1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CodeGenFunction.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclOpenMP.h" 18 #include "clang/AST/StmtOpenMP.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Basic/Cuda.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 23 #include "llvm/Support/MathExtras.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 using namespace llvm::omp; 28 29 namespace { 30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 31 class NVPTXActionTy final : public PrePostActionTy { 32 llvm::FunctionCallee EnterCallee = nullptr; 33 ArrayRef<llvm::Value *> EnterArgs; 34 llvm::FunctionCallee ExitCallee = nullptr; 35 ArrayRef<llvm::Value *> ExitArgs; 36 bool Conditional = false; 37 llvm::BasicBlock *ContBlock = nullptr; 38 39 public: 40 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 41 ArrayRef<llvm::Value *> EnterArgs, 42 llvm::FunctionCallee ExitCallee, 43 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 44 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 45 ExitArgs(ExitArgs), Conditional(Conditional) {} 46 void Enter(CodeGenFunction &CGF) override { 47 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 48 if (Conditional) { 49 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 50 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 51 ContBlock = CGF.createBasicBlock("omp_if.end"); 52 // Generate the branch (If-stmt) 53 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 54 CGF.EmitBlock(ThenBlock); 55 } 56 } 57 void Done(CodeGenFunction &CGF) { 58 // Emit the rest of blocks/branches 59 CGF.EmitBranch(ContBlock); 60 CGF.EmitBlock(ContBlock, true); 61 } 62 void Exit(CodeGenFunction &CGF) override { 63 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 64 } 65 }; 66 67 /// A class to track the execution mode when codegening directives within 68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 69 /// to the target region and used by containing directives such as 'parallel' 70 /// to emit optimized code. 71 class ExecutionRuntimeModesRAII { 72 private: 73 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 74 CGOpenMPRuntimeGPU::EM_Unknown; 75 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 76 bool SavedRuntimeMode = false; 77 bool *RuntimeMode = nullptr; 78 79 public: 80 /// Constructor for Non-SPMD mode. 81 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 82 : ExecMode(ExecMode) { 83 SavedExecMode = ExecMode; 84 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 85 } 86 /// Constructor for SPMD mode. 87 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 88 bool &RuntimeMode, bool FullRuntimeMode) 89 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 90 SavedExecMode = ExecMode; 91 SavedRuntimeMode = RuntimeMode; 92 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 93 RuntimeMode = FullRuntimeMode; 94 } 95 ~ExecutionRuntimeModesRAII() { 96 ExecMode = SavedExecMode; 97 if (RuntimeMode) 98 *RuntimeMode = SavedRuntimeMode; 99 } 100 }; 101 102 /// GPU Configuration: This information can be derived from cuda registers, 103 /// however, providing compile time constants helps generate more efficient 104 /// code. For all practical purposes this is fine because the configuration 105 /// is the same for all known NVPTX architectures. 106 enum MachineConfiguration : unsigned { 107 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 108 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 109 110 /// Global memory alignment for performance. 111 GlobalMemoryAlignment = 128, 112 113 /// Maximal size of the shared memory buffer. 114 SharedMemorySize = 128, 115 }; 116 117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 118 RefExpr = RefExpr->IgnoreParens(); 119 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 120 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 121 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 122 Base = TempASE->getBase()->IgnoreParenImpCasts(); 123 RefExpr = Base; 124 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 125 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 126 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 127 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 129 Base = TempASE->getBase()->IgnoreParenImpCasts(); 130 RefExpr = Base; 131 } 132 RefExpr = RefExpr->IgnoreParenImpCasts(); 133 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 134 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 135 const auto *ME = cast<MemberExpr>(RefExpr); 136 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 137 } 138 139 140 static RecordDecl *buildRecordForGlobalizedVars( 141 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 142 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 143 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 144 &MappedDeclsFields, int BufSize) { 145 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 146 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 147 return nullptr; 148 SmallVector<VarsDataTy, 4> GlobalizedVars; 149 for (const ValueDecl *D : EscapedDecls) 150 GlobalizedVars.emplace_back( 151 CharUnits::fromQuantity(std::max( 152 C.getDeclAlign(D).getQuantity(), 153 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 154 D); 155 for (const ValueDecl *D : EscapedDeclsForTeams) 156 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 157 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 158 return L.first > R.first; 159 }); 160 161 // Build struct _globalized_locals_ty { 162 // /* globalized vars */[WarSize] align (max(decl_align, 163 // GlobalMemoryAlignment)) 164 // /* globalized vars */ for EscapedDeclsForTeams 165 // }; 166 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 167 GlobalizedRD->startDefinition(); 168 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 169 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 170 for (const auto &Pair : GlobalizedVars) { 171 const ValueDecl *VD = Pair.second; 172 QualType Type = VD->getType(); 173 if (Type->isLValueReferenceType()) 174 Type = C.getPointerType(Type.getNonReferenceType()); 175 else 176 Type = Type.getNonReferenceType(); 177 SourceLocation Loc = VD->getLocation(); 178 FieldDecl *Field; 179 if (SingleEscaped.count(VD)) { 180 Field = FieldDecl::Create( 181 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 182 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 183 /*BW=*/nullptr, /*Mutable=*/false, 184 /*InitStyle=*/ICIS_NoInit); 185 Field->setAccess(AS_public); 186 if (VD->hasAttrs()) { 187 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 188 E(VD->getAttrs().end()); 189 I != E; ++I) 190 Field->addAttr(*I); 191 } 192 } else { 193 llvm::APInt ArraySize(32, BufSize); 194 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 195 0); 196 Field = FieldDecl::Create( 197 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 198 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 199 /*BW=*/nullptr, /*Mutable=*/false, 200 /*InitStyle=*/ICIS_NoInit); 201 Field->setAccess(AS_public); 202 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 203 static_cast<CharUnits::QuantityType>( 204 GlobalMemoryAlignment))); 205 Field->addAttr(AlignedAttr::CreateImplicit( 206 C, /*IsAlignmentExpr=*/true, 207 IntegerLiteral::Create(C, Align, 208 C.getIntTypeForBitwidth(32, /*Signed=*/0), 209 SourceLocation()), 210 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 211 } 212 GlobalizedRD->addDecl(Field); 213 MappedDeclsFields.try_emplace(VD, Field); 214 } 215 GlobalizedRD->completeDefinition(); 216 return GlobalizedRD; 217 } 218 219 /// Get the list of variables that can escape their declaration context. 220 class CheckVarsEscapingDeclContext final 221 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 222 CodeGenFunction &CGF; 223 llvm::SetVector<const ValueDecl *> EscapedDecls; 224 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 225 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 226 RecordDecl *GlobalizedRD = nullptr; 227 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 228 bool AllEscaped = false; 229 bool IsForCombinedParallelRegion = false; 230 231 void markAsEscaped(const ValueDecl *VD) { 232 // Do not globalize declare target variables. 233 if (!isa<VarDecl>(VD) || 234 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 235 return; 236 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 237 // Use user-specified allocation. 238 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 239 return; 240 // Variables captured by value must be globalized. 241 if (auto *CSI = CGF.CapturedStmtInfo) { 242 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 243 // Check if need to capture the variable that was already captured by 244 // value in the outer region. 245 if (!IsForCombinedParallelRegion) { 246 if (!FD->hasAttrs()) 247 return; 248 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 249 if (!Attr) 250 return; 251 if (((Attr->getCaptureKind() != OMPC_map) && 252 !isOpenMPPrivate(Attr->getCaptureKind())) || 253 ((Attr->getCaptureKind() == OMPC_map) && 254 !FD->getType()->isAnyPointerType())) 255 return; 256 } 257 if (!FD->getType()->isReferenceType()) { 258 assert(!VD->getType()->isVariablyModifiedType() && 259 "Parameter captured by value with variably modified type"); 260 EscapedParameters.insert(VD); 261 } else if (!IsForCombinedParallelRegion) { 262 return; 263 } 264 } 265 } 266 if ((!CGF.CapturedStmtInfo || 267 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 268 VD->getType()->isReferenceType()) 269 // Do not globalize variables with reference type. 270 return; 271 if (VD->getType()->isVariablyModifiedType()) 272 EscapedVariableLengthDecls.insert(VD); 273 else 274 EscapedDecls.insert(VD); 275 } 276 277 void VisitValueDecl(const ValueDecl *VD) { 278 if (VD->getType()->isLValueReferenceType()) 279 markAsEscaped(VD); 280 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 281 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 282 const bool SavedAllEscaped = AllEscaped; 283 AllEscaped = VD->getType()->isLValueReferenceType(); 284 Visit(VarD->getInit()); 285 AllEscaped = SavedAllEscaped; 286 } 287 } 288 } 289 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 290 ArrayRef<OMPClause *> Clauses, 291 bool IsCombinedParallelRegion) { 292 if (!S) 293 return; 294 for (const CapturedStmt::Capture &C : S->captures()) { 295 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 296 const ValueDecl *VD = C.getCapturedVar(); 297 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 298 if (IsCombinedParallelRegion) { 299 // Check if the variable is privatized in the combined construct and 300 // those private copies must be shared in the inner parallel 301 // directive. 302 IsForCombinedParallelRegion = false; 303 for (const OMPClause *C : Clauses) { 304 if (!isOpenMPPrivate(C->getClauseKind()) || 305 C->getClauseKind() == OMPC_reduction || 306 C->getClauseKind() == OMPC_linear || 307 C->getClauseKind() == OMPC_private) 308 continue; 309 ArrayRef<const Expr *> Vars; 310 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 311 Vars = PC->getVarRefs(); 312 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else 315 llvm_unreachable("Unexpected clause."); 316 for (const auto *E : Vars) { 317 const Decl *D = 318 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 319 if (D == VD->getCanonicalDecl()) { 320 IsForCombinedParallelRegion = true; 321 break; 322 } 323 } 324 if (IsForCombinedParallelRegion) 325 break; 326 } 327 } 328 markAsEscaped(VD); 329 if (isa<OMPCapturedExprDecl>(VD)) 330 VisitValueDecl(VD); 331 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 332 } 333 } 334 } 335 336 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 337 assert(!GlobalizedRD && 338 "Record for globalized variables is built already."); 339 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 340 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 341 if (IsInTTDRegion) 342 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 343 else 344 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 345 GlobalizedRD = ::buildRecordForGlobalizedVars( 346 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 347 MappedDeclsFields, WarpSize); 348 } 349 350 public: 351 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 352 ArrayRef<const ValueDecl *> TeamsReductions) 353 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 354 } 355 virtual ~CheckVarsEscapingDeclContext() = default; 356 void VisitDeclStmt(const DeclStmt *S) { 357 if (!S) 358 return; 359 for (const Decl *D : S->decls()) 360 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 361 VisitValueDecl(VD); 362 } 363 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 364 if (!D) 365 return; 366 if (!D->hasAssociatedStmt()) 367 return; 368 if (const auto *S = 369 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 370 // Do not analyze directives that do not actually require capturing, 371 // like `omp for` or `omp simd` directives. 372 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 373 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 374 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 375 VisitStmt(S->getCapturedStmt()); 376 return; 377 } 378 VisitOpenMPCapturedStmt( 379 S, D->clauses(), 380 CaptureRegions.back() == OMPD_parallel && 381 isOpenMPDistributeDirective(D->getDirectiveKind())); 382 } 383 } 384 void VisitCapturedStmt(const CapturedStmt *S) { 385 if (!S) 386 return; 387 for (const CapturedStmt::Capture &C : S->captures()) { 388 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 389 const ValueDecl *VD = C.getCapturedVar(); 390 markAsEscaped(VD); 391 if (isa<OMPCapturedExprDecl>(VD)) 392 VisitValueDecl(VD); 393 } 394 } 395 } 396 void VisitLambdaExpr(const LambdaExpr *E) { 397 if (!E) 398 return; 399 for (const LambdaCapture &C : E->captures()) { 400 if (C.capturesVariable()) { 401 if (C.getCaptureKind() == LCK_ByRef) { 402 const ValueDecl *VD = C.getCapturedVar(); 403 markAsEscaped(VD); 404 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 405 VisitValueDecl(VD); 406 } 407 } 408 } 409 } 410 void VisitBlockExpr(const BlockExpr *E) { 411 if (!E) 412 return; 413 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 414 if (C.isByRef()) { 415 const VarDecl *VD = C.getVariable(); 416 markAsEscaped(VD); 417 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 418 VisitValueDecl(VD); 419 } 420 } 421 } 422 void VisitCallExpr(const CallExpr *E) { 423 if (!E) 424 return; 425 for (const Expr *Arg : E->arguments()) { 426 if (!Arg) 427 continue; 428 if (Arg->isLValue()) { 429 const bool SavedAllEscaped = AllEscaped; 430 AllEscaped = true; 431 Visit(Arg); 432 AllEscaped = SavedAllEscaped; 433 } else { 434 Visit(Arg); 435 } 436 } 437 Visit(E->getCallee()); 438 } 439 void VisitDeclRefExpr(const DeclRefExpr *E) { 440 if (!E) 441 return; 442 const ValueDecl *VD = E->getDecl(); 443 if (AllEscaped) 444 markAsEscaped(VD); 445 if (isa<OMPCapturedExprDecl>(VD)) 446 VisitValueDecl(VD); 447 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 448 if (VarD->isInitCapture()) 449 VisitValueDecl(VD); 450 } 451 void VisitUnaryOperator(const UnaryOperator *E) { 452 if (!E) 453 return; 454 if (E->getOpcode() == UO_AddrOf) { 455 const bool SavedAllEscaped = AllEscaped; 456 AllEscaped = true; 457 Visit(E->getSubExpr()); 458 AllEscaped = SavedAllEscaped; 459 } else { 460 Visit(E->getSubExpr()); 461 } 462 } 463 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 464 if (!E) 465 return; 466 if (E->getCastKind() == CK_ArrayToPointerDecay) { 467 const bool SavedAllEscaped = AllEscaped; 468 AllEscaped = true; 469 Visit(E->getSubExpr()); 470 AllEscaped = SavedAllEscaped; 471 } else { 472 Visit(E->getSubExpr()); 473 } 474 } 475 void VisitExpr(const Expr *E) { 476 if (!E) 477 return; 478 bool SavedAllEscaped = AllEscaped; 479 if (!E->isLValue()) 480 AllEscaped = false; 481 for (const Stmt *Child : E->children()) 482 if (Child) 483 Visit(Child); 484 AllEscaped = SavedAllEscaped; 485 } 486 void VisitStmt(const Stmt *S) { 487 if (!S) 488 return; 489 for (const Stmt *Child : S->children()) 490 if (Child) 491 Visit(Child); 492 } 493 494 /// Returns the record that handles all the escaped local variables and used 495 /// instead of their original storage. 496 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 497 if (!GlobalizedRD) 498 buildRecordForGlobalizedVars(IsInTTDRegion); 499 return GlobalizedRD; 500 } 501 502 /// Returns the field in the globalized record for the escaped variable. 503 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 504 assert(GlobalizedRD && 505 "Record for globalized variables must be generated already."); 506 auto I = MappedDeclsFields.find(VD); 507 if (I == MappedDeclsFields.end()) 508 return nullptr; 509 return I->getSecond(); 510 } 511 512 /// Returns the list of the escaped local variables/parameters. 513 ArrayRef<const ValueDecl *> getEscapedDecls() const { 514 return EscapedDecls.getArrayRef(); 515 } 516 517 /// Checks if the escaped local variable is actually a parameter passed by 518 /// value. 519 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 520 return EscapedParameters; 521 } 522 523 /// Returns the list of the escaped variables with the variably modified 524 /// types. 525 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 526 return EscapedVariableLengthDecls.getArrayRef(); 527 } 528 }; 529 } // anonymous namespace 530 531 /// Get the id of the warp in the block. 