1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 
28 using namespace clang;
29 using namespace CodeGen;
30 
31 static CharUnits
32 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
33                                  const CXXRecordDecl *DerivedClass,
34                                  CastExpr::path_const_iterator Start,
35                                  CastExpr::path_const_iterator End) {
36   CharUnits Offset = CharUnits::Zero();
37 
38   const CXXRecordDecl *RD = DerivedClass;
39 
40   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
41     const CXXBaseSpecifier *Base = *I;
42     assert(!Base->isVirtual() && "Should not see virtual bases here!");
43 
44     // Get the layout.
45     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
46 
47     const CXXRecordDecl *BaseDecl =
48       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
49 
50     // Add the offset.
51     Offset += Layout.getBaseClassOffset(BaseDecl);
52 
53     RD = BaseDecl;
54   }
55 
56   return Offset;
57 }
58 
59 llvm::Constant *
60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
61                                    CastExpr::path_const_iterator PathBegin,
62                                    CastExpr::path_const_iterator PathEnd) {
63   assert(PathBegin != PathEnd && "Base path should not be empty!");
64 
65   CharUnits Offset =
66     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
67                                      PathBegin, PathEnd);
68   if (Offset.isZero())
69     return nullptr;
70 
71   llvm::Type *PtrDiffTy =
72   Types.ConvertType(getContext().getPointerDiffType());
73 
74   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
75 }
76 
77 /// Gets the address of a direct base class within a complete object.
78 /// This should only be used for (1) non-virtual bases or (2) virtual bases
79 /// when the type is known to be complete (e.g. in complete destructors).
80 ///
81 /// The object pointed to by 'This' is assumed to be non-null.
82 llvm::Value *
83 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
84                                                    const CXXRecordDecl *Derived,
85                                                    const CXXRecordDecl *Base,
86                                                    bool BaseIsVirtual) {
87   // 'this' must be a pointer (in some address space) to Derived.
88   assert(This->getType()->isPointerTy() &&
89          cast<llvm::PointerType>(This->getType())->getElementType()
90            == ConvertType(Derived));
91 
92   // Compute the offset of the virtual base.
93   CharUnits Offset;
94   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
95   if (BaseIsVirtual)
96     Offset = Layout.getVBaseClassOffset(Base);
97   else
98     Offset = Layout.getBaseClassOffset(Base);
99 
100   // Shift and cast down to the base type.
101   // TODO: for complete types, this should be possible with a GEP.
102   llvm::Value *V = This;
103   if (Offset.isPositive()) {
104     V = Builder.CreateBitCast(V, Int8PtrTy);
105     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
106   }
107   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
108 
109   return V;
110 }
111 
112 static llvm::Value *
113 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
114                                 CharUnits nonVirtualOffset,
115                                 llvm::Value *virtualOffset) {
116   // Assert that we have something to do.
117   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
118 
119   // Compute the offset from the static and dynamic components.
120   llvm::Value *baseOffset;
121   if (!nonVirtualOffset.isZero()) {
122     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
123                                         nonVirtualOffset.getQuantity());
124     if (virtualOffset) {
125       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
126     }
127   } else {
128     baseOffset = virtualOffset;
129   }
130 
131   // Apply the base offset.
132   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
133   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
134   return ptr;
135 }
136 
137 llvm::Value *
138 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
139                                        const CXXRecordDecl *Derived,
140                                        CastExpr::path_const_iterator PathBegin,
141                                        CastExpr::path_const_iterator PathEnd,
142                                        bool NullCheckValue) {
143   assert(PathBegin != PathEnd && "Base path should not be empty!");
144 
145   CastExpr::path_const_iterator Start = PathBegin;
146   const CXXRecordDecl *VBase = nullptr;
147 
148   // Sema has done some convenient canonicalization here: if the
149   // access path involved any virtual steps, the conversion path will
150   // *start* with a step down to the correct virtual base subobject,
151   // and hence will not require any further steps.
152   if ((*Start)->isVirtual()) {
153     VBase =
154       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
155     ++Start;
156   }
157 
158   // Compute the static offset of the ultimate destination within its
159   // allocating subobject (the virtual base, if there is one, or else
160   // the "complete" object that we see).
161   CharUnits NonVirtualOffset =
162     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
163                                      Start, PathEnd);
164 
165   // If there's a virtual step, we can sometimes "devirtualize" it.
166   // For now, that's limited to when the derived type is final.
167   // TODO: "devirtualize" this for accesses to known-complete objects.
168   if (VBase && Derived->hasAttr<FinalAttr>()) {
169     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
170     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
171     NonVirtualOffset += vBaseOffset;
172     VBase = nullptr; // we no longer have a virtual step
173   }
174 
175   // Get the base pointer type.
176   llvm::Type *BasePtrTy =
177     ConvertType((PathEnd[-1])->getType())->getPointerTo();
178 
179   // If the static offset is zero and we don't have a virtual step,
180   // just do a bitcast; null checks are unnecessary.
181   if (NonVirtualOffset.isZero() && !VBase) {
182     return Builder.CreateBitCast(Value, BasePtrTy);
183   }
184 
185   llvm::BasicBlock *origBB = nullptr;
186   llvm::BasicBlock *endBB = nullptr;
187 
188   // Skip over the offset (and the vtable load) if we're supposed to
189   // null-check the pointer.
190   if (NullCheckValue) {
191     origBB = Builder.GetInsertBlock();
192     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
193     endBB = createBasicBlock("cast.end");
194 
195     llvm::Value *isNull = Builder.CreateIsNull(Value);
196     Builder.CreateCondBr(isNull, endBB, notNullBB);
197     EmitBlock(notNullBB);
198   }
199 
200   // Compute the virtual offset.
201   llvm::Value *VirtualOffset = nullptr;
202   if (VBase) {
203     VirtualOffset =
204       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
205   }
206 
207   // Apply both offsets.
208   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
209                                           NonVirtualOffset,
210                                           VirtualOffset);
211 
212   // Cast to the destination type.
213   Value = Builder.CreateBitCast(Value, BasePtrTy);
214 
215   // Build a phi if we needed a null check.
216   if (NullCheckValue) {
217     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
218     Builder.CreateBr(endBB);
219     EmitBlock(endBB);
220 
221     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
222     PHI->addIncoming(Value, notNullBB);
223     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
224     Value = PHI;
225   }
226 
227   return Value;
228 }
229 
230 llvm::Value *
231 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
232                                           const CXXRecordDecl *Derived,
233                                         CastExpr::path_const_iterator PathBegin,
234                                           CastExpr::path_const_iterator PathEnd,
235                                           bool NullCheckValue) {
236   assert(PathBegin != PathEnd && "Base path should not be empty!");
237 
238   QualType DerivedTy =
239     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
240   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
241 
242   llvm::Value *NonVirtualOffset =
243     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
244 
245   if (!NonVirtualOffset) {
246     // No offset, we can just cast back.
247     return Builder.CreateBitCast(Value, DerivedPtrTy);
248   }
249 
250   llvm::BasicBlock *CastNull = nullptr;
251   llvm::BasicBlock *CastNotNull = nullptr;
252   llvm::BasicBlock *CastEnd = nullptr;
253 
254   if (NullCheckValue) {
255     CastNull = createBasicBlock("cast.null");
256     CastNotNull = createBasicBlock("cast.notnull");
257     CastEnd = createBasicBlock("cast.end");
258 
259     llvm::Value *IsNull = Builder.CreateIsNull(Value);
260     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
261     EmitBlock(CastNotNull);
262   }
263 
264   // Apply the offset.
265   Value = Builder.CreateBitCast(Value, Int8PtrTy);
266   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
267                             "sub.ptr");
268 
269   // Just cast.
270   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
271 
272   if (NullCheckValue) {
273     Builder.CreateBr(CastEnd);
274     EmitBlock(CastNull);
275     Builder.CreateBr(CastEnd);
276     EmitBlock(CastEnd);
277 
278     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
279     PHI->addIncoming(Value, CastNotNull);
280     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
281                      CastNull);
282     Value = PHI;
283   }
284 
285   return Value;
286 }
287 
288 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
289                                               bool ForVirtualBase,
290                                               bool Delegating) {
291   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
292     // This constructor/destructor does not need a VTT parameter.
