1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of classes
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/Transforms/Utils/SanitizerStats.h"
32
33 using namespace clang;
34 using namespace CodeGen;
35
36 /// Return the best known alignment for an unknown pointer to a
37 /// particular class.
getClassPointerAlignment(const CXXRecordDecl * RD)38 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
39 if (!RD->hasDefinition())
40 return CharUnits::One(); // Hopefully won't be used anywhere.
41
42 auto &layout = getContext().getASTRecordLayout(RD);
43
44 // If the class is final, then we know that the pointer points to an
45 // object of that type and can use the full alignment.
46 if (RD->isEffectivelyFinal())
47 return layout.getAlignment();
48
49 // Otherwise, we have to assume it could be a subclass.
50 return layout.getNonVirtualAlignment();
51 }
52
53 /// Return the smallest possible amount of storage that might be allocated
54 /// starting from the beginning of an object of a particular class.
55 ///
56 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
getMinimumClassObjectSize(const CXXRecordDecl * RD)57 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
58 if (!RD->hasDefinition())
59 return CharUnits::One();
60
61 auto &layout = getContext().getASTRecordLayout(RD);
62
63 // If the class is final, then we know that the pointer points to an
64 // object of that type and can use the full alignment.
65 if (RD->isEffectivelyFinal())
66 return layout.getSize();
67
68 // Otherwise, we have to assume it could be a subclass.
69 return std::max(layout.getNonVirtualSize(), CharUnits::One());
70 }
71
72 /// Return the best known alignment for a pointer to a virtual base,
73 /// given the alignment of a pointer to the derived class.
getVBaseAlignment(CharUnits actualDerivedAlign,const CXXRecordDecl * derivedClass,const CXXRecordDecl * vbaseClass)74 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
75 const CXXRecordDecl *derivedClass,
76 const CXXRecordDecl *vbaseClass) {
77 // The basic idea here is that an underaligned derived pointer might
78 // indicate an underaligned base pointer.
79
80 assert(vbaseClass->isCompleteDefinition());
81 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
82 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
83
84 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
85 expectedVBaseAlign);
86 }
87
88 CharUnits
getDynamicOffsetAlignment(CharUnits actualBaseAlign,const CXXRecordDecl * baseDecl,CharUnits expectedTargetAlign)89 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
90 const CXXRecordDecl *baseDecl,
91 CharUnits expectedTargetAlign) {
92 // If the base is an incomplete type (which is, alas, possible with
93 // member pointers), be pessimistic.
94 if (!baseDecl->isCompleteDefinition())
95 return std::min(actualBaseAlign, expectedTargetAlign);
96
97 auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
98 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
99
100 // If the class is properly aligned, assume the target offset is, too.
101 //
102 // This actually isn't necessarily the right thing to do --- if the
103 // class is a complete object, but it's only properly aligned for a
104 // base subobject, then the alignments of things relative to it are
105 // probably off as well. (Note that this requires the alignment of
106 // the target to be greater than the NV alignment of the derived
107 // class.)
108 //
109 // However, our approach to this kind of under-alignment can only
110 // ever be best effort; after all, we're never going to propagate
111 // alignments through variables or parameters. Note, in particular,
112 // that constructing a polymorphic type in an address that's less
113 // than pointer-aligned will generally trap in the constructor,
114 // unless we someday add some sort of attribute to change the
115 // assumed alignment of 'this'. So our goal here is pretty much
116 // just to allow the user to explicitly say that a pointer is
117 // under-aligned and then safely access its fields and vtables.
118 if (actualBaseAlign >= expectedBaseAlign) {
119 return expectedTargetAlign;
120 }
121
122 // Otherwise, we might be offset by an arbitrary multiple of the
123 // actual alignment. The correct adjustment is to take the min of
124 // the two alignments.
125 return std::min(actualBaseAlign, expectedTargetAlign);
126 }
127
LoadCXXThisAddress()128 Address CodeGenFunction::LoadCXXThisAddress() {
129 assert(CurFuncDecl && "loading 'this' without a func declaration?");
130 auto *MD = cast<CXXMethodDecl>(CurFuncDecl);
131
132 // Lazily compute CXXThisAlignment.
133 if (CXXThisAlignment.isZero()) {
134 // Just use the best known alignment for the parent.
135 // TODO: if we're currently emitting a complete-object ctor/dtor,
136 // we can always use the complete-object alignment.
137 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent());
138 }
139
140 llvm::Type *Ty = ConvertType(MD->getThisType()->getPointeeType());
141 return Address(LoadCXXThis(), Ty, CXXThisAlignment);
142 }
143
144 /// Emit the address of a field using a member data pointer.
145 ///
146 /// \param E Only used for emergency diagnostics
147 Address
EmitCXXMemberDataPointerAddress(const Expr * E,Address base,llvm::Value * memberPtr,const MemberPointerType * memberPtrType,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)148 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
149 llvm::Value *memberPtr,
150 const MemberPointerType *memberPtrType,
151 LValueBaseInfo *BaseInfo,
152 TBAAAccessInfo *TBAAInfo) {
153 // Ask the ABI to compute the actual address.
154 llvm::Value *ptr =
155 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
156 memberPtr, memberPtrType);
157
158 QualType memberType = memberPtrType->getPointeeType();
159 CharUnits memberAlign =
160 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
161 memberAlign =
162 CGM.getDynamicOffsetAlignment(base.getAlignment(),
163 memberPtrType->getClass()->getAsCXXRecordDecl(),
164 memberAlign);
165 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()),
166 memberAlign);
167 }
168
computeNonVirtualBaseClassOffset(const CXXRecordDecl * DerivedClass,CastExpr::path_const_iterator Start,CastExpr::path_const_iterator End)169 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
170 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
171 CastExpr::path_const_iterator End) {
172 CharUnits Offset = CharUnits::Zero();
173
174 const ASTContext &Context = getContext();
175 const CXXRecordDecl *RD = DerivedClass;
176
177 for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
178 const CXXBaseSpecifier *Base = *I;
179 assert(!Base->isVirtual() && "Should not see virtual bases here!");
180
181 // Get the layout.
182 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
183
184 const auto *BaseDecl =
185 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
186
187 // Add the offset.
188 Offset += Layout.getBaseClassOffset(BaseDecl);
189
190 RD = BaseDecl;
191 }
192
193 return Offset;
194 }
195
196 llvm::Constant *
GetNonVirtualBaseClassOffset(const CXXRecordDecl * ClassDecl,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd)197 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
198 CastExpr::path_const_iterator PathBegin,
199 CastExpr::path_const_iterator PathEnd) {
200 assert(PathBegin != PathEnd && "Base path should not be empty!");
201
202 CharUnits Offset =
203 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
204 if (Offset.isZero())
205 return nullptr;
206
207 llvm::Type *PtrDiffTy =
208 Types.ConvertType(getContext().getPointerDiffType());
209
210 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
211 }
212
213 /// Gets the address of a direct base class within a complete object.
214 /// This should only be used for (1) non-virtual bases or (2) virtual bases
215 /// when the type is known to be complete (e.g. in complete destructors).
216 ///
217 /// The object pointed to by 'This' is assumed to be non-null.
218 Address
GetAddressOfDirectBaseInCompleteClass(Address This,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,bool BaseIsVirtual)219 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
220 const CXXRecordDecl *Derived,
221 const CXXRecordDecl *Base,
222 bool BaseIsVirtual) {
223 // 'this' must be a pointer (in some address space) to Derived.
224 assert(This.getElementType() == ConvertType(Derived));
225
226 // Compute the offset of the virtual base.
227 CharUnits Offset;
228 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
229 if (BaseIsVirtual)
230 Offset = Layout.getVBaseClassOffset(Base);
231 else
232 Offset = Layout.getBaseClassOffset(Base);
233
234 // Shift and cast down to the base type.
235 // TODO: for complete types, this should be possible with a GEP.
236 Address V = This;
237 if (!Offset.isZero()) {
238 V = Builder.CreateElementBitCast(V, Int8Ty);
239 V = Builder.CreateConstInBoundsByteGEP(V, Offset);
240 }
241 V = Builder.CreateElementBitCast(V, ConvertType(Base));
242
243 return V;
244 }
245
246 static Address
ApplyNonVirtualAndVirtualOffset(CodeGenFunction & CGF,Address addr,CharUnits nonVirtualOffset,llvm::Value * virtualOffset,const CXXRecordDecl * derivedClass,const CXXRecordDecl * nearestVBase)247 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
248 CharUnits nonVirtualOffset,
249 llvm::Value *virtualOffset,
250 const CXXRecordDecl *derivedClass,
251 const CXXRecordDecl *nearestVBase) {
252 // Assert that we have something to do.
253 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
254
255 // Compute the offset from the static and dynamic components.
256 llvm::Value *baseOffset;
257 if (!nonVirtualOffset.isZero()) {
258 llvm::Type *OffsetType =
259 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
260 CGF.CGM.getItaniumVTableContext().isRelativeLayout())
261 ? CGF.Int32Ty
262 : CGF.PtrDiffTy;
263 baseOffset =
264 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
265 if (virtualOffset) {
266 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
267 }
268 } else {
269 baseOffset = virtualOffset;
270 }
271
272 // Apply the base offset.
273 llvm::Value *ptr = addr.getPointer();
274 unsigned AddrSpace = ptr->getType()->getPointerAddressSpace();
275 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace));
276 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
277
278 // If we have a virtual component, the alignment of the result will
279 // be relative only to the known alignment of that vbase.
280 CharUnits alignment;
281 if (virtualOffset) {
282 assert(nearestVBase && "virtual offset without vbase?");
283 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
284 derivedClass, nearestVBase);
285 } else {
286 alignment = addr.getAlignment();
287 }
288 alignment = alignment.alignmentAtOffset(nonVirtualOffset);
289
290 return Address(ptr, CGF.Int8Ty, alignment);
291 }
292
GetAddressOfBaseClass(Address Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue,SourceLocation Loc)293 Address CodeGenFunction::GetAddressOfBaseClass(
294 Address Value, const CXXRecordDecl *Derived,
295 CastExpr::path_const_iterator PathBegin,
296 CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
297 SourceLocation Loc) {
298 assert(PathBegin != PathEnd && "Base path should not be empty!");
299
300 CastExpr::path_const_iterator Start = PathBegin;
301 const CXXRecordDecl *VBase = nullptr;
302
303 // Sema has done some convenient canonicalization here: if the
304 // access path involved any virtual steps, the conversion path will
305 // *start* with a step down to the correct virtual base subobject,
306 // and hence will not require any further steps.
307 if ((*Start)->isVirtual()) {
308 VBase = cast<CXXRecordDecl>(
309 (*Start)->getType()->castAs<RecordType>()->getDecl());
310 ++Start;
311 }
312
313 // Compute the static offset of the ultimate destination within its
314 // allocating subobject (the virtual base, if there is one, or else
315 // the "complete" object that we see).
316 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
317 VBase ? VBase : Derived, Start, PathEnd);
318
319 // If there's a virtual step, we can sometimes "devirtualize" it.
320 // For now, that's limited to when the derived type is final.
321 // TODO: "devirtualize" this for accesses to known-complete objects.
322 if (VBase && Derived->hasAttr<FinalAttr>()) {
323 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
324 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
325 NonVirtualOffset += vBaseOffset;
326 VBase = nullptr; // we no longer have a virtual step
327 }
328
329 // Get the base pointer type.
330 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType());
331 llvm::Type *BasePtrTy =
332 BaseValueTy->getPointerTo(Value.getType()->getPointerAddressSpace());
333
334 QualType DerivedTy = getContext().getRecordType(Derived);
335 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
336
337 // If the static offset is zero and we don't have a virtual step,
338 // just do a bitcast; null checks are unnecessary.
339 if (NonVirtualOffset.isZero() && !VBase) {
340 if (sanitizePerformTypeCheck()) {
341 SanitizerSet SkippedChecks;
342 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
343 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
344 DerivedTy, DerivedAlign, SkippedChecks);
345 }
346 return Builder.CreateElementBitCast(Value, BaseValueTy);
347 }
348
349 llvm::BasicBlock *origBB = nullptr;
350 llvm::BasicBlock *endBB = nullptr;
351
352 // Skip over the offset (and the vtable load) if we're supposed to
353 // null-check the pointer.
354 if (NullCheckValue) {
355 origBB = Builder.GetInsertBlock();
356 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
357 endBB = createBasicBlock("cast.end");
358
359 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
360 Builder.CreateCondBr(isNull, endBB, notNullBB);
361 EmitBlock(notNullBB);
362 }
363
364 if (sanitizePerformTypeCheck()) {
365 SanitizerSet SkippedChecks;
366 SkippedChecks.set(SanitizerKind::Null, true);
367 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
368 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
369 }
370
371 // Compute the virtual offset.