532 /// We assume that the warp size is 32, which is always the case 533 /// on the NVPTX device, to generate more efficient code. 534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 535 CGBuilderTy &Bld = CGF.Builder; 536 unsigned LaneIDBits = 537 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 538 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 539 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 540 } 541 542 /// Get the id of the current lane in the Warp. 543 /// We assume that the warp size is 32, which is always the case 544 /// on the NVPTX device, to generate more efficient code. 545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 546 CGBuilderTy &Bld = CGF.Builder; 547 unsigned LaneIDBits = 548 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 549 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 550 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 551 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 552 "nvptx_lane_id"); 553 } 554 555 CGOpenMPRuntimeGPU::ExecutionMode 556 CGOpenMPRuntimeGPU::getExecutionMode() const { 557 return CurrentExecutionMode; 558 } 559 560 static CGOpenMPRuntimeGPU::DataSharingMode 561 getDataSharingMode(CodeGenModule &CGM) { 562 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 563 : CGOpenMPRuntimeGPU::Generic; 564 } 565 566 /// Check for inner (nested) SPMD construct, if any 567 static bool hasNestedSPMDDirective(ASTContext &Ctx, 568 const OMPExecutableDirective &D) { 569 const auto *CS = D.getInnermostCapturedStmt(); 570 const auto *Body = 571 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 572 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 573 574 if (const auto *NestedDir = 575 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 576 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 577 switch (D.getDirectiveKind()) { 578 case OMPD_target: 579 if (isOpenMPParallelDirective(DKind)) 580 return true; 581 if (DKind == OMPD_teams) { 582 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 583 /*IgnoreCaptured=*/true); 584 if (!Body) 585 return false; 586 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 587 if (const auto *NND = 588 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 589 DKind = NND->getDirectiveKind(); 590 if (isOpenMPParallelDirective(DKind)) 591 return true; 592 } 593 } 594 return false; 595 case OMPD_target_teams: 596 return isOpenMPParallelDirective(DKind); 597 case OMPD_target_simd: 598 case OMPD_target_parallel: 599 case OMPD_target_parallel_for: 600 case OMPD_target_parallel_for_simd: 601 case OMPD_target_teams_distribute: 602 case OMPD_target_teams_distribute_simd: 603 case OMPD_target_teams_distribute_parallel_for: 604 case OMPD_target_teams_distribute_parallel_for_simd: 605 case OMPD_parallel: 606 case OMPD_for: 607 case OMPD_parallel_for: 608 case OMPD_parallel_master: 609 case OMPD_parallel_sections: 610 case OMPD_for_simd: 611 case OMPD_parallel_for_simd: 612 case OMPD_cancel: 613 case OMPD_cancellation_point: 614 case OMPD_ordered: 615 case OMPD_threadprivate: 616 case OMPD_allocate: 617 case OMPD_task: 618 case OMPD_simd: 619 case OMPD_sections: 620 case OMPD_section: 621 case OMPD_single: 622 case OMPD_master: 623 case OMPD_critical: 624 case OMPD_taskyield: 625 case OMPD_barrier: 626 case OMPD_taskwait: 627 case OMPD_taskgroup: 628 case OMPD_atomic: 629 case OMPD_flush: 630 case OMPD_depobj: 631 case OMPD_scan: 632 case OMPD_teams: 633 case OMPD_target_data: 634 case OMPD_target_exit_data: 635 case OMPD_target_enter_data: 636 case OMPD_distribute: 637 case OMPD_distribute_simd: 638 case OMPD_distribute_parallel_for: 639 case OMPD_distribute_parallel_for_simd: 640 case OMPD_teams_distribute: 641 case OMPD_teams_distribute_simd: 642 case OMPD_teams_distribute_parallel_for: 643 case OMPD_teams_distribute_parallel_for_simd: 644 case OMPD_target_update: 645 case OMPD_declare_simd: 646 case OMPD_declare_variant: 647 case OMPD_begin_declare_variant: 648 case OMPD_end_declare_variant: 649 case OMPD_declare_target: 650 case OMPD_end_declare_target: 651 case OMPD_declare_reduction: 652 case OMPD_declare_mapper: 653 case OMPD_taskloop: 654 case OMPD_taskloop_simd: 655 case OMPD_master_taskloop: 656 case OMPD_master_taskloop_simd: 657 case OMPD_parallel_master_taskloop: 658 case OMPD_parallel_master_taskloop_simd: 659 case OMPD_requires: 660 case OMPD_unknown: 661 default: 662 llvm_unreachable("Unexpected directive."); 663 } 664 } 665 666 return false; 667 } 668 669 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 670 const OMPExecutableDirective &D) { 671 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 672 switch (DirectiveKind) { 673 case OMPD_target: 674 case OMPD_target_teams: 675 return hasNestedSPMDDirective(Ctx, D); 676 case OMPD_target_parallel: 677 case OMPD_target_parallel_for: 678 case OMPD_target_parallel_for_simd: 679 case OMPD_target_teams_distribute_parallel_for: 680 case OMPD_target_teams_distribute_parallel_for_simd: 681 case OMPD_target_simd: 682 case OMPD_target_teams_distribute_simd: 683 return true; 684 case OMPD_target_teams_distribute: 685 return false; 686 case OMPD_parallel: 687 case OMPD_for: 688 case OMPD_parallel_for: 689 case OMPD_parallel_master: 690 case OMPD_parallel_sections: 691 case OMPD_for_simd: 692 case OMPD_parallel_for_simd: 693 case OMPD_cancel: 694 case OMPD_cancellation_point: 695 case OMPD_ordered: 696 case OMPD_threadprivate: 697 case OMPD_allocate: 698 case OMPD_task: 699 case OMPD_simd: 700 case OMPD_sections: 701 case OMPD_section: 702 case OMPD_single: 703 case OMPD_master: 704 case OMPD_critical: 705 case OMPD_taskyield: 706 case OMPD_barrier: 707 case OMPD_taskwait: 708 case OMPD_taskgroup: 709 case OMPD_atomic: 710 case OMPD_flush: 711 case OMPD_depobj: 712 case OMPD_scan: 713 case OMPD_teams: 714 case OMPD_target_data: 715 case OMPD_target_exit_data: 716 case OMPD_target_enter_data: 717 case OMPD_distribute: 718 case OMPD_distribute_simd: 719 case OMPD_distribute_parallel_for: 720 case OMPD_distribute_parallel_for_simd: 721 case OMPD_teams_distribute: 722 case OMPD_teams_distribute_simd: 723 case OMPD_teams_distribute_parallel_for: 724 case OMPD_teams_distribute_parallel_for_simd: 725 case OMPD_target_update: 726 case OMPD_declare_simd: 727 case OMPD_declare_variant: 728 case OMPD_begin_declare_variant: 729 case OMPD_end_declare_variant: 730 case OMPD_declare_target: 731 case OMPD_end_declare_target: 732 case OMPD_declare_reduction: 733 case OMPD_declare_mapper: 734 case OMPD_taskloop: 735 case OMPD_taskloop_simd: 736 case OMPD_master_taskloop: 737 case OMPD_master_taskloop_simd: 738 case OMPD_parallel_master_taskloop: 739 case OMPD_parallel_master_taskloop_simd: 740 case OMPD_requires: 741 case OMPD_unknown: 742 default: 743 break; 744 } 745 llvm_unreachable( 746 "Unknown programming model for OpenMP directive on NVPTX target."); 747 } 748 749 /// Check if the directive is loops based and has schedule clause at all or has 750 /// static scheduling. 751 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 752 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 753 isOpenMPLoopDirective(D.getDirectiveKind()) && 754 "Expected loop-based directive."); 755 return !D.hasClausesOfKind<OMPOrderedClause>() && 756 (!D.hasClausesOfKind<OMPScheduleClause>() || 757 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 758 [](const OMPScheduleClause *C) { 759 return C->getScheduleKind() == OMPC_SCHEDULE_static; 760 })); 761 } 762 763 /// Check for inner (nested) lightweight runtime construct, if any 764 static bool hasNestedLightweightDirective(ASTContext &Ctx, 765 const OMPExecutableDirective &D) { 766 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 767 const auto *CS = D.getInnermostCapturedStmt(); 768 const auto *Body = 769 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 770 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 771 772 if (const auto *NestedDir = 773 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 774 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 775 switch (D.getDirectiveKind()) { 776 case OMPD_target: 777 if (isOpenMPParallelDirective(DKind) && 778 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 779 hasStaticScheduling(*NestedDir)) 780 return true; 781 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 782 return true; 783 if (DKind == OMPD_parallel) { 784 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 785 /*IgnoreCaptured=*/true); 786 if (!Body) 787 return false; 788 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 789 if (const auto *NND = 790 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 791 DKind = NND->getDirectiveKind(); 792 if (isOpenMPWorksharingDirective(DKind) && 793 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 794 return true; 795 } 796 } else if (DKind == OMPD_teams) { 797 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 798 /*IgnoreCaptured=*/true); 799 if (!Body) 800 return false; 801 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 802 if (const auto *NND = 803 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 804 DKind = NND->getDirectiveKind(); 805 if (isOpenMPParallelDirective(DKind) && 806 isOpenMPWorksharingDirective(DKind) && 807 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 808 return true; 809 if (DKind == OMPD_parallel) { 810 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 811 /*IgnoreCaptured=*/true); 812 if (!Body) 813 return false; 814 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 815 if (const auto *NND = 816 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 817 DKind = NND->getDirectiveKind(); 818 if (isOpenMPWorksharingDirective(DKind) && 819 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 820 return true; 821 } 822 } 823 } 824 } 825 return false; 826 case OMPD_target_teams: 827 if (isOpenMPParallelDirective(DKind) && 828 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 829 hasStaticScheduling(*NestedDir)) 830 return true; 831 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 832 return true; 833 if (DKind == OMPD_parallel) { 834 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 835 /*IgnoreCaptured=*/true); 836 if (!Body) 837 return false; 838 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 839 if (const auto *NND = 840 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 841 DKind = NND->getDirectiveKind(); 842 if (isOpenMPWorksharingDirective(DKind) && 843 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 844 return true; 845 } 846 } 847 return false; 848 case OMPD_target_parallel: 849 if (DKind == OMPD_simd) 850 return true; 851 return isOpenMPWorksharingDirective(DKind) && 852 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 853 case OMPD_target_teams_distribute: 854 case OMPD_target_simd: 855 case OMPD_target_parallel_for: 856 case OMPD_target_parallel_for_simd: 857 case OMPD_target_teams_distribute_simd: 858 case OMPD_target_teams_distribute_parallel_for: 859 case OMPD_target_teams_distribute_parallel_for_simd: 860 case OMPD_parallel: 861 case OMPD_for: 862 case OMPD_parallel_for: 863 case OMPD_parallel_master: 864 case OMPD_parallel_sections: 865 case OMPD_for_simd: 866 case OMPD_parallel_for_simd: 867 case OMPD_cancel: 868 case OMPD_cancellation_point: 869 case OMPD_ordered: 870 case OMPD_threadprivate: 871 case OMPD_allocate: 872 case OMPD_task: 873 case OMPD_simd: 874 case OMPD_sections: 875 case OMPD_section: 876 case OMPD_single: 877 case OMPD_master: 878 case OMPD_critical: 879 case OMPD_taskyield: 880 case OMPD_barrier: 881 case OMPD_taskwait: 882 case OMPD_taskgroup: 883 case OMPD_atomic: 884 case OMPD_flush: 885 case OMPD_depobj: 886 case OMPD_scan: 887 case OMPD_teams: 888 case OMPD_target_data: 889 case OMPD_target_exit_data: 890 case OMPD_target_enter_data: 891 case OMPD_distribute: 892 case OMPD_distribute_simd: 893 case OMPD_distribute_parallel_for: 894 case OMPD_distribute_parallel_for_simd: 895 case OMPD_teams_distribute: 896 case OMPD_teams_distribute_simd: 897 case OMPD_teams_distribute_parallel_for: 898 case OMPD_teams_distribute_parallel_for_simd: 899 case OMPD_target_update: 900 case OMPD_declare_simd: 901 case OMPD_declare_variant: 902 case OMPD_begin_declare_variant: 903 case OMPD_end_declare_variant: 904 case OMPD_declare_target: 905 case OMPD_end_declare_target: 906 case OMPD_declare_reduction: 907 case OMPD_declare_mapper: 908 case OMPD_taskloop: 909 case OMPD_taskloop_simd: 910 case OMPD_master_taskloop: 911 case OMPD_master_taskloop_simd: 912 case OMPD_parallel_master_taskloop: 913 case OMPD_parallel_master_taskloop_simd: 914 case OMPD_requires: 915 case OMPD_unknown: 916 default: 917 llvm_unreachable("Unexpected directive."); 918 } 919 } 920 921 return false; 922 } 923 924 /// Checks if the construct supports lightweight runtime. It must be SPMD 925 /// construct + inner loop-based construct with static scheduling. 926 static bool supportsLightweightRuntime(ASTContext &Ctx, 927 const OMPExecutableDirective &D) { 928 if (!supportsSPMDExecutionMode(Ctx, D)) 929 return false; 930 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 931 switch (DirectiveKind) { 932 case OMPD_target: 933 case OMPD_target_teams: 934 case OMPD_target_parallel: 935 return hasNestedLightweightDirective(Ctx, D); 936 case OMPD_target_parallel_for: 937 case OMPD_target_parallel_for_simd: 938 case OMPD_target_teams_distribute_parallel_for: 939 case OMPD_target_teams_distribute_parallel_for_simd: 940 // (Last|First)-privates must be shared in parallel region. 941 return hasStaticScheduling(D); 942 case OMPD_target_simd: 943 case OMPD_target_teams_distribute_simd: 944 return true; 945 case OMPD_target_teams_distribute: 946 return false; 947 case OMPD_parallel: 948 case OMPD_for: 949 case OMPD_parallel_for: 950 case OMPD_parallel_master: 951 case OMPD_parallel_sections: 952 case OMPD_for_simd: 953 case OMPD_parallel_for_simd: 954 case OMPD_cancel: 955 case OMPD_cancellation_point: 956 case OMPD_ordered: 957 case OMPD_threadprivate: 958 case OMPD_allocate: 959 case OMPD_task: 960 case OMPD_simd: 961 case OMPD_sections: 962 case OMPD_section: 963 case OMPD_single: 964 case OMPD_master: 965 case OMPD_critical: 966 case OMPD_taskyield: 967 case OMPD_barrier: 968 case OMPD_taskwait: 969 case OMPD_taskgroup: 970 case OMPD_atomic: 971 case OMPD_flush: 972 case OMPD_depobj: 973 case OMPD_scan: 974 case OMPD_teams: 975 case OMPD_target_data: 976 case OMPD_target_exit_data: 977 case OMPD_target_enter_data: 978 case OMPD_distribute: 979 case OMPD_distribute_simd: 980 case OMPD_distribute_parallel_for: 981 case OMPD_distribute_parallel_for_simd: 982 case OMPD_teams_distribute: 983 case OMPD_teams_distribute_simd: 984 case OMPD_teams_distribute_parallel_for: 985 case OMPD_teams_distribute_parallel_for_simd: 986 case OMPD_target_update: 987 case OMPD_declare_simd: 988 case OMPD_declare_variant: 989 case OMPD_begin_declare_variant: 990 case OMPD_end_declare_variant: 991 case OMPD_declare_target: 992 case OMPD_end_declare_target: 993 case OMPD_declare_reduction: 994 case OMPD_declare_mapper: 995 case OMPD_taskloop: 996 case OMPD_taskloop_simd: 997 case OMPD_master_taskloop: 998 case OMPD_master_taskloop_simd: 999 case OMPD_parallel_master_taskloop: 1000 case OMPD_parallel_master_taskloop_simd: 1001 case OMPD_requires: 1002 case OMPD_unknown: 1003 default: 1004 break; 1005 } 1006 llvm_unreachable( 1007 "Unknown programming model for OpenMP directive on NVPTX target."); 1008 } 1009 1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1011 StringRef ParentName, 1012 llvm::Function *&OutlinedFn, 1013 llvm::Constant *&OutlinedFnID, 1014 bool IsOffloadEntry, 1015 const RegionCodeGenTy &CodeGen) { 1016 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1017 EntryFunctionState EST; 1018 WrapperFunctionsMap.clear(); 1019 1020 // Emit target region as a standalone region. 1021 class NVPTXPrePostActionTy : public PrePostActionTy { 1022 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1023 1024 public: 1025 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1026 : EST(EST) {} 1027 void Enter(CodeGenFunction &CGF) override { 1028 auto &RT = 1029 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1030 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1031 // Skip target region initialization. 1032 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1033 } 1034 void Exit(CodeGenFunction &CGF) override { 1035 auto &RT = 1036 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1037 RT.clearLocThreadIdInsertPt(CGF); 1038 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1039 } 1040 } Action(EST); 1041 CodeGen.setAction(Action); 1042 IsInTTDRegion = true; 1043 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1044 IsOffloadEntry, CodeGen); 1045 IsInTTDRegion = false; 1046 } 1047 1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1049 EntryFunctionState &EST, bool IsSPMD) { 1050 CGBuilderTy &Bld = CGF.Builder; 1051 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1052 IsInTargetMasterThreadRegion = IsSPMD; 1053 if (!IsSPMD) 1054 emitGenericVarsProlog(CGF, EST.Loc); 1055 } 1056 1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1058 EntryFunctionState &EST, 1059 bool IsSPMD) { 1060 if (!IsSPMD) 1061 emitGenericVarsEpilog(CGF); 1062 1063 CGBuilderTy &Bld = CGF.Builder; 1064 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1065 } 1066 1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1068 StringRef ParentName, 1069 llvm::Function *&OutlinedFn, 1070 llvm::Constant *&OutlinedFnID, 1071 bool IsOffloadEntry, 1072 const RegionCodeGenTy &CodeGen) { 1073 ExecutionRuntimeModesRAII ModeRAII( 1074 CurrentExecutionMode, RequiresFullRuntime, 1075 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1076 !supportsLightweightRuntime(CGM.getContext(), D)); 1077 EntryFunctionState EST; 1078 1079 // Emit target region as a standalone region. 1080 class NVPTXPrePostActionTy : public PrePostActionTy { 1081 CGOpenMPRuntimeGPU &RT; 1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1083 1084 public: 1085 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1086 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1087 : RT(RT), EST(EST) {} 1088 void Enter(CodeGenFunction &CGF) override { 1089 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1090 // Skip target region initialization. 1091 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1092 } 1093 void Exit(CodeGenFunction &CGF) override { 1094 RT.clearLocThreadIdInsertPt(CGF); 1095 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1096 } 1097 } Action(*this, EST); 1098 CodeGen.setAction(Action); 1099 IsInTTDRegion = true; 1100 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1101 IsOffloadEntry, CodeGen); 1102 IsInTTDRegion = false; 1103 } 1104 1105 // Create a unique global variable to indicate the execution mode of this target 1106 // region. The execution mode is either 'generic', or 'spmd' depending on the 1107 // target directive. This variable is picked up by the offload library to setup 1108 // the device appropriately before kernel launch. If the execution mode is 1109 // 'generic', the runtime reserves one warp for the master, otherwise, all 1110 // warps participate in parallel work. 1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1112 bool Mode) { 1113 auto *GVMode = new llvm::GlobalVariable( 1114 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1115 llvm::GlobalValue::WeakAnyLinkage, 1116 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD 1117 : OMP_TGT_EXEC_MODE_GENERIC), 1118 Twine(Name, "_exec_mode")); 1119 CGM.addCompilerUsedGlobal(GVMode); 1120 } 1121 1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1123 llvm::Constant *Addr, 1124 uint64_t Size, int32_t, 1125 llvm::GlobalValue::LinkageTypes) { 1126 // TODO: Add support for global variables on the device after declare target 1127 // support. 