1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/StmtOpenMP.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Cuda.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
23 #include "llvm/Support/MathExtras.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 using namespace llvm::omp;
28 
29 namespace {
30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
31 class NVPTXActionTy final : public PrePostActionTy {
32   llvm::FunctionCallee EnterCallee = nullptr;
33   ArrayRef<llvm::Value *> EnterArgs;
34   llvm::FunctionCallee ExitCallee = nullptr;
35   ArrayRef<llvm::Value *> ExitArgs;
36   bool Conditional = false;
37   llvm::BasicBlock *ContBlock = nullptr;
38 
39 public:
40   NVPTXActionTy(llvm::FunctionCallee EnterCallee,
41                 ArrayRef<llvm::Value *> EnterArgs,
42                 llvm::FunctionCallee ExitCallee,
43                 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
44       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
45         ExitArgs(ExitArgs), Conditional(Conditional) {}
46   void Enter(CodeGenFunction &CGF) override {
47     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
48     if (Conditional) {
49       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
50       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
51       ContBlock = CGF.createBasicBlock("omp_if.end");
52       // Generate the branch (If-stmt)
53       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
54       CGF.EmitBlock(ThenBlock);
55     }
56   }
57   void Done(CodeGenFunction &CGF) {
58     // Emit the rest of blocks/branches
59     CGF.EmitBranch(ContBlock);
60     CGF.EmitBlock(ContBlock, true);
61   }
62   void Exit(CodeGenFunction &CGF) override {
63     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
64   }
65 };
66 
67 /// A class to track the execution mode when codegening directives within
68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
69 /// to the target region and used by containing directives such as 'parallel'
70 /// to emit optimized code.
71 class ExecutionRuntimeModesRAII {
72 private:
73   CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
74       CGOpenMPRuntimeGPU::EM_Unknown;
75   CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
76   bool SavedRuntimeMode = false;
77   bool *RuntimeMode = nullptr;
78 
79 public:
80   /// Constructor for Non-SPMD mode.
81   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
82       : ExecMode(ExecMode) {
83     SavedExecMode = ExecMode;
84     ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
85   }
86   /// Constructor for SPMD mode.
87   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
88                             bool &RuntimeMode, bool FullRuntimeMode)
89       : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
90     SavedExecMode = ExecMode;
91     SavedRuntimeMode = RuntimeMode;
92     ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
93     RuntimeMode = FullRuntimeMode;
94   }
95   ~ExecutionRuntimeModesRAII() {
96     ExecMode = SavedExecMode;
97     if (RuntimeMode)
98       *RuntimeMode = SavedRuntimeMode;
99   }
100 };
101 
102 /// GPU Configuration:  This information can be derived from cuda registers,
103 /// however, providing compile time constants helps generate more efficient
104 /// code.  For all practical purposes this is fine because the configuration
105 /// is the same for all known NVPTX architectures.
106 enum MachineConfiguration : unsigned {
107   /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
108   /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
109 
110   /// Global memory alignment for performance.
111   GlobalMemoryAlignment = 128,
112 
113   /// Maximal size of the shared memory buffer.
114   SharedMemorySize = 128,
115 };
116 
117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
118   RefExpr = RefExpr->IgnoreParens();
119   if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
120     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
121     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
122       Base = TempASE->getBase()->IgnoreParenImpCasts();
123     RefExpr = Base;
124   } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
125     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
126     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
127       Base = TempOASE->getBase()->IgnoreParenImpCasts();
128     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
129       Base = TempASE->getBase()->IgnoreParenImpCasts();
130     RefExpr = Base;
131   }
132   RefExpr = RefExpr->IgnoreParenImpCasts();
133   if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
134     return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
135   const auto *ME = cast<MemberExpr>(RefExpr);
136   return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
137 }
138 
139 
140 static RecordDecl *buildRecordForGlobalizedVars(
141     ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
142     ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
143     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
144         &MappedDeclsFields, int BufSize) {
145   using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
146   if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
147     return nullptr;
148   SmallVector<VarsDataTy, 4> GlobalizedVars;
149   for (const ValueDecl *D : EscapedDecls)
150     GlobalizedVars.emplace_back(
151         CharUnits::fromQuantity(std::max(
152             C.getDeclAlign(D).getQuantity(),
153             static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
154         D);
155   for (const ValueDecl *D : EscapedDeclsForTeams)
156     GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
157   llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
158     return L.first > R.first;
159   });
160 
161   // Build struct _globalized_locals_ty {
162   //         /*  globalized vars  */[WarSize] align (max(decl_align,
163   //         GlobalMemoryAlignment))
164   //         /*  globalized vars  */ for EscapedDeclsForTeams
165   //       };
166   RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
167   GlobalizedRD->startDefinition();
168   llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
169       EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
170   for (const auto &Pair : GlobalizedVars) {
171     const ValueDecl *VD = Pair.second;
172     QualType Type = VD->getType();
173     if (Type->isLValueReferenceType())
174       Type = C.getPointerType(Type.getNonReferenceType());
175     else
176       Type = Type.getNonReferenceType();
177     SourceLocation Loc = VD->getLocation();
178     FieldDecl *Field;
179     if (SingleEscaped.count(VD)) {
180       Field = FieldDecl::Create(
181           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
182           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
183           /*BW=*/nullptr, /*Mutable=*/false,
184           /*InitStyle=*/ICIS_NoInit);
185       Field->setAccess(AS_public);
186       if (VD->hasAttrs()) {
187         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
188              E(VD->getAttrs().end());
189              I != E; ++I)
190           Field->addAttr(*I);
191       }
192     } else {
193       llvm::APInt ArraySize(32, BufSize);
194       Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
195                                     0);
196       Field = FieldDecl::Create(
197           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
198           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
199           /*BW=*/nullptr, /*Mutable=*/false,
200           /*InitStyle=*/ICIS_NoInit);
201       Field->setAccess(AS_public);
202       llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
203                                      static_cast<CharUnits::QuantityType>(
204                                          GlobalMemoryAlignment)));
205       Field->addAttr(AlignedAttr::CreateImplicit(
206           C, /*IsAlignmentExpr=*/true,
207           IntegerLiteral::Create(C, Align,
208                                  C.getIntTypeForBitwidth(32, /*Signed=*/0),
209                                  SourceLocation()),
210           {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
211     }
212     GlobalizedRD->addDecl(Field);
213     MappedDeclsFields.try_emplace(VD, Field);
214   }
215   GlobalizedRD->completeDefinition();
216   return GlobalizedRD;
217 }
218 
219 /// Get the list of variables that can escape their declaration context.
220 class CheckVarsEscapingDeclContext final
221     : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
222   CodeGenFunction &CGF;
223   llvm::SetVector<const ValueDecl *> EscapedDecls;
224   llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
225   llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
226   RecordDecl *GlobalizedRD = nullptr;
227   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
228   bool AllEscaped = false;
229   bool IsForCombinedParallelRegion = false;
230 
231   void markAsEscaped(const ValueDecl *VD) {
232     // Do not globalize declare target variables.
233     if (!isa<VarDecl>(VD) ||
234         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
235       return;
236     VD = cast<ValueDecl>(VD->getCanonicalDecl());
237     // Use user-specified allocation.
238     if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
239       return;
240     // Variables captured by value must be globalized.
241     if (auto *CSI = CGF.CapturedStmtInfo) {
242       if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
243         // Check if need to capture the variable that was already captured by
244         // value in the outer region.
245         if (!IsForCombinedParallelRegion) {
246           if (!FD->hasAttrs())
247             return;
248           const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
249           if (!Attr)
250             return;
251           if (((Attr->getCaptureKind() != OMPC_map) &&
252                !isOpenMPPrivate(Attr->getCaptureKind())) ||
253               ((Attr->getCaptureKind() == OMPC_map) &&
254                !FD->getType()->isAnyPointerType()))
255             return;
256         }
257         if (!FD->getType()->isReferenceType()) {
258           assert(!VD->getType()->isVariablyModifiedType() &&
259                  "Parameter captured by value with variably modified type");
260           EscapedParameters.insert(VD);
261         } else if (!IsForCombinedParallelRegion) {
262           return;
263         }
264       }
265     }
266     if ((!CGF.CapturedStmtInfo ||
267          (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
268         VD->getType()->isReferenceType())
269       // Do not globalize variables with reference type.
270       return;
271     if (VD->getType()->isVariablyModifiedType())
272       EscapedVariableLengthDecls.insert(VD);
273     else
274       EscapedDecls.insert(VD);
275   }
276 
277   void VisitValueDecl(const ValueDecl *VD) {
278     if (VD->getType()->isLValueReferenceType())
279       markAsEscaped(VD);
280     if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
281       if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
282         const bool SavedAllEscaped = AllEscaped;
283         AllEscaped = VD->getType()->isLValueReferenceType();
284         Visit(VarD->getInit());
285         AllEscaped = SavedAllEscaped;
286       }
287     }
288   }
289   void VisitOpenMPCapturedStmt(const CapturedStmt *S,
290                                ArrayRef<OMPClause *> Clauses,
291                                bool IsCombinedParallelRegion) {
292     if (!S)
293       return;
294     for (const CapturedStmt::Capture &C : S->captures()) {
295       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
296         const ValueDecl *VD = C.getCapturedVar();
297         bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
298         if (IsCombinedParallelRegion) {
299           // Check if the variable is privatized in the combined construct and
300           // those private copies must be shared in the inner parallel
301           // directive.
302           IsForCombinedParallelRegion = false;
303           for (const OMPClause *C : Clauses) {
304             if (!isOpenMPPrivate(C->getClauseKind()) ||
305                 C->getClauseKind() == OMPC_reduction ||
306                 C->getClauseKind() == OMPC_linear ||
307                 C->getClauseKind() == OMPC_private)
308               continue;
309             ArrayRef<const Expr *> Vars;
310             if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
311               Vars = PC->getVarRefs();
312             else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
313               Vars = PC->getVarRefs();
314             else
315               llvm_unreachable("Unexpected clause.");
316             for (const auto *E : Vars) {
317               const Decl *D =
318                   cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
319               if (D == VD->getCanonicalDecl()) {
320                 IsForCombinedParallelRegion = true;
321                 break;
322               }
323             }
324             if (IsForCombinedParallelRegion)
325               break;
326           }
327         }
328         markAsEscaped(VD);
329         if (isa<OMPCapturedExprDecl>(VD))
330           VisitValueDecl(VD);
331         IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
332       }
333     }
334   }
335 
336   void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
337     assert(!GlobalizedRD &&
338            "Record for globalized variables is built already.");
339     ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
340     unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
341     if (IsInTTDRegion)
342       EscapedDeclsForTeams = EscapedDecls.getArrayRef();
343     else
344       EscapedDeclsForParallel = EscapedDecls.getArrayRef();
345     GlobalizedRD = ::buildRecordForGlobalizedVars(
346         CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
347         MappedDeclsFields, WarpSize);
348   }
349 
350 public:
351   CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
352                                ArrayRef<const ValueDecl *> TeamsReductions)
353       : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
354   }
355   virtual ~CheckVarsEscapingDeclContext() = default;
356   void VisitDeclStmt(const DeclStmt *S) {
357     if (!S)
358       return;
359     for (const Decl *D : S->decls())
360       if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
361         VisitValueDecl(VD);
362   }
363   void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
364     if (!D)
365       return;
366     if (!D->hasAssociatedStmt())
367       return;
368     if (const auto *S =
369             dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
370       // Do not analyze directives that do not actually require capturing,
371       // like `omp for` or `omp simd` directives.
372       llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
373       getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
374       if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
375         VisitStmt(S->getCapturedStmt());
376         return;
377       }
378       VisitOpenMPCapturedStmt(
379           S, D->clauses(),
380           CaptureRegions.back() == OMPD_parallel &&
381               isOpenMPDistributeDirective(D->getDirectiveKind()));
382     }
383   }
384   void VisitCapturedStmt(const CapturedStmt *S) {
385     if (!S)
386       return;
387     for (const CapturedStmt::Capture &C : S->captures()) {
388       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
389         const ValueDecl *VD = C.getCapturedVar();
390         markAsEscaped(VD);
391         if (isa<OMPCapturedExprDecl>(VD))
392           VisitValueDecl(VD);
393       }
394     }
395   }
396   void VisitLambdaExpr(const LambdaExpr *E) {
397     if (!E)
398       return;
399     for (const LambdaCapture &C : E->captures()) {
400       if (C.capturesVariable()) {
401         if (C.getCaptureKind() == LCK_ByRef) {
402           const ValueDecl *VD = C.getCapturedVar();
403           markAsEscaped(VD);
404           if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
405             VisitValueDecl(VD);
406         }
407       }
408     }
409   }
410   void VisitBlockExpr(const BlockExpr *E) {
411     if (!E)
412       return;
413     for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
414       if (C.isByRef()) {
415         const VarDecl *VD = C.getVariable();
416         markAsEscaped(VD);
417         if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
418           VisitValueDecl(VD);
419       }
420     }
421   }
422   void VisitCallExpr(const CallExpr *E) {
423     if (!E)
424       return;
425     for (const Expr *Arg : E->arguments()) {
426       if (!Arg)
427         continue;
428       if (Arg->isLValue()) {
429         const bool SavedAllEscaped = AllEscaped;
430         AllEscaped = true;
431         Visit(Arg);
432         AllEscaped = SavedAllEscaped;
433       } else {
434         Visit(Arg);
435       }
436     }
437     Visit(E->getCallee());
438   }
439   void VisitDeclRefExpr(const DeclRefExpr *E) {
440     if (!E)
441       return;
442     const ValueDecl *VD = E->getDecl();
443     if (AllEscaped)
444       markAsEscaped(VD);
445     if (isa<OMPCapturedExprDecl>(VD))
446       VisitValueDecl(VD);
447     else if (const auto *VarD = dyn_cast<VarDecl>(VD))
448       if (VarD->isInitCapture())
449         VisitValueDecl(VD);
450   }
451   void VisitUnaryOperator(const UnaryOperator *E) {
452     if (!E)
453       return;
454     if (E->getOpcode() == UO_AddrOf) {
455       const bool SavedAllEscaped = AllEscaped;
456       AllEscaped = true;
457       Visit(E->getSubExpr());
458       AllEscaped = SavedAllEscaped;
459     } else {
460       Visit(E->getSubExpr());
461     }
462   }
463   void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
464     if (!E)
465       return;
466     if (E->getCastKind() == CK_ArrayToPointerDecay) {
467       const bool SavedAllEscaped = AllEscaped;
468       AllEscaped = true;
469       Visit(E->getSubExpr());
470       AllEscaped = SavedAllEscaped;
471     } else {
472       Visit(E->getSubExpr());
473     }
474   }
475   void VisitExpr(const Expr *E) {
476     if (!E)
477       return;
478     bool SavedAllEscaped = AllEscaped;
479     if (!E->isLValue())
480       AllEscaped = false;
481     for (const Stmt *Child : E->children())
482       if (Child)
483         Visit(Child);
484     AllEscaped = SavedAllEscaped;
485   }
486   void VisitStmt(const Stmt *S) {
487     if (!S)
488       return;
489     for (const Stmt *Child : S->children())
490       if (Child)
491         Visit(Child);
492   }
493 
494   /// Returns the record that handles all the escaped local variables and used
495   /// instead of their original storage.
496   const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
497     if (!GlobalizedRD)
498       buildRecordForGlobalizedVars(IsInTTDRegion);
499     return GlobalizedRD;
500   }
501 
502   /// Returns the field in the globalized record for the escaped variable.
503   const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
504     assert(GlobalizedRD &&
505            "Record for globalized variables must be generated already.");
506     auto I = MappedDeclsFields.find(VD);
507     if (I == MappedDeclsFields.end())
508       return nullptr;
509     return I->getSecond();
510   }
511 
512   /// Returns the list of the escaped local variables/parameters.
513   ArrayRef<const ValueDecl *> getEscapedDecls() const {
514     return EscapedDecls.getArrayRef();
515   }
516 
517   /// Checks if the escaped local variable is actually a parameter passed by
518   /// value.
519   const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
520     return EscapedParameters;
521   }
522 
523   /// Returns the list of the escaped variables with the variably modified
524   /// types.
525   ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
526     return EscapedVariableLengthDecls.getArrayRef();
527   }
528 };
529 } // anonymous namespace
530 
531 /// Get the id of the warp in the block.