372 llvm::Value *VirtualOffset = nullptr;
373 if (VBase) {
374 VirtualOffset =
375 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
376 }
377
378 // Apply both offsets.
379 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
380 VirtualOffset, Derived, VBase);
381
382 // Cast to the destination type.
383 Value = Builder.CreateElementBitCast(Value, BaseValueTy);
384
385 // Build a phi if we needed a null check.
386 if (NullCheckValue) {
387 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
388 Builder.CreateBr(endBB);
389 EmitBlock(endBB);
390
391 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
392 PHI->addIncoming(Value.getPointer(), notNullBB);
393 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
394 Value = Value.withPointer(PHI);
395 }
396
397 return Value;
398 }
399
400 Address
GetAddressOfDerivedClass(Address BaseAddr,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)401 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
402 const CXXRecordDecl *Derived,
403 CastExpr::path_const_iterator PathBegin,
404 CastExpr::path_const_iterator PathEnd,
405 bool NullCheckValue) {
406 assert(PathBegin != PathEnd && "Base path should not be empty!");
407
408 QualType DerivedTy =
409 getContext().getCanonicalType(getContext().getTagDeclType(Derived));
410 unsigned AddrSpace = BaseAddr.getAddressSpace();
411 llvm::Type *DerivedValueTy = ConvertType(DerivedTy);
412 llvm::Type *DerivedPtrTy = DerivedValueTy->getPointerTo(AddrSpace);
413
414 llvm::Value *NonVirtualOffset =
415 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
416
417 if (!NonVirtualOffset) {
418 // No offset, we can just cast back.
419 return Builder.CreateElementBitCast(BaseAddr, DerivedValueTy);
420 }
421
422 llvm::BasicBlock *CastNull = nullptr;
423 llvm::BasicBlock *CastNotNull = nullptr;
424 llvm::BasicBlock *CastEnd = nullptr;
425
426 if (NullCheckValue) {
427 CastNull = createBasicBlock("cast.null");
428 CastNotNull = createBasicBlock("cast.notnull");
429 CastEnd = createBasicBlock("cast.end");
430
431 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
432 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
433 EmitBlock(CastNotNull);
434 }
435
436 // Apply the offset.
437 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
438 Value = Builder.CreateInBoundsGEP(
439 Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr");
440
441 // Just cast.
442 Value = Builder.CreateBitCast(Value, DerivedPtrTy);
443
444 // Produce a PHI if we had a null-check.
445 if (NullCheckValue) {
446 Builder.CreateBr(CastEnd);
447 EmitBlock(CastNull);
448 Builder.CreateBr(CastEnd);
449 EmitBlock(CastEnd);
450
451 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
452 PHI->addIncoming(Value, CastNotNull);
453 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
454 Value = PHI;
455 }
456
457 return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived));
458 }
459
GetVTTParameter(GlobalDecl GD,bool ForVirtualBase,bool Delegating)460 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
461 bool ForVirtualBase,
462 bool Delegating) {
463 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
464 // This constructor/destructor does not need a VTT parameter.
465 return nullptr;
466 }
467
468 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
469 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
470
471 uint64_t SubVTTIndex;
472
473 if (Delegating) {
474 // If this is a delegating constructor call, just load the VTT.
475 return LoadCXXVTT();
476 } else if (RD == Base) {
477 // If the record matches the base, this is the complete ctor/dtor
478 // variant calling the base variant in a class with virtual bases.
479 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
480 "doing no-op VTT offset in base dtor/ctor?");
481 assert(!ForVirtualBase && "Can't have same class as virtual base!");
482 SubVTTIndex = 0;
483 } else {
484 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
485 CharUnits BaseOffset = ForVirtualBase ?
486 Layout.getVBaseClassOffset(Base) :
487 Layout.getBaseClassOffset(Base);
488
489 SubVTTIndex =
490 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
491 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
492 }
493
494 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
495 // A VTT parameter was passed to the constructor, use it.
496 llvm::Value *VTT = LoadCXXVTT();
497 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
498 } else {
499 // We're the complete constructor, so get the VTT by name.
500 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
501 return Builder.CreateConstInBoundsGEP2_64(
502 VTT->getValueType(), VTT, 0, SubVTTIndex);
503 }
504 }
505
506 namespace {
507 /// Call the destructor for a direct base class.
508 struct CallBaseDtor final : EHScopeStack::Cleanup {
509 const CXXRecordDecl *BaseClass;
510 bool BaseIsVirtual;
CallBaseDtor__anon858dc5ae0111::CallBaseDtor511 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
512 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
513
Emit__anon858dc5ae0111::CallBaseDtor514 void Emit(CodeGenFunction &CGF, Flags flags) override {
515 const CXXRecordDecl *DerivedClass =
516 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
517
518 const CXXDestructorDecl *D = BaseClass->getDestructor();
519 // We are already inside a destructor, so presumably the object being
520 // destroyed should have the expected type.
521 QualType ThisTy = D->getThisObjectType();
522 Address Addr =
523 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
524 DerivedClass, BaseClass,
525 BaseIsVirtual);
526 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
527 /*Delegating=*/false, Addr, ThisTy);
528 }
529 };
530
531 /// A visitor which checks whether an initializer uses 'this' in a
532 /// way which requires the vtable to be properly set.
533 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
534 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
535
536 bool UsesThis;
537
DynamicThisUseChecker__anon858dc5ae0111::DynamicThisUseChecker538 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
539
540 // Black-list all explicit and implicit references to 'this'.
541 //
542 // Do we need to worry about external references to 'this' derived
543 // from arbitrary code? If so, then anything which runs arbitrary
544 // external code might potentially access the vtable.
VisitCXXThisExpr__anon858dc5ae0111::DynamicThisUseChecker545 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
546 };
547 } // end anonymous namespace
548
BaseInitializerUsesThis(ASTContext & C,const Expr * Init)549 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
550 DynamicThisUseChecker Checker(C);
551 Checker.Visit(Init);
552 return Checker.UsesThis;
553 }
554
EmitBaseInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * BaseInit)555 static void EmitBaseInitializer(CodeGenFunction &CGF,
556 const CXXRecordDecl *ClassDecl,
557 CXXCtorInitializer *BaseInit) {
558 assert(BaseInit->isBaseInitializer() &&
559 "Must have base initializer!");
560
561 Address ThisPtr = CGF.LoadCXXThisAddress();
562
563 const Type *BaseType = BaseInit->getBaseClass();
564 const auto *BaseClassDecl =
565 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
566
567 bool isBaseVirtual = BaseInit->isBaseVirtual();
568
569 // If the initializer for the base (other than the constructor
570 // itself) accesses 'this' in any way, we need to initialize the
571 // vtables.
572 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
573 CGF.InitializeVTablePointers(ClassDecl);
574
575 // We can pretend to be a complete class because it only matters for
576 // virtual bases, and we only do virtual bases for complete ctors.
577 Address V =
578 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
579 BaseClassDecl,
580 isBaseVirtual);
581 AggValueSlot AggSlot =
582 AggValueSlot::forAddr(
583 V, Qualifiers(),
584 AggValueSlot::IsDestructed,
585 AggValueSlot::DoesNotNeedGCBarriers,
586 AggValueSlot::IsNotAliased,
587 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
588
589 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
590
591 if (CGF.CGM.getLangOpts().Exceptions &&
592 !BaseClassDecl->hasTrivialDestructor())
593 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
594 isBaseVirtual);
595 }
596
isMemcpyEquivalentSpecialMember(const CXXMethodDecl * D)597 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
598 auto *CD = dyn_cast<CXXConstructorDecl>(D);
599 if (!(CD && CD->isCopyOrMoveConstructor()) &&
600 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
601 return false;
602
603 // We can emit a memcpy for a trivial copy or move constructor/assignment.
604 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
605 return true;
606
607 // We *must* emit a memcpy for a defaulted union copy or move op.
608 if (D->getParent()->isUnion() && D->isDefaulted())
609 return true;
610
611 return false;
612 }
613
EmitLValueForAnyFieldInitialization(CodeGenFunction & CGF,CXXCtorInitializer * MemberInit,LValue & LHS)614 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
615 CXXCtorInitializer *MemberInit,
616 LValue &LHS) {
617 FieldDecl *Field = MemberInit->getAnyMember();
618 if (MemberInit->isIndirectMemberInitializer()) {
619 // If we are initializing an anonymous union field, drill down to the field.
620 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
621 for (const auto *I : IndirectField->chain())
622 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
623 } else {
624 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
625 }
626 }
627
EmitMemberInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * MemberInit,const CXXConstructorDecl * Constructor,FunctionArgList & Args)628 static void EmitMemberInitializer(CodeGenFunction &CGF,
629 const CXXRecordDecl *ClassDecl,
630 CXXCtorInitializer *MemberInit,
631 const CXXConstructorDecl *Constructor,
632 FunctionArgList &Args) {
633 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
634 assert(MemberInit->isAnyMemberInitializer() &&
635 "Must have member initializer!");
636 assert(MemberInit->getInit() && "Must have initializer!");
637
638 // non-static data member initializers.
639 FieldDecl *Field = MemberInit->getAnyMember();
640 QualType FieldType = Field->getType();
641
642 llvm::Value *ThisPtr = CGF.LoadCXXThis();
643 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
644 LValue LHS;
645
646 // If a base constructor is being emitted, create an LValue that has the
647 // non-virtual alignment.
648 if (CGF.CurGD.getCtorType() == Ctor_Base)
649 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
650 else
651 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
652
653 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
654
655 // Special case: if we are in a copy or move constructor, and we are copying
656 // an array of PODs or classes with trivial copy constructors, ignore the
657 // AST and perform the copy we know is equivalent.
658 // FIXME: This is hacky at best... if we had a bit more explicit information
659 // in the AST, we could generalize it more easily.
660 const ConstantArrayType *Array
661 = CGF.getContext().getAsConstantArrayType(FieldType);
662 if (Array && Constructor->isDefaulted() &&
663 Constructor->isCopyOrMoveConstructor()) {
664 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
665 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
666 if (BaseElementTy.isPODType(CGF.getContext()) ||
667 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
668 unsigned SrcArgIndex =
669 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
670 llvm::Value *SrcPtr
671 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
672 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
673 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
674
675 // Copy the aggregate.
676 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
677 LHS.isVolatileQualified());
678 // Ensure that we destroy the objects if an exception is thrown later in
679 // the constructor.
680 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
681 if (CGF.needsEHCleanup(dtorKind))
682 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType);
683 return;
684 }
685 }
686
687 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
688 }
689
EmitInitializerForField(FieldDecl * Field,LValue LHS,Expr * Init)690 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
691 Expr *Init) {
692 QualType FieldType = Field->getType();
693 switch (getEvaluationKind(FieldType)) {
694 case TEK_Scalar:
695 if (LHS.isSimple()) {
696 EmitExprAsInit(Init, Field, LHS, false);
697 } else {
698 RValue RHS = RValue::get(EmitScalarExpr(Init));
699 EmitStoreThroughLValue(RHS, LHS);
700 }
701 break;
702 case TEK_Complex:
703 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
704 break;
705 case TEK_Aggregate: {
706 AggValueSlot Slot = AggValueSlot::forLValue(
707 LHS, *this, AggValueSlot::IsDestructed,
708 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
709 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed,
710 // Checks are made by the code that calls constructor.
711 AggValueSlot::IsSanitizerChecked);
712 EmitAggExpr(Init, Slot);
713 break;
714 }
715 }
716
717 // Ensure that we destroy this object if an exception is thrown
718 // later in the constructor.
719 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
720 if (needsEHCleanup(dtorKind))
721 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType);
722 }
723
724 /// Checks whether the given constructor is a valid subject for the
725 /// complete-to-base constructor delegation optimization, i.e.
726 /// emitting the complete constructor as a simple call to the base
727 /// constructor.
IsConstructorDelegationValid(const CXXConstructorDecl * Ctor)728 bool CodeGenFunction::IsConstructorDelegationValid(
729 const CXXConstructorDecl *Ctor) {
730
731 // Currently we disable the optimization for classes with virtual
732 // bases because (1) the addresses of parameter variables need to be
733 // consistent across all initializers but (2) the delegate function
734 // call necessarily creates a second copy of the parameter variable.
735 //
736 // The limiting example (purely theoretical AFAIK):
737 // struct A { A(int &c) { c++; } };
738 // struct B : virtual A {
739 // B(int count) : A(count) { printf("%d\n", count); }
740 // };
741 // ...although even this example could in principle be emitted as a
742 // delegation since the address of the parameter doesn't escape.
743 if (Ctor->getParent()->getNumVBases()) {
744 // TODO: white-list trivial vbase initializers. This case wouldn't
745 // be subject to the restrictions below.
