1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/StmtOpenMP.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Cuda.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
23 #include "llvm/Support/MathExtras.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 using namespace llvm::omp;
28 
29 namespace {
30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
31 class NVPTXActionTy final : public PrePostActionTy {
32   llvm::FunctionCallee EnterCallee = nullptr;
33   ArrayRef<llvm::Value *> EnterArgs;
34   llvm::FunctionCallee ExitCallee = nullptr;
35   ArrayRef<llvm::Value *> ExitArgs;
36   bool Conditional = false;
37   llvm::BasicBlock *ContBlock = nullptr;
38 
39 public:
40   NVPTXActionTy(llvm::FunctionCallee EnterCallee,
41                 ArrayRef<llvm::Value *> EnterArgs,
42                 llvm::FunctionCallee ExitCallee,
43                 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
44       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
45         ExitArgs(ExitArgs), Conditional(Conditional) {}
46   void Enter(CodeGenFunction &CGF) override {
47     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
48     if (Conditional) {
49       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
50       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
51       ContBlock = CGF.createBasicBlock("omp_if.end");
52       // Generate the branch (If-stmt)
53       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
54       CGF.EmitBlock(ThenBlock);
55     }
56   }
57   void Done(CodeGenFunction &CGF) {
58     // Emit the rest of blocks/branches
59     CGF.EmitBranch(ContBlock);
60     CGF.EmitBlock(ContBlock, true);
61   }
62   void Exit(CodeGenFunction &CGF) override {
63     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
64   }
65 };
66 
67 /// A class to track the execution mode when codegening directives within
68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
69 /// to the target region and used by containing directives such as 'parallel'
70 /// to emit optimized code.
71 class ExecutionRuntimeModesRAII {
72 private:
73   CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
74       CGOpenMPRuntimeGPU::EM_Unknown;
75   CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
76   bool SavedRuntimeMode = false;
77   bool *RuntimeMode = nullptr;
78 
79 public:
80   /// Constructor for Non-SPMD mode.
81   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
82       : ExecMode(ExecMode) {
83     SavedExecMode = ExecMode;
84     ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
85   }
86   /// Constructor for SPMD mode.
87   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
88                             bool &RuntimeMode, bool FullRuntimeMode)
89       : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
90     SavedExecMode = ExecMode;
91     SavedRuntimeMode = RuntimeMode;
92     ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
93     RuntimeMode = FullRuntimeMode;
94   }
95   ~ExecutionRuntimeModesRAII() {
96     ExecMode = SavedExecMode;
97     if (RuntimeMode)
98       *RuntimeMode = SavedRuntimeMode;
99   }
100 };
101 
102 /// GPU Configuration:  This information can be derived from cuda registers,
103 /// however, providing compile time constants helps generate more efficient
104 /// code.  For all practical purposes this is fine because the configuration
105 /// is the same for all known NVPTX architectures.
106 enum MachineConfiguration : unsigned {
107   /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
108   /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
109 
110   /// Global memory alignment for performance.
111   GlobalMemoryAlignment = 128,
112 
113   /// Maximal size of the shared memory buffer.
114   SharedMemorySize = 128,
115 };
116 
117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
118   RefExpr = RefExpr->IgnoreParens();
119   if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
120     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
121     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
122       Base = TempASE->getBase()->IgnoreParenImpCasts();
123     RefExpr = Base;
124   } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
125     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
126     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
127       Base = TempOASE->getBase()->IgnoreParenImpCasts();
128     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
129       Base = TempASE->getBase()->IgnoreParenImpCasts();
130     RefExpr = Base;
131   }
132   RefExpr = RefExpr->IgnoreParenImpCasts();
133   if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
134     return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
135   const auto *ME = cast<MemberExpr>(RefExpr);
136   return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
137 }
138 
139 
140 static RecordDecl *buildRecordForGlobalizedVars(
141     ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
142     ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
143     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
144         &MappedDeclsFields, int BufSize) {
145   using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
146   if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
147     return nullptr;
148   SmallVector<VarsDataTy, 4> GlobalizedVars;
149   for (const ValueDecl *D : EscapedDecls)
150     GlobalizedVars.emplace_back(
151         CharUnits::fromQuantity(std::max(
152             C.getDeclAlign(D).getQuantity(),
153             static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
154         D);
155   for (const ValueDecl *D : EscapedDeclsForTeams)
156     GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
157   llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
158     return L.first > R.first;
159   });
160 
161   // Build struct _globalized_locals_ty {
162   //         /*  globalized vars  */[WarSize] align (max(decl_align,
163   //         GlobalMemoryAlignment))
164   //         /*  globalized vars  */ for EscapedDeclsForTeams
165   //       };
166   RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
167   GlobalizedRD->startDefinition();
168   llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
169       EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
170   for (const auto &Pair : GlobalizedVars) {
171     const ValueDecl *VD = Pair.second;
172     QualType Type = VD->getType();
173     if (Type->isLValueReferenceType())
174       Type = C.getPointerType(Type.getNonReferenceType());
175     else
176       Type = Type.getNonReferenceType();
177     SourceLocation Loc = VD->getLocation();
178     FieldDecl *Field;
179     if (SingleEscaped.count(VD)) {
180       Field = FieldDecl::Create(
181           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
182           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
183           /*BW=*/nullptr, /*Mutable=*/false,
184           /*InitStyle=*/ICIS_NoInit);
185       Field->setAccess(AS_public);
186       if (VD->hasAttrs()) {
187         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
188              E(VD->getAttrs().end());
189              I != E; ++I)
190           Field->addAttr(*I);
191       }
192     } else {
193       llvm::APInt ArraySize(32, BufSize);
194       Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
195                                     0);
196       Field = FieldDecl::Create(
197           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
198           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
199           /*BW=*/nullptr, /*Mutable=*/false,
200           /*InitStyle=*/ICIS_NoInit);
201       Field->setAccess(AS_public);
202       llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
203                                      static_cast<CharUnits::QuantityType>(
204                                          GlobalMemoryAlignment)));
205       Field->addAttr(AlignedAttr::CreateImplicit(
206           C, /*IsAlignmentExpr=*/true,
207           IntegerLiteral::Create(C, Align,
208                                  C.getIntTypeForBitwidth(32, /*Signed=*/0),
209                                  SourceLocation()),
210           {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
211     }
212     GlobalizedRD->addDecl(Field);
213     MappedDeclsFields.try_emplace(VD, Field);
214   }
215   GlobalizedRD->completeDefinition();
216   return GlobalizedRD;
217 }
218 
219 /// Get the list of variables that can escape their declaration context.
220 class CheckVarsEscapingDeclContext final
221     : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
222   CodeGenFunction &CGF;
223   llvm::SetVector<const ValueDecl *> EscapedDecls;
224   llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
225   llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
226   RecordDecl *GlobalizedRD = nullptr;
227   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
228   bool AllEscaped = false;
229   bool IsForCombinedParallelRegion = false;
230 
231   void markAsEscaped(const ValueDecl *VD) {
232     // Do not globalize declare target variables.
233     if (!isa<VarDecl>(VD) ||
234         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
235       return;
236     VD = cast<ValueDecl>(VD->getCanonicalDecl());
237     // Use user-specified allocation.
238     if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
239       return;
240     // Variables captured by value must be globalized.
241     if (auto *CSI = CGF.CapturedStmtInfo) {
242       if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
243         // Check if need to capture the variable that was already captured by
244         // value in the outer region.
245         if (!IsForCombinedParallelRegion) {
246           if (!FD->hasAttrs())
247             return;
248           const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
249           if (!Attr)
250             return;
251           if (((Attr->getCaptureKind() != OMPC_map) &&
252                !isOpenMPPrivate(Attr->getCaptureKind())) ||
253               ((Attr->getCaptureKind() == OMPC_map) &&
254                !FD->getType()->isAnyPointerType()))
255             return;
256         }
257         if (!FD->getType()->isReferenceType()) {
258           assert(!VD->getType()->isVariablyModifiedType() &&
259                  "Parameter captured by value with variably modified type");
260           EscapedParameters.insert(VD);
261         } else if (!IsForCombinedParallelRegion) {
262           return;
263         }
264       }
265     }
266     if ((!CGF.CapturedStmtInfo ||
267          (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
268         VD->getType()->isReferenceType())
269       // Do not globalize variables with reference type.
270       return;
271     if (VD->getType()->isVariablyModifiedType())
272       EscapedVariableLengthDecls.insert(VD);
273     else
274       EscapedDecls.insert(VD);
275   }
276 
277   void VisitValueDecl(const ValueDecl *VD) {
278     if (VD->getType()->isLValueReferenceType())
279       markAsEscaped(VD);
280     if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
281       if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
282         const bool SavedAllEscaped = AllEscaped;
283         AllEscaped = VD->getType()->isLValueReferenceType();
284         Visit(VarD->getInit());
285         AllEscaped = SavedAllEscaped;
286       }
287     }
288   }
289   void VisitOpenMPCapturedStmt(const CapturedStmt *S,
290                                ArrayRef<OMPClause *> Clauses,
291                                bool IsCombinedParallelRegion) {
292     if (!S)
293       return;
294     for (const CapturedStmt::Capture &C : S->captures()) {
295       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
296         const ValueDecl *VD = C.getCapturedVar();
297         bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
298         if (IsCombinedParallelRegion) {
299           // Check if the variable is privatized in the combined construct and
300           // those private copies must be shared in the inner parallel
301           // directive.
302           IsForCombinedParallelRegion = false;
303           for (const OMPClause *C : Clauses) {
304             if (!isOpenMPPrivate(C->getClauseKind()) ||
305                 C->getClauseKind() == OMPC_reduction ||
306                 C->getClauseKind() == OMPC_linear ||
307                 C->getClauseKind() == OMPC_private)
308               continue;
309             ArrayRef<const Expr *> Vars;
310             if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
311               Vars = PC->getVarRefs();
312             else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
313               Vars = PC->getVarRefs();
314             else
315               llvm_unreachable("Unexpected clause.");
316             for (const auto *E : Vars) {
317               const Decl *D =
318                   cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
319               if (D == VD->getCanonicalDecl()) {
320                 IsForCombinedParallelRegion = true;
321                 break;
322               }
323             }
324             if (IsForCombinedParallelRegion)
325               break;
326           }
327         }
328         markAsEscaped(VD);
329         if (isa<OMPCapturedExprDecl>(VD))
330           VisitValueDecl(VD);
331         IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
332       }
333     }
334   }
335 
336   void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
337     assert(!GlobalizedRD &&
338            "Record for globalized variables is built already.");
339     ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
340     unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
341     if (IsInTTDRegion)
342       EscapedDeclsForTeams = EscapedDecls.getArrayRef();
343     else
344       EscapedDeclsForParallel = EscapedDecls.getArrayRef();
345     GlobalizedRD = ::buildRecordForGlobalizedVars(
346         CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
347         MappedDeclsFields, WarpSize);
348   }
349 
350 public:
351   CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
352                                ArrayRef<const ValueDecl *> TeamsReductions)
353       : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
354   }
355   virtual ~CheckVarsEscapingDeclContext() = default;
356   void VisitDeclStmt(const DeclStmt *S) {
357     if (!S)
358       return;
359     for (const Decl *D : S->decls())
360       if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
361         VisitValueDecl(VD);
362   }
363   void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
364     if (!D)
365       return;
366     if (!D->hasAssociatedStmt())
367       return;
368     if (const auto *S =
369             dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
370       // Do not analyze directives that do not actually require capturing,
371       // like `omp for` or `omp simd` directives.
372       llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
373       getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
374       if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
375         VisitStmt(S->getCapturedStmt());
376         return;
377       }
378       VisitOpenMPCapturedStmt(
379           S, D->clauses(),
380           CaptureRegions.back() == OMPD_parallel &&
381               isOpenMPDistributeDirective(D->getDirectiveKind()));
382     }
383   }
384   void VisitCapturedStmt(const CapturedStmt *S) {
385     if (!S)
386       return;
387     for (const CapturedStmt::Capture &C : S->captures()) {
388       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
389         const ValueDecl *VD = C.getCapturedVar();
390         markAsEscaped(VD);
391         if (isa<OMPCapturedExprDecl>(VD))
392           VisitValueDecl(VD);
393       }
394     }
395   }
396   void VisitLambdaExpr(const LambdaExpr *E) {
397     if (!E)
398       return;
399     for (const LambdaCapture &C : E->captures()) {
400       if (C.capturesVariable()) {
401         if (C.getCaptureKind() == LCK_ByRef) {
402           const ValueDecl *VD = C.getCapturedVar();
403           markAsEscaped(VD);
404           if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
405             VisitValueDecl(VD);
406         }
407       }
408     }
409   }
410   void VisitBlockExpr(const BlockExpr *E) {
411     if (!E)
412       return;
413     for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
414       if (C.isByRef()) {
415         const VarDecl *VD = C.getVariable();
416         markAsEscaped(VD);
417         if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
418           VisitValueDecl(VD);
419       }
420     }
421   }
422   void VisitCallExpr(const CallExpr *E) {
423     if (!E)
424       return;
425     for (const Expr *Arg : E->arguments()) {
426       if (!Arg)
427         continue;
428       if (Arg->isLValue()) {
429         const bool SavedAllEscaped = AllEscaped;
430         AllEscaped = true;
431         Visit(Arg);
432         AllEscaped = SavedAllEscaped;
433       } else {
434         Visit(Arg);
435       }
436     }
437     Visit(E->getCallee());
438   }
439   void VisitDeclRefExpr(const DeclRefExpr *E) {
440     if (!E)
441       return;
442     const ValueDecl *VD = E->getDecl();
443     if (AllEscaped)
444       markAsEscaped(VD);
445     if (isa<OMPCapturedExprDecl>(VD))
446       VisitValueDecl(VD);
447     else if (const auto *VarD = dyn_cast<VarDecl>(VD))
448       if (VarD->isInitCapture())
449         VisitValueDecl(VD);
450   }
451   void VisitUnaryOperator(const UnaryOperator *E) {
452     if (!E)
453       return;
454     if (E->getOpcode() == UO_AddrOf) {
455       const bool SavedAllEscaped = AllEscaped;
456       AllEscaped = true;
457       Visit(E->getSubExpr());
458       AllEscaped = SavedAllEscaped;
459     } else {
460       Visit(E->getSubExpr());
461     }
462   }
463   void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
464     if (!E)
465       return;
466     if (E->getCastKind() == CK_ArrayToPointerDecay) {
467       const bool SavedAllEscaped = AllEscaped;
468       AllEscaped = true;
469       Visit(E->getSubExpr());
470       AllEscaped = SavedAllEscaped;
471     } else {
472       Visit(E->getSubExpr());
473     }
474   }
475   void VisitExpr(const Expr *E) {
476     if (!E)
477       return;
478     bool SavedAllEscaped = AllEscaped;
479     if (!E->isLValue())
480       AllEscaped = false;
481     for (const Stmt *Child : E->children())
482       if (Child)
483         Visit(Child);
484     AllEscaped = SavedAllEscaped;
485   }
486   void VisitStmt(const Stmt *S) {
487     if (!S)
488       return;
489     for (const Stmt *Child : S->children())
490       if (Child)
491         Visit(Child);
492   }
493 
494   /// Returns the record that handles all the escaped local variables and used
495   /// instead of their original storage.
496   const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
497     if (!GlobalizedRD)
498       buildRecordForGlobalizedVars(IsInTTDRegion);
499     return GlobalizedRD;
500   }
501 
502   /// Returns the field in the globalized record for the escaped variable.
503   const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
504     assert(GlobalizedRD &&
505            "Record for globalized variables must be generated already.");
506     auto I = MappedDeclsFields.find(VD);
507     if (I == MappedDeclsFields.end())
508       return nullptr;
509     return I->getSecond();
510   }
511 
512   /// Returns the list of the escaped local variables/parameters.
513   ArrayRef<const ValueDecl *> getEscapedDecls() const {
514     return EscapedDecls.getArrayRef();
515   }
516 
517   /// Checks if the escaped local variable is actually a parameter passed by
518   /// value.
519   const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
520     return EscapedParameters;
521   }
522 
523   /// Returns the list of the escaped variables with the variably modified
524   /// types.
525   ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
526     return EscapedVariableLengthDecls.getArrayRef();
527   }
528 };
529 } // anonymous namespace
530 
531 /// Get the id of the warp in the block.
532 /// We assume that the warp size is 32, which is always the case
533 /// on the NVPTX device, to generate more efficient code.
534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
535   CGBuilderTy &Bld = CGF.Builder;
536   unsigned LaneIDBits =
537       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
538   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
539   return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
540 }
541 
542 /// Get the id of the current lane in the Warp.