1128 if (!isa<llvm::Function>(Addr)) 1129 return; 1130 llvm::Module &M = CGM.getModule(); 1131 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1132 1133 // Get "nvvm.annotations" metadata node 1134 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1135 1136 llvm::Metadata *MDVals[] = { 1137 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1138 llvm::ConstantAsMetadata::get( 1139 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1140 // Append metadata to nvvm.annotations 1141 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1142 } 1143 1144 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1145 const OMPExecutableDirective &D, StringRef ParentName, 1146 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1147 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1148 if (!IsOffloadEntry) // Nothing to do. 1149 return; 1150 1151 assert(!ParentName.empty() && "Invalid target region parent name!"); 1152 1153 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1154 if (Mode) 1155 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1156 CodeGen); 1157 else 1158 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1159 CodeGen); 1160 1161 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1162 } 1163 1164 namespace { 1165 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1166 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1167 enum ModeFlagsTy : unsigned { 1168 /// Bit set to 1 when in SPMD mode. 1169 KMP_IDENT_SPMD_MODE = 0x01, 1170 /// Bit set to 1 when a simplified runtime is used. 1171 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1172 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1173 }; 1174 1175 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1176 static const ModeFlagsTy UndefinedMode = 1177 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1178 } // anonymous namespace 1179 1180 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1181 switch (getExecutionMode()) { 1182 case EM_SPMD: 1183 if (requiresFullRuntime()) 1184 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1185 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1186 case EM_NonSPMD: 1187 assert(requiresFullRuntime() && "Expected full runtime."); 1188 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1189 case EM_Unknown: 1190 return UndefinedMode; 1191 } 1192 llvm_unreachable("Unknown flags are requested."); 1193 } 1194 1195 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1196 : CGOpenMPRuntime(CGM, "_", "$") { 1197 if (!CGM.getLangOpts().OpenMPIsDevice) 1198 llvm_unreachable("OpenMP can only handle device code."); 1199 1200 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); 1201 if (CGM.getLangOpts().OpenMPTargetNewRuntime && 1202 !CGM.getLangOpts().OMPHostIRFile.empty()) { 1203 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug, 1204 "__omp_rtl_debug_kind"); 1205 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription, 1206 "__omp_rtl_assume_teams_oversubscription"); 1207 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription, 1208 "__omp_rtl_assume_threads_oversubscription"); 1209 } 1210 } 1211 1212 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1213 ProcBindKind ProcBind, 1214 SourceLocation Loc) { 1215 // Do nothing in case of SPMD mode and L0 parallel. 1216 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1217 return; 1218 1219 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1220 } 1221 1222 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1223 llvm::Value *NumThreads, 1224 SourceLocation Loc) { 1225 // Nothing to do. 1226 } 1227 1228 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1229 const Expr *NumTeams, 1230 const Expr *ThreadLimit, 1231 SourceLocation Loc) {} 1232 1233 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1234 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1235 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1236 // Emit target region as a standalone region. 1237 class NVPTXPrePostActionTy : public PrePostActionTy { 1238 bool &IsInParallelRegion; 1239 bool PrevIsInParallelRegion; 1240 1241 public: 1242 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1243 : IsInParallelRegion(IsInParallelRegion) {} 1244 void Enter(CodeGenFunction &CGF) override { 1245 PrevIsInParallelRegion = IsInParallelRegion; 1246 IsInParallelRegion = true; 1247 } 1248 void Exit(CodeGenFunction &CGF) override { 1249 IsInParallelRegion = PrevIsInParallelRegion; 1250 } 1251 } Action(IsInParallelRegion); 1252 CodeGen.setAction(Action); 1253 bool PrevIsInTTDRegion = IsInTTDRegion; 1254 IsInTTDRegion = false; 1255 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1256 IsInTargetMasterThreadRegion = false; 1257 auto *OutlinedFun = 1258 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1259 D, ThreadIDVar, InnermostKind, CodeGen)); 1260 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1261 IsInTTDRegion = PrevIsInTTDRegion; 1262 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1263 !IsInParallelRegion) { 1264 llvm::Function *WrapperFun = 1265 createParallelDataSharingWrapper(OutlinedFun, D); 1266 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1267 } 1268 1269 return OutlinedFun; 1270 } 1271 1272 /// Get list of lastprivate variables from the teams distribute ... or 1273 /// teams {distribute ...} directives. 1274 static void 1275 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1276 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1277 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1278 "expected teams directive."); 1279 const OMPExecutableDirective *Dir = &D; 1280 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1281 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1282 Ctx, 1283 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1284 /*IgnoreCaptured=*/true))) { 1285 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1286 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1287 Dir = nullptr; 1288 } 1289 } 1290 if (!Dir) 1291 return; 1292 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1293 for (const Expr *E : C->getVarRefs()) 1294 Vars.push_back(getPrivateItem(E)); 1295 } 1296 } 1297 1298 /// Get list of reduction variables from the teams ... directives. 1299 static void 1300 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1301 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1302 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1303 "expected teams directive."); 1304 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1305 for (const Expr *E : C->privates()) 1306 Vars.push_back(getPrivateItem(E)); 1307 } 1308 } 1309 1310 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1311 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1312 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1313 SourceLocation Loc = D.getBeginLoc(); 1314 1315 const RecordDecl *GlobalizedRD = nullptr; 1316 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1317 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1318 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1319 // Globalize team reductions variable unconditionally in all modes. 1320 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1321 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1322 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1323 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1324 if (!LastPrivatesReductions.empty()) { 1325 GlobalizedRD = ::buildRecordForGlobalizedVars( 1326 CGM.getContext(), llvm::None, LastPrivatesReductions, 1327 MappedDeclsFields, WarpSize); 1328 } 1329 } else if (!LastPrivatesReductions.empty()) { 1330 assert(!TeamAndReductions.first && 1331 "Previous team declaration is not expected."); 1332 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1333 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1334 } 1335 1336 // Emit target region as a standalone region. 1337 class NVPTXPrePostActionTy : public PrePostActionTy { 1338 SourceLocation &Loc; 1339 const RecordDecl *GlobalizedRD; 1340 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1341 &MappedDeclsFields; 1342 1343 public: 1344 NVPTXPrePostActionTy( 1345 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1346 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1347 &MappedDeclsFields) 1348 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1349 MappedDeclsFields(MappedDeclsFields) {} 1350 void Enter(CodeGenFunction &CGF) override { 1351 auto &Rt = 1352 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1353 if (GlobalizedRD) { 1354 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1355 I->getSecond().MappedParams = 1356 std::make_unique<CodeGenFunction::OMPMapVars>(); 1357 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1358 for (const auto &Pair : MappedDeclsFields) { 1359 assert(Pair.getFirst()->isCanonicalDecl() && 1360 "Expected canonical declaration"); 1361 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1362 } 1363 } 1364 Rt.emitGenericVarsProlog(CGF, Loc); 1365 } 1366 void Exit(CodeGenFunction &CGF) override { 1367 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1368 .emitGenericVarsEpilog(CGF); 1369 } 1370 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1371 CodeGen.setAction(Action); 1372 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1373 D, ThreadIDVar, InnermostKind, CodeGen); 1374 1375 return OutlinedFun; 1376 } 1377 1378 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1379 SourceLocation Loc, 1380 bool WithSPMDCheck) { 1381 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1382 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1383 return; 1384 1385 CGBuilderTy &Bld = CGF.Builder; 1386 1387 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1388 if (I == FunctionGlobalizedDecls.end()) 1389 return; 1390 1391 for (auto &Rec : I->getSecond().LocalVarData) { 1392 const auto *VD = cast<VarDecl>(Rec.first); 1393 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1394 QualType VarTy = VD->getType(); 1395 1396 // Get the local allocation of a firstprivate variable before sharing 1397 llvm::Value *ParValue; 1398 if (EscapedParam) { 1399 LValue ParLVal = 1400 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1401 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1402 } 1403 1404 // Allocate space for the variable to be globalized 1405 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1406 llvm::CallBase *VoidPtr = 1407 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1408 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1409 AllocArgs, VD->getName()); 1410 // FIXME: We should use the variables actual alignment as an argument. 1411 VoidPtr->addRetAttr(llvm::Attribute::get( 1412 CGM.getLLVMContext(), llvm::Attribute::Alignment, 1413 CGM.getContext().getTargetInfo().getNewAlign() / 8)); 1414 1415 // Cast the void pointer and get the address of the globalized variable. 1416 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1417 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1418 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1419 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1420 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1421 Rec.second.GlobalizedVal = VoidPtr; 1422 1423 // Assign the local allocation to the newly globalized location. 1424 if (EscapedParam) { 1425 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1426 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1427 } 1428 if (auto *DI = CGF.getDebugInfo()) 1429 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1430 } 1431 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1432 // Use actual memory size of the VLA object including the padding 1433 // for alignment purposes. 1434 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1435 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1436 Size = Bld.CreateNUWAdd( 1437 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1438 llvm::Value *AlignVal = 1439 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1440 1441 Size = Bld.CreateUDiv(Size, AlignVal); 1442 Size = Bld.CreateNUWMul(Size, AlignVal); 1443 1444 // Allocate space for this VLA object to be globalized. 1445 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1446 llvm::CallBase *VoidPtr = 1447 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1448 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1449 AllocArgs, VD->getName()); 1450 VoidPtr->addRetAttr( 1451 llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment, 1452 CGM.getContext().getTargetInfo().getNewAlign())); 1453 1454 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1455 std::pair<llvm::Value *, llvm::Value *>( 1456 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1457 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1458 CGM.getContext().getDeclAlign(VD), 1459 AlignmentSource::Decl); 1460 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1461 Base.getAddress(CGF)); 1462 } 1463 I->getSecond().MappedParams->apply(CGF); 1464 } 1465 1466 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1467 bool WithSPMDCheck) { 1468 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1469 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1470 return; 1471 1472 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1473 if (I != FunctionGlobalizedDecls.end()) { 1474 // Deallocate the memory for each globalized VLA object 1475 for (auto AddrSizePair : 1476 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1477 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1478 CGM.getModule(), OMPRTL___kmpc_free_shared), 1479 {AddrSizePair.first, AddrSizePair.second}); 1480 } 1481 // Deallocate the memory for each globalized value 1482 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1483 const auto *VD = cast<VarDecl>(Rec.first); 1484 I->getSecond().MappedParams->restore(CGF); 1485 1486 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1487 CGF.getTypeSize(VD->getType())}; 1488 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1489 CGM.getModule(), OMPRTL___kmpc_free_shared), 1490 FreeArgs); 1491 } 1492 } 1493 } 1494 1495 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1496 const OMPExecutableDirective &D, 1497 SourceLocation Loc, 1498 llvm::Function *OutlinedFn, 1499 ArrayRef<llvm::Value *> CapturedVars) { 1500 if (!CGF.HaveInsertPoint()) 1501 return; 1502 1503 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1504 /*Name=*/".zero.addr"); 1505 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 1506 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1507 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1508 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1509 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1510 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1511 } 1512 1513 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1514 SourceLocation Loc, 1515 llvm::Function *OutlinedFn, 1516 ArrayRef<llvm::Value *> CapturedVars, 1517 const Expr *IfCond, 1518 llvm::Value *NumThreads) { 1519 if (!CGF.HaveInsertPoint()) 1520 return; 1521 1522 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond, 1523 NumThreads](CodeGenFunction &CGF, 1524 PrePostActionTy &Action) { 1525 CGBuilderTy &Bld = CGF.Builder; 1526 llvm::Value *NumThreadsVal = NumThreads; 1527 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1528 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1529 if (WFn) 1530 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1531 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1532 1533 // Create a private scope that will globalize the arguments 1534 // passed from the outside of the target region. 1535 // TODO: Is that needed? 1536 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1537 1538 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1539 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1540 "captured_vars_addrs"); 1541 // There's something to share. 1542 if (!CapturedVars.empty()) { 1543 // Prepare for parallel region. Indicate the outlined function. 1544 ASTContext &Ctx = CGF.getContext(); 1545 unsigned Idx = 0; 1546 for (llvm::Value *V : CapturedVars) { 1547 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1548 llvm::Value *PtrV; 1549 if (V->getType()->isIntegerTy()) 1550 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1551 else 1552 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1553 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1554 Ctx.getPointerType(Ctx.VoidPtrTy)); 1555 ++Idx; 1556 } 1557 } 1558 1559 llvm::Value *IfCondVal = nullptr; 1560 if (IfCond) 1561 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1562 /* isSigned */ false); 1563 else 1564 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1565 1566 if (!NumThreadsVal) 1567 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1); 1568 else 1569 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty), 1570 1571 assert(IfCondVal && "Expected a value"); 1572 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1573 llvm::Value *Args[] = { 1574 RTLoc, 1575 getThreadID(CGF, Loc), 1576 IfCondVal, 1577 NumThreadsVal, 1578 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1579 FnPtr, 1580 ID, 1581 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1582 CGF.VoidPtrPtrTy), 1583 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1584 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1585 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1586 Args); 1587 }; 1588 1589 RegionCodeGenTy RCG(ParallelGen); 1590 RCG(CGF); 1591 } 1592 1593 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1594 // Always emit simple barriers! 1595 if (!CGF.HaveInsertPoint()) 1596 return; 1597 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1598 // This function does not use parameters, so we can emit just default values. 1599 llvm::Value *Args[] = { 1600 llvm::ConstantPointerNull::get( 1601 cast<llvm::PointerType>(getIdentTyPointerTy())), 1602 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1603 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1604 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1605 Args); 1606 } 1607 1608 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1609 SourceLocation Loc, 1610 OpenMPDirectiveKind Kind, bool, 1611 bool) { 1612 // Always emit simple barriers! 1613 if (!CGF.HaveInsertPoint()) 1614 return; 1615 // Build call __kmpc_cancel_barrier(loc, thread_id); 1616 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1617 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1618 getThreadID(CGF, Loc)}; 1619 1620 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1621 CGM.getModule(), OMPRTL___kmpc_barrier), 1622 Args); 1623 } 1624 1625 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1626 CodeGenFunction &CGF, StringRef CriticalName, 1627 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1628 const Expr *Hint) { 1629 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1630 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1631 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1632 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1633 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1634 1635 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1636 1637 // Get the mask of active threads in the warp. 1638 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1639 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1640 // Fetch team-local id of the thread. 