 llvm::FunctionCallee ExitCallee = nullptr; 35 ArrayRef<llvm::Value *> ExitArgs; 36 bool Conditional = false; 37 llvm::BasicBlock *ContBlock = nullptr; 38 39 public: 40 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 41 ArrayRef<llvm::Value *> EnterArgs, 42 llvm::FunctionCallee ExitCallee, 43 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 44 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 45 ExitArgs(ExitArgs), Conditional(Conditional) {} 46 void Enter(CodeGenFunction &CGF) override { 47 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 48 if (Conditional) { 49 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 50 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 51 ContBlock = CGF.createBasicBlock("omp_if.end"); 52 // Generate the branch (If-stmt) 53 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 54 CGF.EmitBlock(ThenBlock); 55 } 56 } 57 void Done(CodeGenFunction &CGF) { 58 // Emit the rest of blocks/branches 59 CGF.EmitBranch(ContBlock); 60 CGF.EmitBlock(ContBlock, true); 61 } 62 void Exit(CodeGenFunction &CGF) override { 63 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 64 } 65 }; 66 67 /// A class to track the execution mode when codegening directives within 68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 69 /// to the target region and used by containing directives such as 'parallel' 70 /// to emit optimized code. 71 class ExecutionRuntimeModesRAII { 72 private: 73 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 74 CGOpenMPRuntimeGPU::EM_Unknown; 75 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 76 bool SavedRuntimeMode = false; 77 bool *RuntimeMode = nullptr; 78 79 public: 80 /// Constructor for Non-SPMD mode. 81 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 82 : ExecMode(ExecMode) { 83 SavedExecMode = ExecMode; 84 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 85 } 86 /// Constructor for SPMD mode. 87 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 88 bool &RuntimeMode, bool FullRuntimeMode) 89 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 90 SavedExecMode = ExecMode; 91 SavedRuntimeMode = RuntimeMode; 92 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 93 RuntimeMode = FullRuntimeMode; 94 } 95 ~ExecutionRuntimeModesRAII() { 96 ExecMode = SavedExecMode; 97 if (RuntimeMode) 98 *RuntimeMode = SavedRuntimeMode; 99 } 100 }; 101 102 /// GPU Configuration: This information can be derived from cuda registers, 103 /// however, providing compile time constants helps generate more efficient 104 /// code. For all practical purposes this is fine because the configuration 105 /// is the same for all known NVPTX architectures. 106 enum MachineConfiguration : unsigned { 107 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 108 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 109 110 /// Global memory alignment for performance. 111 GlobalMemoryAlignment = 128, 112 113 /// Maximal size of the shared memory buffer. 114 SharedMemorySize = 128, 115 }; 116 117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 118 RefExpr = RefExpr->IgnoreParens(); 119 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 120 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 121 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 122 Base = TempASE->getBase()->IgnoreParenImpCasts(); 123 RefExpr = Base; 124 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 125 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 126 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 127 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 129 Base = TempASE->getBase()->IgnoreParenImpCasts(); 130 RefExpr = Base; 131 } 132 RefExpr = RefExpr->IgnoreParenImpCasts(); 133 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 134 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 135 const auto *ME = cast<MemberExpr>(RefExpr); 136 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 137 } 138 139 140 static RecordDecl *buildRecordForGlobalizedVars( 141 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 142 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 143 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 144 &MappedDeclsFields, int BufSize) { 145 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 146 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 147 return nullptr; 148 SmallVector<VarsDataTy, 4> GlobalizedVars; 149 for (const ValueDecl *D : EscapedDecls) 150 GlobalizedVars.emplace_back( 151 CharUnits::fromQuantity(std::max( 152 C.getDeclAlign(D).getQuantity(), 153 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 154 D); 155 for (const ValueDecl *D : EscapedDeclsForTeams) 156 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 157 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 158 return L.first > R.first; 159 }); 160 161 // Build struct _globalized_locals_ty { 162 // /* globalized vars */[WarSize] align (max(decl_align, 163 // GlobalMemoryAlignment)) 164 // /* globalized vars */ for EscapedDeclsForTeams 165 // }; 166 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 167 GlobalizedRD->startDefinition(); 168 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 169 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 170 for (const auto &Pair : GlobalizedVars) { 171 const ValueDecl *VD = Pair.second; 172 QualType Type = VD->getType(); 173 if (Type->isLValueReferenceType()) 174 Type = C.getPointerType(Type.getNonReferenceType()); 175 else 176 Type = Type.getNonReferenceType(); 177 SourceLocation Loc = VD->getLocation(); 178 FieldDecl *Field; 179 if (SingleEscaped.count(VD)) { 180 Field = FieldDecl::Create( 181 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 182 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 183 /*BW=*/nullptr, /*Mutable=*/false, 184 /*InitStyle=*/ICIS_NoInit); 185 Field->setAccess(AS_public); 186 if (VD->hasAttrs()) { 187 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 188 E(VD->getAttrs().end()); 189 I != E; ++I) 190 Field->addAttr(*I); 191 } 192 } else { 193 llvm::APInt ArraySize(32, BufSize); 194 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 195 0); 196 Field = FieldDecl::Create( 197 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 198 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 199 /*BW=*/nullptr, /*Mutable=*/false, 200 /*InitStyle=*/ICIS_NoInit); 201 Field->setAccess(AS_public); 202 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 203 static_cast<CharUnits::QuantityType>( 204 GlobalMemoryAlignment))); 205 Field->addAttr(AlignedAttr::CreateImplicit( 206 C, /*IsAlignmentExpr=*/true, 207 IntegerLiteral::Create(C, Align, 208 C.getIntTypeForBitwidth(32, /*Signed=*/0), 209 SourceLocation()), 210 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 211 } 212 GlobalizedRD->addDecl(Field); 213 MappedDeclsFields.try_emplace(VD, Field); 214 } 215 GlobalizedRD->completeDefinition(); 216 return GlobalizedRD; 217 } 218 219 /// Get the list of variables that can escape their declaration context. 220 class CheckVarsEscapingDeclContext final 221 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 222 CodeGenFunction &CGF; 223 llvm::SetVector<const ValueDecl *> EscapedDecls; 224 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 225 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 226 RecordDecl *GlobalizedRD = nullptr; 227 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 228 bool AllEscaped = false; 229 bool IsForCombinedParallelRegion = false; 230 231 void markAsEscaped(const ValueDecl *VD) { 232 // Do not globalize declare target variables. 233 if (!isa<VarDecl>(VD) || 234 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 235 return; 236 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 237 // Use user-specified allocation. 238 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 239 return; 240 // Variables captured by value must be globalized. 241 if (auto *CSI = CGF.CapturedStmtInfo) { 242 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 243 // Check if need to capture the variable that was already captured by 244 // value in the outer region. 245 if (!IsForCombinedParallelRegion) { 246 if (!FD->hasAttrs()) 247 return; 248 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 249 if (!Attr) 250 return; 251 if (((Attr->getCaptureKind() != OMPC_map) && 252 !isOpenMPPrivate(Attr->getCaptureKind())) || 253 ((Attr->getCaptureKind() == OMPC_map) && 254 !FD->getType()->isAnyPointerType())) 255 return; 256 } 257 if (!FD->getType()->isReferenceType()) { 258 assert(!VD->getType()->isVariablyModifiedType() && 259 "Parameter captured by value with variably modified type"); 260 EscapedParameters.insert(VD); 261 } else if (!IsForCombinedParallelRegion) { 262 return; 263 } 264 } 265 } 266 if ((!CGF.CapturedStmtInfo || 267 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 268 VD->getType()->isReferenceType()) 269 // Do not globalize variables with reference type. 270 return; 271 if (VD->getType()->isVariablyModifiedType()) 272 EscapedVariableLengthDecls.insert(VD); 273 else 274 EscapedDecls.insert(VD); 275 } 276 277 void VisitValueDecl(const ValueDecl *VD) { 278 if (VD->getType()->isLValueReferenceType()) 279 markAsEscaped(VD); 280 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 281 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 282 const bool SavedAllEscaped = AllEscaped; 283 AllEscaped = VD->getType()->isLValueReferenceType(); 284 Visit(VarD->getInit()); 285 AllEscaped = SavedAllEscaped; 286 } 287 } 288 } 289 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 290 ArrayRef<OMPClause *> Clauses, 291 bool IsCombinedParallelRegion) { 292 if (!S) 293 return; 294 for (const CapturedStmt::Capture &C : S->captures()) { 295 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 296 const ValueDecl *VD = C.getCapturedVar(); 297 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 298 if (IsCombinedParallelRegion) { 299 // Check if the variable is privatized in the combined construct and 300 // those private copies must be shared in the inner parallel 301 // directive. 302 IsForCombinedParallelRegion = false; 303 for (const OMPClause *C : Clauses) { 304 if (!isOpenMPPrivate(C->getClauseKind()) || 305 C->getClauseKind() == OMPC_reduction || 306 C->getClauseKind() == OMPC_linear || 307 C->getClauseKind() == OMPC_private) 308 continue; 309 ArrayRef<const Expr *> Vars; 310 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 311 Vars = PC->getVarRefs(); 312 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else 315 llvm_unreachable("Unexpected clause."); 316 for (const auto *E : Vars) { 317 const Decl *D = 318 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 319 if (D == VD->getCanonicalDecl()) { 320 IsForCombinedParallelRegion = true; 321 break; 322 } 323 } 324 if (IsForCombinedParallelRegion) 325 break; 326 } 327 } 328 markAsEscaped(VD); 329 if (isa<OMPCapturedExprDecl>(VD)) 330 VisitValueDecl(VD); 331 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 332 } 333 } 334 } 335 336 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 337 assert(!GlobalizedRD && 338 "Record for globalized variables is built already."); 339 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 340 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 341 if (IsInTTDRegion) 342 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 343 else 344 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 345 GlobalizedRD = ::buildRecordForGlobalizedVars( 346 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 347 MappedDeclsFields, WarpSize); 348 } 349 350 public: 351 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 352 ArrayRef<const ValueDecl *> TeamsReductions) 353 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 354 } 355 virtual ~CheckVarsEscapingDeclContext() = default; 356 void VisitDeclStmt(const DeclStmt *S) { 357 if (!S) 358 return; 359 for (const Decl *D : S->decls()) 360 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 361 VisitValueDecl(VD); 362 } 363 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 364 if (!D) 365 return; 366 if (!D->hasAssociatedStmt()) 367 return; 368 if (const auto *S = 369 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 370 // Do not analyze directives that do not actually require capturing, 371 // like `omp for` or `omp simd` directives. 372 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 373 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 374 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 375 VisitStmt(S->getCapturedStmt()); 376 return; 377 } 378 VisitOpenMPCapturedStmt( 379 S, D->clauses(), 380 CaptureRegions.back() == OMPD_parallel && 381 isOpenMPDistributeDirective(D->getDirectiveKind())); 382 } 383 } 384 void VisitCapturedStmt(const CapturedStmt *S) { 385 if (!S) 386 return; 387 for (const CapturedStmt::Capture &C : S->captures()) { 388 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 389 const ValueDecl *VD = C.getCapturedVar(); 390 markAsEscaped(VD); 391 if (isa<OMPCapturedExprDecl>(VD)) 392 VisitValueDecl(VD); 393 } 394 } 395 } 396 void VisitLambdaExpr(const LambdaExpr *E) { 397 if (!E) 398 return; 399 for (const LambdaCapture &C : E->captures()) { 400 if (C.capturesVariable()) { 401 if (C.getCaptureKind() == LCK_ByRef) { 402 const ValueDecl *VD = C.getCapturedVar(); 403 markAsEscaped(VD); 404 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 405 VisitValueDecl(VD); 406 } 407 } 408 } 409 } 410 void VisitBlockExpr(const BlockExpr *E) { 411 if (!E) 412 return; 413 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 414 if (C.isByRef()) { 415 const VarDecl *VD = C.getVariable(); 416 markAsEscaped(VD); 417 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 418 VisitValueDecl(VD); 419 } 420 } 421 } 422 void VisitCallExpr(const CallExpr *E) { 423 if (!E) 424 return; 425 for (const Expr *Arg : E->arguments()) { 426 if (!Arg) 427 continue; 428 if (Arg->isLValue()) { 429 const bool SavedAllEscaped = AllEscaped; 430 AllEscaped = true; 431 Visit(Arg); 432 AllEscaped = SavedAllEscaped; 433 } else { 434 Visit(Arg); 435 } 436 } 437 Visit(E->getCallee()); 438 } 439 void VisitDeclRefExpr(const DeclRefExpr *E) { 440 if (!E) 441 return; 442 const ValueDecl *VD = E->getDecl(); 443 if (AllEscaped) 444 markAsEscaped(VD); 445 if (isa<OMPCapturedExprDecl>(VD)) 446 VisitValueDecl(VD); 447 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 448 if (VarD->isInitCapture()) 449 VisitValueDecl(VD); 450 } 451 void VisitUnaryOperator(const UnaryOperator *E) { 452 if (!E) 453 return; 454 if (E->getOpcode() == UO_AddrOf) { 455 const bool SavedAllEscaped = AllEscaped; 456 AllEscaped = true; 457 Visit(E->getSubExpr()); 458 AllEscaped = SavedAllEscaped; 459 } else { 460 Visit(E->getSubExpr()); 461 } 462 } 463 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 464 if (!E) 465 return; 466 if (E->getCastKind() == CK_ArrayToPointerDecay) { 467 const bool SavedAllEscaped = AllEscaped; 468 AllEscaped = true; 469 Visit(E->getSubExpr()); 470 AllEscaped = SavedAllEscaped; 471 } else { 472 Visit(E->getSubExpr()); 473 } 474 } 475 void VisitExpr(const Expr *E) { 476 if (!E) 477 return; 478 bool SavedAllEscaped = AllEscaped; 479 if (!E->isLValue()) 480 AllEscaped = false; 481 for (const Stmt *Child : E->children()) 482 if (Child) 483 Visit(Child); 484 AllEscaped = SavedAllEscaped; 485 } 486 void VisitStmt(const Stmt *S) { 487 if (!S) 488 return; 489 for (const Stmt *Child : S->children()) 490 if (Child) 491 Visit(Child); 492 } 493 494 /// Returns the record that handles all the escaped local variables and used 495 /// instead of their original storage. 496 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 497 if (!GlobalizedRD) 498 buildRecordForGlobalizedVars(IsInTTDRegion); 499 return GlobalizedRD; 500 } 501 502 /// Returns the field in the globalized record for the escaped variable. 503 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 504 assert(GlobalizedRD && 505 "Record for globalized variables must be generated already."); 506 auto I = MappedDeclsFields.find(VD); 507 if (I == MappedDeclsFields.end()) 508 return nullptr; 509 return I->getSecond(); 510 } 511 512 /// Returns the list of the escaped local variables/parameters. 513 ArrayRef<const ValueDecl *> getEscapedDecls() const { 514 return EscapedDecls.getArrayRef(); 515 } 516 517 /// Checks if the escaped local variable is actually a parameter passed by 518 /// value. 519 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 520 return EscapedParameters; 521 } 522 523 /// Returns the list of the escaped variables with the variably modified 524 /// types. 525 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 526 return EscapedVariableLengthDecls.getArrayRef(); 527 } 528 }; 529 } // anonymous namespace 530 531 /// Get the id of the warp in the block. 