1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/Transforms/Utils/SanitizerStats.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 /// Return the best known alignment for an unknown pointer to a
35 /// particular class.
36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
37   if (!RD->isCompleteDefinition())
38     return CharUnits::One(); // Hopefully won't be used anywhere.
39 
40   auto &layout = getContext().getASTRecordLayout(RD);
41 
42   // If the class is final, then we know that the pointer points to an
43   // object of that type and can use the full alignment.
44   if (RD->hasAttr<FinalAttr>()) {
45     return layout.getAlignment();
46 
47   // Otherwise, we have to assume it could be a subclass.
48   } else {
49     return layout.getNonVirtualAlignment();
50   }
51 }
52 
53 /// Return the best known alignment for a pointer to a virtual base,
54 /// given the alignment of a pointer to the derived class.
55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
56                                            const CXXRecordDecl *derivedClass,
57                                            const CXXRecordDecl *vbaseClass) {
58   // The basic idea here is that an underaligned derived pointer might
59   // indicate an underaligned base pointer.
60 
61   assert(vbaseClass->isCompleteDefinition());
62   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
63   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
64 
65   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
66                                    expectedVBaseAlign);
67 }
68 
69 CharUnits
70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
71                                          const CXXRecordDecl *baseDecl,
72                                          CharUnits expectedTargetAlign) {
73   // If the base is an incomplete type (which is, alas, possible with
74   // member pointers), be pessimistic.
75   if (!baseDecl->isCompleteDefinition())
76     return std::min(actualBaseAlign, expectedTargetAlign);
77 
78   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
79   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
80 
81   // If the class is properly aligned, assume the target offset is, too.
82   //
83   // This actually isn't necessarily the right thing to do --- if the
84   // class is a complete object, but it's only properly aligned for a
85   // base subobject, then the alignments of things relative to it are
86   // probably off as well.  (Note that this requires the alignment of
87   // the target to be greater than the NV alignment of the derived
88   // class.)
89   //
90   // However, our approach to this kind of under-alignment can only
91   // ever be best effort; after all, we're never going to propagate
92   // alignments through variables or parameters.  Note, in particular,
93   // that constructing a polymorphic type in an address that's less
94   // than pointer-aligned will generally trap in the constructor,
95   // unless we someday add some sort of attribute to change the
96   // assumed alignment of 'this'.  So our goal here is pretty much
97   // just to allow the user to explicitly say that a pointer is
98   // under-aligned and then safely access its fields and vtables.
99   if (actualBaseAlign >= expectedBaseAlign) {
100     return expectedTargetAlign;
101   }
102 
103   // Otherwise, we might be offset by an arbitrary multiple of the
104   // actual alignment.  The correct adjustment is to take the min of
105   // the two alignments.
106   return std::min(actualBaseAlign, expectedTargetAlign);
107 }
108 
109 Address CodeGenFunction::LoadCXXThisAddress() {
110   assert(CurFuncDecl && "loading 'this' without a func declaration?");
111   assert(isa<CXXMethodDecl>(CurFuncDecl));
112 
113   // Lazily compute CXXThisAlignment.
114   if (CXXThisAlignment.isZero()) {
115     // Just use the best known alignment for the parent.
116     // TODO: if we're currently emitting a complete-object ctor/dtor,
117     // we can always use the complete-object alignment.
118     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
119     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
120   }
121 
122   return Address(LoadCXXThis(), CXXThisAlignment);
123 }
124 
125 /// Emit the address of a field using a member data pointer.
126 ///
127 /// \param E Only used for emergency diagnostics
128 Address
129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
130                                                  llvm::Value *memberPtr,
131                                       const MemberPointerType *memberPtrType,
132                                                  AlignmentSource *alignSource) {
133   // Ask the ABI to compute the actual address.
134   llvm::Value *ptr =
135     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
136                                                  memberPtr, memberPtrType);
137 
138   QualType memberType = memberPtrType->getPointeeType();
139   CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource);
140   memberAlign =
141     CGM.getDynamicOffsetAlignment(base.getAlignment(),
142                             memberPtrType->getClass()->getAsCXXRecordDecl(),
143                                   memberAlign);
144   return Address(ptr, memberAlign);
145 }
146 
147 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
148     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
149     CastExpr::path_const_iterator End) {
150   CharUnits Offset = CharUnits::Zero();
151 
152   const ASTContext &Context = getContext();
153   const CXXRecordDecl *RD = DerivedClass;
154 
155   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
156     const CXXBaseSpecifier *Base = *I;
157     assert(!Base->isVirtual() && "Should not see virtual bases here!");
158 
159     // Get the layout.
160     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
161 
162     const CXXRecordDecl *BaseDecl =
163       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
164 
165     // Add the offset.
166     Offset += Layout.getBaseClassOffset(BaseDecl);
167 
168     RD = BaseDecl;
169   }
170 
171   return Offset;
172 }
173 
174 llvm::Constant *
175 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
176                                    CastExpr::path_const_iterator PathBegin,
177                                    CastExpr::path_const_iterator PathEnd) {
178   assert(PathBegin != PathEnd && "Base path should not be empty!");
179 
180   CharUnits Offset =
181       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
182   if (Offset.isZero())
183     return nullptr;
184 
185   llvm::Type *PtrDiffTy =
186   Types.ConvertType(getContext().getPointerDiffType());
187 
188   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
189 }
190 
191 /// Gets the address of a direct base class within a complete object.
192 /// This should only be used for (1) non-virtual bases or (2) virtual bases
193 /// when the type is known to be complete (e.g. in complete destructors).
194 ///
195 /// The object pointed to by 'This' is assumed to be non-null.
196 Address
197 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
198                                                    const CXXRecordDecl *Derived,
199                                                    const CXXRecordDecl *Base,
200                                                    bool BaseIsVirtual) {
201   // 'this' must be a pointer (in some address space) to Derived.
202   assert(This.getElementType() == ConvertType(Derived));
203 
204   // Compute the offset of the virtual base.
205   CharUnits Offset;
206   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
207   if (BaseIsVirtual)
208     Offset = Layout.getVBaseClassOffset(Base);
209   else
210     Offset = Layout.getBaseClassOffset(Base);
211 
212   // Shift and cast down to the base type.
213   // TODO: for complete types, this should be possible with a GEP.