1641 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1642 1643 // Get the width of the team. 1644 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1645 1646 // Initialize the counter variable for the loop. 1647 QualType Int32Ty = 1648 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1649 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1650 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1651 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1652 /*isInit=*/true); 1653 1654 // Block checks if loop counter exceeds upper bound. 1655 CGF.EmitBlock(LoopBB); 1656 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1657 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1658 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1659 1660 // Block tests which single thread should execute region, and which threads 1661 // should go straight to synchronisation point. 1662 CGF.EmitBlock(TestBB); 1663 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1664 llvm::Value *CmpThreadToCounter = 1665 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1666 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1667 1668 // Block emits the body of the critical region. 1669 CGF.EmitBlock(BodyBB); 1670 1671 // Output the critical statement. 1672 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1673 Hint); 1674 1675 // After the body surrounded by the critical region, the single executing 1676 // thread will jump to the synchronisation point. 1677 // Block waits for all threads in current team to finish then increments the 1678 // counter variable and returns to the loop. 1679 CGF.EmitBlock(SyncBB); 1680 // Reconverge active threads in the warp. 1681 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1682 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1683 Mask); 1684 1685 llvm::Value *IncCounterVal = 1686 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1687 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1688 CGF.EmitBranch(LoopBB); 1689 1690 // Block that is reached when all threads in the team complete the region. 1691 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1692 } 1693 1694 /// Cast value to the specified type. 1695 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1696 QualType ValTy, QualType CastTy, 1697 SourceLocation Loc) { 1698 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1699 "Cast type must sized."); 1700 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1701 "Val type must sized."); 1702 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1703 if (ValTy == CastTy) 1704 return Val; 1705 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1706 CGF.getContext().getTypeSizeInChars(CastTy)) 1707 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1708 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1709 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1710 CastTy->hasSignedIntegerRepresentation()); 1711 Address CastItem = CGF.CreateMemTemp(CastTy); 1712 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1713 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1714 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1715 LValueBaseInfo(AlignmentSource::Type), 1716 TBAAAccessInfo()); 1717 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1718 LValueBaseInfo(AlignmentSource::Type), 1719 TBAAAccessInfo()); 1720 } 1721 1722 /// This function creates calls to one of two shuffle functions to copy 1723 /// variables between lanes in a warp. 1724 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1725 llvm::Value *Elem, 1726 QualType ElemType, 1727 llvm::Value *Offset, 1728 SourceLocation Loc) { 1729 CodeGenModule &CGM = CGF.CGM; 1730 CGBuilderTy &Bld = CGF.Builder; 1731 CGOpenMPRuntimeGPU &RT = 1732 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1733 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1734 1735 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1736 assert(Size.getQuantity() <= 8 && 1737 "Unsupported bitwidth in shuffle instruction."); 1738 1739 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1740 ? OMPRTL___kmpc_shuffle_int32 1741 : OMPRTL___kmpc_shuffle_int64; 1742 1743 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1744 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1745 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1746 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1747 llvm::Value *WarpSize = 1748 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1749 1750 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1751 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1752 {ElemCast, Offset, WarpSize}); 1753 1754 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1755 } 1756 1757 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1758 Address DestAddr, QualType ElemType, 1759 llvm::Value *Offset, SourceLocation Loc) { 1760 CGBuilderTy &Bld = CGF.Builder; 1761 1762 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1763 // Create the loop over the big sized data. 1764 // ptr = (void*)Elem; 1765 // ptrEnd = (void*) Elem + 1; 1766 // Step = 8; 1767 // while (ptr + Step < ptrEnd) 1768 // shuffle((int64_t)*ptr); 1769 // Step = 4; 1770 // while (ptr + Step < ptrEnd) 1771 // shuffle((int32_t)*ptr); 1772 // ... 1773 Address ElemPtr = DestAddr; 1774 Address Ptr = SrcAddr; 1775 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1776 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1777 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1778 if (Size < CharUnits::fromQuantity(IntSize)) 1779 continue; 1780 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1781 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1782 /*Signed=*/1); 1783 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1784 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1785 ElemPtr = 1786 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1787 if (Size.getQuantity() / IntSize > 1) { 1788 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1789 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1790 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1791 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1792 CGF.EmitBlock(PreCondBB); 1793 llvm::PHINode *PhiSrc = 1794 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1795 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1796 llvm::PHINode *PhiDest = 1797 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1798 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1799 Ptr = Address(PhiSrc, Ptr.getAlignment()); 1800 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 1801 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1802 CGF.Int8Ty, PtrEnd.getPointer(), 1803 Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(), 1804 CGF.VoidPtrTy)); 1805 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1806 ThenBB, ExitBB); 1807 CGF.EmitBlock(ThenBB); 1808 llvm::Value *Res = createRuntimeShuffleFunction( 1809 CGF, 1810 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1811 LValueBaseInfo(AlignmentSource::Type), 1812 TBAAAccessInfo()), 1813 IntType, Offset, Loc); 1814 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1815 LValueBaseInfo(AlignmentSource::Type), 1816 TBAAAccessInfo()); 1817 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1818 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1819 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1820 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1821 CGF.EmitBranch(PreCondBB); 1822 CGF.EmitBlock(ExitBB); 1823 } else { 1824 llvm::Value *Res = createRuntimeShuffleFunction( 1825 CGF, 1826 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1827 LValueBaseInfo(AlignmentSource::Type), 1828 TBAAAccessInfo()), 1829 IntType, Offset, Loc); 1830 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1831 LValueBaseInfo(AlignmentSource::Type), 1832 TBAAAccessInfo()); 1833 Ptr = Bld.CreateConstGEP(Ptr, 1); 1834 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1835 } 1836 Size = Size % IntSize; 1837 } 1838 } 1839 1840 namespace { 1841 enum CopyAction : unsigned { 1842 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1843 // the warp using shuffle instructions. 1844 RemoteLaneToThread, 1845 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1846 ThreadCopy, 1847 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1848 ThreadToScratchpad, 1849 // ScratchpadToThread: Copy from a scratchpad array in global memory 1850 // containing team-reduced data to a thread's stack. 1851 ScratchpadToThread, 1852 }; 1853 } // namespace 1854 1855 struct CopyOptionsTy { 1856 llvm::Value *RemoteLaneOffset; 1857 llvm::Value *ScratchpadIndex; 1858 llvm::Value *ScratchpadWidth; 1859 }; 1860 1861 /// Emit instructions to copy a Reduce list, which contains partially 1862 /// aggregated values, in the specified direction. 1863 static void emitReductionListCopy( 1864 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1865 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1866 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1867 1868 CodeGenModule &CGM = CGF.CGM; 1869 ASTContext &C = CGM.getContext(); 1870 CGBuilderTy &Bld = CGF.Builder; 1871 1872 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1873 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1874 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1875 1876 // Iterates, element-by-element, through the source Reduce list and 1877 // make a copy. 1878 unsigned Idx = 0; 1879 unsigned Size = Privates.size(); 1880 for (const Expr *Private : Privates) { 1881 Address SrcElementAddr = Address::invalid(); 1882 Address DestElementAddr = Address::invalid(); 1883 Address DestElementPtrAddr = Address::invalid(); 1884 // Should we shuffle in an element from a remote lane? 1885 bool ShuffleInElement = false; 1886 // Set to true to update the pointer in the dest Reduce list to a 1887 // newly created element. 1888 bool UpdateDestListPtr = false; 1889 // Increment the src or dest pointer to the scratchpad, for each 1890 // new element. 1891 bool IncrScratchpadSrc = false; 1892 bool IncrScratchpadDest = false; 1893 1894 switch (Action) { 1895 case RemoteLaneToThread: { 1896 // Step 1.1: Get the address for the src element in the Reduce list. 1897 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1898 SrcElementAddr = CGF.EmitLoadOfPointer( 1899 SrcElementPtrAddr, 1900 C.getPointerType(Private->getType())->castAs<PointerType>()); 1901 1902 // Step 1.2: Create a temporary to store the element in the destination 1903 // Reduce list. 1904 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1905 DestElementAddr = 1906 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1907 ShuffleInElement = true; 1908 UpdateDestListPtr = true; 1909 break; 1910 } 1911 case ThreadCopy: { 1912 // Step 1.1: Get the address for the src element in the Reduce list. 1913 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1914 SrcElementAddr = CGF.EmitLoadOfPointer( 1915 SrcElementPtrAddr, 1916 C.getPointerType(Private->getType())->castAs<PointerType>()); 1917 1918 // Step 1.2: Get the address for dest element. The destination 1919 // element has already been created on the thread's stack. 1920 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1921 DestElementAddr = CGF.EmitLoadOfPointer( 1922 DestElementPtrAddr, 1923 C.getPointerType(Private->getType())->castAs<PointerType>()); 1924 break; 1925 } 1926 case ThreadToScratchpad: { 1927 // Step 1.1: Get the address for the src element in the Reduce list. 1928 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1929 SrcElementAddr = CGF.EmitLoadOfPointer( 1930 SrcElementPtrAddr, 1931 C.getPointerType(Private->getType())->castAs<PointerType>()); 1932 1933 // Step 1.2: Get the address for dest element: 1934 // address = base + index * ElementSizeInChars. 1935 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1936 llvm::Value *CurrentOffset = 1937 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1938 llvm::Value *ScratchPadElemAbsolutePtrVal = 1939 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1940 ScratchPadElemAbsolutePtrVal = 1941 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1942 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1943 C.getTypeAlignInChars(Private->getType())); 1944 IncrScratchpadDest = true; 1945 break; 1946 } 1947 case ScratchpadToThread: { 1948 // Step 1.1: Get the address for the src element in the scratchpad. 1949 // address = base + index * ElementSizeInChars. 1950 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1951 llvm::Value *CurrentOffset = 1952 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1953 llvm::Value *ScratchPadElemAbsolutePtrVal = 1954 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1955 ScratchPadElemAbsolutePtrVal = 1956 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1957 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1958 C.getTypeAlignInChars(Private->getType())); 1959 IncrScratchpadSrc = true; 1960 1961 // Step 1.2: Create a temporary to store the element in the destination 1962 // Reduce list. 1963 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1964 DestElementAddr = 1965 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1966 UpdateDestListPtr = true; 1967 break; 1968 } 1969 } 1970 1971 // Regardless of src and dest of copy, we emit the load of src 1972 // element as this is required in all directions 1973 SrcElementAddr = Bld.CreateElementBitCast( 1974 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1975 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1976 SrcElementAddr.getElementType()); 1977 1978 // Now that all active lanes have read the element in the 1979 // Reduce list, shuffle over the value from the remote lane. 1980 if (ShuffleInElement) { 1981 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1982 RemoteLaneOffset, Private->getExprLoc()); 1983 } else { 1984 switch (CGF.getEvaluationKind(Private->getType())) { 1985 case TEK_Scalar: { 1986 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1987 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1988 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1989 TBAAAccessInfo()); 1990 // Store the source element value to the dest element address. 1991 CGF.EmitStoreOfScalar( 1992 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1993 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1994 break; 1995 } 1996 case TEK_Complex: { 1997 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 1998 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1999 Private->getExprLoc()); 2000 CGF.EmitStoreOfComplex( 2001 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2002 /*isInit=*/false); 2003 break; 2004 } 2005 case TEK_Aggregate: 2006 CGF.EmitAggregateCopy( 2007 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2008 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2009 Private->getType(), AggValueSlot::DoesNotOverlap); 2010 break; 2011 } 2012 } 2013 2014 // Step 3.1: Modify reference in dest Reduce list as needed. 2015 // Modifying the reference in Reduce list to point to the newly 2016 // created element. The element is live in the current function 2017 // scope and that of functions it invokes (i.e., reduce_function). 2018 // RemoteReduceData[i] = (void*)&RemoteElem 2019 if (UpdateDestListPtr) { 2020 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2021 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2022 DestElementPtrAddr, /*Volatile=*/false, 2023 C.VoidPtrTy); 2024 } 2025 2026 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2027 // address of the next element in scratchpad memory, unless we're currently 2028 // processing the last one. Memory alignment is also taken care of here. 2029 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2030 llvm::Value *ScratchpadBasePtr = 2031 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2032 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2033 ScratchpadBasePtr = Bld.CreateNUWAdd( 2034 ScratchpadBasePtr, 2035 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2036 2037 // Take care of global memory alignment for performance 2038 ScratchpadBasePtr = Bld.CreateNUWSub( 2039 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2040 ScratchpadBasePtr = Bld.CreateUDiv( 2041 ScratchpadBasePtr, 2042 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2043 ScratchpadBasePtr = Bld.CreateNUWAdd( 2044 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2045 ScratchpadBasePtr = Bld.CreateNUWMul( 2046 ScratchpadBasePtr, 2047 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2048 2049 if (IncrScratchpadDest) 2050 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2051 else /* IncrScratchpadSrc = true */ 2052 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2053 } 2054 2055 ++Idx; 2056 } 2057 } 2058 2059 /// This function emits a helper that gathers Reduce lists from the first 2060 /// lane of every active warp to lanes in the first warp. 2061 /// 2062 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2063 /// shared smem[warp_size]; 2064 /// For all data entries D in reduce_data: 2065 /// sync 2066 /// If (I am the first lane in each warp) 2067 /// Copy my local D to smem[warp_id] 2068 /// sync 2069 /// if (I am the first warp) 2070 /// Copy smem[thread_id] to my local D 2071 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2072 ArrayRef<const Expr *> Privates, 2073 QualType ReductionArrayTy, 2074 SourceLocation Loc) { 2075 ASTContext &C = CGM.getContext(); 2076 llvm::Module &M = CGM.getModule(); 2077 2078 // ReduceList: thread local Reduce list. 2079 // At the stage of the computation when this function is called, partially 2080 // aggregated values reside in the first lane of every active warp. 2081 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2082 C.VoidPtrTy, ImplicitParamDecl::Other); 2083 // NumWarps: number of warps active in the parallel region. This could 2084 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2085 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2086 C.getIntTypeForBitwidth(32, /* Signed */ true), 2087 ImplicitParamDecl::Other); 2088 FunctionArgList Args; 2089 Args.push_back(&ReduceListArg); 2090 Args.push_back(&NumWarpsArg); 2091 2092 const CGFunctionInfo &CGFI = 2093 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2094 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2095 llvm::GlobalValue::InternalLinkage, 2096 "_omp_reduction_inter_warp_copy_func", &M); 2097 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2098 Fn->setDoesNotRecurse(); 2099 CodeGenFunction CGF(CGM); 2100 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2101 2102 CGBuilderTy &Bld = CGF.Builder; 2103 2104 // This array is used as a medium to transfer, one reduce element at a time, 2105 // the data from the first lane of every warp to lanes in the first warp 2106 // in order to perform the final step of a reduction in a parallel region 2107 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2108 // for reduced latency, as well as to have a distinct copy for concurrently 2109 // executing target regions. The array is declared with common linkage so 2110 // as to be shared across compilation units. 