293     return nullptr;
294   }
295 
296   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
297   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
298 
299   llvm::Value *VTT;
300 
301   uint64_t SubVTTIndex;
302 
303   if (Delegating) {
304     // If this is a delegating constructor call, just load the VTT.
305     return LoadCXXVTT();
306   } else if (RD == Base) {
307     // If the record matches the base, this is the complete ctor/dtor
308     // variant calling the base variant in a class with virtual bases.
309     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
310            "doing no-op VTT offset in base dtor/ctor?");
311     assert(!ForVirtualBase && "Can't have same class as virtual base!");
312     SubVTTIndex = 0;
313   } else {
314     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
315     CharUnits BaseOffset = ForVirtualBase ?
316       Layout.getVBaseClassOffset(Base) :
317       Layout.getBaseClassOffset(Base);
318 
319     SubVTTIndex =
320       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
321     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
322   }
323 
324   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
325     // A VTT parameter was passed to the constructor, use it.
326     VTT = LoadCXXVTT();
327     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
328   } else {
329     // We're the complete constructor, so get the VTT by name.
330     VTT = CGM.getVTables().GetAddrOfVTT(RD);
331     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
332   }
333 
334   return VTT;
335 }
336 
337 namespace {
338   /// Call the destructor for a direct base class.
339   struct CallBaseDtor : EHScopeStack::Cleanup {
340     const CXXRecordDecl *BaseClass;
341     bool BaseIsVirtual;
342     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
343       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
344 
345     void Emit(CodeGenFunction &CGF, Flags flags) override {
346       const CXXRecordDecl *DerivedClass =
347         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
348 
349       const CXXDestructorDecl *D = BaseClass->getDestructor();
350       llvm::Value *Addr =
351         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
352                                                   DerivedClass, BaseClass,
353                                                   BaseIsVirtual);
354       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
355                                 /*Delegating=*/false, Addr);
356     }
357   };
358 
359   /// A visitor which checks whether an initializer uses 'this' in a
360   /// way which requires the vtable to be properly set.
361   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
362     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
363 
364     bool UsesThis;
365 
366     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
367 
368     // Black-list all explicit and implicit references to 'this'.
369     //
370     // Do we need to worry about external references to 'this' derived
371     // from arbitrary code?  If so, then anything which runs arbitrary
372     // external code might potentially access the vtable.
373     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
374   };
375 }
376 
377 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
378   DynamicThisUseChecker Checker(C);
379   Checker.Visit(const_cast<Expr*>(Init));
380   return Checker.UsesThis;
381 }
382 
383 static void EmitBaseInitializer(CodeGenFunction &CGF,
384                                 const CXXRecordDecl *ClassDecl,
385                                 CXXCtorInitializer *BaseInit,
386                                 CXXCtorType CtorType) {
387   assert(BaseInit->isBaseInitializer() &&
388          "Must have base initializer!");
389 
390   llvm::Value *ThisPtr = CGF.LoadCXXThis();
391 
392   const Type *BaseType = BaseInit->getBaseClass();
393   CXXRecordDecl *BaseClassDecl =
394     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
395 
396   bool isBaseVirtual = BaseInit->isBaseVirtual();
397 
398   // The base constructor doesn't construct virtual bases.
399   if (CtorType == Ctor_Base && isBaseVirtual)
400     return;
401 
402   // If the initializer for the base (other than the constructor
403   // itself) accesses 'this' in any way, we need to initialize the
404   // vtables.
405   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
406     CGF.InitializeVTablePointers(ClassDecl);
407 
408   // We can pretend to be a complete class because it only matters for
409   // virtual bases, and we only do virtual bases for complete ctors.
410   llvm::Value *V =
411     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
412                                               BaseClassDecl,
413                                               isBaseVirtual);
414   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
415   AggValueSlot AggSlot =
416     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
417                           AggValueSlot::IsDestructed,
418                           AggValueSlot::DoesNotNeedGCBarriers,
419                           AggValueSlot::IsNotAliased);
420 
421   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
422 
423   if (CGF.CGM.getLangOpts().Exceptions &&
424       !BaseClassDecl->hasTrivialDestructor())
425     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
426                                           isBaseVirtual);
427 }
428 
429 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
430                                      LValue LHS,
431                                      Expr *Init,
432                                      llvm::Value *ArrayIndexVar,
433                                      QualType T,
434                                      ArrayRef<VarDecl *> ArrayIndexes,
435                                      unsigned Index) {
436   if (Index == ArrayIndexes.size()) {
437     LValue LV = LHS;
438 
439     if (ArrayIndexVar) {
440       // If we have an array index variable, load it and use it as an offset.
441       // Then, increment the value.
442       llvm::Value *Dest = LHS.getAddress();
443       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
444       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
445       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
446       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
447       CGF.Builder.CreateStore(Next, ArrayIndexVar);
448 
449       // Update the LValue.
450       LV.setAddress(Dest);
451       CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
452       LV.setAlignment(std::min(Align, LV.getAlignment()));
453     }
454 
455     switch (CGF.getEvaluationKind(T)) {
456     case TEK_Scalar:
457       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
458       break;
459     case TEK_Complex:
460       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
461       break;
462     case TEK_Aggregate: {
463       AggValueSlot Slot =
464         AggValueSlot::forLValue(LV,
465                                 AggValueSlot::IsDestructed,
466                                 AggValueSlot::DoesNotNeedGCBarriers,
467                                 AggValueSlot::IsNotAliased);
468 
469       CGF.EmitAggExpr(Init, Slot);
470       break;
471     }
472     }
473 
474     return;
475   }
476 
477   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
478   assert(Array && "Array initialization without the array type?");
479   llvm::Value *IndexVar
480     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
481   assert(IndexVar && "Array index variable not loaded");
482 
483   // Initialize this index variable to zero.
484   llvm::Value* Zero
485     = llvm::Constant::getNullValue(
486                               CGF.ConvertType(CGF.getContext().getSizeType()));
487   CGF.Builder.CreateStore(Zero, IndexVar);
488 
489   // Start the loop with a block that tests the condition.
490   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
491   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
492 
493   CGF.EmitBlock(CondBlock);
494 
495   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
496   // Generate: if (loop-index < number-of-elements) fall to the loop body,
497   // otherwise, go to the block after the for-loop.
498   uint64_t NumElements = Array->getSize().getZExtValue();
499   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
500   llvm::Value *NumElementsPtr =
501     llvm::ConstantInt::get(Counter->getType(), NumElements);
502   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
503                                                   "isless");
504 
505   // If the condition is true, execute the body.
506   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
507 
508   CGF.EmitBlock(ForBody);
509   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
510 
511   // Inside the loop body recurse to emit the inner loop or, eventually, the
512   // constructor call.
513   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
514                            Array->getElementType(), ArrayIndexes, Index + 1);
515 
516   CGF.EmitBlock(ContinueBlock);
517 
518   // Emit the increment of the loop counter.
519   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
520   Counter = CGF.Builder.CreateLoad(IndexVar);
521   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
522   CGF.Builder.CreateStore(NextVal, IndexVar);
523 
524   // Finally, branch back up to the condition for the next iteration.
525   CGF.EmitBranch(CondBlock);
526 
527   // Emit the fall-through block.
528   CGF.EmitBlock(AfterFor, true);
529 }
530 
531 static void EmitMemberInitializer(CodeGenFunction &CGF,
532                                   const CXXRecordDecl *ClassDecl,
533                                   CXXCtorInitializer *MemberInit,
534                                   const CXXConstructorDecl *Constructor,
535                                   FunctionArgList &Args) {
536   assert(MemberInit->isAnyMemberInitializer() &&
537          "Must have member initializer!");
538   assert(MemberInit->getInit() && "Must have initializer!");
539 
540   // non-static data member initializers.
541   FieldDecl *Field = MemberInit->getAnyMember();
542   QualType FieldType = Field->getType();
543 
544   llvm::Value *ThisPtr = CGF.LoadCXXThis();
545   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
546   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
547 
548   if (MemberInit->isIndirectMemberInitializer()) {
549     // If we are initializing an anonymous union field, drill down to
550     // the field.
551     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
552     for (const auto *I : IndirectField->chain())
553       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
554     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
555   } else {
556     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
557   }
558 
559   // Special case: if we are in a copy or move constructor, and we are copying
560   // an array of PODs or classes with trivial copy constructors, ignore the
561   // AST and perform the copy we know is equivalent.