532 /// We assume that the warp size is 32, which is always the case
533 /// on the NVPTX device, to generate more efficient code.
534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
535   CGBuilderTy &Bld = CGF.Builder;
536   unsigned LaneIDBits =
537       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
538   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
539   return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
540 }
541 
542 /// Get the id of the current lane in the Warp.
543 /// We assume that the warp size is 32, which is always the case
544 /// on the NVPTX device, to generate more efficient code.
545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
546   CGBuilderTy &Bld = CGF.Builder;
547   unsigned LaneIDBits =
548       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
549   unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
550   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
551   return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
552                        "nvptx_lane_id");
553 }
554 
555 CGOpenMPRuntimeGPU::ExecutionMode
556 CGOpenMPRuntimeGPU::getExecutionMode() const {
557   return CurrentExecutionMode;
558 }
559 
560 static CGOpenMPRuntimeGPU::DataSharingMode
561 getDataSharingMode(CodeGenModule &CGM) {
562   return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
563                                           : CGOpenMPRuntimeGPU::Generic;
564 }
565 
566 /// Check for inner (nested) SPMD construct, if any
567 static bool hasNestedSPMDDirective(ASTContext &Ctx,
568                                    const OMPExecutableDirective &D) {
569   const auto *CS = D.getInnermostCapturedStmt();
570   const auto *Body =
571       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
572   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
573 
574   if (const auto *NestedDir =
575           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
576     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
577     switch (D.getDirectiveKind()) {
578     case OMPD_target:
579       if (isOpenMPParallelDirective(DKind))
580         return true;
581       if (DKind == OMPD_teams) {
582         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
583             /*IgnoreCaptured=*/true);
584         if (!Body)
585           return false;
586         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
587         if (const auto *NND =
588                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
589           DKind = NND->getDirectiveKind();
590           if (isOpenMPParallelDirective(DKind))
591             return true;
592         }
593       }
594       return false;
595     case OMPD_target_teams:
596       return isOpenMPParallelDirective(DKind);
597     case OMPD_target_simd:
598     case OMPD_target_parallel:
599     case OMPD_target_parallel_for:
600     case OMPD_target_parallel_for_simd:
601     case OMPD_target_teams_distribute:
602     case OMPD_target_teams_distribute_simd:
603     case OMPD_target_teams_distribute_parallel_for:
604     case OMPD_target_teams_distribute_parallel_for_simd:
605     case OMPD_parallel:
606     case OMPD_for:
607     case OMPD_parallel_for:
608     case OMPD_parallel_master:
609     case OMPD_parallel_sections:
610     case OMPD_for_simd:
611     case OMPD_parallel_for_simd:
612     case OMPD_cancel:
613     case OMPD_cancellation_point:
614     case OMPD_ordered:
615     case OMPD_threadprivate:
616     case OMPD_allocate:
617     case OMPD_task:
618     case OMPD_simd:
619     case OMPD_sections:
620     case OMPD_section:
621     case OMPD_single:
622     case OMPD_master:
623     case OMPD_critical:
624     case OMPD_taskyield:
625     case OMPD_barrier:
626     case OMPD_taskwait:
627     case OMPD_taskgroup:
628     case OMPD_atomic:
629     case OMPD_flush:
630     case OMPD_depobj:
631     case OMPD_scan:
632     case OMPD_teams:
633     case OMPD_target_data:
634     case OMPD_target_exit_data:
635     case OMPD_target_enter_data:
636     case OMPD_distribute:
637     case OMPD_distribute_simd:
638     case OMPD_distribute_parallel_for:
639     case OMPD_distribute_parallel_for_simd:
640     case OMPD_teams_distribute:
641     case OMPD_teams_distribute_simd:
642     case OMPD_teams_distribute_parallel_for:
643     case OMPD_teams_distribute_parallel_for_simd:
644     case OMPD_target_update:
645     case OMPD_declare_simd:
646     case OMPD_declare_variant:
647     case OMPD_begin_declare_variant:
648     case OMPD_end_declare_variant:
649     case OMPD_declare_target:
650     case OMPD_end_declare_target:
651     case OMPD_declare_reduction:
652     case OMPD_declare_mapper:
653     case OMPD_taskloop:
654     case OMPD_taskloop_simd:
655     case OMPD_master_taskloop:
656     case OMPD_master_taskloop_simd:
657     case OMPD_parallel_master_taskloop:
658     case OMPD_parallel_master_taskloop_simd:
659     case OMPD_requires:
660     case OMPD_unknown:
661     default:
662       llvm_unreachable("Unexpected directive.");
663     }
664   }
665 
666   return false;
667 }
668 
669 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
670                                       const OMPExecutableDirective &D) {
671   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
672   switch (DirectiveKind) {
673   case OMPD_target:
674   case OMPD_target_teams:
675     return hasNestedSPMDDirective(Ctx, D);
676   case OMPD_target_parallel:
677   case OMPD_target_parallel_for:
678   case OMPD_target_parallel_for_simd:
679   case OMPD_target_teams_distribute_parallel_for:
680   case OMPD_target_teams_distribute_parallel_for_simd:
681   case OMPD_target_simd:
682   case OMPD_target_teams_distribute_simd:
683     return true;
684   case OMPD_target_teams_distribute:
685     return false;
686   case OMPD_parallel:
687   case OMPD_for:
688   case OMPD_parallel_for:
689   case OMPD_parallel_master:
690   case OMPD_parallel_sections:
691   case OMPD_for_simd:
692   case OMPD_parallel_for_simd:
693   case OMPD_cancel:
694   case OMPD_cancellation_point:
695   case OMPD_ordered:
696   case OMPD_threadprivate:
697   case OMPD_allocate:
698   case OMPD_task:
699   case OMPD_simd:
700   case OMPD_sections:
701   case OMPD_section:
702   case OMPD_single:
703   case OMPD_master:
704   case OMPD_critical:
705   case OMPD_taskyield:
706   case OMPD_barrier:
707   case OMPD_taskwait:
708   case OMPD_taskgroup:
709   case OMPD_atomic:
710   case OMPD_flush:
711   case OMPD_depobj:
712   case OMPD_scan:
713   case OMPD_teams:
714   case OMPD_target_data:
715   case OMPD_target_exit_data:
716   case OMPD_target_enter_data:
717   case OMPD_distribute:
718   case OMPD_distribute_simd:
719   case OMPD_distribute_parallel_for:
720   case OMPD_distribute_parallel_for_simd:
721   case OMPD_teams_distribute:
722   case OMPD_teams_distribute_simd:
723   case OMPD_teams_distribute_parallel_for:
724   case OMPD_teams_distribute_parallel_for_simd:
725   case OMPD_target_update:
726   case OMPD_declare_simd:
727   case OMPD_declare_variant:
728   case OMPD_begin_declare_variant:
729   case OMPD_end_declare_variant:
730   case OMPD_declare_target:
731   case OMPD_end_declare_target:
732   case OMPD_declare_reduction:
733   case OMPD_declare_mapper:
734   case OMPD_taskloop:
735   case OMPD_taskloop_simd:
736   case OMPD_master_taskloop:
737   case OMPD_master_taskloop_simd:
738   case OMPD_parallel_master_taskloop:
739   case OMPD_parallel_master_taskloop_simd:
740   case OMPD_requires:
741   case OMPD_unknown:
742   default:
743     break;
744   }
745   llvm_unreachable(
746       "Unknown programming model for OpenMP directive on NVPTX target.");
747 }
748 
749 /// Check if the directive is loops based and has schedule clause at all or has
750 /// static scheduling.
751 static bool hasStaticScheduling(const OMPExecutableDirective &D) {
752   assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
753          isOpenMPLoopDirective(D.getDirectiveKind()) &&
754          "Expected loop-based directive.");
755   return !D.hasClausesOfKind<OMPOrderedClause>() &&
756          (!D.hasClausesOfKind<OMPScheduleClause>() ||
757           llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
758                        [](const OMPScheduleClause *C) {
759                          return C->getScheduleKind() == OMPC_SCHEDULE_static;
760                        }));
761 }
762 
763 /// Check for inner (nested) lightweight runtime construct, if any
764 static bool hasNestedLightweightDirective(ASTContext &Ctx,
765                                           const OMPExecutableDirective &D) {
766   assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
767   const auto *CS = D.getInnermostCapturedStmt();
768   const auto *Body =
769       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
770   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
771 
772   if (const auto *NestedDir =
773           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
774     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
775     switch (D.getDirectiveKind()) {
776     case OMPD_target:
777       if (isOpenMPParallelDirective(DKind) &&
778           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
779           hasStaticScheduling(*NestedDir))
780         return true;
781       if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
782         return true;
783       if (DKind == OMPD_parallel) {
784         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
785             /*IgnoreCaptured=*/true);
786         if (!Body)
787           return false;
788         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
789         if (const auto *NND =
790                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
791           DKind = NND->getDirectiveKind();
792           if (isOpenMPWorksharingDirective(DKind) &&
793               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
794             return true;
795         }
796       } else if (DKind == OMPD_teams) {
797         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
798             /*IgnoreCaptured=*/true);
799         if (!Body)
800           return false;
801         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
802         if (const auto *NND =
803                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
804           DKind = NND->getDirectiveKind();
805           if (isOpenMPParallelDirective(DKind) &&
806               isOpenMPWorksharingDirective(DKind) &&
807               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
808             return true;
809           if (DKind == OMPD_parallel) {
810             Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
811                 /*IgnoreCaptured=*/true);
812             if (!Body)
813               return false;
814             ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
815             if (const auto *NND =
816                     dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
817               DKind = NND->getDirectiveKind();
818               if (isOpenMPWorksharingDirective(DKind) &&
819                   isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
820                 return true;
821             }
822           }
823         }
824       }
825       return false;
826     case OMPD_target_teams:
827       if (isOpenMPParallelDirective(DKind) &&
828           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
829           hasStaticScheduling(*NestedDir))
830         return true;
831       if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
832         return true;
833       if (DKind == OMPD_parallel) {
834         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
835             /*IgnoreCaptured=*/true);
836         if (!Body)
837           return false;
838         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
839         if (const auto *NND =
840                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
841           DKind = NND->getDirectiveKind();
842           if (isOpenMPWorksharingDirective(DKind) &&
843               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
844             return true;
845         }
846       }
847       return false;
848     case OMPD_target_parallel:
849       if (DKind == OMPD_simd)
850         return true;
851       return isOpenMPWorksharingDirective(DKind) &&
852              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
853     case OMPD_target_teams_distribute:
854     case OMPD_target_simd:
855     case OMPD_target_parallel_for:
856     case OMPD_target_parallel_for_simd:
857     case OMPD_target_teams_distribute_simd:
858     case OMPD_target_teams_distribute_parallel_for:
859     case OMPD_target_teams_distribute_parallel_for_simd:
860     case OMPD_parallel:
861     case OMPD_for:
862     case OMPD_parallel_for:
863     case OMPD_parallel_master:
864     case OMPD_parallel_sections:
865     case OMPD_for_simd:
866     case OMPD_parallel_for_simd:
867     case OMPD_cancel:
868     case OMPD_cancellation_point:
869     case OMPD_ordered:
870     case OMPD_threadprivate:
871     case OMPD_allocate:
872     case OMPD_task:
873     case OMPD_simd:
874     case OMPD_sections:
875     case OMPD_section:
876     case OMPD_single:
877     case OMPD_master:
878     case OMPD_critical:
879     case OMPD_taskyield:
880     case OMPD_barrier:
881     case OMPD_taskwait:
882     case OMPD_taskgroup:
883     case OMPD_atomic:
884     case OMPD_flush:
885     case OMPD_depobj:
886     case OMPD_scan:
887     case OMPD_teams:
888     case OMPD_target_data:
889     case OMPD_target_exit_data:
890     case OMPD_target_enter_data:
891     case OMPD_distribute:
892     case OMPD_distribute_simd:
893     case OMPD_distribute_parallel_for:
894     case OMPD_distribute_parallel_for_simd:
895     case OMPD_teams_distribute:
896     case OMPD_teams_distribute_simd:
897     case OMPD_teams_distribute_parallel_for:
898     case OMPD_teams_distribute_parallel_for_simd:
899     case OMPD_target_update:
900     case OMPD_declare_simd:
901     case OMPD_declare_variant:
902     case OMPD_begin_declare_variant:
903     case OMPD_end_declare_variant:
904     case OMPD_declare_target:
905     case OMPD_end_declare_target:
906     case OMPD_declare_reduction:
907     case OMPD_declare_mapper:
908     case OMPD_taskloop:
909     case OMPD_taskloop_simd:
910     case OMPD_master_taskloop:
911     case OMPD_master_taskloop_simd:
912     case OMPD_parallel_master_taskloop:
913     case OMPD_parallel_master_taskloop_simd:
914     case OMPD_requires:
915     case OMPD_unknown:
916     default:
917       llvm_unreachable("Unexpected directive.");
918     }
919   }
920 
921   return false;
922 }
923 
924 /// Checks if the construct supports lightweight runtime. It must be SPMD
925 /// construct + inner loop-based construct with static scheduling.
926 static bool supportsLightweightRuntime(ASTContext &Ctx,
927                                        const OMPExecutableDirective &D) {
928   if (!supportsSPMDExecutionMode(Ctx, D))
929     return false;
930   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
931   switch (DirectiveKind) {
932   case OMPD_target:
933   case OMPD_target_teams:
934   case OMPD_target_parallel:
935     return hasNestedLightweightDirective(Ctx, D);
936   case OMPD_target_parallel_for:
937   case OMPD_target_parallel_for_simd:
938   case OMPD_target_teams_distribute_parallel_for:
939   case OMPD_target_teams_distribute_parallel_for_simd:
940     // (Last|First)-privates must be shared in parallel region.
941     return hasStaticScheduling(D);
942   case OMPD_target_simd:
943   case OMPD_target_teams_distribute_simd:
944     return true;
945   case OMPD_target_teams_distribute:
946     return false;
947   case OMPD_parallel:
948   case OMPD_for:
949   case OMPD_parallel_for:
950   case OMPD_parallel_master:
951   case OMPD_parallel_sections:
952   case OMPD_for_simd:
953   case OMPD_parallel_for_simd:
954   case OMPD_cancel:
955   case OMPD_cancellation_point:
956   case OMPD_ordered:
957   case OMPD_threadprivate:
958   case OMPD_allocate:
959   case OMPD_task:
960   case OMPD_simd:
961   case OMPD_sections:
962   case OMPD_section:
963   case OMPD_single:
964   case OMPD_master:
965   case OMPD_critical:
966   case OMPD_taskyield:
967   case OMPD_barrier:
968   case OMPD_taskwait:
969   case OMPD_taskgroup:
970   case OMPD_atomic:
971   case OMPD_flush:
972   case OMPD_depobj:
973   case OMPD_scan:
974   case OMPD_teams:
975   case OMPD_target_data:
976   case OMPD_target_exit_data:
977   case OMPD_target_enter_data:
978   case OMPD_distribute:
979   case OMPD_distribute_simd:
980   case OMPD_distribute_parallel_for:
981   case OMPD_distribute_parallel_for_simd:
982   case OMPD_teams_distribute:
983   case OMPD_teams_distribute_simd:
984   case OMPD_teams_distribute_parallel_for:
985   case OMPD_teams_distribute_parallel_for_simd:
986   case OMPD_target_update:
987   case OMPD_declare_simd:
988   case OMPD_declare_variant:
989   case OMPD_begin_declare_variant:
990   case OMPD_end_declare_variant:
991   case OMPD_declare_target:
992   case OMPD_end_declare_target:
993   case OMPD_declare_reduction:
994   case OMPD_declare_mapper:
995   case OMPD_taskloop:
996   case OMPD_taskloop_simd:
997   case OMPD_master_taskloop:
998   case OMPD_master_taskloop_simd:
999   case OMPD_parallel_master_taskloop:
1000   case OMPD_parallel_master_taskloop_simd:
1001   case OMPD_requires:
1002   case OMPD_unknown:
1003   default:
1004     break;
1005   }
1006   llvm_unreachable(
1007       "Unknown programming model for OpenMP directive on NVPTX target.");
1008 }
1009 
1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1011                                              StringRef ParentName,
1012                                              llvm::Function *&OutlinedFn,
1013                                              llvm::Constant *&OutlinedFnID,
1014                                              bool IsOffloadEntry,
1015                                              const RegionCodeGenTy &CodeGen) {
1016   ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1017   EntryFunctionState EST;
1018   WrapperFunctionsMap.clear();
1019 
1020   // Emit target region as a standalone region.