2111 StringRef TransferMediumName = 2112 "__openmp_nvptx_data_transfer_temporary_storage"; 2113 llvm::GlobalVariable *TransferMedium = 2114 M.getGlobalVariable(TransferMediumName); 2115 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2116 if (!TransferMedium) { 2117 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2118 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2119 TransferMedium = new llvm::GlobalVariable( 2120 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2121 llvm::UndefValue::get(Ty), TransferMediumName, 2122 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2123 SharedAddressSpace); 2124 CGM.addCompilerUsedGlobal(TransferMedium); 2125 } 2126 2127 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2128 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2129 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2130 // nvptx_lane_id = nvptx_id % warpsize 2131 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2132 // nvptx_warp_id = nvptx_id / warpsize 2133 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2134 2135 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2136 Address LocalReduceList( 2137 Bld.CreatePointerBitCastOrAddrSpaceCast( 2138 CGF.EmitLoadOfScalar( 2139 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2140 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2141 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2142 CGF.getPointerAlign()); 2143 2144 unsigned Idx = 0; 2145 for (const Expr *Private : Privates) { 2146 // 2147 // Warp master copies reduce element to transfer medium in __shared__ 2148 // memory. 2149 // 2150 unsigned RealTySize = 2151 C.getTypeSizeInChars(Private->getType()) 2152 .alignTo(C.getTypeAlignInChars(Private->getType())) 2153 .getQuantity(); 2154 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2155 unsigned NumIters = RealTySize / TySize; 2156 if (NumIters == 0) 2157 continue; 2158 QualType CType = C.getIntTypeForBitwidth( 2159 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2160 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2161 CharUnits Align = CharUnits::fromQuantity(TySize); 2162 llvm::Value *Cnt = nullptr; 2163 Address CntAddr = Address::invalid(); 2164 llvm::BasicBlock *PrecondBB = nullptr; 2165 llvm::BasicBlock *ExitBB = nullptr; 2166 if (NumIters > 1) { 2167 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2168 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2169 /*Volatile=*/false, C.IntTy); 2170 PrecondBB = CGF.createBasicBlock("precond"); 2171 ExitBB = CGF.createBasicBlock("exit"); 2172 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2173 // There is no need to emit line number for unconditional branch. 2174 (void)ApplyDebugLocation::CreateEmpty(CGF); 2175 CGF.EmitBlock(PrecondBB); 2176 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2177 llvm::Value *Cmp = 2178 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2179 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2180 CGF.EmitBlock(BodyBB); 2181 } 2182 // kmpc_barrier. 2183 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2184 /*EmitChecks=*/false, 2185 /*ForceSimpleCall=*/true); 2186 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2187 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2188 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2189 2190 // if (lane_id == 0) 2191 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2192 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2193 CGF.EmitBlock(ThenBB); 2194 2195 // Reduce element = LocalReduceList[i] 2196 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2197 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2198 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2199 // elemptr = ((CopyType*)(elemptrptr)) + I 2200 Address ElemPtr = Address(ElemPtrPtr, Align); 2201 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2202 if (NumIters > 1) 2203 ElemPtr = Bld.CreateGEP(ElemPtr, Cnt); 2204 2205 // Get pointer to location in transfer medium. 2206 // MediumPtr = &medium[warp_id] 2207 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2208 TransferMedium->getValueType(), TransferMedium, 2209 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2210 Address MediumPtr(MediumPtrVal, Align); 2211 // Casting to actual data type. 2212 // MediumPtr = (CopyType*)MediumPtrAddr; 2213 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2214 2215 // elem = *elemptr 2216 //*MediumPtr = elem 2217 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2218 ElemPtr, /*Volatile=*/false, CType, Loc, 2219 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2220 // Store the source element value to the dest element address. 2221 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2222 LValueBaseInfo(AlignmentSource::Type), 2223 TBAAAccessInfo()); 2224 2225 Bld.CreateBr(MergeBB); 2226 2227 CGF.EmitBlock(ElseBB); 2228 Bld.CreateBr(MergeBB); 2229 2230 CGF.EmitBlock(MergeBB); 2231 2232 // kmpc_barrier. 2233 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2234 /*EmitChecks=*/false, 2235 /*ForceSimpleCall=*/true); 2236 2237 // 2238 // Warp 0 copies reduce element from transfer medium. 2239 // 2240 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2241 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2242 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2243 2244 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2245 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2246 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2247 2248 // Up to 32 threads in warp 0 are active. 2249 llvm::Value *IsActiveThread = 2250 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2251 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2252 2253 CGF.EmitBlock(W0ThenBB); 2254 2255 // SrcMediumPtr = &medium[tid] 2256 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2257 TransferMedium->getValueType(), TransferMedium, 2258 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2259 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2260 // SrcMediumVal = *SrcMediumPtr; 2261 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2262 2263 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2264 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2265 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2266 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2267 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2268 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2269 if (NumIters > 1) 2270 TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt); 2271 2272 // *TargetElemPtr = SrcMediumVal; 2273 llvm::Value *SrcMediumValue = 2274 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2275 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2276 CType); 2277 Bld.CreateBr(W0MergeBB); 2278 2279 CGF.EmitBlock(W0ElseBB); 2280 Bld.CreateBr(W0MergeBB); 2281 2282 CGF.EmitBlock(W0MergeBB); 2283 2284 if (NumIters > 1) { 2285 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2286 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2287 CGF.EmitBranch(PrecondBB); 2288 (void)ApplyDebugLocation::CreateEmpty(CGF); 2289 CGF.EmitBlock(ExitBB); 2290 } 2291 RealTySize %= TySize; 2292 } 2293 ++Idx; 2294 } 2295 2296 CGF.FinishFunction(); 2297 return Fn; 2298 } 2299 2300 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2301 /// in the same warp. It uses shuffle instructions to copy over data from 2302 /// a remote lane's stack. The reduction algorithm performed is specified 2303 /// by the fourth parameter. 2304 /// 2305 /// Algorithm Versions. 2306 /// Full Warp Reduce (argument value 0): 2307 /// This algorithm assumes that all 32 lanes are active and gathers 2308 /// data from these 32 lanes, producing a single resultant value. 2309 /// Contiguous Partial Warp Reduce (argument value 1): 2310 /// This algorithm assumes that only a *contiguous* subset of lanes 2311 /// are active. This happens for the last warp in a parallel region 2312 /// when the user specified num_threads is not an integer multiple of 2313 /// 32. This contiguous subset always starts with the zeroth lane. 2314 /// Partial Warp Reduce (argument value 2): 2315 /// This algorithm gathers data from any number of lanes at any position. 2316 /// All reduced values are stored in the lowest possible lane. The set 2317 /// of problems every algorithm addresses is a super set of those 2318 /// addressable by algorithms with a lower version number. Overhead 2319 /// increases as algorithm version increases. 2320 /// 2321 /// Terminology 2322 /// Reduce element: 2323 /// Reduce element refers to the individual data field with primitive 2324 /// data types to be combined and reduced across threads. 2325 /// Reduce list: 2326 /// Reduce list refers to a collection of local, thread-private 2327 /// reduce elements. 2328 /// Remote Reduce list: 2329 /// Remote Reduce list refers to a collection of remote (relative to 2330 /// the current thread) reduce elements. 2331 /// 2332 /// We distinguish between three states of threads that are important to 2333 /// the implementation of this function. 2334 /// Alive threads: 2335 /// Threads in a warp executing the SIMT instruction, as distinguished from 2336 /// threads that are inactive due to divergent control flow. 2337 /// Active threads: 2338 /// The minimal set of threads that has to be alive upon entry to this 2339 /// function. The computation is correct iff active threads are alive. 2340 /// Some threads are alive but they are not active because they do not 2341 /// contribute to the computation in any useful manner. Turning them off 2342 /// may introduce control flow overheads without any tangible benefits. 2343 /// Effective threads: 2344 /// In order to comply with the argument requirements of the shuffle 2345 /// function, we must keep all lanes holding data alive. But at most 2346 /// half of them perform value aggregation; we refer to this half of 2347 /// threads as effective. The other half is simply handing off their 2348 /// data. 2349 /// 2350 /// Procedure 2351 /// Value shuffle: 2352 /// In this step active threads transfer data from higher lane positions 2353 /// in the warp to lower lane positions, creating Remote Reduce list. 2354 /// Value aggregation: 2355 /// In this step, effective threads combine their thread local Reduce list 2356 /// with Remote Reduce list and store the result in the thread local 2357 /// Reduce list. 2358 /// Value copy: 2359 /// In this step, we deal with the assumption made by algorithm 2 2360 /// (i.e. contiguity assumption). When we have an odd number of lanes 2361 /// active, say 2k+1, only k threads will be effective and therefore k 2362 /// new values will be produced. However, the Reduce list owned by the 2363 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2364 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2365 /// that the contiguity assumption still holds. 2366 static llvm::Function *emitShuffleAndReduceFunction( 2367 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2368 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2369 ASTContext &C = CGM.getContext(); 2370 2371 // Thread local Reduce list used to host the values of data to be reduced. 2372 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2373 C.VoidPtrTy, ImplicitParamDecl::Other); 2374 // Current lane id; could be logical. 2375 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2376 ImplicitParamDecl::Other); 2377 // Offset of the remote source lane relative to the current lane. 2378 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2379 C.ShortTy, ImplicitParamDecl::Other); 2380 // Algorithm version. This is expected to be known at compile time. 2381 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2382 C.ShortTy, ImplicitParamDecl::Other); 2383 FunctionArgList Args; 2384 Args.push_back(&ReduceListArg); 2385 Args.push_back(&LaneIDArg); 2386 Args.push_back(&RemoteLaneOffsetArg); 2387 Args.push_back(&AlgoVerArg); 2388 2389 const CGFunctionInfo &CGFI = 2390 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2391 auto *Fn = llvm::Function::Create( 2392 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2393 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2394 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2395 Fn->setDoesNotRecurse(); 2396 2397 CodeGenFunction CGF(CGM); 2398 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2399 2400 CGBuilderTy &Bld = CGF.Builder; 2401 2402 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2403 Address LocalReduceList( 2404 Bld.CreatePointerBitCastOrAddrSpaceCast( 2405 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2406 C.VoidPtrTy, SourceLocation()), 2407 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2408 CGF.getPointerAlign()); 2409 2410 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2411 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2412 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2413 2414 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2415 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2416 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2417 2418 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2419 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2420 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2421 2422 // Create a local thread-private variable to host the Reduce list 2423 // from a remote lane. 2424 Address RemoteReduceList = 2425 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2426 2427 // This loop iterates through the list of reduce elements and copies, 2428 // element by element, from a remote lane in the warp to RemoteReduceList, 2429 // hosted on the thread's stack. 2430 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2431 LocalReduceList, RemoteReduceList, 2432 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2433 /*ScratchpadIndex=*/nullptr, 2434 /*ScratchpadWidth=*/nullptr}); 2435 2436 // The actions to be performed on the Remote Reduce list is dependent 2437 // on the algorithm version. 2438 // 2439 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2440 // LaneId % 2 == 0 && Offset > 0): 2441 // do the reduction value aggregation 2442 // 2443 // The thread local variable Reduce list is mutated in place to host the 2444 // reduced data, which is the aggregated value produced from local and 2445 // remote lanes. 2446 // 2447 // Note that AlgoVer is expected to be a constant integer known at compile 2448 // time. 2449 // When AlgoVer==0, the first conjunction evaluates to true, making 2450 // the entire predicate true during compile time. 2451 // When AlgoVer==1, the second conjunction has only the second part to be 2452 // evaluated during runtime. Other conjunctions evaluates to false 2453 // during compile time. 2454 // When AlgoVer==2, the third conjunction has only the second part to be 2455 // evaluated during runtime. Other conjunctions evaluates to false 2456 // during compile time. 2457 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2458 2459 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2460 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2461 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2462 2463 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2464 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2465 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2466 CondAlgo2 = Bld.CreateAnd( 2467 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2468 2469 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2470 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2471 2472 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2473 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2474 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2475 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2476 2477 CGF.EmitBlock(ThenBB); 2478 // reduce_function(LocalReduceList, RemoteReduceList) 2479 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2480 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2481 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2482 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2483 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2484 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2485 Bld.CreateBr(MergeBB); 2486 2487 CGF.EmitBlock(ElseBB); 2488 Bld.CreateBr(MergeBB); 2489 2490 CGF.EmitBlock(MergeBB); 2491 2492 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2493 // Reduce list. 2494 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2495 llvm::Value *CondCopy = Bld.CreateAnd( 2496 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2497 2498 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2499 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2500 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2501 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2502 2503 CGF.EmitBlock(CpyThenBB); 2504 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2505 RemoteReduceList, LocalReduceList); 2506 Bld.CreateBr(CpyMergeBB); 2507 2508 CGF.EmitBlock(CpyElseBB); 2509 Bld.CreateBr(CpyMergeBB); 2510 2511 CGF.EmitBlock(CpyMergeBB); 2512 2513 CGF.FinishFunction(); 2514 return Fn; 2515 } 2516 2517 /// This function emits a helper that copies all the reduction variables from 2518 /// the team into the provided global buffer for the reduction variables. 2519 /// 2520 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2521 /// For all data entries D in reduce_data: 2522 /// Copy local D to buffer.D[Idx] 2523 static llvm::Value *emitListToGlobalCopyFunction( 2524 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2525 QualType ReductionArrayTy, SourceLocation Loc, 2526 const RecordDecl *TeamReductionRec, 2527 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2528 &VarFieldMap) { 2529 ASTContext &C = CGM.getContext(); 2530 2531 // Buffer: global reduction buffer. 2532 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2533 C.VoidPtrTy, ImplicitParamDecl::Other); 2534 // Idx: index of the buffer. 