562   // FIXME: This is hacky at best... if we had a bit more explicit information
563   // in the AST, we could generalize it more easily.
564   const ConstantArrayType *Array
565     = CGF.getContext().getAsConstantArrayType(FieldType);
566   if (Array && Constructor->isDefaulted() &&
567       Constructor->isCopyOrMoveConstructor()) {
568     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
569     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
570     if (BaseElementTy.isPODType(CGF.getContext()) ||
571         (CE && CE->getConstructor()->isTrivial())) {
572       // Find the source pointer. We know it's the last argument because
573       // we know we're in an implicit copy constructor.
574       unsigned SrcArgIndex = Args.size() - 1;
575       llvm::Value *SrcPtr
576         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
577       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
578       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
579 
580       // Copy the aggregate.
581       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
582                             LHS.isVolatileQualified());
583       return;
584     }
585   }
586 
587   ArrayRef<VarDecl *> ArrayIndexes;
588   if (MemberInit->getNumArrayIndices())
589     ArrayIndexes = MemberInit->getArrayIndexes();
590   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
591 }
592 
593 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
594                                               LValue LHS, Expr *Init,
595                                              ArrayRef<VarDecl *> ArrayIndexes) {
596   QualType FieldType = Field->getType();
597   switch (getEvaluationKind(FieldType)) {
598   case TEK_Scalar:
599     if (LHS.isSimple()) {
600       EmitExprAsInit(Init, Field, LHS, false);
601     } else {
602       RValue RHS = RValue::get(EmitScalarExpr(Init));
603       EmitStoreThroughLValue(RHS, LHS);
604     }
605     break;
606   case TEK_Complex:
607     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
608     break;
609   case TEK_Aggregate: {
610     llvm::Value *ArrayIndexVar = nullptr;
611     if (ArrayIndexes.size()) {
612       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
613 
614       // The LHS is a pointer to the first object we'll be constructing, as
615       // a flat array.
616       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
617       llvm::Type *BasePtr = ConvertType(BaseElementTy);
618       BasePtr = llvm::PointerType::getUnqual(BasePtr);
619       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
620                                                        BasePtr);
621       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
622 
623       // Create an array index that will be used to walk over all of the
624       // objects we're constructing.
625       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
626       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
627       Builder.CreateStore(Zero, ArrayIndexVar);
628 
629 
630       // Emit the block variables for the array indices, if any.
631       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
632         EmitAutoVarDecl(*ArrayIndexes[I]);
633     }
634 
635     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
636                              ArrayIndexes, 0);
637   }
638   }
639 
640   // Ensure that we destroy this object if an exception is thrown
641   // later in the constructor.
642   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
643   if (needsEHCleanup(dtorKind))
644     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
645 }
646 
647 /// Checks whether the given constructor is a valid subject for the
648 /// complete-to-base constructor delegation optimization, i.e.
649 /// emitting the complete constructor as a simple call to the base
650 /// constructor.
651 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
652 
653   // Currently we disable the optimization for classes with virtual
654   // bases because (1) the addresses of parameter variables need to be
655   // consistent across all initializers but (2) the delegate function
656   // call necessarily creates a second copy of the parameter variable.
657   //
658   // The limiting example (purely theoretical AFAIK):
659   //   struct A { A(int &c) { c++; } };
660   //   struct B : virtual A {
661   //     B(int count) : A(count) { printf("%d\n", count); }
662   //   };
663   // ...although even this example could in principle be emitted as a
664   // delegation since the address of the parameter doesn't escape.
665   if (Ctor->getParent()->getNumVBases()) {
666     // TODO: white-list trivial vbase initializers.  This case wouldn't
667     // be subject to the restrictions below.
668 
669     // TODO: white-list cases where:
670     //  - there are no non-reference parameters to the constructor
671     //  - the initializers don't access any non-reference parameters
672     //  - the initializers don't take the address of non-reference
673     //    parameters
674     //  - etc.
675     // If we ever add any of the above cases, remember that:
676     //  - function-try-blocks will always blacklist this optimization
677     //  - we need to perform the constructor prologue and cleanup in
678     //    EmitConstructorBody.
679 
680     return false;
681   }
682 
683   // We also disable the optimization for variadic functions because
684   // it's impossible to "re-pass" varargs.
685   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
686     return false;
687 
688   // FIXME: Decide if we can do a delegation of a delegating constructor.
689   if (Ctor->isDelegatingConstructor())
690     return false;
691 
692   return true;
693 }
694 
695 /// EmitConstructorBody - Emits the body of the current constructor.
696 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
697   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
698   CXXCtorType CtorType = CurGD.getCtorType();
699 
700   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
701           CtorType == Ctor_Complete) &&
702          "can only generate complete ctor for this ABI");
703 
704   // Before we go any further, try the complete->base constructor
705   // delegation optimization.
706   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
707       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
708     if (CGDebugInfo *DI = getDebugInfo())
709       DI->EmitLocation(Builder, Ctor->getLocEnd());
710     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
711     return;
712   }
713 
714   const FunctionDecl *Definition = 0;
715   Stmt *Body = Ctor->getBody(Definition);
716   assert(Definition == Ctor && "emitting wrong constructor body");
717 
718   // Enter the function-try-block before the constructor prologue if
719   // applicable.
720   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
721   if (IsTryBody)
722     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
723 
724   RegionCounter Cnt = getPGORegionCounter(Body);
725   Cnt.beginRegion(Builder);
726 
727   RunCleanupsScope RunCleanups(*this);
728 
729   // TODO: in restricted cases, we can emit the vbase initializers of
730   // a complete ctor and then delegate to the base ctor.
731 
732   // Emit the constructor prologue, i.e. the base and member
733   // initializers.
734   EmitCtorPrologue(Ctor, CtorType, Args);
735 
736   // Emit the body of the statement.
737   if (IsTryBody)
738     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
739   else if (Body)
740     EmitStmt(Body);
741 
742   // Emit any cleanup blocks associated with the member or base
743   // initializers, which includes (along the exceptional path) the
744   // destructors for those members and bases that were fully
745   // constructed.
746   RunCleanups.ForceCleanup();
747 
748   if (IsTryBody)
749     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
750 }
751 
752 namespace {
753   /// RAII object to indicate that codegen is copying the value representation
754   /// instead of the object representation. Useful when copying a struct or
755   /// class which has uninitialized members and we're only performing
756   /// lvalue-to-rvalue conversion on the object but not its members.
757   class CopyingValueRepresentation {
758   public:
759     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
760         : CGF(CGF), SO(*CGF.SanOpts), OldSanOpts(CGF.SanOpts) {
761       SO.Bool = false;
762       SO.Enum = false;
763       CGF.SanOpts = &SO;
764     }
765     ~CopyingValueRepresentation() {
766       CGF.SanOpts = OldSanOpts;
767     }
768   private:
769     CodeGenFunction &CGF;
770     SanitizerOptions SO;
771     const SanitizerOptions *OldSanOpts;
772   };
773 }
774 
775 namespace {
776   class FieldMemcpyizer {
777   public:
778     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
779                     const VarDecl *SrcRec)
780       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
781         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
782         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
783         LastFieldOffset(0), LastAddedFieldIndex(0) {}
784 
785     static bool isMemcpyableField(FieldDecl *F) {
786       Qualifiers Qual = F->getType().getQualifiers();
787       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
788         return false;
789       return true;
790     }
791 
792     void addMemcpyableField(FieldDecl *F) {
793       if (!FirstField)
794         addInitialField(F);
795       else
796         addNextField(F);
797     }
798 
799     CharUnits getMemcpySize() const {
800       unsigned LastFieldSize =
801         LastField->isBitField() ?
802           LastField->getBitWidthValue(CGF.getContext()) :
803           CGF.getContext().getTypeSize(LastField->getType());
804       uint64_t MemcpySizeBits =
805         LastFieldOffset + LastFieldSize - FirstFieldOffset +
806         CGF.getContext().getCharWidth() - 1;
807       CharUnits MemcpySize =
808         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
809       return MemcpySize;
810     }
811 
812     void emitMemcpy() {
813       // Give the subclass a chance to bail out if it feels the memcpy isn't
814       // worth it (e.g. Hasn't aggregated enough data).
