1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CGOpenMPRuntimeNVPTX.h" 16 #include "CodeGenFunction.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/DeclOpenMP.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/Basic/Cuda.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 24 #include "llvm/IR/IntrinsicsNVPTX.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 using namespace llvm::omp; 29 30 namespace { 31 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 32 class NVPTXActionTy final : public PrePostActionTy { 33 llvm::FunctionCallee EnterCallee = nullptr; 34 ArrayRef<llvm::Value *> EnterArgs; 35 llvm::FunctionCallee ExitCallee = nullptr; 36 ArrayRef<llvm::Value *> ExitArgs; 37 bool Conditional = false; 38 llvm::BasicBlock *ContBlock = nullptr; 39 40 public: 41 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 42 ArrayRef<llvm::Value *> EnterArgs, 43 llvm::FunctionCallee ExitCallee, 44 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 45 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 46 ExitArgs(ExitArgs), Conditional(Conditional) {} 47 void Enter(CodeGenFunction &CGF) override { 48 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 49 if (Conditional) { 50 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 51 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 52 ContBlock = CGF.createBasicBlock("omp_if.end"); 53 // Generate the branch (If-stmt) 54 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 55 CGF.EmitBlock(ThenBlock); 56 } 57 } 58 void Done(CodeGenFunction &CGF) { 59 // Emit the rest of blocks/branches 60 CGF.EmitBranch(ContBlock); 61 CGF.EmitBlock(ContBlock, true); 62 } 63 void Exit(CodeGenFunction &CGF) override { 64 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 65 } 66 }; 67 68 /// A class to track the execution mode when codegening directives within 69 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 70 /// to the target region and used by containing directives such as 'parallel' 71 /// to emit optimized code. 72 class ExecutionRuntimeModesRAII { 73 private: 74 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 75 CGOpenMPRuntimeGPU::EM_Unknown; 76 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 77 bool SavedRuntimeMode = false; 78 bool *RuntimeMode = nullptr; 79 80 public: 81 /// Constructor for Non-SPMD mode. 82 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 83 : ExecMode(ExecMode) { 84 SavedExecMode = ExecMode; 85 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 86 } 87 /// Constructor for SPMD mode. 88 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 89 bool &RuntimeMode, bool FullRuntimeMode) 90 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 91 SavedExecMode = ExecMode; 92 SavedRuntimeMode = RuntimeMode; 93 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 94 RuntimeMode = FullRuntimeMode; 95 } 96 ~ExecutionRuntimeModesRAII() { 97 ExecMode = SavedExecMode; 98 if (RuntimeMode) 99 *RuntimeMode = SavedRuntimeMode; 100 } 101 }; 102 103 /// GPU Configuration: This information can be derived from cuda registers, 104 /// however, providing compile time constants helps generate more efficient 105 /// code. For all practical purposes this is fine because the configuration 106 /// is the same for all known NVPTX architectures. 107 enum MachineConfiguration : unsigned { 108 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 109 /// specific Grid Values like GV_Warp_Size, GV_Warp_Size_Log2, 110 /// and GV_Warp_Size_Log2_Mask. 111 112 /// Global memory alignment for performance. 113 GlobalMemoryAlignment = 128, 114 115 /// Maximal size of the shared memory buffer. 116 SharedMemorySize = 128, 117 }; 118 119 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 120 RefExpr = RefExpr->IgnoreParens(); 121 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 122 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 123 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 124 Base = TempASE->getBase()->IgnoreParenImpCasts(); 125 RefExpr = Base; 126 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 127 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 129 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 130 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 131 Base = TempASE->getBase()->IgnoreParenImpCasts(); 132 RefExpr = Base; 133 } 134 RefExpr = RefExpr->IgnoreParenImpCasts(); 135 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 136 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 137 const auto *ME = cast<MemberExpr>(RefExpr); 138 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 139 } 140 141 142 static RecordDecl *buildRecordForGlobalizedVars( 143 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 144 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 145 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 146 &MappedDeclsFields, int BufSize) { 147 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 148 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 149 return nullptr; 150 SmallVector<VarsDataTy, 4> GlobalizedVars; 151 for (const ValueDecl *D : EscapedDecls) 152 GlobalizedVars.emplace_back( 153 CharUnits::fromQuantity(std::max( 154 C.getDeclAlign(D).getQuantity(), 155 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 156 D); 157 for (const ValueDecl *D : EscapedDeclsForTeams) 158 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 159 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 160 return L.first > R.first; 161 }); 162 163 // Build struct _globalized_locals_ty { 164 // /* globalized vars */[WarSize] align (max(decl_align, 165 // GlobalMemoryAlignment)) 166 // /* globalized vars */ for EscapedDeclsForTeams 167 // }; 168 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 169 GlobalizedRD->startDefinition(); 170 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 171 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 172 for (const auto &Pair : GlobalizedVars) { 173 const ValueDecl *VD = Pair.second; 174 QualType Type = VD->getType(); 175 if (Type->isLValueReferenceType()) 176 Type = C.getPointerType(Type.getNonReferenceType()); 177 else 178 Type = Type.getNonReferenceType(); 179 SourceLocation Loc = VD->getLocation(); 180 FieldDecl *Field; 181 if (SingleEscaped.count(VD)) { 182 Field = FieldDecl::Create( 183 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 184 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 185 /*BW=*/nullptr, /*Mutable=*/false, 186 /*InitStyle=*/ICIS_NoInit); 187 Field->setAccess(AS_public); 188 if (VD->hasAttrs()) { 189 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 190 E(VD->getAttrs().end()); 191 I != E; ++I) 192 Field->addAttr(*I); 193 } 194 } else { 195 llvm::APInt ArraySize(32, BufSize); 196 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 197 0); 198 Field = FieldDecl::Create( 199 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 200 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 201 /*BW=*/nullptr, /*Mutable=*/false, 202 /*InitStyle=*/ICIS_NoInit); 203 Field->setAccess(AS_public); 204 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 205 static_cast<CharUnits::QuantityType>( 206 GlobalMemoryAlignment))); 207 Field->addAttr(AlignedAttr::CreateImplicit( 208 C, /*IsAlignmentExpr=*/true, 209 IntegerLiteral::Create(C, Align, 210 C.getIntTypeForBitwidth(32, /*Signed=*/0), 211 SourceLocation()), 212 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 213 } 214 GlobalizedRD->addDecl(Field); 215 MappedDeclsFields.try_emplace(VD, Field); 216 } 217 GlobalizedRD->completeDefinition(); 218 return GlobalizedRD; 219 } 220 221 /// Get the list of variables that can escape their declaration context. 222 class CheckVarsEscapingDeclContext final 223 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 224 CodeGenFunction &CGF; 225 llvm::SetVector<const ValueDecl *> EscapedDecls; 226 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 227 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 228 RecordDecl *GlobalizedRD = nullptr; 229 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 230 bool AllEscaped = false; 231 bool IsForCombinedParallelRegion = false; 232 233 void markAsEscaped(const ValueDecl *VD) { 234 // Do not globalize declare target variables. 235 if (!isa<VarDecl>(VD) || 236 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 237 return; 238 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 239 // Use user-specified allocation. 240 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 241 return; 242 // Variables captured by value must be globalized. 243 if (auto *CSI = CGF.CapturedStmtInfo) { 244 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 245 // Check if need to capture the variable that was already captured by 246 // value in the outer region. 247 if (!IsForCombinedParallelRegion) { 248 if (!FD->hasAttrs()) 249 return; 250 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 251 if (!Attr) 252 return; 253 if (((Attr->getCaptureKind() != OMPC_map) && 254 !isOpenMPPrivate(Attr->getCaptureKind())) || 255 ((Attr->getCaptureKind() == OMPC_map) && 256 !FD->getType()->isAnyPointerType())) 257 return; 258 } 259 if (!FD->getType()->isReferenceType()) { 260 assert(!VD->getType()->isVariablyModifiedType() && 261 "Parameter captured by value with variably modified type"); 262 EscapedParameters.insert(VD); 263 } else if (!IsForCombinedParallelRegion) { 264 return; 265 } 266 } 267 } 268 if ((!CGF.CapturedStmtInfo || 269 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 270 VD->getType()->isReferenceType()) 271 // Do not globalize variables with reference type. 272 return; 273 if (VD->getType()->isVariablyModifiedType()) 274 EscapedVariableLengthDecls.insert(VD); 275 else 276 EscapedDecls.insert(VD); 277 } 278 279 void VisitValueDecl(const ValueDecl *VD) { 280 if (VD->getType()->isLValueReferenceType()) 281 markAsEscaped(VD); 282 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 283 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 284 const bool SavedAllEscaped = AllEscaped; 285 AllEscaped = VD->getType()->isLValueReferenceType(); 286 Visit(VarD->getInit()); 287 AllEscaped = SavedAllEscaped; 288 } 289 } 290 } 291 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 292 ArrayRef<OMPClause *> Clauses, 293 bool IsCombinedParallelRegion) { 294 if (!S) 295 return; 296 for (const CapturedStmt::Capture &C : S->captures()) { 297 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 298 const ValueDecl *VD = C.getCapturedVar(); 299 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 300 if (IsCombinedParallelRegion) { 301 // Check if the variable is privatized in the combined construct and 302 // those private copies must be shared in the inner parallel 303 // directive. 304 IsForCombinedParallelRegion = false; 305 for (const OMPClause *C : Clauses) { 306 if (!isOpenMPPrivate(C->getClauseKind()) || 307 C->getClauseKind() == OMPC_reduction || 308 C->getClauseKind() == OMPC_linear || 309 C->getClauseKind() == OMPC_private) 310 continue; 311 ArrayRef<const Expr *> Vars; 312 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 315 Vars = PC->getVarRefs(); 316 else 317 llvm_unreachable("Unexpected clause."); 318 for (const auto *E : Vars) { 319 const Decl *D = 320 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 321 if (D == VD->getCanonicalDecl()) { 322 IsForCombinedParallelRegion = true; 323 break; 324 } 325 } 326 if (IsForCombinedParallelRegion) 327 break; 328 } 329 } 330 markAsEscaped(VD); 331 if (isa<OMPCapturedExprDecl>(VD)) 332 VisitValueDecl(VD); 333 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 334 } 335 } 336 } 337 338 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 339 assert(!GlobalizedRD && 340 "Record for globalized variables is built already."); 341 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 342 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 343 if (IsInTTDRegion) 344 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 345 else 346 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 347 GlobalizedRD = ::buildRecordForGlobalizedVars( 348 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 349 MappedDeclsFields, WarpSize); 350 } 351 352 public: 353 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 354 ArrayRef<const ValueDecl *> TeamsReductions) 355 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 356 } 357 virtual ~CheckVarsEscapingDeclContext() = default; 358 void VisitDeclStmt(const DeclStmt *S) { 359 if (!S) 360 return; 361 for (const Decl *D : S->decls()) 362 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 363 VisitValueDecl(VD); 364 } 365 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 366 if (!D) 367 return; 368 if (!D->hasAssociatedStmt()) 369 return; 370 if (const auto *S = 371 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 372 // Do not analyze directives that do not actually require capturing, 373 // like `omp for` or `omp simd` directives. 374 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 375 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 376 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 377 VisitStmt(S->getCapturedStmt()); 378 return; 379 } 380 VisitOpenMPCapturedStmt( 381 S, D->clauses(), 382 CaptureRegions.back() == OMPD_parallel && 383 isOpenMPDistributeDirective(D->getDirectiveKind())); 384 } 385 } 386 void VisitCapturedStmt(const CapturedStmt *S) { 387 if (!S) 388 return; 389 for (const CapturedStmt::Capture &C : S->captures()) { 390 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 391 const ValueDecl *VD = C.getCapturedVar(); 392 markAsEscaped(VD); 393 if (isa<OMPCapturedExprDecl>(VD)) 394 VisitValueDecl(VD); 395 } 396 } 397 } 398 void VisitLambdaExpr(const LambdaExpr *E) { 399 if (!E) 400 return; 401 for (const LambdaCapture &C : E->captures()) { 402 if (C.capturesVariable()) { 403 if (C.getCaptureKind() == LCK_ByRef) { 404 const ValueDecl *VD = C.getCapturedVar(); 405 markAsEscaped(VD); 406 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 407 VisitValueDecl(VD); 408 } 409 } 410 } 411 } 412 void VisitBlockExpr(const BlockExpr *E) { 413 if (!E) 414 return; 415 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 416 if (C.isByRef()) { 417 const VarDecl *VD = C.getVariable(); 418 markAsEscaped(VD); 419 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 420 VisitValueDecl(VD); 421 } 422 } 423 } 424 void VisitCallExpr(const CallExpr *E) { 425 if (!E) 426 return; 427 for (const Expr *Arg : E->arguments()) { 428 if (!Arg) 429 continue; 430 if (Arg->isLValue()) { 431 const bool SavedAllEscaped = AllEscaped; 432 AllEscaped = true; 433 Visit(Arg); 434 AllEscaped = SavedAllEscaped; 435 } else { 436 Visit(Arg); 437 } 438 } 439 Visit(E->getCallee()); 440 } 441 void VisitDeclRefExpr(const DeclRefExpr *E) { 442 if (!E) 443 return; 444 const ValueDecl *VD = E->getDecl(); 445 if (AllEscaped) 446 markAsEscaped(VD); 447 if (isa<OMPCapturedExprDecl>(VD)) 448 VisitValueDecl(VD); 449 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 450 if (VarD->isInitCapture()) 451 VisitValueDecl(VD); 452 } 453 void VisitUnaryOperator(const UnaryOperator *E) { 454 if (!E) 455 return; 456 if (E->getOpcode() == UO_AddrOf) { 457 const bool SavedAllEscaped = AllEscaped; 458 AllEscaped = true; 459 Visit(E->getSubExpr()); 460 AllEscaped = SavedAllEscaped; 461 } else { 462 Visit(E->getSubExpr()); 463 } 464 } 465 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 466 if (!E) 467 return; 468 if (E->getCastKind() == CK_ArrayToPointerDecay) { 469 const bool SavedAllEscaped = AllEscaped; 470 AllEscaped = true; 471 Visit(E->getSubExpr()); 472 AllEscaped = SavedAllEscaped; 473 } else { 474 Visit(E->getSubExpr()); 475 } 476 } 477 void VisitExpr(const Expr *E) { 478 if (!E) 479 return; 480 bool SavedAllEscaped = AllEscaped; 481 if (!E->isLValue()) 482 AllEscaped = false; 483 for (const Stmt *Child : E->children()) 484 if (Child) 485 Visit(Child); 486 AllEscaped = SavedAllEscaped; 487 } 488 void VisitStmt(const Stmt *S) { 489 if (!S) 490 return; 491 for (const Stmt *Child : S->children()) 492 if (Child) 493 Visit(Child); 494 } 495 496 /// Returns the record that handles all the escaped local variables and used 497 /// instead of their original storage. 498 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 499 if (!GlobalizedRD) 500 buildRecordForGlobalizedVars(IsInTTDRegion); 501 return GlobalizedRD; 502 } 503 504 /// Returns the field in the globalized record for the escaped variable. 505 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 506 assert(GlobalizedRD && 507 "Record for globalized variables must be generated already."); 508 auto I = MappedDeclsFields.find(VD); 509 if (I == MappedDeclsFields.end()) 510 return nullptr; 511 return I->getSecond(); 512 } 513 514 /// Returns the list of the escaped local variables/parameters. 515 ArrayRef<const ValueDecl *> getEscapedDecls() const { 516 return EscapedDecls.getArrayRef(); 517 } 518 519 /// Checks if the escaped local variable is actually a parameter passed by 520 /// value. 521 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 522 return EscapedParameters; 523 } 524 525 /// Returns the list of the escaped variables with the variably modified 526 /// types. 527 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 528 return EscapedVariableLengthDecls.getArrayRef(); 529 } 530 }; 531 } // anonymous namespace 532 533 /// Get the id of the warp in the block. 