214   Address V = This;
215   if (!Offset.isZero()) {
216     V = Builder.CreateElementBitCast(V, Int8Ty);
217     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
218   }
219   V = Builder.CreateElementBitCast(V, ConvertType(Base));
220 
221   return V;
222 }
223 
224 static Address
225 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
226                                 CharUnits nonVirtualOffset,
227                                 llvm::Value *virtualOffset,
228                                 const CXXRecordDecl *derivedClass,
229                                 const CXXRecordDecl *nearestVBase) {
230   // Assert that we have something to do.
231   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
232 
233   // Compute the offset from the static and dynamic components.
234   llvm::Value *baseOffset;
235   if (!nonVirtualOffset.isZero()) {
236     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
237                                         nonVirtualOffset.getQuantity());
238     if (virtualOffset) {
239       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
240     }
241   } else {
242     baseOffset = virtualOffset;
243   }
244 
245   // Apply the base offset.
246   llvm::Value *ptr = addr.getPointer();
247   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
248   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
249 
250   // If we have a virtual component, the alignment of the result will
251   // be relative only to the known alignment of that vbase.
252   CharUnits alignment;
253   if (virtualOffset) {
254     assert(nearestVBase && "virtual offset without vbase?");
255     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
256                                           derivedClass, nearestVBase);
257   } else {
258     alignment = addr.getAlignment();
259   }
260   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
261 
262   return Address(ptr, alignment);
263 }
264 
265 Address CodeGenFunction::GetAddressOfBaseClass(
266     Address Value, const CXXRecordDecl *Derived,
267     CastExpr::path_const_iterator PathBegin,
268     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
269     SourceLocation Loc) {
270   assert(PathBegin != PathEnd && "Base path should not be empty!");
271 
272   CastExpr::path_const_iterator Start = PathBegin;
273   const CXXRecordDecl *VBase = nullptr;
274 
275   // Sema has done some convenient canonicalization here: if the
276   // access path involved any virtual steps, the conversion path will
277   // *start* with a step down to the correct virtual base subobject,
278   // and hence will not require any further steps.
279   if ((*Start)->isVirtual()) {
280     VBase =
281       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
282     ++Start;
283   }
284 
285   // Compute the static offset of the ultimate destination within its
286   // allocating subobject (the virtual base, if there is one, or else
287   // the "complete" object that we see).
288   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
289       VBase ? VBase : Derived, Start, PathEnd);
290 
291   // If there's a virtual step, we can sometimes "devirtualize" it.
292   // For now, that's limited to when the derived type is final.
293   // TODO: "devirtualize" this for accesses to known-complete objects.
294   if (VBase && Derived->hasAttr<FinalAttr>()) {
295     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
296     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
297     NonVirtualOffset += vBaseOffset;
298     VBase = nullptr; // we no longer have a virtual step
299   }
300 
301   // Get the base pointer type.
302   llvm::Type *BasePtrTy =
303     ConvertType((PathEnd[-1])->getType())->getPointerTo();
304 
305   QualType DerivedTy = getContext().getRecordType(Derived);
306   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
307 
308   // If the static offset is zero and we don't have a virtual step,
309   // just do a bitcast; null checks are unnecessary.
310   if (NonVirtualOffset.isZero() && !VBase) {
311     if (sanitizePerformTypeCheck()) {
312       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
313                     DerivedTy, DerivedAlign, !NullCheckValue);
314     }
315     return Builder.CreateBitCast(Value, BasePtrTy);
316   }
317 
318   llvm::BasicBlock *origBB = nullptr;
319   llvm::BasicBlock *endBB = nullptr;
320 
321   // Skip over the offset (and the vtable load) if we're supposed to
322   // null-check the pointer.
323   if (NullCheckValue) {
324     origBB = Builder.GetInsertBlock();
325     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
326     endBB = createBasicBlock("cast.end");
327 
328     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
329     Builder.CreateCondBr(isNull, endBB, notNullBB);
330     EmitBlock(notNullBB);
331   }
332 
333   if (sanitizePerformTypeCheck()) {
334     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
335                   Value.getPointer(), DerivedTy, DerivedAlign, true);
336   }
337 
338   // Compute the virtual offset.
339   llvm::Value *VirtualOffset = nullptr;
340   if (VBase) {
341     VirtualOffset =
342       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
343   }
344 
345   // Apply both offsets.
346   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
347                                           VirtualOffset, Derived, VBase);
348 
349   // Cast to the destination type.
350   Value = Builder.CreateBitCast(Value, BasePtrTy);
351 
352   // Build a phi if we needed a null check.
353   if (NullCheckValue) {
354     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
355     Builder.CreateBr(endBB);
356     EmitBlock(endBB);
357 
358     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
359     PHI->addIncoming(Value.getPointer(), notNullBB);
360     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
361     Value = Address(PHI, Value.getAlignment());
362   }
363 
364   return Value;
365 }
366 
367 Address
368 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
369                                           const CXXRecordDecl *Derived,
370                                         CastExpr::path_const_iterator PathBegin,
371                                           CastExpr::path_const_iterator PathEnd,
372                                           bool NullCheckValue) {
373   assert(PathBegin != PathEnd && "Base path should not be empty!");
374 
375   QualType DerivedTy =
376     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
377   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
378 
379   llvm::Value *NonVirtualOffset =
380     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
381 
382   if (!NonVirtualOffset) {
383     // No offset, we can just cast back.
384     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
385   }
386 
387   llvm::BasicBlock *CastNull = nullptr;
388   llvm::BasicBlock *CastNotNull = nullptr;
389   llvm::BasicBlock *CastEnd = nullptr;
390 
391   if (NullCheckValue) {
392     CastNull = createBasicBlock("cast.null");
393     CastNotNull = createBasicBlock("cast.notnull");
394     CastEnd = createBasicBlock("cast.end");
395 
396     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
397     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
398     EmitBlock(CastNotNull);
399   }
400 
401   // Apply the offset.
402   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
403   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
404                             "sub.ptr");
405 
406   // Just cast.
407   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
408 
409   // Produce a PHI if we had a null-check.
410   if (NullCheckValue) {
411     Builder.CreateBr(CastEnd);
412     EmitBlock(CastNull);
413     Builder.CreateBr(CastEnd);
414     EmitBlock(CastEnd);
415 
416     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
417     PHI->addIncoming(Value, CastNotNull);
418     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
419     Value = PHI;
420   }
421 
422   return Address(Value, CGM.getClassPointerAlignment(Derived));
423 }
424 
425 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
426                                               bool ForVirtualBase,
427                                               bool Delegating) {
428   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
429     // This constructor/destructor does not need a VTT parameter.