815       if (!FirstField) {
816         return;
817       }
818 
819       CharUnits Alignment;
820 
821       if (FirstField->isBitField()) {
822         const CGRecordLayout &RL =
823           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
824         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
825         Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
826       } else {
827         Alignment = CGF.getContext().getDeclAlign(FirstField);
828       }
829 
830       assert((CGF.getContext().toCharUnitsFromBits(FirstFieldOffset) %
831               Alignment) == 0 && "Bad field alignment.");
832 
833       CharUnits MemcpySize = getMemcpySize();
834       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
835       llvm::Value *ThisPtr = CGF.LoadCXXThis();
836       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
837       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
838       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
839       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
840       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
841 
842       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
843                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
844                    MemcpySize, Alignment);
845       reset();
846     }
847 
848     void reset() {
849       FirstField = nullptr;
850     }
851 
852   protected:
853     CodeGenFunction &CGF;
854     const CXXRecordDecl *ClassDecl;
855 
856   private:
857 
858     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
859                       CharUnits Size, CharUnits Alignment) {
860       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
861       llvm::Type *DBP =
862         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
863       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
864 
865       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
866       llvm::Type *SBP =
867         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
868       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
869 
870       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
871                                Alignment.getQuantity());
872     }
873 
874     void addInitialField(FieldDecl *F) {
875         FirstField = F;
876         LastField = F;
877         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
878         LastFieldOffset = FirstFieldOffset;
879         LastAddedFieldIndex = F->getFieldIndex();
880         return;
881       }
882 
883     void addNextField(FieldDecl *F) {
884       // For the most part, the following invariant will hold:
885       //   F->getFieldIndex() == LastAddedFieldIndex + 1
886       // The one exception is that Sema won't add a copy-initializer for an
887       // unnamed bitfield, which will show up here as a gap in the sequence.
888       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
889              "Cannot aggregate fields out of order.");
890       LastAddedFieldIndex = F->getFieldIndex();
891 
892       // The 'first' and 'last' fields are chosen by offset, rather than field
893       // index. This allows the code to support bitfields, as well as regular
894       // fields.
895       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
896       if (FOffset < FirstFieldOffset) {
897         FirstField = F;
898         FirstFieldOffset = FOffset;
899       } else if (FOffset > LastFieldOffset) {
900         LastField = F;
901         LastFieldOffset = FOffset;
902       }
903     }
904 
905     const VarDecl *SrcRec;
906     const ASTRecordLayout &RecLayout;
907     FieldDecl *FirstField;
908     FieldDecl *LastField;
909     uint64_t FirstFieldOffset, LastFieldOffset;
910     unsigned LastAddedFieldIndex;
911   };
912 
913   class ConstructorMemcpyizer : public FieldMemcpyizer {
914   private:
915 
916     /// Get source argument for copy constructor. Returns null if not a copy
917     /// constructor.
918     static const VarDecl* getTrivialCopySource(const CXXConstructorDecl *CD,
919                                                FunctionArgList &Args) {
920       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
921         return Args[Args.size() - 1];
922       return nullptr;
923     }
924 
925     // Returns true if a CXXCtorInitializer represents a member initialization
926     // that can be rolled into a memcpy.
927     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
928       if (!MemcpyableCtor)
929         return false;
930       FieldDecl *Field = MemberInit->getMember();
931       assert(Field && "No field for member init.");
932       QualType FieldType = Field->getType();
933       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
934 
935       // Bail out on non-POD, not-trivially-constructable members.
936       if (!(CE && CE->getConstructor()->isTrivial()) &&
937           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
938             FieldType->isReferenceType()))
939         return false;
940 
941       // Bail out on volatile fields.
942       if (!isMemcpyableField(Field))
943         return false;
944 
945       // Otherwise we're good.
946       return true;
947     }
948 
949   public:
950     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
951                           FunctionArgList &Args)
952       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CD, Args)),
953         ConstructorDecl(CD),
954         MemcpyableCtor(CD->isDefaulted() &&
955                        CD->isCopyOrMoveConstructor() &&
956                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
957         Args(Args) { }
958 
959     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
960       if (isMemberInitMemcpyable(MemberInit)) {
961         AggregatedInits.push_back(MemberInit);
962         addMemcpyableField(MemberInit->getMember());
963       } else {
964         emitAggregatedInits();
965         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
966                               ConstructorDecl, Args);
967       }
968     }
969 
970     void emitAggregatedInits() {
971       if (AggregatedInits.size() <= 1) {
972         // This memcpy is too small to be worthwhile. Fall back on default
973         // codegen.
974         if (!AggregatedInits.empty()) {
975           CopyingValueRepresentation CVR(CGF);
976           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
977                                 AggregatedInits[0], ConstructorDecl, Args);
978         }
979         reset();
980         return;
981       }
982 
983       pushEHDestructors();
984       emitMemcpy();
985       AggregatedInits.clear();
986     }
987 
988     void pushEHDestructors() {
989       llvm::Value *ThisPtr = CGF.LoadCXXThis();
990       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
991       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
992 
993       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
994         QualType FieldType = AggregatedInits[i]->getMember()->getType();
995         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
996         if (CGF.needsEHCleanup(dtorKind))
997           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
998       }
999     }
1000 
1001     void finish() {
1002       emitAggregatedInits();
1003     }
1004 
1005   private:
1006     const CXXConstructorDecl *ConstructorDecl;
1007     bool MemcpyableCtor;
1008     FunctionArgList &Args;
1009     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1010   };
1011 
1012   class AssignmentMemcpyizer : public FieldMemcpyizer {
1013   private:
1014 
1015     // Returns the memcpyable field copied by the given statement, if one
1016     // exists. Otherwise returns null.
1017     FieldDecl *getMemcpyableField(Stmt *S) {
1018       if (!AssignmentsMemcpyable)
1019         return nullptr;
1020       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1021         // Recognise trivial assignments.
1022         if (BO->getOpcode() != BO_Assign)
1023           return nullptr;
1024         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1025         if (!ME)
1026           return nullptr;
1027         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1028         if (!Field || !isMemcpyableField(Field))
1029           return nullptr;
1030         Stmt *RHS = BO->getRHS();
1031         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1032           RHS = EC->getSubExpr();
1033         if (!RHS)
1034           return nullptr;
1035         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1036         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1037           return nullptr;
1038         return Field;
1039       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1040         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1041         if (!(MD && (MD->isCopyAssignmentOperator() ||
1042                        MD->isMoveAssignmentOperator()) &&
1043               MD->isTrivial()))
1044           return nullptr;
1045         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1046         if (!IOA)
1047           return nullptr;
1048         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1049         if (!Field || !isMemcpyableField(Field))
1050           return nullptr;
1051         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1052         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1053           return nullptr;
1054         return Field;
1055       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1056         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1057         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1058           return nullptr;
1059         Expr *DstPtr = CE->getArg(0);
1060         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1061           DstPtr = DC->getSubExpr();
1062         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1063         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1064           return nullptr;
1065         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1066         if (!ME)
1067           return nullptr;
1068         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1069         if (!Field || !isMemcpyableField(Field))
1070           return nullptr;
1071         Expr *SrcPtr = CE->getArg(1);
1072         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1073           SrcPtr = SC->getSubExpr();
1074         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1075         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1076           return nullptr;
1077         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1078         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1079           return nullptr;
1080         return Field;
1081       }
1082 
1083       return nullptr;
1084     }
1085 
1086     bool AssignmentsMemcpyable;
1087     SmallVector<Stmt*, 16> AggregatedStmts;
1088 
1089   public:
1090 
1091     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1092                          FunctionArgList &Args)
1093       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1094         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1095       assert(Args.size() == 2);
1096     }
1097 
1098     void emitAssignment(Stmt *S) {
1099       FieldDecl *F = getMemcpyableField(S);
1100       if (F) {
1101         addMemcpyableField(F);
1102         AggregatedStmts.push_back(S);
1103       } else {
1104         emitAggregatedStmts();
1105         CGF.EmitStmt(S);
1106       }
1107     }
1108 
1109     void emitAggregatedStmts() {
1110       if (AggregatedStmts.size() <= 1) {
1111         if (!AggregatedStmts.empty()) {
1112           CopyingValueRepresentation CVR(CGF);
1113           CGF.EmitStmt(AggregatedStmts[0]);
1114         }
1115         reset();
1116       }
1117 
1118       emitMemcpy();
1119       AggregatedStmts.clear();
1120     }
1121 
1122     void finish() {
1123       emitAggregatedStmts();
1124     }
1125   };
1126 
1127 }
1128 
1129 /// EmitCtorPrologue - This routine generates necessary code to initialize
1130 /// base classes and non-static data members belonging to this constructor.