746
747 // TODO: white-list cases where:
748 // - there are no non-reference parameters to the constructor
749 // - the initializers don't access any non-reference parameters
750 // - the initializers don't take the address of non-reference
751 // parameters
752 // - etc.
753 // If we ever add any of the above cases, remember that:
754 // - function-try-blocks will always exclude this optimization
755 // - we need to perform the constructor prologue and cleanup in
756 // EmitConstructorBody.
757
758 return false;
759 }
760
761 // We also disable the optimization for variadic functions because
762 // it's impossible to "re-pass" varargs.
763 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
764 return false;
765
766 // FIXME: Decide if we can do a delegation of a delegating constructor.
767 if (Ctor->isDelegatingConstructor())
768 return false;
769
770 return true;
771 }
772
773 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
774 // to poison the extra field paddings inserted under
775 // -fsanitize-address-field-padding=1|2.
EmitAsanPrologueOrEpilogue(bool Prologue)776 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
777 ASTContext &Context = getContext();
778 const CXXRecordDecl *ClassDecl =
779 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
780 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
781 if (!ClassDecl->mayInsertExtraPadding()) return;
782
783 struct SizeAndOffset {
784 uint64_t Size;
785 uint64_t Offset;
786 };
787
788 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
789 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
790
791 // Populate sizes and offsets of fields.
792 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
793 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
794 SSV[i].Offset =
795 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
796
797 size_t NumFields = 0;
798 for (const auto *Field : ClassDecl->fields()) {
799 const FieldDecl *D = Field;
800 auto FieldInfo = Context.getTypeInfoInChars(D->getType());
801 CharUnits FieldSize = FieldInfo.Width;
802 assert(NumFields < SSV.size());
803 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
804 NumFields++;
805 }
806 assert(NumFields == SSV.size());
807 if (SSV.size() <= 1) return;
808
809 // We will insert calls to __asan_* run-time functions.
810 // LLVM AddressSanitizer pass may decide to inline them later.
811 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
812 llvm::FunctionType *FTy =
813 llvm::FunctionType::get(CGM.VoidTy, Args, false);
814 llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
815 FTy, Prologue ? "__asan_poison_intra_object_redzone"
816 : "__asan_unpoison_intra_object_redzone");
817
818 llvm::Value *ThisPtr = LoadCXXThis();
819 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
820 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
821 // For each field check if it has sufficient padding,
822 // if so (un)poison it with a call.
823 for (size_t i = 0; i < SSV.size(); i++) {
824 uint64_t AsanAlignment = 8;
825 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
826 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
827 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
828 if (PoisonSize < AsanAlignment || !SSV[i].Size ||
829 (NextField % AsanAlignment) != 0)
830 continue;
831 Builder.CreateCall(
832 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
833 Builder.getIntN(PtrSize, PoisonSize)});
834 }
835 }
836
837 /// EmitConstructorBody - Emits the body of the current constructor.
EmitConstructorBody(FunctionArgList & Args)838 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
839 EmitAsanPrologueOrEpilogue(true);
840 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
841 CXXCtorType CtorType = CurGD.getCtorType();
842
843 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
844 CtorType == Ctor_Complete) &&
845 "can only generate complete ctor for this ABI");
846
847 // Before we go any further, try the complete->base constructor
848 // delegation optimization.
849 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
850 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
851 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
852 return;
853 }
854
855 const FunctionDecl *Definition = nullptr;
856 Stmt *Body = Ctor->getBody(Definition);
857 assert(Definition == Ctor && "emitting wrong constructor body");
858
859 // Enter the function-try-block before the constructor prologue if
860 // applicable.
861 bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
862 if (IsTryBody)
863 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
864
865 incrementProfileCounter(Body);
866
867 RunCleanupsScope RunCleanups(*this);
868
869 // TODO: in restricted cases, we can emit the vbase initializers of
870 // a complete ctor and then delegate to the base ctor.
871
872 // Emit the constructor prologue, i.e. the base and member
873 // initializers.
874 EmitCtorPrologue(Ctor, CtorType, Args);
875
876 // Emit the body of the statement.
877 if (IsTryBody)
878 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
879 else if (Body)
880 EmitStmt(Body);
881
882 // Emit any cleanup blocks associated with the member or base
883 // initializers, which includes (along the exceptional path) the
884 // destructors for those members and bases that were fully
885 // constructed.
886 RunCleanups.ForceCleanup();
887
888 if (IsTryBody)
889 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
890 }
891
892 namespace {
893 /// RAII object to indicate that codegen is copying the value representation
894 /// instead of the object representation. Useful when copying a struct or
895 /// class which has uninitialized members and we're only performing
896 /// lvalue-to-rvalue conversion on the object but not its members.
897 class CopyingValueRepresentation {
898 public:
CopyingValueRepresentation(CodeGenFunction & CGF)899 explicit CopyingValueRepresentation(CodeGenFunction &CGF)
900 : CGF(CGF), OldSanOpts(CGF.SanOpts) {
901 CGF.SanOpts.set(SanitizerKind::Bool, false);
902 CGF.SanOpts.set(SanitizerKind::Enum, false);
903 }
~CopyingValueRepresentation()904 ~CopyingValueRepresentation() {
905 CGF.SanOpts = OldSanOpts;
906 }
907 private:
908 CodeGenFunction &CGF;
909 SanitizerSet OldSanOpts;
910 };
911 } // end anonymous namespace
912
913 namespace {
914 class FieldMemcpyizer {
915 public:
FieldMemcpyizer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,const VarDecl * SrcRec)916 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
917 const VarDecl *SrcRec)
918 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
919 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
920 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
921 LastFieldOffset(0), LastAddedFieldIndex(0) {}
922
isMemcpyableField(FieldDecl * F) const923 bool isMemcpyableField(FieldDecl *F) const {
924 // Never memcpy fields when we are adding poisoned paddings.
925 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
926 return false;
927 Qualifiers Qual = F->getType().getQualifiers();
928 if (Qual.hasVolatile() || Qual.hasObjCLifetime())
929 return false;
930 return true;
931 }
932
addMemcpyableField(FieldDecl * F)933 void addMemcpyableField(FieldDecl *F) {
934 if (F->isZeroSize(CGF.getContext()))
935 return;
936 if (!FirstField)
937 addInitialField(F);
938 else
939 addNextField(F);
940 }
941
getMemcpySize(uint64_t FirstByteOffset) const942 CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
943 ASTContext &Ctx = CGF.getContext();
944 unsigned LastFieldSize =
945 LastField->isBitField()
946 ? LastField->getBitWidthValue(Ctx)
947 : Ctx.toBits(
948 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
949 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
950 FirstByteOffset + Ctx.getCharWidth() - 1;
951 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
952 return MemcpySize;
953 }
954
emitMemcpy()955 void emitMemcpy() {
956 // Give the subclass a chance to bail out if it feels the memcpy isn't
957 // worth it (e.g. Hasn't aggregated enough data).
958 if (!FirstField) {
959 return;
960 }
961
962 uint64_t FirstByteOffset;
963 if (FirstField->isBitField()) {
964 const CGRecordLayout &RL =
965 CGF.getTypes().getCGRecordLayout(FirstField->getParent());
966 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
967 // FirstFieldOffset is not appropriate for bitfields,
968 // we need to use the storage offset instead.
969 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
970 } else {
971 FirstByteOffset = FirstFieldOffset;
972 }
973
974 CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
975 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
976 Address ThisPtr = CGF.LoadCXXThisAddress();
977 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
978 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
979 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
980 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
981 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
982
983 emitMemcpyIR(
984 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
985 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
986 MemcpySize);
987 reset();
988 }
989
reset()990 void reset() {
991 FirstField = nullptr;
992 }
993
994 protected:
995 CodeGenFunction &CGF;
996 const CXXRecordDecl *ClassDecl;
997
998 private:
emitMemcpyIR(Address DestPtr,Address SrcPtr,CharUnits Size)999 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1000 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
1001 SrcPtr = CGF.Builder.CreateElementBitCast(SrcPtr, CGF.Int8Ty);
1002 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1003 }
1004
addInitialField(FieldDecl * F)1005 void addInitialField(FieldDecl *F) {
1006 FirstField = F;
1007 LastField = F;
1008 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1009 LastFieldOffset = FirstFieldOffset;
1010 LastAddedFieldIndex = F->getFieldIndex();
1011 }
1012
addNextField(FieldDecl * F)1013 void addNextField(FieldDecl *F) {
1014 // For the most part, the following invariant will hold:
1015 // F->getFieldIndex() == LastAddedFieldIndex + 1
1016 // The one exception is that Sema won't add a copy-initializer for an
1017 // unnamed bitfield, which will show up here as a gap in the sequence.
1018 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1019 "Cannot aggregate fields out of order.");
1020 LastAddedFieldIndex = F->getFieldIndex();
1021
1022 // The 'first' and 'last' fields are chosen by offset, rather than field
1023 // index. This allows the code to support bitfields, as well as regular
1024 // fields.
1025 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1026 if (FOffset < FirstFieldOffset) {
1027 FirstField = F;
1028 FirstFieldOffset = FOffset;
1029 } else if (FOffset >= LastFieldOffset) {
1030 LastField = F;
1031 LastFieldOffset = FOffset;
1032 }
1033 }
1034
1035 const VarDecl *SrcRec;
1036 const ASTRecordLayout &RecLayout;
1037 FieldDecl *FirstField;
1038 FieldDecl *LastField;
1039 uint64_t FirstFieldOffset, LastFieldOffset;
1040 unsigned LastAddedFieldIndex;
1041 };
1042
1043 class ConstructorMemcpyizer : public FieldMemcpyizer {
1044 private:
1045 /// Get source argument for copy constructor. Returns null if not a copy
1046 /// constructor.
getTrivialCopySource(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1047 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1048 const CXXConstructorDecl *CD,
1049 FunctionArgList &Args) {
1050 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1051 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1052 return nullptr;
1053 }
1054
1055 // Returns true if a CXXCtorInitializer represents a member initialization
1056 // that can be rolled into a memcpy.
isMemberInitMemcpyable(CXXCtorInitializer * MemberInit) const1057 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1058 if (!MemcpyableCtor)
1059 return false;
1060 FieldDecl *Field = MemberInit->getMember();
1061 assert(Field && "No field for member init.");
1062 QualType FieldType = Field->getType();
1063 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1064
1065 // Bail out on non-memcpyable, not-trivially-copyable members.
1066 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1067 !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1068 FieldType->isReferenceType()))
1069 return false;
1070
1071 // Bail out on volatile fields.
1072 if (!isMemcpyableField(Field))
1073 return false;
1074
1075 // Otherwise we're good.
1076 return true;
1077 }
1078
1079 public:
ConstructorMemcpyizer(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1080 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1081 FunctionArgList &Args)
1082 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1083 ConstructorDecl(CD),
1084 MemcpyableCtor(CD->isDefaulted() &&
1085 CD->isCopyOrMoveConstructor() &&
1086 CGF.getLangOpts().getGC() == LangOptions::NonGC),
1087 Args(Args) { }
1088
addMemberInitializer(CXXCtorInitializer * MemberInit)1089 void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1090 if (isMemberInitMemcpyable(MemberInit)) {
1091 AggregatedInits.push_back(MemberInit);
1092 addMemcpyableField(MemberInit->getMember());
1093 } else {
1094 emitAggregatedInits();
1095 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1096 ConstructorDecl, Args);
1097 }
1098 }
1099
emitAggregatedInits()1100 void emitAggregatedInits() {
1101 if (AggregatedInits.size() <= 1) {
1102 // This memcpy is too small to be worthwhile. Fall back on default
1103 // codegen.
1104 if (!AggregatedInits.empty()) {
1105 CopyingValueRepresentation CVR(CGF);
1106 EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1107 AggregatedInits[0], ConstructorDecl, Args);
1108 AggregatedInits.clear();
1109 }
1110 reset();
1111 return;
1112 }
1113
1114 pushEHDestructors();
1115 emitMemcpy();
1116 AggregatedInits.clear();
1117 }
1118
pushEHDestructors()1119 void pushEHDestructors() {
1120 Address ThisPtr = CGF.LoadCXXThisAddress();
1121 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1122 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1123
1124 for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1125 CXXCtorInitializer *MemberInit = AggregatedInits[i];
1126 QualType FieldType = MemberInit->getAnyMember()->getType();
1127 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1128 if (!CGF.needsEHCleanup(dtorKind))
1129 continue;
1130 LValue FieldLHS = LHS;
1131 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1132 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType);
1133 }
1134 }
1135
finish()1136 void finish() {
1137 emitAggregatedInits();
1138 }
1139
1140 private:
1141 const CXXConstructorDecl *ConstructorDecl;
1142 bool MemcpyableCtor;
1143 FunctionArgList &Args;
1144 SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1145 };
1146
1147 class AssignmentMemcpyizer : public FieldMemcpyizer {
1148 private:
1149 // Returns the memcpyable field copied by the given statement, if one
1150 // exists. Otherwise returns null.
getMemcpyableField(Stmt * S)1151 FieldDecl *getMemcpyableField(Stmt *S) {
1152 if (!AssignmentsMemcpyable)
1153 return nullptr;
1154 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1155 // Recognise trivial assignments.