534 /// We assume that the warp size is 32, which is always the case 535 /// on the NVPTX device, to generate more efficient code. 536 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 537 CGBuilderTy &Bld = CGF.Builder; 538 unsigned LaneIDBits = CGF.getTarget().getGridValue().GV_Warp_Size_Log2; 539 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 540 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 541 } 542 543 /// Get the id of the current lane in the Warp. 544 /// We assume that the warp size is 32, which is always the case 545 /// on the NVPTX device, to generate more efficient code. 546 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 547 CGBuilderTy &Bld = CGF.Builder; 548 unsigned LaneIDMask = 549 CGF.getContext().getTargetInfo().getGridValue().GV_Warp_Size_Log2_Mask; 550 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 551 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 552 "nvptx_lane_id"); 553 } 554 555 CGOpenMPRuntimeGPU::ExecutionMode 556 CGOpenMPRuntimeGPU::getExecutionMode() const { 557 return CurrentExecutionMode; 558 } 559 560 static CGOpenMPRuntimeGPU::DataSharingMode 561 getDataSharingMode(CodeGenModule &CGM) { 562 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 563 : CGOpenMPRuntimeGPU::Generic; 564 } 565 566 /// Check for inner (nested) SPMD construct, if any 567 static bool hasNestedSPMDDirective(ASTContext &Ctx, 568 const OMPExecutableDirective &D) { 569 const auto *CS = D.getInnermostCapturedStmt(); 570 const auto *Body = 571 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 572 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 573 574 if (const auto *NestedDir = 575 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 576 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 577 switch (D.getDirectiveKind()) { 578 case OMPD_target: 579 if (isOpenMPParallelDirective(DKind)) 580 return true; 581 if (DKind == OMPD_teams) { 582 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 583 /*IgnoreCaptured=*/true); 584 if (!Body) 585 return false; 586 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 587 if (const auto *NND = 588 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 589 DKind = NND->getDirectiveKind(); 590 if (isOpenMPParallelDirective(DKind)) 591 return true; 592 } 593 } 594 return false; 595 case OMPD_target_teams: 596 return isOpenMPParallelDirective(DKind); 597 case OMPD_target_simd: 598 case OMPD_target_parallel: 599 case OMPD_target_parallel_for: 600 case OMPD_target_parallel_for_simd: 601 case OMPD_target_teams_distribute: 602 case OMPD_target_teams_distribute_simd: 603 case OMPD_target_teams_distribute_parallel_for: 604 case OMPD_target_teams_distribute_parallel_for_simd: 605 case OMPD_parallel: 606 case OMPD_for: 607 case OMPD_parallel_for: 608 case OMPD_parallel_master: 609 case OMPD_parallel_sections: 610 case OMPD_for_simd: 611 case OMPD_parallel_for_simd: 612 case OMPD_cancel: 613 case OMPD_cancellation_point: 614 case OMPD_ordered: 615 case OMPD_threadprivate: 616 case OMPD_allocate: 617 case OMPD_task: 618 case OMPD_simd: 619 case OMPD_sections: 620 case OMPD_section: 621 case OMPD_single: 622 case OMPD_master: 623 case OMPD_critical: 624 case OMPD_taskyield: 625 case OMPD_barrier: 626 case OMPD_taskwait: 627 case OMPD_taskgroup: 628 case OMPD_atomic: 629 case OMPD_flush: 630 case OMPD_depobj: 631 case OMPD_scan: 632 case OMPD_teams: 633 case OMPD_target_data: 634 case OMPD_target_exit_data: 635 case OMPD_target_enter_data: 636 case OMPD_distribute: 637 case OMPD_distribute_simd: 638 case OMPD_distribute_parallel_for: 639 case OMPD_distribute_parallel_for_simd: 640 case OMPD_teams_distribute: 641 case OMPD_teams_distribute_simd: 642 case OMPD_teams_distribute_parallel_for: 643 case OMPD_teams_distribute_parallel_for_simd: 644 case OMPD_target_update: 645 case OMPD_declare_simd: 646 case OMPD_declare_variant: 647 case OMPD_begin_declare_variant: 648 case OMPD_end_declare_variant: 649 case OMPD_declare_target: 650 case OMPD_end_declare_target: 651 case OMPD_declare_reduction: 652 case OMPD_declare_mapper: 653 case OMPD_taskloop: 654 case OMPD_taskloop_simd: 655 case OMPD_master_taskloop: 656 case OMPD_master_taskloop_simd: 657 case OMPD_parallel_master_taskloop: 658 case OMPD_parallel_master_taskloop_simd: 659 case OMPD_requires: 660 case OMPD_unknown: 661 default: 662 llvm_unreachable("Unexpected directive."); 663 } 664 } 665 666 return false; 667 } 668 669 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 670 const OMPExecutableDirective &D) { 671 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 672 switch (DirectiveKind) { 673 case OMPD_target: 674 case OMPD_target_teams: 675 return hasNestedSPMDDirective(Ctx, D); 676 case OMPD_target_parallel: 677 case OMPD_target_parallel_for: 678 case OMPD_target_parallel_for_simd: 679 case OMPD_target_teams_distribute_parallel_for: 680 case OMPD_target_teams_distribute_parallel_for_simd: 681 case OMPD_target_simd: 682 case OMPD_target_teams_distribute_simd: 683 return true; 684 case OMPD_target_teams_distribute: 685 return false; 686 case OMPD_parallel: 687 case OMPD_for: 688 case OMPD_parallel_for: 689 case OMPD_parallel_master: 690 case OMPD_parallel_sections: 691 case OMPD_for_simd: 692 case OMPD_parallel_for_simd: 693 case OMPD_cancel: 694 case OMPD_cancellation_point: 695 case OMPD_ordered: 696 case OMPD_threadprivate: 697 case OMPD_allocate: 698 case OMPD_task: 699 case OMPD_simd: 700 case OMPD_sections: 701 case OMPD_section: 702 case OMPD_single: 703 case OMPD_master: 704 case OMPD_critical: 705 case OMPD_taskyield: 706 case OMPD_barrier: 707 case OMPD_taskwait: 708 case OMPD_taskgroup: 709 case OMPD_atomic: 710 case OMPD_flush: 711 case OMPD_depobj: 712 case OMPD_scan: 713 case OMPD_teams: 714 case OMPD_target_data: 715 case OMPD_target_exit_data: 716 case OMPD_target_enter_data: 717 case OMPD_distribute: 718 case OMPD_distribute_simd: 719 case OMPD_distribute_parallel_for: 720 case OMPD_distribute_parallel_for_simd: 721 case OMPD_teams_distribute: 722 case OMPD_teams_distribute_simd: 723 case OMPD_teams_distribute_parallel_for: 724 case OMPD_teams_distribute_parallel_for_simd: 725 case OMPD_target_update: 726 case OMPD_declare_simd: 727 case OMPD_declare_variant: 728 case OMPD_begin_declare_variant: 729 case OMPD_end_declare_variant: 730 case OMPD_declare_target: 731 case OMPD_end_declare_target: 732 case OMPD_declare_reduction: 733 case OMPD_declare_mapper: 734 case OMPD_taskloop: 735 case OMPD_taskloop_simd: 736 case OMPD_master_taskloop: 737 case OMPD_master_taskloop_simd: 738 case OMPD_parallel_master_taskloop: 739 case OMPD_parallel_master_taskloop_simd: 740 case OMPD_requires: 741 case OMPD_unknown: 742 default: 743 break; 744 } 745 llvm_unreachable( 746 "Unknown programming model for OpenMP directive on NVPTX target."); 747 } 748 749 /// Check if the directive is loops based and has schedule clause at all or has 750 /// static scheduling. 751 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 752 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 753 isOpenMPLoopDirective(D.getDirectiveKind()) && 754 "Expected loop-based directive."); 755 return !D.hasClausesOfKind<OMPOrderedClause>() && 756 (!D.hasClausesOfKind<OMPScheduleClause>() || 757 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 758 [](const OMPScheduleClause *C) { 759 return C->getScheduleKind() == OMPC_SCHEDULE_static; 760 })); 761 } 762 763 /// Check for inner (nested) lightweight runtime construct, if any 764 static bool hasNestedLightweightDirective(ASTContext &Ctx, 765 const OMPExecutableDirective &D) { 766 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 767 const auto *CS = D.getInnermostCapturedStmt(); 768 const auto *Body = 769 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 770 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 771 772 if (const auto *NestedDir = 773 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 774 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 775 switch (D.getDirectiveKind()) { 776 case OMPD_target: 777 if (isOpenMPParallelDirective(DKind) && 778 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 779 hasStaticScheduling(*NestedDir)) 780 return true; 781 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 782 return true; 783 if (DKind == OMPD_parallel) { 784 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 785 /*IgnoreCaptured=*/true); 786 if (!Body) 787 return false; 788 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 789 if (const auto *NND = 790 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 791 DKind = NND->getDirectiveKind(); 792 if (isOpenMPWorksharingDirective(DKind) && 793 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 794 return true; 795 } 796 } else if (DKind == OMPD_teams) { 797 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 798 /*IgnoreCaptured=*/true); 799 if (!Body) 800 return false; 801 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 802 if (const auto *NND = 803 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 804 DKind = NND->getDirectiveKind(); 805 if (isOpenMPParallelDirective(DKind) && 806 isOpenMPWorksharingDirective(DKind) && 807 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 808 return true; 809 if (DKind == OMPD_parallel) { 810 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 811 /*IgnoreCaptured=*/true); 812 if (!Body) 813 return false; 814 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 815 if (const auto *NND = 816 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 817 DKind = NND->getDirectiveKind(); 818 if (isOpenMPWorksharingDirective(DKind) && 819 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 820 return true; 821 } 822 } 823 } 824 } 825 return false; 826 case OMPD_target_teams: 827 if (isOpenMPParallelDirective(DKind) && 828 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 829 hasStaticScheduling(*NestedDir)) 830 return true; 831 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 832 return true; 833 if (DKind == OMPD_parallel) { 834 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 835 /*IgnoreCaptured=*/true); 836 if (!Body) 837 return false; 838 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 839 if (const auto *NND = 840 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 841 DKind = NND->getDirectiveKind(); 842 if (isOpenMPWorksharingDirective(DKind) && 843 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 844 return true; 845 } 846 } 847 return false; 848 case OMPD_target_parallel: 849 if (DKind == OMPD_simd) 850 return true; 851 return isOpenMPWorksharingDirective(DKind) && 852 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 853 case OMPD_target_teams_distribute: 854 case OMPD_target_simd: 855 case OMPD_target_parallel_for: 856 case OMPD_target_parallel_for_simd: 857 case OMPD_target_teams_distribute_simd: 858 case OMPD_target_teams_distribute_parallel_for: 859 case OMPD_target_teams_distribute_parallel_for_simd: 860 case OMPD_parallel: 861 case OMPD_for: 862 case OMPD_parallel_for: 863 case OMPD_parallel_master: 864 case OMPD_parallel_sections: 865 case OMPD_for_simd: 866 case OMPD_parallel_for_simd: 867 case OMPD_cancel: 868 case OMPD_cancellation_point: 869 case OMPD_ordered: 870 case OMPD_threadprivate: 871 case OMPD_allocate: 872 case OMPD_task: 873 case OMPD_simd: 874 case OMPD_sections: 875 case OMPD_section: 876 case OMPD_single: 877 case OMPD_master: 878 case OMPD_critical: 879 case OMPD_taskyield: 880 case OMPD_barrier: 881 case OMPD_taskwait: 882 case OMPD_taskgroup: 883 case OMPD_atomic: 884 case OMPD_flush: 885 case OMPD_depobj: 886 case OMPD_scan: 887 case OMPD_teams: 888 case OMPD_target_data: 889 case OMPD_target_exit_data: 890 case OMPD_target_enter_data: 891 case OMPD_distribute: 892 case OMPD_distribute_simd: 893 case OMPD_distribute_parallel_for: 894 case OMPD_distribute_parallel_for_simd: 895 case OMPD_teams_distribute: 896 case OMPD_teams_distribute_simd: 897 case OMPD_teams_distribute_parallel_for: 898 case OMPD_teams_distribute_parallel_for_simd: 899 case OMPD_target_update: 900 case OMPD_declare_simd: 901 case OMPD_declare_variant: 902 case OMPD_begin_declare_variant: 903 case OMPD_end_declare_variant: 904 case OMPD_declare_target: 905 case OMPD_end_declare_target: 906 case OMPD_declare_reduction: 907 case OMPD_declare_mapper: 908 case OMPD_taskloop: 909 case OMPD_taskloop_simd: 910 case OMPD_master_taskloop: 911 case OMPD_master_taskloop_simd: 912 case OMPD_parallel_master_taskloop: 913 case OMPD_parallel_master_taskloop_simd: 914 case OMPD_requires: 915 case OMPD_unknown: 916 default: 917 llvm_unreachable("Unexpected directive."); 918 } 919 } 920 921 return false; 922 } 923 924 /// Checks if the construct supports lightweight runtime. It must be SPMD 925 /// construct + inner loop-based construct with static scheduling. 926 static bool supportsLightweightRuntime(ASTContext &Ctx, 927 const OMPExecutableDirective &D) { 928 if (!supportsSPMDExecutionMode(Ctx, D)) 929 return false; 930 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 931 switch (DirectiveKind) { 932 case OMPD_target: 933 case OMPD_target_teams: 934 case OMPD_target_parallel: 935 return hasNestedLightweightDirective(Ctx, D); 936 case OMPD_target_parallel_for: 937 case OMPD_target_parallel_for_simd: 938 case OMPD_target_teams_distribute_parallel_for: 939 case OMPD_target_teams_distribute_parallel_for_simd: 940 // (Last|First)-privates must be shared in parallel region. 941 return hasStaticScheduling(D); 942 case OMPD_target_simd: 943 case OMPD_target_teams_distribute_simd: 944 return true; 945 case OMPD_target_teams_distribute: 946 return false; 947 case OMPD_parallel: 948 case OMPD_for: 949 case OMPD_parallel_for: 950 case OMPD_parallel_master: 951 case OMPD_parallel_sections: 952 case OMPD_for_simd: 953 case OMPD_parallel_for_simd: 954 case OMPD_cancel: 955 case OMPD_cancellation_point: 956 case OMPD_ordered: 957 case OMPD_threadprivate: 958 case OMPD_allocate: 959 case OMPD_task: 960 case OMPD_simd: 961 case OMPD_sections: 962 case OMPD_section: 963 case OMPD_single: 964 case OMPD_master: 965 case OMPD_critical: 966 case OMPD_taskyield: 967 case OMPD_barrier: 968 case OMPD_taskwait: 969 case OMPD_taskgroup: 970 case OMPD_atomic: 971 case OMPD_flush: 972 case OMPD_depobj: 973 case OMPD_scan: 974 case OMPD_teams: 975 case OMPD_target_data: 976 case OMPD_target_exit_data: 977 case OMPD_target_enter_data: 978 case OMPD_distribute: 979 case OMPD_distribute_simd: 980 case OMPD_distribute_parallel_for: 981 case OMPD_distribute_parallel_for_simd: 982 case OMPD_teams_distribute: 983 case OMPD_teams_distribute_simd: 984 case OMPD_teams_distribute_parallel_for: 985 case OMPD_teams_distribute_parallel_for_simd: 986 case OMPD_target_update: 987 case OMPD_declare_simd: 988 case OMPD_declare_variant: 989 case OMPD_begin_declare_variant: 990 case OMPD_end_declare_variant: 991 case OMPD_declare_target: 992 case OMPD_end_declare_target: 993 case OMPD_declare_reduction: 994 case OMPD_declare_mapper: 995 case OMPD_taskloop: 996 case OMPD_taskloop_simd: 997 case OMPD_master_taskloop: 998 case OMPD_master_taskloop_simd: 999 case OMPD_parallel_master_taskloop: 1000 case OMPD_parallel_master_taskloop_simd: 1001 case OMPD_requires: 1002 case OMPD_unknown: 1003 default: 1004 break; 1005 } 1006 llvm_unreachable( 1007 "Unknown programming model for OpenMP directive on NVPTX target."); 1008 } 1009 1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1011 StringRef ParentName, 1012 llvm::Function *&OutlinedFn, 1013 llvm::Constant *&OutlinedFnID, 1014 bool IsOffloadEntry, 1015 const RegionCodeGenTy &CodeGen) { 1016 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1017 EntryFunctionState EST; 1018 WrapperFunctionsMap.clear(); 1019 1020 // Emit target region as a standalone region. 1021 class NVPTXPrePostActionTy : public PrePostActionTy { 1022 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1023 1024 public: 1025 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1026 : EST(EST) {} 1027 void Enter(CodeGenFunction &CGF) override { 1028 auto &RT = 1029 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1030 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1031 // Skip target region initialization. 1032 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1033 } 1034 void Exit(CodeGenFunction &CGF) override { 1035 auto &RT = 1036 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1037 RT.clearLocThreadIdInsertPt(CGF); 1038 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1039 } 1040 } Action(EST); 1041 CodeGen.setAction(Action); 1042 IsInTTDRegion = true; 1043 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1044 IsOffloadEntry, CodeGen); 1045 IsInTTDRegion = false; 1046 } 1047 1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1049 EntryFunctionState &EST, bool IsSPMD) { 1050 CGBuilderTy &Bld = CGF.Builder; 1051 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1052 IsInTargetMasterThreadRegion = IsSPMD; 1053 if (!IsSPMD) 1054 emitGenericVarsProlog(CGF, EST.Loc); 1055 } 1056 1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1058 EntryFunctionState &EST, 1059 bool IsSPMD) { 1060 if (!IsSPMD) 1061 emitGenericVarsEpilog(CGF); 1062 1063 CGBuilderTy &Bld = CGF.Builder; 1064 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1065 } 1066 1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1068 StringRef ParentName, 1069 llvm::Function *&OutlinedFn, 1070 llvm::Constant *&OutlinedFnID, 1071 bool IsOffloadEntry, 1072 const RegionCodeGenTy &CodeGen) { 1073 ExecutionRuntimeModesRAII ModeRAII( 1074 CurrentExecutionMode, RequiresFullRuntime, 1075 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1076 !supportsLightweightRuntime(CGM.getContext(), D)); 1077 EntryFunctionState EST; 1078 1079 // Emit target region as a standalone region. 1080 class NVPTXPrePostActionTy : public PrePostActionTy { 1081 CGOpenMPRuntimeGPU &RT; 1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1083 1084 public: 1085 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1086 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1087 : RT(RT), EST(EST) {} 1088 void Enter(CodeGenFunction &CGF) override { 1089 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1090 // Skip target region initialization. 1091 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1092 } 1093 void Exit(CodeGenFunction &CGF) override { 1094 RT.clearLocThreadIdInsertPt(CGF); 1095 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1096 } 1097 } Action(*this, EST); 1098 CodeGen.setAction(Action); 1099 IsInTTDRegion = true; 1100 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1101 IsOffloadEntry, CodeGen); 1102 IsInTTDRegion = false; 1103 } 1104 1105 // Create a unique global variable to indicate the execution mode of this target 1106 // region. The execution mode is either 'generic', or 'spmd' depending on the 1107 // target directive. This variable is picked up by the offload library to setup 1108 // the device appropriately before kernel launch. If the execution mode is 1109 // 'generic', the runtime reserves one warp for the master, otherwise, all 1110 // warps participate in parallel work. 1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1112 bool Mode) { 1113 auto *GVMode = 1114 new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1115 llvm::GlobalValue::WeakAnyLinkage, 1116 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1), 1117 Twine(Name, "_exec_mode")); 1118 CGM.addCompilerUsedGlobal(GVMode); 1119 } 1120 1121 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1122 llvm::Constant *Addr, 1123 uint64_t Size, int32_t, 1124 llvm::GlobalValue::LinkageTypes) { 1125 // TODO: Add support for global variables on the device after declare target 1126 // support. 