430     return nullptr;
431   }
432 
433   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
434   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
435 
436   llvm::Value *VTT;
437 
438   uint64_t SubVTTIndex;
439 
440   if (Delegating) {
441     // If this is a delegating constructor call, just load the VTT.
442     return LoadCXXVTT();
443   } else if (RD == Base) {
444     // If the record matches the base, this is the complete ctor/dtor
445     // variant calling the base variant in a class with virtual bases.
446     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
447            "doing no-op VTT offset in base dtor/ctor?");
448     assert(!ForVirtualBase && "Can't have same class as virtual base!");
449     SubVTTIndex = 0;
450   } else {
451     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
452     CharUnits BaseOffset = ForVirtualBase ?
453       Layout.getVBaseClassOffset(Base) :
454       Layout.getBaseClassOffset(Base);
455 
456     SubVTTIndex =
457       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
458     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
459   }
460 
461   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
462     // A VTT parameter was passed to the constructor, use it.
463     VTT = LoadCXXVTT();
464     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
465   } else {
466     // We're the complete constructor, so get the VTT by name.
467     VTT = CGM.getVTables().GetAddrOfVTT(RD);
468     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
469   }
470 
471   return VTT;
472 }
473 
474 namespace {
475   /// Call the destructor for a direct base class.
476   struct CallBaseDtor final : EHScopeStack::Cleanup {
477     const CXXRecordDecl *BaseClass;
478     bool BaseIsVirtual;
479     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
480       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
481 
482     void Emit(CodeGenFunction &CGF, Flags flags) override {
483       const CXXRecordDecl *DerivedClass =
484         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
485 
486       const CXXDestructorDecl *D = BaseClass->getDestructor();
487       Address Addr =
488         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
489                                                   DerivedClass, BaseClass,
490                                                   BaseIsVirtual);
491       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
492                                 /*Delegating=*/false, Addr);
493     }
494   };
495 
496   /// A visitor which checks whether an initializer uses 'this' in a
497   /// way which requires the vtable to be properly set.
498   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
499     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
500 
501     bool UsesThis;
502 
503     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
504 
505     // Black-list all explicit and implicit references to 'this'.
506     //
507     // Do we need to worry about external references to 'this' derived
508     // from arbitrary code?  If so, then anything which runs arbitrary
509     // external code might potentially access the vtable.
510     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
511   };
512 } // end anonymous namespace
513 
514 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
515   DynamicThisUseChecker Checker(C);
516   Checker.Visit(Init);
517   return Checker.UsesThis;
518 }
519 
520 static void EmitBaseInitializer(CodeGenFunction &CGF,
521                                 const CXXRecordDecl *ClassDecl,
522                                 CXXCtorInitializer *BaseInit,
523                                 CXXCtorType CtorType) {
524   assert(BaseInit->isBaseInitializer() &&
525          "Must have base initializer!");
526 
527   Address ThisPtr = CGF.LoadCXXThisAddress();
528 
529   const Type *BaseType = BaseInit->getBaseClass();
530   CXXRecordDecl *BaseClassDecl =
531     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
532 
533   bool isBaseVirtual = BaseInit->isBaseVirtual();
534 
535   // The base constructor doesn't construct virtual bases.
536   if (CtorType == Ctor_Base && isBaseVirtual)
537     return;
538 
539   // If the initializer for the base (other than the constructor
540   // itself) accesses 'this' in any way, we need to initialize the
541   // vtables.
542   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
543     CGF.InitializeVTablePointers(ClassDecl);
544 
545   // We can pretend to be a complete class because it only matters for
546   // virtual bases, and we only do virtual bases for complete ctors.
547   Address V =
548     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
549                                               BaseClassDecl,
550                                               isBaseVirtual);
551   AggValueSlot AggSlot =
552     AggValueSlot::forAddr(V, Qualifiers(),
553                           AggValueSlot::IsDestructed,
554                           AggValueSlot::DoesNotNeedGCBarriers,
555                           AggValueSlot::IsNotAliased);
556 
557   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
558 
559   if (CGF.CGM.getLangOpts().Exceptions &&
560       !BaseClassDecl->hasTrivialDestructor())
561     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
562                                           isBaseVirtual);
563 }
564 
565 /// Initialize a member of aggregate type using the given expression
566 /// as an initializer.
567 ///
568 /// The member may be an array.  If so:
569 /// - the destination l-value will be a pointer of the *base* element type,
570 /// - ArrayIndexVar will be a pointer to a variable containing the current
571 ///   index within the destination array, and
572 /// - ArrayIndexes will be an array of index variables, one for each level
573 ///   of array nesting, which will need to be updated as appropriate for the
574 ///   array structure.
575 ///
576 /// On an array, this function will invoke itself recursively.  Each time,
577 /// it drills into one nesting level of the member type and sets up a
578 /// loop updating the appropriate array index variable.
579 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
580                                      LValue LHS,
581                                      Expr *Init,
582                                      Address ArrayIndexVar,
583                                      QualType T,
584                                      ArrayRef<VarDecl *> ArrayIndexes,
585                                      unsigned Index) {
586   assert(ArrayIndexVar.isValid() == (ArrayIndexes.size() != 0));
587 
588   if (Index == ArrayIndexes.size()) {
589     LValue LV = LHS;
590 
591     Optional<CodeGenFunction::RunCleanupsScope> Scope;
592 
593     if (ArrayIndexVar.isValid()) {
594       // When we're processing an array, the temporaries from each
595       // element's construction are destroyed immediately.
596       Scope.emplace(CGF);
597 
598       // If we have an array index variable, load it and use it as an offset.
599       // Then, increment the value.
600       llvm::Value *Dest = LHS.getPointer();
601       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
602       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
603       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
604       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
605       CGF.Builder.CreateStore(Next, ArrayIndexVar);
606 
607       // Update the LValue.
608       CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T);
609       CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize);
610       LV.setAddress(Address(Dest, Align));
611 
612       // Enter a partial-array EH cleanup to destroy previous members
613       // of the array if this initialization throws.
614       if (CGF.CGM.getLangOpts().Exceptions) {
615         if (auto DtorKind = T.isDestructedType()) {
616           if (CGF.needsEHCleanup(DtorKind)) {
617             CGF.pushRegularPartialArrayCleanup(LHS.getPointer(),
618                                                LV.getPointer(), T,
619                                                LV.getAlignment(),
620                                                CGF.getDestroyer(DtorKind));
621           }
622         }
623       }
624     }
625 
626     switch (CGF.getEvaluationKind(T)) {
627     case TEK_Scalar:
628       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
629       break;
630     case TEK_Complex:
631       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
632       break;
633     case TEK_Aggregate: {
634       AggValueSlot Slot =
635         AggValueSlot::forLValue(LV,
636                                 AggValueSlot::IsDestructed,
637                                 AggValueSlot::DoesNotNeedGCBarriers,
638                                 AggValueSlot::IsNotAliased);
639 
640       CGF.EmitAggExpr(Init, Slot);
641       break;
642     }
643     }
644 
645     return;
646   }
647 
648   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
649   assert(Array && "Array initialization without the array type?");
650   Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
651 
652   // Initialize this index variable to zero.