1156 if (BO->getOpcode() != BO_Assign)
1157 return nullptr;
1158 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1159 if (!ME)
1160 return nullptr;
1161 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1162 if (!Field || !isMemcpyableField(Field))
1163 return nullptr;
1164 Stmt *RHS = BO->getRHS();
1165 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1166 RHS = EC->getSubExpr();
1167 if (!RHS)
1168 return nullptr;
1169 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1170 if (ME2->getMemberDecl() == Field)
1171 return Field;
1172 }
1173 return nullptr;
1174 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1175 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1176 if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1177 return nullptr;
1178 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1179 if (!IOA)
1180 return nullptr;
1181 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1182 if (!Field || !isMemcpyableField(Field))
1183 return nullptr;
1184 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1185 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1186 return nullptr;
1187 return Field;
1188 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1189 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1190 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1191 return nullptr;
1192 Expr *DstPtr = CE->getArg(0);
1193 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1194 DstPtr = DC->getSubExpr();
1195 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1196 if (!DUO || DUO->getOpcode() != UO_AddrOf)
1197 return nullptr;
1198 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1199 if (!ME)
1200 return nullptr;
1201 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1202 if (!Field || !isMemcpyableField(Field))
1203 return nullptr;
1204 Expr *SrcPtr = CE->getArg(1);
1205 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1206 SrcPtr = SC->getSubExpr();
1207 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1208 if (!SUO || SUO->getOpcode() != UO_AddrOf)
1209 return nullptr;
1210 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1211 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1212 return nullptr;
1213 return Field;
1214 }
1215
1216 return nullptr;
1217 }
1218
1219 bool AssignmentsMemcpyable;
1220 SmallVector<Stmt*, 16> AggregatedStmts;
1221
1222 public:
AssignmentMemcpyizer(CodeGenFunction & CGF,const CXXMethodDecl * AD,FunctionArgList & Args)1223 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1224 FunctionArgList &Args)
1225 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1226 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1227 assert(Args.size() == 2);
1228 }
1229
emitAssignment(Stmt * S)1230 void emitAssignment(Stmt *S) {
1231 FieldDecl *F = getMemcpyableField(S);
1232 if (F) {
1233 addMemcpyableField(F);
1234 AggregatedStmts.push_back(S);
1235 } else {
1236 emitAggregatedStmts();
1237 CGF.EmitStmt(S);
1238 }
1239 }
1240
emitAggregatedStmts()1241 void emitAggregatedStmts() {
1242 if (AggregatedStmts.size() <= 1) {
1243 if (!AggregatedStmts.empty()) {
1244 CopyingValueRepresentation CVR(CGF);
1245 CGF.EmitStmt(AggregatedStmts[0]);
1246 }
1247 reset();
1248 }
1249
1250 emitMemcpy();
1251 AggregatedStmts.clear();
1252 }
1253
finish()1254 void finish() {
1255 emitAggregatedStmts();
1256 }
1257 };
1258 } // end anonymous namespace
1259
isInitializerOfDynamicClass(const CXXCtorInitializer * BaseInit)1260 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1261 const Type *BaseType = BaseInit->getBaseClass();
1262 const auto *BaseClassDecl =
1263 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1264 return BaseClassDecl->isDynamicClass();
1265 }
1266
1267 /// EmitCtorPrologue - This routine generates necessary code to initialize
1268 /// base classes and non-static data members belonging to this constructor.
EmitCtorPrologue(const CXXConstructorDecl * CD,CXXCtorType CtorType,FunctionArgList & Args)1269 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1270 CXXCtorType CtorType,
1271 FunctionArgList &Args) {
1272 if (CD->isDelegatingConstructor())
1273 return EmitDelegatingCXXConstructorCall(CD, Args);
1274
1275 const CXXRecordDecl *ClassDecl = CD->getParent();
1276
1277 CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1278 E = CD->init_end();
1279
1280 // Virtual base initializers first, if any. They aren't needed if:
1281 // - This is a base ctor variant
1282 // - There are no vbases
1283 // - The class is abstract, so a complete object of it cannot be constructed
1284 //
1285 // The check for an abstract class is necessary because sema may not have
1286 // marked virtual base destructors referenced.
1287 bool ConstructVBases = CtorType != Ctor_Base &&
1288 ClassDecl->getNumVBases() != 0 &&
1289 !ClassDecl->isAbstract();
1290
1291 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1292 // constructor of a class with virtual bases takes an additional parameter to
1293 // conditionally construct the virtual bases. Emit that check here.
1294 llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1295 if (ConstructVBases &&
1296 !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1297 BaseCtorContinueBB =
1298 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1299 assert(BaseCtorContinueBB);
1300 }
1301
1302 llvm::Value *const OldThis = CXXThisValue;
1303 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1304 if (!ConstructVBases)
1305 continue;
1306 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1307 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1308 isInitializerOfDynamicClass(*B))
1309 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1310 EmitBaseInitializer(*this, ClassDecl, *B);
1311 }
1312
1313 if (BaseCtorContinueBB) {
1314 // Complete object handler should continue to the remaining initializers.
1315 Builder.CreateBr(BaseCtorContinueBB);
1316 EmitBlock(BaseCtorContinueBB);
1317 }
1318
1319 // Then, non-virtual base initializers.
1320 for (; B != E && (*B)->isBaseInitializer(); B++) {
1321 assert(!(*B)->isBaseVirtual());
1322
1323 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1324 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1325 isInitializerOfDynamicClass(*B))
1326 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1327 EmitBaseInitializer(*this, ClassDecl, *B);
1328 }
1329
1330 CXXThisValue = OldThis;
1331
1332 InitializeVTablePointers(ClassDecl);
1333
1334 // And finally, initialize class members.
1335 FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1336 ConstructorMemcpyizer CM(*this, CD, Args);
1337 for (; B != E; B++) {
1338 CXXCtorInitializer *Member = (*B);
1339 assert(!Member->isBaseInitializer());
1340 assert(Member->isAnyMemberInitializer() &&
1341 "Delegating initializer on non-delegating constructor");
1342 CM.addMemberInitializer(Member);
1343 }
1344 CM.finish();
1345 }
1346
1347 static bool
1348 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1349
1350 static bool
HasTrivialDestructorBody(ASTContext & Context,const CXXRecordDecl * BaseClassDecl,const CXXRecordDecl * MostDerivedClassDecl)1351 HasTrivialDestructorBody(ASTContext &Context,
1352 const CXXRecordDecl *BaseClassDecl,
1353 const CXXRecordDecl *MostDerivedClassDecl)
1354 {
1355 // If the destructor is trivial we don't have to check anything else.
1356 if (BaseClassDecl->hasTrivialDestructor())
1357 return true;
1358
1359 if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1360 return false;
1361
1362 // Check fields.
1363 for (const auto *Field : BaseClassDecl->fields())
1364 if (!FieldHasTrivialDestructorBody(Context, Field))
1365 return false;
1366
1367 // Check non-virtual bases.
1368 for (const auto &I : BaseClassDecl->bases()) {
1369 if (I.isVirtual())
1370 continue;
1371
1372 const CXXRecordDecl *NonVirtualBase =
1373 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1374 if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1375 MostDerivedClassDecl))
1376 return false;
1377 }
1378
1379 if (BaseClassDecl == MostDerivedClassDecl) {
1380 // Check virtual bases.
1381 for (const auto &I : BaseClassDecl->vbases()) {
1382 const CXXRecordDecl *VirtualBase =
1383 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1384 if (!HasTrivialDestructorBody(Context, VirtualBase,
1385 MostDerivedClassDecl))
1386 return false;
1387 }
1388 }
1389
1390 return true;
1391 }
1392
1393 static bool
FieldHasTrivialDestructorBody(ASTContext & Context,const FieldDecl * Field)1394 FieldHasTrivialDestructorBody(ASTContext &Context,
1395 const FieldDecl *Field)
1396 {
1397 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1398
1399 const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1400 if (!RT)
1401 return true;
1402
1403 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1404
1405 // The destructor for an implicit anonymous union member is never invoked.
1406 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1407 return false;
1408
1409 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1410 }
1411
1412 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1413 /// any vtable pointers before calling this destructor.
CanSkipVTablePointerInitialization(CodeGenFunction & CGF,const CXXDestructorDecl * Dtor)1414 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1415 const CXXDestructorDecl *Dtor) {
1416 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1417 if (!ClassDecl->isDynamicClass())
1418 return true;
1419
1420 // For a final class, the vtable pointer is known to already point to the
1421 // class's vtable.
1422 if (ClassDecl->isEffectivelyFinal())
1423 return true;
1424
1425 if (!Dtor->hasTrivialBody())
1426 return false;
1427
1428 // Check the fields.
1429 for (const auto *Field : ClassDecl->fields())
1430 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1431 return false;
1432
1433 return true;
1434 }
1435
1436 /// EmitDestructorBody - Emits the body of the current destructor.
EmitDestructorBody(FunctionArgList & Args)1437 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1438 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1439 CXXDtorType DtorType = CurGD.getDtorType();
1440
1441 // For an abstract class, non-base destructors are never used (and can't
1442 // be emitted in general, because vbase dtors may not have been validated
1443 // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1444 // in fact emit references to them from other compilations, so emit them
1445 // as functions containing a trap instruction.
1446 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1447 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1448 TrapCall->setDoesNotReturn();
1449 TrapCall->setDoesNotThrow();
1450 Builder.CreateUnreachable();
1451 Builder.ClearInsertionPoint();
1452 return;
1453 }
1454
1455 Stmt *Body = Dtor->getBody();
1456 if (Body)
1457 incrementProfileCounter(Body);
1458
1459 // The call to operator delete in a deleting destructor happens
1460 // outside of the function-try-block, which means it's always
1461 // possible to delegate the destructor body to the complete
1462 // destructor. Do so.
1463 if (DtorType == Dtor_Deleting) {
1464 RunCleanupsScope DtorEpilogue(*this);
1465 EnterDtorCleanups(Dtor, Dtor_Deleting);
1466 if (HaveInsertPoint()) {
1467 QualType ThisTy = Dtor->getThisObjectType();
1468 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1469 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1470 }
1471 return;
1472 }
1473
1474 // If the body is a function-try-block, enter the try before
1475 // anything else.
1476 bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1477 if (isTryBody)
1478 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1479 EmitAsanPrologueOrEpilogue(false);
1480
1481 // Enter the epilogue cleanups.
1482 RunCleanupsScope DtorEpilogue(*this);
1483
1484 // If this is the complete variant, just invoke the base variant;
1485 // the epilogue will destruct the virtual bases. But we can't do
1486 // this optimization if the body is a function-try-block, because
1487 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1488 // always delegate because we might not have a definition in this TU.
1489 switch (DtorType) {
1490 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1491 case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1492
1493 case Dtor_Complete:
1494 assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1495 "can't emit a dtor without a body for non-Microsoft ABIs");
1496
1497 // Enter the cleanup scopes for virtual bases.
1498 EnterDtorCleanups(Dtor, Dtor_Complete);
1499
1500 if (!isTryBody) {
1501 QualType ThisTy = Dtor->getThisObjectType();
1502 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1503 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1504 break;
1505 }
1506
1507 // Fallthrough: act like we're in the base variant.
1508 LLVM_FALLTHROUGH;
1509
1510 case Dtor_Base:
1511 assert(Body);
1512
1513 // Enter the cleanup scopes for fields and non-virtual bases.
1514 EnterDtorCleanups(Dtor, Dtor_Base);
1515
1516 // Initialize the vtable pointers before entering the body.
1517 if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1518 // Insert the llvm.launder.invariant.group intrinsic before initializing
1519 // the vptrs to cancel any previous assumptions we might have made.
1520 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1521 CGM.getCodeGenOpts().OptimizationLevel > 0)
1522 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1523 InitializeVTablePointers(Dtor->getParent());
1524 }
1525
1526 if (isTryBody)
1527 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1528 else if (Body)
1529 EmitStmt(Body);
1530 else {
1531 assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1532 // nothing to do besides what's in the epilogue
1533 }
1534 // -fapple-kext must inline any call to this dtor into
1535 // the caller's body.
1536 if (getLangOpts().AppleKext)
1537 CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1538
1539 break;
1540 }
1541
1542 // Jump out through the epilogue cleanups.
1543 DtorEpilogue.ForceCleanup();
1544
1545 // Exit the try if applicable.