1127 if (!isa<llvm::Function>(Addr)) 1128 return; 1129 llvm::Module &M = CGM.getModule(); 1130 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1131 1132 // Get "nvvm.annotations" metadata node 1133 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1134 1135 llvm::Metadata *MDVals[] = { 1136 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1137 llvm::ConstantAsMetadata::get( 1138 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1139 // Append metadata to nvvm.annotations 1140 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1141 } 1142 1143 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1144 const OMPExecutableDirective &D, StringRef ParentName, 1145 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1146 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1147 if (!IsOffloadEntry) // Nothing to do. 1148 return; 1149 1150 assert(!ParentName.empty() && "Invalid target region parent name!"); 1151 1152 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1153 if (Mode) 1154 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1155 CodeGen); 1156 else 1157 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1158 CodeGen); 1159 1160 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1161 } 1162 1163 namespace { 1164 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1165 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1166 enum ModeFlagsTy : unsigned { 1167 /// Bit set to 1 when in SPMD mode. 1168 KMP_IDENT_SPMD_MODE = 0x01, 1169 /// Bit set to 1 when a simplified runtime is used. 1170 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1171 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1172 }; 1173 1174 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1175 static const ModeFlagsTy UndefinedMode = 1176 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1177 } // anonymous namespace 1178 1179 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1180 switch (getExecutionMode()) { 1181 case EM_SPMD: 1182 if (requiresFullRuntime()) 1183 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1184 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1185 case EM_NonSPMD: 1186 assert(requiresFullRuntime() && "Expected full runtime."); 1187 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1188 case EM_Unknown: 1189 return UndefinedMode; 1190 } 1191 llvm_unreachable("Unknown flags are requested."); 1192 } 1193 1194 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1195 : CGOpenMPRuntime(CGM, "_", "$") { 1196 if (!CGM.getLangOpts().OpenMPIsDevice) 1197 llvm_unreachable("OpenMP NVPTX can only handle device code."); 1198 } 1199 1200 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1201 ProcBindKind ProcBind, 1202 SourceLocation Loc) { 1203 // Do nothing in case of SPMD mode and L0 parallel. 1204 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1205 return; 1206 1207 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1208 } 1209 1210 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1211 llvm::Value *NumThreads, 1212 SourceLocation Loc) { 1213 // Do nothing in case of SPMD mode and L0 parallel. 1214 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1215 return; 1216 1217 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); 1218 } 1219 1220 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1221 const Expr *NumTeams, 1222 const Expr *ThreadLimit, 1223 SourceLocation Loc) {} 1224 1225 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1226 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1227 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1228 // Emit target region as a standalone region. 1229 class NVPTXPrePostActionTy : public PrePostActionTy { 1230 bool &IsInParallelRegion; 1231 bool PrevIsInParallelRegion; 1232 1233 public: 1234 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1235 : IsInParallelRegion(IsInParallelRegion) {} 1236 void Enter(CodeGenFunction &CGF) override { 1237 PrevIsInParallelRegion = IsInParallelRegion; 1238 IsInParallelRegion = true; 1239 } 1240 void Exit(CodeGenFunction &CGF) override { 1241 IsInParallelRegion = PrevIsInParallelRegion; 1242 } 1243 } Action(IsInParallelRegion); 1244 CodeGen.setAction(Action); 1245 bool PrevIsInTTDRegion = IsInTTDRegion; 1246 IsInTTDRegion = false; 1247 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1248 IsInTargetMasterThreadRegion = false; 1249 auto *OutlinedFun = 1250 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1251 D, ThreadIDVar, InnermostKind, CodeGen)); 1252 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1253 IsInTTDRegion = PrevIsInTTDRegion; 1254 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1255 !IsInParallelRegion) { 1256 llvm::Function *WrapperFun = 1257 createParallelDataSharingWrapper(OutlinedFun, D); 1258 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1259 } 1260 1261 return OutlinedFun; 1262 } 1263 1264 /// Get list of lastprivate variables from the teams distribute ... or 1265 /// teams {distribute ...} directives. 1266 static void 1267 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1268 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1269 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1270 "expected teams directive."); 1271 const OMPExecutableDirective *Dir = &D; 1272 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1273 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1274 Ctx, 1275 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1276 /*IgnoreCaptured=*/true))) { 1277 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1278 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1279 Dir = nullptr; 1280 } 1281 } 1282 if (!Dir) 1283 return; 1284 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1285 for (const Expr *E : C->getVarRefs()) 1286 Vars.push_back(getPrivateItem(E)); 1287 } 1288 } 1289 1290 /// Get list of reduction variables from the teams ... directives. 1291 static void 1292 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1293 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1294 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1295 "expected teams directive."); 1296 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1297 for (const Expr *E : C->privates()) 1298 Vars.push_back(getPrivateItem(E)); 1299 } 1300 } 1301 1302 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1303 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1304 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1305 SourceLocation Loc = D.getBeginLoc(); 1306 1307 const RecordDecl *GlobalizedRD = nullptr; 1308 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1309 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1310 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1311 // Globalize team reductions variable unconditionally in all modes. 1312 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1313 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1314 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1315 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1316 if (!LastPrivatesReductions.empty()) { 1317 GlobalizedRD = ::buildRecordForGlobalizedVars( 1318 CGM.getContext(), llvm::None, LastPrivatesReductions, 1319 MappedDeclsFields, WarpSize); 1320 } 1321 } else if (!LastPrivatesReductions.empty()) { 1322 assert(!TeamAndReductions.first && 1323 "Previous team declaration is not expected."); 1324 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1325 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1326 } 1327 1328 // Emit target region as a standalone region. 1329 class NVPTXPrePostActionTy : public PrePostActionTy { 1330 SourceLocation &Loc; 1331 const RecordDecl *GlobalizedRD; 1332 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1333 &MappedDeclsFields; 1334 1335 public: 1336 NVPTXPrePostActionTy( 1337 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1338 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1339 &MappedDeclsFields) 1340 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1341 MappedDeclsFields(MappedDeclsFields) {} 1342 void Enter(CodeGenFunction &CGF) override { 1343 auto &Rt = 1344 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1345 if (GlobalizedRD) { 1346 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1347 I->getSecond().MappedParams = 1348 std::make_unique<CodeGenFunction::OMPMapVars>(); 1349 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1350 for (const auto &Pair : MappedDeclsFields) { 1351 assert(Pair.getFirst()->isCanonicalDecl() && 1352 "Expected canonical declaration"); 1353 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1354 } 1355 } 1356 Rt.emitGenericVarsProlog(CGF, Loc); 1357 } 1358 void Exit(CodeGenFunction &CGF) override { 1359 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1360 .emitGenericVarsEpilog(CGF); 1361 } 1362 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1363 CodeGen.setAction(Action); 1364 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1365 D, ThreadIDVar, InnermostKind, CodeGen); 1366 1367 return OutlinedFun; 1368 } 1369 1370 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1371 SourceLocation Loc, 1372 bool WithSPMDCheck) { 1373 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1374 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1375 return; 1376 1377 CGBuilderTy &Bld = CGF.Builder; 1378 1379 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1380 if (I == FunctionGlobalizedDecls.end()) 1381 return; 1382 1383 for (auto &Rec : I->getSecond().LocalVarData) { 1384 const auto *VD = cast<VarDecl>(Rec.first); 1385 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1386 QualType VarTy = VD->getType(); 1387 1388 // Get the local allocation of a firstprivate variable before sharing 1389 llvm::Value *ParValue; 1390 if (EscapedParam) { 1391 LValue ParLVal = 1392 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1393 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1394 } 1395 1396 // Allocate space for the variable to be globalized 1397 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1398 llvm::Instruction *VoidPtr = 1399 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1400 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1401 AllocArgs, VD->getName()); 1402 1403 // Cast the void pointer and get the address of the globalized variable. 1404 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1405 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1406 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1407 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1408 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1409 Rec.second.GlobalizedVal = VoidPtr; 1410 1411 // Assign the local allocation to the newly globalized location. 1412 if (EscapedParam) { 1413 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1414 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1415 } 1416 if (auto *DI = CGF.getDebugInfo()) 1417 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1418 } 1419 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1420 // Use actual memory size of the VLA object including the padding 1421 // for alignment purposes. 1422 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1423 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1424 Size = Bld.CreateNUWAdd( 1425 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1426 llvm::Value *AlignVal = 1427 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1428 1429 Size = Bld.CreateUDiv(Size, AlignVal); 1430 Size = Bld.CreateNUWMul(Size, AlignVal); 1431 1432 // Allocate space for this VLA object to be globalized. 1433 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1434 llvm::Instruction *VoidPtr = 1435 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1436 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1437 AllocArgs, VD->getName()); 1438 1439 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1440 std::pair<llvm::Value *, llvm::Value *>( 1441 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1442 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1443 CGM.getContext().getDeclAlign(VD), 1444 AlignmentSource::Decl); 1445 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1446 Base.getAddress(CGF)); 1447 } 1448 I->getSecond().MappedParams->apply(CGF); 1449 } 1450 1451 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1452 bool WithSPMDCheck) { 1453 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1454 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1455 return; 1456 1457 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1458 if (I != FunctionGlobalizedDecls.end()) { 1459 // Deallocate the memory for each globalized VLA object 1460 for (auto AddrSizePair : 1461 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1462 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1463 CGM.getModule(), OMPRTL___kmpc_free_shared), 1464 {AddrSizePair.first, AddrSizePair.second}); 1465 } 1466 // Deallocate the memory for each globalized value 1467 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1468 const auto *VD = cast<VarDecl>(Rec.first); 1469 I->getSecond().MappedParams->restore(CGF); 1470 1471 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1472 CGF.getTypeSize(VD->getType())}; 1473 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1474 CGM.getModule(), OMPRTL___kmpc_free_shared), 1475 FreeArgs); 1476 } 1477 } 1478 } 1479 1480 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1481 const OMPExecutableDirective &D, 1482 SourceLocation Loc, 1483 llvm::Function *OutlinedFn, 1484 ArrayRef<llvm::Value *> CapturedVars) { 1485 if (!CGF.HaveInsertPoint()) 1486 return; 1487 1488 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1489 /*Name=*/".zero.addr"); 1490 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 1491 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1492 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1493 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1494 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1495 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1496 } 1497 1498 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1499 SourceLocation Loc, 1500 llvm::Function *OutlinedFn, 1501 ArrayRef<llvm::Value *> CapturedVars, 1502 const Expr *IfCond) { 1503 if (!CGF.HaveInsertPoint()) 1504 return; 1505 1506 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, 1507 IfCond](CodeGenFunction &CGF, PrePostActionTy &Action) { 1508 CGBuilderTy &Bld = CGF.Builder; 1509 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1510 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1511 if (WFn) 1512 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1513 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1514 1515 // Create a private scope that will globalize the arguments 1516 // passed from the outside of the target region. 1517 // TODO: Is that needed? 1518 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1519 1520 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1521 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1522 "captured_vars_addrs"); 1523 // There's something to share. 1524 if (!CapturedVars.empty()) { 1525 // Prepare for parallel region. Indicate the outlined function. 1526 ASTContext &Ctx = CGF.getContext(); 1527 unsigned Idx = 0; 1528 for (llvm::Value *V : CapturedVars) { 1529 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1530 llvm::Value *PtrV; 1531 if (V->getType()->isIntegerTy()) 1532 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1533 else 1534 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1535 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1536 Ctx.getPointerType(Ctx.VoidPtrTy)); 1537 ++Idx; 1538 } 1539 } 1540 1541 llvm::Value *IfCondVal = nullptr; 1542 if (IfCond) 1543 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1544 /* isSigned */ false); 1545 else 1546 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1547 1548 assert(IfCondVal && "Expected a value"); 1549 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1550 llvm::Value *Args[] = { 1551 RTLoc, 1552 getThreadID(CGF, Loc), 1553 IfCondVal, 1554 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1555 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1556 FnPtr, 1557 ID, 1558 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1559 CGF.VoidPtrPtrTy), 1560 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1561 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1562 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1563 Args); 1564 }; 1565 1566 RegionCodeGenTy RCG(ParallelGen); 1567 RCG(CGF); 1568 } 1569 1570 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1571 // Always emit simple barriers! 1572 if (!CGF.HaveInsertPoint()) 1573 return; 1574 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1575 // This function does not use parameters, so we can emit just default values. 1576 llvm::Value *Args[] = { 1577 llvm::ConstantPointerNull::get( 1578 cast<llvm::PointerType>(getIdentTyPointerTy())), 1579 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1580 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1581 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1582 Args); 1583 } 1584 1585 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1586 SourceLocation Loc, 1587 OpenMPDirectiveKind Kind, bool, 1588 bool) { 1589 // Always emit simple barriers! 1590 if (!CGF.HaveInsertPoint()) 1591 return; 1592 // Build call __kmpc_cancel_barrier(loc, thread_id); 1593 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1594 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1595 getThreadID(CGF, Loc)}; 1596 1597 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1598 CGM.getModule(), OMPRTL___kmpc_barrier), 1599 Args); 1600 } 1601 1602 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1603 CodeGenFunction &CGF, StringRef CriticalName, 1604 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1605 const Expr *Hint) { 1606 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1607 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1608 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1609 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1610 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1611 1612 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1613 1614 // Get the mask of active threads in the warp. 1615 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1616 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1617 // Fetch team-local id of the thread. 1618 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1619 1620 // Get the width of the team. 1621 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1622 1623 // Initialize the counter variable for the loop. 1624 QualType Int32Ty = 1625 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1626 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1627 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1628 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1629 /*isInit=*/true); 1630 1631 // Block checks if loop counter exceeds upper bound. 