532 /// We assume that the warp size is 32, which is always the case 533 /// on the NVPTX device, to generate more efficient code. 534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 535 CGBuilderTy &Bld = CGF.Builder; 536 unsigned LaneIDBits = 537 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 538 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 539 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 540 } 541 542 /// Get the id of the current lane in the Warp. 543 /// We assume that the warp size is 32, which is always the case 544 /// on the NVPTX device, to generate more efficient code. 545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 546 CGBuilderTy &Bld = CGF.Builder; 547 unsigned LaneIDBits = 548 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 549 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 550 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 551 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 552 "nvptx_lane_id"); 553 } 554 555 CGOpenMPRuntimeGPU::ExecutionMode 556 CGOpenMPRuntimeGPU::getExecutionMode() const { 557 return CurrentExecutionMode; 558 } 559 560 static CGOpenMPRuntimeGPU::DataSharingMode 561 getDataSharingMode(CodeGenModule &CGM) { 562 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 563 : CGOpenMPRuntimeGPU::Generic; 564 } 565 566 /// Check for inner (nested) SPMD construct, if any 567 static bool hasNestedSPMDDirective(ASTContext &Ctx, 568 const OMPExecutableDirective &D) { 569 const auto *CS = D.getInnermostCapturedStmt(); 570 const auto *Body = 571 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 572 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 573 574 if (const auto *NestedDir = 575 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 576 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 577 switch (D.getDirectiveKind()) { 578 case OMPD_target: 579 if (isOpenMPParallelDirective(DKind)) 580 return true; 581 if (DKind == OMPD_teams) { 582 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 583 /*IgnoreCaptured=*/true); 584 if (!Body) 585 return false; 586 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 587 if (const auto *NND = 588 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 589 DKind = NND->getDirectiveKind(); 590 if (isOpenMPParallelDirective(DKind)) 591 return true; 592 } 593 } 594 return false; 595 case OMPD_target_teams: 596 return isOpenMPParallelDirective(DKind); 597 case OMPD_target_simd: 598 case OMPD_target_parallel: 599 case OMPD_target_parallel_for: 600 case OMPD_target_parallel_for_simd: 601 case OMPD_target_teams_distribute: 602 case OMPD_target_teams_distribute_simd: 603 case OMPD_target_teams_distribute_parallel_for: 604 case OMPD_target_teams_distribute_parallel_for_simd: 605 case OMPD_parallel: 606 case OMPD_for: 607 case OMPD_parallel_for: 608 case OMPD_parallel_master: 609 case OMPD_parallel_sections: 610 case OMPD_for_simd: 611 case OMPD_parallel_for_simd: 612 case OMPD_cancel: 613 case OMPD_cancellation_point: 614 case OMPD_ordered: 615 case OMPD_threadprivate: 616 case OMPD_allocate: 617 case OMPD_task: 618 case OMPD_simd: 619 case OMPD_sections: 620 case OMPD_section: 621 case OMPD_single: 622 case OMPD_master: 623 case OMPD_critical: 624 case OMPD_taskyield: 625 case OMPD_barrier: 626 case OMPD_taskwait: 627 case OMPD_taskgroup: 628 case OMPD_atomic: 629 case OMPD_flush: 630 case OMPD_depobj: 631 case OMPD_scan: 632 case OMPD_teams: 633 case OMPD_target_data: 634 case OMPD_target_exit_data: 635 case OMPD_target_enter_data: 636 case OMPD_distribute: 637 case OMPD_distribute_simd: 638 case OMPD_distribute_parallel_for: 639 case OMPD_distribute_parallel_for_simd: 640 case OMPD_teams_distribute: 641 case OMPD_teams_distribute_simd: 642 case OMPD_teams_distribute_parallel_for: 643 case OMPD_teams_distribute_parallel_for_simd: 644 case OMPD_target_update: 645 case OMPD_declare_simd: 646 case OMPD_declare_variant: 647 case OMPD_begin_declare_variant: 648 case OMPD_end_declare_variant: 649 case OMPD_declare_target: 650 case OMPD_end_declare_target: 651 case OMPD_declare_reduction: 652 case OMPD_declare_mapper: 653 case OMPD_taskloop: 654 case OMPD_taskloop_simd: 655 case OMPD_master_taskloop: 656 case OMPD_master_taskloop_simd: 657 case OMPD_parallel_master_taskloop: 658 case OMPD_parallel_master_taskloop_simd: 659 case OMPD_requires: 660 case OMPD_unknown: 661 default: 662 llvm_unreachable("Unexpected directive."); 663 } 664 } 665 666 return false; 667 } 668 669 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 670 const OMPExecutableDirective &D) { 671 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 672 switch (DirectiveKind) { 673 case OMPD_target: 674 case OMPD_target_teams: 675 return hasNestedSPMDDirective(Ctx, D); 676 case OMPD_target_parallel: 677 case OMPD_target_parallel_for: 678 case OMPD_target_parallel_for_simd: 679 case OMPD_target_teams_distribute_parallel_for: 680 case OMPD_target_teams_distribute_parallel_for_simd: 681 case OMPD_target_simd: 682 case OMPD_target_teams_distribute_simd: 683 return true; 684 case OMPD_target_teams_distribute: 685 return false; 686 case OMPD_parallel: 687 case OMPD_for: 688 case OMPD_parallel_for: 689 case OMPD_parallel_master: 690 case OMPD_parallel_sections: 691 case OMPD_for_simd: 692 case OMPD_parallel_for_simd: 693 case OMPD_cancel: 694 case OMPD_cancellation_point: 695 case OMPD_ordered: 696 case OMPD_threadprivate: 697 case OMPD_allocate: 698 case OMPD_task: 699 case OMPD_simd: 700 case OMPD_sections: 701 case OMPD_section: 702 case OMPD_single: 703 case OMPD_master: 704 case OMPD_critical: 705 case OMPD_taskyield: 706 case OMPD_barrier: 707 case OMPD_taskwait: 708 case OMPD_taskgroup: 709 case OMPD_atomic: 710 case OMPD_flush: 711 case OMPD_depobj: 712 case OMPD_scan: 713 case OMPD_teams: 714 case OMPD_target_data: 715 case OMPD_target_exit_data: 716 case OMPD_target_enter_data: 717 case OMPD_distribute: 718 case OMPD_distribute_simd: 719 case OMPD_distribute_parallel_for: 720 case OMPD_distribute_parallel_for_simd: 721 case OMPD_teams_distribute: 722 case OMPD_teams_distribute_simd: 723 case OMPD_teams_distribute_parallel_for: 724 case OMPD_teams_distribute_parallel_for_simd: 725 case OMPD_target_update: 726 case OMPD_declare_simd: 727 case OMPD_declare_variant: 728 case OMPD_begin_declare_variant: 729 case OMPD_end_declare_variant: 730 case OMPD_declare_target: 731 case OMPD_end_declare_target: 732 case OMPD_declare_reduction: 733 case OMPD_declare_mapper: 734 case OMPD_taskloop: 735 case OMPD_taskloop_simd: 736 case OMPD_master_taskloop: 737 case OMPD_master_taskloop_simd: 738 case OMPD_parallel_master_taskloop: 739 case OMPD_parallel_master_taskloop_simd: 740 case OMPD_requires: 741 case OMPD_unknown: 742 default: 743 break; 744 } 745 llvm_unreachable( 746 "Unknown programming model for OpenMP directive on NVPTX target."); 747 } 748 749 /// Check if the directive is loops based and has schedule clause at all or has 750 /// static scheduling. 751 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 752 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 753 isOpenMPLoopDirective(D.getDirectiveKind()) && 754 "Expected loop-based directive."); 755 return !D.hasClausesOfKind<OMPOrderedClause>() && 756 (!D.hasClausesOfKind<OMPScheduleClause>() || 757 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 758 [](const OMPScheduleClause *C) { 759 return C->getScheduleKind() == OMPC_SCHEDULE_static; 760 })); 761 } 762 763 /// Check for inner (nested) lightweight runtime construct, if any 764 static bool hasNestedLightweightDirective(ASTContext &Ctx, 765 const OMPExecutableDirective &D) { 766 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 767 const auto *CS = D.getInnermostCapturedStmt(); 768 const auto *Body = 769 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 770 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 771 772 if (const auto *NestedDir = 773 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 774 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 775 switch (D.getDirectiveKind()) { 776 case OMPD_target: 777 if (isOpenMPParallelDirective(DKind) && 778 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 779 hasStaticScheduling(*NestedDir)) 780 return true; 781 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 782 return true; 783 if (DKind == OMPD_parallel) { 784 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 785 /*IgnoreCaptured=*/true); 786 if (!Body) 787 return false; 788 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 789 if (const auto *NND = 790 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 791 DKind = NND->getDirectiveKind(); 792 if (isOpenMPWorksharingDirective(DKind) && 793 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 794 return true; 795 } 796 } else if (DKind == OMPD_teams) { 797 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 798 /*IgnoreCaptured=*/true); 799 if (!Body) 800 return false; 801 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 802 if (const auto *NND = 803 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 804 DKind = NND->getDirectiveKind(); 805 if (isOpenMPParallelDirective(DKind) && 806 isOpenMPWorksharingDirective(DKind) && 807 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 808 return true; 809 if (DKind == OMPD_parallel) { 810 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 811 /*IgnoreCaptured=*/true); 812 if (!Body) 813 return false; 814 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 815 if (const auto *NND = 816 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 817 DKind = NND->getDirectiveKind(); 818 if (isOpenMPWorksharingDirective(DKind) && 819 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 820 return true; 821 } 822 } 823 } 824 } 825 return false; 826 case OMPD_target_teams: 827 if (isOpenMPParallelDirective(DKind) && 828 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 829 hasStaticScheduling(*NestedDir)) 830 return true; 831 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 832 return true; 833 if (DKind == OMPD_parallel) { 834 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 835 /*IgnoreCaptured=*/true); 836 if (!Body) 837 return false; 838 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 839 if (const auto *NND = 840 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 841 DKind = NND->getDirectiveKind(); 842 if (isOpenMPWorksharingDirective(DKind) && 843 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 844 return true; 845 } 846 } 847 return false; 848 case OMPD_target_parallel: 849 if (DKind == OMPD_simd) 850 return true; 851 return isOpenMPWorksharingDirective(DKind) && 852 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 853 case OMPD_target_teams_distribute: 854 case OMPD_target_simd: 855 case OMPD_target_parallel_for: 856 case OMPD_target_parallel_for_simd: 857 case OMPD_target_teams_distribute_simd: 858 case OMPD_target_teams_distribute_parallel_for: 859 case OMPD_target_teams_distribute_parallel_for_simd: 860 case OMPD_parallel: 861 case OMPD_for: 862 case OMPD_parallel_for: 863 case OMPD_parallel_master: 864 case OMPD_parallel_sections: 865 case OMPD_for_simd: 866 case OMPD_parallel_for_simd: 867 case OMPD_cancel: 868 case OMPD_cancellation_point: 869 case OMPD_ordered: 870 case OMPD_threadprivate: 871 case OMPD_allocate: 872 case OMPD_task: 873 case OMPD_simd: 874 case OMPD_sections: 875 case OMPD_section: 876 case OMPD_single: 877 case OMPD_master: 878 case OMPD_critical: 879 case OMPD_taskyield: 880 case OMPD_barrier: 881 case OMPD_taskwait: 882 case OMPD_taskgroup: 883 case OMPD_atomic: 884 case OMPD_flush: 885 case OMPD_depobj: 886 case OMPD_scan: 887 case OMPD_teams: 888 case OMPD_target_data: 889 case OMPD_target_exit_data: 890 case OMPD_target_enter_data: 891 case OMPD_distribute: 892 case OMPD_distribute_simd: 893 case OMPD_distribute_parallel_for: 894 case OMPD_distribute_parallel_for_simd: 895 case OMPD_teams_distribute: 896 case OMPD_teams_distribute_simd: 897 case OMPD_teams_distribute_parallel_for: 898 case OMPD_teams_distribute_parallel_for_simd: 899 case OMPD_target_update: 900 case OMPD_declare_simd: 901 case OMPD_declare_variant: 902 case OMPD_begin_declare_variant: 903 case OMPD_end_declare_variant: 904 case OMPD_declare_target: 905 case OMPD_end_declare_target: 906 case OMPD_declare_reduction: 907 case OMPD_declare_mapper: 908 case OMPD_taskloop: 909 case OMPD_taskloop_simd: 910 case OMPD_master_taskloop: 911 case OMPD_master_taskloop_simd: 912 case OMPD_parallel_master_taskloop: 913 case OMPD_parallel_master_taskloop_simd: 914 case OMPD_requires: 915 case OMPD_unknown: 916 default: 917 llvm_unreachable("Unexpected directive."); 918 } 919 } 920 921 return false; 922 } 923 924 /// Checks if the construct supports lightweight runtime. It must be SPMD 925 /// construct + inner loop-based construct with static scheduling. 926 static bool supportsLightweightRuntime(ASTContext &Ctx, 927 const OMPExecutableDirective &D) { 928 if (!supportsSPMDExecutionMode(Ctx, D)) 929 return false; 930 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 931 switch (DirectiveKind) { 932 case OMPD_target: 933 case OMPD_target_teams: 934 case OMPD_target_parallel: 935 return hasNestedLightweightDirective(Ctx, D); 936 case OMPD_target_parallel_for: 937 case OMPD_target_parallel_for_simd: 938 case OMPD_target_teams_distribute_parallel_for: 939 case OMPD_target_teams_distribute_parallel_for_simd: 940 // (Last|First)-privates must be shared in parallel region. 941 return hasStaticScheduling(D); 942 case OMPD_target_simd: 943 case OMPD_target_teams_distribute_simd: 944 return true; 945 case OMPD_target_teams_distribute: 946 return false; 947 case OMPD_parallel: 948 case OMPD_for: 949 case OMPD_parallel_for: 950 case OMPD_parallel_master: 951 case OMPD_parallel_sections: 952 case OMPD_for_simd: 953 case OMPD_parallel_for_simd: 954 case OMPD_cancel: 955 case OMPD_cancellation_point: 956 case OMPD_ordered: 957 case OMPD_threadprivate: 958 case OMPD_allocate: 959 case OMPD_task: 960 case OMPD_simd: 961 case OMPD_sections: 962 case OMPD_section: 963 case OMPD_single: 964 case OMPD_master: 965 case OMPD_critical: 966 case OMPD_taskyield: 967 case OMPD_barrier: 968 case OMPD_taskwait: 969 case OMPD_taskgroup: 970 case OMPD_atomic: 971 case OMPD_flush: 972 case OMPD_depobj: 973 case OMPD_scan: 974 case OMPD_teams: 975 case OMPD_target_data: 976 case OMPD_target_exit_data: 977 case OMPD_target_enter_data: 978 case OMPD_distribute: 979 case OMPD_distribute_simd: 980 case OMPD_distribute_parallel_for: 981 case OMPD_distribute_parallel_for_simd: 982 case OMPD_teams_distribute: 983 case OMPD_teams_distribute_simd: 984 case OMPD_teams_distribute_parallel_for: 985 case OMPD_teams_distribute_parallel_for_simd: 986 case OMPD_target_update: 987 case OMPD_declare_simd: 988 case OMPD_declare_variant: 989 case OMPD_begin_declare_variant: 990 case OMPD_end_declare_variant: 991 case OMPD_declare_target: 992 case OMPD_end_declare_target: 993 case OMPD_declare_reduction: 994 case OMPD_declare_mapper: 995 case OMPD_taskloop: 996 case OMPD_taskloop_simd: 997 case OMPD_master_taskloop: 998 case OMPD_master_taskloop_simd: 999 case OMPD_parallel_master_taskloop: 1000 case OMPD_parallel_master_taskloop_simd: 1001 case OMPD_requires: 1002 case OMPD_unknown: 1003 default: 1004 break; 1005 } 1006 llvm_unreachable( 1007 "Unknown programming model for OpenMP directive on NVPTX target."); 1008 } 1009 1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1011 StringRef ParentName, 1012 llvm::Function *&OutlinedFn, 1013 llvm::Constant *&OutlinedFnID, 1014 bool IsOffloadEntry, 1015 const RegionCodeGenTy &CodeGen) { 1016 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1017 EntryFunctionState EST; 1018 WrapperFunctionsMap.clear(); 1019 1020 // Emit target region as a standalone region. 1021 class NVPTXPrePostActionTy : public PrePostActionTy { 1022 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1023 1024 public: 1025 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1026 : EST(EST) {} 1027 void Enter(CodeGenFunction &CGF) override { 1028 auto &RT = 1029 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1030 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1031 // Skip target region initialization. 1032 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1033 } 1034 void Exit(CodeGenFunction &CGF) override { 1035 auto &RT = 1036 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1037 RT.clearLocThreadIdInsertPt(CGF); 1038 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1039 } 1040 } Action(EST); 1041 CodeGen.setAction(Action); 1042 IsInTTDRegion = true; 1043 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1044 IsOffloadEntry, CodeGen); 1045 IsInTTDRegion = false; 1046 } 1047 1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1049 EntryFunctionState &EST, bool IsSPMD) { 1050 CGBuilderTy &Bld = CGF.Builder; 1051 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1052 IsInTargetMasterThreadRegion = IsSPMD; 1053 if (!IsSPMD) 1054 emitGenericVarsProlog(CGF, EST.Loc); 1055 } 1056 1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1058 EntryFunctionState &EST, 1059 bool IsSPMD) { 1060 if (!IsSPMD) 1061 emitGenericVarsEpilog(CGF); 1062 1063 CGBuilderTy &Bld = CGF.Builder; 1064 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1065 } 1066 1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1068 StringRef ParentName, 1069 llvm::Function *&OutlinedFn, 1070 llvm::Constant *&OutlinedFnID, 1071 bool IsOffloadEntry, 1072 const RegionCodeGenTy &CodeGen) { 1073 ExecutionRuntimeModesRAII ModeRAII( 1074 CurrentExecutionMode, RequiresFullRuntime, 1075 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1076 !supportsLightweightRuntime(CGM.getContext(), D)); 1077 EntryFunctionState EST; 1078 1079 // Emit target region as a standalone region. 1080 class NVPTXPrePostActionTy : public PrePostActionTy { 1081 CGOpenMPRuntimeGPU &RT; 1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1083 1084 public: 1085 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1086 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1087 : RT(RT), EST(EST) {} 1088 void Enter(CodeGenFunction &CGF) override { 1089 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1090 // Skip target region initialization. 1091 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1092 } 1093 void Exit(CodeGenFunction &CGF) override { 1094 RT.clearLocThreadIdInsertPt(CGF); 1095 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1096 } 1097 } Action(*this, EST); 1098 CodeGen.setAction(Action); 1099 IsInTTDRegion = true; 1100 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1101 IsOffloadEntry, CodeGen); 1102 IsInTTDRegion = false; 1103 } 1104 1105 // Create a unique global variable to indicate the execution mode of this target 1106 // region. The execution mode is either 'generic', or 'spmd' depending on the 1107 // target directive. This variable is picked up by the offload library to setup 1108 // the device appropriately before kernel launch. If the execution mode is 1109 // 'generic', the runtime reserves one warp for the master, otherwise, all 1110 // warps participate in parallel work. 1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1112 bool Mode) { 1113 auto *GVMode = new llvm::GlobalVariable( 1114 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1115 llvm::GlobalValue::WeakAnyLinkage, 1116 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD 1117 : OMP_TGT_EXEC_MODE_GENERIC), 1118 Twine(Name, "_exec_mode")); 1119 CGM.addCompilerUsedGlobal(GVMode); 1120 } 1121 1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1123 llvm::Constant *Addr, 1124 uint64_t Size, int32_t, 1125 llvm::GlobalValue::LinkageTypes) { 1126 // TODO: Add support for global variables on the device after declare target 1127 // support. 1128 llvm::Function *Fn = dyn_cast<llvm::Function>(Addr); 1129 if (!Fn) 1130 return; 1131 1132 llvm::Module &M = CGM.getModule(); 1133 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1134 1135 // Get "nvvm.annotations" metadata node. 1136 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1137 1138 llvm::Metadata *MDVals[] = { 1139 llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"), 1140 llvm::ConstantAsMetadata::get( 1141 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1142 // Append metadata to nvvm.annotations. 1143 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1144 1145 // Add a function attribute for the kernel. 