1546 if (isTryBody)
1547 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1548 }
1549
emitImplicitAssignmentOperatorBody(FunctionArgList & Args)1550 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1551 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1552 const Stmt *RootS = AssignOp->getBody();
1553 assert(isa<CompoundStmt>(RootS) &&
1554 "Body of an implicit assignment operator should be compound stmt.");
1555 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1556
1557 LexicalScope Scope(*this, RootCS->getSourceRange());
1558
1559 incrementProfileCounter(RootCS);
1560 AssignmentMemcpyizer AM(*this, AssignOp, Args);
1561 for (auto *I : RootCS->body())
1562 AM.emitAssignment(I);
1563 AM.finish();
1564 }
1565
1566 namespace {
LoadThisForDtorDelete(CodeGenFunction & CGF,const CXXDestructorDecl * DD)1567 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1568 const CXXDestructorDecl *DD) {
1569 if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1570 return CGF.EmitScalarExpr(ThisArg);
1571 return CGF.LoadCXXThis();
1572 }
1573
1574 /// Call the operator delete associated with the current destructor.
1575 struct CallDtorDelete final : EHScopeStack::Cleanup {
CallDtorDelete__anon858dc5ae0411::CallDtorDelete1576 CallDtorDelete() {}
1577
Emit__anon858dc5ae0411::CallDtorDelete1578 void Emit(CodeGenFunction &CGF, Flags flags) override {
1579 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1580 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1581 CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1582 LoadThisForDtorDelete(CGF, Dtor),
1583 CGF.getContext().getTagDeclType(ClassDecl));
1584 }
1585 };
1586
EmitConditionalDtorDeleteCall(CodeGenFunction & CGF,llvm::Value * ShouldDeleteCondition,bool ReturnAfterDelete)1587 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1588 llvm::Value *ShouldDeleteCondition,
1589 bool ReturnAfterDelete) {
1590 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1591 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1592 llvm::Value *ShouldCallDelete
1593 = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1594 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1595
1596 CGF.EmitBlock(callDeleteBB);
1597 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1598 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1599 CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1600 LoadThisForDtorDelete(CGF, Dtor),
1601 CGF.getContext().getTagDeclType(ClassDecl));
1602 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1603 ReturnAfterDelete &&
1604 "unexpected value for ReturnAfterDelete");
1605 if (ReturnAfterDelete)
1606 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1607 else
1608 CGF.Builder.CreateBr(continueBB);
1609
1610 CGF.EmitBlock(continueBB);
1611 }
1612
1613 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1614 llvm::Value *ShouldDeleteCondition;
1615
1616 public:
CallDtorDeleteConditional__anon858dc5ae0411::CallDtorDeleteConditional1617 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1618 : ShouldDeleteCondition(ShouldDeleteCondition) {
1619 assert(ShouldDeleteCondition != nullptr);
1620 }
1621
Emit__anon858dc5ae0411::CallDtorDeleteConditional1622 void Emit(CodeGenFunction &CGF, Flags flags) override {
1623 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1624 /*ReturnAfterDelete*/false);
1625 }
1626 };
1627
1628 class DestroyField final : public EHScopeStack::Cleanup {
1629 const FieldDecl *field;
1630 CodeGenFunction::Destroyer *destroyer;
1631 bool useEHCleanupForArray;
1632
1633 public:
DestroyField(const FieldDecl * field,CodeGenFunction::Destroyer * destroyer,bool useEHCleanupForArray)1634 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1635 bool useEHCleanupForArray)
1636 : field(field), destroyer(destroyer),
1637 useEHCleanupForArray(useEHCleanupForArray) {}
1638
Emit(CodeGenFunction & CGF,Flags flags)1639 void Emit(CodeGenFunction &CGF, Flags flags) override {
1640 // Find the address of the field.
1641 Address thisValue = CGF.LoadCXXThisAddress();
1642 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1643 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1644 LValue LV = CGF.EmitLValueForField(ThisLV, field);
1645 assert(LV.isSimple());
1646
1647 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer,
1648 flags.isForNormalCleanup() && useEHCleanupForArray);
1649 }
1650 };
1651
EmitSanitizerDtorCallback(CodeGenFunction & CGF,llvm::Value * Ptr,CharUnits::QuantityType PoisonSize)1652 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1653 CharUnits::QuantityType PoisonSize) {
1654 CodeGenFunction::SanitizerScope SanScope(&CGF);
1655 // Pass in void pointer and size of region as arguments to runtime
1656 // function
1657 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1658 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1659
1660 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1661
1662 llvm::FunctionType *FnType =
1663 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1664 llvm::FunctionCallee Fn =
1665 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1666 CGF.EmitNounwindRuntimeCall(Fn, Args);
1667 }
1668
1669 /// Poison base class with a trivial destructor.
1670 struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1671 const CXXRecordDecl *BaseClass;
1672 bool BaseIsVirtual;
SanitizeDtorTrivialBase__anon858dc5ae0411::SanitizeDtorTrivialBase1673 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1674 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1675
Emit__anon858dc5ae0411::SanitizeDtorTrivialBase1676 void Emit(CodeGenFunction &CGF, Flags flags) override {
1677 const CXXRecordDecl *DerivedClass =
1678 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
1679
1680 Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(
1681 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
1682
1683 const ASTRecordLayout &BaseLayout =
1684 CGF.getContext().getASTRecordLayout(BaseClass);
1685 CharUnits BaseSize = BaseLayout.getSize();
1686
1687 if (!BaseSize.isPositive())
1688 return;
1689
1690 EmitSanitizerDtorCallback(CGF, Addr.getPointer(), BaseSize.getQuantity());
1691
1692 // Prevent the current stack frame from disappearing from the stack trace.
1693 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1694 }
1695 };
1696
1697 class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1698 const CXXDestructorDecl *Dtor;
1699 unsigned StartIndex;
1700 unsigned EndIndex;
1701
1702 public:
SanitizeDtorFieldRange(const CXXDestructorDecl * Dtor,unsigned StartIndex,unsigned EndIndex)1703 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1704 unsigned EndIndex)
1705 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1706
1707 // Generate function call for handling object poisoning.
1708 // Disables tail call elimination, to prevent the current stack frame
1709 // from disappearing from the stack trace.
Emit(CodeGenFunction & CGF,Flags flags)1710 void Emit(CodeGenFunction &CGF, Flags flags) override {
1711 const ASTContext &Context = CGF.getContext();
1712 const ASTRecordLayout &Layout =
1713 Context.getASTRecordLayout(Dtor->getParent());
1714
1715 // It's a first trivial field so it should be at the begining of a char,
1716 // still round up start offset just in case.
1717 CharUnits PoisonStart = Context.toCharUnitsFromBits(
1718 Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1);
1719 llvm::ConstantInt *OffsetSizePtr =
1720 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
1721
1722 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1723 CGF.Int8Ty,
1724 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1725 OffsetSizePtr);
1726
1727 CharUnits PoisonEnd;
1728 if (EndIndex >= Layout.getFieldCount()) {
1729 PoisonEnd = Layout.getNonVirtualSize();
1730 } else {
1731 PoisonEnd =
1732 Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex));
1733 }
1734 CharUnits PoisonSize = PoisonEnd - PoisonStart;
1735 if (!PoisonSize.isPositive())
1736 return;
1737
1738 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
1739
1740 // Prevent the current stack frame from disappearing from the stack trace.
1741 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1742 }
1743 };
1744
1745 class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1746 const CXXDestructorDecl *Dtor;
1747
1748 public:
SanitizeDtorVTable(const CXXDestructorDecl * Dtor)1749 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1750
1751 // Generate function call for handling vtable pointer poisoning.
Emit(CodeGenFunction & CGF,Flags flags)1752 void Emit(CodeGenFunction &CGF, Flags flags) override {
1753 assert(Dtor->getParent()->isDynamicClass());
1754 (void)Dtor;
1755 ASTContext &Context = CGF.getContext();
1756 // Poison vtable and vtable ptr if they exist for this class.
1757 llvm::Value *VTablePtr = CGF.LoadCXXThis();
1758
1759 CharUnits::QuantityType PoisonSize =
1760 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1761 // Pass in void pointer and size of region as arguments to runtime
1762 // function
1763 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1764 }
1765 };
1766
1767 class SanitizeDtorCleanupBuilder {
1768 ASTContext &Context;
1769 EHScopeStack &EHStack;
1770 const CXXDestructorDecl *DD;
1771 llvm::Optional<unsigned> StartIndex;
1772
1773 public:
SanitizeDtorCleanupBuilder(ASTContext & Context,EHScopeStack & EHStack,const CXXDestructorDecl * DD)1774 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1775 const CXXDestructorDecl *DD)
1776 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(llvm::None) {}
PushCleanupForField(const FieldDecl * Field)1777 void PushCleanupForField(const FieldDecl *Field) {
1778 if (Field->isZeroSize(Context))
1779 return;
1780 unsigned FieldIndex = Field->getFieldIndex();
1781 if (FieldHasTrivialDestructorBody(Context, Field)) {
1782 if (!StartIndex)
1783 StartIndex = FieldIndex;
1784 } else if (StartIndex) {
1785 EHStack.pushCleanup<SanitizeDtorFieldRange>(
1786 NormalAndEHCleanup, DD, StartIndex.value(), FieldIndex);
1787 StartIndex = None;
1788 }
1789 }
End()1790 void End() {
1791 if (StartIndex)
1792 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1793 StartIndex.value(), -1);
1794 }
1795 };
1796 } // end anonymous namespace
1797
1798 /// Emit all code that comes at the end of class's
1799 /// destructor. This is to call destructors on members and base classes
1800 /// in reverse order of their construction.
1801 ///
1802 /// For a deleting destructor, this also handles the case where a destroying
1803 /// operator delete completely overrides the definition.
EnterDtorCleanups(const CXXDestructorDecl * DD,CXXDtorType DtorType)1804 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1805 CXXDtorType DtorType) {
1806 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1807 "Should not emit dtor epilogue for non-exported trivial dtor!");
1808
1809 // The deleting-destructor phase just needs to call the appropriate
1810 // operator delete that Sema picked up.
1811 if (DtorType == Dtor_Deleting) {
1812 assert(DD->getOperatorDelete() &&
1813 "operator delete missing - EnterDtorCleanups");
1814 if (CXXStructorImplicitParamValue) {
1815 // If there is an implicit param to the deleting dtor, it's a boolean
1816 // telling whether this is a deleting destructor.
1817 if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1818 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1819 /*ReturnAfterDelete*/true);
1820 else
1821 EHStack.pushCleanup<CallDtorDeleteConditional>(
1822 NormalAndEHCleanup, CXXStructorImplicitParamValue);
1823 } else {
1824 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1825 const CXXRecordDecl *ClassDecl = DD->getParent();
1826 EmitDeleteCall(DD->getOperatorDelete(),
1827 LoadThisForDtorDelete(*this, DD),
1828 getContext().getTagDeclType(ClassDecl));
1829 EmitBranchThroughCleanup(ReturnBlock);
1830 } else {
1831 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1832 }
1833 }
1834 return;
1835 }
1836
1837 const CXXRecordDecl *ClassDecl = DD->getParent();
1838
1839 // Unions have no bases and do not call field destructors.
1840 if (ClassDecl->isUnion())
1841 return;
1842
1843 // The complete-destructor phase just destructs all the virtual bases.
1844 if (DtorType == Dtor_Complete) {
1845 // Poison the vtable pointer such that access after the base
1846 // and member destructors are invoked is invalid.
1847 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1848 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1849 ClassDecl->isPolymorphic())
1850 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1851
1852 // We push them in the forward order so that they'll be popped in
1853 // the reverse order.
1854 for (const auto &Base : ClassDecl->vbases()) {
1855 auto *BaseClassDecl =
1856 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1857
1858 if (BaseClassDecl->hasTrivialDestructor()) {
1859 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1860 // memory. For non-trival base classes the same is done in the class
1861 // destructor.
1862 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1863 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1864 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1865 BaseClassDecl,
1866 /*BaseIsVirtual*/ true);
1867 } else {
1868 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1869 /*BaseIsVirtual*/ true);
1870 }
1871 }
1872
1873 return;
1874 }
1875
1876 assert(DtorType == Dtor_Base);
1877 // Poison the vtable pointer if it has no virtual bases, but inherits
1878 // virtual functions.
1879 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1880 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1881 ClassDecl->isPolymorphic())
1882 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1883
1884 // Destroy non-virtual bases.
1885 for (const auto &Base : ClassDecl->bases()) {
1886 // Ignore virtual bases.