2535 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2536 ImplicitParamDecl::Other); 2537 // ReduceList: thread local Reduce list. 2538 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2539 C.VoidPtrTy, ImplicitParamDecl::Other); 2540 FunctionArgList Args; 2541 Args.push_back(&BufferArg); 2542 Args.push_back(&IdxArg); 2543 Args.push_back(&ReduceListArg); 2544 2545 const CGFunctionInfo &CGFI = 2546 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2547 auto *Fn = llvm::Function::Create( 2548 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2549 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2550 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2551 Fn->setDoesNotRecurse(); 2552 CodeGenFunction CGF(CGM); 2553 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2554 2555 CGBuilderTy &Bld = CGF.Builder; 2556 2557 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2558 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2559 Address LocalReduceList( 2560 Bld.CreatePointerBitCastOrAddrSpaceCast( 2561 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2562 C.VoidPtrTy, Loc), 2563 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2564 CGF.getPointerAlign()); 2565 QualType StaticTy = C.getRecordType(TeamReductionRec); 2566 llvm::Type *LLVMReductionsBufferTy = 2567 CGM.getTypes().ConvertTypeForMem(StaticTy); 2568 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2569 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2570 LLVMReductionsBufferTy->getPointerTo()); 2571 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2572 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2573 /*Volatile=*/false, C.IntTy, 2574 Loc)}; 2575 unsigned Idx = 0; 2576 for (const Expr *Private : Privates) { 2577 // Reduce element = LocalReduceList[i] 2578 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2579 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2580 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2581 // elemptr = ((CopyType*)(elemptrptr)) + I 2582 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2583 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2584 Address ElemPtr = 2585 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2586 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2587 // Global = Buffer.VD[Idx]; 2588 const FieldDecl *FD = VarFieldMap.lookup(VD); 2589 LValue GlobLVal = CGF.EmitLValueForField( 2590 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2591 Address GlobAddr = GlobLVal.getAddress(CGF); 2592 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2593 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2594 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2595 switch (CGF.getEvaluationKind(Private->getType())) { 2596 case TEK_Scalar: { 2597 llvm::Value *V = CGF.EmitLoadOfScalar( 2598 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2599 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2600 CGF.EmitStoreOfScalar(V, GlobLVal); 2601 break; 2602 } 2603 case TEK_Complex: { 2604 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2605 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2606 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2607 break; 2608 } 2609 case TEK_Aggregate: 2610 CGF.EmitAggregateCopy(GlobLVal, 2611 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2612 Private->getType(), AggValueSlot::DoesNotOverlap); 2613 break; 2614 } 2615 ++Idx; 2616 } 2617 2618 CGF.FinishFunction(); 2619 return Fn; 2620 } 2621 2622 /// This function emits a helper that reduces all the reduction variables from 2623 /// the team into the provided global buffer for the reduction variables. 2624 /// 2625 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2626 /// void *GlobPtrs[]; 2627 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2628 /// ... 2629 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2630 /// reduce_function(GlobPtrs, reduce_data); 2631 static llvm::Value *emitListToGlobalReduceFunction( 2632 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2633 QualType ReductionArrayTy, SourceLocation Loc, 2634 const RecordDecl *TeamReductionRec, 2635 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2636 &VarFieldMap, 2637 llvm::Function *ReduceFn) { 2638 ASTContext &C = CGM.getContext(); 2639 2640 // Buffer: global reduction buffer. 2641 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2642 C.VoidPtrTy, ImplicitParamDecl::Other); 2643 // Idx: index of the buffer. 2644 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2645 ImplicitParamDecl::Other); 2646 // ReduceList: thread local Reduce list. 2647 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2648 C.VoidPtrTy, ImplicitParamDecl::Other); 2649 FunctionArgList Args; 2650 Args.push_back(&BufferArg); 2651 Args.push_back(&IdxArg); 2652 Args.push_back(&ReduceListArg); 2653 2654 const CGFunctionInfo &CGFI = 2655 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2656 auto *Fn = llvm::Function::Create( 2657 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2658 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2659 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2660 Fn->setDoesNotRecurse(); 2661 CodeGenFunction CGF(CGM); 2662 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2663 2664 CGBuilderTy &Bld = CGF.Builder; 2665 2666 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2667 QualType StaticTy = C.getRecordType(TeamReductionRec); 2668 llvm::Type *LLVMReductionsBufferTy = 2669 CGM.getTypes().ConvertTypeForMem(StaticTy); 2670 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2671 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2672 LLVMReductionsBufferTy->getPointerTo()); 2673 2674 // 1. Build a list of reduction variables. 2675 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2676 Address ReductionList = 2677 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2678 auto IPriv = Privates.begin(); 2679 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2680 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2681 /*Volatile=*/false, C.IntTy, 2682 Loc)}; 2683 unsigned Idx = 0; 2684 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2685 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2686 // Global = Buffer.VD[Idx]; 2687 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2688 const FieldDecl *FD = VarFieldMap.lookup(VD); 2689 LValue GlobLVal = CGF.EmitLValueForField( 2690 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2691 Address GlobAddr = GlobLVal.getAddress(CGF); 2692 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2693 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2694 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2695 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2696 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2697 // Store array size. 2698 ++Idx; 2699 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2700 llvm::Value *Size = CGF.Builder.CreateIntCast( 2701 CGF.getVLASize( 2702 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2703 .NumElts, 2704 CGF.SizeTy, /*isSigned=*/false); 2705 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2706 Elem); 2707 } 2708 } 2709 2710 // Call reduce_function(GlobalReduceList, ReduceList) 2711 llvm::Value *GlobalReduceList = 2712 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2713 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2714 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2715 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2716 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2717 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2718 CGF.FinishFunction(); 2719 return Fn; 2720 } 2721 2722 /// This function emits a helper that copies all the reduction variables from 2723 /// the team into the provided global buffer for the reduction variables. 2724 /// 2725 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2726 /// For all data entries D in reduce_data: 2727 /// Copy buffer.D[Idx] to local D; 2728 static llvm::Value *emitGlobalToListCopyFunction( 2729 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2730 QualType ReductionArrayTy, SourceLocation Loc, 2731 const RecordDecl *TeamReductionRec, 2732 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2733 &VarFieldMap) { 2734 ASTContext &C = CGM.getContext(); 2735 2736 // Buffer: global reduction buffer. 2737 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2738 C.VoidPtrTy, ImplicitParamDecl::Other); 2739 // Idx: index of the buffer. 2740 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2741 ImplicitParamDecl::Other); 2742 // ReduceList: thread local Reduce list. 2743 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2744 C.VoidPtrTy, ImplicitParamDecl::Other); 2745 FunctionArgList Args; 2746 Args.push_back(&BufferArg); 2747 Args.push_back(&IdxArg); 2748 Args.push_back(&ReduceListArg); 2749 2750 const CGFunctionInfo &CGFI = 2751 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2752 auto *Fn = llvm::Function::Create( 2753 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2754 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2755 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2756 Fn->setDoesNotRecurse(); 2757 CodeGenFunction CGF(CGM); 2758 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2759 2760 CGBuilderTy &Bld = CGF.Builder; 2761 2762 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2763 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2764 Address LocalReduceList( 2765 Bld.CreatePointerBitCastOrAddrSpaceCast( 2766 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2767 C.VoidPtrTy, Loc), 2768 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2769 CGF.getPointerAlign()); 2770 QualType StaticTy = C.getRecordType(TeamReductionRec); 2771 llvm::Type *LLVMReductionsBufferTy = 2772 CGM.getTypes().ConvertTypeForMem(StaticTy); 2773 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2774 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2775 LLVMReductionsBufferTy->getPointerTo()); 2776 2777 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2778 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2779 /*Volatile=*/false, C.IntTy, 2780 Loc)}; 2781 unsigned Idx = 0; 2782 for (const Expr *Private : Privates) { 2783 // Reduce element = LocalReduceList[i] 2784 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2785 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2786 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2787 // elemptr = ((CopyType*)(elemptrptr)) + I 2788 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2789 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2790 Address ElemPtr = 2791 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2792 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2793 // Global = Buffer.VD[Idx]; 2794 const FieldDecl *FD = VarFieldMap.lookup(VD); 2795 LValue GlobLVal = CGF.EmitLValueForField( 2796 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2797 Address GlobAddr = GlobLVal.getAddress(CGF); 2798 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2799 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2800 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2801 switch (CGF.getEvaluationKind(Private->getType())) { 2802 case TEK_Scalar: { 2803 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2804 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2805 LValueBaseInfo(AlignmentSource::Type), 2806 TBAAAccessInfo()); 2807 break; 2808 } 2809 case TEK_Complex: { 2810 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2811 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2812 /*isInit=*/false); 2813 break; 2814 } 2815 case TEK_Aggregate: 2816 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2817 GlobLVal, Private->getType(), 2818 AggValueSlot::DoesNotOverlap); 2819 break; 2820 } 2821 ++Idx; 2822 } 2823 2824 CGF.FinishFunction(); 2825 return Fn; 2826 } 2827 2828 /// This function emits a helper that reduces all the reduction variables from 2829 /// the team into the provided global buffer for the reduction variables. 2830 /// 2831 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2832 /// void *GlobPtrs[]; 2833 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2834 /// ... 2835 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2836 /// reduce_function(reduce_data, GlobPtrs); 2837 static llvm::Value *emitGlobalToListReduceFunction( 2838 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2839 QualType ReductionArrayTy, SourceLocation Loc, 2840 const RecordDecl *TeamReductionRec, 2841 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2842 &VarFieldMap, 2843 llvm::Function *ReduceFn) { 2844 ASTContext &C = CGM.getContext(); 2845 2846 // Buffer: global reduction buffer. 2847 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2848 C.VoidPtrTy, ImplicitParamDecl::Other); 2849 // Idx: index of the buffer. 2850 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2851 ImplicitParamDecl::Other); 2852 // ReduceList: thread local Reduce list. 2853 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2854 C.VoidPtrTy, ImplicitParamDecl::Other); 2855 FunctionArgList Args; 2856 Args.push_back(&BufferArg); 2857 Args.push_back(&IdxArg); 2858 Args.push_back(&ReduceListArg); 2859 2860 const CGFunctionInfo &CGFI = 2861 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2862 auto *Fn = llvm::Function::Create( 2863 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2864 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2865 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2866 Fn->setDoesNotRecurse(); 2867 CodeGenFunction CGF(CGM); 2868 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2869 2870 CGBuilderTy &Bld = CGF.Builder; 2871 2872 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2873 QualType StaticTy = C.getRecordType(TeamReductionRec); 2874 llvm::Type *LLVMReductionsBufferTy = 2875 CGM.getTypes().ConvertTypeForMem(StaticTy); 2876 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2877 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2878 LLVMReductionsBufferTy->getPointerTo()); 2879 2880 // 1. Build a list of reduction variables. 2881 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2882 Address ReductionList = 2883 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2884 auto IPriv = Privates.begin(); 2885 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2886 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2887 /*Volatile=*/false, C.IntTy, 2888 Loc)}; 2889 unsigned Idx = 0; 2890 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2891 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2892 // Global = Buffer.VD[Idx]; 2893 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2894 const FieldDecl *FD = VarFieldMap.lookup(VD); 2895 LValue GlobLVal = CGF.EmitLValueForField( 2896 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2897 Address GlobAddr = GlobLVal.getAddress(CGF); 2898 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2899 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2900 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2901 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2902 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2903 // Store array size. 2904 ++Idx; 2905 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2906 llvm::Value *Size = CGF.Builder.CreateIntCast( 2907 CGF.getVLASize( 2908 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2909 .NumElts, 2910 CGF.SizeTy, /*isSigned=*/false); 2911 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2912 Elem); 2913 } 2914 } 2915 2916 // Call reduce_function(ReduceList, GlobalReduceList) 2917 llvm::Value *GlobalReduceList = 2918 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2919 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2920 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2921 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2922 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2923 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2924 CGF.FinishFunction(); 2925 return Fn; 2926 } 2927 2928 /// 2929 /// Design of OpenMP reductions on the GPU 2930 /// 2931 /// Consider a typical OpenMP program with one or more reduction 2932 /// clauses: 2933 /// 2934 /// float foo; 2935 /// double bar; 2936 /// #pragma omp target teams distribute parallel for \ 2937 /// reduction(+:foo) reduction(*:bar) 2938 /// for (int i = 0; i < N; i++) { 2939 /// foo += A[i]; bar *= B[i]; 2940 /// } 2941 /// 2942 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2943 /// all teams. In our OpenMP implementation on the NVPTX device an 2944 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2945 /// within a team are mapped to CUDA threads within a threadblock. 2946 /// Our goal is to efficiently aggregate values across all OpenMP 2947 /// threads such that: 2948 /// 2949 /// - the compiler and runtime are logically concise, and 2950 /// - the reduction is performed efficiently in a hierarchical 2951 /// manner as follows: within OpenMP threads in the same warp, 2952 /// across warps in a threadblock, and finally across teams on 2953 /// the NVPTX device. 2954 /// 2955 /// Introduction to Decoupling 2956 /// 2957 /// We would like to decouple the compiler and the runtime so that the 2958 /// latter is ignorant of the reduction variables (number, data types) 2959 /// and the reduction operators. This allows a simpler interface 2960 /// and implementation while still attaining good performance. 2961 /// 2962 /// Pseudocode for the aforementioned OpenMP program generated by the 2963 /// compiler is as follows: 2964 /// 2965 /// 1. Create private copies of reduction variables on each OpenMP 2966 /// thread: 'foo_private', 'bar_private' 2967 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2968 /// to it and writes the result in 'foo_private' and 'bar_private' 2969 /// respectively. 2970 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2971 /// and store the result on the team master: 2972 /// 2973 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2974 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2975 /// 2976 /// where: 2977 /// struct ReduceData { 2978 /// double *foo; 2979 /// double *bar; 2980 /// } reduceData 2981 /// reduceData.foo = &foo_private 2982 /// reduceData.bar = &bar_private 2983 /// 2984 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2985 /// auxiliary functions generated by the compiler that operate on 2986 /// variables of type 'ReduceData'. They aid the runtime perform 2987 /// algorithmic steps in a data agnostic manner. 2988 /// 2989 /// 'shuffleReduceFn' is a pointer to a function that reduces data 2990 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 2991 /// same warp. It takes the following arguments as input: 2992 /// 2993 /// a. variable of type 'ReduceData' on the calling lane, 2994 /// b. its lane_id, 2995 /// c. an offset relative to the current lane_id to generate a 2996 /// remote_lane_id. The remote lane contains the second 2997 /// variable of type 'ReduceData' that is to be reduced. 2998 /// d. an algorithm version parameter determining which reduction 2999 /// algorithm to use. 3000 /// 3001 /// 'shuffleReduceFn' retrieves data from the remote lane using 3002 /// efficient GPU shuffle intrinsics and reduces, using the 3003 /// algorithm specified by the 4th parameter, the two operands 3004 /// element-wise. The result is written to the first operand. 3005 /// 3006 /// Different reduction algorithms are implemented in different 3007 /// runtime functions, all calling 'shuffleReduceFn' to perform 3008 /// the essential reduction step. Therefore, based on the 4th 3009 /// parameter, this function behaves slightly differently to 3010 /// cooperate with the runtime to ensure correctness under 3011 /// different circumstances. 