1146 Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel")); 1147 } 1148 1149 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1150 const OMPExecutableDirective &D, StringRef ParentName, 1151 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1152 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1153 if (!IsOffloadEntry) // Nothing to do. 1154 return; 1155 1156 assert(!ParentName.empty() && "Invalid target region parent name!"); 1157 1158 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1159 if (Mode) 1160 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1161 CodeGen); 1162 else 1163 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1164 CodeGen); 1165 1166 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1167 } 1168 1169 namespace { 1170 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1171 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1172 enum ModeFlagsTy : unsigned { 1173 /// Bit set to 1 when in SPMD mode. 1174 KMP_IDENT_SPMD_MODE = 0x01, 1175 /// Bit set to 1 when a simplified runtime is used. 1176 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1177 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1178 }; 1179 1180 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1181 static const ModeFlagsTy UndefinedMode = 1182 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1183 } // anonymous namespace 1184 1185 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1186 switch (getExecutionMode()) { 1187 case EM_SPMD: 1188 if (requiresFullRuntime()) 1189 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1190 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1191 case EM_NonSPMD: 1192 assert(requiresFullRuntime() && "Expected full runtime."); 1193 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1194 case EM_Unknown: 1195 return UndefinedMode; 1196 } 1197 llvm_unreachable("Unknown flags are requested."); 1198 } 1199 1200 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1201 : CGOpenMPRuntime(CGM, "_", "$") { 1202 if (!CGM.getLangOpts().OpenMPIsDevice) 1203 llvm_unreachable("OpenMP can only handle device code."); 1204 1205 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); 1206 if (!CGM.getLangOpts().OMPHostIRFile.empty()) { 1207 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug, 1208 "__omp_rtl_debug_kind"); 1209 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription, 1210 "__omp_rtl_assume_teams_oversubscription"); 1211 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription, 1212 "__omp_rtl_assume_threads_oversubscription"); 1213 } 1214 } 1215 1216 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1217 ProcBindKind ProcBind, 1218 SourceLocation Loc) { 1219 // Do nothing in case of SPMD mode and L0 parallel. 1220 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1221 return; 1222 1223 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1224 } 1225 1226 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1227 llvm::Value *NumThreads, 1228 SourceLocation Loc) { 1229 // Nothing to do. 1230 } 1231 1232 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1233 const Expr *NumTeams, 1234 const Expr *ThreadLimit, 1235 SourceLocation Loc) {} 1236 1237 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1238 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1239 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1240 // Emit target region as a standalone region. 1241 class NVPTXPrePostActionTy : public PrePostActionTy { 1242 bool &IsInParallelRegion; 1243 bool PrevIsInParallelRegion; 1244 1245 public: 1246 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1247 : IsInParallelRegion(IsInParallelRegion) {} 1248 void Enter(CodeGenFunction &CGF) override { 1249 PrevIsInParallelRegion = IsInParallelRegion; 1250 IsInParallelRegion = true; 1251 } 1252 void Exit(CodeGenFunction &CGF) override { 1253 IsInParallelRegion = PrevIsInParallelRegion; 1254 } 1255 } Action(IsInParallelRegion); 1256 CodeGen.setAction(Action); 1257 bool PrevIsInTTDRegion = IsInTTDRegion; 1258 IsInTTDRegion = false; 1259 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1260 IsInTargetMasterThreadRegion = false; 1261 auto *OutlinedFun = 1262 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1263 D, ThreadIDVar, InnermostKind, CodeGen)); 1264 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1265 IsInTTDRegion = PrevIsInTTDRegion; 1266 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1267 !IsInParallelRegion) { 1268 llvm::Function *WrapperFun = 1269 createParallelDataSharingWrapper(OutlinedFun, D); 1270 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1271 } 1272 1273 return OutlinedFun; 1274 } 1275 1276 /// Get list of lastprivate variables from the teams distribute ... or 1277 /// teams {distribute ...} directives. 1278 static void 1279 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1280 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1281 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1282 "expected teams directive."); 1283 const OMPExecutableDirective *Dir = &D; 1284 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1285 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1286 Ctx, 1287 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1288 /*IgnoreCaptured=*/true))) { 1289 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1290 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1291 Dir = nullptr; 1292 } 1293 } 1294 if (!Dir) 1295 return; 1296 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1297 for (const Expr *E : C->getVarRefs()) 1298 Vars.push_back(getPrivateItem(E)); 1299 } 1300 } 1301 1302 /// Get list of reduction variables from the teams ... directives. 1303 static void 1304 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1305 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1306 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1307 "expected teams directive."); 1308 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1309 for (const Expr *E : C->privates()) 1310 Vars.push_back(getPrivateItem(E)); 1311 } 1312 } 1313 1314 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1315 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1316 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1317 SourceLocation Loc = D.getBeginLoc(); 1318 1319 const RecordDecl *GlobalizedRD = nullptr; 1320 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1321 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1322 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1323 // Globalize team reductions variable unconditionally in all modes. 1324 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1325 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1326 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1327 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1328 if (!LastPrivatesReductions.empty()) { 1329 GlobalizedRD = ::buildRecordForGlobalizedVars( 1330 CGM.getContext(), llvm::None, LastPrivatesReductions, 1331 MappedDeclsFields, WarpSize); 1332 } 1333 } else if (!LastPrivatesReductions.empty()) { 1334 assert(!TeamAndReductions.first && 1335 "Previous team declaration is not expected."); 1336 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1337 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1338 } 1339 1340 // Emit target region as a standalone region. 1341 class NVPTXPrePostActionTy : public PrePostActionTy { 1342 SourceLocation &Loc; 1343 const RecordDecl *GlobalizedRD; 1344 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1345 &MappedDeclsFields; 1346 1347 public: 1348 NVPTXPrePostActionTy( 1349 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1350 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1351 &MappedDeclsFields) 1352 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1353 MappedDeclsFields(MappedDeclsFields) {} 1354 void Enter(CodeGenFunction &CGF) override { 1355 auto &Rt = 1356 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1357 if (GlobalizedRD) { 1358 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1359 I->getSecond().MappedParams = 1360 std::make_unique<CodeGenFunction::OMPMapVars>(); 1361 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1362 for (const auto &Pair : MappedDeclsFields) { 1363 assert(Pair.getFirst()->isCanonicalDecl() && 1364 "Expected canonical declaration"); 1365 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1366 } 1367 } 1368 Rt.emitGenericVarsProlog(CGF, Loc); 1369 } 1370 void Exit(CodeGenFunction &CGF) override { 1371 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1372 .emitGenericVarsEpilog(CGF); 1373 } 1374 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1375 CodeGen.setAction(Action); 1376 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1377 D, ThreadIDVar, InnermostKind, CodeGen); 1378 1379 return OutlinedFun; 1380 } 1381 1382 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1383 SourceLocation Loc, 1384 bool WithSPMDCheck) { 1385 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1386 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1387 return; 1388 1389 CGBuilderTy &Bld = CGF.Builder; 1390 1391 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1392 if (I == FunctionGlobalizedDecls.end()) 1393 return; 1394 1395 for (auto &Rec : I->getSecond().LocalVarData) { 1396 const auto *VD = cast<VarDecl>(Rec.first); 1397 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1398 QualType VarTy = VD->getType(); 1399 1400 // Get the local allocation of a firstprivate variable before sharing 1401 llvm::Value *ParValue; 1402 if (EscapedParam) { 1403 LValue ParLVal = 1404 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1405 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1406 } 1407 1408 // Allocate space for the variable to be globalized 1409 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1410 llvm::CallBase *VoidPtr = 1411 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1412 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1413 AllocArgs, VD->getName()); 1414 // FIXME: We should use the variables actual alignment as an argument. 1415 VoidPtr->addRetAttr(llvm::Attribute::get( 1416 CGM.getLLVMContext(), llvm::Attribute::Alignment, 1417 CGM.getContext().getTargetInfo().getNewAlign() / 8)); 1418 1419 // Cast the void pointer and get the address of the globalized variable. 1420 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1421 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1422 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1423 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1424 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1425 Rec.second.GlobalizedVal = VoidPtr; 1426 1427 // Assign the local allocation to the newly globalized location. 1428 if (EscapedParam) { 1429 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1430 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1431 } 1432 if (auto *DI = CGF.getDebugInfo()) 1433 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1434 } 1435 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1436 // Use actual memory size of the VLA object including the padding 1437 // for alignment purposes. 1438 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1439 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1440 Size = Bld.CreateNUWAdd( 1441 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1442 llvm::Value *AlignVal = 1443 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1444 1445 Size = Bld.CreateUDiv(Size, AlignVal); 1446 Size = Bld.CreateNUWMul(Size, AlignVal); 1447 1448 // Allocate space for this VLA object to be globalized. 1449 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1450 llvm::CallBase *VoidPtr = 1451 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1452 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1453 AllocArgs, VD->getName()); 1454 VoidPtr->addRetAttr( 1455 llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment, 1456 CGM.getContext().getTargetInfo().getNewAlign())); 1457 1458 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1459 std::pair<llvm::Value *, llvm::Value *>( 1460 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1461 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1462 CGM.getContext().getDeclAlign(VD), 1463 AlignmentSource::Decl); 1464 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1465 Base.getAddress(CGF)); 1466 } 1467 I->getSecond().MappedParams->apply(CGF); 1468 } 1469 1470 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1471 bool WithSPMDCheck) { 1472 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1473 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1474 return; 1475 1476 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1477 if (I != FunctionGlobalizedDecls.end()) { 1478 // Deallocate the memory for each globalized VLA object 1479 for (auto AddrSizePair : 1480 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1481 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1482 CGM.getModule(), OMPRTL___kmpc_free_shared), 1483 {AddrSizePair.first, AddrSizePair.second}); 1484 } 1485 // Deallocate the memory for each globalized value 1486 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1487 const auto *VD = cast<VarDecl>(Rec.first); 1488 I->getSecond().MappedParams->restore(CGF); 1489 1490 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1491 CGF.getTypeSize(VD->getType())}; 1492 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1493 CGM.getModule(), OMPRTL___kmpc_free_shared), 1494 FreeArgs); 1495 } 1496 } 1497 } 1498 1499 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1500 const OMPExecutableDirective &D, 1501 SourceLocation Loc, 1502 llvm::Function *OutlinedFn, 1503 ArrayRef<llvm::Value *> CapturedVars) { 1504 if (!CGF.HaveInsertPoint()) 1505 return; 1506 1507 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1508 /*Name=*/".zero.addr"); 1509 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 1510 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1511 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1512 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1513 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1514 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1515 } 1516 1517 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1518 SourceLocation Loc, 1519 llvm::Function *OutlinedFn, 1520 ArrayRef<llvm::Value *> CapturedVars, 1521 const Expr *IfCond, 1522 llvm::Value *NumThreads) { 1523 if (!CGF.HaveInsertPoint()) 1524 return; 1525 1526 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond, 1527 NumThreads](CodeGenFunction &CGF, 1528 PrePostActionTy &Action) { 1529 CGBuilderTy &Bld = CGF.Builder; 1530 llvm::Value *NumThreadsVal = NumThreads; 1531 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1532 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1533 if (WFn) 1534 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1535 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1536 1537 // Create a private scope that will globalize the arguments 1538 // passed from the outside of the target region. 1539 // TODO: Is that needed? 1540 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1541 1542 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1543 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1544 "captured_vars_addrs"); 1545 // There's something to share. 1546 if (!CapturedVars.empty()) { 1547 // Prepare for parallel region. Indicate the outlined function. 1548 ASTContext &Ctx = CGF.getContext(); 1549 unsigned Idx = 0; 1550 for (llvm::Value *V : CapturedVars) { 1551 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1552 llvm::Value *PtrV; 1553 if (V->getType()->isIntegerTy()) 1554 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1555 else 1556 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1557 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1558 Ctx.getPointerType(Ctx.VoidPtrTy)); 1559 ++Idx; 1560 } 1561 } 1562 1563 llvm::Value *IfCondVal = nullptr; 1564 if (IfCond) 1565 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1566 /* isSigned */ false); 1567 else 1568 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1569 1570 if (!NumThreadsVal) 1571 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1); 1572 else 1573 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty), 1574 1575 assert(IfCondVal && "Expected a value"); 1576 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1577 llvm::Value *Args[] = { 1578 RTLoc, 1579 getThreadID(CGF, Loc), 1580 IfCondVal, 1581 NumThreadsVal, 1582 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1583 FnPtr, 1584 ID, 1585 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1586 CGF.VoidPtrPtrTy), 1587 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1588 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1589 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1590 Args); 1591 }; 1592 1593 RegionCodeGenTy RCG(ParallelGen); 1594 RCG(CGF); 1595 } 1596 1597 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1598 // Always emit simple barriers! 1599 if (!CGF.HaveInsertPoint()) 1600 return; 1601 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1602 // This function does not use parameters, so we can emit just default values. 1603 llvm::Value *Args[] = { 1604 llvm::ConstantPointerNull::get( 1605 cast<llvm::PointerType>(getIdentTyPointerTy())), 1606 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1607 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1608 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1609 Args); 1610 } 1611 1612 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1613 SourceLocation Loc, 1614 OpenMPDirectiveKind Kind, bool, 1615 bool) { 1616 // Always emit simple barriers! 1617 if (!CGF.HaveInsertPoint()) 1618 return; 1619 // Build call __kmpc_cancel_barrier(loc, thread_id); 1620 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1621 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1622 getThreadID(CGF, Loc)}; 1623 1624 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1625 CGM.getModule(), OMPRTL___kmpc_barrier), 1626 Args); 1627 } 1628 1629 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1630 CodeGenFunction &CGF, StringRef CriticalName, 1631 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1632 const Expr *Hint) { 1633 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1634 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1635 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1636 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1637 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1638 1639 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1640 1641 // Get the mask of active threads in the warp. 1642 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1643 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1644 // Fetch team-local id of the thread. 1645 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1646 1647 // Get the width of the team. 1648 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1649 1650 // Initialize the counter variable for the loop. 1651 QualType Int32Ty = 1652 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1653 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1654 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1655 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1656 /*isInit=*/true); 1657 1658 // Block checks if loop counter exceeds upper bound. 