543 /// We assume that the warp size is 32, which is always the case
544 /// on the NVPTX device, to generate more efficient code.
545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
546   CGBuilderTy &Bld = CGF.Builder;
547   unsigned LaneIDBits =
548       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
549   unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
550   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
551   return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
552                        "nvptx_lane_id");
553 }
554 
555 CGOpenMPRuntimeGPU::ExecutionMode
556 CGOpenMPRuntimeGPU::getExecutionMode() const {
557   return CurrentExecutionMode;
558 }
559 
560 static CGOpenMPRuntimeGPU::DataSharingMode
561 getDataSharingMode(CodeGenModule &CGM) {
562   return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
563                                           : CGOpenMPRuntimeGPU::Generic;
564 }
565 
566 /// Check for inner (nested) SPMD construct, if any
567 static bool hasNestedSPMDDirective(ASTContext &Ctx,
568                                    const OMPExecutableDirective &D) {
569   const auto *CS = D.getInnermostCapturedStmt();
570   const auto *Body =
571       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
572   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
573 
574   if (const auto *NestedDir =
575           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
576     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
577     switch (D.getDirectiveKind()) {
578     case OMPD_target:
579       if (isOpenMPParallelDirective(DKind))
580         return true;
581       if (DKind == OMPD_teams) {
582         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
583             /*IgnoreCaptured=*/true);
584         if (!Body)
585           return false;
586         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
587         if (const auto *NND =
588                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
589           DKind = NND->getDirectiveKind();
590           if (isOpenMPParallelDirective(DKind))
591             return true;
592         }
593       }
594       return false;
595     case OMPD_target_teams:
596       return isOpenMPParallelDirective(DKind);
597     case OMPD_target_simd:
598     case OMPD_target_parallel:
599     case OMPD_target_parallel_for:
600     case OMPD_target_parallel_for_simd:
601     case OMPD_target_teams_distribute:
602     case OMPD_target_teams_distribute_simd:
603     case OMPD_target_teams_distribute_parallel_for:
604     case OMPD_target_teams_distribute_parallel_for_simd:
605     case OMPD_parallel:
606     case OMPD_for:
607     case OMPD_parallel_for:
608     case OMPD_parallel_master:
609     case OMPD_parallel_sections:
610     case OMPD_for_simd:
611     case OMPD_parallel_for_simd:
612     case OMPD_cancel:
613     case OMPD_cancellation_point:
614     case OMPD_ordered:
615     case OMPD_threadprivate:
616     case OMPD_allocate:
617     case OMPD_task:
618     case OMPD_simd:
619     case OMPD_sections:
620     case OMPD_section:
621     case OMPD_single:
622     case OMPD_master:
623     case OMPD_critical:
624     case OMPD_taskyield:
625     case OMPD_barrier:
626     case OMPD_taskwait:
627     case OMPD_taskgroup:
628     case OMPD_atomic:
629     case OMPD_flush:
630     case OMPD_depobj:
631     case OMPD_scan:
632     case OMPD_teams:
633     case OMPD_target_data:
634     case OMPD_target_exit_data:
635     case OMPD_target_enter_data:
636     case OMPD_distribute:
637     case OMPD_distribute_simd:
638     case OMPD_distribute_parallel_for:
639     case OMPD_distribute_parallel_for_simd:
640     case OMPD_teams_distribute:
641     case OMPD_teams_distribute_simd:
642     case OMPD_teams_distribute_parallel_for:
643     case OMPD_teams_distribute_parallel_for_simd:
644     case OMPD_target_update:
645     case OMPD_declare_simd:
646     case OMPD_declare_variant:
647     case OMPD_begin_declare_variant:
648     case OMPD_end_declare_variant:
649     case OMPD_declare_target:
650     case OMPD_end_declare_target:
651     case OMPD_declare_reduction:
652     case OMPD_declare_mapper:
653     case OMPD_taskloop:
654     case OMPD_taskloop_simd:
655     case OMPD_master_taskloop:
656     case OMPD_master_taskloop_simd:
657     case OMPD_parallel_master_taskloop:
658     case OMPD_parallel_master_taskloop_simd:
659     case OMPD_requires:
660     case OMPD_unknown:
661     default:
662       llvm_unreachable("Unexpected directive.");
663     }
664   }
665 
666   return false;
667 }
668 
669 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
670                                       const OMPExecutableDirective &D) {
671   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
672   switch (DirectiveKind) {
673   case OMPD_target:
674   case OMPD_target_teams:
675     return hasNestedSPMDDirective(Ctx, D);
676   case OMPD_target_parallel:
677   case OMPD_target_parallel_for:
678   case OMPD_target_parallel_for_simd:
679   case OMPD_target_teams_distribute_parallel_for:
680   case OMPD_target_teams_distribute_parallel_for_simd:
681   case OMPD_target_simd:
682   case OMPD_target_teams_distribute_simd:
683     return true;
684   case OMPD_target_teams_distribute:
685     return false;
686   case OMPD_parallel:
687   case OMPD_for:
688   case OMPD_parallel_for:
689   case OMPD_parallel_master:
690   case OMPD_parallel_sections:
691   case OMPD_for_simd:
692   case OMPD_parallel_for_simd:
693   case OMPD_cancel:
694   case OMPD_cancellation_point:
695   case OMPD_ordered:
696   case OMPD_threadprivate:
697   case OMPD_allocate:
698   case OMPD_task:
699   case OMPD_simd:
700   case OMPD_sections:
701   case OMPD_section:
702   case OMPD_single:
703   case OMPD_master:
704   case OMPD_critical:
705   case OMPD_taskyield:
706   case OMPD_barrier:
707   case OMPD_taskwait:
708   case OMPD_taskgroup:
709   case OMPD_atomic:
710   case OMPD_flush:
711   case OMPD_depobj:
712   case OMPD_scan:
713   case OMPD_teams:
714   case OMPD_target_data:
715   case OMPD_target_exit_data:
716   case OMPD_target_enter_data:
717   case OMPD_distribute:
718   case OMPD_distribute_simd:
719   case OMPD_distribute_parallel_for:
720   case OMPD_distribute_parallel_for_simd:
721   case OMPD_teams_distribute:
722   case OMPD_teams_distribute_simd:
723   case OMPD_teams_distribute_parallel_for:
724   case OMPD_teams_distribute_parallel_for_simd:
725   case OMPD_target_update:
726   case OMPD_declare_simd:
727   case OMPD_declare_variant:
728   case OMPD_begin_declare_variant:
729   case OMPD_end_declare_variant:
730   case OMPD_declare_target:
731   case OMPD_end_declare_target:
732   case OMPD_declare_reduction:
733   case OMPD_declare_mapper:
734   case OMPD_taskloop:
735   case OMPD_taskloop_simd:
736   case OMPD_master_taskloop:
737   case OMPD_master_taskloop_simd:
738   case OMPD_parallel_master_taskloop:
739   case OMPD_parallel_master_taskloop_simd:
740   case OMPD_requires:
741   case OMPD_unknown:
742   default:
743     break;
744   }
745   llvm_unreachable(
746       "Unknown programming model for OpenMP directive on NVPTX target.");
747 }
748 
749 /// Check if the directive is loops based and has schedule clause at all or has
750 /// static scheduling.
751 static bool hasStaticScheduling(const OMPExecutableDirective &D) {
752   assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
753          isOpenMPLoopDirective(D.getDirectiveKind()) &&
754          "Expected loop-based directive.");
755   return !D.hasClausesOfKind<OMPOrderedClause>() &&
756          (!D.hasClausesOfKind<OMPScheduleClause>() ||
757           llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
758                        [](const OMPScheduleClause *C) {
759                          return C->getScheduleKind() == OMPC_SCHEDULE_static;
760                        }));
761 }
762 
763 /// Check for inner (nested) lightweight runtime construct, if any
764 static bool hasNestedLightweightDirective(ASTContext &Ctx,
765                                           const OMPExecutableDirective &D) {
766   assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
767   const auto *CS = D.getInnermostCapturedStmt();
768   const auto *Body =
769       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
770   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
771 
772   if (const auto *NestedDir =
773           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
774     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
775     switch (D.getDirectiveKind()) {
776     case OMPD_target:
777       if (isOpenMPParallelDirective(DKind) &&
778           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
779           hasStaticScheduling(*NestedDir))
780         return true;
781       if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
782         return true;
783       if (DKind == OMPD_parallel) {
784         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
785             /*IgnoreCaptured=*/true);
786         if (!Body)
787           return false;
788         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
789         if (const auto *NND =
790                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
791           DKind = NND->getDirectiveKind();
792           if (isOpenMPWorksharingDirective(DKind) &&
793               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
794             return true;
795         }
796       } else if (DKind == OMPD_teams) {
797         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
798             /*IgnoreCaptured=*/true);
799         if (!Body)
800           return false;
801         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
802         if (const auto *NND =
803                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
804           DKind = NND->getDirectiveKind();
805           if (isOpenMPParallelDirective(DKind) &&
806               isOpenMPWorksharingDirective(DKind) &&
807               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
808             return true;
809           if (DKind == OMPD_parallel) {
810             Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
811                 /*IgnoreCaptured=*/true);
812             if (!Body)
813               return false;
814             ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
815             if (const auto *NND =
816                     dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
817               DKind = NND->getDirectiveKind();
818               if (isOpenMPWorksharingDirective(DKind) &&
819                   isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
820                 return true;
821             }
822           }
823         }
824       }
825       return false;
826     case OMPD_target_teams:
827       if (isOpenMPParallelDirective(DKind) &&
828           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
829           hasStaticScheduling(*NestedDir))
830         return true;
831       if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
832         return true;
833       if (DKind == OMPD_parallel) {
834         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
835             /*IgnoreCaptured=*/true);
836         if (!Body)
837           return false;
838         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
839         if (const auto *NND =
840                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
841           DKind = NND->getDirectiveKind();
842           if (isOpenMPWorksharingDirective(DKind) &&
843               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
844             return true;
845         }
846       }
847       return false;
848     case OMPD_target_parallel:
849       if (DKind == OMPD_simd)
850         return true;
851       return isOpenMPWorksharingDirective(DKind) &&
852              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
853     case OMPD_target_teams_distribute:
854     case OMPD_target_simd:
855     case OMPD_target_parallel_for:
856     case OMPD_target_parallel_for_simd:
857     case OMPD_target_teams_distribute_simd:
858     case OMPD_target_teams_distribute_parallel_for:
859     case OMPD_target_teams_distribute_parallel_for_simd:
860     case OMPD_parallel:
861     case OMPD_for:
862     case OMPD_parallel_for:
863     case OMPD_parallel_master:
864     case OMPD_parallel_sections:
865     case OMPD_for_simd:
866     case OMPD_parallel_for_simd:
867     case OMPD_cancel:
868     case OMPD_cancellation_point:
869     case OMPD_ordered:
870     case OMPD_threadprivate:
871     case OMPD_allocate:
872     case OMPD_task:
873     case OMPD_simd:
874     case OMPD_sections:
875     case OMPD_section:
876     case OMPD_single:
877     case OMPD_master:
878     case OMPD_critical:
879     case OMPD_taskyield:
880     case OMPD_barrier:
881     case OMPD_taskwait:
882     case OMPD_taskgroup:
883     case OMPD_atomic:
884     case OMPD_flush:
885     case OMPD_depobj:
886     case OMPD_scan:
887     case OMPD_teams:
888     case OMPD_target_data:
889     case OMPD_target_exit_data:
890     case OMPD_target_enter_data:
891     case OMPD_distribute:
892     case OMPD_distribute_simd:
893     case OMPD_distribute_parallel_for:
894     case OMPD_distribute_parallel_for_simd:
895     case OMPD_teams_distribute:
896     case OMPD_teams_distribute_simd:
897     case OMPD_teams_distribute_parallel_for:
898     case OMPD_teams_distribute_parallel_for_simd:
899     case OMPD_target_update:
900     case OMPD_declare_simd:
901     case OMPD_declare_variant:
902     case OMPD_begin_declare_variant:
903     case OMPD_end_declare_variant:
904     case OMPD_declare_target:
905     case OMPD_end_declare_target:
906     case OMPD_declare_reduction:
907     case OMPD_declare_mapper:
908     case OMPD_taskloop:
909     case OMPD_taskloop_simd:
910     case OMPD_master_taskloop:
911     case OMPD_master_taskloop_simd:
912     case OMPD_parallel_master_taskloop:
913     case OMPD_parallel_master_taskloop_simd:
914     case OMPD_requires:
915     case OMPD_unknown:
916     default:
917       llvm_unreachable("Unexpected directive.");
918     }
919   }
920 
921   return false;
922 }
923 
924 /// Checks if the construct supports lightweight runtime. It must be SPMD
925 /// construct + inner loop-based construct with static scheduling.
926 static bool supportsLightweightRuntime(ASTContext &Ctx,
927                                        const OMPExecutableDirective &D) {
928   if (!supportsSPMDExecutionMode(Ctx, D))
929     return false;
930   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
931   switch (DirectiveKind) {
932   case OMPD_target:
933   case OMPD_target_teams:
934   case OMPD_target_parallel:
935     return hasNestedLightweightDirective(Ctx, D);
936   case OMPD_target_parallel_for:
937   case OMPD_target_parallel_for_simd:
938   case OMPD_target_teams_distribute_parallel_for:
939   case OMPD_target_teams_distribute_parallel_for_simd:
940     // (Last|First)-privates must be shared in parallel region.
941     return hasStaticScheduling(D);
942   case OMPD_target_simd:
943   case OMPD_target_teams_distribute_simd:
944     return true;
945   case OMPD_target_teams_distribute:
946     return false;
947   case OMPD_parallel:
948   case OMPD_for:
949   case OMPD_parallel_for:
950   case OMPD_parallel_master:
951   case OMPD_parallel_sections:
952   case OMPD_for_simd:
953   case OMPD_parallel_for_simd:
954   case OMPD_cancel:
955   case OMPD_cancellation_point:
956   case OMPD_ordered:
957   case OMPD_threadprivate:
958   case OMPD_allocate:
959   case OMPD_task:
960   case OMPD_simd:
961   case OMPD_sections:
962   case OMPD_section:
963   case OMPD_single:
964   case OMPD_master:
965   case OMPD_critical:
966   case OMPD_taskyield:
967   case OMPD_barrier:
968   case OMPD_taskwait:
969   case OMPD_taskgroup:
970   case OMPD_atomic:
971   case OMPD_flush:
972   case OMPD_depobj:
973   case OMPD_scan:
974   case OMPD_teams:
975   case OMPD_target_data:
976   case OMPD_target_exit_data:
977   case OMPD_target_enter_data:
978   case OMPD_distribute:
979   case OMPD_distribute_simd:
980   case OMPD_distribute_parallel_for:
981   case OMPD_distribute_parallel_for_simd:
982   case OMPD_teams_distribute:
983   case OMPD_teams_distribute_simd:
984   case OMPD_teams_distribute_parallel_for:
985   case OMPD_teams_distribute_parallel_for_simd:
986   case OMPD_target_update:
987   case OMPD_declare_simd:
988   case OMPD_declare_variant:
989   case OMPD_begin_declare_variant:
990   case OMPD_end_declare_variant:
991   case OMPD_declare_target:
992   case OMPD_end_declare_target:
993   case OMPD_declare_reduction:
994   case OMPD_declare_mapper:
995   case OMPD_taskloop:
996   case OMPD_taskloop_simd:
997   case OMPD_master_taskloop:
998   case OMPD_master_taskloop_simd:
999   case OMPD_parallel_master_taskloop:
1000   case OMPD_parallel_master_taskloop_simd:
1001   case OMPD_requires:
1002   case OMPD_unknown:
1003   default:
1004     break;
1005   }
1006   llvm_unreachable(
1007       "Unknown programming model for OpenMP directive on NVPTX target.");
1008 }
1009 
1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1011                                              StringRef ParentName,
1012                                              llvm::Function *&OutlinedFn,
1013                                              llvm::Constant *&OutlinedFnID,
1014                                              bool IsOffloadEntry,
1015                                              const RegionCodeGenTy &CodeGen) {
1016   ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1017   EntryFunctionState EST;
1018   WrapperFunctionsMap.clear();
1019 
1020   // Emit target region as a standalone region.
1021   class NVPTXPrePostActionTy : public PrePostActionTy {
1022     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1023 
1024   public:
1025     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1026         : EST(EST) {}
1027     void Enter(CodeGenFunction &CGF) override {
1028       auto &RT =
1029           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1030       RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
1031       // Skip target region initialization.