653   llvm::Value* Zero
654     = llvm::Constant::getNullValue(IndexVar.getElementType());
655   CGF.Builder.CreateStore(Zero, IndexVar);
656 
657   // Start the loop with a block that tests the condition.
658   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
659   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
660 
661   CGF.EmitBlock(CondBlock);
662 
663   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
664   // Generate: if (loop-index < number-of-elements) fall to the loop body,
665   // otherwise, go to the block after the for-loop.
666   uint64_t NumElements = Array->getSize().getZExtValue();
667   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
668   llvm::Value *NumElementsPtr =
669     llvm::ConstantInt::get(Counter->getType(), NumElements);
670   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
671                                                   "isless");
672 
673   // If the condition is true, execute the body.
674   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
675 
676   CGF.EmitBlock(ForBody);
677   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
678 
679   // Inside the loop body recurse to emit the inner loop or, eventually, the
680   // constructor call.
681   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
682                            Array->getElementType(), ArrayIndexes, Index + 1);
683 
684   CGF.EmitBlock(ContinueBlock);
685 
686   // Emit the increment of the loop counter.
687   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
688   Counter = CGF.Builder.CreateLoad(IndexVar);
689   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
690   CGF.Builder.CreateStore(NextVal, IndexVar);
691 
692   // Finally, branch back up to the condition for the next iteration.
693   CGF.EmitBranch(CondBlock);
694 
695   // Emit the fall-through block.
696   CGF.EmitBlock(AfterFor, true);
697 }
698 
699 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
700   auto *CD = dyn_cast<CXXConstructorDecl>(D);
701   if (!(CD && CD->isCopyOrMoveConstructor()) &&
702       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
703     return false;
704 
705   // We can emit a memcpy for a trivial copy or move constructor/assignment.
706   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
707     return true;
708 
709   // We *must* emit a memcpy for a defaulted union copy or move op.
710   if (D->getParent()->isUnion() && D->isDefaulted())
711     return true;
712 
713   return false;
714 }
715 
716 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
717                                                 CXXCtorInitializer *MemberInit,
718                                                 LValue &LHS) {
719   FieldDecl *Field = MemberInit->getAnyMember();
720   if (MemberInit->isIndirectMemberInitializer()) {
721     // If we are initializing an anonymous union field, drill down to the field.
722     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
723     for (const auto *I : IndirectField->chain())
724       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
725   } else {
726     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
727   }
728 }
729 
730 static void EmitMemberInitializer(CodeGenFunction &CGF,
731                                   const CXXRecordDecl *ClassDecl,
732                                   CXXCtorInitializer *MemberInit,
733                                   const CXXConstructorDecl *Constructor,
734                                   FunctionArgList &Args) {
735   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
736   assert(MemberInit->isAnyMemberInitializer() &&
737          "Must have member initializer!");
738   assert(MemberInit->getInit() && "Must have initializer!");
739 
740   // non-static data member initializers.
741   FieldDecl *Field = MemberInit->getAnyMember();
742   QualType FieldType = Field->getType();
743 
744   llvm::Value *ThisPtr = CGF.LoadCXXThis();
745   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
746   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
747 
748   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
749 
750   // Special case: if we are in a copy or move constructor, and we are copying
751   // an array of PODs or classes with trivial copy constructors, ignore the
752   // AST and perform the copy we know is equivalent.
753   // FIXME: This is hacky at best... if we had a bit more explicit information
754   // in the AST, we could generalize it more easily.
755   const ConstantArrayType *Array
756     = CGF.getContext().getAsConstantArrayType(FieldType);
757   if (Array && Constructor->isDefaulted() &&
758       Constructor->isCopyOrMoveConstructor()) {
759     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
760     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
761     if (BaseElementTy.isPODType(CGF.getContext()) ||
762         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
763       unsigned SrcArgIndex =
764           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
765       llvm::Value *SrcPtr
766         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
767       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
768       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
769 
770       // Copy the aggregate.
771       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
772                             LHS.isVolatileQualified());
773       // Ensure that we destroy the objects if an exception is thrown later in
774       // the constructor.
775       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
776       if (CGF.needsEHCleanup(dtorKind))
777         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
778       return;
779     }
780   }
781 
782   ArrayRef<VarDecl *> ArrayIndexes;
783   if (MemberInit->getNumArrayIndices())
784     ArrayIndexes = MemberInit->getArrayIndices();
785   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
786 }
787 
788 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
789                                 Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) {
790   QualType FieldType = Field->getType();
791   switch (getEvaluationKind(FieldType)) {
792   case TEK_Scalar:
793     if (LHS.isSimple()) {
794       EmitExprAsInit(Init, Field, LHS, false);
795     } else {
796       RValue RHS = RValue::get(EmitScalarExpr(Init));
797       EmitStoreThroughLValue(RHS, LHS);
798     }
799     break;
800   case TEK_Complex:
801     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
802     break;
803   case TEK_Aggregate: {
804     Address ArrayIndexVar = Address::invalid();
805     if (ArrayIndexes.size()) {
806       // The LHS is a pointer to the first object we'll be constructing, as
807       // a flat array.
808       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
809       llvm::Type *BasePtr = ConvertType(BaseElementTy);
810       BasePtr = llvm::PointerType::getUnqual(BasePtr);
811       Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr);
812       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
813 
814       // Create an array index that will be used to walk over all of the
815       // objects we're constructing.
816       ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index");
817       llvm::Value *Zero =
818         llvm::Constant::getNullValue(ArrayIndexVar.getElementType());
819       Builder.CreateStore(Zero, ArrayIndexVar);
820 
821       // Emit the block variables for the array indices, if any.
822       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
823         EmitAutoVarDecl(*ArrayIndexes[I]);
824     }
825 
826     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
827                              ArrayIndexes, 0);
828   }
829   }
830 
831   // Ensure that we destroy this object if an exception is thrown
832   // later in the constructor.