1659 CGF.EmitBlock(LoopBB); 1660 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1661 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1662 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1663 1664 // Block tests which single thread should execute region, and which threads 1665 // should go straight to synchronisation point. 1666 CGF.EmitBlock(TestBB); 1667 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1668 llvm::Value *CmpThreadToCounter = 1669 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1670 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1671 1672 // Block emits the body of the critical region. 1673 CGF.EmitBlock(BodyBB); 1674 1675 // Output the critical statement. 1676 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1677 Hint); 1678 1679 // After the body surrounded by the critical region, the single executing 1680 // thread will jump to the synchronisation point. 1681 // Block waits for all threads in current team to finish then increments the 1682 // counter variable and returns to the loop. 1683 CGF.EmitBlock(SyncBB); 1684 // Reconverge active threads in the warp. 1685 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1686 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1687 Mask); 1688 1689 llvm::Value *IncCounterVal = 1690 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1691 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1692 CGF.EmitBranch(LoopBB); 1693 1694 // Block that is reached when all threads in the team complete the region. 1695 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1696 } 1697 1698 /// Cast value to the specified type. 1699 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1700 QualType ValTy, QualType CastTy, 1701 SourceLocation Loc) { 1702 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1703 "Cast type must sized."); 1704 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1705 "Val type must sized."); 1706 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1707 if (ValTy == CastTy) 1708 return Val; 1709 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1710 CGF.getContext().getTypeSizeInChars(CastTy)) 1711 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1712 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1713 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1714 CastTy->hasSignedIntegerRepresentation()); 1715 Address CastItem = CGF.CreateMemTemp(CastTy); 1716 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1717 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1718 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1719 LValueBaseInfo(AlignmentSource::Type), 1720 TBAAAccessInfo()); 1721 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1722 LValueBaseInfo(AlignmentSource::Type), 1723 TBAAAccessInfo()); 1724 } 1725 1726 /// This function creates calls to one of two shuffle functions to copy 1727 /// variables between lanes in a warp. 1728 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1729 llvm::Value *Elem, 1730 QualType ElemType, 1731 llvm::Value *Offset, 1732 SourceLocation Loc) { 1733 CodeGenModule &CGM = CGF.CGM; 1734 CGBuilderTy &Bld = CGF.Builder; 1735 CGOpenMPRuntimeGPU &RT = 1736 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1737 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1738 1739 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1740 assert(Size.getQuantity() <= 8 && 1741 "Unsupported bitwidth in shuffle instruction."); 1742 1743 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1744 ? OMPRTL___kmpc_shuffle_int32 1745 : OMPRTL___kmpc_shuffle_int64; 1746 1747 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1748 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1749 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1750 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1751 llvm::Value *WarpSize = 1752 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1753 1754 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1755 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1756 {ElemCast, Offset, WarpSize}); 1757 1758 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1759 } 1760 1761 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1762 Address DestAddr, QualType ElemType, 1763 llvm::Value *Offset, SourceLocation Loc) { 1764 CGBuilderTy &Bld = CGF.Builder; 1765 1766 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1767 // Create the loop over the big sized data. 1768 // ptr = (void*)Elem; 1769 // ptrEnd = (void*) Elem + 1; 1770 // Step = 8; 1771 // while (ptr + Step < ptrEnd) 1772 // shuffle((int64_t)*ptr); 1773 // Step = 4; 1774 // while (ptr + Step < ptrEnd) 1775 // shuffle((int32_t)*ptr); 1776 // ... 1777 Address ElemPtr = DestAddr; 1778 Address Ptr = SrcAddr; 1779 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1780 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1781 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1782 if (Size < CharUnits::fromQuantity(IntSize)) 1783 continue; 1784 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1785 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1786 /*Signed=*/1); 1787 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1788 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1789 ElemPtr = 1790 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1791 if (Size.getQuantity() / IntSize > 1) { 1792 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1793 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1794 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1795 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1796 CGF.EmitBlock(PreCondBB); 1797 llvm::PHINode *PhiSrc = 1798 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1799 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1800 llvm::PHINode *PhiDest = 1801 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1802 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1803 Ptr = Address(PhiSrc, Ptr.getAlignment()); 1804 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 1805 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1806 CGF.Int8Ty, PtrEnd.getPointer(), 1807 Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(), 1808 CGF.VoidPtrTy)); 1809 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1810 ThenBB, ExitBB); 1811 CGF.EmitBlock(ThenBB); 1812 llvm::Value *Res = createRuntimeShuffleFunction( 1813 CGF, 1814 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1815 LValueBaseInfo(AlignmentSource::Type), 1816 TBAAAccessInfo()), 1817 IntType, Offset, Loc); 1818 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1819 LValueBaseInfo(AlignmentSource::Type), 1820 TBAAAccessInfo()); 1821 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1822 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1823 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1824 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1825 CGF.EmitBranch(PreCondBB); 1826 CGF.EmitBlock(ExitBB); 1827 } else { 1828 llvm::Value *Res = createRuntimeShuffleFunction( 1829 CGF, 1830 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1831 LValueBaseInfo(AlignmentSource::Type), 1832 TBAAAccessInfo()), 1833 IntType, Offset, Loc); 1834 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1835 LValueBaseInfo(AlignmentSource::Type), 1836 TBAAAccessInfo()); 1837 Ptr = Bld.CreateConstGEP(Ptr, 1); 1838 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1839 } 1840 Size = Size % IntSize; 1841 } 1842 } 1843 1844 namespace { 1845 enum CopyAction : unsigned { 1846 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1847 // the warp using shuffle instructions. 1848 RemoteLaneToThread, 1849 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1850 ThreadCopy, 1851 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1852 ThreadToScratchpad, 1853 // ScratchpadToThread: Copy from a scratchpad array in global memory 1854 // containing team-reduced data to a thread's stack. 1855 ScratchpadToThread, 1856 }; 1857 } // namespace 1858 1859 struct CopyOptionsTy { 1860 llvm::Value *RemoteLaneOffset; 1861 llvm::Value *ScratchpadIndex; 1862 llvm::Value *ScratchpadWidth; 1863 }; 1864 1865 /// Emit instructions to copy a Reduce list, which contains partially 1866 /// aggregated values, in the specified direction. 1867 static void emitReductionListCopy( 1868 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1869 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1870 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1871 1872 CodeGenModule &CGM = CGF.CGM; 1873 ASTContext &C = CGM.getContext(); 1874 CGBuilderTy &Bld = CGF.Builder; 1875 1876 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1877 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1878 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1879 1880 // Iterates, element-by-element, through the source Reduce list and 1881 // make a copy. 1882 unsigned Idx = 0; 1883 unsigned Size = Privates.size(); 1884 for (const Expr *Private : Privates) { 1885 Address SrcElementAddr = Address::invalid(); 1886 Address DestElementAddr = Address::invalid(); 1887 Address DestElementPtrAddr = Address::invalid(); 1888 // Should we shuffle in an element from a remote lane? 1889 bool ShuffleInElement = false; 1890 // Set to true to update the pointer in the dest Reduce list to a 1891 // newly created element. 1892 bool UpdateDestListPtr = false; 1893 // Increment the src or dest pointer to the scratchpad, for each 1894 // new element. 1895 bool IncrScratchpadSrc = false; 1896 bool IncrScratchpadDest = false; 1897 1898 switch (Action) { 1899 case RemoteLaneToThread: { 1900 // Step 1.1: Get the address for the src element in the Reduce list. 1901 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1902 SrcElementAddr = CGF.EmitLoadOfPointer( 1903 SrcElementPtrAddr, 1904 C.getPointerType(Private->getType())->castAs<PointerType>()); 1905 1906 // Step 1.2: Create a temporary to store the element in the destination 1907 // Reduce list. 1908 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1909 DestElementAddr = 1910 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1911 ShuffleInElement = true; 1912 UpdateDestListPtr = true; 1913 break; 1914 } 1915 case ThreadCopy: { 1916 // Step 1.1: Get the address for the src element in the Reduce list. 1917 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1918 SrcElementAddr = CGF.EmitLoadOfPointer( 1919 SrcElementPtrAddr, 1920 C.getPointerType(Private->getType())->castAs<PointerType>()); 1921 1922 // Step 1.2: Get the address for dest element. The destination 1923 // element has already been created on the thread's stack. 1924 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1925 DestElementAddr = CGF.EmitLoadOfPointer( 1926 DestElementPtrAddr, 1927 C.getPointerType(Private->getType())->castAs<PointerType>()); 1928 break; 1929 } 1930 case ThreadToScratchpad: { 1931 // Step 1.1: Get the address for the src element in the Reduce list. 1932 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1933 SrcElementAddr = CGF.EmitLoadOfPointer( 1934 SrcElementPtrAddr, 1935 C.getPointerType(Private->getType())->castAs<PointerType>()); 1936 1937 // Step 1.2: Get the address for dest element: 1938 // address = base + index * ElementSizeInChars. 1939 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1940 llvm::Value *CurrentOffset = 1941 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1942 llvm::Value *ScratchPadElemAbsolutePtrVal = 1943 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1944 ScratchPadElemAbsolutePtrVal = 1945 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1946 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1947 C.getTypeAlignInChars(Private->getType())); 1948 IncrScratchpadDest = true; 1949 break; 1950 } 1951 case ScratchpadToThread: { 1952 // Step 1.1: Get the address for the src element in the scratchpad. 1953 // address = base + index * ElementSizeInChars. 1954 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1955 llvm::Value *CurrentOffset = 1956 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1957 llvm::Value *ScratchPadElemAbsolutePtrVal = 1958 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1959 ScratchPadElemAbsolutePtrVal = 1960 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1961 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1962 C.getTypeAlignInChars(Private->getType())); 1963 IncrScratchpadSrc = true; 1964 1965 // Step 1.2: Create a temporary to store the element in the destination 1966 // Reduce list. 1967 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1968 DestElementAddr = 1969 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1970 UpdateDestListPtr = true; 1971 break; 1972 } 1973 } 1974 1975 // Regardless of src and dest of copy, we emit the load of src 1976 // element as this is required in all directions 1977 SrcElementAddr = Bld.CreateElementBitCast( 1978 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1979 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1980 SrcElementAddr.getElementType()); 1981 1982 // Now that all active lanes have read the element in the 1983 // Reduce list, shuffle over the value from the remote lane. 1984 if (ShuffleInElement) { 1985 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1986 RemoteLaneOffset, Private->getExprLoc()); 1987 } else { 1988 switch (CGF.getEvaluationKind(Private->getType())) { 1989 case TEK_Scalar: { 1990 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1991 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1992 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1993 TBAAAccessInfo()); 1994 // Store the source element value to the dest element address. 1995 CGF.EmitStoreOfScalar( 1996 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1997 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1998 break; 1999 } 2000 case TEK_Complex: { 2001 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 2002 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2003 Private->getExprLoc()); 2004 CGF.EmitStoreOfComplex( 2005 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2006 /*isInit=*/false); 2007 break; 2008 } 2009 case TEK_Aggregate: 2010 CGF.EmitAggregateCopy( 2011 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2012 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2013 Private->getType(), AggValueSlot::DoesNotOverlap); 2014 break; 2015 } 2016 } 2017 2018 // Step 3.1: Modify reference in dest Reduce list as needed. 2019 // Modifying the reference in Reduce list to point to the newly 2020 // created element. The element is live in the current function 2021 // scope and that of functions it invokes (i.e., reduce_function). 2022 // RemoteReduceData[i] = (void*)&RemoteElem 2023 if (UpdateDestListPtr) { 2024 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2025 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2026 DestElementPtrAddr, /*Volatile=*/false, 2027 C.VoidPtrTy); 2028 } 2029 2030 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2031 // address of the next element in scratchpad memory, unless we're currently 2032 // processing the last one. Memory alignment is also taken care of here. 2033 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2034 llvm::Value *ScratchpadBasePtr = 2035 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2036 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2037 ScratchpadBasePtr = Bld.CreateNUWAdd( 2038 ScratchpadBasePtr, 2039 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2040 2041 // Take care of global memory alignment for performance 2042 ScratchpadBasePtr = Bld.CreateNUWSub( 2043 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2044 ScratchpadBasePtr = Bld.CreateUDiv( 2045 ScratchpadBasePtr, 2046 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2047 ScratchpadBasePtr = Bld.CreateNUWAdd( 2048 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2049 ScratchpadBasePtr = Bld.CreateNUWMul( 2050 ScratchpadBasePtr, 2051 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2052 2053 if (IncrScratchpadDest) 2054 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2055 else /* IncrScratchpadSrc = true */ 2056 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2057 } 2058 2059 ++Idx; 2060 } 2061 } 2062 2063 /// This function emits a helper that gathers Reduce lists from the first 2064 /// lane of every active warp to lanes in the first warp. 2065 /// 2066 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2067 /// shared smem[warp_size]; 2068 /// For all data entries D in reduce_data: 2069 /// sync 2070 /// If (I am the first lane in each warp) 2071 /// Copy my local D to smem[warp_id] 2072 /// sync 2073 /// if (I am the first warp) 2074 /// Copy smem[thread_id] to my local D 2075 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2076 ArrayRef<const Expr *> Privates, 2077 QualType ReductionArrayTy, 2078 SourceLocation Loc) { 2079 ASTContext &C = CGM.getContext(); 2080 llvm::Module &M = CGM.getModule(); 2081 2082 // ReduceList: thread local Reduce list. 2083 // At the stage of the computation when this function is called, partially 2084 // aggregated values reside in the first lane of every active warp. 2085 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2086 C.VoidPtrTy, ImplicitParamDecl::Other); 2087 // NumWarps: number of warps active in the parallel region. This could 2088 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2089 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2090 C.getIntTypeForBitwidth(32, /* Signed */ true), 2091 ImplicitParamDecl::Other); 2092 FunctionArgList Args; 2093 Args.push_back(&ReduceListArg); 2094 Args.push_back(&NumWarpsArg); 2095 2096 const CGFunctionInfo &CGFI = 2097 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2098 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2099 llvm::GlobalValue::InternalLinkage, 2100 "_omp_reduction_inter_warp_copy_func", &M); 2101 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2102 Fn->setDoesNotRecurse(); 2103 CodeGenFunction CGF(CGM); 2104 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2105 2106 CGBuilderTy &Bld = CGF.Builder; 2107 2108 // This array is used as a medium to transfer, one reduce element at a time, 2109 // the data from the first lane of every warp to lanes in the first warp 2110 // in order to perform the final step of a reduction in a parallel region 2111 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2112 // for reduced latency, as well as to have a distinct copy for concurrently 2113 // executing target regions. The array is declared with common linkage so 2114 // as to be shared across compilation units. 