1021   class NVPTXPrePostActionTy : public PrePostActionTy {
1022     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1023 
1024   public:
1025     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1026         : EST(EST) {}
1027     void Enter(CodeGenFunction &CGF) override {
1028       auto &RT =
1029           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1030       RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
1031       // Skip target region initialization.
1032       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1033     }
1034     void Exit(CodeGenFunction &CGF) override {
1035       auto &RT =
1036           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1037       RT.clearLocThreadIdInsertPt(CGF);
1038       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
1039     }
1040   } Action(EST);
1041   CodeGen.setAction(Action);
1042   IsInTTDRegion = true;
1043   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1044                                    IsOffloadEntry, CodeGen);
1045   IsInTTDRegion = false;
1046 }
1047 
1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
1049                                         EntryFunctionState &EST, bool IsSPMD) {
1050   CGBuilderTy &Bld = CGF.Builder;
1051   Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
1052   IsInTargetMasterThreadRegion = IsSPMD;
1053   if (!IsSPMD)
1054     emitGenericVarsProlog(CGF, EST.Loc);
1055 }
1056 
1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
1058                                           EntryFunctionState &EST,
1059                                           bool IsSPMD) {
1060   if (!IsSPMD)
1061     emitGenericVarsEpilog(CGF);
1062 
1063   CGBuilderTy &Bld = CGF.Builder;
1064   OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
1065 }
1066 
1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1068                                           StringRef ParentName,
1069                                           llvm::Function *&OutlinedFn,
1070                                           llvm::Constant *&OutlinedFnID,
1071                                           bool IsOffloadEntry,
1072                                           const RegionCodeGenTy &CodeGen) {
1073   ExecutionRuntimeModesRAII ModeRAII(
1074       CurrentExecutionMode, RequiresFullRuntime,
1075       CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1076           !supportsLightweightRuntime(CGM.getContext(), D));
1077   EntryFunctionState EST;
1078 
1079   // Emit target region as a standalone region.
1080   class NVPTXPrePostActionTy : public PrePostActionTy {
1081     CGOpenMPRuntimeGPU &RT;
1082     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1083 
1084   public:
1085     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1086                          CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1087         : RT(RT), EST(EST) {}
1088     void Enter(CodeGenFunction &CGF) override {
1089       RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
1090       // Skip target region initialization.
1091       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1092     }
1093     void Exit(CodeGenFunction &CGF) override {
1094       RT.clearLocThreadIdInsertPt(CGF);
1095       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
1096     }
1097   } Action(*this, EST);
1098   CodeGen.setAction(Action);
1099   IsInTTDRegion = true;
1100   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1101                                    IsOffloadEntry, CodeGen);
1102   IsInTTDRegion = false;
1103 }
1104 
1105 // Create a unique global variable to indicate the execution mode of this target
1106 // region. The execution mode is either 'generic', or 'spmd' depending on the
1107 // target directive. This variable is picked up by the offload library to setup
1108 // the device appropriately before kernel launch. If the execution mode is
1109 // 'generic', the runtime reserves one warp for the master, otherwise, all
1110 // warps participate in parallel work.
1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1112                                      bool Mode) {
1113   auto *GVMode = new llvm::GlobalVariable(
1114       CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1115       llvm::GlobalValue::WeakAnyLinkage,
1116       llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
1117                                               : OMP_TGT_EXEC_MODE_GENERIC),
1118       Twine(Name, "_exec_mode"));
1119   CGM.addCompilerUsedGlobal(GVMode);
1120 }
1121 
1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1123                                               llvm::Constant *Addr,
1124                                               uint64_t Size, int32_t,
1125                                               llvm::GlobalValue::LinkageTypes) {
1126   // TODO: Add support for global variables on the device after declare target
1127   // support.
1128   if (!isa<llvm::Function>(Addr))
1129     return;
1130   llvm::Module &M = CGM.getModule();
1131   llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1132 
1133   // Get "nvvm.annotations" metadata node
1134   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1135 
1136   llvm::Metadata *MDVals[] = {
1137       llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"),
1138       llvm::ConstantAsMetadata::get(
1139           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1140   // Append metadata to nvvm.annotations
1141   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1142 }
1143 
1144 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1145     const OMPExecutableDirective &D, StringRef ParentName,
1146     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1147     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1148   if (!IsOffloadEntry) // Nothing to do.
1149     return;
1150 
1151   assert(!ParentName.empty() && "Invalid target region parent name!");
1152 
1153   bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1154   if (Mode)
1155     emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1156                    CodeGen);
1157   else
1158     emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1159                       CodeGen);
1160 
1161   setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1162 }
1163 
1164 namespace {
1165 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1166 /// Enum for accesseing the reserved_2 field of the ident_t struct.
1167 enum ModeFlagsTy : unsigned {
1168   /// Bit set to 1 when in SPMD mode.
1169   KMP_IDENT_SPMD_MODE = 0x01,
1170   /// Bit set to 1 when a simplified runtime is used.
1171   KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1172   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1173 };
1174 
1175 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1176 static const ModeFlagsTy UndefinedMode =
1177     (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1178 } // anonymous namespace
1179 
1180 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1181   switch (getExecutionMode()) {
1182   case EM_SPMD:
1183     if (requiresFullRuntime())
1184       return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1185     return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1186   case EM_NonSPMD:
1187     assert(requiresFullRuntime() && "Expected full runtime.");
1188     return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1189   case EM_Unknown:
1190     return UndefinedMode;
1191   }
1192   llvm_unreachable("Unknown flags are requested.");
1193 }
1194 
1195 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1196     : CGOpenMPRuntime(CGM, "_", "$") {
1197   if (!CGM.getLangOpts().OpenMPIsDevice)
1198     llvm_unreachable("OpenMP can only handle device code.");
1199 
1200   llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
1201   if (CGM.getLangOpts().OpenMPTargetNewRuntime &&
1202       !CGM.getLangOpts().OMPHostIRFile.empty()) {
1203     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
1204                                 "__omp_rtl_debug_kind");
1205     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
1206                                 "__omp_rtl_assume_teams_oversubscription");
1207     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
1208                                 "__omp_rtl_assume_threads_oversubscription");
1209   }
1210 }
1211 
1212 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1213                                               ProcBindKind ProcBind,
1214                                               SourceLocation Loc) {
1215   // Do nothing in case of SPMD mode and L0 parallel.
1216   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1217     return;
1218 
1219   CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1220 }
1221 
1222 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1223                                                 llvm::Value *NumThreads,
1224                                                 SourceLocation Loc) {
1225   // Nothing to do.
1226 }
1227 
1228 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1229                                               const Expr *NumTeams,
1230                                               const Expr *ThreadLimit,
1231                                               SourceLocation Loc) {}
1232 
1233 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1234     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1235     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1236   // Emit target region as a standalone region.
1237   class NVPTXPrePostActionTy : public PrePostActionTy {
1238     bool &IsInParallelRegion;
1239     bool PrevIsInParallelRegion;
1240 
1241   public:
1242     NVPTXPrePostActionTy(bool &IsInParallelRegion)
1243         : IsInParallelRegion(IsInParallelRegion) {}
1244     void Enter(CodeGenFunction &CGF) override {
1245       PrevIsInParallelRegion = IsInParallelRegion;
1246       IsInParallelRegion = true;
1247     }
1248     void Exit(CodeGenFunction &CGF) override {
1249       IsInParallelRegion = PrevIsInParallelRegion;
1250     }
1251   } Action(IsInParallelRegion);
1252   CodeGen.setAction(Action);
1253   bool PrevIsInTTDRegion = IsInTTDRegion;
1254   IsInTTDRegion = false;
1255   bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1256   IsInTargetMasterThreadRegion = false;
1257   auto *OutlinedFun =
1258       cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1259           D, ThreadIDVar, InnermostKind, CodeGen));
1260   IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1261   IsInTTDRegion = PrevIsInTTDRegion;
1262   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1263       !IsInParallelRegion) {
1264     llvm::Function *WrapperFun =
1265         createParallelDataSharingWrapper(OutlinedFun, D);
1266     WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1267   }
1268 
1269   return OutlinedFun;
1270 }
1271 
1272 /// Get list of lastprivate variables from the teams distribute ... or
1273 /// teams {distribute ...} directives.
1274 static void
1275 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1276                              llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1277   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1278          "expected teams directive.");
1279   const OMPExecutableDirective *Dir = &D;
1280   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1281     if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1282             Ctx,
1283             D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1284                 /*IgnoreCaptured=*/true))) {
1285       Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1286       if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1287         Dir = nullptr;
1288     }
1289   }
1290   if (!Dir)
1291     return;
1292   for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1293     for (const Expr *E : C->getVarRefs())
1294       Vars.push_back(getPrivateItem(E));
1295   }
1296 }
1297 
1298 /// Get list of reduction variables from the teams ... directives.
1299 static void
1300 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1301                       llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1302   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1303          "expected teams directive.");
1304   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1305     for (const Expr *E : C->privates())
1306       Vars.push_back(getPrivateItem(E));
1307   }
1308 }
1309 
1310 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1311     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1312     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1313   SourceLocation Loc = D.getBeginLoc();
1314 
1315   const RecordDecl *GlobalizedRD = nullptr;
1316   llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1317   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1318   unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1319   // Globalize team reductions variable unconditionally in all modes.
1320   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1321     getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1322   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1323     getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1324     if (!LastPrivatesReductions.empty()) {
1325       GlobalizedRD = ::buildRecordForGlobalizedVars(
1326           CGM.getContext(), llvm::None, LastPrivatesReductions,
1327           MappedDeclsFields, WarpSize);
1328     }
1329   } else if (!LastPrivatesReductions.empty()) {
1330     assert(!TeamAndReductions.first &&
1331            "Previous team declaration is not expected.");
1332     TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1333     std::swap(TeamAndReductions.second, LastPrivatesReductions);
1334   }
1335 
1336   // Emit target region as a standalone region.
1337   class NVPTXPrePostActionTy : public PrePostActionTy {
1338     SourceLocation &Loc;
1339     const RecordDecl *GlobalizedRD;
1340     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1341         &MappedDeclsFields;
1342 
1343   public:
1344     NVPTXPrePostActionTy(
1345         SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1346         llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1347             &MappedDeclsFields)
1348         : Loc(Loc), GlobalizedRD(GlobalizedRD),
1349           MappedDeclsFields(MappedDeclsFields) {}
1350     void Enter(CodeGenFunction &CGF) override {
1351       auto &Rt =
1352           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1353       if (GlobalizedRD) {
1354         auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1355         I->getSecond().MappedParams =
1356             std::make_unique<CodeGenFunction::OMPMapVars>();
1357         DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1358         for (const auto &Pair : MappedDeclsFields) {
1359           assert(Pair.getFirst()->isCanonicalDecl() &&
1360                  "Expected canonical declaration");
1361           Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1362         }
1363       }
1364       Rt.emitGenericVarsProlog(CGF, Loc);
1365     }
1366     void Exit(CodeGenFunction &CGF) override {
1367       static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1368           .emitGenericVarsEpilog(CGF);
1369     }
1370   } Action(Loc, GlobalizedRD, MappedDeclsFields);
1371   CodeGen.setAction(Action);
1372   llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1373       D, ThreadIDVar, InnermostKind, CodeGen);
1374 
1375   return OutlinedFun;
1376 }
1377 
1378 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1379                                                  SourceLocation Loc,
1380                                                  bool WithSPMDCheck) {
1381   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1382       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1383     return;
1384 
1385   CGBuilderTy &Bld = CGF.Builder;
1386 
1387   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1388   if (I == FunctionGlobalizedDecls.end())
1389     return;
1390 
1391   for (auto &Rec : I->getSecond().LocalVarData) {
1392     const auto *VD = cast<VarDecl>(Rec.first);
1393     bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1394     QualType VarTy = VD->getType();
1395 
1396     // Get the local allocation of a firstprivate variable before sharing
1397     llvm::Value *ParValue;
1398     if (EscapedParam) {
1399       LValue ParLVal =
1400           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1401       ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1402     }
1403 
1404     // Allocate space for the variable to be globalized
1405     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1406     llvm::CallBase *VoidPtr =
1407         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1408                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1409                             AllocArgs, VD->getName());
1410     // FIXME: We should use the variables actual alignment as an argument.
1411     VoidPtr->addRetAttr(llvm::Attribute::get(
1412         CGM.getLLVMContext(), llvm::Attribute::Alignment,
1413         CGM.getContext().getTargetInfo().getNewAlign() / 8));
1414 
1415     // Cast the void pointer and get the address of the globalized variable.
1416     llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1417     llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1418         VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1419     LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1420     Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1421     Rec.second.GlobalizedVal = VoidPtr;
1422 
1423     // Assign the local allocation to the newly globalized location.
1424     if (EscapedParam) {
1425       CGF.EmitStoreOfScalar(ParValue, VarAddr);
1426       I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1427     }
1428     if (auto *DI = CGF.getDebugInfo())
1429       VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1430   }
1431   for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
1432     // Use actual memory size of the VLA object including the padding
1433     // for alignment purposes.
1434     llvm::Value *Size = CGF.getTypeSize(VD->getType());
1435     CharUnits Align = CGM.getContext().getDeclAlign(VD);
1436     Size = Bld.CreateNUWAdd(
1437         Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1438     llvm::Value *AlignVal =
1439         llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1440 
1441     Size = Bld.CreateUDiv(Size, AlignVal);
1442     Size = Bld.CreateNUWMul(Size, AlignVal);
1443 
1444     // Allocate space for this VLA object to be globalized.
1445     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1446     llvm::CallBase *VoidPtr =
1447         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1448                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1449                             AllocArgs, VD->getName());
1450     VoidPtr->addRetAttr(
1451         llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
1452                              CGM.getContext().getTargetInfo().getNewAlign()));
1453 
1454     I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
1455         std::pair<llvm::Value *, llvm::Value *>(
1456             {VoidPtr, CGF.getTypeSize(VD->getType())}));
1457     LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
1458                                      CGM.getContext().getDeclAlign(VD),
1459                                      AlignmentSource::Decl);
1460     I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1461                                             Base.getAddress(CGF));
1462   }
1463   I->getSecond().MappedParams->apply(CGF);
1464 }
1465 
1466 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
1467                                                  bool WithSPMDCheck) {
1468   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1469       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1470     return;
1471 
1472   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1473   if (I != FunctionGlobalizedDecls.end()) {
1474     // Deallocate the memory for each globalized VLA object
1475     for (auto AddrSizePair :
1476          llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1477       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1478                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1479                           {AddrSizePair.first, AddrSizePair.second});
1480     }
1481     // Deallocate the memory for each globalized value
1482     for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1483       const auto *VD = cast<VarDecl>(Rec.first);
1484       I->getSecond().MappedParams->restore(CGF);
1485 
1486       llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1487                                  CGF.getTypeSize(VD->getType())};
1488       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1489                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1490                           FreeArgs);
1491     }
1492   }
1493 }
1494 
1495 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1496                                          const OMPExecutableDirective &D,
1497                                          SourceLocation Loc,
1498                                          llvm::Function *OutlinedFn,
1499                                          ArrayRef<llvm::Value *> CapturedVars) {
1500   if (!CGF.HaveInsertPoint())
1501     return;
1502 
1503   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1504                                                       /*Name=*/".zero.addr");
1505   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1506   llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1507   OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1508   OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1509   OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1510   emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1511 }
1512 
1513 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1514                                           SourceLocation Loc,
1515                                           llvm::Function *OutlinedFn,
1516                                           ArrayRef<llvm::Value *> CapturedVars,
1517                                           const Expr *IfCond,
1518                                           llvm::Value *NumThreads) {
1519   if (!CGF.HaveInsertPoint())
1520     return;
1521 
1522   auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1523                         NumThreads](CodeGenFunction &CGF,
1524                                     PrePostActionTy &Action) {
1525     CGBuilderTy &Bld = CGF.Builder;
1526     llvm::Value *NumThreadsVal = NumThreads;
1527     llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1528     llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1529     if (WFn)
1530       ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1531     llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1532 
1533     // Create a private scope that will globalize the arguments
1534     // passed from the outside of the target region.