833   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
834   if (needsEHCleanup(dtorKind))
835     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
836 }
837 
838 /// Checks whether the given constructor is a valid subject for the
839 /// complete-to-base constructor delegation optimization, i.e.
840 /// emitting the complete constructor as a simple call to the base
841 /// constructor.
842 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
843 
844   // Currently we disable the optimization for classes with virtual
845   // bases because (1) the addresses of parameter variables need to be
846   // consistent across all initializers but (2) the delegate function
847   // call necessarily creates a second copy of the parameter variable.
848   //
849   // The limiting example (purely theoretical AFAIK):
850   //   struct A { A(int &c) { c++; } };
851   //   struct B : virtual A {
852   //     B(int count) : A(count) { printf("%d\n", count); }
853   //   };
854   // ...although even this example could in principle be emitted as a
855   // delegation since the address of the parameter doesn't escape.
856   if (Ctor->getParent()->getNumVBases()) {
857     // TODO: white-list trivial vbase initializers.  This case wouldn't
858     // be subject to the restrictions below.
859 
860     // TODO: white-list cases where:
861     //  - there are no non-reference parameters to the constructor
862     //  - the initializers don't access any non-reference parameters
863     //  - the initializers don't take the address of non-reference
864     //    parameters
865     //  - etc.
866     // If we ever add any of the above cases, remember that:
867     //  - function-try-blocks will always blacklist this optimization
868     //  - we need to perform the constructor prologue and cleanup in
869     //    EmitConstructorBody.
870 
871     return false;
872   }
873 
874   // We also disable the optimization for variadic functions because
875   // it's impossible to "re-pass" varargs.
876   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
877     return false;
878 
879   // FIXME: Decide if we can do a delegation of a delegating constructor.
880   if (Ctor->isDelegatingConstructor())
881     return false;
882 
883   return true;
884 }
885 
886 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
887 // to poison the extra field paddings inserted under
888 // -fsanitize-address-field-padding=1|2.
889 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
890   ASTContext &Context = getContext();
891   const CXXRecordDecl *ClassDecl =
892       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
893                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
894   if (!ClassDecl->mayInsertExtraPadding()) return;
895 
896   struct SizeAndOffset {
897     uint64_t Size;
898     uint64_t Offset;
899   };
900 
901   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
902   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
903 
904   // Populate sizes and offsets of fields.
905   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
906   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
907     SSV[i].Offset =
908         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
909 
910   size_t NumFields = 0;
911   for (const auto *Field : ClassDecl->fields()) {
912     const FieldDecl *D = Field;
913     std::pair<CharUnits, CharUnits> FieldInfo =
914         Context.getTypeInfoInChars(D->getType());
915     CharUnits FieldSize = FieldInfo.first;
916     assert(NumFields < SSV.size());
917     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
918     NumFields++;
919   }
920   assert(NumFields == SSV.size());
921   if (SSV.size() <= 1) return;
922 
923   // We will insert calls to __asan_* run-time functions.
924   // LLVM AddressSanitizer pass may decide to inline them later.
925   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
926   llvm::FunctionType *FTy =
927       llvm::FunctionType::get(CGM.VoidTy, Args, false);
928   llvm::Constant *F = CGM.CreateRuntimeFunction(
929       FTy, Prologue ? "__asan_poison_intra_object_redzone"
930                     : "__asan_unpoison_intra_object_redzone");
931 
932   llvm::Value *ThisPtr = LoadCXXThis();
933   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
934   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
935   // For each field check if it has sufficient padding,
936   // if so (un)poison it with a call.
937   for (size_t i = 0; i < SSV.size(); i++) {
938     uint64_t AsanAlignment = 8;
939     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
940     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
941     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
942     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
943         (NextField % AsanAlignment) != 0)
944       continue;
945     Builder.CreateCall(
946         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
947             Builder.getIntN(PtrSize, PoisonSize)});
948   }
949 }
950 
951 /// EmitConstructorBody - Emits the body of the current constructor.
952 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
953   EmitAsanPrologueOrEpilogue(true);
954   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
955   CXXCtorType CtorType = CurGD.getCtorType();
956 
957   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
958           CtorType == Ctor_Complete) &&
959          "can only generate complete ctor for this ABI");
960 
961   // Before we go any further, try the complete->base constructor
962   // delegation optimization.
963   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
964       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
965     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
966     return;
967   }
968 
969   const FunctionDecl *Definition = nullptr;
970   Stmt *Body = Ctor->getBody(Definition);
971   assert(Definition == Ctor && "emitting wrong constructor body");
972 
973   // Enter the function-try-block before the constructor prologue if
974   // applicable.
975   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
976   if (IsTryBody)
977     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
978 
979   incrementProfileCounter(Body);
980 
981   RunCleanupsScope RunCleanups(*this);
982 
983   // TODO: in restricted cases, we can emit the vbase initializers of
984   // a complete ctor and then delegate to the base ctor.
985 
986   // Emit the constructor prologue, i.e. the base and member
987   // initializers.
988   EmitCtorPrologue(Ctor, CtorType, Args);
989 
990   // Emit the body of the statement.
991   if (IsTryBody)
992     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
993   else if (Body)
994     EmitStmt(Body);
995 
996   // Emit any cleanup blocks associated with the member or base
997   // initializers, which includes (along the exceptional path) the
998   // destructors for those members and bases that were fully
999   // constructed.
1000   RunCleanups.ForceCleanup();
1001 
1002   if (IsTryBody)
1003     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1004 }
1005 
1006 namespace {
1007   /// RAII object to indicate that codegen is copying the value representation
1008   /// instead of the object representation. Useful when copying a struct or
1009   /// class which has uninitialized members and we're only performing
1010   /// lvalue-to-rvalue conversion on the object but not its members.
1011   class CopyingValueRepresentation {
1012   public:
1013     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
1014         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
1015       CGF.SanOpts.set(SanitizerKind::Bool, false);
1016       CGF.SanOpts.set(SanitizerKind::Enum, false);
1017     }
1018     ~CopyingValueRepresentation() {
1019       CGF.SanOpts = OldSanOpts;
1020     }
1021   private:
1022     CodeGenFunction &CGF;
1023     SanitizerSet OldSanOpts;
1024   };
1025 } // end anonymous namespace
1026 
1027 namespace {
1028   class FieldMemcpyizer {
1029   public:
1030     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
1031                     const VarDecl *SrcRec)
1032       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
1033         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
1034         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
1035         LastFieldOffset(0), LastAddedFieldIndex(0) {}
1036 
1037     bool isMemcpyableField(FieldDecl *F) const {
1038       // Never memcpy fields when we are adding poisoned paddings.