2115 StringRef TransferMediumName = 2116 "__openmp_nvptx_data_transfer_temporary_storage"; 2117 llvm::GlobalVariable *TransferMedium = 2118 M.getGlobalVariable(TransferMediumName); 2119 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2120 if (!TransferMedium) { 2121 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2122 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2123 TransferMedium = new llvm::GlobalVariable( 2124 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2125 llvm::UndefValue::get(Ty), TransferMediumName, 2126 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2127 SharedAddressSpace); 2128 CGM.addCompilerUsedGlobal(TransferMedium); 2129 } 2130 2131 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2132 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2133 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2134 // nvptx_lane_id = nvptx_id % warpsize 2135 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2136 // nvptx_warp_id = nvptx_id / warpsize 2137 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2138 2139 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2140 Address LocalReduceList( 2141 Bld.CreatePointerBitCastOrAddrSpaceCast( 2142 CGF.EmitLoadOfScalar( 2143 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2144 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2145 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2146 CGF.getPointerAlign()); 2147 2148 unsigned Idx = 0; 2149 for (const Expr *Private : Privates) { 2150 // 2151 // Warp master copies reduce element to transfer medium in __shared__ 2152 // memory. 2153 // 2154 unsigned RealTySize = 2155 C.getTypeSizeInChars(Private->getType()) 2156 .alignTo(C.getTypeAlignInChars(Private->getType())) 2157 .getQuantity(); 2158 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2159 unsigned NumIters = RealTySize / TySize; 2160 if (NumIters == 0) 2161 continue; 2162 QualType CType = C.getIntTypeForBitwidth( 2163 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2164 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2165 CharUnits Align = CharUnits::fromQuantity(TySize); 2166 llvm::Value *Cnt = nullptr; 2167 Address CntAddr = Address::invalid(); 2168 llvm::BasicBlock *PrecondBB = nullptr; 2169 llvm::BasicBlock *ExitBB = nullptr; 2170 if (NumIters > 1) { 2171 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2172 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2173 /*Volatile=*/false, C.IntTy); 2174 PrecondBB = CGF.createBasicBlock("precond"); 2175 ExitBB = CGF.createBasicBlock("exit"); 2176 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2177 // There is no need to emit line number for unconditional branch. 2178 (void)ApplyDebugLocation::CreateEmpty(CGF); 2179 CGF.EmitBlock(PrecondBB); 2180 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2181 llvm::Value *Cmp = 2182 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2183 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2184 CGF.EmitBlock(BodyBB); 2185 } 2186 // kmpc_barrier. 2187 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2188 /*EmitChecks=*/false, 2189 /*ForceSimpleCall=*/true); 2190 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2191 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2192 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2193 2194 // if (lane_id == 0) 2195 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2196 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2197 CGF.EmitBlock(ThenBB); 2198 2199 // Reduce element = LocalReduceList[i] 2200 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2201 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2202 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2203 // elemptr = ((CopyType*)(elemptrptr)) + I 2204 Address ElemPtr = Address(ElemPtrPtr, Align); 2205 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2206 if (NumIters > 1) 2207 ElemPtr = Bld.CreateGEP(ElemPtr, Cnt); 2208 2209 // Get pointer to location in transfer medium. 2210 // MediumPtr = &medium[warp_id] 2211 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2212 TransferMedium->getValueType(), TransferMedium, 2213 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2214 Address MediumPtr(MediumPtrVal, Align); 2215 // Casting to actual data type. 2216 // MediumPtr = (CopyType*)MediumPtrAddr; 2217 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2218 2219 // elem = *elemptr 2220 //*MediumPtr = elem 2221 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2222 ElemPtr, /*Volatile=*/false, CType, Loc, 2223 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2224 // Store the source element value to the dest element address. 2225 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2226 LValueBaseInfo(AlignmentSource::Type), 2227 TBAAAccessInfo()); 2228 2229 Bld.CreateBr(MergeBB); 2230 2231 CGF.EmitBlock(ElseBB); 2232 Bld.CreateBr(MergeBB); 2233 2234 CGF.EmitBlock(MergeBB); 2235 2236 // kmpc_barrier. 2237 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2238 /*EmitChecks=*/false, 2239 /*ForceSimpleCall=*/true); 2240 2241 // 2242 // Warp 0 copies reduce element from transfer medium. 2243 // 2244 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2245 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2246 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2247 2248 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2249 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2250 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2251 2252 // Up to 32 threads in warp 0 are active. 2253 llvm::Value *IsActiveThread = 2254 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2255 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2256 2257 CGF.EmitBlock(W0ThenBB); 2258 2259 // SrcMediumPtr = &medium[tid] 2260 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2261 TransferMedium->getValueType(), TransferMedium, 2262 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2263 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2264 // SrcMediumVal = *SrcMediumPtr; 2265 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2266 2267 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2268 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2269 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2270 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2271 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2272 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2273 if (NumIters > 1) 2274 TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt); 2275 2276 // *TargetElemPtr = SrcMediumVal; 2277 llvm::Value *SrcMediumValue = 2278 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2279 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2280 CType); 2281 Bld.CreateBr(W0MergeBB); 2282 2283 CGF.EmitBlock(W0ElseBB); 2284 Bld.CreateBr(W0MergeBB); 2285 2286 CGF.EmitBlock(W0MergeBB); 2287 2288 if (NumIters > 1) { 2289 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2290 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2291 CGF.EmitBranch(PrecondBB); 2292 (void)ApplyDebugLocation::CreateEmpty(CGF); 2293 CGF.EmitBlock(ExitBB); 2294 } 2295 RealTySize %= TySize; 2296 } 2297 ++Idx; 2298 } 2299 2300 CGF.FinishFunction(); 2301 return Fn; 2302 } 2303 2304 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2305 /// in the same warp. It uses shuffle instructions to copy over data from 2306 /// a remote lane's stack. The reduction algorithm performed is specified 2307 /// by the fourth parameter. 2308 /// 2309 /// Algorithm Versions. 2310 /// Full Warp Reduce (argument value 0): 2311 /// This algorithm assumes that all 32 lanes are active and gathers 2312 /// data from these 32 lanes, producing a single resultant value. 2313 /// Contiguous Partial Warp Reduce (argument value 1): 2314 /// This algorithm assumes that only a *contiguous* subset of lanes 2315 /// are active. This happens for the last warp in a parallel region 2316 /// when the user specified num_threads is not an integer multiple of 2317 /// 32. This contiguous subset always starts with the zeroth lane. 2318 /// Partial Warp Reduce (argument value 2): 2319 /// This algorithm gathers data from any number of lanes at any position. 2320 /// All reduced values are stored in the lowest possible lane. The set 2321 /// of problems every algorithm addresses is a super set of those 2322 /// addressable by algorithms with a lower version number. Overhead 2323 /// increases as algorithm version increases. 2324 /// 2325 /// Terminology 2326 /// Reduce element: 2327 /// Reduce element refers to the individual data field with primitive 2328 /// data types to be combined and reduced across threads. 2329 /// Reduce list: 2330 /// Reduce list refers to a collection of local, thread-private 2331 /// reduce elements. 2332 /// Remote Reduce list: 2333 /// Remote Reduce list refers to a collection of remote (relative to 2334 /// the current thread) reduce elements. 2335 /// 2336 /// We distinguish between three states of threads that are important to 2337 /// the implementation of this function. 2338 /// Alive threads: 2339 /// Threads in a warp executing the SIMT instruction, as distinguished from 2340 /// threads that are inactive due to divergent control flow. 2341 /// Active threads: 2342 /// The minimal set of threads that has to be alive upon entry to this 2343 /// function. The computation is correct iff active threads are alive. 2344 /// Some threads are alive but they are not active because they do not 2345 /// contribute to the computation in any useful manner. Turning them off 2346 /// may introduce control flow overheads without any tangible benefits. 2347 /// Effective threads: 2348 /// In order to comply with the argument requirements of the shuffle 2349 /// function, we must keep all lanes holding data alive. But at most 2350 /// half of them perform value aggregation; we refer to this half of 2351 /// threads as effective. The other half is simply handing off their 2352 /// data. 2353 /// 2354 /// Procedure 2355 /// Value shuffle: 2356 /// In this step active threads transfer data from higher lane positions 2357 /// in the warp to lower lane positions, creating Remote Reduce list. 2358 /// Value aggregation: 2359 /// In this step, effective threads combine their thread local Reduce list 2360 /// with Remote Reduce list and store the result in the thread local 2361 /// Reduce list. 2362 /// Value copy: 2363 /// In this step, we deal with the assumption made by algorithm 2 2364 /// (i.e. contiguity assumption). When we have an odd number of lanes 2365 /// active, say 2k+1, only k threads will be effective and therefore k 2366 /// new values will be produced. However, the Reduce list owned by the 2367 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2368 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2369 /// that the contiguity assumption still holds. 2370 static llvm::Function *emitShuffleAndReduceFunction( 2371 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2372 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2373 ASTContext &C = CGM.getContext(); 2374 2375 // Thread local Reduce list used to host the values of data to be reduced. 2376 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2377 C.VoidPtrTy, ImplicitParamDecl::Other); 2378 // Current lane id; could be logical. 2379 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2380 ImplicitParamDecl::Other); 2381 // Offset of the remote source lane relative to the current lane. 2382 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2383 C.ShortTy, ImplicitParamDecl::Other); 2384 // Algorithm version. This is expected to be known at compile time. 2385 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2386 C.ShortTy, ImplicitParamDecl::Other); 2387 FunctionArgList Args; 2388 Args.push_back(&ReduceListArg); 2389 Args.push_back(&LaneIDArg); 2390 Args.push_back(&RemoteLaneOffsetArg); 2391 Args.push_back(&AlgoVerArg); 2392 2393 const CGFunctionInfo &CGFI = 2394 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2395 auto *Fn = llvm::Function::Create( 2396 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2397 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2398 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2399 Fn->setDoesNotRecurse(); 2400 2401 CodeGenFunction CGF(CGM); 2402 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2403 2404 CGBuilderTy &Bld = CGF.Builder; 2405 2406 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2407 Address LocalReduceList( 2408 Bld.CreatePointerBitCastOrAddrSpaceCast( 2409 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2410 C.VoidPtrTy, SourceLocation()), 2411 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2412 CGF.getPointerAlign()); 2413 2414 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2415 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2416 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2417 2418 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2419 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2420 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2421 2422 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2423 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2424 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2425 2426 // Create a local thread-private variable to host the Reduce list 2427 // from a remote lane. 2428 Address RemoteReduceList = 2429 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2430 2431 // This loop iterates through the list of reduce elements and copies, 2432 // element by element, from a remote lane in the warp to RemoteReduceList, 2433 // hosted on the thread's stack. 2434 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2435 LocalReduceList, RemoteReduceList, 2436 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2437 /*ScratchpadIndex=*/nullptr, 2438 /*ScratchpadWidth=*/nullptr}); 2439 2440 // The actions to be performed on the Remote Reduce list is dependent 2441 // on the algorithm version. 2442 // 2443 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2444 // LaneId % 2 == 0 && Offset > 0): 2445 // do the reduction value aggregation 2446 // 2447 // The thread local variable Reduce list is mutated in place to host the 2448 // reduced data, which is the aggregated value produced from local and 2449 // remote lanes. 2450 // 2451 // Note that AlgoVer is expected to be a constant integer known at compile 2452 // time. 2453 // When AlgoVer==0, the first conjunction evaluates to true, making 2454 // the entire predicate true during compile time. 2455 // When AlgoVer==1, the second conjunction has only the second part to be 2456 // evaluated during runtime. Other conjunctions evaluates to false 2457 // during compile time. 2458 // When AlgoVer==2, the third conjunction has only the second part to be 2459 // evaluated during runtime. Other conjunctions evaluates to false 2460 // during compile time. 2461 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2462 2463 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2464 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2465 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2466 2467 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2468 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2469 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2470 CondAlgo2 = Bld.CreateAnd( 2471 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2472 2473 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2474 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2475 2476 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2477 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2478 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2479 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2480 2481 CGF.EmitBlock(ThenBB); 2482 // reduce_function(LocalReduceList, RemoteReduceList) 2483 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2484 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2485 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2486 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2487 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2488 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2489 Bld.CreateBr(MergeBB); 2490 2491 CGF.EmitBlock(ElseBB); 2492 Bld.CreateBr(MergeBB); 2493 2494 CGF.EmitBlock(MergeBB); 2495 2496 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2497 // Reduce list. 2498 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2499 llvm::Value *CondCopy = Bld.CreateAnd( 2500 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2501 2502 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2503 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2504 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2505 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2506 2507 CGF.EmitBlock(CpyThenBB); 2508 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2509 RemoteReduceList, LocalReduceList); 2510 Bld.CreateBr(CpyMergeBB); 2511 2512 CGF.EmitBlock(CpyElseBB); 2513 Bld.CreateBr(CpyMergeBB); 2514 2515 CGF.EmitBlock(CpyMergeBB); 2516 2517 CGF.FinishFunction(); 2518 return Fn; 2519 } 2520 2521 /// This function emits a helper that copies all the reduction variables from 2522 /// the team into the provided global buffer for the reduction variables. 2523 /// 2524 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2525 /// For all data entries D in reduce_data: 2526 /// Copy local D to buffer.D[Idx] 2527 static llvm::Value *emitListToGlobalCopyFunction( 2528 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2529 QualType ReductionArrayTy, SourceLocation Loc, 2530 const RecordDecl *TeamReductionRec, 2531 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2532 &VarFieldMap) { 2533 ASTContext &C = CGM.getContext(); 2534 2535 // Buffer: global reduction buffer. 2536 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2537 C.VoidPtrTy, ImplicitParamDecl::Other); 2538 // Idx: index of the buffer. 