1632 CGF.EmitBlock(LoopBB); 1633 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1634 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1635 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1636 1637 // Block tests which single thread should execute region, and which threads 1638 // should go straight to synchronisation point. 1639 CGF.EmitBlock(TestBB); 1640 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1641 llvm::Value *CmpThreadToCounter = 1642 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1643 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1644 1645 // Block emits the body of the critical region. 1646 CGF.EmitBlock(BodyBB); 1647 1648 // Output the critical statement. 1649 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1650 Hint); 1651 1652 // After the body surrounded by the critical region, the single executing 1653 // thread will jump to the synchronisation point. 1654 // Block waits for all threads in current team to finish then increments the 1655 // counter variable and returns to the loop. 1656 CGF.EmitBlock(SyncBB); 1657 // Reconverge active threads in the warp. 1658 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1659 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1660 Mask); 1661 1662 llvm::Value *IncCounterVal = 1663 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1664 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1665 CGF.EmitBranch(LoopBB); 1666 1667 // Block that is reached when all threads in the team complete the region. 1668 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1669 } 1670 1671 /// Cast value to the specified type. 1672 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1673 QualType ValTy, QualType CastTy, 1674 SourceLocation Loc) { 1675 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1676 "Cast type must sized."); 1677 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1678 "Val type must sized."); 1679 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1680 if (ValTy == CastTy) 1681 return Val; 1682 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1683 CGF.getContext().getTypeSizeInChars(CastTy)) 1684 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1685 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1686 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1687 CastTy->hasSignedIntegerRepresentation()); 1688 Address CastItem = CGF.CreateMemTemp(CastTy); 1689 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1690 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1691 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1692 LValueBaseInfo(AlignmentSource::Type), 1693 TBAAAccessInfo()); 1694 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1695 LValueBaseInfo(AlignmentSource::Type), 1696 TBAAAccessInfo()); 1697 } 1698 1699 /// This function creates calls to one of two shuffle functions to copy 1700 /// variables between lanes in a warp. 1701 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1702 llvm::Value *Elem, 1703 QualType ElemType, 1704 llvm::Value *Offset, 1705 SourceLocation Loc) { 1706 CodeGenModule &CGM = CGF.CGM; 1707 CGBuilderTy &Bld = CGF.Builder; 1708 CGOpenMPRuntimeGPU &RT = 1709 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1710 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1711 1712 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1713 assert(Size.getQuantity() <= 8 && 1714 "Unsupported bitwidth in shuffle instruction."); 1715 1716 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1717 ? OMPRTL___kmpc_shuffle_int32 1718 : OMPRTL___kmpc_shuffle_int64; 1719 1720 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1721 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1722 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1723 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1724 llvm::Value *WarpSize = 1725 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1726 1727 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1728 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1729 {ElemCast, Offset, WarpSize}); 1730 1731 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1732 } 1733 1734 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1735 Address DestAddr, QualType ElemType, 1736 llvm::Value *Offset, SourceLocation Loc) { 1737 CGBuilderTy &Bld = CGF.Builder; 1738 1739 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1740 // Create the loop over the big sized data. 1741 // ptr = (void*)Elem; 1742 // ptrEnd = (void*) Elem + 1; 1743 // Step = 8; 1744 // while (ptr + Step < ptrEnd) 1745 // shuffle((int64_t)*ptr); 1746 // Step = 4; 1747 // while (ptr + Step < ptrEnd) 1748 // shuffle((int32_t)*ptr); 1749 // ... 1750 Address ElemPtr = DestAddr; 1751 Address Ptr = SrcAddr; 1752 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1753 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1754 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1755 if (Size < CharUnits::fromQuantity(IntSize)) 1756 continue; 1757 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1758 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1759 /*Signed=*/1); 1760 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1761 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1762 ElemPtr = 1763 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1764 if (Size.getQuantity() / IntSize > 1) { 1765 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1766 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1767 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1768 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1769 CGF.EmitBlock(PreCondBB); 1770 llvm::PHINode *PhiSrc = 1771 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1772 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1773 llvm::PHINode *PhiDest = 1774 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1775 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1776 Ptr = Address(PhiSrc, Ptr.getAlignment()); 1777 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 1778 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1779 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( 1780 Ptr.getPointer(), CGF.VoidPtrTy)); 1781 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1782 ThenBB, ExitBB); 1783 CGF.EmitBlock(ThenBB); 1784 llvm::Value *Res = createRuntimeShuffleFunction( 1785 CGF, 1786 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1787 LValueBaseInfo(AlignmentSource::Type), 1788 TBAAAccessInfo()), 1789 IntType, Offset, Loc); 1790 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1791 LValueBaseInfo(AlignmentSource::Type), 1792 TBAAAccessInfo()); 1793 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1794 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1795 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1796 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1797 CGF.EmitBranch(PreCondBB); 1798 CGF.EmitBlock(ExitBB); 1799 } else { 1800 llvm::Value *Res = createRuntimeShuffleFunction( 1801 CGF, 1802 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1803 LValueBaseInfo(AlignmentSource::Type), 1804 TBAAAccessInfo()), 1805 IntType, Offset, Loc); 1806 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1807 LValueBaseInfo(AlignmentSource::Type), 1808 TBAAAccessInfo()); 1809 Ptr = Bld.CreateConstGEP(Ptr, 1); 1810 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1811 } 1812 Size = Size % IntSize; 1813 } 1814 } 1815 1816 namespace { 1817 enum CopyAction : unsigned { 1818 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1819 // the warp using shuffle instructions. 1820 RemoteLaneToThread, 1821 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1822 ThreadCopy, 1823 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1824 ThreadToScratchpad, 1825 // ScratchpadToThread: Copy from a scratchpad array in global memory 1826 // containing team-reduced data to a thread's stack. 1827 ScratchpadToThread, 1828 }; 1829 } // namespace 1830 1831 struct CopyOptionsTy { 1832 llvm::Value *RemoteLaneOffset; 1833 llvm::Value *ScratchpadIndex; 1834 llvm::Value *ScratchpadWidth; 1835 }; 1836 1837 /// Emit instructions to copy a Reduce list, which contains partially 1838 /// aggregated values, in the specified direction. 1839 static void emitReductionListCopy( 1840 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1841 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1842 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1843 1844 CodeGenModule &CGM = CGF.CGM; 1845 ASTContext &C = CGM.getContext(); 1846 CGBuilderTy &Bld = CGF.Builder; 1847 1848 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1849 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1850 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1851 1852 // Iterates, element-by-element, through the source Reduce list and 1853 // make a copy. 1854 unsigned Idx = 0; 1855 unsigned Size = Privates.size(); 1856 for (const Expr *Private : Privates) { 1857 Address SrcElementAddr = Address::invalid(); 1858 Address DestElementAddr = Address::invalid(); 1859 Address DestElementPtrAddr = Address::invalid(); 1860 // Should we shuffle in an element from a remote lane? 1861 bool ShuffleInElement = false; 1862 // Set to true to update the pointer in the dest Reduce list to a 1863 // newly created element. 1864 bool UpdateDestListPtr = false; 1865 // Increment the src or dest pointer to the scratchpad, for each 1866 // new element. 1867 bool IncrScratchpadSrc = false; 1868 bool IncrScratchpadDest = false; 1869 1870 switch (Action) { 1871 case RemoteLaneToThread: { 1872 // Step 1.1: Get the address for the src element in the Reduce list. 1873 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1874 SrcElementAddr = CGF.EmitLoadOfPointer( 1875 SrcElementPtrAddr, 1876 C.getPointerType(Private->getType())->castAs<PointerType>()); 1877 1878 // Step 1.2: Create a temporary to store the element in the destination 1879 // Reduce list. 1880 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1881 DestElementAddr = 1882 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1883 ShuffleInElement = true; 1884 UpdateDestListPtr = true; 1885 break; 1886 } 1887 case ThreadCopy: { 1888 // Step 1.1: Get the address for the src element in the Reduce list. 1889 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1890 SrcElementAddr = CGF.EmitLoadOfPointer( 1891 SrcElementPtrAddr, 1892 C.getPointerType(Private->getType())->castAs<PointerType>()); 1893 1894 // Step 1.2: Get the address for dest element. The destination 1895 // element has already been created on the thread's stack. 1896 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1897 DestElementAddr = CGF.EmitLoadOfPointer( 1898 DestElementPtrAddr, 1899 C.getPointerType(Private->getType())->castAs<PointerType>()); 1900 break; 1901 } 1902 case ThreadToScratchpad: { 1903 // Step 1.1: Get the address for the src element in the Reduce list. 1904 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1905 SrcElementAddr = CGF.EmitLoadOfPointer( 1906 SrcElementPtrAddr, 1907 C.getPointerType(Private->getType())->castAs<PointerType>()); 1908 1909 // Step 1.2: Get the address for dest element: 1910 // address = base + index * ElementSizeInChars. 1911 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1912 llvm::Value *CurrentOffset = 1913 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1914 llvm::Value *ScratchPadElemAbsolutePtrVal = 1915 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1916 ScratchPadElemAbsolutePtrVal = 1917 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1918 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1919 C.getTypeAlignInChars(Private->getType())); 1920 IncrScratchpadDest = true; 1921 break; 1922 } 1923 case ScratchpadToThread: { 1924 // Step 1.1: Get the address for the src element in the scratchpad. 1925 // address = base + index * ElementSizeInChars. 1926 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1927 llvm::Value *CurrentOffset = 1928 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1929 llvm::Value *ScratchPadElemAbsolutePtrVal = 1930 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1931 ScratchPadElemAbsolutePtrVal = 1932 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1933 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1934 C.getTypeAlignInChars(Private->getType())); 1935 IncrScratchpadSrc = true; 1936 1937 // Step 1.2: Create a temporary to store the element in the destination 1938 // Reduce list. 1939 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1940 DestElementAddr = 1941 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1942 UpdateDestListPtr = true; 1943 break; 1944 } 1945 } 1946 1947 // Regardless of src and dest of copy, we emit the load of src 1948 // element as this is required in all directions 1949 SrcElementAddr = Bld.CreateElementBitCast( 1950 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1951 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1952 SrcElementAddr.getElementType()); 1953 1954 // Now that all active lanes have read the element in the 1955 // Reduce list, shuffle over the value from the remote lane. 1956 if (ShuffleInElement) { 1957 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1958 RemoteLaneOffset, Private->getExprLoc()); 1959 } else { 1960 switch (CGF.getEvaluationKind(Private->getType())) { 1961 case TEK_Scalar: { 1962 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1963 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1964 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1965 TBAAAccessInfo()); 1966 // Store the source element value to the dest element address. 1967 CGF.EmitStoreOfScalar( 1968 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1969 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1970 break; 1971 } 1972 case TEK_Complex: { 1973 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 1974 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1975 Private->getExprLoc()); 1976 CGF.EmitStoreOfComplex( 1977 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1978 /*isInit=*/false); 1979 break; 1980 } 1981 case TEK_Aggregate: 1982 CGF.EmitAggregateCopy( 1983 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1984 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1985 Private->getType(), AggValueSlot::DoesNotOverlap); 1986 break; 1987 } 1988 } 1989 1990 // Step 3.1: Modify reference in dest Reduce list as needed. 1991 // Modifying the reference in Reduce list to point to the newly 1992 // created element. The element is live in the current function 1993 // scope and that of functions it invokes (i.e., reduce_function). 1994 // RemoteReduceData[i] = (void*)&RemoteElem 1995 if (UpdateDestListPtr) { 1996 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 1997 DestElementAddr.getPointer(), CGF.VoidPtrTy), 1998 DestElementPtrAddr, /*Volatile=*/false, 1999 C.VoidPtrTy); 2000 } 2001 2002 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2003 // address of the next element in scratchpad memory, unless we're currently 2004 // processing the last one. Memory alignment is also taken care of here. 2005 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2006 llvm::Value *ScratchpadBasePtr = 2007 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2008 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2009 ScratchpadBasePtr = Bld.CreateNUWAdd( 2010 ScratchpadBasePtr, 2011 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2012 2013 // Take care of global memory alignment for performance 2014 ScratchpadBasePtr = Bld.CreateNUWSub( 2015 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2016 ScratchpadBasePtr = Bld.CreateUDiv( 2017 ScratchpadBasePtr, 2018 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2019 ScratchpadBasePtr = Bld.CreateNUWAdd( 2020 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2021 ScratchpadBasePtr = Bld.CreateNUWMul( 2022 ScratchpadBasePtr, 2023 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2024 2025 if (IncrScratchpadDest) 2026 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2027 else /* IncrScratchpadSrc = true */ 2028 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2029 } 2030 2031 ++Idx; 2032 } 2033 } 2034 2035 /// This function emits a helper that gathers Reduce lists from the first 2036 /// lane of every active warp to lanes in the first warp. 2037 /// 2038 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2039 /// shared smem[warp_size]; 2040 /// For all data entries D in reduce_data: 2041 /// sync 2042 /// If (I am the first lane in each warp) 2043 /// Copy my local D to smem[warp_id] 2044 /// sync 2045 /// if (I am the first warp) 2046 /// Copy smem[thread_id] to my local D 2047 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2048 ArrayRef<const Expr *> Privates, 2049 QualType ReductionArrayTy, 2050 SourceLocation Loc) { 2051 ASTContext &C = CGM.getContext(); 2052 llvm::Module &M = CGM.getModule(); 2053 2054 // ReduceList: thread local Reduce list. 2055 // At the stage of the computation when this function is called, partially 2056 // aggregated values reside in the first lane of every active warp. 2057 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2058 C.VoidPtrTy, ImplicitParamDecl::Other); 2059 // NumWarps: number of warps active in the parallel region. This could 2060 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2061 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2062 C.getIntTypeForBitwidth(32, /* Signed */ true), 2063 ImplicitParamDecl::Other); 2064 FunctionArgList Args; 2065 Args.push_back(&ReduceListArg); 2066 Args.push_back(&NumWarpsArg); 2067 2068 const CGFunctionInfo &CGFI = 2069 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2070 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2071 llvm::GlobalValue::InternalLinkage, 2072 "_omp_reduction_inter_warp_copy_func", &M); 2073 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2074 Fn->setDoesNotRecurse(); 2075 CodeGenFunction CGF(CGM); 2076 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2077 2078 CGBuilderTy &Bld = CGF.Builder; 2079 2080 // This array is used as a medium to transfer, one reduce element at a time, 2081 // the data from the first lane of every warp to lanes in the first warp 2082 // in order to perform the final step of a reduction in a parallel region 2083 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2084 // for reduced latency, as well as to have a distinct copy for concurrently 2085 // executing target regions. The array is declared with common linkage so 2086 // as to be shared across compilation units. 