1039       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
1040         return false;
1041       Qualifiers Qual = F->getType().getQualifiers();
1042       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
1043         return false;
1044       return true;
1045     }
1046 
1047     void addMemcpyableField(FieldDecl *F) {
1048       if (!FirstField)
1049         addInitialField(F);
1050       else
1051         addNextField(F);
1052     }
1053 
1054     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
1055       unsigned LastFieldSize =
1056         LastField->isBitField() ?
1057           LastField->getBitWidthValue(CGF.getContext()) :
1058           CGF.getContext().getTypeSize(LastField->getType());
1059       uint64_t MemcpySizeBits =
1060         LastFieldOffset + LastFieldSize - FirstByteOffset +
1061         CGF.getContext().getCharWidth() - 1;
1062       CharUnits MemcpySize =
1063         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
1064       return MemcpySize;
1065     }
1066 
1067     void emitMemcpy() {
1068       // Give the subclass a chance to bail out if it feels the memcpy isn't
1069       // worth it (e.g. Hasn't aggregated enough data).
1070       if (!FirstField) {
1071         return;
1072       }
1073 
1074       uint64_t FirstByteOffset;
1075       if (FirstField->isBitField()) {
1076         const CGRecordLayout &RL =
1077           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
1078         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
1079         // FirstFieldOffset is not appropriate for bitfields,
1080         // we need to use the storage offset instead.
1081         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
1082       } else {
1083         FirstByteOffset = FirstFieldOffset;
1084       }
1085 
1086       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
1087       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1088       Address ThisPtr = CGF.LoadCXXThisAddress();
1089       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1090       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
1091       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
1092       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
1093       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
1094 
1095       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
1096                    Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
1097                    MemcpySize);
1098       reset();
1099     }
1100 
1101     void reset() {
1102       FirstField = nullptr;
1103     }
1104 
1105   protected:
1106     CodeGenFunction &CGF;
1107     const CXXRecordDecl *ClassDecl;
1108 
1109   private:
1110     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1111       llvm::PointerType *DPT = DestPtr.getType();
1112       llvm::Type *DBP =
1113         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
1114       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
1115 
1116       llvm::PointerType *SPT = SrcPtr.getType();
1117       llvm::Type *SBP =
1118         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
1119       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
1120 
1121       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1122     }
1123 
1124     void addInitialField(FieldDecl *F) {
1125       FirstField = F;
1126       LastField = F;
1127       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1128       LastFieldOffset = FirstFieldOffset;
1129       LastAddedFieldIndex = F->getFieldIndex();
1130     }
1131 
1132     void addNextField(FieldDecl *F) {
1133       // For the most part, the following invariant will hold:
1134       //   F->getFieldIndex() == LastAddedFieldIndex + 1
1135       // The one exception is that Sema won't add a copy-initializer for an
1136       // unnamed bitfield, which will show up here as a gap in the sequence.
1137       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1138              "Cannot aggregate fields out of order.");
1139       LastAddedFieldIndex = F->getFieldIndex();
1140 
1141       // The 'first' and 'last' fields are chosen by offset, rather than field
1142       // index. This allows the code to support bitfields, as well as regular
1143       // fields.
1144       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1145       if (FOffset < FirstFieldOffset) {
1146         FirstField = F;
1147         FirstFieldOffset = FOffset;
1148       } else if (FOffset > LastFieldOffset) {
1149         LastField = F;
1150         LastFieldOffset = FOffset;
1151       }
1152     }
1153 
1154     const VarDecl *SrcRec;
1155     const ASTRecordLayout &RecLayout;
1156     FieldDecl *FirstField;
1157     FieldDecl *LastField;
1158     uint64_t FirstFieldOffset, LastFieldOffset;
1159     unsigned LastAddedFieldIndex;
1160   };
1161 
1162   class ConstructorMemcpyizer : public FieldMemcpyizer {
1163   private:
1164     /// Get source argument for copy constructor. Returns null if not a copy
1165     /// constructor.
1166     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1167                                                const CXXConstructorDecl *CD,
1168                                                FunctionArgList &Args) {
1169       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1170         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1171       return nullptr;
1172     }
1173 
1174     // Returns true if a CXXCtorInitializer represents a member initialization
1175     // that can be rolled into a memcpy.
1176     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1177       if (!MemcpyableCtor)
1178         return false;
1179       FieldDecl *Field = MemberInit->getMember();
1180       assert(Field && "No field for member init.");
1181       QualType FieldType = Field->getType();
1182       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1183 
1184       // Bail out on non-memcpyable, not-trivially-copyable members.
1185       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1186           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1187             FieldType->isReferenceType()))
1188         return false;
1189 
1190       // Bail out on volatile fields.
1191       if (!isMemcpyableField(Field))
1192         return false;
1193 
1194       // Otherwise we're good.
1195       return true;
1196     }
1197 
1198   public:
1199     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1200                           FunctionArgList &Args)
1201       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1202         ConstructorDecl(CD),
1203         MemcpyableCtor(CD->isDefaulted() &&
1204                        CD->isCopyOrMoveConstructor() &&
1205                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1206         Args(Args) { }
1207 
1208     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1209       if (isMemberInitMemcpyable(MemberInit)) {
1210         AggregatedInits.push_back(MemberInit);
1211         addMemcpyableField(MemberInit->getMember());
1212       } else {
1213         emitAggregatedInits();
1214         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1215                               ConstructorDecl, Args);
1216       }
1217     }
1218 
1219     void emitAggregatedInits() {
1220       if (AggregatedInits.size() <= 1) {
1221         // This memcpy is too small to be worthwhile. Fall back on default
1222         // codegen.
1223         if (!AggregatedInits.empty()) {
1224           CopyingValueRepresentation CVR(CGF);
1225           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1226                                 AggregatedInits[0], ConstructorDecl, Args);
1227           AggregatedInits.clear();
1228         }
1229         reset();
1230         return;
1231       }
1232 
1233       pushEHDestructors();
1234       emitMemcpy();
1235       AggregatedInits.clear();
1236     }
1237 
1238     void pushEHDestructors() {
1239       Address ThisPtr = CGF.LoadCXXThisAddress();
1240       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1241       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1242 
1243       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1244         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1245         QualType FieldType = MemberInit->getAnyMember()->getType();
1246         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1247         if (!CGF.needsEHCleanup(dtorKind))
1248           continue;
1249         LValue FieldLHS = LHS;
1250         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1251         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1252       }
1253     }
1254 
1255     void finish() {
1256       emitAggregatedInits();
1257     }
1258 
1259   private:
1260     const CXXConstructorDecl *ConstructorDecl;
1261     bool MemcpyableCtor;
1262     FunctionArgList &Args;
1263     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1264   };
1265 
1266   class AssignmentMemcpyizer : public FieldMemcpyizer {
1267   private:
1268     // Returns the memcpyable field copied by the given statement, if one
1269     // exists. Otherwise returns null.