1032       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1033     }
1034     void Exit(CodeGenFunction &CGF) override {
1035       auto &RT =
1036           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1037       RT.clearLocThreadIdInsertPt(CGF);
1038       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
1039     }
1040   } Action(EST);
1041   CodeGen.setAction(Action);
1042   IsInTTDRegion = true;
1043   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1044                                    IsOffloadEntry, CodeGen);
1045   IsInTTDRegion = false;
1046 }
1047 
1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
1049                                         EntryFunctionState &EST, bool IsSPMD) {
1050   CGBuilderTy &Bld = CGF.Builder;
1051   Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
1052   IsInTargetMasterThreadRegion = IsSPMD;
1053   if (!IsSPMD)
1054     emitGenericVarsProlog(CGF, EST.Loc);
1055 }
1056 
1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
1058                                           EntryFunctionState &EST,
1059                                           bool IsSPMD) {
1060   if (!IsSPMD)
1061     emitGenericVarsEpilog(CGF);
1062 
1063   CGBuilderTy &Bld = CGF.Builder;
1064   OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
1065 }
1066 
1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1068                                           StringRef ParentName,
1069                                           llvm::Function *&OutlinedFn,
1070                                           llvm::Constant *&OutlinedFnID,
1071                                           bool IsOffloadEntry,
1072                                           const RegionCodeGenTy &CodeGen) {
1073   ExecutionRuntimeModesRAII ModeRAII(
1074       CurrentExecutionMode, RequiresFullRuntime,
1075       CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1076           !supportsLightweightRuntime(CGM.getContext(), D));
1077   EntryFunctionState EST;
1078 
1079   // Emit target region as a standalone region.
1080   class NVPTXPrePostActionTy : public PrePostActionTy {
1081     CGOpenMPRuntimeGPU &RT;
1082     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1083 
1084   public:
1085     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1086                          CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1087         : RT(RT), EST(EST) {}
1088     void Enter(CodeGenFunction &CGF) override {
1089       RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
1090       // Skip target region initialization.
1091       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1092     }
1093     void Exit(CodeGenFunction &CGF) override {
1094       RT.clearLocThreadIdInsertPt(CGF);
1095       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
1096     }
1097   } Action(*this, EST);
1098   CodeGen.setAction(Action);
1099   IsInTTDRegion = true;
1100   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1101                                    IsOffloadEntry, CodeGen);
1102   IsInTTDRegion = false;
1103 }
1104 
1105 // Create a unique global variable to indicate the execution mode of this target
1106 // region. The execution mode is either 'generic', or 'spmd' depending on the
1107 // target directive. This variable is picked up by the offload library to setup
1108 // the device appropriately before kernel launch. If the execution mode is
1109 // 'generic', the runtime reserves one warp for the master, otherwise, all
1110 // warps participate in parallel work.
1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1112                                      bool Mode) {
1113   auto *GVMode = new llvm::GlobalVariable(
1114       CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1115       llvm::GlobalValue::WeakAnyLinkage,
1116       llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
1117                                               : OMP_TGT_EXEC_MODE_GENERIC),
1118       Twine(Name, "_exec_mode"));
1119   CGM.addCompilerUsedGlobal(GVMode);
1120 }
1121 
1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1123                                               llvm::Constant *Addr,
1124                                               uint64_t Size, int32_t,
1125                                               llvm::GlobalValue::LinkageTypes) {
1126   // TODO: Add support for global variables on the device after declare target
1127   // support.
1128   llvm::Function *Fn = dyn_cast<llvm::Function>(Addr);
1129   if (!Fn)
1130     return;
1131 
1132   llvm::Module &M = CGM.getModule();
1133   llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1134 
1135   // Get "nvvm.annotations" metadata node.
1136   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1137 
1138   llvm::Metadata *MDVals[] = {
1139       llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"),
1140       llvm::ConstantAsMetadata::get(
1141           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1142   // Append metadata to nvvm.annotations.
1143   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1144 
1145   // Add a function attribute for the kernel.
1146   Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel"));
1147 }
1148 
1149 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1150     const OMPExecutableDirective &D, StringRef ParentName,
1151     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1152     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1153   if (!IsOffloadEntry) // Nothing to do.
1154     return;
1155 
1156   assert(!ParentName.empty() && "Invalid target region parent name!");
1157 
1158   bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1159   if (Mode)
1160     emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1161                    CodeGen);
1162   else
1163     emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1164                       CodeGen);
1165 
1166   setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1167 }
1168 
1169 namespace {
1170 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1171 /// Enum for accesseing the reserved_2 field of the ident_t struct.
1172 enum ModeFlagsTy : unsigned {
1173   /// Bit set to 1 when in SPMD mode.
1174   KMP_IDENT_SPMD_MODE = 0x01,
1175   /// Bit set to 1 when a simplified runtime is used.
1176   KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1177   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1178 };
1179 
1180 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1181 static const ModeFlagsTy UndefinedMode =
1182     (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1183 } // anonymous namespace
1184 
1185 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1186   switch (getExecutionMode()) {
1187   case EM_SPMD:
1188     if (requiresFullRuntime())
1189       return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1190     return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1191   case EM_NonSPMD:
1192     assert(requiresFullRuntime() && "Expected full runtime.");
1193     return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1194   case EM_Unknown:
1195     return UndefinedMode;
1196   }
1197   llvm_unreachable("Unknown flags are requested.");
1198 }
1199 
1200 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1201     : CGOpenMPRuntime(CGM, "_", "$") {
1202   if (!CGM.getLangOpts().OpenMPIsDevice)
1203     llvm_unreachable("OpenMP can only handle device code.");
1204 
1205   llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
1206   if (!CGM.getLangOpts().OMPHostIRFile.empty()) {
1207     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
1208                                 "__omp_rtl_debug_kind");
1209     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
1210                                 "__omp_rtl_assume_teams_oversubscription");
1211     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
1212                                 "__omp_rtl_assume_threads_oversubscription");
1213     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
1214                                 "__omp_rtl_assume_no_thread_state");
1215   }
1216 }
1217 
1218 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1219                                               ProcBindKind ProcBind,
1220                                               SourceLocation Loc) {
1221   // Do nothing in case of SPMD mode and L0 parallel.
1222   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1223     return;
1224 
1225   CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1226 }
1227 
1228 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1229                                                 llvm::Value *NumThreads,
1230                                                 SourceLocation Loc) {
1231   // Nothing to do.
1232 }
1233 
1234 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1235                                               const Expr *NumTeams,
1236                                               const Expr *ThreadLimit,
1237                                               SourceLocation Loc) {}
1238 
1239 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1240     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1241     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1242   // Emit target region as a standalone region.
1243   class NVPTXPrePostActionTy : public PrePostActionTy {
1244     bool &IsInParallelRegion;
1245     bool PrevIsInParallelRegion;
1246 
1247   public:
1248     NVPTXPrePostActionTy(bool &IsInParallelRegion)
1249         : IsInParallelRegion(IsInParallelRegion) {}
1250     void Enter(CodeGenFunction &CGF) override {
1251       PrevIsInParallelRegion = IsInParallelRegion;
1252       IsInParallelRegion = true;
1253     }
1254     void Exit(CodeGenFunction &CGF) override {
1255       IsInParallelRegion = PrevIsInParallelRegion;
1256     }
1257   } Action(IsInParallelRegion);
1258   CodeGen.setAction(Action);
1259   bool PrevIsInTTDRegion = IsInTTDRegion;
1260   IsInTTDRegion = false;
1261   bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1262   IsInTargetMasterThreadRegion = false;
1263   auto *OutlinedFun =
1264       cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1265           D, ThreadIDVar, InnermostKind, CodeGen));
1266   IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1267   IsInTTDRegion = PrevIsInTTDRegion;
1268   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1269       !IsInParallelRegion) {
1270     llvm::Function *WrapperFun =
1271         createParallelDataSharingWrapper(OutlinedFun, D);
1272     WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1273   }
1274 
1275   return OutlinedFun;
1276 }
1277 
1278 /// Get list of lastprivate variables from the teams distribute ... or
1279 /// teams {distribute ...} directives.
1280 static void
1281 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1282                              llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1283   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1284          "expected teams directive.");
1285   const OMPExecutableDirective *Dir = &D;
1286   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1287     if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1288             Ctx,
1289             D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1290                 /*IgnoreCaptured=*/true))) {
1291       Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1292       if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1293         Dir = nullptr;
1294     }
1295   }
1296   if (!Dir)
1297     return;
1298   for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1299     for (const Expr *E : C->getVarRefs())
1300       Vars.push_back(getPrivateItem(E));
1301   }
1302 }
1303 
1304 /// Get list of reduction variables from the teams ... directives.
1305 static void
1306 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1307                       llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1308   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1309          "expected teams directive.");
1310   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1311     for (const Expr *E : C->privates())
1312       Vars.push_back(getPrivateItem(E));
1313   }
1314 }
1315 
1316 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1317     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1318     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1319   SourceLocation Loc = D.getBeginLoc();
1320 
1321   const RecordDecl *GlobalizedRD = nullptr;
1322   llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1323   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1324   unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1325   // Globalize team reductions variable unconditionally in all modes.
1326   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1327     getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1328   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1329     getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1330     if (!LastPrivatesReductions.empty()) {
1331       GlobalizedRD = ::buildRecordForGlobalizedVars(
1332           CGM.getContext(), llvm::None, LastPrivatesReductions,
1333           MappedDeclsFields, WarpSize);
1334     }
1335   } else if (!LastPrivatesReductions.empty()) {
1336     assert(!TeamAndReductions.first &&
1337            "Previous team declaration is not expected.");
1338     TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1339     std::swap(TeamAndReductions.second, LastPrivatesReductions);
1340   }
1341 
1342   // Emit target region as a standalone region.
1343   class NVPTXPrePostActionTy : public PrePostActionTy {
1344     SourceLocation &Loc;
1345     const RecordDecl *GlobalizedRD;
1346     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1347         &MappedDeclsFields;
1348 
1349   public:
1350     NVPTXPrePostActionTy(
1351         SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1352         llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1353             &MappedDeclsFields)
1354         : Loc(Loc), GlobalizedRD(GlobalizedRD),
1355           MappedDeclsFields(MappedDeclsFields) {}
1356     void Enter(CodeGenFunction &CGF) override {
1357       auto &Rt =
1358           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1359       if (GlobalizedRD) {
1360         auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1361         I->getSecond().MappedParams =
1362             std::make_unique<CodeGenFunction::OMPMapVars>();
1363         DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1364         for (const auto &Pair : MappedDeclsFields) {
1365           assert(Pair.getFirst()->isCanonicalDecl() &&
1366                  "Expected canonical declaration");
1367           Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1368         }
1369       }
1370       Rt.emitGenericVarsProlog(CGF, Loc);
1371     }
1372     void Exit(CodeGenFunction &CGF) override {
1373       static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1374           .emitGenericVarsEpilog(CGF);
1375     }
1376   } Action(Loc, GlobalizedRD, MappedDeclsFields);
1377   CodeGen.setAction(Action);
1378   llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1379       D, ThreadIDVar, InnermostKind, CodeGen);
1380 
1381   return OutlinedFun;
1382 }
1383 
1384 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1385                                                  SourceLocation Loc,
1386                                                  bool WithSPMDCheck) {
1387   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1388       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1389     return;
1390 
1391   CGBuilderTy &Bld = CGF.Builder;
1392 
1393   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1394   if (I == FunctionGlobalizedDecls.end())
1395     return;
1396 
1397   for (auto &Rec : I->getSecond().LocalVarData) {
1398     const auto *VD = cast<VarDecl>(Rec.first);
1399     bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1400     QualType VarTy = VD->getType();
1401 
1402     // Get the local allocation of a firstprivate variable before sharing
1403     llvm::Value *ParValue;
1404     if (EscapedParam) {
1405       LValue ParLVal =
1406           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1407       ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1408     }
1409 
1410     // Allocate space for the variable to be globalized
1411     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1412     llvm::CallBase *VoidPtr =
1413         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1414                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1415                             AllocArgs, VD->getName());
1416     // FIXME: We should use the variables actual alignment as an argument.
1417     VoidPtr->addRetAttr(llvm::Attribute::get(
1418         CGM.getLLVMContext(), llvm::Attribute::Alignment,
1419         CGM.getContext().getTargetInfo().getNewAlign() / 8));
1420 
1421     // Cast the void pointer and get the address of the globalized variable.
1422     llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1423     llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1424         VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1425     LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1426     Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1427     Rec.second.GlobalizedVal = VoidPtr;
1428 
1429     // Assign the local allocation to the newly globalized location.
1430     if (EscapedParam) {
1431       CGF.EmitStoreOfScalar(ParValue, VarAddr);
1432       I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1433     }
1434     if (auto *DI = CGF.getDebugInfo())
1435       VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1436   }
1437   for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
1438     // Use actual memory size of the VLA object including the padding
1439     // for alignment purposes.
1440     llvm::Value *Size = CGF.getTypeSize(VD->getType());
1441     CharUnits Align = CGM.getContext().getDeclAlign(VD);
1442     Size = Bld.CreateNUWAdd(
1443         Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1444     llvm::Value *AlignVal =
1445         llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1446 
1447     Size = Bld.CreateUDiv(Size, AlignVal);
1448     Size = Bld.CreateNUWMul(Size, AlignVal);
1449 
1450     // Allocate space for this VLA object to be globalized.
1451     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1452     llvm::CallBase *VoidPtr =
1453         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1454                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1455                             AllocArgs, VD->getName());
1456     VoidPtr->addRetAttr(
1457         llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
1458                              CGM.getContext().getTargetInfo().getNewAlign()));
1459 
1460     I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
1461         std::pair<llvm::Value *, llvm::Value *>(
1462             {VoidPtr, CGF.getTypeSize(VD->getType())}));
1463     LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
1464                                      CGM.getContext().getDeclAlign(VD),
1465                                      AlignmentSource::Decl);
1466     I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1467                                             Base.getAddress(CGF));
1468   }
1469   I->getSecond().MappedParams->apply(CGF);
1470 }
1471 
1472 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
1473                                                  bool WithSPMDCheck) {
1474   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1475       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1476     return;
1477 
1478   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1479   if (I != FunctionGlobalizedDecls.end()) {
1480     // Deallocate the memory for each globalized VLA object
1481     for (auto AddrSizePair :
1482          llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1483       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1484                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1485                           {AddrSizePair.first, AddrSizePair.second});
1486     }
1487     // Deallocate the memory for each globalized value
1488     for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1489       const auto *VD = cast<VarDecl>(Rec.first);
1490       I->getSecond().MappedParams->restore(CGF);
1491 
1492       llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1493                                  CGF.getTypeSize(VD->getType())};
1494       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1495                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1496                           FreeArgs);
1497     }
1498   }
1499 }
1500 
1501 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1502                                          const OMPExecutableDirective &D,
1503                                          SourceLocation Loc,
1504                                          llvm::Function *OutlinedFn,
1505                                          ArrayRef<llvm::Value *> CapturedVars) {
1506   if (!CGF.HaveInsertPoint())
1507     return;
1508 
1509   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1510                                                       /*Name=*/".zero.addr");
1511   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1512   llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1513   OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1514   OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1515   OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1516   emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1517 }
1518 
1519 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1520                                           SourceLocation Loc,
1521                                           llvm::Function *OutlinedFn,
1522                                           ArrayRef<llvm::Value *> CapturedVars,
1523                                           const Expr *IfCond,
1524                                           llvm::Value *NumThreads) {
1525   if (!CGF.HaveInsertPoint())
1526     return;
1527 
1528   auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1529                         NumThreads](CodeGenFunction &CGF,
1530                                     PrePostActionTy &Action) {
1531     CGBuilderTy &Bld = CGF.Builder;
1532     llvm::Value *NumThreadsVal = NumThreads;
1533     llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1534     llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1535     if (WFn)
1536       ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1537     llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1538 
1539     // Create a private scope that will globalize the arguments
1540     // passed from the outside of the target region.
1541     // TODO: Is that needed?
1542     CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1543 
1544     Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1545         llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1546         "captured_vars_addrs");
1547     // There's something to share.
1548     if (!CapturedVars.empty()) {
1549       // Prepare for parallel region. Indicate the outlined function.