1887 if (Base.isVirtual())
1888 continue;
1889
1890 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1891
1892 if (BaseClassDecl->hasTrivialDestructor()) {
1893 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1894 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1895 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1896 BaseClassDecl,
1897 /*BaseIsVirtual*/ false);
1898 } else {
1899 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1900 /*BaseIsVirtual*/ false);
1901 }
1902 }
1903
1904 // Poison fields such that access after their destructors are
1905 // invoked, and before the base class destructor runs, is invalid.
1906 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1907 SanOpts.has(SanitizerKind::Memory);
1908 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
1909
1910 // Destroy direct fields.
1911 for (const auto *Field : ClassDecl->fields()) {
1912 if (SanitizeFields)
1913 SanitizeBuilder.PushCleanupForField(Field);
1914
1915 QualType type = Field->getType();
1916 QualType::DestructionKind dtorKind = type.isDestructedType();
1917 if (!dtorKind)
1918 continue;
1919
1920 // Anonymous union members do not have their destructors called.
1921 const RecordType *RT = type->getAsUnionType();
1922 if (RT && RT->getDecl()->isAnonymousStructOrUnion())
1923 continue;
1924
1925 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1926 EHStack.pushCleanup<DestroyField>(
1927 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
1928 }
1929
1930 if (SanitizeFields)
1931 SanitizeBuilder.End();
1932 }
1933
1934 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1935 /// constructor for each of several members of an array.
1936 ///
1937 /// \param ctor the constructor to call for each element
1938 /// \param arrayType the type of the array to initialize
1939 /// \param arrayBegin an arrayType*
1940 /// \param zeroInitialize true if each element should be
1941 /// zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,const ArrayType * arrayType,Address arrayBegin,const CXXConstructExpr * E,bool NewPointerIsChecked,bool zeroInitialize)1942 void CodeGenFunction::EmitCXXAggrConstructorCall(
1943 const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1944 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1945 bool zeroInitialize) {
1946 QualType elementType;
1947 llvm::Value *numElements =
1948 emitArrayLength(arrayType, elementType, arrayBegin);
1949
1950 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1951 NewPointerIsChecked, zeroInitialize);
1952 }
1953
1954 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1955 /// constructor for each of several members of an array.
1956 ///
1957 /// \param ctor the constructor to call for each element
1958 /// \param numElements the number of elements in the array;
1959 /// may be zero
1960 /// \param arrayBase a T*, where T is the type constructed by ctor
1961 /// \param zeroInitialize true if each element should be
1962 /// zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,llvm::Value * numElements,Address arrayBase,const CXXConstructExpr * E,bool NewPointerIsChecked,bool zeroInitialize)1963 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1964 llvm::Value *numElements,
1965 Address arrayBase,
1966 const CXXConstructExpr *E,
1967 bool NewPointerIsChecked,
1968 bool zeroInitialize) {
1969 // It's legal for numElements to be zero. This can happen both
1970 // dynamically, because x can be zero in 'new A[x]', and statically,
1971 // because of GCC extensions that permit zero-length arrays. There
1972 // are probably legitimate places where we could assume that this
1973 // doesn't happen, but it's not clear that it's worth it.
1974 llvm::BranchInst *zeroCheckBranch = nullptr;
1975
1976 // Optimize for a constant count.
1977 llvm::ConstantInt *constantCount
1978 = dyn_cast<llvm::ConstantInt>(numElements);
1979 if (constantCount) {
1980 // Just skip out if the constant count is zero.
1981 if (constantCount->isZero()) return;
1982
1983 // Otherwise, emit the check.
1984 } else {
1985 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1986 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1987 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1988 EmitBlock(loopBB);
1989 }
1990
1991 // Find the end of the array.
1992 llvm::Type *elementType = arrayBase.getElementType();
1993 llvm::Value *arrayBegin = arrayBase.getPointer();
1994 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
1995 elementType, arrayBegin, numElements, "arrayctor.end");
1996
1997 // Enter the loop, setting up a phi for the current location to initialize.
1998 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1999 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2000 EmitBlock(loopBB);
2001 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
2002 "arrayctor.cur");
2003 cur->addIncoming(arrayBegin, entryBB);
2004
2005 // Inside the loop body, emit the constructor call on the array element.
2006
2007 // The alignment of the base, adjusted by the size of a single element,
2008 // provides a conservative estimate of the alignment of every element.
2009 // (This assumes we never start tracking offsetted alignments.)
2010 //
2011 // Note that these are complete objects and so we don't need to
2012 // use the non-virtual size or alignment.
2013 QualType type = getContext().getTypeDeclType(ctor->getParent());
2014 CharUnits eltAlignment =
2015 arrayBase.getAlignment()
2016 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2017 Address curAddr = Address(cur, elementType, eltAlignment);
2018
2019 // Zero initialize the storage, if requested.
2020 if (zeroInitialize)
2021 EmitNullInitialization(curAddr, type);
2022
2023 // C++ [class.temporary]p4:
2024 // There are two contexts in which temporaries are destroyed at a different
2025 // point than the end of the full-expression. The first context is when a
2026 // default constructor is called to initialize an element of an array.
2027 // If the constructor has one or more default arguments, the destruction of
2028 // every temporary created in a default argument expression is sequenced
2029 // before the construction of the next array element, if any.
2030
2031 {
2032 RunCleanupsScope Scope(*this);
2033
2034 // Evaluate the constructor and its arguments in a regular
2035 // partial-destroy cleanup.
2036 if (getLangOpts().Exceptions &&
2037 !ctor->getParent()->hasTrivialDestructor()) {
2038 Destroyer *destroyer = destroyCXXObject;
2039 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2040 *destroyer);
2041 }
2042 auto currAVS = AggValueSlot::forAddr(
2043 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2044 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2045 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2046 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2047 : AggValueSlot::IsNotSanitizerChecked);
2048 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2049 /*Delegating=*/false, currAVS, E);
2050 }
2051
2052 // Go to the next element.
2053 llvm::Value *next = Builder.CreateInBoundsGEP(
2054 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
2055 cur->addIncoming(next, Builder.GetInsertBlock());
2056
2057 // Check whether that's the end of the loop.
2058 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2059 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2060 Builder.CreateCondBr(done, contBB, loopBB);
2061
2062 // Patch the earlier check to skip over the loop.
2063 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2064
2065 EmitBlock(contBB);
2066 }
2067
destroyCXXObject(CodeGenFunction & CGF,Address addr,QualType type)2068 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2069 Address addr,
2070 QualType type) {
2071 const RecordType *rtype = type->castAs<RecordType>();
2072 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2073 const CXXDestructorDecl *dtor = record->getDestructor();
2074 assert(!dtor->isTrivial());
2075 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2076 /*Delegating=*/false, addr, type);
2077 }
2078
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,AggValueSlot ThisAVS,const CXXConstructExpr * E)2079 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2080 CXXCtorType Type,
2081 bool ForVirtualBase,
2082 bool Delegating,
2083 AggValueSlot ThisAVS,
2084 const CXXConstructExpr *E) {
2085 CallArgList Args;
2086 Address This = ThisAVS.getAddress();
2087 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2088 QualType ThisType = D->getThisType();
2089 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace();
2090 llvm::Value *ThisPtr = This.getPointer();
2091
2092 if (SlotAS != ThisAS) {
2093 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2094 llvm::Type *NewType = llvm::PointerType::getWithSamePointeeType(
2095 This.getType(), TargetThisAS);
2096 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(),
2097 ThisAS, SlotAS, NewType);
2098 }
2099
2100 // Push the this ptr.
2101 Args.add(RValue::get(ThisPtr), D->getThisType());
2102
2103 // If this is a trivial constructor, emit a memcpy now before we lose
2104 // the alignment information on the argument.
2105 // FIXME: It would be better to preserve alignment information into CallArg.
2106 if (isMemcpyEquivalentSpecialMember(D)) {
2107 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2108
2109 const Expr *Arg = E->getArg(0);
2110 LValue Src = EmitLValue(Arg);
2111 QualType DestTy = getContext().getTypeDeclType(D->getParent());
2112 LValue Dest = MakeAddrLValue(This, DestTy);
2113 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2114 return;
2115 }
2116
2117 // Add the rest of the user-supplied arguments.
2118 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2119 EvaluationOrder Order = E->isListInitialization()
2120 ? EvaluationOrder::ForceLeftToRight
2121 : EvaluationOrder::Default;
2122 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2123 /*ParamsToSkip*/ 0, Order);
2124
2125 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2126 ThisAVS.mayOverlap(), E->getExprLoc(),
2127 ThisAVS.isSanitizerChecked());
2128 }
2129
canEmitDelegateCallArgs(CodeGenFunction & CGF,const CXXConstructorDecl * Ctor,CXXCtorType Type,CallArgList & Args)2130 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2131 const CXXConstructorDecl *Ctor,
2132 CXXCtorType Type, CallArgList &Args) {
2133 // We can't forward a variadic call.
2134 if (Ctor->isVariadic())
2135 return false;
2136
2137 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2138 // If the parameters are callee-cleanup, it's not safe to forward.
2139 for (auto *P : Ctor->parameters())
2140 if (P->needsDestruction(CGF.getContext()))
2141 return false;
2142
2143 // Likewise if they're inalloca.
2144 const CGFunctionInfo &Info =
2145 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2146 if (Info.usesInAlloca())
2147 return false;
2148 }
2149
2150 // Anything else should be OK.
2151 return true;
2152 }
2153
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,Address This,CallArgList & Args,AggValueSlot::Overlap_t Overlap,SourceLocation Loc,bool NewPointerIsChecked)2154 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2155 CXXCtorType Type,
2156 bool ForVirtualBase,
2157 bool Delegating,
2158 Address This,
2159 CallArgList &Args,
2160 AggValueSlot::Overlap_t Overlap,
2161 SourceLocation Loc,
2162 bool NewPointerIsChecked) {
2163 const CXXRecordDecl *ClassDecl = D->getParent();
2164
2165 if (!NewPointerIsChecked)
2166 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(),
2167 getContext().getRecordType(ClassDecl), CharUnits::Zero());
2168
2169 if (D->isTrivial() && D->isDefaultConstructor()) {
2170 assert(Args.size() == 1 && "trivial default ctor with args");
2171 return;
2172 }
2173
2174 // If this is a trivial constructor, just emit what's needed. If this is a
2175 // union copy constructor, we must emit a memcpy, because the AST does not
2176 // model that copy.
2177 if (isMemcpyEquivalentSpecialMember(D)) {
2178 assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2179
2180 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2181 Address Src = Address(Args[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy),
2182 CGM.getNaturalTypeAlignment(SrcTy));
2183 LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2184 QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2185 LValue DestLVal = MakeAddrLValue(This, DestTy);
2186 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2187 return;
2188 }
2189
2190 bool PassPrototypeArgs = true;
2191 // Check whether we can actually emit the constructor before trying to do so.
2192 if (auto Inherited = D->getInheritedConstructor()) {
2193 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2194 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2195 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2196 Delegating, Args);
2197 return;
2198 }
2199 }
2200
2201 // Insert any ABI-specific implicit constructor arguments.
2202 CGCXXABI::AddedStructorArgCounts ExtraArgs =
2203 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2204 Delegating, Args);
2205
2206 // Emit the call.
2207 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2208 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2209 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2210 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2211 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc);
2212
2213 // Generate vtable assumptions if we're constructing a complete object
2214 // with a vtable. We don't do this for base subobjects for two reasons:
2215 // first, it's incorrect for classes with virtual bases, and second, we're
2216 // about to overwrite the vptrs anyway.
2217 // We also have to make sure if we can refer to vtable:
2218 // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2219 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2220 // sure that definition of vtable is not hidden,
2221 // then we are always safe to refer to it.
2222 // FIXME: It looks like InstCombine is very inefficient on dealing with
2223 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2224 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2225 ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2226 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2227 CGM.getCodeGenOpts().StrictVTablePointers)
2228 EmitVTableAssumptionLoads(ClassDecl, This);
2229 }
2230
EmitInheritedCXXConstructorCall(const CXXConstructorDecl * D,bool ForVirtualBase,Address This,bool InheritedFromVBase,const CXXInheritedCtorInitExpr * E)2231 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2232 const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2233 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2234 CallArgList Args;
2235 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType());
2236
2237 // Forward the parameters.
2238 if (InheritedFromVBase &&
2239 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2240 // Nothing to do; this construction is not responsible for constructing
2241 // the base class containing the inherited constructor.
2242 // FIXME: Can we just pass undef's for the remaining arguments if we don't
2243 // have constructor variants?
2244 Args.push_back(ThisArg);
2245 } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2246 // The inheriting constructor was inlined; just inject its arguments.
2247 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2248 "wrong number of parameters for inherited constructor call");
2249 Args = CXXInheritedCtorInitExprArgs;
2250 Args[0] = ThisArg;
2251 } else {
2252 // The inheriting constructor was not inlined. Emit delegating arguments.