1535     // TODO: Is that needed?
1536     CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1537 
1538     Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1539         llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1540         "captured_vars_addrs");
1541     // There's something to share.
1542     if (!CapturedVars.empty()) {
1543       // Prepare for parallel region. Indicate the outlined function.
1544       ASTContext &Ctx = CGF.getContext();
1545       unsigned Idx = 0;
1546       for (llvm::Value *V : CapturedVars) {
1547         Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1548         llvm::Value *PtrV;
1549         if (V->getType()->isIntegerTy())
1550           PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1551         else
1552           PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1553         CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1554                               Ctx.getPointerType(Ctx.VoidPtrTy));
1555         ++Idx;
1556       }
1557     }
1558 
1559     llvm::Value *IfCondVal = nullptr;
1560     if (IfCond)
1561       IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1562                                     /* isSigned */ false);
1563     else
1564       IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1565 
1566     if (!NumThreadsVal)
1567       NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1568     else
1569       NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1570 
1571       assert(IfCondVal && "Expected a value");
1572     llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1573     llvm::Value *Args[] = {
1574         RTLoc,
1575         getThreadID(CGF, Loc),
1576         IfCondVal,
1577         NumThreadsVal,
1578         llvm::ConstantInt::get(CGF.Int32Ty, -1),
1579         FnPtr,
1580         ID,
1581         Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1582                                    CGF.VoidPtrPtrTy),
1583         llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1584     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1585                             CGM.getModule(), OMPRTL___kmpc_parallel_51),
1586                         Args);
1587   };
1588 
1589   RegionCodeGenTy RCG(ParallelGen);
1590   RCG(CGF);
1591 }
1592 
1593 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1594   // Always emit simple barriers!
1595   if (!CGF.HaveInsertPoint())
1596     return;
1597   // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1598   // This function does not use parameters, so we can emit just default values.
1599   llvm::Value *Args[] = {
1600       llvm::ConstantPointerNull::get(
1601           cast<llvm::PointerType>(getIdentTyPointerTy())),
1602       llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1603   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1604                           CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1605                       Args);
1606 }
1607 
1608 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1609                                            SourceLocation Loc,
1610                                            OpenMPDirectiveKind Kind, bool,
1611                                            bool) {
1612   // Always emit simple barriers!
1613   if (!CGF.HaveInsertPoint())
1614     return;
1615   // Build call __kmpc_cancel_barrier(loc, thread_id);
1616   unsigned Flags = getDefaultFlagsForBarriers(Kind);
1617   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1618                          getThreadID(CGF, Loc)};
1619 
1620   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1621                           CGM.getModule(), OMPRTL___kmpc_barrier),
1622                       Args);
1623 }
1624 
1625 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1626     CodeGenFunction &CGF, StringRef CriticalName,
1627     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1628     const Expr *Hint) {
1629   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1630   llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1631   llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1632   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1633   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1634 
1635   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1636 
1637   // Get the mask of active threads in the warp.
1638   llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1639       CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1640   // Fetch team-local id of the thread.
1641   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1642 
1643   // Get the width of the team.
1644   llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1645 
1646   // Initialize the counter variable for the loop.
1647   QualType Int32Ty =
1648       CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1649   Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1650   LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1651   CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1652                         /*isInit=*/true);
1653 
1654   // Block checks if loop counter exceeds upper bound.
1655   CGF.EmitBlock(LoopBB);
1656   llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1657   llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1658   CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1659 
1660   // Block tests which single thread should execute region, and which threads
1661   // should go straight to synchronisation point.
1662   CGF.EmitBlock(TestBB);
1663   CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1664   llvm::Value *CmpThreadToCounter =
1665       CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1666   CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1667 
1668   // Block emits the body of the critical region.
1669   CGF.EmitBlock(BodyBB);
1670 
1671   // Output the critical statement.
1672   CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1673                                       Hint);
1674 
1675   // After the body surrounded by the critical region, the single executing
1676   // thread will jump to the synchronisation point.
1677   // Block waits for all threads in current team to finish then increments the
1678   // counter variable and returns to the loop.
1679   CGF.EmitBlock(SyncBB);
1680   // Reconverge active threads in the warp.
1681   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1682                                 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1683                             Mask);
1684 
1685   llvm::Value *IncCounterVal =
1686       CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1687   CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1688   CGF.EmitBranch(LoopBB);
1689 
1690   // Block that is reached when  all threads in the team complete the region.
1691   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1692 }
1693 
1694 /// Cast value to the specified type.
1695 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1696                                     QualType ValTy, QualType CastTy,
1697                                     SourceLocation Loc) {
1698   assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1699          "Cast type must sized.");
1700   assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1701          "Val type must sized.");
1702   llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1703   if (ValTy == CastTy)
1704     return Val;
1705   if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1706       CGF.getContext().getTypeSizeInChars(CastTy))
1707     return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1708   if (CastTy->isIntegerType() && ValTy->isIntegerType())
1709     return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1710                                      CastTy->hasSignedIntegerRepresentation());
1711   Address CastItem = CGF.CreateMemTemp(CastTy);
1712   Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1713       CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
1714   CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1715                         LValueBaseInfo(AlignmentSource::Type),
1716                         TBAAAccessInfo());
1717   return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1718                               LValueBaseInfo(AlignmentSource::Type),
1719                               TBAAAccessInfo());
1720 }
1721 
1722 /// This function creates calls to one of two shuffle functions to copy
1723 /// variables between lanes in a warp.
1724 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1725                                                  llvm::Value *Elem,
1726                                                  QualType ElemType,
1727                                                  llvm::Value *Offset,
1728                                                  SourceLocation Loc) {
1729   CodeGenModule &CGM = CGF.CGM;
1730   CGBuilderTy &Bld = CGF.Builder;
1731   CGOpenMPRuntimeGPU &RT =
1732       *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1733   llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1734 
1735   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1736   assert(Size.getQuantity() <= 8 &&
1737          "Unsupported bitwidth in shuffle instruction.");
1738 
1739   RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1740                                   ? OMPRTL___kmpc_shuffle_int32
1741                                   : OMPRTL___kmpc_shuffle_int64;
1742 
1743   // Cast all types to 32- or 64-bit values before calling shuffle routines.
1744   QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1745       Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1746   llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1747   llvm::Value *WarpSize =
1748       Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1749 
1750   llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1751       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1752       {ElemCast, Offset, WarpSize});
1753 
1754   return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1755 }
1756 
1757 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1758                             Address DestAddr, QualType ElemType,
1759                             llvm::Value *Offset, SourceLocation Loc) {
1760   CGBuilderTy &Bld = CGF.Builder;
1761 
1762   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1763   // Create the loop over the big sized data.
1764   // ptr = (void*)Elem;
1765   // ptrEnd = (void*) Elem + 1;
1766   // Step = 8;
1767   // while (ptr + Step < ptrEnd)
1768   //   shuffle((int64_t)*ptr);
1769   // Step = 4;
1770   // while (ptr + Step < ptrEnd)
1771   //   shuffle((int32_t)*ptr);
1772   // ...
1773   Address ElemPtr = DestAddr;
1774   Address Ptr = SrcAddr;
1775   Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1776       Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
1777   for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1778     if (Size < CharUnits::fromQuantity(IntSize))
1779       continue;
1780     QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1781         CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1782         /*Signed=*/1);
1783     llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1784     Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
1785     ElemPtr =
1786         Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
1787     if (Size.getQuantity() / IntSize > 1) {
1788       llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1789       llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1790       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1791       llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1792       CGF.EmitBlock(PreCondBB);
1793       llvm::PHINode *PhiSrc =
1794           Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1795       PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1796       llvm::PHINode *PhiDest =
1797           Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1798       PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1799       Ptr = Address(PhiSrc, Ptr.getAlignment());
1800       ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
1801       llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1802           CGF.Int8Ty, PtrEnd.getPointer(),
1803           Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1804                                                   CGF.VoidPtrTy));
1805       Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1806                        ThenBB, ExitBB);
1807       CGF.EmitBlock(ThenBB);
1808       llvm::Value *Res = createRuntimeShuffleFunction(
1809           CGF,
1810           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1811                                LValueBaseInfo(AlignmentSource::Type),
1812                                TBAAAccessInfo()),
1813           IntType, Offset, Loc);
1814       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1815                             LValueBaseInfo(AlignmentSource::Type),
1816                             TBAAAccessInfo());
1817       Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1818       Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1819       PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1820       PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1821       CGF.EmitBranch(PreCondBB);
1822       CGF.EmitBlock(ExitBB);
1823     } else {
1824       llvm::Value *Res = createRuntimeShuffleFunction(
1825           CGF,
1826           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1827                                LValueBaseInfo(AlignmentSource::Type),
1828                                TBAAAccessInfo()),
1829           IntType, Offset, Loc);
1830       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1831                             LValueBaseInfo(AlignmentSource::Type),
1832                             TBAAAccessInfo());
1833       Ptr = Bld.CreateConstGEP(Ptr, 1);
1834       ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1835     }
1836     Size = Size % IntSize;
1837   }
1838 }
1839 
1840 namespace {
1841 enum CopyAction : unsigned {
1842   // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1843   // the warp using shuffle instructions.
1844   RemoteLaneToThread,
1845   // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1846   ThreadCopy,
1847   // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1848   ThreadToScratchpad,
1849   // ScratchpadToThread: Copy from a scratchpad array in global memory
1850   // containing team-reduced data to a thread's stack.
1851   ScratchpadToThread,
1852 };
1853 } // namespace
1854 
1855 struct CopyOptionsTy {
1856   llvm::Value *RemoteLaneOffset;
1857   llvm::Value *ScratchpadIndex;
1858   llvm::Value *ScratchpadWidth;
1859 };
1860 
1861 /// Emit instructions to copy a Reduce list, which contains partially
1862 /// aggregated values, in the specified direction.
1863 static void emitReductionListCopy(
1864     CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1865     ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1866     CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1867 
1868   CodeGenModule &CGM = CGF.CGM;
1869   ASTContext &C = CGM.getContext();
1870   CGBuilderTy &Bld = CGF.Builder;
1871 
1872   llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1873   llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1874   llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1875 
1876   // Iterates, element-by-element, through the source Reduce list and
1877   // make a copy.
1878   unsigned Idx = 0;
1879   unsigned Size = Privates.size();
1880   for (const Expr *Private : Privates) {
1881     Address SrcElementAddr = Address::invalid();
1882     Address DestElementAddr = Address::invalid();
1883     Address DestElementPtrAddr = Address::invalid();
1884     // Should we shuffle in an element from a remote lane?
1885     bool ShuffleInElement = false;
1886     // Set to true to update the pointer in the dest Reduce list to a
1887     // newly created element.
1888     bool UpdateDestListPtr = false;
1889     // Increment the src or dest pointer to the scratchpad, for each
1890     // new element.
1891     bool IncrScratchpadSrc = false;
1892     bool IncrScratchpadDest = false;
1893 
1894     switch (Action) {
1895     case RemoteLaneToThread: {
1896       // Step 1.1: Get the address for the src element in the Reduce list.
1897       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1898       SrcElementAddr = CGF.EmitLoadOfPointer(
1899           SrcElementPtrAddr,
1900           C.getPointerType(Private->getType())->castAs<PointerType>());
1901 
1902       // Step 1.2: Create a temporary to store the element in the destination
1903       // Reduce list.
1904       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1905       DestElementAddr =
1906           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1907       ShuffleInElement = true;
1908       UpdateDestListPtr = true;
1909       break;
1910     }
1911     case ThreadCopy: {
1912       // Step 1.1: Get the address for the src element in the Reduce list.
1913       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1914       SrcElementAddr = CGF.EmitLoadOfPointer(
1915           SrcElementPtrAddr,
1916           C.getPointerType(Private->getType())->castAs<PointerType>());
1917 
1918       // Step 1.2: Get the address for dest element.  The destination
1919       // element has already been created on the thread's stack.
1920       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1921       DestElementAddr = CGF.EmitLoadOfPointer(
1922           DestElementPtrAddr,
1923           C.getPointerType(Private->getType())->castAs<PointerType>());
1924       break;
1925     }
1926     case ThreadToScratchpad: {
1927       // Step 1.1: Get the address for the src element in the Reduce list.
1928       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1929       SrcElementAddr = CGF.EmitLoadOfPointer(
1930           SrcElementPtrAddr,
1931           C.getPointerType(Private->getType())->castAs<PointerType>());
1932 
1933       // Step 1.2: Get the address for dest element:
1934       // address = base + index * ElementSizeInChars.
1935       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1936       llvm::Value *CurrentOffset =
1937           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1938       llvm::Value *ScratchPadElemAbsolutePtrVal =
1939           Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1940       ScratchPadElemAbsolutePtrVal =
1941           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1942       DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
1943                                 C.getTypeAlignInChars(Private->getType()));
1944       IncrScratchpadDest = true;
1945       break;
1946     }
1947     case ScratchpadToThread: {
1948       // Step 1.1: Get the address for the src element in the scratchpad.
1949       // address = base + index * ElementSizeInChars.
1950       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1951       llvm::Value *CurrentOffset =
1952           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1953       llvm::Value *ScratchPadElemAbsolutePtrVal =
1954           Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1955       ScratchPadElemAbsolutePtrVal =
1956           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1957       SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
1958                                C.getTypeAlignInChars(Private->getType()));
1959       IncrScratchpadSrc = true;
1960 
1961       // Step 1.2: Create a temporary to store the element in the destination
1962       // Reduce list.
1963       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1964       DestElementAddr =
1965           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1966       UpdateDestListPtr = true;
1967       break;
1968     }
1969     }
1970 
1971     // Regardless of src and dest of copy, we emit the load of src
1972     // element as this is required in all directions
1973     SrcElementAddr = Bld.CreateElementBitCast(
1974         SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1975     DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
1976                                                SrcElementAddr.getElementType());
1977 
1978     // Now that all active lanes have read the element in the
1979     // Reduce list, shuffle over the value from the remote lane.
1980     if (ShuffleInElement) {
1981       shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1982                       RemoteLaneOffset, Private->getExprLoc());
1983     } else {
1984       switch (CGF.getEvaluationKind(Private->getType())) {
1985       case TEK_Scalar: {
1986         llvm::Value *Elem = CGF.EmitLoadOfScalar(
1987             SrcElementAddr, /*Volatile=*/false, Private->getType(),
1988             Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
1989             TBAAAccessInfo());
1990         // Store the source element value to the dest element address.
1991         CGF.EmitStoreOfScalar(
1992             Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
1993             LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1994         break;
1995       }
1996       case TEK_Complex: {
1997         CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
1998             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
1999             Private->getExprLoc());
2000         CGF.EmitStoreOfComplex(
2001             Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2002             /*isInit=*/false);
2003         break;
2004       }
2005       case TEK_Aggregate:
2006         CGF.EmitAggregateCopy(
2007             CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2008             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2009             Private->getType(), AggValueSlot::DoesNotOverlap);
2010         break;
2011       }
2012     }
2013 
2014     // Step 3.1: Modify reference in dest Reduce list as needed.
2015     // Modifying the reference in Reduce list to point to the newly
2016     // created element.  The element is live in the current function
2017     // scope and that of functions it invokes (i.e., reduce_function).
2018     // RemoteReduceData[i] = (void*)&RemoteElem
2019     if (UpdateDestListPtr) {
2020       CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2021                                 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2022                             DestElementPtrAddr, /*Volatile=*/false,
2023                             C.VoidPtrTy);
2024     }
2025 
2026     // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2027     // address of the next element in scratchpad memory, unless we're currently
2028     // processing the last one.  Memory alignment is also taken care of here.
2029     if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2030       llvm::Value *ScratchpadBasePtr =
2031           IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2032       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2033       ScratchpadBasePtr = Bld.CreateNUWAdd(
2034           ScratchpadBasePtr,
2035           Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2036 
2037       // Take care of global memory alignment for performance
2038       ScratchpadBasePtr = Bld.CreateNUWSub(
2039           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2040       ScratchpadBasePtr = Bld.CreateUDiv(
2041           ScratchpadBasePtr,
2042           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2043       ScratchpadBasePtr = Bld.CreateNUWAdd(
2044           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2045       ScratchpadBasePtr = Bld.CreateNUWMul(
2046           ScratchpadBasePtr,
2047           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2048 
2049       if (IncrScratchpadDest)
2050         DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
2051       else /* IncrScratchpadSrc = true */
2052         SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
2053     }
2054 
2055     ++Idx;
2056   }
2057 }
2058 
2059 /// This function emits a helper that gathers Reduce lists from the first
2060 /// lane of every active warp to lanes in the first warp.