1550       ASTContext &Ctx = CGF.getContext();
1551       unsigned Idx = 0;
1552       for (llvm::Value *V : CapturedVars) {
1553         Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1554         llvm::Value *PtrV;
1555         if (V->getType()->isIntegerTy())
1556           PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1557         else
1558           PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1559         CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1560                               Ctx.getPointerType(Ctx.VoidPtrTy));
1561         ++Idx;
1562       }
1563     }
1564 
1565     llvm::Value *IfCondVal = nullptr;
1566     if (IfCond)
1567       IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1568                                     /* isSigned */ false);
1569     else
1570       IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1571 
1572     if (!NumThreadsVal)
1573       NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1574     else
1575       NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1576 
1577       assert(IfCondVal && "Expected a value");
1578     llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1579     llvm::Value *Args[] = {
1580         RTLoc,
1581         getThreadID(CGF, Loc),
1582         IfCondVal,
1583         NumThreadsVal,
1584         llvm::ConstantInt::get(CGF.Int32Ty, -1),
1585         FnPtr,
1586         ID,
1587         Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1588                                    CGF.VoidPtrPtrTy),
1589         llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1590     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1591                             CGM.getModule(), OMPRTL___kmpc_parallel_51),
1592                         Args);
1593   };
1594 
1595   RegionCodeGenTy RCG(ParallelGen);
1596   RCG(CGF);
1597 }
1598 
1599 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1600   // Always emit simple barriers!
1601   if (!CGF.HaveInsertPoint())
1602     return;
1603   // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1604   // This function does not use parameters, so we can emit just default values.
1605   llvm::Value *Args[] = {
1606       llvm::ConstantPointerNull::get(
1607           cast<llvm::PointerType>(getIdentTyPointerTy())),
1608       llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1609   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1610                           CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1611                       Args);
1612 }
1613 
1614 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1615                                            SourceLocation Loc,
1616                                            OpenMPDirectiveKind Kind, bool,
1617                                            bool) {
1618   // Always emit simple barriers!
1619   if (!CGF.HaveInsertPoint())
1620     return;
1621   // Build call __kmpc_cancel_barrier(loc, thread_id);
1622   unsigned Flags = getDefaultFlagsForBarriers(Kind);
1623   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1624                          getThreadID(CGF, Loc)};
1625 
1626   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1627                           CGM.getModule(), OMPRTL___kmpc_barrier),
1628                       Args);
1629 }
1630 
1631 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1632     CodeGenFunction &CGF, StringRef CriticalName,
1633     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1634     const Expr *Hint) {
1635   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1636   llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1637   llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1638   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1639   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1640 
1641   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1642 
1643   // Get the mask of active threads in the warp.
1644   llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1645       CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1646   // Fetch team-local id of the thread.
1647   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1648 
1649   // Get the width of the team.
1650   llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1651 
1652   // Initialize the counter variable for the loop.
1653   QualType Int32Ty =
1654       CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1655   Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1656   LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1657   CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1658                         /*isInit=*/true);
1659 
1660   // Block checks if loop counter exceeds upper bound.
1661   CGF.EmitBlock(LoopBB);
1662   llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1663   llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1664   CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1665 
1666   // Block tests which single thread should execute region, and which threads
1667   // should go straight to synchronisation point.
1668   CGF.EmitBlock(TestBB);
1669   CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1670   llvm::Value *CmpThreadToCounter =
1671       CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1672   CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1673 
1674   // Block emits the body of the critical region.
1675   CGF.EmitBlock(BodyBB);
1676 
1677   // Output the critical statement.
1678   CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1679                                       Hint);
1680 
1681   // After the body surrounded by the critical region, the single executing
1682   // thread will jump to the synchronisation point.
1683   // Block waits for all threads in current team to finish then increments the
1684   // counter variable and returns to the loop.
1685   CGF.EmitBlock(SyncBB);
1686   // Reconverge active threads in the warp.
1687   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1688                                 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1689                             Mask);
1690 
1691   llvm::Value *IncCounterVal =
1692       CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1693   CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1694   CGF.EmitBranch(LoopBB);
1695 
1696   // Block that is reached when  all threads in the team complete the region.
1697   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1698 }
1699 
1700 /// Cast value to the specified type.
1701 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1702                                     QualType ValTy, QualType CastTy,
1703                                     SourceLocation Loc) {
1704   assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1705          "Cast type must sized.");
1706   assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1707          "Val type must sized.");
1708   llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1709   if (ValTy == CastTy)
1710     return Val;
1711   if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1712       CGF.getContext().getTypeSizeInChars(CastTy))
1713     return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1714   if (CastTy->isIntegerType() && ValTy->isIntegerType())
1715     return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1716                                      CastTy->hasSignedIntegerRepresentation());
1717   Address CastItem = CGF.CreateMemTemp(CastTy);
1718   Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1719       CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()),
1720       Val->getType());
1721   CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1722                         LValueBaseInfo(AlignmentSource::Type),
1723                         TBAAAccessInfo());
1724   return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1725                               LValueBaseInfo(AlignmentSource::Type),
1726                               TBAAAccessInfo());
1727 }
1728 
1729 /// This function creates calls to one of two shuffle functions to copy
1730 /// variables between lanes in a warp.
1731 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1732                                                  llvm::Value *Elem,
1733                                                  QualType ElemType,
1734                                                  llvm::Value *Offset,
1735                                                  SourceLocation Loc) {
1736   CodeGenModule &CGM = CGF.CGM;
1737   CGBuilderTy &Bld = CGF.Builder;
1738   CGOpenMPRuntimeGPU &RT =
1739       *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1740   llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1741 
1742   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1743   assert(Size.getQuantity() <= 8 &&
1744          "Unsupported bitwidth in shuffle instruction.");
1745 
1746   RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1747                                   ? OMPRTL___kmpc_shuffle_int32
1748                                   : OMPRTL___kmpc_shuffle_int64;
1749 
1750   // Cast all types to 32- or 64-bit values before calling shuffle routines.
1751   QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1752       Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1753   llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1754   llvm::Value *WarpSize =
1755       Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1756 
1757   llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1758       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1759       {ElemCast, Offset, WarpSize});
1760 
1761   return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1762 }
1763 
1764 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1765                             Address DestAddr, QualType ElemType,
1766                             llvm::Value *Offset, SourceLocation Loc) {
1767   CGBuilderTy &Bld = CGF.Builder;
1768 
1769   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1770   // Create the loop over the big sized data.
1771   // ptr = (void*)Elem;
1772   // ptrEnd = (void*) Elem + 1;
1773   // Step = 8;
1774   // while (ptr + Step < ptrEnd)
1775   //   shuffle((int64_t)*ptr);
1776   // Step = 4;
1777   // while (ptr + Step < ptrEnd)
1778   //   shuffle((int32_t)*ptr);
1779   // ...
1780   Address ElemPtr = DestAddr;
1781   Address Ptr = SrcAddr;
1782   Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1783       Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty);
1784   for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1785     if (Size < CharUnits::fromQuantity(IntSize))
1786       continue;
1787     QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1788         CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1789         /*Signed=*/1);
1790     llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1791     Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(),
1792                                                   IntTy);
1793     ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1794         ElemPtr, IntTy->getPointerTo(), IntTy);
1795     if (Size.getQuantity() / IntSize > 1) {
1796       llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1797       llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1798       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1799       llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1800       CGF.EmitBlock(PreCondBB);
1801       llvm::PHINode *PhiSrc =
1802           Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1803       PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1804       llvm::PHINode *PhiDest =
1805           Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1806       PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1807       Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
1808       ElemPtr =
1809           Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
1810       llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1811           CGF.Int8Ty, PtrEnd.getPointer(),
1812           Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1813                                                   CGF.VoidPtrTy));
1814       Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1815                        ThenBB, ExitBB);
1816       CGF.EmitBlock(ThenBB);
1817       llvm::Value *Res = createRuntimeShuffleFunction(
1818           CGF,
1819           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1820                                LValueBaseInfo(AlignmentSource::Type),
1821                                TBAAAccessInfo()),
1822           IntType, Offset, Loc);
1823       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1824                             LValueBaseInfo(AlignmentSource::Type),
1825                             TBAAAccessInfo());
1826       Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1827       Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1828       PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1829       PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1830       CGF.EmitBranch(PreCondBB);
1831       CGF.EmitBlock(ExitBB);
1832     } else {
1833       llvm::Value *Res = createRuntimeShuffleFunction(
1834           CGF,
1835           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1836                                LValueBaseInfo(AlignmentSource::Type),
1837                                TBAAAccessInfo()),
1838           IntType, Offset, Loc);
1839       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1840                             LValueBaseInfo(AlignmentSource::Type),
1841                             TBAAAccessInfo());
1842       Ptr = Bld.CreateConstGEP(Ptr, 1);
1843       ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1844     }
1845     Size = Size % IntSize;
1846   }
1847 }
1848 
1849 namespace {
1850 enum CopyAction : unsigned {
1851   // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1852   // the warp using shuffle instructions.
1853   RemoteLaneToThread,
1854   // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1855   ThreadCopy,
1856   // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1857   ThreadToScratchpad,
1858   // ScratchpadToThread: Copy from a scratchpad array in global memory
1859   // containing team-reduced data to a thread's stack.
1860   ScratchpadToThread,
1861 };
1862 } // namespace
1863 
1864 struct CopyOptionsTy {
1865   llvm::Value *RemoteLaneOffset;
1866   llvm::Value *ScratchpadIndex;
1867   llvm::Value *ScratchpadWidth;
1868 };
1869 
1870 /// Emit instructions to copy a Reduce list, which contains partially
1871 /// aggregated values, in the specified direction.
1872 static void emitReductionListCopy(
1873     CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1874     ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1875     CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1876 
1877   CodeGenModule &CGM = CGF.CGM;
1878   ASTContext &C = CGM.getContext();
1879   CGBuilderTy &Bld = CGF.Builder;
1880 
1881   llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1882   llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1883   llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1884 
1885   // Iterates, element-by-element, through the source Reduce list and
1886   // make a copy.
1887   unsigned Idx = 0;
1888   unsigned Size = Privates.size();
1889   for (const Expr *Private : Privates) {
1890     Address SrcElementAddr = Address::invalid();
1891     Address DestElementAddr = Address::invalid();
1892     Address DestElementPtrAddr = Address::invalid();
1893     // Should we shuffle in an element from a remote lane?
1894     bool ShuffleInElement = false;
1895     // Set to true to update the pointer in the dest Reduce list to a
1896     // newly created element.
1897     bool UpdateDestListPtr = false;
1898     // Increment the src or dest pointer to the scratchpad, for each
1899     // new element.
1900     bool IncrScratchpadSrc = false;
1901     bool IncrScratchpadDest = false;
1902     QualType PrivatePtrType = C.getPointerType(Private->getType());
1903     llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType);
1904 
1905     switch (Action) {
1906     case RemoteLaneToThread: {
1907       // Step 1.1: Get the address for the src element in the Reduce list.
1908       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1909       SrcElementAddr =
1910           CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1911                                     SrcElementPtrAddr, PrivateLlvmPtrType),
1912                                 PrivatePtrType->castAs<PointerType>());
1913 
1914       // Step 1.2: Create a temporary to store the element in the destination
1915       // Reduce list.
1916       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1917       DestElementAddr =
1918           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1919       ShuffleInElement = true;
1920       UpdateDestListPtr = true;
1921       break;
1922     }
1923     case ThreadCopy: {
1924       // Step 1.1: Get the address for the src element in the Reduce list.
1925       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1926       SrcElementAddr =
1927           CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1928                                     SrcElementPtrAddr, PrivateLlvmPtrType),
1929                                 PrivatePtrType->castAs<PointerType>());
1930 
1931       // Step 1.2: Get the address for dest element.  The destination
1932       // element has already been created on the thread's stack.
1933       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1934       DestElementAddr =
1935           CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1936                                     DestElementPtrAddr, PrivateLlvmPtrType),
1937                                 PrivatePtrType->castAs<PointerType>());
1938       break;
1939     }
1940     case ThreadToScratchpad: {
1941       // Step 1.1: Get the address for the src element in the Reduce list.
1942       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1943       SrcElementAddr =
1944           CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1945                                     SrcElementPtrAddr, PrivateLlvmPtrType),
1946                                 PrivatePtrType->castAs<PointerType>());
1947 
1948       // Step 1.2: Get the address for dest element:
1949       // address = base + index * ElementSizeInChars.
1950       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1951       llvm::Value *CurrentOffset =
1952           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1953       llvm::Value *ScratchPadElemAbsolutePtrVal =
1954           Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1955       ScratchPadElemAbsolutePtrVal =
1956           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1957       DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1958                                 C.getTypeAlignInChars(Private->getType()));
1959       IncrScratchpadDest = true;
1960       break;
1961     }
1962     case ScratchpadToThread: {
1963       // Step 1.1: Get the address for the src element in the scratchpad.
1964       // address = base + index * ElementSizeInChars.
1965       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1966       llvm::Value *CurrentOffset =
1967           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1968       llvm::Value *ScratchPadElemAbsolutePtrVal =
1969           Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1970       ScratchPadElemAbsolutePtrVal =
1971           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1972       SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1973                                C.getTypeAlignInChars(Private->getType()));
1974       IncrScratchpadSrc = true;
1975 
1976       // Step 1.2: Create a temporary to store the element in the destination
1977       // Reduce list.
1978       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1979       DestElementAddr =
1980           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1981       UpdateDestListPtr = true;
1982       break;
1983     }
1984     }
1985 
1986     // Regardless of src and dest of copy, we emit the load of src
1987     // element as this is required in all directions
1988     SrcElementAddr = Bld.CreateElementBitCast(
1989         SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1990     DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
1991                                                SrcElementAddr.getElementType());
1992 
1993     // Now that all active lanes have read the element in the
1994     // Reduce list, shuffle over the value from the remote lane.
1995     if (ShuffleInElement) {
1996       shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1997                       RemoteLaneOffset, Private->getExprLoc());
1998     } else {
1999       switch (CGF.getEvaluationKind(Private->getType())) {
2000       case TEK_Scalar: {
2001         llvm::Value *Elem = CGF.EmitLoadOfScalar(
2002             SrcElementAddr, /*Volatile=*/false, Private->getType(),
2003             Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
2004             TBAAAccessInfo());
2005         // Store the source element value to the dest element address.
2006         CGF.EmitStoreOfScalar(
2007             Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
2008             LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2009         break;
2010       }
2011       case TEK_Complex: {
2012         CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
2013             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2014             Private->getExprLoc());
2015         CGF.EmitStoreOfComplex(
2016             Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2017             /*isInit=*/false);
2018         break;
2019       }
2020       case TEK_Aggregate:
2021         CGF.EmitAggregateCopy(
2022             CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2023             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2024             Private->getType(), AggValueSlot::DoesNotOverlap);
2025         break;
2026       }
2027     }
2028 
2029     // Step 3.1: Modify reference in dest Reduce list as needed.
2030     // Modifying the reference in Reduce list to point to the newly
2031     // created element.  The element is live in the current function
2032     // scope and that of functions it invokes (i.e., reduce_function).
2033     // RemoteReduceData[i] = (void*)&RemoteElem
2034     if (UpdateDestListPtr) {
2035       CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2036                                 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2037                             DestElementPtrAddr, /*Volatile=*/false,
2038                             C.VoidPtrTy);
2039     }
2040 
2041     // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2042     // address of the next element in scratchpad memory, unless we're currently
2043     // processing the last one.  Memory alignment is also taken care of here.
2044     if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2045       // FIXME: This code doesn't make any sense, it's trying to perform
2046       // integer arithmetic on pointers.
2047       llvm::Value *ScratchpadBasePtr =
2048           IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2049       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2050       ScratchpadBasePtr = Bld.CreateNUWAdd(
2051           ScratchpadBasePtr,
2052           Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2053 
2054       // Take care of global memory alignment for performance
2055       ScratchpadBasePtr = Bld.CreateNUWSub(
2056           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2057       ScratchpadBasePtr = Bld.CreateUDiv(
2058           ScratchpadBasePtr,
2059           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2060       ScratchpadBasePtr = Bld.CreateNUWAdd(
2061           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2062       ScratchpadBasePtr = Bld.CreateNUWMul(
2063           ScratchpadBasePtr,
2064           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2065 
2066       if (IncrScratchpadDest)
2067         DestBase =
2068             Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
2069       else /* IncrScratchpadSrc = true */
2070         SrcBase =
2071             Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
2072     }
2073 
2074     ++Idx;
2075   }
2076 }
2077 
2078 /// This function emits a helper that gathers Reduce lists from the first
2079 /// lane of every active warp to lanes in the first warp.