2253 Args.push_back(ThisArg);
2254 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2255 assert(OuterCtor->getNumParams() == D->getNumParams());
2256 assert(!OuterCtor->isVariadic() && "should have been inlined");
2257
2258 for (const auto *Param : OuterCtor->parameters()) {
2259 assert(getContext().hasSameUnqualifiedType(
2260 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2261 Param->getType()));
2262 EmitDelegateCallArg(Args, Param, E->getLocation());
2263
2264 // Forward __attribute__(pass_object_size).
2265 if (Param->hasAttr<PassObjectSizeAttr>()) {
2266 auto *POSParam = SizeArguments[Param];
2267 assert(POSParam && "missing pass_object_size value for forwarding");
2268 EmitDelegateCallArg(Args, POSParam, E->getLocation());
2269 }
2270 }
2271 }
2272
2273 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2274 This, Args, AggValueSlot::MayOverlap,
2275 E->getLocation(), /*NewPointerIsChecked*/true);
2276 }
2277
EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,bool ForVirtualBase,bool Delegating,CallArgList & Args)2278 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2279 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2280 bool Delegating, CallArgList &Args) {
2281 GlobalDecl GD(Ctor, CtorType);
2282 InlinedInheritingConstructorScope Scope(*this, GD);
2283 ApplyInlineDebugLocation DebugScope(*this, GD);
2284 RunCleanupsScope RunCleanups(*this);
2285
2286 // Save the arguments to be passed to the inherited constructor.
2287 CXXInheritedCtorInitExprArgs = Args;
2288
2289 FunctionArgList Params;
2290 QualType RetType = BuildFunctionArgList(CurGD, Params);
2291 FnRetTy = RetType;
2292
2293 // Insert any ABI-specific implicit constructor arguments.
2294 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2295 ForVirtualBase, Delegating, Args);
2296
2297 // Emit a simplified prolog. We only need to emit the implicit params.
2298 assert(Args.size() >= Params.size() && "too few arguments for call");
2299 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2300 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2301 const RValue &RV = Args[I].getRValue(*this);
2302 assert(!RV.isComplex() && "complex indirect params not supported");
2303 ParamValue Val = RV.isScalar()
2304 ? ParamValue::forDirect(RV.getScalarVal())
2305 : ParamValue::forIndirect(RV.getAggregateAddress());
2306 EmitParmDecl(*Params[I], Val, I + 1);
2307 }
2308 }
2309
2310 // Create a return value slot if the ABI implementation wants one.
2311 // FIXME: This is dumb, we should ask the ABI not to try to set the return
2312 // value instead.
2313 if (!RetType->isVoidType())
2314 ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2315
2316 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2317 CXXThisValue = CXXABIThisValue;
2318
2319 // Directly emit the constructor initializers.
2320 EmitCtorPrologue(Ctor, CtorType, Params);
2321 }
2322
EmitVTableAssumptionLoad(const VPtr & Vptr,Address This)2323 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2324 llvm::Value *VTableGlobal =
2325 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2326 if (!VTableGlobal)
2327 return;
2328
2329 // We can just use the base offset in the complete class.
2330 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2331
2332 if (!NonVirtualOffset.isZero())
2333 This =
2334 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2335 Vptr.VTableClass, Vptr.NearestVBase);
2336
2337 llvm::Value *VPtrValue =
2338 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2339 llvm::Value *Cmp =
2340 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2341 Builder.CreateAssumption(Cmp);
2342 }
2343
EmitVTableAssumptionLoads(const CXXRecordDecl * ClassDecl,Address This)2344 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2345 Address This) {
2346 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2347 for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2348 EmitVTableAssumptionLoad(Vptr, This);
2349 }
2350
2351 void
EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl * D,Address This,Address Src,const CXXConstructExpr * E)2352 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2353 Address This, Address Src,
2354 const CXXConstructExpr *E) {
2355 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2356
2357 CallArgList Args;
2358
2359 // Push the this ptr.
2360 Args.add(RValue::get(This.getPointer()), D->getThisType());
2361
2362 // Push the src ptr.
2363 QualType QT = *(FPT->param_type_begin());
2364 llvm::Type *t = CGM.getTypes().ConvertType(QT);
2365 llvm::Value *SrcVal = Builder.CreateBitCast(Src.getPointer(), t);
2366 Args.add(RValue::get(SrcVal), QT);
2367
2368 // Skip over first argument (Src).
2369 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2370 /*ParamsToSkip*/ 1);
2371
2372 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2373 /*Delegating*/false, This, Args,
2374 AggValueSlot::MayOverlap, E->getExprLoc(),
2375 /*NewPointerIsChecked*/false);
2376 }
2377
2378 void
EmitDelegateCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,const FunctionArgList & Args,SourceLocation Loc)2379 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2380 CXXCtorType CtorType,
2381 const FunctionArgList &Args,
2382 SourceLocation Loc) {
2383 CallArgList DelegateArgs;
2384
2385 FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2386 assert(I != E && "no parameters to constructor");
2387
2388 // this
2389 Address This = LoadCXXThisAddress();
2390 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2391 ++I;
2392
2393 // FIXME: The location of the VTT parameter in the parameter list is
2394 // specific to the Itanium ABI and shouldn't be hardcoded here.
2395 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2396 assert(I != E && "cannot skip vtt parameter, already done with args");
2397 assert((*I)->getType()->isPointerType() &&
2398 "skipping parameter not of vtt type");
2399 ++I;
2400 }
2401
2402 // Explicit arguments.
2403 for (; I != E; ++I) {
2404 const VarDecl *param = *I;
2405 // FIXME: per-argument source location
2406 EmitDelegateCallArg(DelegateArgs, param, Loc);
2407 }
2408
2409 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2410 /*Delegating=*/true, This, DelegateArgs,
2411 AggValueSlot::MayOverlap, Loc,
2412 /*NewPointerIsChecked=*/true);
2413 }
2414
2415 namespace {
2416 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2417 const CXXDestructorDecl *Dtor;
2418 Address Addr;
2419 CXXDtorType Type;
2420
CallDelegatingCtorDtor__anon858dc5ae0511::CallDelegatingCtorDtor2421 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2422 CXXDtorType Type)
2423 : Dtor(D), Addr(Addr), Type(Type) {}
2424
Emit__anon858dc5ae0511::CallDelegatingCtorDtor2425 void Emit(CodeGenFunction &CGF, Flags flags) override {
2426 // We are calling the destructor from within the constructor.
2427 // Therefore, "this" should have the expected type.
2428 QualType ThisTy = Dtor->getThisObjectType();
2429 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2430 /*Delegating=*/true, Addr, ThisTy);
2431 }
2432 };
2433 } // end anonymous namespace
2434
2435 void
EmitDelegatingCXXConstructorCall(const CXXConstructorDecl * Ctor,const FunctionArgList & Args)2436 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2437 const FunctionArgList &Args) {
2438 assert(Ctor->isDelegatingConstructor());
2439
2440 Address ThisPtr = LoadCXXThisAddress();
2441
2442 AggValueSlot AggSlot =
2443 AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2444 AggValueSlot::IsDestructed,
2445 AggValueSlot::DoesNotNeedGCBarriers,
2446 AggValueSlot::IsNotAliased,
2447 AggValueSlot::MayOverlap,
2448 AggValueSlot::IsNotZeroed,
2449 // Checks are made by the code that calls constructor.
2450 AggValueSlot::IsSanitizerChecked);
2451
2452 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2453
2454 const CXXRecordDecl *ClassDecl = Ctor->getParent();
2455 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2456 CXXDtorType Type =
2457 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2458
2459 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2460 ClassDecl->getDestructor(),
2461 ThisPtr, Type);
2462 }
2463 }
2464
EmitCXXDestructorCall(const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,Address This,QualType ThisTy)2465 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2466 CXXDtorType Type,
2467 bool ForVirtualBase,
2468 bool Delegating, Address This,
2469 QualType ThisTy) {
2470 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2471 Delegating, This, ThisTy);
2472 }
2473
2474 namespace {
2475 struct CallLocalDtor final : EHScopeStack::Cleanup {
2476 const CXXDestructorDecl *Dtor;
2477 Address Addr;
2478 QualType Ty;
2479
CallLocalDtor__anon858dc5ae0611::CallLocalDtor2480 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2481 : Dtor(D), Addr(Addr), Ty(Ty) {}
2482
Emit__anon858dc5ae0611::CallLocalDtor2483 void Emit(CodeGenFunction &CGF, Flags flags) override {
2484 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2485 /*ForVirtualBase=*/false,
2486 /*Delegating=*/false, Addr, Ty);
2487 }
2488 };
2489 } // end anonymous namespace
2490
PushDestructorCleanup(const CXXDestructorDecl * D,QualType T,Address Addr)2491 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2492 QualType T, Address Addr) {
2493 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2494 }
2495
PushDestructorCleanup(QualType T,Address Addr)2496 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2497 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2498 if (!ClassDecl) return;
2499 if (ClassDecl->hasTrivialDestructor()) return;
2500
2501 const CXXDestructorDecl *D = ClassDecl->getDestructor();
2502 assert(D && D->isUsed() && "destructor not marked as used!");
2503 PushDestructorCleanup(D, T, Addr);
2504 }
2505
InitializeVTablePointer(const VPtr & Vptr)2506 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2507 // Compute the address point.
2508 llvm::Value *VTableAddressPoint =
2509 CGM.getCXXABI().getVTableAddressPointInStructor(
2510 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2511
2512 if (!VTableAddressPoint)
2513 return;
2514
2515 // Compute where to store the address point.
2516 llvm::Value *VirtualOffset = nullptr;
2517 CharUnits NonVirtualOffset = CharUnits::Zero();
2518
2519 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2520 // We need to use the virtual base offset offset because the virtual base
2521 // might have a different offset in the most derived class.
2522
2523 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2524 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2525 NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2526 } else {
2527 // We can just use the base offset in the complete class.
2528 NonVirtualOffset = Vptr.Base.getBaseOffset();
2529 }
2530
2531 // Apply the offsets.
2532 Address VTableField = LoadCXXThisAddress();
2533 if (!NonVirtualOffset.isZero() || VirtualOffset)
2534 VTableField = ApplyNonVirtualAndVirtualOffset(
2535 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2536 Vptr.NearestVBase);
2537
2538 // Finally, store the address point. Use the same LLVM types as the field to
2539 // support optimization.
2540 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2541 unsigned ProgAS = CGM.getDataLayout().getProgramAddressSpace();
2542 llvm::Type *VTablePtrTy =
2543 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2544 ->getPointerTo(ProgAS)
2545 ->getPointerTo(GlobalsAS);
2546 // vtable field is is derived from `this` pointer, therefore they should be in
2547 // the same addr space. Note that this might not be LLVM address space 0.
2548 VTableField = Builder.CreateElementBitCast(VTableField, VTablePtrTy);
2549 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2550
2551 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2552 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy);
2553 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2554 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2555 CGM.getCodeGenOpts().StrictVTablePointers)
2556 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2557 }
2558
2559 CodeGenFunction::VPtrsVector
getVTablePointers(const CXXRecordDecl * VTableClass)2560 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2561 CodeGenFunction::VPtrsVector VPtrsResult;
2562 VisitedVirtualBasesSetTy VBases;
2563 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2564 /*NearestVBase=*/nullptr,
2565 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2566 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2567 VPtrsResult);
2568 return VPtrsResult;
2569 }
2570
getVTablePointers(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,bool BaseIsNonVirtualPrimaryBase,const CXXRecordDecl * VTableClass,VisitedVirtualBasesSetTy & VBases,VPtrsVector & Vptrs)2571 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2572 const CXXRecordDecl *NearestVBase,
2573 CharUnits OffsetFromNearestVBase,
2574 bool BaseIsNonVirtualPrimaryBase,
2575 const CXXRecordDecl *VTableClass,
2576 VisitedVirtualBasesSetTy &VBases,
2577 VPtrsVector &Vptrs) {
2578 // If this base is a non-virtual primary base the address point has already
2579 // been set.
2580 if (!BaseIsNonVirtualPrimaryBase) {
2581 // Initialize the vtable pointer for this base.
2582 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2583 Vptrs.push_back(Vptr);
2584 }
2585
2586 const CXXRecordDecl *RD = Base.getBase();
2587
2588 // Traverse bases.
2589 for (const auto &I : RD->bases()) {
2590 auto *BaseDecl =
2591 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2592
2593 // Ignore classes without a vtable.
2594 if (!BaseDecl->isDynamicClass())
2595 continue;
2596
2597 CharUnits BaseOffset;
2598 CharUnits BaseOffsetFromNearestVBase;
2599 bool BaseDeclIsNonVirtualPrimaryBase;
2600
2601 if (I.isVirtual()) {
2602 // Check if we've visited this virtual base before.