3012 /// 3013 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3014 /// reduced variables across warps. It tunnels, through CUDA 3015 /// shared memory, the thread-private data of type 'ReduceData' 3016 /// from lane 0 of each warp to a lane in the first warp. 3017 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3018 /// The last team writes the global reduced value to memory. 3019 /// 3020 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3021 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3022 /// scratchpadCopyFn, loadAndReduceFn) 3023 /// 3024 /// 'scratchpadCopyFn' is a helper that stores reduced 3025 /// data from the team master to a scratchpad array in 3026 /// global memory. 3027 /// 3028 /// 'loadAndReduceFn' is a helper that loads data from 3029 /// the scratchpad array and reduces it with the input 3030 /// operand. 3031 /// 3032 /// These compiler generated functions hide address 3033 /// calculation and alignment information from the runtime. 3034 /// 5. if ret == 1: 3035 /// The team master of the last team stores the reduced 3036 /// result to the globals in memory. 3037 /// foo += reduceData.foo; bar *= reduceData.bar 3038 /// 3039 /// 3040 /// Warp Reduction Algorithms 3041 /// 3042 /// On the warp level, we have three algorithms implemented in the 3043 /// OpenMP runtime depending on the number of active lanes: 3044 /// 3045 /// Full Warp Reduction 3046 /// 3047 /// The reduce algorithm within a warp where all lanes are active 3048 /// is implemented in the runtime as follows: 3049 /// 3050 /// full_warp_reduce(void *reduce_data, 3051 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3052 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3053 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3054 /// } 3055 /// 3056 /// The algorithm completes in log(2, WARPSIZE) steps. 3057 /// 3058 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3059 /// not used therefore we save instructions by not retrieving lane_id 3060 /// from the corresponding special registers. The 4th parameter, which 3061 /// represents the version of the algorithm being used, is set to 0 to 3062 /// signify full warp reduction. 3063 /// 3064 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3065 /// 3066 /// #reduce_elem refers to an element in the local lane's data structure 3067 /// #remote_elem is retrieved from a remote lane 3068 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3069 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3070 /// 3071 /// Contiguous Partial Warp Reduction 3072 /// 3073 /// This reduce algorithm is used within a warp where only the first 3074 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3075 /// number of OpenMP threads in a parallel region is not a multiple of 3076 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3077 /// 3078 /// void 3079 /// contiguous_partial_reduce(void *reduce_data, 3080 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3081 /// int size, int lane_id) { 3082 /// int curr_size; 3083 /// int offset; 3084 /// curr_size = size; 3085 /// mask = curr_size/2; 3086 /// while (offset>0) { 3087 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3088 /// curr_size = (curr_size+1)/2; 3089 /// offset = curr_size/2; 3090 /// } 3091 /// } 3092 /// 3093 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3094 /// 3095 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3096 /// if (lane_id < offset) 3097 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3098 /// else 3099 /// reduce_elem = remote_elem 3100 /// 3101 /// This algorithm assumes that the data to be reduced are located in a 3102 /// contiguous subset of lanes starting from the first. When there is 3103 /// an odd number of active lanes, the data in the last lane is not 3104 /// aggregated with any other lane's dat but is instead copied over. 3105 /// 3106 /// Dispersed Partial Warp Reduction 3107 /// 3108 /// This algorithm is used within a warp when any discontiguous subset of 3109 /// lanes are active. It is used to implement the reduction operation 3110 /// across lanes in an OpenMP simd region or in a nested parallel region. 3111 /// 3112 /// void 3113 /// dispersed_partial_reduce(void *reduce_data, 3114 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3115 /// int size, remote_id; 3116 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3117 /// do { 3118 /// remote_id = next_active_lane_id_right_after_me(); 3119 /// # the above function returns 0 of no active lane 3120 /// # is present right after the current lane. 3121 /// size = number_of_active_lanes_in_this_warp(); 3122 /// logical_lane_id /= 2; 3123 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3124 /// remote_id-1-threadIdx.x, 2); 3125 /// } while (logical_lane_id % 2 == 0 && size > 1); 3126 /// } 3127 /// 3128 /// There is no assumption made about the initial state of the reduction. 3129 /// Any number of lanes (>=1) could be active at any position. The reduction 3130 /// result is returned in the first active lane. 3131 /// 3132 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3133 /// 3134 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3135 /// if (lane_id % 2 == 0 && offset > 0) 3136 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3137 /// else 3138 /// reduce_elem = remote_elem 3139 /// 3140 /// 3141 /// Intra-Team Reduction 3142 /// 3143 /// This function, as implemented in the runtime call 3144 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3145 /// threads in a team. It first reduces within a warp using the 3146 /// aforementioned algorithms. We then proceed to gather all such 3147 /// reduced values at the first warp. 3148 /// 3149 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3150 /// data from each of the "warp master" (zeroth lane of each warp, where 3151 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3152 /// a mathematical sense) the problem of reduction across warp masters in 3153 /// a block to the problem of warp reduction. 3154 /// 3155 /// 3156 /// Inter-Team Reduction 3157 /// 3158 /// Once a team has reduced its data to a single value, it is stored in 3159 /// a global scratchpad array. Since each team has a distinct slot, this 3160 /// can be done without locking. 3161 /// 3162 /// The last team to write to the scratchpad array proceeds to reduce the 3163 /// scratchpad array. One or more workers in the last team use the helper 3164 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3165 /// the k'th worker reduces every k'th element. 3166 /// 3167 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3168 /// reduce across workers and compute a globally reduced value. 3169 /// 3170 void CGOpenMPRuntimeGPU::emitReduction( 3171 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3172 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3173 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3174 if (!CGF.HaveInsertPoint()) 3175 return; 3176 3177 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3178 #ifndef NDEBUG 3179 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3180 #endif 3181 3182 if (Options.SimpleReduction) { 3183 assert(!TeamsReduction && !ParallelReduction && 3184 "Invalid reduction selection in emitReduction."); 3185 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3186 ReductionOps, Options); 3187 return; 3188 } 3189 3190 assert((TeamsReduction || ParallelReduction) && 3191 "Invalid reduction selection in emitReduction."); 3192 3193 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3194 // RedList, shuffle_reduce_func, interwarp_copy_func); 3195 // or 3196 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3197 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3198 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3199 3200 llvm::Value *Res; 3201 ASTContext &C = CGM.getContext(); 3202 // 1. Build a list of reduction variables. 3203 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3204 auto Size = RHSExprs.size(); 3205 for (const Expr *E : Privates) { 3206 if (E->getType()->isVariablyModifiedType()) 3207 // Reserve place for array size. 3208 ++Size; 3209 } 3210 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3211 QualType ReductionArrayTy = 3212 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3213 /*IndexTypeQuals=*/0); 3214 Address ReductionList = 3215 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3216 auto IPriv = Privates.begin(); 3217 unsigned Idx = 0; 3218 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3219 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3220 CGF.Builder.CreateStore( 3221 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3222 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3223 Elem); 3224 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3225 // Store array size. 3226 ++Idx; 3227 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3228 llvm::Value *Size = CGF.Builder.CreateIntCast( 3229 CGF.getVLASize( 3230 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3231 .NumElts, 3232 CGF.SizeTy, /*isSigned=*/false); 3233 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3234 Elem); 3235 } 3236 } 3237 3238 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3239 ReductionList.getPointer(), CGF.VoidPtrTy); 3240 llvm::Function *ReductionFn = emitReductionFunction( 3241 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3242 LHSExprs, RHSExprs, ReductionOps); 3243 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3244 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3245 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3246 llvm::Value *InterWarpCopyFn = 3247 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3248 3249 if (ParallelReduction) { 3250 llvm::Value *Args[] = {RTLoc, 3251 ThreadId, 3252 CGF.Builder.getInt32(RHSExprs.size()), 3253 ReductionArrayTySize, 3254 RL, 3255 ShuffleAndReduceFn, 3256 InterWarpCopyFn}; 3257 3258 Res = CGF.EmitRuntimeCall( 3259 OMPBuilder.getOrCreateRuntimeFunction( 3260 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3261 Args); 3262 } else { 3263 assert(TeamsReduction && "expected teams reduction."); 3264 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3265 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3266 int Cnt = 0; 3267 for (const Expr *DRE : Privates) { 3268 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3269 ++Cnt; 3270 } 3271 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3272 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3273 C.getLangOpts().OpenMPCUDAReductionBufNum); 3274 TeamsReductions.push_back(TeamReductionRec); 3275 if (!KernelTeamsReductionPtr) { 3276 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3277 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3278 llvm::GlobalValue::InternalLinkage, nullptr, 3279 "_openmp_teams_reductions_buffer_$_$ptr"); 3280 } 3281 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3282 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3283 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3284 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3285 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3286 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3287 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3288 ReductionFn); 3289 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3290 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3291 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3292 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3293 ReductionFn); 3294 3295 llvm::Value *Args[] = { 3296 RTLoc, 3297 ThreadId, 3298 GlobalBufferPtr, 3299 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3300 RL, 3301 ShuffleAndReduceFn, 3302 InterWarpCopyFn, 3303 GlobalToBufferCpyFn, 3304 GlobalToBufferRedFn, 3305 BufferToGlobalCpyFn, 3306 BufferToGlobalRedFn}; 3307 3308 Res = CGF.EmitRuntimeCall( 3309 OMPBuilder.getOrCreateRuntimeFunction( 3310 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3311 Args); 3312 } 3313 3314 // 5. Build if (res == 1) 3315 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3316 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3317 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3318 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3319 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3320 3321 // 6. Build then branch: where we have reduced values in the master 3322 // thread in each team. 3323 // __kmpc_end_reduce{_nowait}(<gtid>); 3324 // break; 3325 CGF.EmitBlock(ThenBB); 3326 3327 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3328 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3329 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3330 auto IPriv = Privates.begin(); 3331 auto ILHS = LHSExprs.begin(); 3332 auto IRHS = RHSExprs.begin(); 3333 for (const Expr *E : ReductionOps) { 3334 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3335 cast<DeclRefExpr>(*IRHS)); 3336 ++IPriv; 3337 ++ILHS; 3338 ++IRHS; 3339 } 3340 }; 3341 llvm::Value *EndArgs[] = {ThreadId}; 3342 RegionCodeGenTy RCG(CodeGen); 3343 NVPTXActionTy Action( 3344 nullptr, llvm::None, 3345 OMPBuilder.getOrCreateRuntimeFunction( 3346 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3347 EndArgs); 3348 RCG.setAction(Action); 3349 RCG(CGF); 3350 // There is no need to emit line number for unconditional branch. 3351 (void)ApplyDebugLocation::CreateEmpty(CGF); 3352 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3353 } 3354 3355 const VarDecl * 3356 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3357 const VarDecl *NativeParam) const { 3358 if (!NativeParam->getType()->isReferenceType()) 3359 return NativeParam; 3360 QualType ArgType = NativeParam->getType(); 3361 QualifierCollector QC; 3362 const Type *NonQualTy = QC.strip(ArgType); 3363 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3364 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3365 if (Attr->getCaptureKind() == OMPC_map) { 3366 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3367 LangAS::opencl_global); 3368 } 3369 } 3370 ArgType = CGM.getContext().getPointerType(PointeeTy); 3371 QC.addRestrict(); 3372 enum { NVPTX_local_addr = 5 }; 3373 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3374 ArgType = QC.apply(CGM.getContext(), ArgType); 3375 if (isa<ImplicitParamDecl>(NativeParam)) 3376 return ImplicitParamDecl::Create( 3377 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3378 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3379 return ParmVarDecl::Create( 3380 CGM.getContext(), 3381 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3382 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3383 NativeParam->getIdentifier(), ArgType, 3384 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3385 } 3386 3387 Address 3388 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3389 const VarDecl *NativeParam, 3390 const VarDecl *TargetParam) const { 3391 assert(NativeParam != TargetParam && 3392 NativeParam->getType()->isReferenceType() && 3393 "Native arg must not be the same as target arg."); 3394 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3395 QualType NativeParamType = NativeParam->getType(); 3396 QualifierCollector QC; 3397 const Type *NonQualTy = QC.strip(NativeParamType); 3398 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3399 unsigned NativePointeeAddrSpace = 3400 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3401 QualType TargetTy = TargetParam->getType(); 3402 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3403 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3404 // First cast to generic. 3405 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3406 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3407 cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0)); 3408 // Cast from generic to native address space. 3409 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3410 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3411 cast<llvm::PointerType>(TargetAddr->getType()), 3412 NativePointeeAddrSpace)); 3413 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3414 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3415 NativeParamType); 3416 return NativeParamAddr; 3417 } 3418 3419 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3420 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3421 ArrayRef<llvm::Value *> Args) const { 3422 SmallVector<llvm::Value *, 4> TargetArgs; 3423 TargetArgs.reserve(Args.size()); 3424 auto *FnType = OutlinedFn.getFunctionType(); 3425 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3426 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3427 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3428 break; 3429 } 3430 llvm::Type *TargetType = FnType->getParamType(I); 3431 llvm::Value *NativeArg = Args[I]; 3432 if (!TargetType->isPointerTy()) { 3433 TargetArgs.emplace_back(NativeArg); 3434 continue; 3435 } 3436 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3437 NativeArg, llvm::PointerType::getWithSamePointeeType( 3438 cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0)); 3439 TargetArgs.emplace_back( 3440 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3441 } 3442 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3443 } 3444 3445 /// Emit function which wraps the outline parallel region 3446 /// and controls the arguments which are passed to this function. 3447 /// The wrapper ensures that the outlined function is called 3448 /// with the correct arguments when data is shared. 3449 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3450 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3451 ASTContext &Ctx = CGM.getContext(); 3452 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3453 3454 // Create a function that takes as argument the source thread. 3455 FunctionArgList WrapperArgs; 3456 QualType Int16QTy = 3457 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3458 QualType Int32QTy = 3459 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3460 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3461 /*Id=*/nullptr, Int16QTy, 3462 ImplicitParamDecl::Other); 3463 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3464 /*Id=*/nullptr, Int32QTy, 3465 ImplicitParamDecl::Other); 3466 WrapperArgs.emplace_back(&ParallelLevelArg); 3467 WrapperArgs.emplace_back(&WrapperArg); 3468 3469 const CGFunctionInfo &CGFI = 3470 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3471 3472 auto *Fn = llvm::Function::Create( 3473 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3474 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3475 3476 // Ensure we do not inline the function. This is trivially true for the ones 3477 // passed to __kmpc_fork_call but the ones calles in serialized regions 3478 // could be inlined. This is not a perfect but it is closer to the invariant 3479 // we want, namely, every data environment starts with a new function. 