2087 StringRef TransferMediumName = 2088 "__openmp_nvptx_data_transfer_temporary_storage"; 2089 llvm::GlobalVariable *TransferMedium = 2090 M.getGlobalVariable(TransferMediumName); 2091 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2092 if (!TransferMedium) { 2093 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2094 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2095 TransferMedium = new llvm::GlobalVariable( 2096 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2097 llvm::UndefValue::get(Ty), TransferMediumName, 2098 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2099 SharedAddressSpace); 2100 CGM.addCompilerUsedGlobal(TransferMedium); 2101 } 2102 2103 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2104 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2105 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2106 // nvptx_lane_id = nvptx_id % warpsize 2107 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2108 // nvptx_warp_id = nvptx_id / warpsize 2109 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2110 2111 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2112 Address LocalReduceList( 2113 Bld.CreatePointerBitCastOrAddrSpaceCast( 2114 CGF.EmitLoadOfScalar( 2115 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2116 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2117 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2118 CGF.getPointerAlign()); 2119 2120 unsigned Idx = 0; 2121 for (const Expr *Private : Privates) { 2122 // 2123 // Warp master copies reduce element to transfer medium in __shared__ 2124 // memory. 2125 // 2126 unsigned RealTySize = 2127 C.getTypeSizeInChars(Private->getType()) 2128 .alignTo(C.getTypeAlignInChars(Private->getType())) 2129 .getQuantity(); 2130 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2131 unsigned NumIters = RealTySize / TySize; 2132 if (NumIters == 0) 2133 continue; 2134 QualType CType = C.getIntTypeForBitwidth( 2135 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2136 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2137 CharUnits Align = CharUnits::fromQuantity(TySize); 2138 llvm::Value *Cnt = nullptr; 2139 Address CntAddr = Address::invalid(); 2140 llvm::BasicBlock *PrecondBB = nullptr; 2141 llvm::BasicBlock *ExitBB = nullptr; 2142 if (NumIters > 1) { 2143 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2144 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2145 /*Volatile=*/false, C.IntTy); 2146 PrecondBB = CGF.createBasicBlock("precond"); 2147 ExitBB = CGF.createBasicBlock("exit"); 2148 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2149 // There is no need to emit line number for unconditional branch. 2150 (void)ApplyDebugLocation::CreateEmpty(CGF); 2151 CGF.EmitBlock(PrecondBB); 2152 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2153 llvm::Value *Cmp = 2154 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2155 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2156 CGF.EmitBlock(BodyBB); 2157 } 2158 // kmpc_barrier. 2159 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2160 /*EmitChecks=*/false, 2161 /*ForceSimpleCall=*/true); 2162 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2163 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2164 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2165 2166 // if (lane_id == 0) 2167 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2168 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2169 CGF.EmitBlock(ThenBB); 2170 2171 // Reduce element = LocalReduceList[i] 2172 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2173 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2174 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2175 // elemptr = ((CopyType*)(elemptrptr)) + I 2176 Address ElemPtr = Address(ElemPtrPtr, Align); 2177 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2178 if (NumIters > 1) { 2179 ElemPtr = Address(Bld.CreateGEP(ElemPtr.getElementType(), 2180 ElemPtr.getPointer(), Cnt), 2181 ElemPtr.getAlignment()); 2182 } 2183 2184 // Get pointer to location in transfer medium. 2185 // MediumPtr = &medium[warp_id] 2186 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2187 TransferMedium->getValueType(), TransferMedium, 2188 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2189 Address MediumPtr(MediumPtrVal, Align); 2190 // Casting to actual data type. 2191 // MediumPtr = (CopyType*)MediumPtrAddr; 2192 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2193 2194 // elem = *elemptr 2195 //*MediumPtr = elem 2196 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2197 ElemPtr, /*Volatile=*/false, CType, Loc, 2198 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2199 // Store the source element value to the dest element address. 2200 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2201 LValueBaseInfo(AlignmentSource::Type), 2202 TBAAAccessInfo()); 2203 2204 Bld.CreateBr(MergeBB); 2205 2206 CGF.EmitBlock(ElseBB); 2207 Bld.CreateBr(MergeBB); 2208 2209 CGF.EmitBlock(MergeBB); 2210 2211 // kmpc_barrier. 2212 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2213 /*EmitChecks=*/false, 2214 /*ForceSimpleCall=*/true); 2215 2216 // 2217 // Warp 0 copies reduce element from transfer medium. 2218 // 2219 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2220 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2221 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2222 2223 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2224 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2225 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2226 2227 // Up to 32 threads in warp 0 are active. 2228 llvm::Value *IsActiveThread = 2229 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2230 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2231 2232 CGF.EmitBlock(W0ThenBB); 2233 2234 // SrcMediumPtr = &medium[tid] 2235 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2236 TransferMedium->getValueType(), TransferMedium, 2237 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2238 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2239 // SrcMediumVal = *SrcMediumPtr; 2240 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2241 2242 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2243 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2244 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2245 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2246 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2247 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2248 if (NumIters > 1) { 2249 TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getElementType(), 2250 TargetElemPtr.getPointer(), Cnt), 2251 TargetElemPtr.getAlignment()); 2252 } 2253 2254 // *TargetElemPtr = SrcMediumVal; 2255 llvm::Value *SrcMediumValue = 2256 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2257 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2258 CType); 2259 Bld.CreateBr(W0MergeBB); 2260 2261 CGF.EmitBlock(W0ElseBB); 2262 Bld.CreateBr(W0MergeBB); 2263 2264 CGF.EmitBlock(W0MergeBB); 2265 2266 if (NumIters > 1) { 2267 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2268 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2269 CGF.EmitBranch(PrecondBB); 2270 (void)ApplyDebugLocation::CreateEmpty(CGF); 2271 CGF.EmitBlock(ExitBB); 2272 } 2273 RealTySize %= TySize; 2274 } 2275 ++Idx; 2276 } 2277 2278 CGF.FinishFunction(); 2279 return Fn; 2280 } 2281 2282 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2283 /// in the same warp. It uses shuffle instructions to copy over data from 2284 /// a remote lane's stack. The reduction algorithm performed is specified 2285 /// by the fourth parameter. 2286 /// 2287 /// Algorithm Versions. 2288 /// Full Warp Reduce (argument value 0): 2289 /// This algorithm assumes that all 32 lanes are active and gathers 2290 /// data from these 32 lanes, producing a single resultant value. 2291 /// Contiguous Partial Warp Reduce (argument value 1): 2292 /// This algorithm assumes that only a *contiguous* subset of lanes 2293 /// are active. This happens for the last warp in a parallel region 2294 /// when the user specified num_threads is not an integer multiple of 2295 /// 32. This contiguous subset always starts with the zeroth lane. 2296 /// Partial Warp Reduce (argument value 2): 2297 /// This algorithm gathers data from any number of lanes at any position. 2298 /// All reduced values are stored in the lowest possible lane. The set 2299 /// of problems every algorithm addresses is a super set of those 2300 /// addressable by algorithms with a lower version number. Overhead 2301 /// increases as algorithm version increases. 2302 /// 2303 /// Terminology 2304 /// Reduce element: 2305 /// Reduce element refers to the individual data field with primitive 2306 /// data types to be combined and reduced across threads. 2307 /// Reduce list: 2308 /// Reduce list refers to a collection of local, thread-private 2309 /// reduce elements. 2310 /// Remote Reduce list: 2311 /// Remote Reduce list refers to a collection of remote (relative to 2312 /// the current thread) reduce elements. 2313 /// 2314 /// We distinguish between three states of threads that are important to 2315 /// the implementation of this function. 2316 /// Alive threads: 2317 /// Threads in a warp executing the SIMT instruction, as distinguished from 2318 /// threads that are inactive due to divergent control flow. 2319 /// Active threads: 2320 /// The minimal set of threads that has to be alive upon entry to this 2321 /// function. The computation is correct iff active threads are alive. 2322 /// Some threads are alive but they are not active because they do not 2323 /// contribute to the computation in any useful manner. Turning them off 2324 /// may introduce control flow overheads without any tangible benefits. 2325 /// Effective threads: 2326 /// In order to comply with the argument requirements of the shuffle 2327 /// function, we must keep all lanes holding data alive. But at most 2328 /// half of them perform value aggregation; we refer to this half of 2329 /// threads as effective. The other half is simply handing off their 2330 /// data. 2331 /// 2332 /// Procedure 2333 /// Value shuffle: 2334 /// In this step active threads transfer data from higher lane positions 2335 /// in the warp to lower lane positions, creating Remote Reduce list. 2336 /// Value aggregation: 2337 /// In this step, effective threads combine their thread local Reduce list 2338 /// with Remote Reduce list and store the result in the thread local 2339 /// Reduce list. 2340 /// Value copy: 2341 /// In this step, we deal with the assumption made by algorithm 2 2342 /// (i.e. contiguity assumption). When we have an odd number of lanes 2343 /// active, say 2k+1, only k threads will be effective and therefore k 2344 /// new values will be produced. However, the Reduce list owned by the 2345 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2346 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2347 /// that the contiguity assumption still holds. 2348 static llvm::Function *emitShuffleAndReduceFunction( 2349 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2350 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2351 ASTContext &C = CGM.getContext(); 2352 2353 // Thread local Reduce list used to host the values of data to be reduced. 2354 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2355 C.VoidPtrTy, ImplicitParamDecl::Other); 2356 // Current lane id; could be logical. 2357 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2358 ImplicitParamDecl::Other); 2359 // Offset of the remote source lane relative to the current lane. 2360 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2361 C.ShortTy, ImplicitParamDecl::Other); 2362 // Algorithm version. This is expected to be known at compile time. 2363 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2364 C.ShortTy, ImplicitParamDecl::Other); 2365 FunctionArgList Args; 2366 Args.push_back(&ReduceListArg); 2367 Args.push_back(&LaneIDArg); 2368 Args.push_back(&RemoteLaneOffsetArg); 2369 Args.push_back(&AlgoVerArg); 2370 2371 const CGFunctionInfo &CGFI = 2372 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2373 auto *Fn = llvm::Function::Create( 2374 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2375 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2376 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2377 Fn->setDoesNotRecurse(); 2378 2379 CodeGenFunction CGF(CGM); 2380 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2381 2382 CGBuilderTy &Bld = CGF.Builder; 2383 2384 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2385 Address LocalReduceList( 2386 Bld.CreatePointerBitCastOrAddrSpaceCast( 2387 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2388 C.VoidPtrTy, SourceLocation()), 2389 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2390 CGF.getPointerAlign()); 2391 2392 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2393 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2394 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2395 2396 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2397 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2398 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2399 2400 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2401 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2402 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2403 2404 // Create a local thread-private variable to host the Reduce list 2405 // from a remote lane. 2406 Address RemoteReduceList = 2407 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2408 2409 // This loop iterates through the list of reduce elements and copies, 2410 // element by element, from a remote lane in the warp to RemoteReduceList, 2411 // hosted on the thread's stack. 2412 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2413 LocalReduceList, RemoteReduceList, 2414 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2415 /*ScratchpadIndex=*/nullptr, 2416 /*ScratchpadWidth=*/nullptr}); 2417 2418 // The actions to be performed on the Remote Reduce list is dependent 2419 // on the algorithm version. 2420 // 2421 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2422 // LaneId % 2 == 0 && Offset > 0): 2423 // do the reduction value aggregation 2424 // 2425 // The thread local variable Reduce list is mutated in place to host the 2426 // reduced data, which is the aggregated value produced from local and 2427 // remote lanes. 2428 // 2429 // Note that AlgoVer is expected to be a constant integer known at compile 2430 // time. 2431 // When AlgoVer==0, the first conjunction evaluates to true, making 2432 // the entire predicate true during compile time. 2433 // When AlgoVer==1, the second conjunction has only the second part to be 2434 // evaluated during runtime. Other conjunctions evaluates to false 2435 // during compile time. 2436 // When AlgoVer==2, the third conjunction has only the second part to be 2437 // evaluated during runtime. Other conjunctions evaluates to false 2438 // during compile time. 2439 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2440 2441 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2442 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2443 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2444 2445 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2446 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2447 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2448 CondAlgo2 = Bld.CreateAnd( 2449 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2450 2451 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2452 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2453 2454 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2455 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2456 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2457 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2458 2459 CGF.EmitBlock(ThenBB); 2460 // reduce_function(LocalReduceList, RemoteReduceList) 2461 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2462 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2463 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2464 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2465 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2466 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2467 Bld.CreateBr(MergeBB); 2468 2469 CGF.EmitBlock(ElseBB); 2470 Bld.CreateBr(MergeBB); 2471 2472 CGF.EmitBlock(MergeBB); 2473 2474 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2475 // Reduce list. 2476 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2477 llvm::Value *CondCopy = Bld.CreateAnd( 2478 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2479 2480 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2481 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2482 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2483 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2484 2485 CGF.EmitBlock(CpyThenBB); 2486 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2487 RemoteReduceList, LocalReduceList); 2488 Bld.CreateBr(CpyMergeBB); 2489 2490 CGF.EmitBlock(CpyElseBB); 2491 Bld.CreateBr(CpyMergeBB); 2492 2493 CGF.EmitBlock(CpyMergeBB); 2494 2495 CGF.FinishFunction(); 2496 return Fn; 2497 } 2498 2499 /// This function emits a helper that copies all the reduction variables from 2500 /// the team into the provided global buffer for the reduction variables. 2501 /// 2502 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2503 /// For all data entries D in reduce_data: 2504 /// Copy local D to buffer.D[Idx] 2505 static llvm::Value *emitListToGlobalCopyFunction( 2506 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2507 QualType ReductionArrayTy, SourceLocation Loc, 2508 const RecordDecl *TeamReductionRec, 2509 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2510 &VarFieldMap) { 2511 ASTContext &C = CGM.getContext(); 2512 2513 // Buffer: global reduction buffer. 2514 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2515 C.VoidPtrTy, ImplicitParamDecl::Other); 2516 // Idx: index of the buffer. 