1131 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1132                                        CXXCtorType CtorType,
1133                                        FunctionArgList &Args) {
1134   if (CD->isDelegatingConstructor())
1135     return EmitDelegatingCXXConstructorCall(CD, Args);
1136 
1137   const CXXRecordDecl *ClassDecl = CD->getParent();
1138 
1139   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1140                                           E = CD->init_end();
1141 
1142   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1143   if (ClassDecl->getNumVBases() &&
1144       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1145     // The ABIs that don't have constructor variants need to put a branch
1146     // before the virtual base initialization code.
1147     BaseCtorContinueBB =
1148       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1149     assert(BaseCtorContinueBB);
1150   }
1151 
1152   // Virtual base initializers first.
1153   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1154     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1155   }
1156 
1157   if (BaseCtorContinueBB) {
1158     // Complete object handler should continue to the remaining initializers.
1159     Builder.CreateBr(BaseCtorContinueBB);
1160     EmitBlock(BaseCtorContinueBB);
1161   }
1162 
1163   // Then, non-virtual base initializers.
1164   for (; B != E && (*B)->isBaseInitializer(); B++) {
1165     assert(!(*B)->isBaseVirtual());
1166     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1167   }
1168 
1169   InitializeVTablePointers(ClassDecl);
1170 
1171   // And finally, initialize class members.
1172   FieldConstructionScope FCS(*this, CXXThisValue);
1173   ConstructorMemcpyizer CM(*this, CD, Args);
1174   for (; B != E; B++) {
1175     CXXCtorInitializer *Member = (*B);
1176     assert(!Member->isBaseInitializer());
1177     assert(Member->isAnyMemberInitializer() &&
1178            "Delegating initializer on non-delegating constructor");
1179     CM.addMemberInitializer(Member);
1180   }
1181   CM.finish();
1182 }
1183 
1184 static bool
1185 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1186 
1187 static bool
1188 HasTrivialDestructorBody(ASTContext &Context,
1189                          const CXXRecordDecl *BaseClassDecl,
1190                          const CXXRecordDecl *MostDerivedClassDecl)
1191 {
1192   // If the destructor is trivial we don't have to check anything else.
1193   if (BaseClassDecl->hasTrivialDestructor())
1194     return true;
1195 
1196   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1197     return false;
1198 
1199   // Check fields.
1200   for (const auto *Field : BaseClassDecl->fields())
1201     if (!FieldHasTrivialDestructorBody(Context, Field))
1202       return false;
1203 
1204   // Check non-virtual bases.
1205   for (const auto &I : BaseClassDecl->bases()) {
1206     if (I.isVirtual())
1207       continue;
1208 
1209     const CXXRecordDecl *NonVirtualBase =
1210       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1211     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1212                                   MostDerivedClassDecl))
1213       return false;
1214   }
1215 
1216   if (BaseClassDecl == MostDerivedClassDecl) {
1217     // Check virtual bases.
1218     for (const auto &I : BaseClassDecl->vbases()) {
1219       const CXXRecordDecl *VirtualBase =
1220         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1221       if (!HasTrivialDestructorBody(Context, VirtualBase,
1222                                     MostDerivedClassDecl))
1223         return false;
1224     }
1225   }
1226 
1227   return true;
1228 }
1229 
1230 static bool
1231 FieldHasTrivialDestructorBody(ASTContext &Context,
1232                               const FieldDecl *Field)
1233 {
1234   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1235 
1236   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1237   if (!RT)
1238     return true;
1239 
1240   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1241   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1242 }
1243 
1244 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1245 /// any vtable pointers before calling this destructor.
1246 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
1247                                                const CXXDestructorDecl *Dtor) {
1248   if (!Dtor->hasTrivialBody())
1249     return false;
1250 
1251   // Check the fields.
1252   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1253   for (const auto *Field : ClassDecl->fields())
1254     if (!FieldHasTrivialDestructorBody(Context, Field))
1255       return false;
1256 
1257   return true;
1258 }
1259 
1260 /// EmitDestructorBody - Emits the body of the current destructor.
1261 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1262   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1263   CXXDtorType DtorType = CurGD.getDtorType();
1264 
1265   // The call to operator delete in a deleting destructor happens
1266   // outside of the function-try-block, which means it's always
1267   // possible to delegate the destructor body to the complete
1268   // destructor.  Do so.
1269   if (DtorType == Dtor_Deleting) {
1270     EnterDtorCleanups(Dtor, Dtor_Deleting);
1271     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1272                           /*Delegating=*/false, LoadCXXThis());
1273     PopCleanupBlock();
1274     return;
1275   }
1276 
1277   Stmt *Body = Dtor->getBody();
1278 
1279   // If the body is a function-try-block, enter the try before
1280   // anything else.
1281   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1282   if (isTryBody)
1283     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1284 
1285   // Enter the epilogue cleanups.
1286   RunCleanupsScope DtorEpilogue(*this);
1287 
1288   // If this is the complete variant, just invoke the base variant;
1289   // the epilogue will destruct the virtual bases.  But we can't do
1290   // this optimization if the body is a function-try-block, because
1291   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1292   // always delegate because we might not have a definition in this TU.
1293   switch (DtorType) {
1294   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1295 
1296   case Dtor_Complete:
1297     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1298            "can't emit a dtor without a body for non-Microsoft ABIs");
1299 
1300     // Enter the cleanup scopes for virtual bases.
1301     EnterDtorCleanups(Dtor, Dtor_Complete);
1302 
1303     if (!isTryBody) {
1304       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1305                             /*Delegating=*/false, LoadCXXThis());
1306       break;
1307     }
1308     // Fallthrough: act like we're in the base variant.
1309 
1310   case Dtor_Base:
1311     assert(Body);
1312 
1313     RegionCounter Cnt = getPGORegionCounter(Body);
1314     Cnt.beginRegion(Builder);
1315 
1316     // Enter the cleanup scopes for fields and non-virtual bases.
1317     EnterDtorCleanups(Dtor, Dtor_Base);
1318 
1319     // Initialize the vtable pointers before entering the body.
1320     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
1321         InitializeVTablePointers(Dtor->getParent());
1322 
1323     if (isTryBody)
1324       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1325     else if (Body)
1326       EmitStmt(Body);
1327     else {
1328       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1329       // nothing to do besides what's in the epilogue
1330     }
1331     // -fapple-kext must inline any call to this dtor into
1332     // the caller's body.
1333     if (getLangOpts().AppleKext)
1334       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1335     break;
1336   }
1337 
1338   // Jump out through the epilogue cleanups.
1339   DtorEpilogue.ForceCleanup();
1340 
1341   // Exit the try if applicable.
1342   if (isTryBody)
1343     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1344 }
1345 
1346 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1347   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1348   const Stmt *RootS = AssignOp->getBody();
1349   assert(isa<CompoundStmt>(RootS) &&
1350          "Body of an implicit assignment operator should be compound stmt.");
1351   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1352 
1353   LexicalScope Scope(*this, RootCS->getSourceRange());
1354 
1355   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1356   for (auto *I : RootCS->body())
1357     AM.emitAssignment(I);
1358   AM.finish();
1359 }
1360 
1361 namespace {
1362   /// Call the operator delete associated with the current destructor.
1363   struct CallDtorDelete : EHScopeStack::Cleanup {
1364     CallDtorDelete() {}
1365 
1366     void Emit(CodeGenFunction &CGF, Flags flags) override {
1367       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1368       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1369       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1370                          CGF.getContext().getTagDeclType(ClassDecl));
1371     }
1372   };
1373 
1374   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
1375     llvm::Value *ShouldDeleteCondition;
1376   public:
1377     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1378       : ShouldDeleteCondition(ShouldDeleteCondition) {
1379       assert(ShouldDeleteCondition != nullptr);
1380     }
1381 
1382     void Emit(CodeGenFunction &CGF, Flags flags) override {
1383       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1384       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1385       llvm::Value *ShouldCallDelete
1386         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1387       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1388 
1389       CGF.EmitBlock(callDeleteBB);
1390       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1391       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1392       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1393                          CGF.getContext().getTagDeclType(ClassDecl));
1394       CGF.Builder.CreateBr(continueBB);
1395 
1396       CGF.EmitBlock(continueBB);
1397     }
1398   };
1399 
1400   class DestroyField  : public EHScopeStack::Cleanup {
1401     const FieldDecl *field;
1402     CodeGenFunction::Destroyer *destroyer;
1403     bool useEHCleanupForArray;
1404 
1405   public:
1406     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1407                  bool useEHCleanupForArray)
1408       : field(field), destroyer(destroyer),
1409         useEHCleanupForArray(useEHCleanupForArray) {}
1410 
1411     void Emit(CodeGenFunction &CGF, Flags flags) override {
1412       // Find the address of the field.