2539 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2540 ImplicitParamDecl::Other); 2541 // ReduceList: thread local Reduce list. 2542 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2543 C.VoidPtrTy, ImplicitParamDecl::Other); 2544 FunctionArgList Args; 2545 Args.push_back(&BufferArg); 2546 Args.push_back(&IdxArg); 2547 Args.push_back(&ReduceListArg); 2548 2549 const CGFunctionInfo &CGFI = 2550 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2551 auto *Fn = llvm::Function::Create( 2552 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2553 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2554 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2555 Fn->setDoesNotRecurse(); 2556 CodeGenFunction CGF(CGM); 2557 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2558 2559 CGBuilderTy &Bld = CGF.Builder; 2560 2561 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2562 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2563 Address LocalReduceList( 2564 Bld.CreatePointerBitCastOrAddrSpaceCast( 2565 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2566 C.VoidPtrTy, Loc), 2567 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2568 CGF.getPointerAlign()); 2569 QualType StaticTy = C.getRecordType(TeamReductionRec); 2570 llvm::Type *LLVMReductionsBufferTy = 2571 CGM.getTypes().ConvertTypeForMem(StaticTy); 2572 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2573 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2574 LLVMReductionsBufferTy->getPointerTo()); 2575 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2576 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2577 /*Volatile=*/false, C.IntTy, 2578 Loc)}; 2579 unsigned Idx = 0; 2580 for (const Expr *Private : Privates) { 2581 // Reduce element = LocalReduceList[i] 2582 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2583 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2584 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2585 // elemptr = ((CopyType*)(elemptrptr)) + I 2586 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2587 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2588 Address ElemPtr = 2589 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2590 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2591 // Global = Buffer.VD[Idx]; 2592 const FieldDecl *FD = VarFieldMap.lookup(VD); 2593 LValue GlobLVal = CGF.EmitLValueForField( 2594 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2595 Address GlobAddr = GlobLVal.getAddress(CGF); 2596 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2597 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2598 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2599 switch (CGF.getEvaluationKind(Private->getType())) { 2600 case TEK_Scalar: { 2601 llvm::Value *V = CGF.EmitLoadOfScalar( 2602 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2603 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2604 CGF.EmitStoreOfScalar(V, GlobLVal); 2605 break; 2606 } 2607 case TEK_Complex: { 2608 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2609 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2610 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2611 break; 2612 } 2613 case TEK_Aggregate: 2614 CGF.EmitAggregateCopy(GlobLVal, 2615 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2616 Private->getType(), AggValueSlot::DoesNotOverlap); 2617 break; 2618 } 2619 ++Idx; 2620 } 2621 2622 CGF.FinishFunction(); 2623 return Fn; 2624 } 2625 2626 /// This function emits a helper that reduces all the reduction variables from 2627 /// the team into the provided global buffer for the reduction variables. 2628 /// 2629 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2630 /// void *GlobPtrs[]; 2631 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2632 /// ... 2633 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2634 /// reduce_function(GlobPtrs, reduce_data); 2635 static llvm::Value *emitListToGlobalReduceFunction( 2636 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2637 QualType ReductionArrayTy, SourceLocation Loc, 2638 const RecordDecl *TeamReductionRec, 2639 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2640 &VarFieldMap, 2641 llvm::Function *ReduceFn) { 2642 ASTContext &C = CGM.getContext(); 2643 2644 // Buffer: global reduction buffer. 2645 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2646 C.VoidPtrTy, ImplicitParamDecl::Other); 2647 // Idx: index of the buffer. 2648 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2649 ImplicitParamDecl::Other); 2650 // ReduceList: thread local Reduce list. 2651 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2652 C.VoidPtrTy, ImplicitParamDecl::Other); 2653 FunctionArgList Args; 2654 Args.push_back(&BufferArg); 2655 Args.push_back(&IdxArg); 2656 Args.push_back(&ReduceListArg); 2657 2658 const CGFunctionInfo &CGFI = 2659 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2660 auto *Fn = llvm::Function::Create( 2661 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2662 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2663 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2664 Fn->setDoesNotRecurse(); 2665 CodeGenFunction CGF(CGM); 2666 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2667 2668 CGBuilderTy &Bld = CGF.Builder; 2669 2670 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2671 QualType StaticTy = C.getRecordType(TeamReductionRec); 2672 llvm::Type *LLVMReductionsBufferTy = 2673 CGM.getTypes().ConvertTypeForMem(StaticTy); 2674 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2675 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2676 LLVMReductionsBufferTy->getPointerTo()); 2677 2678 // 1. Build a list of reduction variables. 2679 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2680 Address ReductionList = 2681 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2682 auto IPriv = Privates.begin(); 2683 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2684 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2685 /*Volatile=*/false, C.IntTy, 2686 Loc)}; 2687 unsigned Idx = 0; 2688 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2689 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2690 // Global = Buffer.VD[Idx]; 2691 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2692 const FieldDecl *FD = VarFieldMap.lookup(VD); 2693 LValue GlobLVal = CGF.EmitLValueForField( 2694 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2695 Address GlobAddr = GlobLVal.getAddress(CGF); 2696 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2697 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2698 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2699 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2700 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2701 // Store array size. 2702 ++Idx; 2703 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2704 llvm::Value *Size = CGF.Builder.CreateIntCast( 2705 CGF.getVLASize( 2706 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2707 .NumElts, 2708 CGF.SizeTy, /*isSigned=*/false); 2709 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2710 Elem); 2711 } 2712 } 2713 2714 // Call reduce_function(GlobalReduceList, ReduceList) 2715 llvm::Value *GlobalReduceList = 2716 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2717 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2718 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2719 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2720 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2721 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2722 CGF.FinishFunction(); 2723 return Fn; 2724 } 2725 2726 /// This function emits a helper that copies all the reduction variables from 2727 /// the team into the provided global buffer for the reduction variables. 2728 /// 2729 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2730 /// For all data entries D in reduce_data: 2731 /// Copy buffer.D[Idx] to local D; 2732 static llvm::Value *emitGlobalToListCopyFunction( 2733 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2734 QualType ReductionArrayTy, SourceLocation Loc, 2735 const RecordDecl *TeamReductionRec, 2736 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2737 &VarFieldMap) { 2738 ASTContext &C = CGM.getContext(); 2739 2740 // Buffer: global reduction buffer. 2741 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2742 C.VoidPtrTy, ImplicitParamDecl::Other); 2743 // Idx: index of the buffer. 2744 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2745 ImplicitParamDecl::Other); 2746 // ReduceList: thread local Reduce list. 2747 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2748 C.VoidPtrTy, ImplicitParamDecl::Other); 2749 FunctionArgList Args; 2750 Args.push_back(&BufferArg); 2751 Args.push_back(&IdxArg); 2752 Args.push_back(&ReduceListArg); 2753 2754 const CGFunctionInfo &CGFI = 2755 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2756 auto *Fn = llvm::Function::Create( 2757 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2758 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2759 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2760 Fn->setDoesNotRecurse(); 2761 CodeGenFunction CGF(CGM); 2762 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2763 2764 CGBuilderTy &Bld = CGF.Builder; 2765 2766 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2767 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2768 Address LocalReduceList( 2769 Bld.CreatePointerBitCastOrAddrSpaceCast( 2770 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2771 C.VoidPtrTy, Loc), 2772 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2773 CGF.getPointerAlign()); 2774 QualType StaticTy = C.getRecordType(TeamReductionRec); 2775 llvm::Type *LLVMReductionsBufferTy = 2776 CGM.getTypes().ConvertTypeForMem(StaticTy); 2777 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2778 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2779 LLVMReductionsBufferTy->getPointerTo()); 2780 2781 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2782 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2783 /*Volatile=*/false, C.IntTy, 2784 Loc)}; 2785 unsigned Idx = 0; 2786 for (const Expr *Private : Privates) { 2787 // Reduce element = LocalReduceList[i] 2788 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2789 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2790 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2791 // elemptr = ((CopyType*)(elemptrptr)) + I 2792 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2793 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2794 Address ElemPtr = 2795 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2796 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2797 // Global = Buffer.VD[Idx]; 2798 const FieldDecl *FD = VarFieldMap.lookup(VD); 2799 LValue GlobLVal = CGF.EmitLValueForField( 2800 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2801 Address GlobAddr = GlobLVal.getAddress(CGF); 2802 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2803 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2804 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2805 switch (CGF.getEvaluationKind(Private->getType())) { 2806 case TEK_Scalar: { 2807 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2808 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2809 LValueBaseInfo(AlignmentSource::Type), 2810 TBAAAccessInfo()); 2811 break; 2812 } 2813 case TEK_Complex: { 2814 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2815 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2816 /*isInit=*/false); 2817 break; 2818 } 2819 case TEK_Aggregate: 2820 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2821 GlobLVal, Private->getType(), 2822 AggValueSlot::DoesNotOverlap); 2823 break; 2824 } 2825 ++Idx; 2826 } 2827 2828 CGF.FinishFunction(); 2829 return Fn; 2830 } 2831 2832 /// This function emits a helper that reduces all the reduction variables from 2833 /// the team into the provided global buffer for the reduction variables. 2834 /// 2835 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2836 /// void *GlobPtrs[]; 2837 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2838 /// ... 2839 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2840 /// reduce_function(reduce_data, GlobPtrs); 2841 static llvm::Value *emitGlobalToListReduceFunction( 2842 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2843 QualType ReductionArrayTy, SourceLocation Loc, 2844 const RecordDecl *TeamReductionRec, 2845 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2846 &VarFieldMap, 2847 llvm::Function *ReduceFn) { 2848 ASTContext &C = CGM.getContext(); 2849 2850 // Buffer: global reduction buffer. 2851 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2852 C.VoidPtrTy, ImplicitParamDecl::Other); 2853 // Idx: index of the buffer. 2854 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2855 ImplicitParamDecl::Other); 2856 // ReduceList: thread local Reduce list. 2857 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2858 C.VoidPtrTy, ImplicitParamDecl::Other); 2859 FunctionArgList Args; 2860 Args.push_back(&BufferArg); 2861 Args.push_back(&IdxArg); 2862 Args.push_back(&ReduceListArg); 2863 2864 const CGFunctionInfo &CGFI = 2865 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2866 auto *Fn = llvm::Function::Create( 2867 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2868 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2869 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2870 Fn->setDoesNotRecurse(); 2871 CodeGenFunction CGF(CGM); 2872 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2873 2874 CGBuilderTy &Bld = CGF.Builder; 2875 2876 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2877 QualType StaticTy = C.getRecordType(TeamReductionRec); 2878 llvm::Type *LLVMReductionsBufferTy = 2879 CGM.getTypes().ConvertTypeForMem(StaticTy); 2880 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2881 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2882 LLVMReductionsBufferTy->getPointerTo()); 2883 2884 // 1. Build a list of reduction variables. 2885 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2886 Address ReductionList = 2887 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2888 auto IPriv = Privates.begin(); 2889 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2890 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2891 /*Volatile=*/false, C.IntTy, 2892 Loc)}; 2893 unsigned Idx = 0; 2894 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2895 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2896 // Global = Buffer.VD[Idx]; 2897 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2898 const FieldDecl *FD = VarFieldMap.lookup(VD); 2899 LValue GlobLVal = CGF.EmitLValueForField( 2900 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2901 Address GlobAddr = GlobLVal.getAddress(CGF); 2902 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2903 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2904 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2905 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2906 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2907 // Store array size. 2908 ++Idx; 2909 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2910 llvm::Value *Size = CGF.Builder.CreateIntCast( 2911 CGF.getVLASize( 2912 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2913 .NumElts, 2914 CGF.SizeTy, /*isSigned=*/false); 2915 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2916 Elem); 2917 } 2918 } 2919 2920 // Call reduce_function(ReduceList, GlobalReduceList) 2921 llvm::Value *GlobalReduceList = 2922 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2923 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2924 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2925 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2926 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2927 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2928 CGF.FinishFunction(); 2929 return Fn; 2930 } 2931 2932 /// 2933 /// Design of OpenMP reductions on the GPU 2934 /// 2935 /// Consider a typical OpenMP program with one or more reduction 2936 /// clauses: 2937 /// 2938 /// float foo; 2939 /// double bar; 2940 /// #pragma omp target teams distribute parallel for \ 2941 /// reduction(+:foo) reduction(*:bar) 2942 /// for (int i = 0; i < N; i++) { 2943 /// foo += A[i]; bar *= B[i]; 2944 /// } 2945 /// 2946 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2947 /// all teams. In our OpenMP implementation on the NVPTX device an 2948 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2949 /// within a team are mapped to CUDA threads within a threadblock. 2950 /// Our goal is to efficiently aggregate values across all OpenMP 2951 /// threads such that: 2952 /// 2953 /// - the compiler and runtime are logically concise, and 2954 /// - the reduction is performed efficiently in a hierarchical 2955 /// manner as follows: within OpenMP threads in the same warp, 2956 /// across warps in a threadblock, and finally across teams on 2957 /// the NVPTX device. 2958 /// 2959 /// Introduction to Decoupling 2960 /// 2961 /// We would like to decouple the compiler and the runtime so that the 2962 /// latter is ignorant of the reduction variables (number, data types) 2963 /// and the reduction operators. This allows a simpler interface 2964 /// and implementation while still attaining good performance. 2965 /// 2966 /// Pseudocode for the aforementioned OpenMP program generated by the 2967 /// compiler is as follows: 2968 /// 2969 /// 1. Create private copies of reduction variables on each OpenMP 2970 /// thread: 'foo_private', 'bar_private' 2971 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2972 /// to it and writes the result in 'foo_private' and 'bar_private' 2973 /// respectively. 2974 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2975 /// and store the result on the team master: 2976 /// 2977 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2978 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2979 /// 2980 /// where: 2981 /// struct ReduceData { 2982 /// double *foo; 2983 /// double *bar; 2984 /// } reduceData 2985 /// reduceData.foo = &foo_private 2986 /// reduceData.bar = &bar_private 2987 /// 2988 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2989 /// auxiliary functions generated by the compiler that operate on 2990 /// variables of type 'ReduceData'. They aid the runtime perform 2991 /// algorithmic steps in a data agnostic manner. 2992 /// 2993 /// 'shuffleReduceFn' is a pointer to a function that reduces data 2994 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 2995 /// same warp. It takes the following arguments as input: 2996 /// 2997 /// a. variable of type 'ReduceData' on the calling lane, 2998 /// b. its lane_id, 2999 /// c. an offset relative to the current lane_id to generate a 3000 /// remote_lane_id. The remote lane contains the second 3001 /// variable of type 'ReduceData' that is to be reduced. 3002 /// d. an algorithm version parameter determining which reduction 3003 /// algorithm to use. 3004 /// 3005 /// 'shuffleReduceFn' retrieves data from the remote lane using 3006 /// efficient GPU shuffle intrinsics and reduces, using the 3007 /// algorithm specified by the 4th parameter, the two operands 3008 /// element-wise. The result is written to the first operand. 3009 /// 3010 /// Different reduction algorithms are implemented in different 3011 /// runtime functions, all calling 'shuffleReduceFn' to perform 3012 /// the essential reduction step. Therefore, based on the 4th 3013 /// parameter, this function behaves slightly differently to 3014 /// cooperate with the runtime to ensure correctness under 3015 /// different circumstances. 3016 /// 3017 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3018 /// reduced variables across warps. It tunnels, through CUDA 3019 /// shared memory, the thread-private data of type 'ReduceData' 3020 /// from lane 0 of each warp to a lane in the first warp. 3021 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3022 /// The last team writes the global reduced value to memory. 