2603 if (!VBases.insert(BaseDecl).second)
2604 continue;
2605
2606 const ASTRecordLayout &Layout =
2607 getContext().getASTRecordLayout(VTableClass);
2608
2609 BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2610 BaseOffsetFromNearestVBase = CharUnits::Zero();
2611 BaseDeclIsNonVirtualPrimaryBase = false;
2612 } else {
2613 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2614
2615 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2616 BaseOffsetFromNearestVBase =
2617 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2618 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2619 }
2620
2621 getVTablePointers(
2622 BaseSubobject(BaseDecl, BaseOffset),
2623 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2624 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2625 }
2626 }
2627
InitializeVTablePointers(const CXXRecordDecl * RD)2628 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2629 // Ignore classes without a vtable.
2630 if (!RD->isDynamicClass())
2631 return;
2632
2633 // Initialize the vtable pointers for this class and all of its bases.
2634 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2635 for (const VPtr &Vptr : getVTablePointers(RD))
2636 InitializeVTablePointer(Vptr);
2637
2638 if (RD->getNumVBases())
2639 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2640 }
2641
GetVTablePtr(Address This,llvm::Type * VTableTy,const CXXRecordDecl * RD)2642 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2643 llvm::Type *VTableTy,
2644 const CXXRecordDecl *RD) {
2645 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2646 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2647 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2648 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2649
2650 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2651 CGM.getCodeGenOpts().StrictVTablePointers)
2652 CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2653
2654 return VTable;
2655 }
2656
2657 // If a class has a single non-virtual base and does not introduce or override
2658 // virtual member functions or fields, it will have the same layout as its base.
2659 // This function returns the least derived such class.
2660 //
2661 // Casting an instance of a base class to such a derived class is technically
2662 // undefined behavior, but it is a relatively common hack for introducing member
2663 // functions on class instances with specific properties (e.g. llvm::Operator)
2664 // that works under most compilers and should not have security implications, so
2665 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2666 static const CXXRecordDecl *
LeastDerivedClassWithSameLayout(const CXXRecordDecl * RD)2667 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2668 if (!RD->field_empty())
2669 return RD;
2670
2671 if (RD->getNumVBases() != 0)
2672 return RD;
2673
2674 if (RD->getNumBases() != 1)
2675 return RD;
2676
2677 for (const CXXMethodDecl *MD : RD->methods()) {
2678 if (MD->isVirtual()) {
2679 // Virtual member functions are only ok if they are implicit destructors
2680 // because the implicit destructor will have the same semantics as the
2681 // base class's destructor if no fields are added.
2682 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2683 continue;
2684 return RD;
2685 }
2686 }
2687
2688 return LeastDerivedClassWithSameLayout(
2689 RD->bases_begin()->getType()->getAsCXXRecordDecl());
2690 }
2691
EmitTypeMetadataCodeForVCall(const CXXRecordDecl * RD,llvm::Value * VTable,SourceLocation Loc)2692 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2693 llvm::Value *VTable,
2694 SourceLocation Loc) {
2695 if (SanOpts.has(SanitizerKind::CFIVCall))
2696 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2697 else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2698 // Don't insert type test assumes if we are forcing public
2699 // visibility.
2700 !CGM.AlwaysHasLTOVisibilityPublic(RD)) {
2701 QualType Ty = QualType(RD->getTypeForDecl(), 0);
2702 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty);
2703 llvm::Value *TypeId =
2704 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2705
2706 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2707 // If we already know that the call has hidden LTO visibility, emit
2708 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2709 // will convert to @llvm.type.test() if we assert at link time that we have
2710 // whole program visibility.
2711 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2712 ? llvm::Intrinsic::type_test
2713 : llvm::Intrinsic::public_type_test;
2714 llvm::Value *TypeTest =
2715 Builder.CreateCall(CGM.getIntrinsic(IID), {CastedVTable, TypeId});
2716 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2717 }
2718 }
2719
EmitVTablePtrCheckForCall(const CXXRecordDecl * RD,llvm::Value * VTable,CFITypeCheckKind TCK,SourceLocation Loc)2720 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2721 llvm::Value *VTable,
2722 CFITypeCheckKind TCK,
2723 SourceLocation Loc) {
2724 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2725 RD = LeastDerivedClassWithSameLayout(RD);
2726
2727 EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2728 }
2729
EmitVTablePtrCheckForCast(QualType T,Address Derived,bool MayBeNull,CFITypeCheckKind TCK,SourceLocation Loc)2730 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived,
2731 bool MayBeNull,
2732 CFITypeCheckKind TCK,
2733 SourceLocation Loc) {
2734 if (!getLangOpts().CPlusPlus)
2735 return;
2736
2737 auto *ClassTy = T->getAs<RecordType>();
2738 if (!ClassTy)
2739 return;
2740
2741 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2742
2743 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2744 return;
2745
2746 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2747 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2748
2749 llvm::BasicBlock *ContBlock = nullptr;
2750
2751 if (MayBeNull) {
2752 llvm::Value *DerivedNotNull =
2753 Builder.CreateIsNotNull(Derived.getPointer(), "cast.nonnull");
2754
2755 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2756 ContBlock = createBasicBlock("cast.cont");
2757
2758 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2759
2760 EmitBlock(CheckBlock);
2761 }
2762
2763 llvm::Value *VTable;
2764 std::tie(VTable, ClassDecl) =
2765 CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl);
2766
2767 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2768
2769 if (MayBeNull) {
2770 Builder.CreateBr(ContBlock);
2771 EmitBlock(ContBlock);
2772 }
2773 }
2774
EmitVTablePtrCheck(const CXXRecordDecl * RD,llvm::Value * VTable,CFITypeCheckKind TCK,SourceLocation Loc)2775 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2776 llvm::Value *VTable,
2777 CFITypeCheckKind TCK,
2778 SourceLocation Loc) {
2779 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2780 !CGM.HasHiddenLTOVisibility(RD))
2781 return;
2782
2783 SanitizerMask M;
2784 llvm::SanitizerStatKind SSK;
2785 switch (TCK) {
2786 case CFITCK_VCall:
2787 M = SanitizerKind::CFIVCall;
2788 SSK = llvm::SanStat_CFI_VCall;
2789 break;
2790 case CFITCK_NVCall:
2791 M = SanitizerKind::CFINVCall;
2792 SSK = llvm::SanStat_CFI_NVCall;
2793 break;
2794 case CFITCK_DerivedCast:
2795 M = SanitizerKind::CFIDerivedCast;
2796 SSK = llvm::SanStat_CFI_DerivedCast;
2797 break;
2798 case CFITCK_UnrelatedCast:
2799 M = SanitizerKind::CFIUnrelatedCast;
2800 SSK = llvm::SanStat_CFI_UnrelatedCast;
2801 break;
2802 case CFITCK_ICall:
2803 case CFITCK_NVMFCall:
2804 case CFITCK_VMFCall:
2805 llvm_unreachable("unexpected sanitizer kind");
2806 }
2807
2808 std::string TypeName = RD->getQualifiedNameAsString();
2809 if (getContext().getNoSanitizeList().containsType(M, TypeName))
2810 return;
2811
2812 SanitizerScope SanScope(this);
2813 EmitSanitizerStatReport(SSK);
2814
2815 llvm::Metadata *MD =
2816 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2817 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2818
2819 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2820 llvm::Value *TypeTest = Builder.CreateCall(
2821 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
2822
2823 llvm::Constant *StaticData[] = {
2824 llvm::ConstantInt::get(Int8Ty, TCK),
2825 EmitCheckSourceLocation(Loc),
2826 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2827 };
2828
2829 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2830 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2831 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
2832 return;
2833 }
2834
2835 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2836 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail);
2837 return;
2838 }
2839
2840 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2841 CGM.getLLVMContext(),
2842 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2843 llvm::Value *ValidVtable = Builder.CreateCall(
2844 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
2845 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2846 StaticData, {CastedVTable, ValidVtable});
2847 }
2848
ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl * RD)2849 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2850 if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2851 !CGM.HasHiddenLTOVisibility(RD))
2852 return false;
2853
2854 if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2855 return true;
2856
2857 if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2858 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2859 return false;
2860
2861 std::string TypeName = RD->getQualifiedNameAsString();
2862 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2863 TypeName);
2864 }
2865
EmitVTableTypeCheckedLoad(const CXXRecordDecl * RD,llvm::Value * VTable,llvm::Type * VTableTy,uint64_t VTableByteOffset)2866 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2867 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
2868 uint64_t VTableByteOffset) {
2869 SanitizerScope SanScope(this);
2870
2871 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2872
2873 llvm::Metadata *MD =
2874 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2875 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2876
2877 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2878 llvm::Value *CheckedLoad = Builder.CreateCall(
2879 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2880 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
2881 TypeId});
2882 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2883
2884 std::string TypeName = RD->getQualifiedNameAsString();
2885 if (SanOpts.has(SanitizerKind::CFIVCall) &&
2886 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2887 TypeName)) {
2888 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2889 SanitizerHandler::CFICheckFail, {}, {});
2890 }
2891
2892 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0),
2893 VTableTy);
2894 }
2895
EmitForwardingCallToLambda(const CXXMethodDecl * callOperator,CallArgList & callArgs)2896 void CodeGenFunction::EmitForwardingCallToLambda(
2897 const CXXMethodDecl *callOperator,
2898 CallArgList &callArgs) {
2899 // Get the address of the call operator.
2900 const CGFunctionInfo &calleeFnInfo =
2901 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2902 llvm::Constant *calleePtr =
2903 CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2904 CGM.getTypes().GetFunctionType(calleeFnInfo));
2905
2906 // Prepare the return slot.
2907 const FunctionProtoType *FPT =
2908 callOperator->getType()->castAs<FunctionProtoType>();
2909 QualType resultType = FPT->getReturnType();
2910 ReturnValueSlot returnSlot;
2911 if (!resultType->isVoidType() &&
2912 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2913 !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2914 returnSlot =
2915 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2916 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2917
2918 // We don't need to separately arrange the call arguments because
2919 // the call can't be variadic anyway --- it's impossible to forward
2920 // variadic arguments.
2921
2922 // Now emit our call.
2923 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2924 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs);
2925
2926 // If necessary, copy the returned value into the slot.
2927 if (!resultType->isVoidType() && returnSlot.isNull()) {
2928 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2929 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2930 }
2931 EmitReturnOfRValue(RV, resultType);
2932 } else
2933 EmitBranchThroughCleanup(ReturnBlock);
2934 }
2935
EmitLambdaBlockInvokeBody()2936 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2937 const BlockDecl *BD = BlockInfo->getBlockDecl();
2938 const VarDecl *variable = BD->capture_begin()->getVariable();
2939 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2940 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2941
2942 if (CallOp->isVariadic()) {
2943 // FIXME: Making this work correctly is nasty because it requires either
2944 // cloning the body of the call operator or making the call operator
2945 // forward.
2946 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2947 return;
2948 }
2949
2950 // Start building arguments for forwarding call
2951 CallArgList CallArgs;
2952
2953 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2954 Address ThisPtr = GetAddrOfBlockDecl(variable);
2955 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2956
2957 // Add the rest of the parameters.
2958 for (auto param : BD->parameters())
2959 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
2960
2961 assert(!Lambda->isGenericLambda() &&
2962 "generic lambda interconversion to block not implemented");
2963 EmitForwardingCallToLambda(CallOp, CallArgs);
2964 }
2965
EmitLambdaDelegatingInvokeBody(const CXXMethodDecl * MD)2966 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2967 const CXXRecordDecl *Lambda = MD->getParent();
2968
2969 // Start building arguments for forwarding call
2970 CallArgList CallArgs;
2971
2972 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2973 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2974 CallArgs.add(RValue::get(ThisPtr), ThisType);
2975
2976 // Add the rest of the parameters.
2977 for (auto Param : MD->parameters())
2978 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
2979
2980 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2981 // For a generic lambda, find the corresponding call operator specialization
2982 // to which the call to the static-invoker shall be forwarded.
2983 if (Lambda->isGenericLambda()) {
2984 assert(MD->isFunctionTemplateSpecialization());
2985 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2986 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2987 void *InsertPos = nullptr;
2988 FunctionDecl *CorrespondingCallOpSpecialization =
2989 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2990 assert(CorrespondingCallOpSpecialization);
2991 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2992 }
2993 EmitForwardingCallToLambda(CallOp, CallArgs);
2994 }
2995
EmitLambdaStaticInvokeBody(const CXXMethodDecl * MD)2996 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
2997 if (MD->isVariadic()) {
2998 // FIXME: Making this work correctly is nasty because it requires either
2999 // cloning the body of the call operator or making the call operator forward.
3000 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3001 return;
3002 }
3003
3004 EmitLambdaDelegatingInvokeBody(MD);
3005 }
3006