2061 ///
2062 /// void inter_warp_copy_func(void* reduce_data, num_warps)
2063 ///   shared smem[warp_size];
2064 ///   For all data entries D in reduce_data:
2065 ///     sync
2066 ///     If (I am the first lane in each warp)
2067 ///       Copy my local D to smem[warp_id]
2068 ///     sync
2069 ///     if (I am the first warp)
2070 ///       Copy smem[thread_id] to my local D
2071 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2072                                               ArrayRef<const Expr *> Privates,
2073                                               QualType ReductionArrayTy,
2074                                               SourceLocation Loc) {
2075   ASTContext &C = CGM.getContext();
2076   llvm::Module &M = CGM.getModule();
2077 
2078   // ReduceList: thread local Reduce list.
2079   // At the stage of the computation when this function is called, partially
2080   // aggregated values reside in the first lane of every active warp.
2081   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2082                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2083   // NumWarps: number of warps active in the parallel region.  This could
2084   // be smaller than 32 (max warps in a CTA) for partial block reduction.
2085   ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2086                                 C.getIntTypeForBitwidth(32, /* Signed */ true),
2087                                 ImplicitParamDecl::Other);
2088   FunctionArgList Args;
2089   Args.push_back(&ReduceListArg);
2090   Args.push_back(&NumWarpsArg);
2091 
2092   const CGFunctionInfo &CGFI =
2093       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2094   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2095                                     llvm::GlobalValue::InternalLinkage,
2096                                     "_omp_reduction_inter_warp_copy_func", &M);
2097   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2098   Fn->setDoesNotRecurse();
2099   CodeGenFunction CGF(CGM);
2100   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2101 
2102   CGBuilderTy &Bld = CGF.Builder;
2103 
2104   // This array is used as a medium to transfer, one reduce element at a time,
2105   // the data from the first lane of every warp to lanes in the first warp
2106   // in order to perform the final step of a reduction in a parallel region
2107   // (reduction across warps).  The array is placed in NVPTX __shared__ memory
2108   // for reduced latency, as well as to have a distinct copy for concurrently
2109   // executing target regions.  The array is declared with common linkage so
2110   // as to be shared across compilation units.
2111   StringRef TransferMediumName =
2112       "__openmp_nvptx_data_transfer_temporary_storage";
2113   llvm::GlobalVariable *TransferMedium =
2114       M.getGlobalVariable(TransferMediumName);
2115   unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
2116   if (!TransferMedium) {
2117     auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2118     unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2119     TransferMedium = new llvm::GlobalVariable(
2120         M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2121         llvm::UndefValue::get(Ty), TransferMediumName,
2122         /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2123         SharedAddressSpace);
2124     CGM.addCompilerUsedGlobal(TransferMedium);
2125   }
2126 
2127   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2128   // Get the CUDA thread id of the current OpenMP thread on the GPU.
2129   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2130   // nvptx_lane_id = nvptx_id % warpsize
2131   llvm::Value *LaneID = getNVPTXLaneID(CGF);
2132   // nvptx_warp_id = nvptx_id / warpsize
2133   llvm::Value *WarpID = getNVPTXWarpID(CGF);
2134 
2135   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2136   Address LocalReduceList(
2137       Bld.CreatePointerBitCastOrAddrSpaceCast(
2138           CGF.EmitLoadOfScalar(
2139               AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2140               LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2141           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2142       CGF.getPointerAlign());
2143 
2144   unsigned Idx = 0;
2145   for (const Expr *Private : Privates) {
2146     //
2147     // Warp master copies reduce element to transfer medium in __shared__
2148     // memory.
2149     //
2150     unsigned RealTySize =
2151         C.getTypeSizeInChars(Private->getType())
2152             .alignTo(C.getTypeAlignInChars(Private->getType()))
2153             .getQuantity();
2154     for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2155       unsigned NumIters = RealTySize / TySize;
2156       if (NumIters == 0)
2157         continue;
2158       QualType CType = C.getIntTypeForBitwidth(
2159           C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2160       llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2161       CharUnits Align = CharUnits::fromQuantity(TySize);
2162       llvm::Value *Cnt = nullptr;
2163       Address CntAddr = Address::invalid();
2164       llvm::BasicBlock *PrecondBB = nullptr;
2165       llvm::BasicBlock *ExitBB = nullptr;
2166       if (NumIters > 1) {
2167         CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2168         CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2169                               /*Volatile=*/false, C.IntTy);
2170         PrecondBB = CGF.createBasicBlock("precond");
2171         ExitBB = CGF.createBasicBlock("exit");
2172         llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2173         // There is no need to emit line number for unconditional branch.
2174         (void)ApplyDebugLocation::CreateEmpty(CGF);
2175         CGF.EmitBlock(PrecondBB);
2176         Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2177         llvm::Value *Cmp =
2178             Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2179         Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2180         CGF.EmitBlock(BodyBB);
2181       }
2182       // kmpc_barrier.
2183       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2184                                              /*EmitChecks=*/false,
2185                                              /*ForceSimpleCall=*/true);
2186       llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2187       llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2188       llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2189 
2190       // if (lane_id == 0)
2191       llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2192       Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2193       CGF.EmitBlock(ThenBB);
2194 
2195       // Reduce element = LocalReduceList[i]
2196       Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2197       llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2198           ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2199       // elemptr = ((CopyType*)(elemptrptr)) + I
2200       Address ElemPtr = Address(ElemPtrPtr, Align);
2201       ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2202       if (NumIters > 1)
2203         ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
2204 
2205       // Get pointer to location in transfer medium.
2206       // MediumPtr = &medium[warp_id]
2207       llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2208           TransferMedium->getValueType(), TransferMedium,
2209           {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2210       Address MediumPtr(MediumPtrVal, Align);
2211       // Casting to actual data type.
2212       // MediumPtr = (CopyType*)MediumPtrAddr;
2213       MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
2214 
2215       // elem = *elemptr
2216       //*MediumPtr = elem
2217       llvm::Value *Elem = CGF.EmitLoadOfScalar(
2218           ElemPtr, /*Volatile=*/false, CType, Loc,
2219           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2220       // Store the source element value to the dest element address.
2221       CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2222                             LValueBaseInfo(AlignmentSource::Type),
2223                             TBAAAccessInfo());
2224 
2225       Bld.CreateBr(MergeBB);
2226 
2227       CGF.EmitBlock(ElseBB);
2228       Bld.CreateBr(MergeBB);
2229 
2230       CGF.EmitBlock(MergeBB);
2231 
2232       // kmpc_barrier.
2233       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2234                                              /*EmitChecks=*/false,
2235                                              /*ForceSimpleCall=*/true);
2236 
2237       //
2238       // Warp 0 copies reduce element from transfer medium.
2239       //
2240       llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2241       llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2242       llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2243 
2244       Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2245       llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2246           AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2247 
2248       // Up to 32 threads in warp 0 are active.
2249       llvm::Value *IsActiveThread =
2250           Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2251       Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2252 
2253       CGF.EmitBlock(W0ThenBB);
2254 
2255       // SrcMediumPtr = &medium[tid]
2256       llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2257           TransferMedium->getValueType(), TransferMedium,
2258           {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2259       Address SrcMediumPtr(SrcMediumPtrVal, Align);
2260       // SrcMediumVal = *SrcMediumPtr;
2261       SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
2262 
2263       // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2264       Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2265       llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2266           TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2267       Address TargetElemPtr = Address(TargetElemPtrVal, Align);
2268       TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
2269       if (NumIters > 1)
2270         TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
2271 
2272       // *TargetElemPtr = SrcMediumVal;
2273       llvm::Value *SrcMediumValue =
2274           CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2275       CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2276                             CType);
2277       Bld.CreateBr(W0MergeBB);
2278 
2279       CGF.EmitBlock(W0ElseBB);
2280       Bld.CreateBr(W0MergeBB);
2281 
2282       CGF.EmitBlock(W0MergeBB);
2283 
2284       if (NumIters > 1) {
2285         Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2286         CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2287         CGF.EmitBranch(PrecondBB);
2288         (void)ApplyDebugLocation::CreateEmpty(CGF);
2289         CGF.EmitBlock(ExitBB);
2290       }
2291       RealTySize %= TySize;
2292     }
2293     ++Idx;
2294   }
2295 
2296   CGF.FinishFunction();
2297   return Fn;
2298 }
2299 
2300 /// Emit a helper that reduces data across two OpenMP threads (lanes)
2301 /// in the same warp.  It uses shuffle instructions to copy over data from
2302 /// a remote lane's stack.  The reduction algorithm performed is specified
2303 /// by the fourth parameter.
2304 ///
2305 /// Algorithm Versions.
2306 /// Full Warp Reduce (argument value 0):
2307 ///   This algorithm assumes that all 32 lanes are active and gathers
2308 ///   data from these 32 lanes, producing a single resultant value.
2309 /// Contiguous Partial Warp Reduce (argument value 1):
2310 ///   This algorithm assumes that only a *contiguous* subset of lanes
2311 ///   are active.  This happens for the last warp in a parallel region
2312 ///   when the user specified num_threads is not an integer multiple of
2313 ///   32.  This contiguous subset always starts with the zeroth lane.
2314 /// Partial Warp Reduce (argument value 2):
2315 ///   This algorithm gathers data from any number of lanes at any position.
2316 /// All reduced values are stored in the lowest possible lane.  The set
2317 /// of problems every algorithm addresses is a super set of those
2318 /// addressable by algorithms with a lower version number.  Overhead
2319 /// increases as algorithm version increases.
2320 ///
2321 /// Terminology
2322 /// Reduce element:
2323 ///   Reduce element refers to the individual data field with primitive
2324 ///   data types to be combined and reduced across threads.
2325 /// Reduce list:
2326 ///   Reduce list refers to a collection of local, thread-private
2327 ///   reduce elements.
2328 /// Remote Reduce list:
2329 ///   Remote Reduce list refers to a collection of remote (relative to
2330 ///   the current thread) reduce elements.
2331 ///
2332 /// We distinguish between three states of threads that are important to
2333 /// the implementation of this function.
2334 /// Alive threads:
2335 ///   Threads in a warp executing the SIMT instruction, as distinguished from
2336 ///   threads that are inactive due to divergent control flow.
2337 /// Active threads:
2338 ///   The minimal set of threads that has to be alive upon entry to this
2339 ///   function.  The computation is correct iff active threads are alive.
2340 ///   Some threads are alive but they are not active because they do not
2341 ///   contribute to the computation in any useful manner.  Turning them off
2342 ///   may introduce control flow overheads without any tangible benefits.
2343 /// Effective threads:
2344 ///   In order to comply with the argument requirements of the shuffle
2345 ///   function, we must keep all lanes holding data alive.  But at most
2346 ///   half of them perform value aggregation; we refer to this half of
2347 ///   threads as effective. The other half is simply handing off their
2348 ///   data.
2349 ///
2350 /// Procedure
2351 /// Value shuffle:
2352 ///   In this step active threads transfer data from higher lane positions
2353 ///   in the warp to lower lane positions, creating Remote Reduce list.
2354 /// Value aggregation:
2355 ///   In this step, effective threads combine their thread local Reduce list
2356 ///   with Remote Reduce list and store the result in the thread local
2357 ///   Reduce list.
2358 /// Value copy:
2359 ///   In this step, we deal with the assumption made by algorithm 2
2360 ///   (i.e. contiguity assumption).  When we have an odd number of lanes
2361 ///   active, say 2k+1, only k threads will be effective and therefore k
2362 ///   new values will be produced.  However, the Reduce list owned by the
2363 ///   (2k+1)th thread is ignored in the value aggregation.  Therefore
2364 ///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2365 ///   that the contiguity assumption still holds.
2366 static llvm::Function *emitShuffleAndReduceFunction(
2367     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2368     QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2369   ASTContext &C = CGM.getContext();
2370 
2371   // Thread local Reduce list used to host the values of data to be reduced.
2372   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2373                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2374   // Current lane id; could be logical.
2375   ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2376                               ImplicitParamDecl::Other);
2377   // Offset of the remote source lane relative to the current lane.
2378   ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2379                                         C.ShortTy, ImplicitParamDecl::Other);
2380   // Algorithm version.  This is expected to be known at compile time.
2381   ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2382                                C.ShortTy, ImplicitParamDecl::Other);
2383   FunctionArgList Args;
2384   Args.push_back(&ReduceListArg);
2385   Args.push_back(&LaneIDArg);
2386   Args.push_back(&RemoteLaneOffsetArg);
2387   Args.push_back(&AlgoVerArg);
2388 
2389   const CGFunctionInfo &CGFI =
2390       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2391   auto *Fn = llvm::Function::Create(
2392       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2393       "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2394   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2395   Fn->setDoesNotRecurse();
2396 
2397   CodeGenFunction CGF(CGM);
2398   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2399 
2400   CGBuilderTy &Bld = CGF.Builder;
2401 
2402   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2403   Address LocalReduceList(
2404       Bld.CreatePointerBitCastOrAddrSpaceCast(
2405           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2406                                C.VoidPtrTy, SourceLocation()),
2407           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2408       CGF.getPointerAlign());
2409 
2410   Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2411   llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2412       AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2413 
2414   Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2415   llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2416       AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2417 
2418   Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2419   llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2420       AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2421 
2422   // Create a local thread-private variable to host the Reduce list
2423   // from a remote lane.
2424   Address RemoteReduceList =
2425       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2426 
2427   // This loop iterates through the list of reduce elements and copies,
2428   // element by element, from a remote lane in the warp to RemoteReduceList,
2429   // hosted on the thread's stack.
2430   emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2431                         LocalReduceList, RemoteReduceList,
2432                         {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2433                          /*ScratchpadIndex=*/nullptr,
2434                          /*ScratchpadWidth=*/nullptr});
2435 
2436   // The actions to be performed on the Remote Reduce list is dependent
2437   // on the algorithm version.
2438   //
2439   //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2440   //  LaneId % 2 == 0 && Offset > 0):
2441   //    do the reduction value aggregation
2442   //
2443   //  The thread local variable Reduce list is mutated in place to host the
2444   //  reduced data, which is the aggregated value produced from local and
2445   //  remote lanes.
2446   //
2447   //  Note that AlgoVer is expected to be a constant integer known at compile
2448   //  time.
2449   //  When AlgoVer==0, the first conjunction evaluates to true, making
2450   //    the entire predicate true during compile time.
2451   //  When AlgoVer==1, the second conjunction has only the second part to be
2452   //    evaluated during runtime.  Other conjunctions evaluates to false
2453   //    during compile time.
2454   //  When AlgoVer==2, the third conjunction has only the second part to be
2455   //    evaluated during runtime.  Other conjunctions evaluates to false
2456   //    during compile time.
2457   llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2458 
2459   llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2460   llvm::Value *CondAlgo1 = Bld.CreateAnd(
2461       Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2462 
2463   llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2464   llvm::Value *CondAlgo2 = Bld.CreateAnd(
2465       Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2466   CondAlgo2 = Bld.CreateAnd(
2467       CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2468 
2469   llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2470   CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2471 
2472   llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2473   llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2474   llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2475   Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2476 
2477   CGF.EmitBlock(ThenBB);
2478   // reduce_function(LocalReduceList, RemoteReduceList)
2479   llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2480       LocalReduceList.getPointer(), CGF.VoidPtrTy);
2481   llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2482       RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2483   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2484       CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2485   Bld.CreateBr(MergeBB);
2486 
2487   CGF.EmitBlock(ElseBB);
2488   Bld.CreateBr(MergeBB);
2489 
2490   CGF.EmitBlock(MergeBB);
2491 
2492   // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2493   // Reduce list.
2494   Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2495   llvm::Value *CondCopy = Bld.CreateAnd(
2496       Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2497 
2498   llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2499   llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2500   llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2501   Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2502 
2503   CGF.EmitBlock(CpyThenBB);
2504   emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2505                         RemoteReduceList, LocalReduceList);
2506   Bld.CreateBr(CpyMergeBB);
2507 
2508   CGF.EmitBlock(CpyElseBB);
2509   Bld.CreateBr(CpyMergeBB);
2510 
2511   CGF.EmitBlock(CpyMergeBB);
2512 
2513   CGF.FinishFunction();
2514   return Fn;
2515 }
2516 
2517 /// This function emits a helper that copies all the reduction variables from
2518 /// the team into the provided global buffer for the reduction variables.