3023 /// 3024 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3025 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3026 /// scratchpadCopyFn, loadAndReduceFn) 3027 /// 3028 /// 'scratchpadCopyFn' is a helper that stores reduced 3029 /// data from the team master to a scratchpad array in 3030 /// global memory. 3031 /// 3032 /// 'loadAndReduceFn' is a helper that loads data from 3033 /// the scratchpad array and reduces it with the input 3034 /// operand. 3035 /// 3036 /// These compiler generated functions hide address 3037 /// calculation and alignment information from the runtime. 3038 /// 5. if ret == 1: 3039 /// The team master of the last team stores the reduced 3040 /// result to the globals in memory. 3041 /// foo += reduceData.foo; bar *= reduceData.bar 3042 /// 3043 /// 3044 /// Warp Reduction Algorithms 3045 /// 3046 /// On the warp level, we have three algorithms implemented in the 3047 /// OpenMP runtime depending on the number of active lanes: 3048 /// 3049 /// Full Warp Reduction 3050 /// 3051 /// The reduce algorithm within a warp where all lanes are active 3052 /// is implemented in the runtime as follows: 3053 /// 3054 /// full_warp_reduce(void *reduce_data, 3055 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3056 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3057 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3058 /// } 3059 /// 3060 /// The algorithm completes in log(2, WARPSIZE) steps. 3061 /// 3062 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3063 /// not used therefore we save instructions by not retrieving lane_id 3064 /// from the corresponding special registers. The 4th parameter, which 3065 /// represents the version of the algorithm being used, is set to 0 to 3066 /// signify full warp reduction. 3067 /// 3068 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3069 /// 3070 /// #reduce_elem refers to an element in the local lane's data structure 3071 /// #remote_elem is retrieved from a remote lane 3072 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3073 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3074 /// 3075 /// Contiguous Partial Warp Reduction 3076 /// 3077 /// This reduce algorithm is used within a warp where only the first 3078 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3079 /// number of OpenMP threads in a parallel region is not a multiple of 3080 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3081 /// 3082 /// void 3083 /// contiguous_partial_reduce(void *reduce_data, 3084 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3085 /// int size, int lane_id) { 3086 /// int curr_size; 3087 /// int offset; 3088 /// curr_size = size; 3089 /// mask = curr_size/2; 3090 /// while (offset>0) { 3091 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3092 /// curr_size = (curr_size+1)/2; 3093 /// offset = curr_size/2; 3094 /// } 3095 /// } 3096 /// 3097 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3098 /// 3099 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3100 /// if (lane_id < offset) 3101 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3102 /// else 3103 /// reduce_elem = remote_elem 3104 /// 3105 /// This algorithm assumes that the data to be reduced are located in a 3106 /// contiguous subset of lanes starting from the first. When there is 3107 /// an odd number of active lanes, the data in the last lane is not 3108 /// aggregated with any other lane's dat but is instead copied over. 3109 /// 3110 /// Dispersed Partial Warp Reduction 3111 /// 3112 /// This algorithm is used within a warp when any discontiguous subset of 3113 /// lanes are active. It is used to implement the reduction operation 3114 /// across lanes in an OpenMP simd region or in a nested parallel region. 3115 /// 3116 /// void 3117 /// dispersed_partial_reduce(void *reduce_data, 3118 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3119 /// int size, remote_id; 3120 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3121 /// do { 3122 /// remote_id = next_active_lane_id_right_after_me(); 3123 /// # the above function returns 0 of no active lane 3124 /// # is present right after the current lane. 3125 /// size = number_of_active_lanes_in_this_warp(); 3126 /// logical_lane_id /= 2; 3127 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3128 /// remote_id-1-threadIdx.x, 2); 3129 /// } while (logical_lane_id % 2 == 0 && size > 1); 3130 /// } 3131 /// 3132 /// There is no assumption made about the initial state of the reduction. 3133 /// Any number of lanes (>=1) could be active at any position. The reduction 3134 /// result is returned in the first active lane. 3135 /// 3136 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3137 /// 3138 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3139 /// if (lane_id % 2 == 0 && offset > 0) 3140 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3141 /// else 3142 /// reduce_elem = remote_elem 3143 /// 3144 /// 3145 /// Intra-Team Reduction 3146 /// 3147 /// This function, as implemented in the runtime call 3148 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3149 /// threads in a team. It first reduces within a warp using the 3150 /// aforementioned algorithms. We then proceed to gather all such 3151 /// reduced values at the first warp. 3152 /// 3153 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3154 /// data from each of the "warp master" (zeroth lane of each warp, where 3155 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3156 /// a mathematical sense) the problem of reduction across warp masters in 3157 /// a block to the problem of warp reduction. 3158 /// 3159 /// 3160 /// Inter-Team Reduction 3161 /// 3162 /// Once a team has reduced its data to a single value, it is stored in 3163 /// a global scratchpad array. Since each team has a distinct slot, this 3164 /// can be done without locking. 3165 /// 3166 /// The last team to write to the scratchpad array proceeds to reduce the 3167 /// scratchpad array. One or more workers in the last team use the helper 3168 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3169 /// the k'th worker reduces every k'th element. 3170 /// 3171 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3172 /// reduce across workers and compute a globally reduced value. 3173 /// 3174 void CGOpenMPRuntimeGPU::emitReduction( 3175 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3176 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3177 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3178 if (!CGF.HaveInsertPoint()) 3179 return; 3180 3181 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3182 #ifndef NDEBUG 3183 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3184 #endif 3185 3186 if (Options.SimpleReduction) { 3187 assert(!TeamsReduction && !ParallelReduction && 3188 "Invalid reduction selection in emitReduction."); 3189 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3190 ReductionOps, Options); 3191 return; 3192 } 3193 3194 assert((TeamsReduction || ParallelReduction) && 3195 "Invalid reduction selection in emitReduction."); 3196 3197 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3198 // RedList, shuffle_reduce_func, interwarp_copy_func); 3199 // or 3200 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3201 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3202 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3203 3204 llvm::Value *Res; 3205 ASTContext &C = CGM.getContext(); 3206 // 1. Build a list of reduction variables. 3207 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3208 auto Size = RHSExprs.size(); 3209 for (const Expr *E : Privates) { 3210 if (E->getType()->isVariablyModifiedType()) 3211 // Reserve place for array size. 3212 ++Size; 3213 } 3214 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3215 QualType ReductionArrayTy = 3216 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3217 /*IndexTypeQuals=*/0); 3218 Address ReductionList = 3219 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3220 auto IPriv = Privates.begin(); 3221 unsigned Idx = 0; 3222 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3223 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3224 CGF.Builder.CreateStore( 3225 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3226 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3227 Elem); 3228 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3229 // Store array size. 3230 ++Idx; 3231 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3232 llvm::Value *Size = CGF.Builder.CreateIntCast( 3233 CGF.getVLASize( 3234 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3235 .NumElts, 3236 CGF.SizeTy, /*isSigned=*/false); 3237 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3238 Elem); 3239 } 3240 } 3241 3242 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3243 ReductionList.getPointer(), CGF.VoidPtrTy); 3244 llvm::Function *ReductionFn = emitReductionFunction( 3245 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3246 LHSExprs, RHSExprs, ReductionOps); 3247 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3248 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3249 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3250 llvm::Value *InterWarpCopyFn = 3251 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3252 3253 if (ParallelReduction) { 3254 llvm::Value *Args[] = {RTLoc, 3255 ThreadId, 3256 CGF.Builder.getInt32(RHSExprs.size()), 3257 ReductionArrayTySize, 3258 RL, 3259 ShuffleAndReduceFn, 3260 InterWarpCopyFn}; 3261 3262 Res = CGF.EmitRuntimeCall( 3263 OMPBuilder.getOrCreateRuntimeFunction( 3264 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3265 Args); 3266 } else { 3267 assert(TeamsReduction && "expected teams reduction."); 3268 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3269 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3270 int Cnt = 0; 3271 for (const Expr *DRE : Privates) { 3272 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3273 ++Cnt; 3274 } 3275 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3276 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3277 C.getLangOpts().OpenMPCUDAReductionBufNum); 3278 TeamsReductions.push_back(TeamReductionRec); 3279 if (!KernelTeamsReductionPtr) { 3280 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3281 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3282 llvm::GlobalValue::InternalLinkage, nullptr, 3283 "_openmp_teams_reductions_buffer_$_$ptr"); 3284 } 3285 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3286 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3287 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3288 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3289 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3290 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3291 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3292 ReductionFn); 3293 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3294 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3295 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3296 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3297 ReductionFn); 3298 3299 llvm::Value *Args[] = { 3300 RTLoc, 3301 ThreadId, 3302 GlobalBufferPtr, 3303 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3304 RL, 3305 ShuffleAndReduceFn, 3306 InterWarpCopyFn, 3307 GlobalToBufferCpyFn, 3308 GlobalToBufferRedFn, 3309 BufferToGlobalCpyFn, 3310 BufferToGlobalRedFn}; 3311 3312 Res = CGF.EmitRuntimeCall( 3313 OMPBuilder.getOrCreateRuntimeFunction( 3314 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3315 Args); 3316 } 3317 3318 // 5. Build if (res == 1) 3319 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3320 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3321 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3322 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3323 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3324 3325 // 6. Build then branch: where we have reduced values in the master 3326 // thread in each team. 3327 // __kmpc_end_reduce{_nowait}(<gtid>); 3328 // break; 3329 CGF.EmitBlock(ThenBB); 3330 3331 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3332 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3333 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3334 auto IPriv = Privates.begin(); 3335 auto ILHS = LHSExprs.begin(); 3336 auto IRHS = RHSExprs.begin(); 3337 for (const Expr *E : ReductionOps) { 3338 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3339 cast<DeclRefExpr>(*IRHS)); 3340 ++IPriv; 3341 ++ILHS; 3342 ++IRHS; 3343 } 3344 }; 3345 llvm::Value *EndArgs[] = {ThreadId}; 3346 RegionCodeGenTy RCG(CodeGen); 3347 NVPTXActionTy Action( 3348 nullptr, llvm::None, 3349 OMPBuilder.getOrCreateRuntimeFunction( 3350 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3351 EndArgs); 3352 RCG.setAction(Action); 3353 RCG(CGF); 3354 // There is no need to emit line number for unconditional branch. 3355 (void)ApplyDebugLocation::CreateEmpty(CGF); 3356 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3357 } 3358 3359 const VarDecl * 3360 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3361 const VarDecl *NativeParam) const { 3362 if (!NativeParam->getType()->isReferenceType()) 3363 return NativeParam; 3364 QualType ArgType = NativeParam->getType(); 3365 QualifierCollector QC; 3366 const Type *NonQualTy = QC.strip(ArgType); 3367 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3368 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3369 if (Attr->getCaptureKind() == OMPC_map) { 3370 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3371 LangAS::opencl_global); 3372 } 3373 } 3374 ArgType = CGM.getContext().getPointerType(PointeeTy); 3375 QC.addRestrict(); 3376 enum { NVPTX_local_addr = 5 }; 3377 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3378 ArgType = QC.apply(CGM.getContext(), ArgType); 3379 if (isa<ImplicitParamDecl>(NativeParam)) 3380 return ImplicitParamDecl::Create( 3381 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3382 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3383 return ParmVarDecl::Create( 3384 CGM.getContext(), 3385 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3386 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3387 NativeParam->getIdentifier(), ArgType, 3388 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3389 } 3390 3391 Address 3392 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3393 const VarDecl *NativeParam, 3394 const VarDecl *TargetParam) const { 3395 assert(NativeParam != TargetParam && 3396 NativeParam->getType()->isReferenceType() && 3397 "Native arg must not be the same as target arg."); 3398 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3399 QualType NativeParamType = NativeParam->getType(); 3400 QualifierCollector QC; 3401 const Type *NonQualTy = QC.strip(NativeParamType); 3402 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3403 unsigned NativePointeeAddrSpace = 3404 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3405 QualType TargetTy = TargetParam->getType(); 3406 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3407 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3408 // First cast to generic. 3409 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3410 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3411 cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0)); 3412 // Cast from generic to native address space. 3413 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3414 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3415 cast<llvm::PointerType>(TargetAddr->getType()), 3416 NativePointeeAddrSpace)); 3417 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3418 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3419 NativeParamType); 3420 return NativeParamAddr; 3421 } 3422 3423 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3424 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3425 ArrayRef<llvm::Value *> Args) const { 3426 SmallVector<llvm::Value *, 4> TargetArgs; 3427 TargetArgs.reserve(Args.size()); 3428 auto *FnType = OutlinedFn.getFunctionType(); 3429 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3430 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3431 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3432 break; 3433 } 3434 llvm::Type *TargetType = FnType->getParamType(I); 3435 llvm::Value *NativeArg = Args[I]; 3436 if (!TargetType->isPointerTy()) { 3437 TargetArgs.emplace_back(NativeArg); 3438 continue; 3439 } 3440 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3441 NativeArg, llvm::PointerType::getWithSamePointeeType( 3442 cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0)); 3443 TargetArgs.emplace_back( 3444 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3445 } 3446 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3447 } 3448 3449 /// Emit function which wraps the outline parallel region 3450 /// and controls the arguments which are passed to this function. 3451 /// The wrapper ensures that the outlined function is called 3452 /// with the correct arguments when data is shared. 3453 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3454 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3455 ASTContext &Ctx = CGM.getContext(); 3456 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3457 3458 // Create a function that takes as argument the source thread. 3459 FunctionArgList WrapperArgs; 3460 QualType Int16QTy = 3461 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3462 QualType Int32QTy = 3463 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3464 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3465 /*Id=*/nullptr, Int16QTy, 3466 ImplicitParamDecl::Other); 3467 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3468 /*Id=*/nullptr, Int32QTy, 3469 ImplicitParamDecl::Other); 3470 WrapperArgs.emplace_back(&ParallelLevelArg); 3471 WrapperArgs.emplace_back(&WrapperArg); 3472 3473 const CGFunctionInfo &CGFI = 3474 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3475 3476 auto *Fn = llvm::Function::Create( 3477 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3478 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3479 3480 // Ensure we do not inline the function. This is trivially true for the ones 3481 // passed to __kmpc_fork_call but the ones calles in serialized regions 3482 // could be inlined. This is not a perfect but it is closer to the invariant 3483 // we want, namely, every data environment starts with a new function. 