2080 ///
2081 /// void inter_warp_copy_func(void* reduce_data, num_warps)
2082 ///   shared smem[warp_size];
2083 ///   For all data entries D in reduce_data:
2084 ///     sync
2085 ///     If (I am the first lane in each warp)
2086 ///       Copy my local D to smem[warp_id]
2087 ///     sync
2088 ///     if (I am the first warp)
2089 ///       Copy smem[thread_id] to my local D
2090 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2091                                               ArrayRef<const Expr *> Privates,
2092                                               QualType ReductionArrayTy,
2093                                               SourceLocation Loc) {
2094   ASTContext &C = CGM.getContext();
2095   llvm::Module &M = CGM.getModule();
2096 
2097   // ReduceList: thread local Reduce list.
2098   // At the stage of the computation when this function is called, partially
2099   // aggregated values reside in the first lane of every active warp.
2100   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2101                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2102   // NumWarps: number of warps active in the parallel region.  This could
2103   // be smaller than 32 (max warps in a CTA) for partial block reduction.
2104   ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2105                                 C.getIntTypeForBitwidth(32, /* Signed */ true),
2106                                 ImplicitParamDecl::Other);
2107   FunctionArgList Args;
2108   Args.push_back(&ReduceListArg);
2109   Args.push_back(&NumWarpsArg);
2110 
2111   const CGFunctionInfo &CGFI =
2112       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2113   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2114                                     llvm::GlobalValue::InternalLinkage,
2115                                     "_omp_reduction_inter_warp_copy_func", &M);
2116   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2117   Fn->setDoesNotRecurse();
2118   CodeGenFunction CGF(CGM);
2119   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2120 
2121   CGBuilderTy &Bld = CGF.Builder;
2122 
2123   // This array is used as a medium to transfer, one reduce element at a time,
2124   // the data from the first lane of every warp to lanes in the first warp
2125   // in order to perform the final step of a reduction in a parallel region
2126   // (reduction across warps).  The array is placed in NVPTX __shared__ memory
2127   // for reduced latency, as well as to have a distinct copy for concurrently
2128   // executing target regions.  The array is declared with common linkage so
2129   // as to be shared across compilation units.
2130   StringRef TransferMediumName =
2131       "__openmp_nvptx_data_transfer_temporary_storage";
2132   llvm::GlobalVariable *TransferMedium =
2133       M.getGlobalVariable(TransferMediumName);
2134   unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
2135   if (!TransferMedium) {
2136     auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2137     unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2138     TransferMedium = new llvm::GlobalVariable(
2139         M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2140         llvm::UndefValue::get(Ty), TransferMediumName,
2141         /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2142         SharedAddressSpace);
2143     CGM.addCompilerUsedGlobal(TransferMedium);
2144   }
2145 
2146   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2147   // Get the CUDA thread id of the current OpenMP thread on the GPU.
2148   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2149   // nvptx_lane_id = nvptx_id % warpsize
2150   llvm::Value *LaneID = getNVPTXLaneID(CGF);
2151   // nvptx_warp_id = nvptx_id / warpsize
2152   llvm::Value *WarpID = getNVPTXWarpID(CGF);
2153 
2154   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2155   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2156   Address LocalReduceList(
2157       Bld.CreatePointerBitCastOrAddrSpaceCast(
2158           CGF.EmitLoadOfScalar(
2159               AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2160               LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2161           ElemTy->getPointerTo()),
2162       ElemTy, CGF.getPointerAlign());
2163 
2164   unsigned Idx = 0;
2165   for (const Expr *Private : Privates) {
2166     //
2167     // Warp master copies reduce element to transfer medium in __shared__
2168     // memory.
2169     //
2170     unsigned RealTySize =
2171         C.getTypeSizeInChars(Private->getType())
2172             .alignTo(C.getTypeAlignInChars(Private->getType()))
2173             .getQuantity();
2174     for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2175       unsigned NumIters = RealTySize / TySize;
2176       if (NumIters == 0)
2177         continue;
2178       QualType CType = C.getIntTypeForBitwidth(
2179           C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2180       llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2181       CharUnits Align = CharUnits::fromQuantity(TySize);
2182       llvm::Value *Cnt = nullptr;
2183       Address CntAddr = Address::invalid();
2184       llvm::BasicBlock *PrecondBB = nullptr;
2185       llvm::BasicBlock *ExitBB = nullptr;
2186       if (NumIters > 1) {
2187         CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2188         CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2189                               /*Volatile=*/false, C.IntTy);
2190         PrecondBB = CGF.createBasicBlock("precond");
2191         ExitBB = CGF.createBasicBlock("exit");
2192         llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2193         // There is no need to emit line number for unconditional branch.
2194         (void)ApplyDebugLocation::CreateEmpty(CGF);
2195         CGF.EmitBlock(PrecondBB);
2196         Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2197         llvm::Value *Cmp =
2198             Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2199         Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2200         CGF.EmitBlock(BodyBB);
2201       }
2202       // kmpc_barrier.
2203       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2204                                              /*EmitChecks=*/false,
2205                                              /*ForceSimpleCall=*/true);
2206       llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2207       llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2208       llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2209 
2210       // if (lane_id == 0)
2211       llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2212       Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2213       CGF.EmitBlock(ThenBB);
2214 
2215       // Reduce element = LocalReduceList[i]
2216       Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2217       llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2218           ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2219       // elemptr = ((CopyType*)(elemptrptr)) + I
2220       Address ElemPtr(ElemPtrPtr, CGF.Int8Ty, Align);
2221       ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2222       if (NumIters > 1)
2223         ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
2224 
2225       // Get pointer to location in transfer medium.
2226       // MediumPtr = &medium[warp_id]
2227       llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2228           TransferMedium->getValueType(), TransferMedium,
2229           {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2230       // Casting to actual data type.
2231       // MediumPtr = (CopyType*)MediumPtrAddr;
2232       Address MediumPtr(
2233           Bld.CreateBitCast(
2234               MediumPtrVal,
2235               CopyType->getPointerTo(
2236                   MediumPtrVal->getType()->getPointerAddressSpace())),
2237           CopyType, Align);
2238 
2239       // elem = *elemptr
2240       //*MediumPtr = elem
2241       llvm::Value *Elem = CGF.EmitLoadOfScalar(
2242           ElemPtr, /*Volatile=*/false, CType, Loc,
2243           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2244       // Store the source element value to the dest element address.
2245       CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2246                             LValueBaseInfo(AlignmentSource::Type),
2247                             TBAAAccessInfo());
2248 
2249       Bld.CreateBr(MergeBB);
2250 
2251       CGF.EmitBlock(ElseBB);
2252       Bld.CreateBr(MergeBB);
2253 
2254       CGF.EmitBlock(MergeBB);
2255 
2256       // kmpc_barrier.
2257       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2258                                              /*EmitChecks=*/false,
2259                                              /*ForceSimpleCall=*/true);
2260 
2261       //
2262       // Warp 0 copies reduce element from transfer medium.
2263       //
2264       llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2265       llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2266       llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2267 
2268       Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2269       llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2270           AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2271 
2272       // Up to 32 threads in warp 0 are active.
2273       llvm::Value *IsActiveThread =
2274           Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2275       Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2276 
2277       CGF.EmitBlock(W0ThenBB);
2278 
2279       // SrcMediumPtr = &medium[tid]
2280       llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2281           TransferMedium->getValueType(), TransferMedium,
2282           {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2283       // SrcMediumVal = *SrcMediumPtr;
2284       Address SrcMediumPtr(
2285           Bld.CreateBitCast(
2286               SrcMediumPtrVal,
2287               CopyType->getPointerTo(
2288                   SrcMediumPtrVal->getType()->getPointerAddressSpace())),
2289           CopyType, Align);
2290 
2291       // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2292       Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2293       llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2294           TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2295       Address TargetElemPtr(TargetElemPtrVal, CGF.Int8Ty, Align);
2296       TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
2297       if (NumIters > 1)
2298         TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
2299 
2300       // *TargetElemPtr = SrcMediumVal;
2301       llvm::Value *SrcMediumValue =
2302           CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2303       CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2304                             CType);
2305       Bld.CreateBr(W0MergeBB);
2306 
2307       CGF.EmitBlock(W0ElseBB);
2308       Bld.CreateBr(W0MergeBB);
2309 
2310       CGF.EmitBlock(W0MergeBB);
2311 
2312       if (NumIters > 1) {
2313         Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2314         CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2315         CGF.EmitBranch(PrecondBB);
2316         (void)ApplyDebugLocation::CreateEmpty(CGF);
2317         CGF.EmitBlock(ExitBB);
2318       }
2319       RealTySize %= TySize;
2320     }
2321     ++Idx;
2322   }
2323 
2324   CGF.FinishFunction();
2325   return Fn;
2326 }
2327 
2328 /// Emit a helper that reduces data across two OpenMP threads (lanes)
2329 /// in the same warp.  It uses shuffle instructions to copy over data from
2330 /// a remote lane's stack.  The reduction algorithm performed is specified
2331 /// by the fourth parameter.
2332 ///
2333 /// Algorithm Versions.
2334 /// Full Warp Reduce (argument value 0):
2335 ///   This algorithm assumes that all 32 lanes are active and gathers
2336 ///   data from these 32 lanes, producing a single resultant value.
2337 /// Contiguous Partial Warp Reduce (argument value 1):
2338 ///   This algorithm assumes that only a *contiguous* subset of lanes
2339 ///   are active.  This happens for the last warp in a parallel region
2340 ///   when the user specified num_threads is not an integer multiple of
2341 ///   32.  This contiguous subset always starts with the zeroth lane.
2342 /// Partial Warp Reduce (argument value 2):
2343 ///   This algorithm gathers data from any number of lanes at any position.
2344 /// All reduced values are stored in the lowest possible lane.  The set
2345 /// of problems every algorithm addresses is a super set of those
2346 /// addressable by algorithms with a lower version number.  Overhead
2347 /// increases as algorithm version increases.
2348 ///
2349 /// Terminology
2350 /// Reduce element:
2351 ///   Reduce element refers to the individual data field with primitive
2352 ///   data types to be combined and reduced across threads.
2353 /// Reduce list:
2354 ///   Reduce list refers to a collection of local, thread-private
2355 ///   reduce elements.
2356 /// Remote Reduce list:
2357 ///   Remote Reduce list refers to a collection of remote (relative to
2358 ///   the current thread) reduce elements.
2359 ///
2360 /// We distinguish between three states of threads that are important to
2361 /// the implementation of this function.
2362 /// Alive threads:
2363 ///   Threads in a warp executing the SIMT instruction, as distinguished from
2364 ///   threads that are inactive due to divergent control flow.
2365 /// Active threads:
2366 ///   The minimal set of threads that has to be alive upon entry to this
2367 ///   function.  The computation is correct iff active threads are alive.
2368 ///   Some threads are alive but they are not active because they do not
2369 ///   contribute to the computation in any useful manner.  Turning them off
2370 ///   may introduce control flow overheads without any tangible benefits.
2371 /// Effective threads:
2372 ///   In order to comply with the argument requirements of the shuffle
2373 ///   function, we must keep all lanes holding data alive.  But at most
2374 ///   half of them perform value aggregation; we refer to this half of
2375 ///   threads as effective. The other half is simply handing off their
2376 ///   data.
2377 ///
2378 /// Procedure
2379 /// Value shuffle:
2380 ///   In this step active threads transfer data from higher lane positions
2381 ///   in the warp to lower lane positions, creating Remote Reduce list.
2382 /// Value aggregation:
2383 ///   In this step, effective threads combine their thread local Reduce list
2384 ///   with Remote Reduce list and store the result in the thread local
2385 ///   Reduce list.
2386 /// Value copy:
2387 ///   In this step, we deal with the assumption made by algorithm 2
2388 ///   (i.e. contiguity assumption).  When we have an odd number of lanes
2389 ///   active, say 2k+1, only k threads will be effective and therefore k
2390 ///   new values will be produced.  However, the Reduce list owned by the
2391 ///   (2k+1)th thread is ignored in the value aggregation.  Therefore
2392 ///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2393 ///   that the contiguity assumption still holds.
2394 static llvm::Function *emitShuffleAndReduceFunction(
2395     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2396     QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2397   ASTContext &C = CGM.getContext();
2398 
2399   // Thread local Reduce list used to host the values of data to be reduced.
2400   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2401                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2402   // Current lane id; could be logical.
2403   ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2404                               ImplicitParamDecl::Other);
2405   // Offset of the remote source lane relative to the current lane.
2406   ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2407                                         C.ShortTy, ImplicitParamDecl::Other);
2408   // Algorithm version.  This is expected to be known at compile time.
2409   ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2410                                C.ShortTy, ImplicitParamDecl::Other);
2411   FunctionArgList Args;
2412   Args.push_back(&ReduceListArg);
2413   Args.push_back(&LaneIDArg);
2414   Args.push_back(&RemoteLaneOffsetArg);
2415   Args.push_back(&AlgoVerArg);
2416 
2417   const CGFunctionInfo &CGFI =
2418       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2419   auto *Fn = llvm::Function::Create(
2420       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2421       "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2422   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2423   Fn->setDoesNotRecurse();
2424 
2425   CodeGenFunction CGF(CGM);
2426   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2427 
2428   CGBuilderTy &Bld = CGF.Builder;
2429 
2430   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2431   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2432   Address LocalReduceList(
2433       Bld.CreatePointerBitCastOrAddrSpaceCast(
2434           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2435                                C.VoidPtrTy, SourceLocation()),
2436           ElemTy->getPointerTo()),
2437       ElemTy, CGF.getPointerAlign());
2438 
2439   Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2440   llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2441       AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2442 
2443   Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2444   llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2445       AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2446 
2447   Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2448   llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2449       AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2450 
2451   // Create a local thread-private variable to host the Reduce list
2452   // from a remote lane.
2453   Address RemoteReduceList =
2454       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2455 
2456   // This loop iterates through the list of reduce elements and copies,
2457   // element by element, from a remote lane in the warp to RemoteReduceList,
2458   // hosted on the thread's stack.
2459   emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2460                         LocalReduceList, RemoteReduceList,
2461                         {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2462                          /*ScratchpadIndex=*/nullptr,
2463                          /*ScratchpadWidth=*/nullptr});
2464 
2465   // The actions to be performed on the Remote Reduce list is dependent
2466   // on the algorithm version.
2467   //
2468   //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2469   //  LaneId % 2 == 0 && Offset > 0):
2470   //    do the reduction value aggregation
2471   //
2472   //  The thread local variable Reduce list is mutated in place to host the
2473   //  reduced data, which is the aggregated value produced from local and
2474   //  remote lanes.
2475   //
2476   //  Note that AlgoVer is expected to be a constant integer known at compile
2477   //  time.
2478   //  When AlgoVer==0, the first conjunction evaluates to true, making
2479   //    the entire predicate true during compile time.
2480   //  When AlgoVer==1, the second conjunction has only the second part to be
2481   //    evaluated during runtime.  Other conjunctions evaluates to false
2482   //    during compile time.
2483   //  When AlgoVer==2, the third conjunction has only the second part to be
2484   //    evaluated during runtime.  Other conjunctions evaluates to false
2485   //    during compile time.
2486   llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2487 
2488   llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2489   llvm::Value *CondAlgo1 = Bld.CreateAnd(
2490       Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2491 
2492   llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2493   llvm::Value *CondAlgo2 = Bld.CreateAnd(
2494       Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2495   CondAlgo2 = Bld.CreateAnd(
2496       CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2497 
2498   llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2499   CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2500 
2501   llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2502   llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2503   llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2504   Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2505 
2506   CGF.EmitBlock(ThenBB);
2507   // reduce_function(LocalReduceList, RemoteReduceList)
2508   llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2509       LocalReduceList.getPointer(), CGF.VoidPtrTy);
2510   llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2511       RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2512   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2513       CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2514   Bld.CreateBr(MergeBB);
2515 
2516   CGF.EmitBlock(ElseBB);
2517   Bld.CreateBr(MergeBB);
2518 
2519   CGF.EmitBlock(MergeBB);
2520 
2521   // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2522   // Reduce list.
2523   Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2524   llvm::Value *CondCopy = Bld.CreateAnd(
2525       Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2526 
2527   llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2528   llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2529   llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2530   Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2531 
2532   CGF.EmitBlock(CpyThenBB);
2533   emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2534                         RemoteReduceList, LocalReduceList);
2535   Bld.CreateBr(CpyMergeBB);
2536 
2537   CGF.EmitBlock(CpyElseBB);
2538   Bld.CreateBr(CpyMergeBB);
2539 
2540   CGF.EmitBlock(CpyMergeBB);
2541 
2542   CGF.FinishFunction();
2543   return Fn;
2544 }
2545 
2546 /// This function emits a helper that copies all the reduction variables from
2547 /// the team into the provided global buffer for the reduction variables.