2517 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2518 ImplicitParamDecl::Other); 2519 // ReduceList: thread local Reduce list. 2520 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2521 C.VoidPtrTy, ImplicitParamDecl::Other); 2522 FunctionArgList Args; 2523 Args.push_back(&BufferArg); 2524 Args.push_back(&IdxArg); 2525 Args.push_back(&ReduceListArg); 2526 2527 const CGFunctionInfo &CGFI = 2528 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2529 auto *Fn = llvm::Function::Create( 2530 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2531 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2532 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2533 Fn->setDoesNotRecurse(); 2534 CodeGenFunction CGF(CGM); 2535 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2536 2537 CGBuilderTy &Bld = CGF.Builder; 2538 2539 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2540 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2541 Address LocalReduceList( 2542 Bld.CreatePointerBitCastOrAddrSpaceCast( 2543 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2544 C.VoidPtrTy, Loc), 2545 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2546 CGF.getPointerAlign()); 2547 QualType StaticTy = C.getRecordType(TeamReductionRec); 2548 llvm::Type *LLVMReductionsBufferTy = 2549 CGM.getTypes().ConvertTypeForMem(StaticTy); 2550 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2551 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2552 LLVMReductionsBufferTy->getPointerTo()); 2553 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2554 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2555 /*Volatile=*/false, C.IntTy, 2556 Loc)}; 2557 unsigned Idx = 0; 2558 for (const Expr *Private : Privates) { 2559 // Reduce element = LocalReduceList[i] 2560 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2561 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2562 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2563 // elemptr = ((CopyType*)(elemptrptr)) + I 2564 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2565 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2566 Address ElemPtr = 2567 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2568 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2569 // Global = Buffer.VD[Idx]; 2570 const FieldDecl *FD = VarFieldMap.lookup(VD); 2571 LValue GlobLVal = CGF.EmitLValueForField( 2572 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2573 Address GlobAddr = GlobLVal.getAddress(CGF); 2574 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2575 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2576 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2577 switch (CGF.getEvaluationKind(Private->getType())) { 2578 case TEK_Scalar: { 2579 llvm::Value *V = CGF.EmitLoadOfScalar( 2580 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2581 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2582 CGF.EmitStoreOfScalar(V, GlobLVal); 2583 break; 2584 } 2585 case TEK_Complex: { 2586 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2587 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2588 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2589 break; 2590 } 2591 case TEK_Aggregate: 2592 CGF.EmitAggregateCopy(GlobLVal, 2593 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2594 Private->getType(), AggValueSlot::DoesNotOverlap); 2595 break; 2596 } 2597 ++Idx; 2598 } 2599 2600 CGF.FinishFunction(); 2601 return Fn; 2602 } 2603 2604 /// This function emits a helper that reduces all the reduction variables from 2605 /// the team into the provided global buffer for the reduction variables. 2606 /// 2607 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2608 /// void *GlobPtrs[]; 2609 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2610 /// ... 2611 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2612 /// reduce_function(GlobPtrs, reduce_data); 2613 static llvm::Value *emitListToGlobalReduceFunction( 2614 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2615 QualType ReductionArrayTy, SourceLocation Loc, 2616 const RecordDecl *TeamReductionRec, 2617 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2618 &VarFieldMap, 2619 llvm::Function *ReduceFn) { 2620 ASTContext &C = CGM.getContext(); 2621 2622 // Buffer: global reduction buffer. 2623 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2624 C.VoidPtrTy, ImplicitParamDecl::Other); 2625 // Idx: index of the buffer. 2626 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2627 ImplicitParamDecl::Other); 2628 // ReduceList: thread local Reduce list. 2629 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2630 C.VoidPtrTy, ImplicitParamDecl::Other); 2631 FunctionArgList Args; 2632 Args.push_back(&BufferArg); 2633 Args.push_back(&IdxArg); 2634 Args.push_back(&ReduceListArg); 2635 2636 const CGFunctionInfo &CGFI = 2637 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2638 auto *Fn = llvm::Function::Create( 2639 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2640 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2641 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2642 Fn->setDoesNotRecurse(); 2643 CodeGenFunction CGF(CGM); 2644 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2645 2646 CGBuilderTy &Bld = CGF.Builder; 2647 2648 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2649 QualType StaticTy = C.getRecordType(TeamReductionRec); 2650 llvm::Type *LLVMReductionsBufferTy = 2651 CGM.getTypes().ConvertTypeForMem(StaticTy); 2652 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2653 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2654 LLVMReductionsBufferTy->getPointerTo()); 2655 2656 // 1. Build a list of reduction variables. 2657 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2658 Address ReductionList = 2659 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2660 auto IPriv = Privates.begin(); 2661 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2662 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2663 /*Volatile=*/false, C.IntTy, 2664 Loc)}; 2665 unsigned Idx = 0; 2666 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2667 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2668 // Global = Buffer.VD[Idx]; 2669 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2670 const FieldDecl *FD = VarFieldMap.lookup(VD); 2671 LValue GlobLVal = CGF.EmitLValueForField( 2672 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2673 Address GlobAddr = GlobLVal.getAddress(CGF); 2674 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2675 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2676 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2677 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2678 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2679 // Store array size. 2680 ++Idx; 2681 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2682 llvm::Value *Size = CGF.Builder.CreateIntCast( 2683 CGF.getVLASize( 2684 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2685 .NumElts, 2686 CGF.SizeTy, /*isSigned=*/false); 2687 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2688 Elem); 2689 } 2690 } 2691 2692 // Call reduce_function(GlobalReduceList, ReduceList) 2693 llvm::Value *GlobalReduceList = 2694 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2695 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2696 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2697 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2698 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2699 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2700 CGF.FinishFunction(); 2701 return Fn; 2702 } 2703 2704 /// This function emits a helper that copies all the reduction variables from 2705 /// the team into the provided global buffer for the reduction variables. 2706 /// 2707 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2708 /// For all data entries D in reduce_data: 2709 /// Copy buffer.D[Idx] to local D; 2710 static llvm::Value *emitGlobalToListCopyFunction( 2711 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2712 QualType ReductionArrayTy, SourceLocation Loc, 2713 const RecordDecl *TeamReductionRec, 2714 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2715 &VarFieldMap) { 2716 ASTContext &C = CGM.getContext(); 2717 2718 // Buffer: global reduction buffer. 2719 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2720 C.VoidPtrTy, ImplicitParamDecl::Other); 2721 // Idx: index of the buffer. 2722 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2723 ImplicitParamDecl::Other); 2724 // ReduceList: thread local Reduce list. 2725 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2726 C.VoidPtrTy, ImplicitParamDecl::Other); 2727 FunctionArgList Args; 2728 Args.push_back(&BufferArg); 2729 Args.push_back(&IdxArg); 2730 Args.push_back(&ReduceListArg); 2731 2732 const CGFunctionInfo &CGFI = 2733 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2734 auto *Fn = llvm::Function::Create( 2735 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2736 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2737 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2738 Fn->setDoesNotRecurse(); 2739 CodeGenFunction CGF(CGM); 2740 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2741 2742 CGBuilderTy &Bld = CGF.Builder; 2743 2744 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2745 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2746 Address LocalReduceList( 2747 Bld.CreatePointerBitCastOrAddrSpaceCast( 2748 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2749 C.VoidPtrTy, Loc), 2750 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2751 CGF.getPointerAlign()); 2752 QualType StaticTy = C.getRecordType(TeamReductionRec); 2753 llvm::Type *LLVMReductionsBufferTy = 2754 CGM.getTypes().ConvertTypeForMem(StaticTy); 2755 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2756 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2757 LLVMReductionsBufferTy->getPointerTo()); 2758 2759 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2760 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2761 /*Volatile=*/false, C.IntTy, 2762 Loc)}; 2763 unsigned Idx = 0; 2764 for (const Expr *Private : Privates) { 2765 // Reduce element = LocalReduceList[i] 2766 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2767 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2768 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2769 // elemptr = ((CopyType*)(elemptrptr)) + I 2770 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2771 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2772 Address ElemPtr = 2773 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2774 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2775 // Global = Buffer.VD[Idx]; 2776 const FieldDecl *FD = VarFieldMap.lookup(VD); 2777 LValue GlobLVal = CGF.EmitLValueForField( 2778 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2779 Address GlobAddr = GlobLVal.getAddress(CGF); 2780 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2781 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2782 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2783 switch (CGF.getEvaluationKind(Private->getType())) { 2784 case TEK_Scalar: { 2785 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2786 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2787 LValueBaseInfo(AlignmentSource::Type), 2788 TBAAAccessInfo()); 2789 break; 2790 } 2791 case TEK_Complex: { 2792 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2793 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2794 /*isInit=*/false); 2795 break; 2796 } 2797 case TEK_Aggregate: 2798 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2799 GlobLVal, Private->getType(), 2800 AggValueSlot::DoesNotOverlap); 2801 break; 2802 } 2803 ++Idx; 2804 } 2805 2806 CGF.FinishFunction(); 2807 return Fn; 2808 } 2809 2810 /// This function emits a helper that reduces all the reduction variables from 2811 /// the team into the provided global buffer for the reduction variables. 2812 /// 2813 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2814 /// void *GlobPtrs[]; 2815 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2816 /// ... 2817 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2818 /// reduce_function(reduce_data, GlobPtrs); 2819 static llvm::Value *emitGlobalToListReduceFunction( 2820 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2821 QualType ReductionArrayTy, SourceLocation Loc, 2822 const RecordDecl *TeamReductionRec, 2823 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2824 &VarFieldMap, 2825 llvm::Function *ReduceFn) { 2826 ASTContext &C = CGM.getContext(); 2827 2828 // Buffer: global reduction buffer. 2829 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2830 C.VoidPtrTy, ImplicitParamDecl::Other); 2831 // Idx: index of the buffer. 2832 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2833 ImplicitParamDecl::Other); 2834 // ReduceList: thread local Reduce list. 2835 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2836 C.VoidPtrTy, ImplicitParamDecl::Other); 2837 FunctionArgList Args; 2838 Args.push_back(&BufferArg); 2839 Args.push_back(&IdxArg); 2840 Args.push_back(&ReduceListArg); 2841 2842 const CGFunctionInfo &CGFI = 2843 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2844 auto *Fn = llvm::Function::Create( 2845 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2846 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2847 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2848 Fn->setDoesNotRecurse(); 2849 CodeGenFunction CGF(CGM); 2850 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2851 2852 CGBuilderTy &Bld = CGF.Builder; 2853 2854 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2855 QualType StaticTy = C.getRecordType(TeamReductionRec); 2856 llvm::Type *LLVMReductionsBufferTy = 2857 CGM.getTypes().ConvertTypeForMem(StaticTy); 2858 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2859 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2860 LLVMReductionsBufferTy->getPointerTo()); 2861 2862 // 1. Build a list of reduction variables. 2863 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2864 Address ReductionList = 2865 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2866 auto IPriv = Privates.begin(); 2867 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2868 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2869 /*Volatile=*/false, C.IntTy, 2870 Loc)}; 2871 unsigned Idx = 0; 2872 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2873 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2874 // Global = Buffer.VD[Idx]; 2875 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2876 const FieldDecl *FD = VarFieldMap.lookup(VD); 2877 LValue GlobLVal = CGF.EmitLValueForField( 2878 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2879 Address GlobAddr = GlobLVal.getAddress(CGF); 2880 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2881 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2882 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2883 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2884 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2885 // Store array size. 2886 ++Idx; 2887 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2888 llvm::Value *Size = CGF.Builder.CreateIntCast( 2889 CGF.getVLASize( 2890 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2891 .NumElts, 2892 CGF.SizeTy, /*isSigned=*/false); 2893 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2894 Elem); 2895 } 2896 } 2897 2898 // Call reduce_function(ReduceList, GlobalReduceList) 2899 llvm::Value *GlobalReduceList = 2900 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2901 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2902 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2903 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2904 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2905 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2906 CGF.FinishFunction(); 2907 return Fn; 2908 } 2909 2910 /// 2911 /// Design of OpenMP reductions on the GPU 2912 /// 2913 /// Consider a typical OpenMP program with one or more reduction 2914 /// clauses: 2915 /// 2916 /// float foo; 2917 /// double bar; 2918 /// #pragma omp target teams distribute parallel for \ 2919 /// reduction(+:foo) reduction(*:bar) 2920 /// for (int i = 0; i < N; i++) { 2921 /// foo += A[i]; bar *= B[i]; 2922 /// } 2923 /// 2924 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2925 /// all teams. In our OpenMP implementation on the NVPTX device an 2926 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2927 /// within a team are mapped to CUDA threads within a threadblock. 2928 /// Our goal is to efficiently aggregate values across all OpenMP 2929 /// threads such that: 2930 /// 2931 /// - the compiler and runtime are logically concise, and 2932 /// - the reduction is performed efficiently in a hierarchical 2933 /// manner as follows: within OpenMP threads in the same warp, 2934 /// across warps in a threadblock, and finally across teams on 2935 /// the NVPTX device. 2936 /// 2937 /// Introduction to Decoupling 2938 /// 2939 /// We would like to decouple the compiler and the runtime so that the 2940 /// latter is ignorant of the reduction variables (number, data types) 2941 /// and the reduction operators. This allows a simpler interface 2942 /// and implementation while still attaining good performance. 2943 /// 2944 /// Pseudocode for the aforementioned OpenMP program generated by the 2945 /// compiler is as follows: 2946 /// 2947 /// 1. Create private copies of reduction variables on each OpenMP 2948 /// thread: 'foo_private', 'bar_private' 2949 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2950 /// to it and writes the result in 'foo_private' and 'bar_private' 2951 /// respectively. 2952 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2953 /// and store the result on the team master: 2954 /// 2955 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2956 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2957 /// 2958 /// where: 2959 /// struct ReduceData { 2960 /// double *foo; 2961 /// double *bar; 2962 /// } reduceData 2963 /// reduceData.foo = &foo_private 2964 /// reduceData.bar = &bar_private 2965 /// 2966 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2967 /// auxiliary functions generated by the compiler that operate on 2968 /// variables of type 'ReduceData'. They aid the runtime perform 2969 /// algorithmic steps in a data agnostic manner. 2970 /// 2971 /// 'shuffleReduceFn' is a pointer to a function that reduces data 2972 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 2973 /// same warp. It takes the following arguments as input: 2974 /// 2975 /// a. variable of type 'ReduceData' on the calling lane, 2976 /// b. its lane_id, 2977 /// c. an offset relative to the current lane_id to generate a 2978 /// remote_lane_id. The remote lane contains the second 2979 /// variable of type 'ReduceData' that is to be reduced. 2980 /// d. an algorithm version parameter determining which reduction 2981 /// algorithm to use. 2982 /// 2983 /// 'shuffleReduceFn' retrieves data from the remote lane using 2984 /// efficient GPU shuffle intrinsics and reduces, using the 2985 /// algorithm specified by the 4th parameter, the two operands 2986 /// element-wise. The result is written to the first operand. 