1270     FieldDecl *getMemcpyableField(Stmt *S) {
1271       if (!AssignmentsMemcpyable)
1272         return nullptr;
1273       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1274         // Recognise trivial assignments.
1275         if (BO->getOpcode() != BO_Assign)
1276           return nullptr;
1277         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1278         if (!ME)
1279           return nullptr;
1280         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1281         if (!Field || !isMemcpyableField(Field))
1282           return nullptr;
1283         Stmt *RHS = BO->getRHS();
1284         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1285           RHS = EC->getSubExpr();
1286         if (!RHS)
1287           return nullptr;
1288         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1289         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1290           return nullptr;
1291         return Field;
1292       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1293         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1294         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1295           return nullptr;
1296         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1297         if (!IOA)
1298           return nullptr;
1299         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1300         if (!Field || !isMemcpyableField(Field))
1301           return nullptr;
1302         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1303         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1304           return nullptr;
1305         return Field;
1306       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1307         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1308         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1309           return nullptr;
1310         Expr *DstPtr = CE->getArg(0);
1311         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1312           DstPtr = DC->getSubExpr();
1313         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1314         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1315           return nullptr;
1316         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1317         if (!ME)
1318           return nullptr;
1319         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1320         if (!Field || !isMemcpyableField(Field))
1321           return nullptr;
1322         Expr *SrcPtr = CE->getArg(1);
1323         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1324           SrcPtr = SC->getSubExpr();
1325         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1326         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1327           return nullptr;
1328         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1329         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1330           return nullptr;
1331         return Field;
1332       }
1333 
1334       return nullptr;
1335     }
1336 
1337     bool AssignmentsMemcpyable;
1338     SmallVector<Stmt*, 16> AggregatedStmts;
1339 
1340   public:
1341     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1342                          FunctionArgList &Args)
1343       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1344         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1345       assert(Args.size() == 2);
1346     }
1347 
1348     void emitAssignment(Stmt *S) {
1349       FieldDecl *F = getMemcpyableField(S);
1350       if (F) {
1351         addMemcpyableField(F);
1352         AggregatedStmts.push_back(S);
1353       } else {
1354         emitAggregatedStmts();
1355         CGF.EmitStmt(S);
1356       }
1357     }
1358 
1359     void emitAggregatedStmts() {
1360       if (AggregatedStmts.size() <= 1) {
1361         if (!AggregatedStmts.empty()) {
1362           CopyingValueRepresentation CVR(CGF);
1363           CGF.EmitStmt(AggregatedStmts[0]);
1364         }
1365         reset();
1366       }
1367 
1368       emitMemcpy();
1369       AggregatedStmts.clear();
1370     }
1371 
1372     void finish() {
1373       emitAggregatedStmts();
1374     }
1375   };
1376 } // end anonymous namespace
1377 
1378 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1379   const Type *BaseType = BaseInit->getBaseClass();
1380   const auto *BaseClassDecl =
1381           cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
1382   return BaseClassDecl->isDynamicClass();
1383 }
1384 
1385 /// EmitCtorPrologue - This routine generates necessary code to initialize
1386 /// base classes and non-static data members belonging to this constructor.
1387 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1388                                        CXXCtorType CtorType,
1389                                        FunctionArgList &Args) {
1390   if (CD->isDelegatingConstructor())
1391     return EmitDelegatingCXXConstructorCall(CD, Args);
1392 
1393   const CXXRecordDecl *ClassDecl = CD->getParent();
1394 
1395   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1396                                           E = CD->init_end();
1397 
1398   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1399   if (ClassDecl->getNumVBases() &&
1400       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1401     // The ABIs that don't have constructor variants need to put a branch
1402     // before the virtual base initialization code.
1403     BaseCtorContinueBB =
1404       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1405     assert(BaseCtorContinueBB);
1406   }
1407 
1408   llvm::Value *const OldThis = CXXThisValue;
1409   // Virtual base initializers first.
1410   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1411     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1412         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1413         isInitializerOfDynamicClass(*B))
1414       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1415     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1416   }
1417 
1418   if (BaseCtorContinueBB) {
1419     // Complete object handler should continue to the remaining initializers.
1420     Builder.CreateBr(BaseCtorContinueBB);
1421     EmitBlock(BaseCtorContinueBB);
1422   }
1423 
1424   // Then, non-virtual base initializers.
1425   for (; B != E && (*B)->isBaseInitializer(); B++) {
1426     assert(!(*B)->isBaseVirtual());
1427 
1428     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1429         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1430         isInitializerOfDynamicClass(*B))
1431       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1432     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1433   }
1434 
1435   CXXThisValue = OldThis;
1436 
1437   InitializeVTablePointers(ClassDecl);
1438 
1439   // And finally, initialize class members.
1440   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1441   ConstructorMemcpyizer CM(*this, CD, Args);
1442   for (; B != E; B++) {
1443     CXXCtorInitializer *Member = (*B);
1444     assert(!Member->isBaseInitializer());
1445     assert(Member->isAnyMemberInitializer() &&
1446            "Delegating initializer on non-delegating constructor");
1447     CM.addMemberInitializer(Member);
1448   }
1449   CM.finish();
1450 }
1451 
1452 static bool
1453 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1454 
1455 static bool
1456 HasTrivialDestructorBody(ASTContext &Context,
1457                          const CXXRecordDecl *BaseClassDecl,
1458                          const CXXRecordDecl *MostDerivedClassDecl)
1459 {
1460   // If the destructor is trivial we don't have to check anything else.
1461   if (BaseClassDecl->hasTrivialDestructor())
1462     return true;
1463 
1464   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1465     return false;
1466 
1467   // Check fields.
1468   for (const auto *Field : BaseClassDecl->fields())
1469     if (!FieldHasTrivialDestructorBody(Context, Field))
1470       return false;
1471 
1472   // Check non-virtual bases.
1473   for (const auto &I : BaseClassDecl->bases()) {
1474     if (I.isVirtual())
1475       continue;
1476 
1477     const CXXRecordDecl *NonVirtualBase =
1478       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1479     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1480                                   MostDerivedClassDecl))
1481       return false;
1482   }
1483 
1484   if (BaseClassDecl == MostDerivedClassDecl) {
1485     // Check virtual bases.