2519 ///
2520 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2521 ///   For all data entries D in reduce_data:
2522 ///     Copy local D to buffer.D[Idx]
2523 static llvm::Value *emitListToGlobalCopyFunction(
2524     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2525     QualType ReductionArrayTy, SourceLocation Loc,
2526     const RecordDecl *TeamReductionRec,
2527     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2528         &VarFieldMap) {
2529   ASTContext &C = CGM.getContext();
2530 
2531   // Buffer: global reduction buffer.
2532   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2533                               C.VoidPtrTy, ImplicitParamDecl::Other);
2534   // Idx: index of the buffer.
2535   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2536                            ImplicitParamDecl::Other);
2537   // ReduceList: thread local Reduce list.
2538   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2539                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2540   FunctionArgList Args;
2541   Args.push_back(&BufferArg);
2542   Args.push_back(&IdxArg);
2543   Args.push_back(&ReduceListArg);
2544 
2545   const CGFunctionInfo &CGFI =
2546       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2547   auto *Fn = llvm::Function::Create(
2548       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2549       "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2550   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2551   Fn->setDoesNotRecurse();
2552   CodeGenFunction CGF(CGM);
2553   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2554 
2555   CGBuilderTy &Bld = CGF.Builder;
2556 
2557   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2558   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2559   Address LocalReduceList(
2560       Bld.CreatePointerBitCastOrAddrSpaceCast(
2561           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2562                                C.VoidPtrTy, Loc),
2563           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2564       CGF.getPointerAlign());
2565   QualType StaticTy = C.getRecordType(TeamReductionRec);
2566   llvm::Type *LLVMReductionsBufferTy =
2567       CGM.getTypes().ConvertTypeForMem(StaticTy);
2568   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2569       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2570       LLVMReductionsBufferTy->getPointerTo());
2571   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2572                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2573                                               /*Volatile=*/false, C.IntTy,
2574                                               Loc)};
2575   unsigned Idx = 0;
2576   for (const Expr *Private : Privates) {
2577     // Reduce element = LocalReduceList[i]
2578     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2579     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2580         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2581     // elemptr = ((CopyType*)(elemptrptr)) + I
2582     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2583         ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
2584     Address ElemPtr =
2585         Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
2586     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2587     // Global = Buffer.VD[Idx];
2588     const FieldDecl *FD = VarFieldMap.lookup(VD);
2589     LValue GlobLVal = CGF.EmitLValueForField(
2590         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2591     Address GlobAddr = GlobLVal.getAddress(CGF);
2592     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2593         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2594     GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment()));
2595     switch (CGF.getEvaluationKind(Private->getType())) {
2596     case TEK_Scalar: {
2597       llvm::Value *V = CGF.EmitLoadOfScalar(
2598           ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2599           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2600       CGF.EmitStoreOfScalar(V, GlobLVal);
2601       break;
2602     }
2603     case TEK_Complex: {
2604       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2605           CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2606       CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2607       break;
2608     }
2609     case TEK_Aggregate:
2610       CGF.EmitAggregateCopy(GlobLVal,
2611                             CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2612                             Private->getType(), AggValueSlot::DoesNotOverlap);
2613       break;
2614     }
2615     ++Idx;
2616   }
2617 
2618   CGF.FinishFunction();
2619   return Fn;
2620 }
2621 
2622 /// This function emits a helper that reduces all the reduction variables from
2623 /// the team into the provided global buffer for the reduction variables.
2624 ///
2625 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2626 ///  void *GlobPtrs[];
2627 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2628 ///  ...
2629 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2630 ///  reduce_function(GlobPtrs, reduce_data);
2631 static llvm::Value *emitListToGlobalReduceFunction(
2632     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2633     QualType ReductionArrayTy, SourceLocation Loc,
2634     const RecordDecl *TeamReductionRec,
2635     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2636         &VarFieldMap,
2637     llvm::Function *ReduceFn) {
2638   ASTContext &C = CGM.getContext();
2639 
2640   // Buffer: global reduction buffer.
2641   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2642                               C.VoidPtrTy, ImplicitParamDecl::Other);
2643   // Idx: index of the buffer.
2644   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2645                            ImplicitParamDecl::Other);
2646   // ReduceList: thread local Reduce list.
2647   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2648                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2649   FunctionArgList Args;
2650   Args.push_back(&BufferArg);
2651   Args.push_back(&IdxArg);
2652   Args.push_back(&ReduceListArg);
2653 
2654   const CGFunctionInfo &CGFI =
2655       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2656   auto *Fn = llvm::Function::Create(
2657       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2658       "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2659   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2660   Fn->setDoesNotRecurse();
2661   CodeGenFunction CGF(CGM);
2662   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2663 
2664   CGBuilderTy &Bld = CGF.Builder;
2665 
2666   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2667   QualType StaticTy = C.getRecordType(TeamReductionRec);
2668   llvm::Type *LLVMReductionsBufferTy =
2669       CGM.getTypes().ConvertTypeForMem(StaticTy);
2670   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2671       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2672       LLVMReductionsBufferTy->getPointerTo());
2673 
2674   // 1. Build a list of reduction variables.
2675   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2676   Address ReductionList =
2677       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2678   auto IPriv = Privates.begin();
2679   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2680                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2681                                               /*Volatile=*/false, C.IntTy,
2682                                               Loc)};
2683   unsigned Idx = 0;
2684   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2685     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2686     // Global = Buffer.VD[Idx];
2687     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2688     const FieldDecl *FD = VarFieldMap.lookup(VD);
2689     LValue GlobLVal = CGF.EmitLValueForField(
2690         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2691     Address GlobAddr = GlobLVal.getAddress(CGF);
2692     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2693         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2694     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2695     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2696     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2697       // Store array size.
2698       ++Idx;
2699       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2700       llvm::Value *Size = CGF.Builder.CreateIntCast(
2701           CGF.getVLASize(
2702                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2703               .NumElts,
2704           CGF.SizeTy, /*isSigned=*/false);
2705       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2706                               Elem);
2707     }
2708   }
2709 
2710   // Call reduce_function(GlobalReduceList, ReduceList)
2711   llvm::Value *GlobalReduceList =
2712       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2713   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2714   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2715       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2716   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2717       CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2718   CGF.FinishFunction();
2719   return Fn;
2720 }
2721 
2722 /// This function emits a helper that copies all the reduction variables from
2723 /// the team into the provided global buffer for the reduction variables.
2724 ///
2725 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2726 ///   For all data entries D in reduce_data:
2727 ///     Copy buffer.D[Idx] to local D;
2728 static llvm::Value *emitGlobalToListCopyFunction(
2729     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2730     QualType ReductionArrayTy, SourceLocation Loc,
2731     const RecordDecl *TeamReductionRec,
2732     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2733         &VarFieldMap) {
2734   ASTContext &C = CGM.getContext();
2735 
2736   // Buffer: global reduction buffer.
2737   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2738                               C.VoidPtrTy, ImplicitParamDecl::Other);
2739   // Idx: index of the buffer.
2740   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2741                            ImplicitParamDecl::Other);
2742   // ReduceList: thread local Reduce list.
2743   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2744                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2745   FunctionArgList Args;
2746   Args.push_back(&BufferArg);
2747   Args.push_back(&IdxArg);
2748   Args.push_back(&ReduceListArg);
2749 
2750   const CGFunctionInfo &CGFI =
2751       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2752   auto *Fn = llvm::Function::Create(
2753       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2754       "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2755   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2756   Fn->setDoesNotRecurse();
2757   CodeGenFunction CGF(CGM);
2758   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2759 
2760   CGBuilderTy &Bld = CGF.Builder;
2761 
2762   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2763   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2764   Address LocalReduceList(
2765       Bld.CreatePointerBitCastOrAddrSpaceCast(
2766           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2767                                C.VoidPtrTy, Loc),
2768           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2769       CGF.getPointerAlign());
2770   QualType StaticTy = C.getRecordType(TeamReductionRec);
2771   llvm::Type *LLVMReductionsBufferTy =
2772       CGM.getTypes().ConvertTypeForMem(StaticTy);
2773   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2774       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2775       LLVMReductionsBufferTy->getPointerTo());
2776 
2777   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2778                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2779                                               /*Volatile=*/false, C.IntTy,
2780                                               Loc)};
2781   unsigned Idx = 0;
2782   for (const Expr *Private : Privates) {
2783     // Reduce element = LocalReduceList[i]
2784     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2785     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2786         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2787     // elemptr = ((CopyType*)(elemptrptr)) + I
2788     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2789         ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
2790     Address ElemPtr =
2791         Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
2792     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2793     // Global = Buffer.VD[Idx];
2794     const FieldDecl *FD = VarFieldMap.lookup(VD);
2795     LValue GlobLVal = CGF.EmitLValueForField(
2796         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2797     Address GlobAddr = GlobLVal.getAddress(CGF);
2798     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2799         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2800     GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment()));
2801     switch (CGF.getEvaluationKind(Private->getType())) {
2802     case TEK_Scalar: {
2803       llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2804       CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2805                             LValueBaseInfo(AlignmentSource::Type),
2806                             TBAAAccessInfo());
2807       break;
2808     }
2809     case TEK_Complex: {
2810       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2811       CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2812                              /*isInit=*/false);
2813       break;
2814     }
2815     case TEK_Aggregate:
2816       CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2817                             GlobLVal, Private->getType(),
2818                             AggValueSlot::DoesNotOverlap);
2819       break;
2820     }
2821     ++Idx;
2822   }
2823 
2824   CGF.FinishFunction();
2825   return Fn;
2826 }
2827 
2828 /// This function emits a helper that reduces all the reduction variables from
2829 /// the team into the provided global buffer for the reduction variables.
2830 ///
2831 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2832 ///  void *GlobPtrs[];
2833 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2834 ///  ...
2835 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2836 ///  reduce_function(reduce_data, GlobPtrs);
2837 static llvm::Value *emitGlobalToListReduceFunction(
2838     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2839     QualType ReductionArrayTy, SourceLocation Loc,
2840     const RecordDecl *TeamReductionRec,
2841     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2842         &VarFieldMap,
2843     llvm::Function *ReduceFn) {
2844   ASTContext &C = CGM.getContext();
2845 
2846   // Buffer: global reduction buffer.
2847   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2848                               C.VoidPtrTy, ImplicitParamDecl::Other);
2849   // Idx: index of the buffer.
2850   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2851                            ImplicitParamDecl::Other);
2852   // ReduceList: thread local Reduce list.
2853   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2854                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2855   FunctionArgList Args;
2856   Args.push_back(&BufferArg);
2857   Args.push_back(&IdxArg);
2858   Args.push_back(&ReduceListArg);
2859 
2860   const CGFunctionInfo &CGFI =
2861       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2862   auto *Fn = llvm::Function::Create(
2863       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2864       "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2865   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2866   Fn->setDoesNotRecurse();
2867   CodeGenFunction CGF(CGM);
2868   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2869 
2870   CGBuilderTy &Bld = CGF.Builder;
2871 
2872   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2873   QualType StaticTy = C.getRecordType(TeamReductionRec);
2874   llvm::Type *LLVMReductionsBufferTy =
2875       CGM.getTypes().ConvertTypeForMem(StaticTy);
2876   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2877       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2878       LLVMReductionsBufferTy->getPointerTo());
2879 
2880   // 1. Build a list of reduction variables.
2881   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2882   Address ReductionList =
2883       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2884   auto IPriv = Privates.begin();
2885   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2886                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2887                                               /*Volatile=*/false, C.IntTy,
2888                                               Loc)};
2889   unsigned Idx = 0;
2890   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2891     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2892     // Global = Buffer.VD[Idx];
2893     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2894     const FieldDecl *FD = VarFieldMap.lookup(VD);
2895     LValue GlobLVal = CGF.EmitLValueForField(
2896         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2897     Address GlobAddr = GlobLVal.getAddress(CGF);
2898     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2899         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2900     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2901     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2902     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2903       // Store array size.
2904       ++Idx;
2905       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2906       llvm::Value *Size = CGF.Builder.CreateIntCast(
2907           CGF.getVLASize(
2908                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2909               .NumElts,
2910           CGF.SizeTy, /*isSigned=*/false);
2911       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2912                               Elem);
2913     }
2914   }
2915 
2916   // Call reduce_function(ReduceList, GlobalReduceList)
2917   llvm::Value *GlobalReduceList =
2918       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2919   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2920   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2921       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2922   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2923       CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2924   CGF.FinishFunction();
2925   return Fn;
2926 }
2927 
2928 ///
2929 /// Design of OpenMP reductions on the GPU
2930 ///
2931 /// Consider a typical OpenMP program with one or more reduction
2932 /// clauses:
2933 ///
2934 /// float foo;
2935 /// double bar;
2936 /// #pragma omp target teams distribute parallel for \
2937 ///             reduction(+:foo) reduction(*:bar)
2938 /// for (int i = 0; i < N; i++) {
2939 ///   foo += A[i]; bar *= B[i];
2940 /// }
2941 ///
2942 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2943 /// all teams.  In our OpenMP implementation on the NVPTX device an
2944 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2945 /// within a team are mapped to CUDA threads within a threadblock.
2946 /// Our goal is to efficiently aggregate values across all OpenMP
2947 /// threads such that:
2948 ///
2949 ///   - the compiler and runtime are logically concise, and
2950 ///   - the reduction is performed efficiently in a hierarchical
2951 ///     manner as follows: within OpenMP threads in the same warp,
2952 ///     across warps in a threadblock, and finally across teams on
2953 ///     the NVPTX device.
2954 ///
2955 /// Introduction to Decoupling
2956 ///
2957 /// We would like to decouple the compiler and the runtime so that the
2958 /// latter is ignorant of the reduction variables (number, data types)
2959 /// and the reduction operators.  This allows a simpler interface
2960 /// and implementation while still attaining good performance.
2961 ///
2962 /// Pseudocode for the aforementioned OpenMP program generated by the
2963 /// compiler is as follows:
2964 ///
2965 /// 1. Create private copies of reduction variables on each OpenMP
2966 ///    thread: 'foo_private', 'bar_private'
2967 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
2968 ///    to it and writes the result in 'foo_private' and 'bar_private'
2969 ///    respectively.
2970 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
2971 ///    and store the result on the team master:
2972 ///
2973 ///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
2974 ///        reduceData, shuffleReduceFn, interWarpCpyFn)
2975 ///
2976 ///     where:
2977 ///       struct ReduceData {
2978 ///         double *foo;
2979 ///         double *bar;
2980 ///       } reduceData
2981 ///       reduceData.foo = &foo_private
2982 ///       reduceData.bar = &bar_private
2983 ///
2984 ///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
2985 ///     auxiliary functions generated by the compiler that operate on
2986 ///     variables of type 'ReduceData'.  They aid the runtime perform
2987 ///     algorithmic steps in a data agnostic manner.
2988 ///
2989 ///     'shuffleReduceFn' is a pointer to a function that reduces data
2990 ///     of type 'ReduceData' across two OpenMP threads (lanes) in the
2991 ///     same warp.  It takes the following arguments as input:
2992 ///
2993 ///     a. variable of type 'ReduceData' on the calling lane,
2994 ///     b. its lane_id,
2995 ///     c. an offset relative to the current lane_id to generate a
2996 ///        remote_lane_id.  The remote lane contains the second
2997 ///        variable of type 'ReduceData' that is to be reduced.
2998 ///     d. an algorithm version parameter determining which reduction
2999 ///        algorithm to use.
3000 ///
3001 ///     'shuffleReduceFn' retrieves data from the remote lane using
3002 ///     efficient GPU shuffle intrinsics and reduces, using the
3003 ///     algorithm specified by the 4th parameter, the two operands
3004 ///     element-wise.  The result is written to the first operand.
3005 ///
3006 ///     Different reduction algorithms are implemented in different
3007 ///     runtime functions, all calling 'shuffleReduceFn' to perform
3008 ///     the essential reduction step.  Therefore, based on the 4th
3009 ///     parameter, this function behaves slightly differently to
3010 ///     cooperate with the runtime to ensure correctness under
3011 ///     different circumstances.