2548 ///
2549 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2550 ///   For all data entries D in reduce_data:
2551 ///     Copy local D to buffer.D[Idx]
2552 static llvm::Value *emitListToGlobalCopyFunction(
2553     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2554     QualType ReductionArrayTy, SourceLocation Loc,
2555     const RecordDecl *TeamReductionRec,
2556     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2557         &VarFieldMap) {
2558   ASTContext &C = CGM.getContext();
2559 
2560   // Buffer: global reduction buffer.
2561   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2562                               C.VoidPtrTy, ImplicitParamDecl::Other);
2563   // Idx: index of the buffer.
2564   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2565                            ImplicitParamDecl::Other);
2566   // ReduceList: thread local Reduce list.
2567   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2568                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2569   FunctionArgList Args;
2570   Args.push_back(&BufferArg);
2571   Args.push_back(&IdxArg);
2572   Args.push_back(&ReduceListArg);
2573 
2574   const CGFunctionInfo &CGFI =
2575       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2576   auto *Fn = llvm::Function::Create(
2577       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2578       "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2579   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2580   Fn->setDoesNotRecurse();
2581   CodeGenFunction CGF(CGM);
2582   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2583 
2584   CGBuilderTy &Bld = CGF.Builder;
2585 
2586   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2587   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2588   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2589   Address LocalReduceList(
2590       Bld.CreatePointerBitCastOrAddrSpaceCast(
2591           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2592                                C.VoidPtrTy, Loc),
2593           ElemTy->getPointerTo()),
2594       ElemTy, CGF.getPointerAlign());
2595   QualType StaticTy = C.getRecordType(TeamReductionRec);
2596   llvm::Type *LLVMReductionsBufferTy =
2597       CGM.getTypes().ConvertTypeForMem(StaticTy);
2598   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2599       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2600       LLVMReductionsBufferTy->getPointerTo());
2601   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2602                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2603                                               /*Volatile=*/false, C.IntTy,
2604                                               Loc)};
2605   unsigned Idx = 0;
2606   for (const Expr *Private : Privates) {
2607     // Reduce element = LocalReduceList[i]
2608     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2609     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2610         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2611     // elemptr = ((CopyType*)(elemptrptr)) + I
2612     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2613     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2614         ElemPtrPtr, ElemTy->getPointerTo());
2615     Address ElemPtr =
2616         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2617     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2618     // Global = Buffer.VD[Idx];
2619     const FieldDecl *FD = VarFieldMap.lookup(VD);
2620     LValue GlobLVal = CGF.EmitLValueForField(
2621         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2622     Address GlobAddr = GlobLVal.getAddress(CGF);
2623     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
2624                                                    GlobAddr.getPointer(), Idxs);
2625     GlobLVal.setAddress(Address(BufferPtr,
2626                                 CGF.ConvertTypeForMem(Private->getType()),
2627                                 GlobAddr.getAlignment()));
2628     switch (CGF.getEvaluationKind(Private->getType())) {
2629     case TEK_Scalar: {
2630       llvm::Value *V = CGF.EmitLoadOfScalar(
2631           ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2632           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2633       CGF.EmitStoreOfScalar(V, GlobLVal);
2634       break;
2635     }
2636     case TEK_Complex: {
2637       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2638           CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2639       CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2640       break;
2641     }
2642     case TEK_Aggregate:
2643       CGF.EmitAggregateCopy(GlobLVal,
2644                             CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2645                             Private->getType(), AggValueSlot::DoesNotOverlap);
2646       break;
2647     }
2648     ++Idx;
2649   }
2650 
2651   CGF.FinishFunction();
2652   return Fn;
2653 }
2654 
2655 /// This function emits a helper that reduces all the reduction variables from
2656 /// the team into the provided global buffer for the reduction variables.
2657 ///
2658 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2659 ///  void *GlobPtrs[];
2660 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2661 ///  ...
2662 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2663 ///  reduce_function(GlobPtrs, reduce_data);
2664 static llvm::Value *emitListToGlobalReduceFunction(
2665     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2666     QualType ReductionArrayTy, SourceLocation Loc,
2667     const RecordDecl *TeamReductionRec,
2668     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2669         &VarFieldMap,
2670     llvm::Function *ReduceFn) {
2671   ASTContext &C = CGM.getContext();
2672 
2673   // Buffer: global reduction buffer.
2674   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2675                               C.VoidPtrTy, ImplicitParamDecl::Other);
2676   // Idx: index of the buffer.
2677   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2678                            ImplicitParamDecl::Other);
2679   // ReduceList: thread local Reduce list.
2680   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2681                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2682   FunctionArgList Args;
2683   Args.push_back(&BufferArg);
2684   Args.push_back(&IdxArg);
2685   Args.push_back(&ReduceListArg);
2686 
2687   const CGFunctionInfo &CGFI =
2688       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2689   auto *Fn = llvm::Function::Create(
2690       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2691       "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2692   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2693   Fn->setDoesNotRecurse();
2694   CodeGenFunction CGF(CGM);
2695   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2696 
2697   CGBuilderTy &Bld = CGF.Builder;
2698 
2699   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2700   QualType StaticTy = C.getRecordType(TeamReductionRec);
2701   llvm::Type *LLVMReductionsBufferTy =
2702       CGM.getTypes().ConvertTypeForMem(StaticTy);
2703   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2704       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2705       LLVMReductionsBufferTy->getPointerTo());
2706 
2707   // 1. Build a list of reduction variables.
2708   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2709   Address ReductionList =
2710       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2711   auto IPriv = Privates.begin();
2712   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2713                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2714                                               /*Volatile=*/false, C.IntTy,
2715                                               Loc)};
2716   unsigned Idx = 0;
2717   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2718     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2719     // Global = Buffer.VD[Idx];
2720     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2721     const FieldDecl *FD = VarFieldMap.lookup(VD);
2722     LValue GlobLVal = CGF.EmitLValueForField(
2723         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2724     Address GlobAddr = GlobLVal.getAddress(CGF);
2725     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2726         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2727     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2728     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2729     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2730       // Store array size.
2731       ++Idx;
2732       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2733       llvm::Value *Size = CGF.Builder.CreateIntCast(
2734           CGF.getVLASize(
2735                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2736               .NumElts,
2737           CGF.SizeTy, /*isSigned=*/false);
2738       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2739                               Elem);
2740     }
2741   }
2742 
2743   // Call reduce_function(GlobalReduceList, ReduceList)
2744   llvm::Value *GlobalReduceList =
2745       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2746   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2747   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2748       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2749   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2750       CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2751   CGF.FinishFunction();
2752   return Fn;
2753 }
2754 
2755 /// This function emits a helper that copies all the reduction variables from
2756 /// the team into the provided global buffer for the reduction variables.
2757 ///
2758 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2759 ///   For all data entries D in reduce_data:
2760 ///     Copy buffer.D[Idx] to local D;
2761 static llvm::Value *emitGlobalToListCopyFunction(
2762     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2763     QualType ReductionArrayTy, SourceLocation Loc,
2764     const RecordDecl *TeamReductionRec,
2765     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2766         &VarFieldMap) {
2767   ASTContext &C = CGM.getContext();
2768 
2769   // Buffer: global reduction buffer.
2770   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2771                               C.VoidPtrTy, ImplicitParamDecl::Other);
2772   // Idx: index of the buffer.
2773   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2774                            ImplicitParamDecl::Other);
2775   // ReduceList: thread local Reduce list.
2776   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2777                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2778   FunctionArgList Args;
2779   Args.push_back(&BufferArg);
2780   Args.push_back(&IdxArg);
2781   Args.push_back(&ReduceListArg);
2782 
2783   const CGFunctionInfo &CGFI =
2784       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2785   auto *Fn = llvm::Function::Create(
2786       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2787       "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2788   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2789   Fn->setDoesNotRecurse();
2790   CodeGenFunction CGF(CGM);
2791   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2792 
2793   CGBuilderTy &Bld = CGF.Builder;
2794 
2795   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2796   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2797   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2798   Address LocalReduceList(
2799       Bld.CreatePointerBitCastOrAddrSpaceCast(
2800           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2801                                C.VoidPtrTy, Loc),
2802           ElemTy->getPointerTo()),
2803       ElemTy, CGF.getPointerAlign());
2804   QualType StaticTy = C.getRecordType(TeamReductionRec);
2805   llvm::Type *LLVMReductionsBufferTy =
2806       CGM.getTypes().ConvertTypeForMem(StaticTy);
2807   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2808       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2809       LLVMReductionsBufferTy->getPointerTo());
2810 
2811   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2812                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2813                                               /*Volatile=*/false, C.IntTy,
2814                                               Loc)};
2815   unsigned Idx = 0;
2816   for (const Expr *Private : Privates) {
2817     // Reduce element = LocalReduceList[i]
2818     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2819     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2820         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2821     // elemptr = ((CopyType*)(elemptrptr)) + I
2822     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2823     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2824         ElemPtrPtr, ElemTy->getPointerTo());
2825     Address ElemPtr =
2826         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2827     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2828     // Global = Buffer.VD[Idx];
2829     const FieldDecl *FD = VarFieldMap.lookup(VD);
2830     LValue GlobLVal = CGF.EmitLValueForField(
2831         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2832     Address GlobAddr = GlobLVal.getAddress(CGF);
2833     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
2834                                                    GlobAddr.getPointer(), Idxs);
2835     GlobLVal.setAddress(Address(BufferPtr,
2836                                 CGF.ConvertTypeForMem(Private->getType()),
2837                                 GlobAddr.getAlignment()));
2838     switch (CGF.getEvaluationKind(Private->getType())) {
2839     case TEK_Scalar: {
2840       llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2841       CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2842                             LValueBaseInfo(AlignmentSource::Type),
2843                             TBAAAccessInfo());
2844       break;
2845     }
2846     case TEK_Complex: {
2847       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2848       CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2849                              /*isInit=*/false);
2850       break;
2851     }
2852     case TEK_Aggregate:
2853       CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2854                             GlobLVal, Private->getType(),
2855                             AggValueSlot::DoesNotOverlap);
2856       break;
2857     }
2858     ++Idx;
2859   }
2860 
2861   CGF.FinishFunction();
2862   return Fn;
2863 }
2864 
2865 /// This function emits a helper that reduces all the reduction variables from
2866 /// the team into the provided global buffer for the reduction variables.
2867 ///
2868 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2869 ///  void *GlobPtrs[];
2870 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2871 ///  ...
2872 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2873 ///  reduce_function(reduce_data, GlobPtrs);
2874 static llvm::Value *emitGlobalToListReduceFunction(
2875     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2876     QualType ReductionArrayTy, SourceLocation Loc,
2877     const RecordDecl *TeamReductionRec,
2878     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2879         &VarFieldMap,
2880     llvm::Function *ReduceFn) {
2881   ASTContext &C = CGM.getContext();
2882 
2883   // Buffer: global reduction buffer.
2884   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2885                               C.VoidPtrTy, ImplicitParamDecl::Other);
2886   // Idx: index of the buffer.
2887   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2888                            ImplicitParamDecl::Other);
2889   // ReduceList: thread local Reduce list.
2890   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2891                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2892   FunctionArgList Args;
2893   Args.push_back(&BufferArg);
2894   Args.push_back(&IdxArg);
2895   Args.push_back(&ReduceListArg);
2896 
2897   const CGFunctionInfo &CGFI =
2898       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2899   auto *Fn = llvm::Function::Create(
2900       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2901       "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2902   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2903   Fn->setDoesNotRecurse();
2904   CodeGenFunction CGF(CGM);
2905   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2906 
2907   CGBuilderTy &Bld = CGF.Builder;
2908 
2909   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2910   QualType StaticTy = C.getRecordType(TeamReductionRec);
2911   llvm::Type *LLVMReductionsBufferTy =
2912       CGM.getTypes().ConvertTypeForMem(StaticTy);
2913   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2914       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2915       LLVMReductionsBufferTy->getPointerTo());
2916 
2917   // 1. Build a list of reduction variables.
2918   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2919   Address ReductionList =
2920       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2921   auto IPriv = Privates.begin();
2922   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2923                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2924                                               /*Volatile=*/false, C.IntTy,
2925                                               Loc)};
2926   unsigned Idx = 0;
2927   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2928     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2929     // Global = Buffer.VD[Idx];
2930     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2931     const FieldDecl *FD = VarFieldMap.lookup(VD);
2932     LValue GlobLVal = CGF.EmitLValueForField(
2933         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2934     Address GlobAddr = GlobLVal.getAddress(CGF);
2935     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2936         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2937     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2938     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2939     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2940       // Store array size.
2941       ++Idx;
2942       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2943       llvm::Value *Size = CGF.Builder.CreateIntCast(
2944           CGF.getVLASize(
2945                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2946               .NumElts,
2947           CGF.SizeTy, /*isSigned=*/false);
2948       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2949                               Elem);
2950     }
2951   }
2952 
2953   // Call reduce_function(ReduceList, GlobalReduceList)
2954   llvm::Value *GlobalReduceList =
2955       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2956   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2957   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2958       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2959   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2960       CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2961   CGF.FinishFunction();
2962   return Fn;
2963 }
2964 
2965 ///
2966 /// Design of OpenMP reductions on the GPU
2967 ///
2968 /// Consider a typical OpenMP program with one or more reduction
2969 /// clauses:
2970 ///
2971 /// float foo;
2972 /// double bar;
2973 /// #pragma omp target teams distribute parallel for \
2974 ///             reduction(+:foo) reduction(*:bar)
2975 /// for (int i = 0; i < N; i++) {
2976 ///   foo += A[i]; bar *= B[i];
2977 /// }
2978 ///
2979 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2980 /// all teams.  In our OpenMP implementation on the NVPTX device an
2981 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2982 /// within a team are mapped to CUDA threads within a threadblock.
2983 /// Our goal is to efficiently aggregate values across all OpenMP
2984 /// threads such that:
2985 ///
2986 ///   - the compiler and runtime are logically concise, and
2987 ///   - the reduction is performed efficiently in a hierarchical
2988 ///     manner as follows: within OpenMP threads in the same warp,
2989 ///     across warps in a threadblock, and finally across teams on
2990 ///     the NVPTX device.
2991 ///
2992 /// Introduction to Decoupling
2993 ///
2994 /// We would like to decouple the compiler and the runtime so that the
2995 /// latter is ignorant of the reduction variables (number, data types)
2996 /// and the reduction operators.  This allows a simpler interface
2997 /// and implementation while still attaining good performance.
2998 ///
2999 /// Pseudocode for the aforementioned OpenMP program generated by the
3000 /// compiler is as follows:
3001 ///
3002 /// 1. Create private copies of reduction variables on each OpenMP
3003 ///    thread: 'foo_private', 'bar_private'
3004 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
3005 ///    to it and writes the result in 'foo_private' and 'bar_private'
3006 ///    respectively.
3007 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
3008 ///    and store the result on the team master:
3009 ///
3010 ///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
3011 ///        reduceData, shuffleReduceFn, interWarpCpyFn)
3012 ///
3013 ///     where:
3014 ///       struct ReduceData {
3015 ///         double *foo;
3016 ///         double *bar;
3017 ///       } reduceData
3018 ///       reduceData.foo = &foo_private
3019 ///       reduceData.bar = &bar_private
3020 ///
3021 ///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
3022 ///     auxiliary functions generated by the compiler that operate on
3023 ///     variables of type 'ReduceData'.  They aid the runtime perform
3024 ///     algorithmic steps in a data agnostic manner.
3025 ///
3026 ///     'shuffleReduceFn' is a pointer to a function that reduces data
3027 ///     of type 'ReduceData' across two OpenMP threads (lanes) in the
3028 ///     same warp.  It takes the following arguments as input:
3029 ///
3030 ///     a. variable of type 'ReduceData' on the calling lane,
3031 ///     b. its lane_id,
3032 ///     c. an offset relative to the current lane_id to generate a
3033 ///        remote_lane_id.  The remote lane contains the second
3034 ///        variable of type 'ReduceData' that is to be reduced.
3035 ///     d. an algorithm version parameter determining which reduction
3036 ///        algorithm to use.
3037 ///
3038 ///     'shuffleReduceFn' retrieves data from the remote lane using
3039 ///     efficient GPU shuffle intrinsics and reduces, using the
3040 ///     algorithm specified by the 4th parameter, the two operands
3041 ///     element-wise.  The result is written to the first operand.