3484 // TODO: We should pass the if condition to the runtime function and do the 3485 // handling there. Much cleaner code. 3486 Fn->addFnAttr(llvm::Attribute::NoInline); 3487 3488 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3489 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3490 Fn->setDoesNotRecurse(); 3491 3492 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3493 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3494 D.getBeginLoc(), D.getBeginLoc()); 3495 3496 const auto *RD = CS.getCapturedRecordDecl(); 3497 auto CurField = RD->field_begin(); 3498 3499 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3500 /*Name=*/".zero.addr"); 3501 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 3502 // Get the array of arguments. 3503 SmallVector<llvm::Value *, 8> Args; 3504 3505 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3506 Args.emplace_back(ZeroAddr.getPointer()); 3507 3508 CGBuilderTy &Bld = CGF.Builder; 3509 auto CI = CS.capture_begin(); 3510 3511 // Use global memory for data sharing. 3512 // Handle passing of global args to workers. 3513 Address GlobalArgs = 3514 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3515 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3516 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3517 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3518 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3519 DataSharingArgs); 3520 3521 // Retrieve the shared variables from the list of references returned 3522 // by the runtime. Pass the variables to the outlined function. 3523 Address SharedArgListAddress = Address::invalid(); 3524 if (CS.capture_size() > 0 || 3525 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3526 SharedArgListAddress = CGF.EmitLoadOfPointer( 3527 GlobalArgs, CGF.getContext() 3528 .getPointerType(CGF.getContext().getPointerType( 3529 CGF.getContext().VoidPtrTy)) 3530 .castAs<PointerType>()); 3531 } 3532 unsigned Idx = 0; 3533 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3534 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3535 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3536 Src, CGF.SizeTy->getPointerTo()); 3537 llvm::Value *LB = CGF.EmitLoadOfScalar( 3538 TypedAddress, 3539 /*Volatile=*/false, 3540 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3541 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3542 Args.emplace_back(LB); 3543 ++Idx; 3544 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3545 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3546 Src, CGF.SizeTy->getPointerTo()); 3547 llvm::Value *UB = CGF.EmitLoadOfScalar( 3548 TypedAddress, 3549 /*Volatile=*/false, 3550 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3551 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3552 Args.emplace_back(UB); 3553 ++Idx; 3554 } 3555 if (CS.capture_size() > 0) { 3556 ASTContext &CGFContext = CGF.getContext(); 3557 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3558 QualType ElemTy = CurField->getType(); 3559 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3560 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3561 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3562 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3563 /*Volatile=*/false, 3564 CGFContext.getPointerType(ElemTy), 3565 CI->getLocation()); 3566 if (CI->capturesVariableByCopy() && 3567 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3568 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3569 CI->getLocation()); 3570 } 3571 Args.emplace_back(Arg); 3572 } 3573 } 3574 3575 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3576 CGF.FinishFunction(); 3577 return Fn; 3578 } 3579 3580 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3581 const Decl *D) { 3582 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3583 return; 3584 3585 assert(D && "Expected function or captured|block decl."); 3586 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3587 "Function is registered already."); 3588 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3589 "Team is set but not processed."); 3590 const Stmt *Body = nullptr; 3591 bool NeedToDelayGlobalization = false; 3592 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3593 Body = FD->getBody(); 3594 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3595 Body = BD->getBody(); 3596 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3597 Body = CD->getBody(); 3598 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3599 if (NeedToDelayGlobalization && 3600 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3601 return; 3602 } 3603 if (!Body) 3604 return; 3605 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3606 VarChecker.Visit(Body); 3607 const RecordDecl *GlobalizedVarsRecord = 3608 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3609 TeamAndReductions.first = nullptr; 3610 TeamAndReductions.second.clear(); 3611 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3612 VarChecker.getEscapedVariableLengthDecls(); 3613 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3614 return; 3615 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3616 I->getSecond().MappedParams = 3617 std::make_unique<CodeGenFunction::OMPMapVars>(); 3618 I->getSecond().EscapedParameters.insert( 3619 VarChecker.getEscapedParameters().begin(), 3620 VarChecker.getEscapedParameters().end()); 3621 I->getSecond().EscapedVariableLengthDecls.append( 3622 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3623 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3624 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3625 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3626 Data.insert(std::make_pair(VD, MappedVarData())); 3627 } 3628 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3629 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3630 VarChecker.Visit(Body); 3631 I->getSecond().SecondaryLocalVarData.emplace(); 3632 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3633 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3634 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3635 Data.insert(std::make_pair(VD, MappedVarData())); 3636 } 3637 } 3638 if (!NeedToDelayGlobalization) { 3639 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3640 struct GlobalizationScope final : EHScopeStack::Cleanup { 3641 GlobalizationScope() = default; 3642 3643 void Emit(CodeGenFunction &CGF, Flags flags) override { 3644 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3645 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3646 } 3647 }; 3648 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3649 } 3650 } 3651 3652 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3653 const VarDecl *VD) { 3654 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3655 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3656 auto AS = LangAS::Default; 3657 switch (A->getAllocatorType()) { 3658 // Use the default allocator here as by default local vars are 3659 // threadlocal. 3660 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3661 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3662 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3663 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3664 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3665 // Follow the user decision - use default allocation. 3666 return Address::invalid(); 3667 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3668 // TODO: implement aupport for user-defined allocators. 3669 return Address::invalid(); 3670 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3671 AS = LangAS::cuda_constant; 3672 break; 3673 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3674 AS = LangAS::cuda_shared; 3675 break; 3676 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3677 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3678 break; 3679 } 3680 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3681 auto *GV = new llvm::GlobalVariable( 3682 CGM.getModule(), VarTy, /*isConstant=*/false, 3683 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3684 VD->getName(), 3685 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3686 CGM.getContext().getTargetAddressSpace(AS)); 3687 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3688 GV->setAlignment(Align.getAsAlign()); 3689 return Address( 3690 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3691 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3692 VD->getType().getAddressSpace()))), 3693 Align); 3694 } 3695 3696 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3697 return Address::invalid(); 3698 3699 VD = VD->getCanonicalDecl(); 3700 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3701 if (I == FunctionGlobalizedDecls.end()) 3702 return Address::invalid(); 3703 auto VDI = I->getSecond().LocalVarData.find(VD); 3704 if (VDI != I->getSecond().LocalVarData.end()) 3705 return VDI->second.PrivateAddr; 3706 if (VD->hasAttrs()) { 3707 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3708 E(VD->attr_end()); 3709 IT != E; ++IT) { 3710 auto VDI = I->getSecond().LocalVarData.find( 3711 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3712 ->getCanonicalDecl()); 3713 if (VDI != I->getSecond().LocalVarData.end()) 3714 return VDI->second.PrivateAddr; 3715 } 3716 } 3717 3718 return Address::invalid(); 3719 } 3720 3721 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3722 FunctionGlobalizedDecls.erase(CGF.CurFn); 3723 CGOpenMPRuntime::functionFinished(CGF); 3724 } 3725 3726 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3727 CodeGenFunction &CGF, const OMPLoopDirective &S, 3728 OpenMPDistScheduleClauseKind &ScheduleKind, 3729 llvm::Value *&Chunk) const { 3730 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3731 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3732 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3733 Chunk = CGF.EmitScalarConversion( 3734 RT.getGPUNumThreads(CGF), 3735 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3736 S.getIterationVariable()->getType(), S.getBeginLoc()); 3737 return; 3738 } 3739 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3740 CGF, S, ScheduleKind, Chunk); 3741 } 3742 3743 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3744 CodeGenFunction &CGF, const OMPLoopDirective &S, 3745 OpenMPScheduleClauseKind &ScheduleKind, 3746 const Expr *&ChunkExpr) const { 3747 ScheduleKind = OMPC_SCHEDULE_static; 3748 // Chunk size is 1 in this case. 3749 llvm::APInt ChunkSize(32, 1); 3750 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3751 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3752 SourceLocation()); 3753 } 3754 3755 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3756 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3757 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3758 " Expected target-based directive."); 3759 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3760 for (const CapturedStmt::Capture &C : CS->captures()) { 3761 // Capture variables captured by reference in lambdas for target-based 3762 // directives. 3763 if (!C.capturesVariable()) 3764 continue; 3765 const VarDecl *VD = C.getCapturedVar(); 3766 const auto *RD = VD->getType() 3767 .getCanonicalType() 3768 .getNonReferenceType() 3769 ->getAsCXXRecordDecl(); 3770 if (!RD || !RD->isLambda()) 3771 continue; 3772 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3773 LValue VDLVal; 3774 if (VD->getType().getCanonicalType()->isReferenceType()) 3775 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3776 else 3777 VDLVal = CGF.MakeAddrLValue( 3778 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3779 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3780 FieldDecl *ThisCapture = nullptr; 3781 RD->getCaptureFields(Captures, ThisCapture); 3782 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3783 LValue ThisLVal = 3784 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3785 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3786 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3787 } 3788 for (const LambdaCapture &LC : RD->captures()) { 3789 if (LC.getCaptureKind() != LCK_ByRef) 3790 continue; 3791 const VarDecl *VD = LC.getCapturedVar(); 3792 if (!CS->capturesVariable(VD)) 3793 continue; 3794 auto It = Captures.find(VD); 3795 assert(It != Captures.end() && "Found lambda capture without field."); 3796 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3797 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3798 if (VD->getType().getCanonicalType()->isReferenceType()) 3799 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3800 VD->getType().getCanonicalType()) 3801 .getAddress(CGF); 3802 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3803 } 3804 } 3805 } 3806 3807 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3808 LangAS &AS) { 3809 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3810 return false; 3811 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3812 switch(A->getAllocatorType()) { 3813 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3814 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3815 // Not supported, fallback to the default mem space. 3816 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3817 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3818 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3819 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3820 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3821 AS = LangAS::Default; 3822 return true; 3823 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3824 AS = LangAS::cuda_constant; 3825 return true; 3826 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3827 AS = LangAS::cuda_shared; 3828 return true; 3829 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3830 llvm_unreachable("Expected predefined allocator for the variables with the " 3831 "static storage."); 3832 } 3833 return false; 3834 } 3835 3836 // Get current CudaArch and ignore any unknown values 3837 static CudaArch getCudaArch(CodeGenModule &CGM) { 3838 if (!CGM.getTarget().hasFeature("ptx")) 3839 return CudaArch::UNKNOWN; 3840 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3841 if (Feature.getValue()) { 3842 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3843 if (Arch != CudaArch::UNKNOWN) 3844 return Arch; 3845 } 3846 } 3847 return CudaArch::UNKNOWN; 3848 } 3849 3850 /// Check to see if target architecture supports unified addressing which is 3851 /// a restriction for OpenMP requires clause "unified_shared_memory". 3852 void CGOpenMPRuntimeGPU::processRequiresDirective( 3853 const OMPRequiresDecl *D) { 3854 for (const OMPClause *Clause : D->clauselists()) { 3855 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3856 CudaArch Arch = getCudaArch(CGM); 3857 switch (Arch) { 3858 case CudaArch::SM_20: 3859 case CudaArch::SM_21: 3860 case CudaArch::SM_30: 3861 case CudaArch::SM_32: 3862 case CudaArch::SM_35: 3863 case CudaArch::SM_37: 3864 case CudaArch::SM_50: 3865 case CudaArch::SM_52: 3866 case CudaArch::SM_53: { 3867 SmallString<256> Buffer; 3868 llvm::raw_svector_ostream Out(Buffer); 3869 Out << "Target architecture " << CudaArchToString(Arch) 3870 << " does not support unified addressing"; 3871 CGM.Error(Clause->getBeginLoc(), Out.str()); 3872 return; 3873 } 3874 case CudaArch::SM_60: 3875 case CudaArch::SM_61: 3876 case CudaArch::SM_62: 3877 case CudaArch::SM_70: 3878 case CudaArch::SM_72: 3879 case CudaArch::SM_75: 3880 case CudaArch::SM_80: 3881 case CudaArch::SM_86: 3882 case CudaArch::GFX600: 3883 case CudaArch::GFX601: 3884 case CudaArch::GFX602: 3885 case CudaArch::GFX700: 3886 case CudaArch::GFX701: 3887 case CudaArch::GFX702: 3888 case CudaArch::GFX703: 3889 case CudaArch::GFX704: 3890 case CudaArch::GFX705: 3891 case CudaArch::GFX801: 3892 case CudaArch::GFX802: 3893 case CudaArch::GFX803: 3894 case CudaArch::GFX805: 3895 case CudaArch::GFX810: 3896 case CudaArch::GFX900: 3897 case CudaArch::GFX902: 3898 case CudaArch::GFX904: 3899 case CudaArch::GFX906: 3900 case CudaArch::GFX908: 3901 case CudaArch::GFX909: 3902 case CudaArch::GFX90a: 3903 case CudaArch::GFX90c: 3904 case CudaArch::GFX1010: 3905 case CudaArch::GFX1011: 3906 case CudaArch::GFX1012: 3907 case CudaArch::GFX1013: 3908 case CudaArch::GFX1030: 3909 case CudaArch::GFX1031: 3910 case CudaArch::GFX1032: 3911 case CudaArch::GFX1033: 3912 case CudaArch::GFX1034: 3913 case CudaArch::GFX1035: 3914 case CudaArch::Generic: 3915 case CudaArch::UNUSED: 3916 case CudaArch::UNKNOWN: 3917 break; 3918 case CudaArch::LAST: 3919 llvm_unreachable("Unexpected Cuda arch."); 3920 } 3921 } 3922 } 3923 CGOpenMPRuntime::processRequiresDirective(D); 3924 } 3925 3926 void CGOpenMPRuntimeGPU::clear() { 3927 3928 if (!TeamsReductions.empty()) { 3929 ASTContext &C = CGM.getContext(); 3930 RecordDecl *StaticRD = C.buildImplicitRecord( 3931 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3932 StaticRD->startDefinition(); 3933 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3934 QualType RecTy = C.getRecordType(TeamReductionRec); 3935 auto *Field = FieldDecl::Create( 3936 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3937 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3938 /*BW=*/nullptr, /*Mutable=*/false, 3939 /*InitStyle=*/ICIS_NoInit); 3940 Field->setAccess(AS_public); 3941 StaticRD->addDecl(Field); 3942 } 3943 StaticRD->completeDefinition(); 3944 QualType StaticTy = C.getRecordType(StaticRD); 3945 llvm::Type *LLVMReductionsBufferTy = 3946 CGM.getTypes().ConvertTypeForMem(StaticTy); 3947 // FIXME: nvlink does not handle weak linkage correctly (object with the 3948 // different size are reported as erroneous). 3949 // Restore CommonLinkage as soon as nvlink is fixed. 3950 auto *GV = new llvm::GlobalVariable( 3951 CGM.getModule(), LLVMReductionsBufferTy, 3952 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3953 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3954 "_openmp_teams_reductions_buffer_$_"); 3955 KernelTeamsReductionPtr->setInitializer( 3956 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3957 CGM.VoidPtrTy)); 3958 } 3959 CGOpenMPRuntime::clear(); 3960 } 3961 3962 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { 3963 CGBuilderTy &Bld = CGF.Builder; 3964 llvm::Module *M = &CGF.CGM.getModule(); 3965 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block"; 3966 llvm::Function *F = M->getFunction(LocSize); 3967 if (!F) { 3968 F = llvm::Function::Create( 3969 llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false), 3970 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule()); 3971 } 3972 return Bld.CreateCall(F, llvm::None, "nvptx_num_threads"); 3973 } 3974 3975 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) { 3976 ArrayRef<llvm::Value *> Args{}; 3977 return CGF.EmitRuntimeCall( 3978 OMPBuilder.getOrCreateRuntimeFunction( 3979 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block), 3980 Args); 3981 } 3982 3983 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) { 3984 ArrayRef<llvm::Value *> Args{}; 3985 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3986 CGM.getModule(), OMPRTL___kmpc_get_warp_size), 3987 Args); 3988 } 3989