2987 /// 2988 /// Different reduction algorithms are implemented in different 2989 /// runtime functions, all calling 'shuffleReduceFn' to perform 2990 /// the essential reduction step. Therefore, based on the 4th 2991 /// parameter, this function behaves slightly differently to 2992 /// cooperate with the runtime to ensure correctness under 2993 /// different circumstances. 2994 /// 2995 /// 'InterWarpCpyFn' is a pointer to a function that transfers 2996 /// reduced variables across warps. It tunnels, through CUDA 2997 /// shared memory, the thread-private data of type 'ReduceData' 2998 /// from lane 0 of each warp to a lane in the first warp. 2999 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3000 /// The last team writes the global reduced value to memory. 3001 /// 3002 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3003 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3004 /// scratchpadCopyFn, loadAndReduceFn) 3005 /// 3006 /// 'scratchpadCopyFn' is a helper that stores reduced 3007 /// data from the team master to a scratchpad array in 3008 /// global memory. 3009 /// 3010 /// 'loadAndReduceFn' is a helper that loads data from 3011 /// the scratchpad array and reduces it with the input 3012 /// operand. 3013 /// 3014 /// These compiler generated functions hide address 3015 /// calculation and alignment information from the runtime. 3016 /// 5. if ret == 1: 3017 /// The team master of the last team stores the reduced 3018 /// result to the globals in memory. 3019 /// foo += reduceData.foo; bar *= reduceData.bar 3020 /// 3021 /// 3022 /// Warp Reduction Algorithms 3023 /// 3024 /// On the warp level, we have three algorithms implemented in the 3025 /// OpenMP runtime depending on the number of active lanes: 3026 /// 3027 /// Full Warp Reduction 3028 /// 3029 /// The reduce algorithm within a warp where all lanes are active 3030 /// is implemented in the runtime as follows: 3031 /// 3032 /// full_warp_reduce(void *reduce_data, 3033 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3034 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3035 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3036 /// } 3037 /// 3038 /// The algorithm completes in log(2, WARPSIZE) steps. 3039 /// 3040 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3041 /// not used therefore we save instructions by not retrieving lane_id 3042 /// from the corresponding special registers. The 4th parameter, which 3043 /// represents the version of the algorithm being used, is set to 0 to 3044 /// signify full warp reduction. 3045 /// 3046 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3047 /// 3048 /// #reduce_elem refers to an element in the local lane's data structure 3049 /// #remote_elem is retrieved from a remote lane 3050 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3051 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3052 /// 3053 /// Contiguous Partial Warp Reduction 3054 /// 3055 /// This reduce algorithm is used within a warp where only the first 3056 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3057 /// number of OpenMP threads in a parallel region is not a multiple of 3058 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3059 /// 3060 /// void 3061 /// contiguous_partial_reduce(void *reduce_data, 3062 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3063 /// int size, int lane_id) { 3064 /// int curr_size; 3065 /// int offset; 3066 /// curr_size = size; 3067 /// mask = curr_size/2; 3068 /// while (offset>0) { 3069 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3070 /// curr_size = (curr_size+1)/2; 3071 /// offset = curr_size/2; 3072 /// } 3073 /// } 3074 /// 3075 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3076 /// 3077 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3078 /// if (lane_id < offset) 3079 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3080 /// else 3081 /// reduce_elem = remote_elem 3082 /// 3083 /// This algorithm assumes that the data to be reduced are located in a 3084 /// contiguous subset of lanes starting from the first. When there is 3085 /// an odd number of active lanes, the data in the last lane is not 3086 /// aggregated with any other lane's dat but is instead copied over. 3087 /// 3088 /// Dispersed Partial Warp Reduction 3089 /// 3090 /// This algorithm is used within a warp when any discontiguous subset of 3091 /// lanes are active. It is used to implement the reduction operation 3092 /// across lanes in an OpenMP simd region or in a nested parallel region. 3093 /// 3094 /// void 3095 /// dispersed_partial_reduce(void *reduce_data, 3096 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3097 /// int size, remote_id; 3098 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3099 /// do { 3100 /// remote_id = next_active_lane_id_right_after_me(); 3101 /// # the above function returns 0 of no active lane 3102 /// # is present right after the current lane. 3103 /// size = number_of_active_lanes_in_this_warp(); 3104 /// logical_lane_id /= 2; 3105 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3106 /// remote_id-1-threadIdx.x, 2); 3107 /// } while (logical_lane_id % 2 == 0 && size > 1); 3108 /// } 3109 /// 3110 /// There is no assumption made about the initial state of the reduction. 3111 /// Any number of lanes (>=1) could be active at any position. The reduction 3112 /// result is returned in the first active lane. 3113 /// 3114 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3115 /// 3116 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3117 /// if (lane_id % 2 == 0 && offset > 0) 3118 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3119 /// else 3120 /// reduce_elem = remote_elem 3121 /// 3122 /// 3123 /// Intra-Team Reduction 3124 /// 3125 /// This function, as implemented in the runtime call 3126 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3127 /// threads in a team. It first reduces within a warp using the 3128 /// aforementioned algorithms. We then proceed to gather all such 3129 /// reduced values at the first warp. 3130 /// 3131 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3132 /// data from each of the "warp master" (zeroth lane of each warp, where 3133 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3134 /// a mathematical sense) the problem of reduction across warp masters in 3135 /// a block to the problem of warp reduction. 3136 /// 3137 /// 3138 /// Inter-Team Reduction 3139 /// 3140 /// Once a team has reduced its data to a single value, it is stored in 3141 /// a global scratchpad array. Since each team has a distinct slot, this 3142 /// can be done without locking. 3143 /// 3144 /// The last team to write to the scratchpad array proceeds to reduce the 3145 /// scratchpad array. One or more workers in the last team use the helper 3146 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3147 /// the k'th worker reduces every k'th element. 3148 /// 3149 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3150 /// reduce across workers and compute a globally reduced value. 3151 /// 3152 void CGOpenMPRuntimeGPU::emitReduction( 3153 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3154 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3155 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3156 if (!CGF.HaveInsertPoint()) 3157 return; 3158 3159 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3160 #ifndef NDEBUG 3161 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3162 #endif 3163 3164 if (Options.SimpleReduction) { 3165 assert(!TeamsReduction && !ParallelReduction && 3166 "Invalid reduction selection in emitReduction."); 3167 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3168 ReductionOps, Options); 3169 return; 3170 } 3171 3172 assert((TeamsReduction || ParallelReduction) && 3173 "Invalid reduction selection in emitReduction."); 3174 3175 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3176 // RedList, shuffle_reduce_func, interwarp_copy_func); 3177 // or 3178 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3179 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3180 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3181 3182 llvm::Value *Res; 3183 ASTContext &C = CGM.getContext(); 3184 // 1. Build a list of reduction variables. 3185 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3186 auto Size = RHSExprs.size(); 3187 for (const Expr *E : Privates) { 3188 if (E->getType()->isVariablyModifiedType()) 3189 // Reserve place for array size. 3190 ++Size; 3191 } 3192 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3193 QualType ReductionArrayTy = 3194 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3195 /*IndexTypeQuals=*/0); 3196 Address ReductionList = 3197 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3198 auto IPriv = Privates.begin(); 3199 unsigned Idx = 0; 3200 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3201 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3202 CGF.Builder.CreateStore( 3203 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3204 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3205 Elem); 3206 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3207 // Store array size. 3208 ++Idx; 3209 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3210 llvm::Value *Size = CGF.Builder.CreateIntCast( 3211 CGF.getVLASize( 3212 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3213 .NumElts, 3214 CGF.SizeTy, /*isSigned=*/false); 3215 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3216 Elem); 3217 } 3218 } 3219 3220 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3221 ReductionList.getPointer(), CGF.VoidPtrTy); 3222 llvm::Function *ReductionFn = emitReductionFunction( 3223 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3224 LHSExprs, RHSExprs, ReductionOps); 3225 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3226 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3227 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3228 llvm::Value *InterWarpCopyFn = 3229 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3230 3231 if (ParallelReduction) { 3232 llvm::Value *Args[] = {RTLoc, 3233 ThreadId, 3234 CGF.Builder.getInt32(RHSExprs.size()), 3235 ReductionArrayTySize, 3236 RL, 3237 ShuffleAndReduceFn, 3238 InterWarpCopyFn}; 3239 3240 Res = CGF.EmitRuntimeCall( 3241 OMPBuilder.getOrCreateRuntimeFunction( 3242 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3243 Args); 3244 } else { 3245 assert(TeamsReduction && "expected teams reduction."); 3246 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3247 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3248 int Cnt = 0; 3249 for (const Expr *DRE : Privates) { 3250 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3251 ++Cnt; 3252 } 3253 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3254 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3255 C.getLangOpts().OpenMPCUDAReductionBufNum); 3256 TeamsReductions.push_back(TeamReductionRec); 3257 if (!KernelTeamsReductionPtr) { 3258 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3259 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3260 llvm::GlobalValue::InternalLinkage, nullptr, 3261 "_openmp_teams_reductions_buffer_$_$ptr"); 3262 } 3263 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3264 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3265 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3266 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3267 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3268 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3269 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3270 ReductionFn); 3271 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3272 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3273 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3274 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3275 ReductionFn); 3276 3277 llvm::Value *Args[] = { 3278 RTLoc, 3279 ThreadId, 3280 GlobalBufferPtr, 3281 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3282 RL, 3283 ShuffleAndReduceFn, 3284 InterWarpCopyFn, 3285 GlobalToBufferCpyFn, 3286 GlobalToBufferRedFn, 3287 BufferToGlobalCpyFn, 3288 BufferToGlobalRedFn}; 3289 3290 Res = CGF.EmitRuntimeCall( 3291 OMPBuilder.getOrCreateRuntimeFunction( 3292 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3293 Args); 3294 } 3295 3296 // 5. Build if (res == 1) 3297 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3298 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3299 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3300 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3301 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3302 3303 // 6. Build then branch: where we have reduced values in the master 3304 // thread in each team. 3305 // __kmpc_end_reduce{_nowait}(<gtid>); 3306 // break; 3307 CGF.EmitBlock(ThenBB); 3308 3309 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3310 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3311 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3312 auto IPriv = Privates.begin(); 3313 auto ILHS = LHSExprs.begin(); 3314 auto IRHS = RHSExprs.begin(); 3315 for (const Expr *E : ReductionOps) { 3316 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3317 cast<DeclRefExpr>(*IRHS)); 3318 ++IPriv; 3319 ++ILHS; 3320 ++IRHS; 3321 } 3322 }; 3323 llvm::Value *EndArgs[] = {ThreadId}; 3324 RegionCodeGenTy RCG(CodeGen); 3325 NVPTXActionTy Action( 3326 nullptr, llvm::None, 3327 OMPBuilder.getOrCreateRuntimeFunction( 3328 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3329 EndArgs); 3330 RCG.setAction(Action); 3331 RCG(CGF); 3332 // There is no need to emit line number for unconditional branch. 3333 (void)ApplyDebugLocation::CreateEmpty(CGF); 3334 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3335 } 3336 3337 const VarDecl * 3338 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3339 const VarDecl *NativeParam) const { 3340 if (!NativeParam->getType()->isReferenceType()) 3341 return NativeParam; 3342 QualType ArgType = NativeParam->getType(); 3343 QualifierCollector QC; 3344 const Type *NonQualTy = QC.strip(ArgType); 3345 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3346 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3347 if (Attr->getCaptureKind() == OMPC_map) { 3348 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3349 LangAS::opencl_global); 3350 } 3351 } 3352 ArgType = CGM.getContext().getPointerType(PointeeTy); 3353 QC.addRestrict(); 3354 enum { NVPTX_local_addr = 5 }; 3355 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3356 ArgType = QC.apply(CGM.getContext(), ArgType); 3357 if (isa<ImplicitParamDecl>(NativeParam)) 3358 return ImplicitParamDecl::Create( 3359 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3360 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3361 return ParmVarDecl::Create( 3362 CGM.getContext(), 3363 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3364 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3365 NativeParam->getIdentifier(), ArgType, 3366 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3367 } 3368 3369 Address 3370 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3371 const VarDecl *NativeParam, 3372 const VarDecl *TargetParam) const { 3373 assert(NativeParam != TargetParam && 3374 NativeParam->getType()->isReferenceType() && 3375 "Native arg must not be the same as target arg."); 3376 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3377 QualType NativeParamType = NativeParam->getType(); 3378 QualifierCollector QC; 3379 const Type *NonQualTy = QC.strip(NativeParamType); 3380 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3381 unsigned NativePointeeAddrSpace = 3382 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3383 QualType TargetTy = TargetParam->getType(); 3384 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3385 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3386 // First cast to generic. 3387 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3388 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3389 /*AddrSpace=*/0)); 3390 // Cast from generic to native address space. 3391 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3392 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3393 NativePointeeAddrSpace)); 3394 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3395 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3396 NativeParamType); 3397 return NativeParamAddr; 3398 } 3399 3400 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3401 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3402 ArrayRef<llvm::Value *> Args) const { 3403 SmallVector<llvm::Value *, 4> TargetArgs; 3404 TargetArgs.reserve(Args.size()); 3405 auto *FnType = OutlinedFn.getFunctionType(); 3406 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3407 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3408 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3409 break; 3410 } 3411 llvm::Type *TargetType = FnType->getParamType(I); 3412 llvm::Value *NativeArg = Args[I]; 3413 if (!TargetType->isPointerTy()) { 3414 TargetArgs.emplace_back(NativeArg); 3415 continue; 3416 } 3417 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3418 NativeArg, 3419 NativeArg->getType()->getPointerElementType()->getPointerTo()); 3420 TargetArgs.emplace_back( 3421 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3422 } 3423 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3424 } 3425 3426 /// Emit function which wraps the outline parallel region 3427 /// and controls the arguments which are passed to this function. 3428 /// The wrapper ensures that the outlined function is called 3429 /// with the correct arguments when data is shared. 3430 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3431 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3432 ASTContext &Ctx = CGM.getContext(); 3433 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3434 3435 // Create a function that takes as argument the source thread. 