3480 // TODO: We should pass the if condition to the runtime function and do the 3481 // handling there. Much cleaner code. 3482 Fn->addFnAttr(llvm::Attribute::NoInline); 3483 3484 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3485 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3486 Fn->setDoesNotRecurse(); 3487 3488 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3489 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3490 D.getBeginLoc(), D.getBeginLoc()); 3491 3492 const auto *RD = CS.getCapturedRecordDecl(); 3493 auto CurField = RD->field_begin(); 3494 3495 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3496 /*Name=*/".zero.addr"); 3497 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 3498 // Get the array of arguments. 3499 SmallVector<llvm::Value *, 8> Args; 3500 3501 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3502 Args.emplace_back(ZeroAddr.getPointer()); 3503 3504 CGBuilderTy &Bld = CGF.Builder; 3505 auto CI = CS.capture_begin(); 3506 3507 // Use global memory for data sharing. 3508 // Handle passing of global args to workers. 3509 Address GlobalArgs = 3510 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3511 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3512 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3513 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3514 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3515 DataSharingArgs); 3516 3517 // Retrieve the shared variables from the list of references returned 3518 // by the runtime. Pass the variables to the outlined function. 3519 Address SharedArgListAddress = Address::invalid(); 3520 if (CS.capture_size() > 0 || 3521 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3522 SharedArgListAddress = CGF.EmitLoadOfPointer( 3523 GlobalArgs, CGF.getContext() 3524 .getPointerType(CGF.getContext().getPointerType( 3525 CGF.getContext().VoidPtrTy)) 3526 .castAs<PointerType>()); 3527 } 3528 unsigned Idx = 0; 3529 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3530 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3531 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3532 Src, CGF.SizeTy->getPointerTo()); 3533 llvm::Value *LB = CGF.EmitLoadOfScalar( 3534 TypedAddress, 3535 /*Volatile=*/false, 3536 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3537 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3538 Args.emplace_back(LB); 3539 ++Idx; 3540 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3541 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3542 Src, CGF.SizeTy->getPointerTo()); 3543 llvm::Value *UB = CGF.EmitLoadOfScalar( 3544 TypedAddress, 3545 /*Volatile=*/false, 3546 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3547 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3548 Args.emplace_back(UB); 3549 ++Idx; 3550 } 3551 if (CS.capture_size() > 0) { 3552 ASTContext &CGFContext = CGF.getContext(); 3553 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3554 QualType ElemTy = CurField->getType(); 3555 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3556 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3557 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3558 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3559 /*Volatile=*/false, 3560 CGFContext.getPointerType(ElemTy), 3561 CI->getLocation()); 3562 if (CI->capturesVariableByCopy() && 3563 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3564 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3565 CI->getLocation()); 3566 } 3567 Args.emplace_back(Arg); 3568 } 3569 } 3570 3571 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3572 CGF.FinishFunction(); 3573 return Fn; 3574 } 3575 3576 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3577 const Decl *D) { 3578 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3579 return; 3580 3581 assert(D && "Expected function or captured|block decl."); 3582 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3583 "Function is registered already."); 3584 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3585 "Team is set but not processed."); 3586 const Stmt *Body = nullptr; 3587 bool NeedToDelayGlobalization = false; 3588 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3589 Body = FD->getBody(); 3590 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3591 Body = BD->getBody(); 3592 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3593 Body = CD->getBody(); 3594 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3595 if (NeedToDelayGlobalization && 3596 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3597 return; 3598 } 3599 if (!Body) 3600 return; 3601 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3602 VarChecker.Visit(Body); 3603 const RecordDecl *GlobalizedVarsRecord = 3604 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3605 TeamAndReductions.first = nullptr; 3606 TeamAndReductions.second.clear(); 3607 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3608 VarChecker.getEscapedVariableLengthDecls(); 3609 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3610 return; 3611 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3612 I->getSecond().MappedParams = 3613 std::make_unique<CodeGenFunction::OMPMapVars>(); 3614 I->getSecond().EscapedParameters.insert( 3615 VarChecker.getEscapedParameters().begin(), 3616 VarChecker.getEscapedParameters().end()); 3617 I->getSecond().EscapedVariableLengthDecls.append( 3618 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3619 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3620 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3621 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3622 Data.insert(std::make_pair(VD, MappedVarData())); 3623 } 3624 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3625 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3626 VarChecker.Visit(Body); 3627 I->getSecond().SecondaryLocalVarData.emplace(); 3628 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3629 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3630 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3631 Data.insert(std::make_pair(VD, MappedVarData())); 3632 } 3633 } 3634 if (!NeedToDelayGlobalization) { 3635 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3636 struct GlobalizationScope final : EHScopeStack::Cleanup { 3637 GlobalizationScope() = default; 3638 3639 void Emit(CodeGenFunction &CGF, Flags flags) override { 3640 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3641 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3642 } 3643 }; 3644 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3645 } 3646 } 3647 3648 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3649 const VarDecl *VD) { 3650 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3651 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3652 auto AS = LangAS::Default; 3653 switch (A->getAllocatorType()) { 3654 // Use the default allocator here as by default local vars are 3655 // threadlocal. 3656 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3657 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3658 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3659 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3660 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3661 // Follow the user decision - use default allocation. 3662 return Address::invalid(); 3663 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3664 // TODO: implement aupport for user-defined allocators. 3665 return Address::invalid(); 3666 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3667 AS = LangAS::cuda_constant; 3668 break; 3669 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3670 AS = LangAS::cuda_shared; 3671 break; 3672 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3673 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3674 break; 3675 } 3676 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3677 auto *GV = new llvm::GlobalVariable( 3678 CGM.getModule(), VarTy, /*isConstant=*/false, 3679 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3680 VD->getName(), 3681 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3682 CGM.getContext().getTargetAddressSpace(AS)); 3683 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3684 GV->setAlignment(Align.getAsAlign()); 3685 return Address( 3686 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3687 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3688 VD->getType().getAddressSpace()))), 3689 Align); 3690 } 3691 3692 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3693 return Address::invalid(); 3694 3695 VD = VD->getCanonicalDecl(); 3696 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3697 if (I == FunctionGlobalizedDecls.end()) 3698 return Address::invalid(); 3699 auto VDI = I->getSecond().LocalVarData.find(VD); 3700 if (VDI != I->getSecond().LocalVarData.end()) 3701 return VDI->second.PrivateAddr; 3702 if (VD->hasAttrs()) { 3703 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3704 E(VD->attr_end()); 3705 IT != E; ++IT) { 3706 auto VDI = I->getSecond().LocalVarData.find( 3707 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3708 ->getCanonicalDecl()); 3709 if (VDI != I->getSecond().LocalVarData.end()) 3710 return VDI->second.PrivateAddr; 3711 } 3712 } 3713 3714 return Address::invalid(); 3715 } 3716 3717 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3718 FunctionGlobalizedDecls.erase(CGF.CurFn); 3719 CGOpenMPRuntime::functionFinished(CGF); 3720 } 3721 3722 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3723 CodeGenFunction &CGF, const OMPLoopDirective &S, 3724 OpenMPDistScheduleClauseKind &ScheduleKind, 3725 llvm::Value *&Chunk) const { 3726 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3727 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3728 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3729 Chunk = CGF.EmitScalarConversion( 3730 RT.getGPUNumThreads(CGF), 3731 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3732 S.getIterationVariable()->getType(), S.getBeginLoc()); 3733 return; 3734 } 3735 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3736 CGF, S, ScheduleKind, Chunk); 3737 } 3738 3739 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3740 CodeGenFunction &CGF, const OMPLoopDirective &S, 3741 OpenMPScheduleClauseKind &ScheduleKind, 3742 const Expr *&ChunkExpr) const { 3743 ScheduleKind = OMPC_SCHEDULE_static; 3744 // Chunk size is 1 in this case. 3745 llvm::APInt ChunkSize(32, 1); 3746 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3747 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3748 SourceLocation()); 3749 } 3750 3751 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3752 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3753 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3754 " Expected target-based directive."); 3755 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3756 for (const CapturedStmt::Capture &C : CS->captures()) { 3757 // Capture variables captured by reference in lambdas for target-based 3758 // directives. 3759 if (!C.capturesVariable()) 3760 continue; 3761 const VarDecl *VD = C.getCapturedVar(); 3762 const auto *RD = VD->getType() 3763 .getCanonicalType() 3764 .getNonReferenceType() 3765 ->getAsCXXRecordDecl(); 3766 if (!RD || !RD->isLambda()) 3767 continue; 3768 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3769 LValue VDLVal; 3770 if (VD->getType().getCanonicalType()->isReferenceType()) 3771 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3772 else 3773 VDLVal = CGF.MakeAddrLValue( 3774 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3775 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3776 FieldDecl *ThisCapture = nullptr; 3777 RD->getCaptureFields(Captures, ThisCapture); 3778 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3779 LValue ThisLVal = 3780 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3781 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3782 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3783 } 3784 for (const LambdaCapture &LC : RD->captures()) { 3785 if (LC.getCaptureKind() != LCK_ByRef) 3786 continue; 3787 const VarDecl *VD = LC.getCapturedVar(); 3788 if (!CS->capturesVariable(VD)) 3789 continue; 3790 auto It = Captures.find(VD); 3791 assert(It != Captures.end() && "Found lambda capture without field."); 3792 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3793 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3794 if (VD->getType().getCanonicalType()->isReferenceType()) 3795 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3796 VD->getType().getCanonicalType()) 3797 .getAddress(CGF); 3798 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3799 } 3800 } 3801 } 3802 3803 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3804 LangAS &AS) { 3805 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3806 return false; 3807 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3808 switch(A->getAllocatorType()) { 3809 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3810 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3811 // Not supported, fallback to the default mem space. 3812 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3813 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3814 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3815 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3816 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3817 AS = LangAS::Default; 3818 return true; 3819 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3820 AS = LangAS::cuda_constant; 3821 return true; 3822 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3823 AS = LangAS::cuda_shared; 3824 return true; 3825 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3826 llvm_unreachable("Expected predefined allocator for the variables with the " 3827 "static storage."); 3828 } 3829 return false; 3830 } 3831 3832 // Get current CudaArch and ignore any unknown values 3833 static CudaArch getCudaArch(CodeGenModule &CGM) { 3834 if (!CGM.getTarget().hasFeature("ptx")) 3835 return CudaArch::UNKNOWN; 3836 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3837 if (Feature.getValue()) { 3838 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3839 if (Arch != CudaArch::UNKNOWN) 3840 return Arch; 3841 } 3842 } 3843 return CudaArch::UNKNOWN; 3844 } 3845 3846 /// Check to see if target architecture supports unified addressing which is 3847 /// a restriction for OpenMP requires clause "unified_shared_memory". 3848 void CGOpenMPRuntimeGPU::processRequiresDirective( 3849 const OMPRequiresDecl *D) { 3850 for (const OMPClause *Clause : D->clauselists()) { 3851 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3852 CudaArch Arch = getCudaArch(CGM); 3853 switch (Arch) { 3854 case CudaArch::SM_20: 3855 case CudaArch::SM_21: 3856 case CudaArch::SM_30: 3857 case CudaArch::SM_32: 3858 case CudaArch::SM_35: 3859 case CudaArch::SM_37: 3860 case CudaArch::SM_50: 3861 case CudaArch::SM_52: 3862 case CudaArch::SM_53: { 3863 SmallString<256> Buffer; 3864 llvm::raw_svector_ostream Out(Buffer); 3865 Out << "Target architecture " << CudaArchToString(Arch) 3866 << " does not support unified addressing"; 3867 CGM.Error(Clause->getBeginLoc(), Out.str()); 3868 return; 3869 } 3870 case CudaArch::SM_60: 3871 case CudaArch::SM_61: 3872 case CudaArch::SM_62: 3873 case CudaArch::SM_70: 3874 case CudaArch::SM_72: 3875 case CudaArch::SM_75: 3876 case CudaArch::SM_80: 3877 case CudaArch::SM_86: 3878 case CudaArch::GFX600: 3879 case CudaArch::GFX601: 3880 case CudaArch::GFX602: 3881 case CudaArch::GFX700: 3882 case CudaArch::GFX701: 3883 case CudaArch::GFX702: 3884 case CudaArch::GFX703: 3885 case CudaArch::GFX704: 3886 case CudaArch::GFX705: 3887 case CudaArch::GFX801: 3888 case CudaArch::GFX802: 3889 case CudaArch::GFX803: 3890 case CudaArch::GFX805: 3891 case CudaArch::GFX810: 3892 case CudaArch::GFX900: 3893 case CudaArch::GFX902: 3894 case CudaArch::GFX904: 3895 case CudaArch::GFX906: 3896 case CudaArch::GFX908: 3897 case CudaArch::GFX909: 3898 case CudaArch::GFX90a: 3899 case CudaArch::GFX90c: 3900 case CudaArch::GFX1010: 3901 case CudaArch::GFX1011: 3902 case CudaArch::GFX1012: 3903 case CudaArch::GFX1013: 3904 case CudaArch::GFX1030: 3905 case CudaArch::GFX1031: 3906 case CudaArch::GFX1032: 3907 case CudaArch::GFX1033: 3908 case CudaArch::GFX1034: 3909 case CudaArch::GFX1035: 3910 case CudaArch::Generic: 3911 case CudaArch::UNUSED: 3912 case CudaArch::UNKNOWN: 3913 break; 3914 case CudaArch::LAST: 3915 llvm_unreachable("Unexpected Cuda arch."); 3916 } 3917 } 3918 } 3919 CGOpenMPRuntime::processRequiresDirective(D); 3920 } 3921 3922 void CGOpenMPRuntimeGPU::clear() { 3923 3924 if (!TeamsReductions.empty()) { 3925 ASTContext &C = CGM.getContext(); 3926 RecordDecl *StaticRD = C.buildImplicitRecord( 3927 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3928 StaticRD->startDefinition(); 3929 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3930 QualType RecTy = C.getRecordType(TeamReductionRec); 3931 auto *Field = FieldDecl::Create( 3932 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3933 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3934 /*BW=*/nullptr, /*Mutable=*/false, 3935 /*InitStyle=*/ICIS_NoInit); 3936 Field->setAccess(AS_public); 3937 StaticRD->addDecl(Field); 3938 } 3939 StaticRD->completeDefinition(); 3940 QualType StaticTy = C.getRecordType(StaticRD); 3941 llvm::Type *LLVMReductionsBufferTy = 3942 CGM.getTypes().ConvertTypeForMem(StaticTy); 3943 // FIXME: nvlink does not handle weak linkage correctly (object with the 3944 // different size are reported as erroneous). 3945 // Restore CommonLinkage as soon as nvlink is fixed. 3946 auto *GV = new llvm::GlobalVariable( 3947 CGM.getModule(), LLVMReductionsBufferTy, 3948 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3949 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3950 "_openmp_teams_reductions_buffer_$_"); 3951 KernelTeamsReductionPtr->setInitializer( 3952 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3953 CGM.VoidPtrTy)); 3954 } 3955 CGOpenMPRuntime::clear(); 3956 } 3957 3958 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { 3959 CGBuilderTy &Bld = CGF.Builder; 3960 llvm::Module *M = &CGF.CGM.getModule(); 3961 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block"; 3962 llvm::Function *F = M->getFunction(LocSize); 3963 if (!F) { 3964 F = llvm::Function::Create( 3965 llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false), 3966 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule()); 3967 } 3968 return Bld.CreateCall(F, llvm::None, "nvptx_num_threads"); 3969 } 3970 3971 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) { 3972 ArrayRef<llvm::Value *> Args{}; 3973 return CGF.EmitRuntimeCall( 3974 OMPBuilder.getOrCreateRuntimeFunction( 3975 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block), 3976 Args); 3977 } 3978 3979 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) { 3980 ArrayRef<llvm::Value *> Args{}; 3981 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3982 CGM.getModule(), OMPRTL___kmpc_get_warp_size), 3983 Args); 3984 } 3985