3042 ///
3043 ///     Different reduction algorithms are implemented in different
3044 ///     runtime functions, all calling 'shuffleReduceFn' to perform
3045 ///     the essential reduction step.  Therefore, based on the 4th
3046 ///     parameter, this function behaves slightly differently to
3047 ///     cooperate with the runtime to ensure correctness under
3048 ///     different circumstances.
3049 ///
3050 ///     'InterWarpCpyFn' is a pointer to a function that transfers
3051 ///     reduced variables across warps.  It tunnels, through CUDA
3052 ///     shared memory, the thread-private data of type 'ReduceData'
3053 ///     from lane 0 of each warp to a lane in the first warp.
3054 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3055 ///    The last team writes the global reduced value to memory.
3056 ///
3057 ///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
3058 ///             reduceData, shuffleReduceFn, interWarpCpyFn,
3059 ///             scratchpadCopyFn, loadAndReduceFn)
3060 ///
3061 ///     'scratchpadCopyFn' is a helper that stores reduced
3062 ///     data from the team master to a scratchpad array in
3063 ///     global memory.
3064 ///
3065 ///     'loadAndReduceFn' is a helper that loads data from
3066 ///     the scratchpad array and reduces it with the input
3067 ///     operand.
3068 ///
3069 ///     These compiler generated functions hide address
3070 ///     calculation and alignment information from the runtime.
3071 /// 5. if ret == 1:
3072 ///     The team master of the last team stores the reduced
3073 ///     result to the globals in memory.
3074 ///     foo += reduceData.foo; bar *= reduceData.bar
3075 ///
3076 ///
3077 /// Warp Reduction Algorithms
3078 ///
3079 /// On the warp level, we have three algorithms implemented in the
3080 /// OpenMP runtime depending on the number of active lanes:
3081 ///
3082 /// Full Warp Reduction
3083 ///
3084 /// The reduce algorithm within a warp where all lanes are active
3085 /// is implemented in the runtime as follows:
3086 ///
3087 /// full_warp_reduce(void *reduce_data,
3088 ///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3089 ///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3090 ///     ShuffleReduceFn(reduce_data, 0, offset, 0);
3091 /// }
3092 ///
3093 /// The algorithm completes in log(2, WARPSIZE) steps.
3094 ///
3095 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3096 /// not used therefore we save instructions by not retrieving lane_id
3097 /// from the corresponding special registers.  The 4th parameter, which
3098 /// represents the version of the algorithm being used, is set to 0 to
3099 /// signify full warp reduction.
3100 ///
3101 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3102 ///
3103 /// #reduce_elem refers to an element in the local lane's data structure
3104 /// #remote_elem is retrieved from a remote lane
3105 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3106 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3107 ///
3108 /// Contiguous Partial Warp Reduction
3109 ///
3110 /// This reduce algorithm is used within a warp where only the first
3111 /// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
3112 /// number of OpenMP threads in a parallel region is not a multiple of
3113 /// WARPSIZE.  The algorithm is implemented in the runtime as follows:
3114 ///
3115 /// void
3116 /// contiguous_partial_reduce(void *reduce_data,
3117 ///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
3118 ///                           int size, int lane_id) {
3119 ///   int curr_size;
3120 ///   int offset;
3121 ///   curr_size = size;
3122 ///   mask = curr_size/2;
3123 ///   while (offset>0) {
3124 ///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3125 ///     curr_size = (curr_size+1)/2;
3126 ///     offset = curr_size/2;
3127 ///   }
3128 /// }
3129 ///
3130 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3131 ///
3132 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3133 /// if (lane_id < offset)
3134 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3135 /// else
3136 ///     reduce_elem = remote_elem
3137 ///
3138 /// This algorithm assumes that the data to be reduced are located in a
3139 /// contiguous subset of lanes starting from the first.  When there is
3140 /// an odd number of active lanes, the data in the last lane is not
3141 /// aggregated with any other lane's dat but is instead copied over.
3142 ///
3143 /// Dispersed Partial Warp Reduction
3144 ///
3145 /// This algorithm is used within a warp when any discontiguous subset of
3146 /// lanes are active.  It is used to implement the reduction operation
3147 /// across lanes in an OpenMP simd region or in a nested parallel region.
3148 ///
3149 /// void
3150 /// dispersed_partial_reduce(void *reduce_data,
3151 ///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3152 ///   int size, remote_id;
3153 ///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
3154 ///   do {
3155 ///       remote_id = next_active_lane_id_right_after_me();
3156 ///       # the above function returns 0 of no active lane
3157 ///       # is present right after the current lane.
3158 ///       size = number_of_active_lanes_in_this_warp();
3159 ///       logical_lane_id /= 2;
3160 ///       ShuffleReduceFn(reduce_data, logical_lane_id,
3161 ///                       remote_id-1-threadIdx.x, 2);
3162 ///   } while (logical_lane_id % 2 == 0 && size > 1);
3163 /// }
3164 ///
3165 /// There is no assumption made about the initial state of the reduction.
3166 /// Any number of lanes (>=1) could be active at any position.  The reduction
3167 /// result is returned in the first active lane.
3168 ///
3169 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3170 ///
3171 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3172 /// if (lane_id % 2 == 0 && offset > 0)
3173 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3174 /// else
3175 ///     reduce_elem = remote_elem
3176 ///
3177 ///
3178 /// Intra-Team Reduction
3179 ///
3180 /// This function, as implemented in the runtime call
3181 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3182 /// threads in a team.  It first reduces within a warp using the
3183 /// aforementioned algorithms.  We then proceed to gather all such
3184 /// reduced values at the first warp.
3185 ///
3186 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
3187 /// data from each of the "warp master" (zeroth lane of each warp, where
3188 /// warp-reduced data is held) to the zeroth warp.  This step reduces (in
3189 /// a mathematical sense) the problem of reduction across warp masters in
3190 /// a block to the problem of warp reduction.
3191 ///
3192 ///
3193 /// Inter-Team Reduction
3194 ///
3195 /// Once a team has reduced its data to a single value, it is stored in
3196 /// a global scratchpad array.  Since each team has a distinct slot, this
3197 /// can be done without locking.
3198 ///
3199 /// The last team to write to the scratchpad array proceeds to reduce the
3200 /// scratchpad array.  One or more workers in the last team use the helper
3201 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3202 /// the k'th worker reduces every k'th element.
3203 ///
3204 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3205 /// reduce across workers and compute a globally reduced value.
3206 ///
3207 void CGOpenMPRuntimeGPU::emitReduction(
3208     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3209     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3210     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3211   if (!CGF.HaveInsertPoint())
3212     return;
3213 
3214   bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3215 #ifndef NDEBUG
3216   bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3217 #endif
3218 
3219   if (Options.SimpleReduction) {
3220     assert(!TeamsReduction && !ParallelReduction &&
3221            "Invalid reduction selection in emitReduction.");
3222     CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3223                                    ReductionOps, Options);
3224     return;
3225   }
3226 
3227   assert((TeamsReduction || ParallelReduction) &&
3228          "Invalid reduction selection in emitReduction.");
3229 
3230   // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3231   // RedList, shuffle_reduce_func, interwarp_copy_func);
3232   // or
3233   // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3234   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3235   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3236 
3237   llvm::Value *Res;
3238   ASTContext &C = CGM.getContext();
3239   // 1. Build a list of reduction variables.
3240   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3241   auto Size = RHSExprs.size();
3242   for (const Expr *E : Privates) {
3243     if (E->getType()->isVariablyModifiedType())
3244       // Reserve place for array size.
3245       ++Size;
3246   }
3247   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3248   QualType ReductionArrayTy =
3249       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3250                              /*IndexTypeQuals=*/0);
3251   Address ReductionList =
3252       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3253   auto IPriv = Privates.begin();
3254   unsigned Idx = 0;
3255   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3256     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3257     CGF.Builder.CreateStore(
3258         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3259             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3260         Elem);
3261     if ((*IPriv)->getType()->isVariablyModifiedType()) {
3262       // Store array size.
3263       ++Idx;
3264       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3265       llvm::Value *Size = CGF.Builder.CreateIntCast(
3266           CGF.getVLASize(
3267                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3268               .NumElts,
3269           CGF.SizeTy, /*isSigned=*/false);
3270       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3271                               Elem);
3272     }
3273   }
3274 
3275   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3276       ReductionList.getPointer(), CGF.VoidPtrTy);
3277   llvm::Function *ReductionFn =
3278       emitReductionFunction(Loc, CGF.ConvertTypeForMem(ReductionArrayTy),
3279                             Privates, LHSExprs, RHSExprs, ReductionOps);
3280   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3281   llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3282       CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3283   llvm::Value *InterWarpCopyFn =
3284       emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3285 
3286   if (ParallelReduction) {
3287     llvm::Value *Args[] = {RTLoc,
3288                            ThreadId,
3289                            CGF.Builder.getInt32(RHSExprs.size()),
3290                            ReductionArrayTySize,
3291                            RL,
3292                            ShuffleAndReduceFn,
3293                            InterWarpCopyFn};
3294 
3295     Res = CGF.EmitRuntimeCall(
3296         OMPBuilder.getOrCreateRuntimeFunction(
3297             CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3298         Args);
3299   } else {
3300     assert(TeamsReduction && "expected teams reduction.");
3301     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3302     llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3303     int Cnt = 0;
3304     for (const Expr *DRE : Privates) {
3305       PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3306       ++Cnt;
3307     }
3308     const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3309         CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
3310         C.getLangOpts().OpenMPCUDAReductionBufNum);
3311     TeamsReductions.push_back(TeamReductionRec);
3312     if (!KernelTeamsReductionPtr) {
3313       KernelTeamsReductionPtr = new llvm::GlobalVariable(
3314           CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
3315           llvm::GlobalValue::InternalLinkage, nullptr,
3316           "_openmp_teams_reductions_buffer_$_$ptr");
3317     }
3318     llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
3319         Address(KernelTeamsReductionPtr, CGF.VoidPtrTy, CGM.getPointerAlign()),
3320         /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
3321     llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3322         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3323     llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3324         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3325         ReductionFn);
3326     llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3327         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3328     llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3329         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3330         ReductionFn);
3331 
3332     llvm::Value *Args[] = {
3333         RTLoc,
3334         ThreadId,
3335         GlobalBufferPtr,
3336         CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3337         RL,
3338         ShuffleAndReduceFn,
3339         InterWarpCopyFn,
3340         GlobalToBufferCpyFn,
3341         GlobalToBufferRedFn,
3342         BufferToGlobalCpyFn,
3343         BufferToGlobalRedFn};
3344 
3345     Res = CGF.EmitRuntimeCall(
3346         OMPBuilder.getOrCreateRuntimeFunction(
3347             CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3348         Args);
3349   }
3350 
3351   // 5. Build if (res == 1)
3352   llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3353   llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3354   llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3355       Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3356   CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3357 
3358   // 6. Build then branch: where we have reduced values in the master
3359   //    thread in each team.
3360   //    __kmpc_end_reduce{_nowait}(<gtid>);
3361   //    break;
3362   CGF.EmitBlock(ThenBB);
3363 
3364   // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3365   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3366                     this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3367     auto IPriv = Privates.begin();
3368     auto ILHS = LHSExprs.begin();
3369     auto IRHS = RHSExprs.begin();
3370     for (const Expr *E : ReductionOps) {
3371       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3372                                   cast<DeclRefExpr>(*IRHS));
3373       ++IPriv;
3374       ++ILHS;
3375       ++IRHS;
3376     }
3377   };
3378   llvm::Value *EndArgs[] = {ThreadId};
3379   RegionCodeGenTy RCG(CodeGen);
3380   NVPTXActionTy Action(
3381       nullptr, llvm::None,
3382       OMPBuilder.getOrCreateRuntimeFunction(
3383           CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3384       EndArgs);
3385   RCG.setAction(Action);
3386   RCG(CGF);
3387   // There is no need to emit line number for unconditional branch.
3388   (void)ApplyDebugLocation::CreateEmpty(CGF);
3389   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3390 }
3391 
3392 const VarDecl *
3393 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3394                                        const VarDecl *NativeParam) const {
3395   if (!NativeParam->getType()->isReferenceType())
3396     return NativeParam;
3397   QualType ArgType = NativeParam->getType();
3398   QualifierCollector QC;
3399   const Type *NonQualTy = QC.strip(ArgType);
3400   QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3401   if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3402     if (Attr->getCaptureKind() == OMPC_map) {
3403       PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3404                                                         LangAS::opencl_global);
3405     }
3406   }
3407   ArgType = CGM.getContext().getPointerType(PointeeTy);
3408   QC.addRestrict();
3409   enum { NVPTX_local_addr = 5 };
3410   QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3411   ArgType = QC.apply(CGM.getContext(), ArgType);
3412   if (isa<ImplicitParamDecl>(NativeParam))
3413     return ImplicitParamDecl::Create(
3414         CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3415         NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3416   return ParmVarDecl::Create(
3417       CGM.getContext(),
3418       const_cast<DeclContext *>(NativeParam->getDeclContext()),
3419       NativeParam->getBeginLoc(), NativeParam->getLocation(),
3420       NativeParam->getIdentifier(), ArgType,
3421       /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3422 }
3423 
3424 Address
3425 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3426                                           const VarDecl *NativeParam,
3427                                           const VarDecl *TargetParam) const {
3428   assert(NativeParam != TargetParam &&
3429          NativeParam->getType()->isReferenceType() &&
3430          "Native arg must not be the same as target arg.");
3431   Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3432   QualType NativeParamType = NativeParam->getType();
3433   QualifierCollector QC;
3434   const Type *NonQualTy = QC.strip(NativeParamType);
3435   QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3436   unsigned NativePointeeAddrSpace =
3437       CGF.getContext().getTargetAddressSpace(NativePointeeTy);
3438   QualType TargetTy = TargetParam->getType();
3439   llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3440       LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3441   // First cast to generic.
3442   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3443       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3444           cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
3445   // Cast from generic to native address space.
3446   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3447       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3448           cast<llvm::PointerType>(TargetAddr->getType()),
3449                                   NativePointeeAddrSpace));
3450   Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3451   CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3452                         NativeParamType);
3453   return NativeParamAddr;
3454 }
3455 
3456 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3457     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3458     ArrayRef<llvm::Value *> Args) const {
3459   SmallVector<llvm::Value *, 4> TargetArgs;
3460   TargetArgs.reserve(Args.size());
3461   auto *FnType = OutlinedFn.getFunctionType();
3462   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3463     if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3464       TargetArgs.append(std::next(Args.begin(), I), Args.end());
3465       break;
3466     }
3467     llvm::Type *TargetType = FnType->getParamType(I);
3468     llvm::Value *NativeArg = Args[I];
3469     if (!TargetType->isPointerTy()) {
3470       TargetArgs.emplace_back(NativeArg);
3471       continue;
3472     }
3473     llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3474         NativeArg, llvm::PointerType::getWithSamePointeeType(
3475             cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
3476     TargetArgs.emplace_back(
3477         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3478   }
3479   CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3480 }
3481 
3482 /// Emit function which wraps the outline parallel region
3483 /// and controls the arguments which are passed to this function.
3484 /// The wrapper ensures that the outlined function is called
3485 /// with the correct arguments when data is shared.
3486 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3487     llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3488   ASTContext &Ctx = CGM.getContext();
3489   const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3490 
3491   // Create a function that takes as argument the source thread.
3492   FunctionArgList WrapperArgs;
3493   QualType Int16QTy =
3494       Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3495   QualType Int32QTy =
3496       Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3497   ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3498                                      /*Id=*/nullptr, Int16QTy,
3499                                      ImplicitParamDecl::Other);
3500   ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3501                                /*Id=*/nullptr, Int32QTy,
3502                                ImplicitParamDecl::Other);
3503   WrapperArgs.emplace_back(&ParallelLevelArg);
3504   WrapperArgs.emplace_back(&WrapperArg);
3505 
3506   const CGFunctionInfo &CGFI =
3507       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3508 
3509   auto *Fn = llvm::Function::Create(
3510       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3511       Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3512 
3513   // Ensure we do not inline the function. This is trivially true for the ones
3514   // passed to __kmpc_fork_call but the ones calles in serialized regions
3515   // could be inlined. This is not a perfect but it is closer to the invariant
3516   // we want, namely, every data environment starts with a new function.
3517   // TODO: We should pass the if condition to the runtime function and do the
3518   //       handling there. Much cleaner code.