1413       llvm::Value *thisValue = CGF.LoadCXXThis();
1414       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1415       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1416       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1417       assert(LV.isSimple());
1418 
1419       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1420                       flags.isForNormalCleanup() && useEHCleanupForArray);
1421     }
1422   };
1423 }
1424 
1425 /// \brief Emit all code that comes at the end of class's
1426 /// destructor. This is to call destructors on members and base classes
1427 /// in reverse order of their construction.
1428 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1429                                         CXXDtorType DtorType) {
1430   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1431          "Should not emit dtor epilogue for non-exported trivial dtor!");
1432 
1433   // The deleting-destructor phase just needs to call the appropriate
1434   // operator delete that Sema picked up.
1435   if (DtorType == Dtor_Deleting) {
1436     assert(DD->getOperatorDelete() &&
1437            "operator delete missing - EnterDtorCleanups");
1438     if (CXXStructorImplicitParamValue) {
1439       // If there is an implicit param to the deleting dtor, it's a boolean
1440       // telling whether we should call delete at the end of the dtor.
1441       EHStack.pushCleanup<CallDtorDeleteConditional>(
1442           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1443     } else {
1444       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1445     }
1446     return;
1447   }
1448 
1449   const CXXRecordDecl *ClassDecl = DD->getParent();
1450 
1451   // Unions have no bases and do not call field destructors.
1452   if (ClassDecl->isUnion())
1453     return;
1454 
1455   // The complete-destructor phase just destructs all the virtual bases.
1456   if (DtorType == Dtor_Complete) {
1457 
1458     // We push them in the forward order so that they'll be popped in
1459     // the reverse order.
1460     for (const auto &Base : ClassDecl->vbases()) {
1461       CXXRecordDecl *BaseClassDecl
1462         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1463 
1464       // Ignore trivial destructors.
1465       if (BaseClassDecl->hasTrivialDestructor())
1466         continue;
1467 
1468       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1469                                         BaseClassDecl,
1470                                         /*BaseIsVirtual*/ true);
1471     }
1472 
1473     return;
1474   }
1475 
1476   assert(DtorType == Dtor_Base);
1477 
1478   // Destroy non-virtual bases.
1479   for (const auto &Base : ClassDecl->bases()) {
1480     // Ignore virtual bases.
1481     if (Base.isVirtual())
1482       continue;
1483 
1484     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1485 
1486     // Ignore trivial destructors.
1487     if (BaseClassDecl->hasTrivialDestructor())
1488       continue;
1489 
1490     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1491                                       BaseClassDecl,
1492                                       /*BaseIsVirtual*/ false);
1493   }
1494 
1495   // Destroy direct fields.
1496   for (const auto *Field : ClassDecl->fields()) {
1497     QualType type = Field->getType();
1498     QualType::DestructionKind dtorKind = type.isDestructedType();
1499     if (!dtorKind) continue;
1500 
1501     // Anonymous union members do not have their destructors called.
1502     const RecordType *RT = type->getAsUnionType();
1503     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1504 
1505     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1506     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1507                                       getDestroyer(dtorKind),
1508                                       cleanupKind & EHCleanup);
1509   }
1510 }
1511 
1512 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1513 /// constructor for each of several members of an array.
1514 ///
1515 /// \param ctor the constructor to call for each element
1516 /// \param arrayType the type of the array to initialize
1517 /// \param arrayBegin an arrayType*
1518 /// \param zeroInitialize true if each element should be
1519 ///   zero-initialized before it is constructed
1520 void CodeGenFunction::EmitCXXAggrConstructorCall(
1521     const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
1522     llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1523   QualType elementType;
1524   llvm::Value *numElements =
1525     emitArrayLength(arrayType, elementType, arrayBegin);
1526 
1527   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1528 }
1529 
1530 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1531 /// constructor for each of several members of an array.
1532 ///
1533 /// \param ctor the constructor to call for each element
1534 /// \param numElements the number of elements in the array;
1535 ///   may be zero
1536 /// \param arrayBegin a T*, where T is the type constructed by ctor
1537 /// \param zeroInitialize true if each element should be
1538 ///   zero-initialized before it is constructed
1539 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1540                                                  llvm::Value *numElements,
1541                                                  llvm::Value *arrayBegin,
1542                                                  const CXXConstructExpr *E,
1543                                                  bool zeroInitialize) {
1544 
1545   // It's legal for numElements to be zero.  This can happen both
1546   // dynamically, because x can be zero in 'new A[x]', and statically,
1547   // because of GCC extensions that permit zero-length arrays.  There
1548   // are probably legitimate places where we could assume that this
1549   // doesn't happen, but it's not clear that it's worth it.
1550   llvm::BranchInst *zeroCheckBranch = nullptr;
1551 
1552   // Optimize for a constant count.
1553   llvm::ConstantInt *constantCount
1554     = dyn_cast<llvm::ConstantInt>(numElements);
1555   if (constantCount) {
1556     // Just skip out if the constant count is zero.
1557     if (constantCount->isZero()) return;
1558 
1559   // Otherwise, emit the check.
1560   } else {
1561     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1562     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1563     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1564     EmitBlock(loopBB);
1565   }
1566 
1567   // Find the end of the array.
1568   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1569                                                     "arrayctor.end");
1570 
1571   // Enter the loop, setting up a phi for the current location to initialize.
1572   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1573   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1574   EmitBlock(loopBB);
1575   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1576                                          "arrayctor.cur");
1577   cur->addIncoming(arrayBegin, entryBB);
1578 
1579   // Inside the loop body, emit the constructor call on the array element.
1580 
1581   QualType type = getContext().getTypeDeclType(ctor->getParent());
1582 
1583   // Zero initialize the storage, if requested.
1584   if (zeroInitialize)
1585     EmitNullInitialization(cur, type);
1586 
1587   // C++ [class.temporary]p4:
1588   // There are two contexts in which temporaries are destroyed at a different
1589   // point than the end of the full-expression. The first context is when a
1590   // default constructor is called to initialize an element of an array.
1591   // If the constructor has one or more default arguments, the destruction of
1592   // every temporary created in a default argument expression is sequenced
1593   // before the construction of the next array element, if any.
1594 
1595   {
1596     RunCleanupsScope Scope(*this);
1597 
1598     // Evaluate the constructor and its arguments in a regular
1599     // partial-destroy cleanup.
1600     if (getLangOpts().Exceptions &&
1601         !ctor->getParent()->hasTrivialDestructor()) {
1602       Destroyer *destroyer = destroyCXXObject;
1603       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1604     }
1605 
1606     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
1607                            /*Delegating=*/false, cur, E);
1608   }
1609 
1610   // Go to the next element.
1611   llvm::Value *next =
1612     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1613                               "arrayctor.next");
1614   cur->addIncoming(next, Builder.GetInsertBlock());
1615 
1616   // Check whether that's the end of the loop.
1617   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1618   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1619   Builder.CreateCondBr(done, contBB, loopBB);
1620 
1621   // Patch the earlier check to skip over the loop.
1622   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1623 
1624   EmitBlock(contBB);
1625 }
1626 
1627 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1628                                        llvm::Value *addr,
1629                                        QualType type) {
1630   const RecordType *rtype = type->castAs<RecordType>();
1631   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1632   const CXXDestructorDecl *dtor = record->getDestructor();
1633   assert(!dtor->isTrivial());
1634   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1635                             /*Delegating=*/false, addr);
1636 }
1637 
1638 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1639                                              CXXCtorType Type,
1640                                              bool ForVirtualBase,
1641                                              bool Delegating, llvm::Value *This,
1642                                              const CXXConstructExpr *E) {
1643   // If this is a trivial constructor, just emit what's needed.