3436 FunctionArgList WrapperArgs; 3437 QualType Int16QTy = 3438 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3439 QualType Int32QTy = 3440 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3441 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3442 /*Id=*/nullptr, Int16QTy, 3443 ImplicitParamDecl::Other); 3444 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3445 /*Id=*/nullptr, Int32QTy, 3446 ImplicitParamDecl::Other); 3447 WrapperArgs.emplace_back(&ParallelLevelArg); 3448 WrapperArgs.emplace_back(&WrapperArg); 3449 3450 const CGFunctionInfo &CGFI = 3451 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3452 3453 auto *Fn = llvm::Function::Create( 3454 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3455 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3456 3457 // Ensure we do not inline the function. This is trivially true for the ones 3458 // passed to __kmpc_fork_call but the ones calles in serialized regions 3459 // could be inlined. This is not a perfect but it is closer to the invariant 3460 // we want, namely, every data environment starts with a new function. 3461 // TODO: We should pass the if condition to the runtime function and do the 3462 // handling there. Much cleaner code. 3463 Fn->addFnAttr(llvm::Attribute::NoInline); 3464 3465 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3466 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3467 Fn->setDoesNotRecurse(); 3468 3469 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3470 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3471 D.getBeginLoc(), D.getBeginLoc()); 3472 3473 const auto *RD = CS.getCapturedRecordDecl(); 3474 auto CurField = RD->field_begin(); 3475 3476 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3477 /*Name=*/".zero.addr"); 3478 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 3479 // Get the array of arguments. 3480 SmallVector<llvm::Value *, 8> Args; 3481 3482 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3483 Args.emplace_back(ZeroAddr.getPointer()); 3484 3485 CGBuilderTy &Bld = CGF.Builder; 3486 auto CI = CS.capture_begin(); 3487 3488 // Use global memory for data sharing. 3489 // Handle passing of global args to workers. 3490 Address GlobalArgs = 3491 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3492 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3493 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3494 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3495 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3496 DataSharingArgs); 3497 3498 // Retrieve the shared variables from the list of references returned 3499 // by the runtime. Pass the variables to the outlined function. 3500 Address SharedArgListAddress = Address::invalid(); 3501 if (CS.capture_size() > 0 || 3502 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3503 SharedArgListAddress = CGF.EmitLoadOfPointer( 3504 GlobalArgs, CGF.getContext() 3505 .getPointerType(CGF.getContext().getPointerType( 3506 CGF.getContext().VoidPtrTy)) 3507 .castAs<PointerType>()); 3508 } 3509 unsigned Idx = 0; 3510 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3511 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3512 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3513 Src, CGF.SizeTy->getPointerTo()); 3514 llvm::Value *LB = CGF.EmitLoadOfScalar( 3515 TypedAddress, 3516 /*Volatile=*/false, 3517 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3518 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3519 Args.emplace_back(LB); 3520 ++Idx; 3521 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3522 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3523 Src, CGF.SizeTy->getPointerTo()); 3524 llvm::Value *UB = CGF.EmitLoadOfScalar( 3525 TypedAddress, 3526 /*Volatile=*/false, 3527 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3528 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3529 Args.emplace_back(UB); 3530 ++Idx; 3531 } 3532 if (CS.capture_size() > 0) { 3533 ASTContext &CGFContext = CGF.getContext(); 3534 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3535 QualType ElemTy = CurField->getType(); 3536 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3537 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3538 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3539 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3540 /*Volatile=*/false, 3541 CGFContext.getPointerType(ElemTy), 3542 CI->getLocation()); 3543 if (CI->capturesVariableByCopy() && 3544 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3545 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3546 CI->getLocation()); 3547 } 3548 Args.emplace_back(Arg); 3549 } 3550 } 3551 3552 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3553 CGF.FinishFunction(); 3554 return Fn; 3555 } 3556 3557 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3558 const Decl *D) { 3559 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3560 return; 3561 3562 assert(D && "Expected function or captured|block decl."); 3563 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3564 "Function is registered already."); 3565 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3566 "Team is set but not processed."); 3567 const Stmt *Body = nullptr; 3568 bool NeedToDelayGlobalization = false; 3569 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3570 Body = FD->getBody(); 3571 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3572 Body = BD->getBody(); 3573 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3574 Body = CD->getBody(); 3575 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3576 if (NeedToDelayGlobalization && 3577 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3578 return; 3579 } 3580 if (!Body) 3581 return; 3582 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3583 VarChecker.Visit(Body); 3584 const RecordDecl *GlobalizedVarsRecord = 3585 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3586 TeamAndReductions.first = nullptr; 3587 TeamAndReductions.second.clear(); 3588 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3589 VarChecker.getEscapedVariableLengthDecls(); 3590 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3591 return; 3592 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3593 I->getSecond().MappedParams = 3594 std::make_unique<CodeGenFunction::OMPMapVars>(); 3595 I->getSecond().EscapedParameters.insert( 3596 VarChecker.getEscapedParameters().begin(), 3597 VarChecker.getEscapedParameters().end()); 3598 I->getSecond().EscapedVariableLengthDecls.append( 3599 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3600 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3601 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3602 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3603 Data.insert(std::make_pair(VD, MappedVarData())); 3604 } 3605 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3606 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3607 VarChecker.Visit(Body); 3608 I->getSecond().SecondaryLocalVarData.emplace(); 3609 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3610 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3611 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3612 Data.insert(std::make_pair(VD, MappedVarData())); 3613 } 3614 } 3615 if (!NeedToDelayGlobalization) { 3616 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3617 struct GlobalizationScope final : EHScopeStack::Cleanup { 3618 GlobalizationScope() = default; 3619 3620 void Emit(CodeGenFunction &CGF, Flags flags) override { 3621 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3622 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3623 } 3624 }; 3625 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3626 } 3627 } 3628 3629 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3630 const VarDecl *VD) { 3631 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3632 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3633 auto AS = LangAS::Default; 3634 switch (A->getAllocatorType()) { 3635 // Use the default allocator here as by default local vars are 3636 // threadlocal. 3637 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3638 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3639 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3640 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3641 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3642 // Follow the user decision - use default allocation. 3643 return Address::invalid(); 3644 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3645 // TODO: implement aupport for user-defined allocators. 3646 return Address::invalid(); 3647 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3648 AS = LangAS::cuda_constant; 3649 break; 3650 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3651 AS = LangAS::cuda_shared; 3652 break; 3653 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3654 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3655 break; 3656 } 3657 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3658 auto *GV = new llvm::GlobalVariable( 3659 CGM.getModule(), VarTy, /*isConstant=*/false, 3660 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3661 VD->getName(), 3662 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3663 CGM.getContext().getTargetAddressSpace(AS)); 3664 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3665 GV->setAlignment(Align.getAsAlign()); 3666 return Address( 3667 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3668 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3669 VD->getType().getAddressSpace()))), 3670 Align); 3671 } 3672 3673 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3674 return Address::invalid(); 3675 3676 VD = VD->getCanonicalDecl(); 3677 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3678 if (I == FunctionGlobalizedDecls.end()) 3679 return Address::invalid(); 3680 auto VDI = I->getSecond().LocalVarData.find(VD); 3681 if (VDI != I->getSecond().LocalVarData.end()) 3682 return VDI->second.PrivateAddr; 3683 if (VD->hasAttrs()) { 3684 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3685 E(VD->attr_end()); 3686 IT != E; ++IT) { 3687 auto VDI = I->getSecond().LocalVarData.find( 3688 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3689 ->getCanonicalDecl()); 3690 if (VDI != I->getSecond().LocalVarData.end()) 3691 return VDI->second.PrivateAddr; 3692 } 3693 } 3694 3695 return Address::invalid(); 3696 } 3697 3698 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3699 FunctionGlobalizedDecls.erase(CGF.CurFn); 3700 CGOpenMPRuntime::functionFinished(CGF); 3701 } 3702 3703 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3704 CodeGenFunction &CGF, const OMPLoopDirective &S, 3705 OpenMPDistScheduleClauseKind &ScheduleKind, 3706 llvm::Value *&Chunk) const { 3707 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3708 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3709 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3710 Chunk = CGF.EmitScalarConversion( 3711 RT.getGPUNumThreads(CGF), 3712 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3713 S.getIterationVariable()->getType(), S.getBeginLoc()); 3714 return; 3715 } 3716 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3717 CGF, S, ScheduleKind, Chunk); 3718 } 3719 3720 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3721 CodeGenFunction &CGF, const OMPLoopDirective &S, 3722 OpenMPScheduleClauseKind &ScheduleKind, 3723 const Expr *&ChunkExpr) const { 3724 ScheduleKind = OMPC_SCHEDULE_static; 3725 // Chunk size is 1 in this case. 3726 llvm::APInt ChunkSize(32, 1); 3727 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3728 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3729 SourceLocation()); 3730 } 3731 3732 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3733 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3734 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3735 " Expected target-based directive."); 3736 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3737 for (const CapturedStmt::Capture &C : CS->captures()) { 3738 // Capture variables captured by reference in lambdas for target-based 3739 // directives. 3740 if (!C.capturesVariable()) 3741 continue; 3742 const VarDecl *VD = C.getCapturedVar(); 3743 const auto *RD = VD->getType() 3744 .getCanonicalType() 3745 .getNonReferenceType() 3746 ->getAsCXXRecordDecl(); 3747 if (!RD || !RD->isLambda()) 3748 continue; 3749 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3750 LValue VDLVal; 3751 if (VD->getType().getCanonicalType()->isReferenceType()) 3752 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3753 else 3754 VDLVal = CGF.MakeAddrLValue( 3755 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3756 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3757 FieldDecl *ThisCapture = nullptr; 3758 RD->getCaptureFields(Captures, ThisCapture); 3759 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3760 LValue ThisLVal = 3761 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3762 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3763 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3764 } 3765 for (const LambdaCapture &LC : RD->captures()) { 3766 if (LC.getCaptureKind() != LCK_ByRef) 3767 continue; 3768 const VarDecl *VD = LC.getCapturedVar(); 3769 if (!CS->capturesVariable(VD)) 3770 continue; 3771 auto It = Captures.find(VD); 3772 assert(It != Captures.end() && "Found lambda capture without field."); 3773 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3774 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3775 if (VD->getType().getCanonicalType()->isReferenceType()) 3776 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3777 VD->getType().getCanonicalType()) 3778 .getAddress(CGF); 3779 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3780 } 3781 } 3782 } 3783 3784 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3785 LangAS &AS) { 3786 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3787 return false; 3788 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3789 switch(A->getAllocatorType()) { 3790 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3791 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3792 // Not supported, fallback to the default mem space. 3793 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3794 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3795 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3796 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3797 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3798 AS = LangAS::Default; 3799 return true; 3800 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3801 AS = LangAS::cuda_constant; 3802 return true; 3803 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3804 AS = LangAS::cuda_shared; 3805 return true; 3806 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3807 llvm_unreachable("Expected predefined allocator for the variables with the " 3808 "static storage."); 3809 } 3810 return false; 3811 } 3812 3813 // Get current CudaArch and ignore any unknown values 3814 static CudaArch getCudaArch(CodeGenModule &CGM) { 3815 if (!CGM.getTarget().hasFeature("ptx")) 3816 return CudaArch::UNKNOWN; 3817 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3818 if (Feature.getValue()) { 3819 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3820 if (Arch != CudaArch::UNKNOWN) 3821 return Arch; 3822 } 3823 } 3824 return CudaArch::UNKNOWN; 3825 } 3826 3827 /// Check to see if target architecture supports unified addressing which is 3828 /// a restriction for OpenMP requires clause "unified_shared_memory". 3829 void CGOpenMPRuntimeGPU::processRequiresDirective( 3830 const OMPRequiresDecl *D) { 3831 for (const OMPClause *Clause : D->clauselists()) { 3832 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3833 CudaArch Arch = getCudaArch(CGM); 3834 switch (Arch) { 3835 case CudaArch::SM_20: 3836 case CudaArch::SM_21: 3837 case CudaArch::SM_30: 3838 case CudaArch::SM_32: 3839 case CudaArch::SM_35: 3840 case CudaArch::SM_37: 3841 case CudaArch::SM_50: 3842 case CudaArch::SM_52: 3843 case CudaArch::SM_53: { 3844 SmallString<256> Buffer; 3845 llvm::raw_svector_ostream Out(Buffer); 3846 Out << "Target architecture " << CudaArchToString(Arch) 3847 << " does not support unified addressing"; 3848 CGM.Error(Clause->getBeginLoc(), Out.str()); 3849 return; 3850 } 3851 case CudaArch::SM_60: 3852 case CudaArch::SM_61: 3853 case CudaArch::SM_62: 3854 case CudaArch::SM_70: 3855 case CudaArch::SM_72: 3856 case CudaArch::SM_75: 3857 case CudaArch::SM_80: 3858 case CudaArch::SM_86: 3859 case CudaArch::GFX600: 3860 case CudaArch::GFX601: 3861 case CudaArch::GFX602: 3862 case CudaArch::GFX700: 3863 case CudaArch::GFX701: 3864 case CudaArch::GFX702: 3865 case CudaArch::GFX703: 3866 case CudaArch::GFX704: 3867 case CudaArch::GFX705: 3868 case CudaArch::GFX801: 3869 case CudaArch::GFX802: 3870 case CudaArch::GFX803: 3871 case CudaArch::GFX805: 3872 case CudaArch::GFX810: 3873 case CudaArch::GFX900: 3874 case CudaArch::GFX902: 3875 case CudaArch::GFX904: 3876 case CudaArch::GFX906: 3877 case CudaArch::GFX908: 3878 case CudaArch::GFX909: 3879 case CudaArch::GFX90a: 3880 case CudaArch::GFX90c: 3881 case CudaArch::GFX1010: 3882 case CudaArch::GFX1011: 3883 case CudaArch::GFX1012: 3884 case CudaArch::GFX1013: 3885 case CudaArch::GFX1030: 3886 case CudaArch::GFX1031: 3887 case CudaArch::GFX1032: 3888 case CudaArch::GFX1033: 3889 case CudaArch::GFX1034: 3890 case CudaArch::GFX1035: 3891 case CudaArch::UNUSED: 3892 case CudaArch::UNKNOWN: 3893 break; 3894 case CudaArch::LAST: 3895 llvm_unreachable("Unexpected Cuda arch."); 3896 } 3897 } 3898 } 3899 CGOpenMPRuntime::processRequiresDirective(D); 3900 } 3901 3902 void CGOpenMPRuntimeGPU::clear() { 3903 3904 if (!TeamsReductions.empty()) { 3905 ASTContext &C = CGM.getContext(); 3906 RecordDecl *StaticRD = C.buildImplicitRecord( 3907 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3908 StaticRD->startDefinition(); 3909 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3910 QualType RecTy = C.getRecordType(TeamReductionRec); 3911 auto *Field = FieldDecl::Create( 3912 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3913 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3914 /*BW=*/nullptr, /*Mutable=*/false, 3915 /*InitStyle=*/ICIS_NoInit); 3916 Field->setAccess(AS_public); 3917 StaticRD->addDecl(Field); 3918 } 3919 StaticRD->completeDefinition(); 3920 QualType StaticTy = C.getRecordType(StaticRD); 3921 llvm::Type *LLVMReductionsBufferTy = 3922 CGM.getTypes().ConvertTypeForMem(StaticTy); 3923 // FIXME: nvlink does not handle weak linkage correctly (object with the 3924 // different size are reported as erroneous). 3925 // Restore CommonLinkage as soon as nvlink is fixed. 3926 auto *GV = new llvm::GlobalVariable( 3927 CGM.getModule(), LLVMReductionsBufferTy, 3928 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3929 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3930 "_openmp_teams_reductions_buffer_$_"); 3931 KernelTeamsReductionPtr->setInitializer( 3932 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3933 CGM.VoidPtrTy)); 3934 } 3935 CGOpenMPRuntime::clear(); 3936 } 3937