3012 ///
3013 ///     'InterWarpCpyFn' is a pointer to a function that transfers
3014 ///     reduced variables across warps.  It tunnels, through CUDA
3015 ///     shared memory, the thread-private data of type 'ReduceData'
3016 ///     from lane 0 of each warp to a lane in the first warp.
3017 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3018 ///    The last team writes the global reduced value to memory.
3019 ///
3020 ///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
3021 ///             reduceData, shuffleReduceFn, interWarpCpyFn,
3022 ///             scratchpadCopyFn, loadAndReduceFn)
3023 ///
3024 ///     'scratchpadCopyFn' is a helper that stores reduced
3025 ///     data from the team master to a scratchpad array in
3026 ///     global memory.
3027 ///
3028 ///     'loadAndReduceFn' is a helper that loads data from
3029 ///     the scratchpad array and reduces it with the input
3030 ///     operand.
3031 ///
3032 ///     These compiler generated functions hide address
3033 ///     calculation and alignment information from the runtime.
3034 /// 5. if ret == 1:
3035 ///     The team master of the last team stores the reduced
3036 ///     result to the globals in memory.
3037 ///     foo += reduceData.foo; bar *= reduceData.bar
3038 ///
3039 ///
3040 /// Warp Reduction Algorithms
3041 ///
3042 /// On the warp level, we have three algorithms implemented in the
3043 /// OpenMP runtime depending on the number of active lanes:
3044 ///
3045 /// Full Warp Reduction
3046 ///
3047 /// The reduce algorithm within a warp where all lanes are active
3048 /// is implemented in the runtime as follows:
3049 ///
3050 /// full_warp_reduce(void *reduce_data,
3051 ///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3052 ///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3053 ///     ShuffleReduceFn(reduce_data, 0, offset, 0);
3054 /// }
3055 ///
3056 /// The algorithm completes in log(2, WARPSIZE) steps.
3057 ///
3058 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3059 /// not used therefore we save instructions by not retrieving lane_id
3060 /// from the corresponding special registers.  The 4th parameter, which
3061 /// represents the version of the algorithm being used, is set to 0 to
3062 /// signify full warp reduction.
3063 ///
3064 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3065 ///
3066 /// #reduce_elem refers to an element in the local lane's data structure
3067 /// #remote_elem is retrieved from a remote lane
3068 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3069 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3070 ///
3071 /// Contiguous Partial Warp Reduction
3072 ///
3073 /// This reduce algorithm is used within a warp where only the first
3074 /// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
3075 /// number of OpenMP threads in a parallel region is not a multiple of
3076 /// WARPSIZE.  The algorithm is implemented in the runtime as follows:
3077 ///
3078 /// void
3079 /// contiguous_partial_reduce(void *reduce_data,
3080 ///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
3081 ///                           int size, int lane_id) {
3082 ///   int curr_size;
3083 ///   int offset;
3084 ///   curr_size = size;
3085 ///   mask = curr_size/2;
3086 ///   while (offset>0) {
3087 ///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3088 ///     curr_size = (curr_size+1)/2;
3089 ///     offset = curr_size/2;
3090 ///   }
3091 /// }
3092 ///
3093 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3094 ///
3095 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3096 /// if (lane_id < offset)
3097 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3098 /// else
3099 ///     reduce_elem = remote_elem
3100 ///
3101 /// This algorithm assumes that the data to be reduced are located in a
3102 /// contiguous subset of lanes starting from the first.  When there is
3103 /// an odd number of active lanes, the data in the last lane is not
3104 /// aggregated with any other lane's dat but is instead copied over.
3105 ///
3106 /// Dispersed Partial Warp Reduction
3107 ///
3108 /// This algorithm is used within a warp when any discontiguous subset of
3109 /// lanes are active.  It is used to implement the reduction operation
3110 /// across lanes in an OpenMP simd region or in a nested parallel region.
3111 ///
3112 /// void
3113 /// dispersed_partial_reduce(void *reduce_data,
3114 ///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3115 ///   int size, remote_id;
3116 ///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
3117 ///   do {
3118 ///       remote_id = next_active_lane_id_right_after_me();
3119 ///       # the above function returns 0 of no active lane
3120 ///       # is present right after the current lane.
3121 ///       size = number_of_active_lanes_in_this_warp();
3122 ///       logical_lane_id /= 2;
3123 ///       ShuffleReduceFn(reduce_data, logical_lane_id,
3124 ///                       remote_id-1-threadIdx.x, 2);
3125 ///   } while (logical_lane_id % 2 == 0 && size > 1);
3126 /// }
3127 ///
3128 /// There is no assumption made about the initial state of the reduction.
3129 /// Any number of lanes (>=1) could be active at any position.  The reduction
3130 /// result is returned in the first active lane.
3131 ///
3132 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3133 ///
3134 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3135 /// if (lane_id % 2 == 0 && offset > 0)
3136 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3137 /// else
3138 ///     reduce_elem = remote_elem
3139 ///
3140 ///
3141 /// Intra-Team Reduction
3142 ///
3143 /// This function, as implemented in the runtime call
3144 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3145 /// threads in a team.  It first reduces within a warp using the
3146 /// aforementioned algorithms.  We then proceed to gather all such
3147 /// reduced values at the first warp.
3148 ///
3149 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
3150 /// data from each of the "warp master" (zeroth lane of each warp, where
3151 /// warp-reduced data is held) to the zeroth warp.  This step reduces (in
3152 /// a mathematical sense) the problem of reduction across warp masters in
3153 /// a block to the problem of warp reduction.
3154 ///
3155 ///
3156 /// Inter-Team Reduction
3157 ///
3158 /// Once a team has reduced its data to a single value, it is stored in
3159 /// a global scratchpad array.  Since each team has a distinct slot, this
3160 /// can be done without locking.
3161 ///
3162 /// The last team to write to the scratchpad array proceeds to reduce the
3163 /// scratchpad array.  One or more workers in the last team use the helper
3164 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3165 /// the k'th worker reduces every k'th element.
3166 ///
3167 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3168 /// reduce across workers and compute a globally reduced value.
3169 ///
3170 void CGOpenMPRuntimeGPU::emitReduction(
3171     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3172     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3173     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3174   if (!CGF.HaveInsertPoint())
3175     return;
3176 
3177   bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3178 #ifndef NDEBUG
3179   bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3180 #endif
3181 
3182   if (Options.SimpleReduction) {
3183     assert(!TeamsReduction && !ParallelReduction &&
3184            "Invalid reduction selection in emitReduction.");
3185     CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3186                                    ReductionOps, Options);
3187     return;
3188   }
3189 
3190   assert((TeamsReduction || ParallelReduction) &&
3191          "Invalid reduction selection in emitReduction.");
3192 
3193   // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3194   // RedList, shuffle_reduce_func, interwarp_copy_func);
3195   // or
3196   // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3197   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3198   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3199 
3200   llvm::Value *Res;
3201   ASTContext &C = CGM.getContext();
3202   // 1. Build a list of reduction variables.
3203   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3204   auto Size = RHSExprs.size();
3205   for (const Expr *E : Privates) {
3206     if (E->getType()->isVariablyModifiedType())
3207       // Reserve place for array size.
3208       ++Size;
3209   }
3210   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3211   QualType ReductionArrayTy =
3212       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3213                              /*IndexTypeQuals=*/0);
3214   Address ReductionList =
3215       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3216   auto IPriv = Privates.begin();
3217   unsigned Idx = 0;
3218   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3219     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3220     CGF.Builder.CreateStore(
3221         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3222             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3223         Elem);
3224     if ((*IPriv)->getType()->isVariablyModifiedType()) {
3225       // Store array size.
3226       ++Idx;
3227       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3228       llvm::Value *Size = CGF.Builder.CreateIntCast(
3229           CGF.getVLASize(
3230                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3231               .NumElts,
3232           CGF.SizeTy, /*isSigned=*/false);
3233       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3234                               Elem);
3235     }
3236   }
3237 
3238   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3239       ReductionList.getPointer(), CGF.VoidPtrTy);
3240   llvm::Function *ReductionFn = emitReductionFunction(
3241       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
3242       LHSExprs, RHSExprs, ReductionOps);
3243   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3244   llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3245       CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3246   llvm::Value *InterWarpCopyFn =
3247       emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3248 
3249   if (ParallelReduction) {
3250     llvm::Value *Args[] = {RTLoc,
3251                            ThreadId,
3252                            CGF.Builder.getInt32(RHSExprs.size()),
3253                            ReductionArrayTySize,
3254                            RL,
3255                            ShuffleAndReduceFn,
3256                            InterWarpCopyFn};
3257 
3258     Res = CGF.EmitRuntimeCall(
3259         OMPBuilder.getOrCreateRuntimeFunction(
3260             CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3261         Args);
3262   } else {
3263     assert(TeamsReduction && "expected teams reduction.");
3264     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3265     llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3266     int Cnt = 0;
3267     for (const Expr *DRE : Privates) {
3268       PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3269       ++Cnt;
3270     }
3271     const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3272         CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
3273         C.getLangOpts().OpenMPCUDAReductionBufNum);
3274     TeamsReductions.push_back(TeamReductionRec);
3275     if (!KernelTeamsReductionPtr) {
3276       KernelTeamsReductionPtr = new llvm::GlobalVariable(
3277           CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
3278           llvm::GlobalValue::InternalLinkage, nullptr,
3279           "_openmp_teams_reductions_buffer_$_$ptr");
3280     }
3281     llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
3282         Address(KernelTeamsReductionPtr, CGM.getPointerAlign()),
3283         /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
3284     llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3285         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3286     llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3287         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3288         ReductionFn);
3289     llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3290         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3291     llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3292         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3293         ReductionFn);
3294 
3295     llvm::Value *Args[] = {
3296         RTLoc,
3297         ThreadId,
3298         GlobalBufferPtr,
3299         CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3300         RL,
3301         ShuffleAndReduceFn,
3302         InterWarpCopyFn,
3303         GlobalToBufferCpyFn,
3304         GlobalToBufferRedFn,
3305         BufferToGlobalCpyFn,
3306         BufferToGlobalRedFn};
3307 
3308     Res = CGF.EmitRuntimeCall(
3309         OMPBuilder.getOrCreateRuntimeFunction(
3310             CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3311         Args);
3312   }
3313 
3314   // 5. Build if (res == 1)
3315   llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3316   llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3317   llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3318       Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3319   CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3320 
3321   // 6. Build then branch: where we have reduced values in the master
3322   //    thread in each team.
3323   //    __kmpc_end_reduce{_nowait}(<gtid>);
3324   //    break;
3325   CGF.EmitBlock(ThenBB);
3326 
3327   // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3328   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3329                     this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3330     auto IPriv = Privates.begin();
3331     auto ILHS = LHSExprs.begin();
3332     auto IRHS = RHSExprs.begin();
3333     for (const Expr *E : ReductionOps) {
3334       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3335                                   cast<DeclRefExpr>(*IRHS));
3336       ++IPriv;
3337       ++ILHS;
3338       ++IRHS;
3339     }
3340   };
3341   llvm::Value *EndArgs[] = {ThreadId};
3342   RegionCodeGenTy RCG(CodeGen);
3343   NVPTXActionTy Action(
3344       nullptr, llvm::None,
3345       OMPBuilder.getOrCreateRuntimeFunction(
3346           CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3347       EndArgs);
3348   RCG.setAction(Action);
3349   RCG(CGF);
3350   // There is no need to emit line number for unconditional branch.
3351   (void)ApplyDebugLocation::CreateEmpty(CGF);
3352   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3353 }
3354 
3355 const VarDecl *
3356 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3357                                        const VarDecl *NativeParam) const {
3358   if (!NativeParam->getType()->isReferenceType())
3359     return NativeParam;
3360   QualType ArgType = NativeParam->getType();
3361   QualifierCollector QC;
3362   const Type *NonQualTy = QC.strip(ArgType);
3363   QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3364   if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3365     if (Attr->getCaptureKind() == OMPC_map) {
3366       PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3367                                                         LangAS::opencl_global);
3368     }
3369   }
3370   ArgType = CGM.getContext().getPointerType(PointeeTy);
3371   QC.addRestrict();
3372   enum { NVPTX_local_addr = 5 };
3373   QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3374   ArgType = QC.apply(CGM.getContext(), ArgType);
3375   if (isa<ImplicitParamDecl>(NativeParam))
3376     return ImplicitParamDecl::Create(
3377         CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3378         NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3379   return ParmVarDecl::Create(
3380       CGM.getContext(),
3381       const_cast<DeclContext *>(NativeParam->getDeclContext()),
3382       NativeParam->getBeginLoc(), NativeParam->getLocation(),
3383       NativeParam->getIdentifier(), ArgType,
3384       /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3385 }
3386 
3387 Address
3388 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3389                                           const VarDecl *NativeParam,
3390                                           const VarDecl *TargetParam) const {
3391   assert(NativeParam != TargetParam &&
3392          NativeParam->getType()->isReferenceType() &&
3393          "Native arg must not be the same as target arg.");
3394   Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3395   QualType NativeParamType = NativeParam->getType();
3396   QualifierCollector QC;
3397   const Type *NonQualTy = QC.strip(NativeParamType);
3398   QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3399   unsigned NativePointeeAddrSpace =
3400       CGF.getContext().getTargetAddressSpace(NativePointeeTy);
3401   QualType TargetTy = TargetParam->getType();
3402   llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3403       LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3404   // First cast to generic.
3405   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3406       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3407           cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
3408   // Cast from generic to native address space.
3409   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3410       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3411           cast<llvm::PointerType>(TargetAddr->getType()),
3412                                   NativePointeeAddrSpace));
3413   Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3414   CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3415                         NativeParamType);
3416   return NativeParamAddr;
3417 }
3418 
3419 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3420     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3421     ArrayRef<llvm::Value *> Args) const {
3422   SmallVector<llvm::Value *, 4> TargetArgs;
3423   TargetArgs.reserve(Args.size());
3424   auto *FnType = OutlinedFn.getFunctionType();
3425   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3426     if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3427       TargetArgs.append(std::next(Args.begin(), I), Args.end());
3428       break;
3429     }
3430     llvm::Type *TargetType = FnType->getParamType(I);
3431     llvm::Value *NativeArg = Args[I];
3432     if (!TargetType->isPointerTy()) {
3433       TargetArgs.emplace_back(NativeArg);
3434       continue;
3435     }
3436     llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3437         NativeArg, llvm::PointerType::getWithSamePointeeType(
3438             cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
3439     TargetArgs.emplace_back(
3440         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3441   }
3442   CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3443 }
3444 
3445 /// Emit function which wraps the outline parallel region
3446 /// and controls the arguments which are passed to this function.
3447 /// The wrapper ensures that the outlined function is called
3448 /// with the correct arguments when data is shared.
3449 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3450     llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3451   ASTContext &Ctx = CGM.getContext();
3452   const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3453 
3454   // Create a function that takes as argument the source thread.
3455   FunctionArgList WrapperArgs;
3456   QualType Int16QTy =
3457       Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3458   QualType Int32QTy =
3459       Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3460   ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3461                                      /*Id=*/nullptr, Int16QTy,
3462                                      ImplicitParamDecl::Other);
3463   ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3464                                /*Id=*/nullptr, Int32QTy,
3465                                ImplicitParamDecl::Other);
3466   WrapperArgs.emplace_back(&ParallelLevelArg);
3467   WrapperArgs.emplace_back(&WrapperArg);
3468 
3469   const CGFunctionInfo &CGFI =
3470       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3471 
3472   auto *Fn = llvm::Function::Create(
3473       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3474       Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3475 
3476   // Ensure we do not inline the function. This is trivially true for the ones
3477   // passed to __kmpc_fork_call but the ones calles in serialized regions
3478   // could be inlined. This is not a perfect but it is closer to the invariant
3479   // we want, namely, every data environment starts with a new function.
3480   // TODO: We should pass the if condition to the runtime function and do the
3481   //       handling there. Much cleaner code.
3482   Fn->addFnAttr(llvm::Attribute::NoInline);
3483 
3484   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3485   Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3486   Fn->setDoesNotRecurse();
3487 
3488   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3489   CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3490                     D.getBeginLoc(), D.getBeginLoc());
3491 
3492   const auto *RD = CS.getCapturedRecordDecl();
3493   auto CurField = RD->field_begin();
3494 
3495   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3496                                                       /*Name=*/".zero.addr");
3497   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3498   // Get the array of arguments.