1644   if (D->isTrivial()) {
1645     if (E->getNumArgs() == 0) {
1646       // Trivial default constructor, no codegen required.
1647       assert(D->isDefaultConstructor() &&
1648              "trivial 0-arg ctor not a default ctor");
1649       return;
1650     }
1651 
1652     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1653     assert(D->isCopyOrMoveConstructor() &&
1654            "trivial 1-arg ctor not a copy/move ctor");
1655 
1656     const Expr *Arg = E->getArg(0);
1657     QualType Ty = Arg->getType();
1658     llvm::Value *Src = EmitLValue(Arg).getAddress();
1659     EmitAggregateCopy(This, Src, Ty);
1660     return;
1661   }
1662 
1663   // C++11 [class.mfct.non-static]p2:
1664   //   If a non-static member function of a class X is called for an object that
1665   //   is not of type X, or of a type derived from X, the behavior is undefined.
1666   // FIXME: Provide a source location here.
1667   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This,
1668                 getContext().getRecordType(D->getParent()));
1669 
1670   CallArgList Args;
1671 
1672   // Push the this ptr.
1673   Args.add(RValue::get(This), D->getThisType(getContext()));
1674 
1675   // Add the rest of the user-supplied arguments.
1676   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1677   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
1678 
1679   // Insert any ABI-specific implicit constructor arguments.
1680   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
1681       *this, D, Type, ForVirtualBase, Delegating, Args);
1682 
1683   // Emit the call.
1684   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
1685   const CGFunctionInfo &Info =
1686       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
1687   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
1688 }
1689 
1690 void
1691 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1692                                         llvm::Value *This, llvm::Value *Src,
1693                                         const CXXConstructExpr *E) {
1694   if (D->isTrivial()) {
1695     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1696     assert(D->isCopyOrMoveConstructor() &&
1697            "trivial 1-arg ctor not a copy/move ctor");
1698     EmitAggregateCopy(This, Src, E->arg_begin()->getType());
1699     return;
1700   }
1701   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, clang::Ctor_Complete);
1702   assert(D->isInstance() &&
1703          "Trying to emit a member call expr on a static method!");
1704 
1705   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1706 
1707   CallArgList Args;
1708 
1709   // Push the this ptr.
1710   Args.add(RValue::get(This), D->getThisType(getContext()));
1711 
1712   // Push the src ptr.
1713   QualType QT = *(FPT->param_type_begin());
1714   llvm::Type *t = CGM.getTypes().ConvertType(QT);
1715   Src = Builder.CreateBitCast(Src, t);
1716   Args.add(RValue::get(Src), QT);
1717 
1718   // Skip over first argument (Src).
1719   EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), /*ParamsToSkip*/ 1);
1720 
1721   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1722            Callee, ReturnValueSlot(), Args, D);
1723 }
1724 
1725 void
1726 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1727                                                 CXXCtorType CtorType,
1728                                                 const FunctionArgList &Args,
1729                                                 SourceLocation Loc) {
1730   CallArgList DelegateArgs;
1731 
1732   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1733   assert(I != E && "no parameters to constructor");
1734 
1735   // this
1736   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1737   ++I;
1738 
1739   // vtt
1740   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
1741                                          /*ForVirtualBase=*/false,
1742                                          /*Delegating=*/true)) {
1743     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1744     DelegateArgs.add(RValue::get(VTT), VoidPP);
1745 
1746     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
1747       assert(I != E && "cannot skip vtt parameter, already done with args");
1748       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1749       ++I;
1750     }
1751   }
1752 
1753   // Explicit arguments.
1754   for (; I != E; ++I) {
1755     const VarDecl *param = *I;
1756     // FIXME: per-argument source location
1757     EmitDelegateCallArg(DelegateArgs, param, Loc);
1758   }
1759 
1760   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(Ctor, CtorType);
1761   EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
1762            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
1763 }
1764 
1765 namespace {
1766   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1767     const CXXDestructorDecl *Dtor;
1768     llvm::Value *Addr;
1769     CXXDtorType Type;
1770 
1771     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1772                            CXXDtorType Type)
1773       : Dtor(D), Addr(Addr), Type(Type) {}
1774 
1775     void Emit(CodeGenFunction &CGF, Flags flags) override {
1776       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1777                                 /*Delegating=*/true, Addr);
1778     }
1779   };
1780 }
1781 
1782 void
1783 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1784                                                   const FunctionArgList &Args) {
1785   assert(Ctor->isDelegatingConstructor());
1786 
1787   llvm::Value *ThisPtr = LoadCXXThis();
1788 
1789   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1790   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1791   AggValueSlot AggSlot =
1792     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1793                           AggValueSlot::IsDestructed,
1794                           AggValueSlot::DoesNotNeedGCBarriers,
1795                           AggValueSlot::IsNotAliased);
1796 
1797   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1798 
1799   const CXXRecordDecl *ClassDecl = Ctor->getParent();
1800   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1801     CXXDtorType Type =
1802       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1803 
1804     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1805                                                 ClassDecl->getDestructor(),
1806                                                 ThisPtr, Type);
1807   }
1808 }
1809 
1810 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1811                                             CXXDtorType Type,
1812                                             bool ForVirtualBase,
1813                                             bool Delegating,
1814                                             llvm::Value *This) {
1815   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
1816                                      Delegating, This);
1817 }
1818 
1819 namespace {
1820   struct CallLocalDtor : EHScopeStack::Cleanup {
1821     const CXXDestructorDecl *Dtor;
1822     llvm::Value *Addr;
1823 
1824     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1825       : Dtor(D), Addr(Addr) {}
1826 
1827     void Emit(CodeGenFunction &CGF, Flags flags) override {
1828       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1829                                 /*ForVirtualBase=*/false,
1830                                 /*Delegating=*/false, Addr);
1831     }
1832   };
1833 }
1834 
1835 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1836                                             llvm::Value *Addr) {
1837   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1838 }
1839 
1840 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1841   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1842   if (!ClassDecl) return;
1843   if (ClassDecl->hasTrivialDestructor()) return;
1844 
1845   const CXXDestructorDecl *D = ClassDecl->getDestructor();
1846   assert(D && D->isUsed() && "destructor not marked as used!");
1847   PushDestructorCleanup(D, Addr);
1848 }
1849 
1850 void
1851 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1852                                          const CXXRecordDecl *NearestVBase,
1853                                          CharUnits OffsetFromNearestVBase,
1854                                          const CXXRecordDecl *VTableClass) {
1855   // Compute the address point.
1856   bool NeedsVirtualOffset;
1857   llvm::Value *VTableAddressPoint =
1858       CGM.getCXXABI().getVTableAddressPointInStructor(
1859           *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
1860   if (!VTableAddressPoint)
1861     return;
1862 
1863   // Compute where to store the address point.
1864   llvm::Value *VirtualOffset = nullptr;
1865   CharUnits NonVirtualOffset = CharUnits::Zero();
1866 
1867   if (NeedsVirtualOffset) {
1868     // We need to use the virtual base offset offset because the virtual base
1869     // might have a different offset in the most derived class.
1870     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
1871                                                               LoadCXXThis(),
1872                                                               VTableClass,
1873                                                               NearestVBase);
1874     NonVirtualOffset = OffsetFromNearestVBase;
1875   } else {
1876     // We can just use the base offset in the complete class.
1877     NonVirtualOffset = Base.getBaseOffset();
1878   }
1879 
1880   // Apply the offsets.
1881   llvm::Value *VTableField = LoadCXXThis();
1882 
1883   if (!NonVirtualOffset.isZero() || VirtualOffset)
1884     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
1885                                                   NonVirtualOffset,
1886                                                   VirtualOffset);
1887 
1888   // Finally, store the address point.
1889   llvm::Type *AddressPointPtrTy =
1890     VTableAddressPoint->getType()->getPointerTo();
1891   VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
1892   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
1893   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
1894 }
1895 
1896 void
1897 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
1898                                           const CXXRecordDecl *NearestVBase,
1899                                           CharUnits OffsetFromNearestVBase,
1900                                           bool BaseIsNonVirtualPrimaryBase,
1901                                           const CXXRecordDecl *VTableClass,
1902                                           VisitedVirtualBasesSetTy& VBases) {
1903   // If this base is a non-virtual primary base the address point has already
1904   // been set.
1905   if (!BaseIsNonVirtualPrimaryBase) {
1906     // Initialize the vtable pointer for this base.