3519   Fn->addFnAttr(llvm::Attribute::NoInline);
3520 
3521   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3522   Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3523   Fn->setDoesNotRecurse();
3524 
3525   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3526   CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3527                     D.getBeginLoc(), D.getBeginLoc());
3528 
3529   const auto *RD = CS.getCapturedRecordDecl();
3530   auto CurField = RD->field_begin();
3531 
3532   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3533                                                       /*Name=*/".zero.addr");
3534   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3535   // Get the array of arguments.
3536   SmallVector<llvm::Value *, 8> Args;
3537 
3538   Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3539   Args.emplace_back(ZeroAddr.getPointer());
3540 
3541   CGBuilderTy &Bld = CGF.Builder;
3542   auto CI = CS.capture_begin();
3543 
3544   // Use global memory for data sharing.
3545   // Handle passing of global args to workers.
3546   Address GlobalArgs =
3547       CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3548   llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3549   llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3550   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3551                           CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3552                       DataSharingArgs);
3553 
3554   // Retrieve the shared variables from the list of references returned
3555   // by the runtime. Pass the variables to the outlined function.
3556   Address SharedArgListAddress = Address::invalid();
3557   if (CS.capture_size() > 0 ||
3558       isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3559     SharedArgListAddress = CGF.EmitLoadOfPointer(
3560         GlobalArgs, CGF.getContext()
3561                         .getPointerType(CGF.getContext().VoidPtrTy)
3562                         .castAs<PointerType>());
3563   }
3564   unsigned Idx = 0;
3565   if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3566     Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3567     Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3568         Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3569     llvm::Value *LB = CGF.EmitLoadOfScalar(
3570         TypedAddress,
3571         /*Volatile=*/false,
3572         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3573         cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3574     Args.emplace_back(LB);
3575     ++Idx;
3576     Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3577     TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3578         Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3579     llvm::Value *UB = CGF.EmitLoadOfScalar(
3580         TypedAddress,
3581         /*Volatile=*/false,
3582         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3583         cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3584     Args.emplace_back(UB);
3585     ++Idx;
3586   }
3587   if (CS.capture_size() > 0) {
3588     ASTContext &CGFContext = CGF.getContext();
3589     for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3590       QualType ElemTy = CurField->getType();
3591       Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3592       Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3593           Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)),
3594           CGF.ConvertTypeForMem(ElemTy));
3595       llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3596                                               /*Volatile=*/false,
3597                                               CGFContext.getPointerType(ElemTy),
3598                                               CI->getLocation());
3599       if (CI->capturesVariableByCopy() &&
3600           !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3601         Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3602                               CI->getLocation());
3603       }
3604       Args.emplace_back(Arg);
3605     }
3606   }
3607 
3608   emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3609   CGF.FinishFunction();
3610   return Fn;
3611 }
3612 
3613 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3614                                               const Decl *D) {
3615   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3616     return;
3617 
3618   assert(D && "Expected function or captured|block decl.");
3619   assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3620          "Function is registered already.");
3621   assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3622          "Team is set but not processed.");
3623   const Stmt *Body = nullptr;
3624   bool NeedToDelayGlobalization = false;
3625   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3626     Body = FD->getBody();
3627   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3628     Body = BD->getBody();
3629   } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3630     Body = CD->getBody();
3631     NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3632     if (NeedToDelayGlobalization &&
3633         getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3634       return;
3635   }
3636   if (!Body)
3637     return;
3638   CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3639   VarChecker.Visit(Body);
3640   const RecordDecl *GlobalizedVarsRecord =
3641       VarChecker.getGlobalizedRecord(IsInTTDRegion);
3642   TeamAndReductions.first = nullptr;
3643   TeamAndReductions.second.clear();
3644   ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3645       VarChecker.getEscapedVariableLengthDecls();
3646   if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
3647     return;
3648   auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3649   I->getSecond().MappedParams =
3650       std::make_unique<CodeGenFunction::OMPMapVars>();
3651   I->getSecond().EscapedParameters.insert(
3652       VarChecker.getEscapedParameters().begin(),
3653       VarChecker.getEscapedParameters().end());
3654   I->getSecond().EscapedVariableLengthDecls.append(
3655       EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3656   DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3657   for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3658     assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3659     Data.insert(std::make_pair(VD, MappedVarData()));
3660   }
3661   if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
3662     CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
3663     VarChecker.Visit(Body);
3664     I->getSecond().SecondaryLocalVarData.emplace();
3665     DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
3666     for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3667       assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3668       Data.insert(std::make_pair(VD, MappedVarData()));
3669     }
3670   }
3671   if (!NeedToDelayGlobalization) {
3672     emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
3673     struct GlobalizationScope final : EHScopeStack::Cleanup {
3674       GlobalizationScope() = default;
3675 
3676       void Emit(CodeGenFunction &CGF, Flags flags) override {
3677         static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3678             .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
3679       }
3680     };
3681     CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3682   }
3683 }
3684 
3685 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3686                                                         const VarDecl *VD) {
3687   if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3688     const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3689     auto AS = LangAS::Default;
3690     switch (A->getAllocatorType()) {
3691       // Use the default allocator here as by default local vars are
3692       // threadlocal.
3693     case OMPAllocateDeclAttr::OMPNullMemAlloc:
3694     case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3695     case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3696     case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3697     case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3698       // Follow the user decision - use default allocation.
3699       return Address::invalid();
3700     case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3701       // TODO: implement aupport for user-defined allocators.
3702       return Address::invalid();
3703     case OMPAllocateDeclAttr::OMPConstMemAlloc:
3704       AS = LangAS::cuda_constant;
3705       break;
3706     case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3707       AS = LangAS::cuda_shared;
3708       break;
3709     case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3710     case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3711       break;
3712     }
3713     llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3714     auto *GV = new llvm::GlobalVariable(
3715         CGM.getModule(), VarTy, /*isConstant=*/false,
3716         llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
3717         VD->getName(),
3718         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3719         CGM.getContext().getTargetAddressSpace(AS));
3720     CharUnits Align = CGM.getContext().getDeclAlign(VD);
3721     GV->setAlignment(Align.getAsAlign());
3722     return Address(
3723         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3724             GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3725                     VD->getType().getAddressSpace()))),
3726         VarTy, Align);
3727   }
3728 
3729   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3730     return Address::invalid();
3731 
3732   VD = VD->getCanonicalDecl();
3733   auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3734   if (I == FunctionGlobalizedDecls.end())
3735     return Address::invalid();
3736   auto VDI = I->getSecond().LocalVarData.find(VD);
3737   if (VDI != I->getSecond().LocalVarData.end())
3738     return VDI->second.PrivateAddr;
3739   if (VD->hasAttrs()) {
3740     for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3741          E(VD->attr_end());
3742          IT != E; ++IT) {
3743       auto VDI = I->getSecond().LocalVarData.find(
3744           cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3745               ->getCanonicalDecl());
3746       if (VDI != I->getSecond().LocalVarData.end())
3747         return VDI->second.PrivateAddr;
3748     }
3749   }
3750 
3751   return Address::invalid();
3752 }
3753 
3754 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3755   FunctionGlobalizedDecls.erase(CGF.CurFn);
3756   CGOpenMPRuntime::functionFinished(CGF);
3757 }
3758 
3759 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3760     CodeGenFunction &CGF, const OMPLoopDirective &S,
3761     OpenMPDistScheduleClauseKind &ScheduleKind,
3762     llvm::Value *&Chunk) const {
3763   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3764   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3765     ScheduleKind = OMPC_DIST_SCHEDULE_static;
3766     Chunk = CGF.EmitScalarConversion(
3767         RT.getGPUNumThreads(CGF),
3768         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3769         S.getIterationVariable()->getType(), S.getBeginLoc());
3770     return;
3771   }
3772   CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3773       CGF, S, ScheduleKind, Chunk);
3774 }
3775 
3776 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3777     CodeGenFunction &CGF, const OMPLoopDirective &S,
3778     OpenMPScheduleClauseKind &ScheduleKind,
3779     const Expr *&ChunkExpr) const {
3780   ScheduleKind = OMPC_SCHEDULE_static;
3781   // Chunk size is 1 in this case.
3782   llvm::APInt ChunkSize(32, 1);
3783   ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3784       CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3785       SourceLocation());
3786 }
3787 
3788 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3789     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3790   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3791          " Expected target-based directive.");
3792   const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3793   for (const CapturedStmt::Capture &C : CS->captures()) {
3794     // Capture variables captured by reference in lambdas for target-based
3795     // directives.
3796     if (!C.capturesVariable())
3797       continue;
3798     const VarDecl *VD = C.getCapturedVar();
3799     const auto *RD = VD->getType()
3800                          .getCanonicalType()
3801                          .getNonReferenceType()
3802                          ->getAsCXXRecordDecl();
3803     if (!RD || !RD->isLambda())
3804       continue;
3805     Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3806     LValue VDLVal;
3807     if (VD->getType().getCanonicalType()->isReferenceType())
3808       VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3809     else
3810       VDLVal = CGF.MakeAddrLValue(
3811           VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3812     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
3813     FieldDecl *ThisCapture = nullptr;
3814     RD->getCaptureFields(Captures, ThisCapture);
3815     if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3816       LValue ThisLVal =
3817           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3818       llvm::Value *CXXThis = CGF.LoadCXXThis();
3819       CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3820     }
3821     for (const LambdaCapture &LC : RD->captures()) {
3822       if (LC.getCaptureKind() != LCK_ByRef)
3823         continue;
3824       const VarDecl *VD = LC.getCapturedVar();
3825       if (!CS->capturesVariable(VD))
3826         continue;
3827       auto It = Captures.find(VD);
3828       assert(It != Captures.end() && "Found lambda capture without field.");
3829       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3830       Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3831       if (VD->getType().getCanonicalType()->isReferenceType())
3832         VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3833                                                VD->getType().getCanonicalType())
3834                      .getAddress(CGF);
3835       CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3836     }
3837   }
3838 }
3839 
3840 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3841                                                             LangAS &AS) {
3842   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3843     return false;
3844   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3845   switch(A->getAllocatorType()) {
3846   case OMPAllocateDeclAttr::OMPNullMemAlloc:
3847   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3848   // Not supported, fallback to the default mem space.
3849   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3850   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3851   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3852   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3853   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3854     AS = LangAS::Default;
3855     return true;
3856   case OMPAllocateDeclAttr::OMPConstMemAlloc:
3857     AS = LangAS::cuda_constant;
3858     return true;
3859   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3860     AS = LangAS::cuda_shared;
3861     return true;
3862   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3863     llvm_unreachable("Expected predefined allocator for the variables with the "
3864                      "static storage.");
3865   }
3866   return false;
3867 }
3868 
3869 // Get current CudaArch and ignore any unknown values
3870 static CudaArch getCudaArch(CodeGenModule &CGM) {
3871   if (!CGM.getTarget().hasFeature("ptx"))
3872     return CudaArch::UNKNOWN;
3873   for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3874     if (Feature.getValue()) {
3875       CudaArch Arch = StringToCudaArch(Feature.getKey());
3876       if (Arch != CudaArch::UNKNOWN)
3877         return Arch;
3878     }
3879   }
3880   return CudaArch::UNKNOWN;
3881 }
3882 
3883 /// Check to see if target architecture supports unified addressing which is
3884 /// a restriction for OpenMP requires clause "unified_shared_memory".
3885 void CGOpenMPRuntimeGPU::processRequiresDirective(
3886     const OMPRequiresDecl *D) {
3887   for (const OMPClause *Clause : D->clauselists()) {
3888     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3889       CudaArch Arch = getCudaArch(CGM);
3890       switch (Arch) {
3891       case CudaArch::SM_20:
3892       case CudaArch::SM_21:
3893       case CudaArch::SM_30:
3894       case CudaArch::SM_32:
3895       case CudaArch::SM_35:
3896       case CudaArch::SM_37:
3897       case CudaArch::SM_50:
3898       case CudaArch::SM_52:
3899       case CudaArch::SM_53: {
3900         SmallString<256> Buffer;
3901         llvm::raw_svector_ostream Out(Buffer);
3902         Out << "Target architecture " << CudaArchToString(Arch)
3903             << " does not support unified addressing";
3904         CGM.Error(Clause->getBeginLoc(), Out.str());
3905         return;
3906       }
3907       case CudaArch::SM_60:
3908       case CudaArch::SM_61:
3909       case CudaArch::SM_62:
3910       case CudaArch::SM_70:
3911       case CudaArch::SM_72:
3912       case CudaArch::SM_75:
3913       case CudaArch::SM_80:
3914       case CudaArch::SM_86:
3915       case CudaArch::GFX600:
3916       case CudaArch::GFX601:
3917       case CudaArch::GFX602:
3918       case CudaArch::GFX700:
3919       case CudaArch::GFX701:
3920       case CudaArch::GFX702:
3921       case CudaArch::GFX703:
3922       case CudaArch::GFX704:
3923       case CudaArch::GFX705:
3924       case CudaArch::GFX801:
3925       case CudaArch::GFX802:
3926       case CudaArch::GFX803:
3927       case CudaArch::GFX805:
3928       case CudaArch::GFX810:
3929       case CudaArch::GFX900:
3930       case CudaArch::GFX902:
3931       case CudaArch::GFX904:
3932       case CudaArch::GFX906:
3933       case CudaArch::GFX908:
3934       case CudaArch::GFX909:
3935       case CudaArch::GFX90a:
3936       case CudaArch::GFX90c:
3937       case CudaArch::GFX940:
3938       case CudaArch::GFX1010:
3939       case CudaArch::GFX1011:
3940       case CudaArch::GFX1012:
3941       case CudaArch::GFX1013:
3942       case CudaArch::GFX1030:
3943       case CudaArch::GFX1031:
3944       case CudaArch::GFX1032:
3945       case CudaArch::GFX1033:
3946       case CudaArch::GFX1034:
3947       case CudaArch::GFX1035:
3948       case CudaArch::GFX1036:
3949       case CudaArch::Generic:
3950       case CudaArch::UNUSED:
3951       case CudaArch::UNKNOWN:
3952         break;
3953       case CudaArch::LAST:
3954         llvm_unreachable("Unexpected Cuda arch.");
3955       }
3956     }
3957   }
3958   CGOpenMPRuntime::processRequiresDirective(D);
3959 }
3960 
3961 void CGOpenMPRuntimeGPU::clear() {
3962 
3963   if (!TeamsReductions.empty()) {
3964     ASTContext &C = CGM.getContext();
3965     RecordDecl *StaticRD = C.buildImplicitRecord(
3966         "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
3967     StaticRD->startDefinition();
3968     for (const RecordDecl *TeamReductionRec : TeamsReductions) {
3969       QualType RecTy = C.getRecordType(TeamReductionRec);
3970       auto *Field = FieldDecl::Create(
3971           C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
3972           C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
3973           /*BW=*/nullptr, /*Mutable=*/false,
3974           /*InitStyle=*/ICIS_NoInit);
3975       Field->setAccess(AS_public);
3976       StaticRD->addDecl(Field);
3977     }
3978     StaticRD->completeDefinition();
3979     QualType StaticTy = C.getRecordType(StaticRD);
3980     llvm::Type *LLVMReductionsBufferTy =
3981         CGM.getTypes().ConvertTypeForMem(StaticTy);
3982     // FIXME: nvlink does not handle weak linkage correctly (object with the
3983     // different size are reported as erroneous).
3984     // Restore CommonLinkage as soon as nvlink is fixed.
3985     auto *GV = new llvm::GlobalVariable(
3986         CGM.getModule(), LLVMReductionsBufferTy,
3987         /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
3988         llvm::Constant::getNullValue(LLVMReductionsBufferTy),
3989         "_openmp_teams_reductions_buffer_$_");
3990     KernelTeamsReductionPtr->setInitializer(
3991         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
3992                                                              CGM.VoidPtrTy));
3993   }
3994   CGOpenMPRuntime::clear();
3995 }
3996 
3997 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3998   CGBuilderTy &Bld = CGF.Builder;
3999   llvm::Module *M = &CGF.CGM.getModule();
4000   const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
4001   llvm::Function *F = M->getFunction(LocSize);
4002   if (!F) {
4003     F = llvm::Function::Create(
4004         llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
4005         llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
4006   }
4007   return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
4008 }
4009 
4010 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
4011   ArrayRef<llvm::Value *> Args{};
4012   return CGF.EmitRuntimeCall(
4013       OMPBuilder.getOrCreateRuntimeFunction(
4014           CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
4015       Args);
4016 }
4017 
4018 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
4019   ArrayRef<llvm::Value *> Args{};
4020   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4021                                  CGM.getModule(), OMPRTL___kmpc_get_warp_size),
4022                              Args);
4023 }
4024