3499   SmallVector<llvm::Value *, 8> Args;
3500 
3501   Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3502   Args.emplace_back(ZeroAddr.getPointer());
3503 
3504   CGBuilderTy &Bld = CGF.Builder;
3505   auto CI = CS.capture_begin();
3506 
3507   // Use global memory for data sharing.
3508   // Handle passing of global args to workers.
3509   Address GlobalArgs =
3510       CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3511   llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3512   llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3513   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3514                           CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3515                       DataSharingArgs);
3516 
3517   // Retrieve the shared variables from the list of references returned
3518   // by the runtime. Pass the variables to the outlined function.
3519   Address SharedArgListAddress = Address::invalid();
3520   if (CS.capture_size() > 0 ||
3521       isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3522     SharedArgListAddress = CGF.EmitLoadOfPointer(
3523         GlobalArgs, CGF.getContext()
3524                         .getPointerType(CGF.getContext().getPointerType(
3525                             CGF.getContext().VoidPtrTy))
3526                         .castAs<PointerType>());
3527   }
3528   unsigned Idx = 0;
3529   if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3530     Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3531     Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3532         Src, CGF.SizeTy->getPointerTo());
3533     llvm::Value *LB = CGF.EmitLoadOfScalar(
3534         TypedAddress,
3535         /*Volatile=*/false,
3536         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3537         cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3538     Args.emplace_back(LB);
3539     ++Idx;
3540     Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3541     TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3542         Src, CGF.SizeTy->getPointerTo());
3543     llvm::Value *UB = CGF.EmitLoadOfScalar(
3544         TypedAddress,
3545         /*Volatile=*/false,
3546         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3547         cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3548     Args.emplace_back(UB);
3549     ++Idx;
3550   }
3551   if (CS.capture_size() > 0) {
3552     ASTContext &CGFContext = CGF.getContext();
3553     for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3554       QualType ElemTy = CurField->getType();
3555       Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3556       Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3557           Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
3558       llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3559                                               /*Volatile=*/false,
3560                                               CGFContext.getPointerType(ElemTy),
3561                                               CI->getLocation());
3562       if (CI->capturesVariableByCopy() &&
3563           !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3564         Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3565                               CI->getLocation());
3566       }
3567       Args.emplace_back(Arg);
3568     }
3569   }
3570 
3571   emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3572   CGF.FinishFunction();
3573   return Fn;
3574 }
3575 
3576 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3577                                               const Decl *D) {
3578   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3579     return;
3580 
3581   assert(D && "Expected function or captured|block decl.");
3582   assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3583          "Function is registered already.");
3584   assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3585          "Team is set but not processed.");
3586   const Stmt *Body = nullptr;
3587   bool NeedToDelayGlobalization = false;
3588   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3589     Body = FD->getBody();
3590   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3591     Body = BD->getBody();
3592   } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3593     Body = CD->getBody();
3594     NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3595     if (NeedToDelayGlobalization &&
3596         getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3597       return;
3598   }
3599   if (!Body)
3600     return;
3601   CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3602   VarChecker.Visit(Body);
3603   const RecordDecl *GlobalizedVarsRecord =
3604       VarChecker.getGlobalizedRecord(IsInTTDRegion);
3605   TeamAndReductions.first = nullptr;
3606   TeamAndReductions.second.clear();
3607   ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3608       VarChecker.getEscapedVariableLengthDecls();
3609   if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
3610     return;
3611   auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3612   I->getSecond().MappedParams =
3613       std::make_unique<CodeGenFunction::OMPMapVars>();
3614   I->getSecond().EscapedParameters.insert(
3615       VarChecker.getEscapedParameters().begin(),
3616       VarChecker.getEscapedParameters().end());
3617   I->getSecond().EscapedVariableLengthDecls.append(
3618       EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3619   DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3620   for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3621     assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3622     Data.insert(std::make_pair(VD, MappedVarData()));
3623   }
3624   if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
3625     CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
3626     VarChecker.Visit(Body);
3627     I->getSecond().SecondaryLocalVarData.emplace();
3628     DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
3629     for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3630       assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3631       Data.insert(std::make_pair(VD, MappedVarData()));
3632     }
3633   }
3634   if (!NeedToDelayGlobalization) {
3635     emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
3636     struct GlobalizationScope final : EHScopeStack::Cleanup {
3637       GlobalizationScope() = default;
3638 
3639       void Emit(CodeGenFunction &CGF, Flags flags) override {
3640         static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3641             .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
3642       }
3643     };
3644     CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3645   }
3646 }
3647 
3648 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3649                                                         const VarDecl *VD) {
3650   if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3651     const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3652     auto AS = LangAS::Default;
3653     switch (A->getAllocatorType()) {
3654       // Use the default allocator here as by default local vars are
3655       // threadlocal.
3656     case OMPAllocateDeclAttr::OMPNullMemAlloc:
3657     case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3658     case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3659     case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3660     case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3661       // Follow the user decision - use default allocation.
3662       return Address::invalid();
3663     case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3664       // TODO: implement aupport for user-defined allocators.
3665       return Address::invalid();
3666     case OMPAllocateDeclAttr::OMPConstMemAlloc:
3667       AS = LangAS::cuda_constant;
3668       break;
3669     case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3670       AS = LangAS::cuda_shared;
3671       break;
3672     case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3673     case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3674       break;
3675     }
3676     llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3677     auto *GV = new llvm::GlobalVariable(
3678         CGM.getModule(), VarTy, /*isConstant=*/false,
3679         llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
3680         VD->getName(),
3681         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3682         CGM.getContext().getTargetAddressSpace(AS));
3683     CharUnits Align = CGM.getContext().getDeclAlign(VD);
3684     GV->setAlignment(Align.getAsAlign());
3685     return Address(
3686         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3687             GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3688                     VD->getType().getAddressSpace()))),
3689         Align);
3690   }
3691 
3692   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3693     return Address::invalid();
3694 
3695   VD = VD->getCanonicalDecl();
3696   auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3697   if (I == FunctionGlobalizedDecls.end())
3698     return Address::invalid();
3699   auto VDI = I->getSecond().LocalVarData.find(VD);
3700   if (VDI != I->getSecond().LocalVarData.end())
3701     return VDI->second.PrivateAddr;
3702   if (VD->hasAttrs()) {
3703     for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3704          E(VD->attr_end());
3705          IT != E; ++IT) {
3706       auto VDI = I->getSecond().LocalVarData.find(
3707           cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3708               ->getCanonicalDecl());
3709       if (VDI != I->getSecond().LocalVarData.end())
3710         return VDI->second.PrivateAddr;
3711     }
3712   }
3713 
3714   return Address::invalid();
3715 }
3716 
3717 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3718   FunctionGlobalizedDecls.erase(CGF.CurFn);
3719   CGOpenMPRuntime::functionFinished(CGF);
3720 }
3721 
3722 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3723     CodeGenFunction &CGF, const OMPLoopDirective &S,
3724     OpenMPDistScheduleClauseKind &ScheduleKind,
3725     llvm::Value *&Chunk) const {
3726   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3727   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3728     ScheduleKind = OMPC_DIST_SCHEDULE_static;
3729     Chunk = CGF.EmitScalarConversion(
3730         RT.getGPUNumThreads(CGF),
3731         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3732         S.getIterationVariable()->getType(), S.getBeginLoc());
3733     return;
3734   }
3735   CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3736       CGF, S, ScheduleKind, Chunk);
3737 }
3738 
3739 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3740     CodeGenFunction &CGF, const OMPLoopDirective &S,
3741     OpenMPScheduleClauseKind &ScheduleKind,
3742     const Expr *&ChunkExpr) const {
3743   ScheduleKind = OMPC_SCHEDULE_static;
3744   // Chunk size is 1 in this case.
3745   llvm::APInt ChunkSize(32, 1);
3746   ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3747       CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3748       SourceLocation());
3749 }
3750 
3751 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3752     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3753   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3754          " Expected target-based directive.");
3755   const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3756   for (const CapturedStmt::Capture &C : CS->captures()) {
3757     // Capture variables captured by reference in lambdas for target-based
3758     // directives.
3759     if (!C.capturesVariable())
3760       continue;
3761     const VarDecl *VD = C.getCapturedVar();
3762     const auto *RD = VD->getType()
3763                          .getCanonicalType()
3764                          .getNonReferenceType()
3765                          ->getAsCXXRecordDecl();
3766     if (!RD || !RD->isLambda())
3767       continue;
3768     Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3769     LValue VDLVal;
3770     if (VD->getType().getCanonicalType()->isReferenceType())
3771       VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3772     else
3773       VDLVal = CGF.MakeAddrLValue(
3774           VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3775     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
3776     FieldDecl *ThisCapture = nullptr;
3777     RD->getCaptureFields(Captures, ThisCapture);
3778     if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3779       LValue ThisLVal =
3780           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3781       llvm::Value *CXXThis = CGF.LoadCXXThis();
3782       CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3783     }
3784     for (const LambdaCapture &LC : RD->captures()) {
3785       if (LC.getCaptureKind() != LCK_ByRef)
3786         continue;
3787       const VarDecl *VD = LC.getCapturedVar();
3788       if (!CS->capturesVariable(VD))
3789         continue;
3790       auto It = Captures.find(VD);
3791       assert(It != Captures.end() && "Found lambda capture without field.");
3792       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3793       Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3794       if (VD->getType().getCanonicalType()->isReferenceType())
3795         VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3796                                                VD->getType().getCanonicalType())
3797                      .getAddress(CGF);
3798       CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3799     }
3800   }
3801 }
3802 
3803 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3804                                                             LangAS &AS) {
3805   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3806     return false;
3807   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3808   switch(A->getAllocatorType()) {
3809   case OMPAllocateDeclAttr::OMPNullMemAlloc:
3810   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3811   // Not supported, fallback to the default mem space.
3812   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3813   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3814   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3815   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3816   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3817     AS = LangAS::Default;
3818     return true;
3819   case OMPAllocateDeclAttr::OMPConstMemAlloc:
3820     AS = LangAS::cuda_constant;
3821     return true;
3822   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3823     AS = LangAS::cuda_shared;
3824     return true;
3825   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3826     llvm_unreachable("Expected predefined allocator for the variables with the "
3827                      "static storage.");
3828   }
3829   return false;
3830 }
3831 
3832 // Get current CudaArch and ignore any unknown values
3833 static CudaArch getCudaArch(CodeGenModule &CGM) {
3834   if (!CGM.getTarget().hasFeature("ptx"))
3835     return CudaArch::UNKNOWN;
3836   for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3837     if (Feature.getValue()) {
3838       CudaArch Arch = StringToCudaArch(Feature.getKey());
3839       if (Arch != CudaArch::UNKNOWN)
3840         return Arch;
3841     }
3842   }
3843   return CudaArch::UNKNOWN;
3844 }
3845 
3846 /// Check to see if target architecture supports unified addressing which is
3847 /// a restriction for OpenMP requires clause "unified_shared_memory".
3848 void CGOpenMPRuntimeGPU::processRequiresDirective(
3849     const OMPRequiresDecl *D) {
3850   for (const OMPClause *Clause : D->clauselists()) {
3851     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3852       CudaArch Arch = getCudaArch(CGM);
3853       switch (Arch) {
3854       case CudaArch::SM_20:
3855       case CudaArch::SM_21:
3856       case CudaArch::SM_30:
3857       case CudaArch::SM_32:
3858       case CudaArch::SM_35:
3859       case CudaArch::SM_37:
3860       case CudaArch::SM_50:
3861       case CudaArch::SM_52:
3862       case CudaArch::SM_53: {
3863         SmallString<256> Buffer;
3864         llvm::raw_svector_ostream Out(Buffer);
3865         Out << "Target architecture " << CudaArchToString(Arch)
3866             << " does not support unified addressing";
3867         CGM.Error(Clause->getBeginLoc(), Out.str());
3868         return;
3869       }
3870       case CudaArch::SM_60:
3871       case CudaArch::SM_61:
3872       case CudaArch::SM_62:
3873       case CudaArch::SM_70:
3874       case CudaArch::SM_72:
3875       case CudaArch::SM_75:
3876       case CudaArch::SM_80:
3877       case CudaArch::SM_86:
3878       case CudaArch::GFX600:
3879       case CudaArch::GFX601:
3880       case CudaArch::GFX602:
3881       case CudaArch::GFX700:
3882       case CudaArch::GFX701:
3883       case CudaArch::GFX702:
3884       case CudaArch::GFX703:
3885       case CudaArch::GFX704:
3886       case CudaArch::GFX705:
3887       case CudaArch::GFX801:
3888       case CudaArch::GFX802:
3889       case CudaArch::GFX803:
3890       case CudaArch::GFX805:
3891       case CudaArch::GFX810:
3892       case CudaArch::GFX900:
3893       case CudaArch::GFX902:
3894       case CudaArch::GFX904:
3895       case CudaArch::GFX906:
3896       case CudaArch::GFX908:
3897       case CudaArch::GFX909:
3898       case CudaArch::GFX90a:
3899       case CudaArch::GFX90c:
3900       case CudaArch::GFX1010:
3901       case CudaArch::GFX1011:
3902       case CudaArch::GFX1012:
3903       case CudaArch::GFX1013:
3904       case CudaArch::GFX1030:
3905       case CudaArch::GFX1031:
3906       case CudaArch::GFX1032:
3907       case CudaArch::GFX1033:
3908       case CudaArch::GFX1034:
3909       case CudaArch::GFX1035:
3910       case CudaArch::Generic:
3911       case CudaArch::UNUSED:
3912       case CudaArch::UNKNOWN:
3913         break;
3914       case CudaArch::LAST:
3915         llvm_unreachable("Unexpected Cuda arch.");
3916       }
3917     }
3918   }
3919   CGOpenMPRuntime::processRequiresDirective(D);
3920 }
3921 
3922 void CGOpenMPRuntimeGPU::clear() {
3923 
3924   if (!TeamsReductions.empty()) {
3925     ASTContext &C = CGM.getContext();
3926     RecordDecl *StaticRD = C.buildImplicitRecord(
3927         "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
3928     StaticRD->startDefinition();
3929     for (const RecordDecl *TeamReductionRec : TeamsReductions) {
3930       QualType RecTy = C.getRecordType(TeamReductionRec);
3931       auto *Field = FieldDecl::Create(
3932           C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
3933           C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
3934           /*BW=*/nullptr, /*Mutable=*/false,
3935           /*InitStyle=*/ICIS_NoInit);
3936       Field->setAccess(AS_public);
3937       StaticRD->addDecl(Field);
3938     }
3939     StaticRD->completeDefinition();
3940     QualType StaticTy = C.getRecordType(StaticRD);
3941     llvm::Type *LLVMReductionsBufferTy =
3942         CGM.getTypes().ConvertTypeForMem(StaticTy);
3943     // FIXME: nvlink does not handle weak linkage correctly (object with the
3944     // different size are reported as erroneous).
3945     // Restore CommonLinkage as soon as nvlink is fixed.
3946     auto *GV = new llvm::GlobalVariable(
3947         CGM.getModule(), LLVMReductionsBufferTy,
3948         /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
3949         llvm::Constant::getNullValue(LLVMReductionsBufferTy),
3950         "_openmp_teams_reductions_buffer_$_");
3951     KernelTeamsReductionPtr->setInitializer(
3952         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
3953                                                              CGM.VoidPtrTy));
3954   }
3955   CGOpenMPRuntime::clear();
3956 }
3957 
3958 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3959   CGBuilderTy &Bld = CGF.Builder;
3960   llvm::Module *M = &CGF.CGM.getModule();
3961   const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
3962   llvm::Function *F = M->getFunction(LocSize);
3963   if (!F) {
3964     F = llvm::Function::Create(
3965         llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
3966         llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
3967   }
3968   return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
3969 }
3970 
3971 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
3972   ArrayRef<llvm::Value *> Args{};
3973   return CGF.EmitRuntimeCall(
3974       OMPBuilder.getOrCreateRuntimeFunction(
3975           CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
3976       Args);
3977 }
3978 
3979 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
3980   ArrayRef<llvm::Value *> Args{};
3981   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3982                                  CGM.getModule(), OMPRTL___kmpc_get_warp_size),
3983                              Args);
3984 }
3985