1907     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
1908                             VTableClass);
1909   }
1910 
1911   const CXXRecordDecl *RD = Base.getBase();
1912 
1913   // Traverse bases.
1914   for (const auto &I : RD->bases()) {
1915     CXXRecordDecl *BaseDecl
1916       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1917 
1918     // Ignore classes without a vtable.
1919     if (!BaseDecl->isDynamicClass())
1920       continue;
1921 
1922     CharUnits BaseOffset;
1923     CharUnits BaseOffsetFromNearestVBase;
1924     bool BaseDeclIsNonVirtualPrimaryBase;
1925 
1926     if (I.isVirtual()) {
1927       // Check if we've visited this virtual base before.
1928       if (!VBases.insert(BaseDecl))
1929         continue;
1930 
1931       const ASTRecordLayout &Layout =
1932         getContext().getASTRecordLayout(VTableClass);
1933 
1934       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
1935       BaseOffsetFromNearestVBase = CharUnits::Zero();
1936       BaseDeclIsNonVirtualPrimaryBase = false;
1937     } else {
1938       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1939 
1940       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
1941       BaseOffsetFromNearestVBase =
1942         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
1943       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
1944     }
1945 
1946     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
1947                              I.isVirtual() ? BaseDecl : NearestVBase,
1948                              BaseOffsetFromNearestVBase,
1949                              BaseDeclIsNonVirtualPrimaryBase,
1950                              VTableClass, VBases);
1951   }
1952 }
1953 
1954 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
1955   // Ignore classes without a vtable.
1956   if (!RD->isDynamicClass())
1957     return;
1958 
1959   // Initialize the vtable pointers for this class and all of its bases.
1960   VisitedVirtualBasesSetTy VBases;
1961   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
1962                            /*NearestVBase=*/nullptr,
1963                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
1964                            /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
1965 
1966   if (RD->getNumVBases())
1967     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
1968 }
1969 
1970 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
1971                                            llvm::Type *Ty) {
1972   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
1973   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
1974   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
1975   return VTable;
1976 }
1977 
1978 
1979 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
1980 // quite what we want.
1981 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
1982   while (true) {
1983     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
1984       E = PE->getSubExpr();
1985       continue;
1986     }
1987 
1988     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1989       if (CE->getCastKind() == CK_NoOp) {
1990         E = CE->getSubExpr();
1991         continue;
1992       }
1993     }
1994     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1995       if (UO->getOpcode() == UO_Extension) {
1996         E = UO->getSubExpr();
1997         continue;
1998       }
1999     }
2000     return E;
2001   }
2002 }
2003 
2004 bool
2005 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2006                                                    const CXXMethodDecl *MD) {
2007   // When building with -fapple-kext, all calls must go through the vtable since
2008   // the kernel linker can do runtime patching of vtables.
2009   if (getLangOpts().AppleKext)
2010     return false;
2011 
2012   // If the most derived class is marked final, we know that no subclass can
2013   // override this member function and so we can devirtualize it. For example:
2014   //
2015   // struct A { virtual void f(); }
2016   // struct B final : A { };
2017   //
2018   // void f(B *b) {
2019   //   b->f();
2020   // }
2021   //
2022   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2023   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2024     return true;
2025 
2026   // If the member function is marked 'final', we know that it can't be
2027   // overridden and can therefore devirtualize it.
2028   if (MD->hasAttr<FinalAttr>())
2029     return true;
2030 
2031   // Similarly, if the class itself is marked 'final' it can't be overridden
2032   // and we can therefore devirtualize the member function call.
2033   if (MD->getParent()->hasAttr<FinalAttr>())
2034     return true;
2035 
2036   Base = skipNoOpCastsAndParens(Base);
2037   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2038     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2039       // This is a record decl. We know the type and can devirtualize it.
2040       return VD->getType()->isRecordType();
2041     }
2042 
2043     return false;
2044   }
2045 
2046   // We can devirtualize calls on an object accessed by a class member access
2047   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2048   // a derived class object constructed in the same location.
2049   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2050     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2051       return VD->getType()->isRecordType();
2052 
2053   // We can always devirtualize calls on temporary object expressions.
2054   if (isa<CXXConstructExpr>(Base))
2055     return true;
2056 
2057   // And calls on bound temporaries.
2058   if (isa<CXXBindTemporaryExpr>(Base))
2059     return true;
2060 
2061   // Check if this is a call expr that returns a record type.
2062   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2063     return CE->getCallReturnType()->isRecordType();
2064 
2065   // We can't devirtualize the call.
2066   return false;
2067 }
2068 
2069 llvm::Value *
2070 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2071                                              const CXXMethodDecl *MD,
2072                                              llvm::Value *This) {
2073   llvm::FunctionType *fnType =
2074     CGM.getTypes().GetFunctionType(
2075                              CGM.getTypes().arrangeCXXMethodDeclaration(MD));
2076 
2077   if (MD->isVirtual() && !CanDevirtualizeMemberFunctionCall(E->getArg(0), MD))
2078     return CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, fnType);
2079 
2080   return CGM.GetAddrOfFunction(MD, fnType);
2081 }
2082 
2083 void CodeGenFunction::EmitForwardingCallToLambda(
2084                                       const CXXMethodDecl *callOperator,
2085                                       CallArgList &callArgs) {
2086   // Get the address of the call operator.
2087   const CGFunctionInfo &calleeFnInfo =
2088     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2089   llvm::Value *callee =
2090     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2091                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2092 
2093   // Prepare the return slot.
2094   const FunctionProtoType *FPT =
2095     callOperator->getType()->castAs<FunctionProtoType>();
2096   QualType resultType = FPT->getReturnType();
2097   ReturnValueSlot returnSlot;
2098   if (!resultType->isVoidType() &&
2099       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2100       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2101     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2102 
2103   // We don't need to separately arrange the call arguments because
2104   // the call can't be variadic anyway --- it's impossible to forward
2105   // variadic arguments.
2106 
2107   // Now emit our call.
2108   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2109                        callArgs, callOperator);
2110 
2111   // If necessary, copy the returned value into the slot.
2112   if (!resultType->isVoidType() && returnSlot.isNull())
2113     EmitReturnOfRValue(RV, resultType);
2114   else
2115     EmitBranchThroughCleanup(ReturnBlock);
2116 }
2117 
2118 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2119   const BlockDecl *BD = BlockInfo->getBlockDecl();
2120   const VarDecl *variable = BD->capture_begin()->getVariable();
2121   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2122 
2123   // Start building arguments for forwarding call
2124   CallArgList CallArgs;
2125 
2126   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2127   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
2128   CallArgs.add(RValue::get(ThisPtr), ThisType);
2129 
2130   // Add the rest of the parameters.
2131   for (auto param : BD->params())
2132     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2133 
2134   assert(!Lambda->isGenericLambda() &&
2135             "generic lambda interconversion to block not implemented");
2136   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2137 }
2138 
2139 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2140   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2141     // FIXME: Making this work correctly is nasty because it requires either
2142     // cloning the body of the call operator or making the call operator forward.
2143     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2144     return;
2145   }
2146 
2147   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2148 }
2149 
2150 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2151   const CXXRecordDecl *Lambda = MD->getParent();
2152 
2153   // Start building arguments for forwarding call
2154   CallArgList CallArgs;
2155 
2156   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2157   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2158   CallArgs.add(RValue::get(ThisPtr), ThisType);
2159 
2160   // Add the rest of the parameters.
2161   for (auto Param : MD->params())
2162     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2163 
2164   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2165   // For a generic lambda, find the corresponding call operator specialization
2166   // to which the call to the static-invoker shall be forwarded.
2167   if (Lambda->isGenericLambda()) {
2168     assert(MD->isFunctionTemplateSpecialization());
2169     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2170     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2171     void *InsertPos = nullptr;
2172     FunctionDecl *CorrespondingCallOpSpecialization =
2173         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2174     assert(CorrespondingCallOpSpecialization);
2175     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2176   }
2177   EmitForwardingCallToLambda(CallOp, CallArgs);
2178 }
2179 
2180 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2181   if (MD->isVariadic()) {
2182     // FIXME: Making this work correctly is nasty because it requires either
2183     // cloning the body of the call operator or making the call operator forward.
2184     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2185     return;
2186   }
2187 
2188   EmitLambdaDelegatingInvokeBody(MD);
2189 }
2190