1486     for (const auto &I : BaseClassDecl->vbases()) {
1487       const CXXRecordDecl *VirtualBase =
1488         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1489       if (!HasTrivialDestructorBody(Context, VirtualBase,
1490                                     MostDerivedClassDecl))
1491         return false;
1492     }
1493   }
1494 
1495   return true;
1496 }
1497 
1498 static bool
1499 FieldHasTrivialDestructorBody(ASTContext &Context,
1500                                           const FieldDecl *Field)
1501 {
1502   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1503 
1504   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1505   if (!RT)
1506     return true;
1507 
1508   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1509 
1510   // The destructor for an implicit anonymous union member is never invoked.
1511   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1512     return false;
1513 
1514   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1515 }
1516 
1517 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1518 /// any vtable pointers before calling this destructor.
1519 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1520                                                const CXXDestructorDecl *Dtor) {
1521   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1522   if (!ClassDecl->isDynamicClass())
1523     return true;
1524 
1525   if (!Dtor->hasTrivialBody())
1526     return false;
1527 
1528   // Check the fields.
1529   for (const auto *Field : ClassDecl->fields())
1530     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1531       return false;
1532 
1533   return true;
1534 }
1535 
1536 /// EmitDestructorBody - Emits the body of the current destructor.
1537 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1538   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1539   CXXDtorType DtorType = CurGD.getDtorType();
1540 
1541   Stmt *Body = Dtor->getBody();
1542   if (Body)
1543     incrementProfileCounter(Body);
1544 
1545   // The call to operator delete in a deleting destructor happens
1546   // outside of the function-try-block, which means it's always
1547   // possible to delegate the destructor body to the complete
1548   // destructor.  Do so.
1549   if (DtorType == Dtor_Deleting) {
1550     EnterDtorCleanups(Dtor, Dtor_Deleting);
1551     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1552                           /*Delegating=*/false, LoadCXXThisAddress());
1553     PopCleanupBlock();
1554     return;
1555   }
1556 
1557   // If the body is a function-try-block, enter the try before
1558   // anything else.
1559   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1560   if (isTryBody)
1561     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1562   EmitAsanPrologueOrEpilogue(false);
1563 
1564   // Enter the epilogue cleanups.
1565   RunCleanupsScope DtorEpilogue(*this);
1566 
1567   // If this is the complete variant, just invoke the base variant;
1568   // the epilogue will destruct the virtual bases.  But we can't do
1569   // this optimization if the body is a function-try-block, because
1570   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1571   // always delegate because we might not have a definition in this TU.
1572   switch (DtorType) {
1573   case Dtor_Comdat:
1574     llvm_unreachable("not expecting a COMDAT");
1575 
1576   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1577 
1578   case Dtor_Complete:
1579     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1580            "can't emit a dtor without a body for non-Microsoft ABIs");
1581 
1582     // Enter the cleanup scopes for virtual bases.
1583     EnterDtorCleanups(Dtor, Dtor_Complete);
1584 
1585     if (!isTryBody) {
1586       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1587                             /*Delegating=*/false, LoadCXXThisAddress());
1588       break;
1589     }
1590     // Fallthrough: act like we're in the base variant.
1591 
1592   case Dtor_Base:
1593     assert(Body);
1594 
1595     // Enter the cleanup scopes for fields and non-virtual bases.
1596     EnterDtorCleanups(Dtor, Dtor_Base);
1597 
1598     // Initialize the vtable pointers before entering the body.
1599     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1600       // Insert the llvm.invariant.group.barrier intrinsic before initializing
1601       // the vptrs to cancel any previous assumptions we might have made.
1602       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1603           CGM.getCodeGenOpts().OptimizationLevel > 0)
1604         CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1605       InitializeVTablePointers(Dtor->getParent());
1606     }
1607 
1608     if (isTryBody)
1609       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1610     else if (Body)
1611       EmitStmt(Body);
1612     else {
1613       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1614       // nothing to do besides what's in the epilogue
1615     }
1616     // -fapple-kext must inline any call to this dtor into
1617     // the caller's body.
1618     if (getLangOpts().AppleKext)
1619       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1620 
1621     break;
1622   }
1623 
1624   // Jump out through the epilogue cleanups.
1625   DtorEpilogue.ForceCleanup();
1626 
1627   // Exit the try if applicable.
1628   if (isTryBody)
1629     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1630 }
1631 
1632 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1633   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1634   const Stmt *RootS = AssignOp->getBody();
1635   assert(isa<CompoundStmt>(RootS) &&
1636          "Body of an implicit assignment operator should be compound stmt.");
1637   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1638 
1639   LexicalScope Scope(*this, RootCS->getSourceRange());
1640 
1641   incrementProfileCounter(RootCS);
1642   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1643   for (auto *I : RootCS->body())
1644     AM.emitAssignment(I);
1645   AM.finish();
1646 }
1647 
1648 namespace {
1649   /// Call the operator delete associated with the current destructor.
1650   struct CallDtorDelete final : EHScopeStack::Cleanup {
1651     CallDtorDelete() {}
1652 
1653     void Emit(CodeGenFunction &CGF, Flags flags) override {
1654       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1655       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1656       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1657                          CGF.getContext().getTagDeclType(ClassDecl));
1658     }
1659   };
1660 
1661   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1662     llvm::Value *ShouldDeleteCondition;
1663 
1664   public:
1665     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1666         : ShouldDeleteCondition(ShouldDeleteCondition) {
1667       assert(ShouldDeleteCondition != nullptr);
1668     }
1669 
1670     void Emit(CodeGenFunction &CGF, Flags flags) override {
1671       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1672       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1673       llvm::Value *ShouldCallDelete
1674         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1675       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1676 
1677       CGF.EmitBlock(callDeleteBB);
1678       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1679       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1680       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1681                          CGF.getContext().getTagDeclType(ClassDecl));
1682       CGF.Builder.CreateBr(continueBB);
1683 
1684       CGF.EmitBlock(continueBB);
1685     }
1686   };
1687 
1688   class DestroyField  final : public EHScopeStack::Cleanup {
1689     const FieldDecl *field;
1690     CodeGenFunction::Destroyer *destroyer;
1691     bool useEHCleanupForArray;
1692 
1693   public:
1694     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1695                  bool useEHCleanupForArray)
1696         : field(field), destroyer(destroyer),
1697           useEHCleanupForArray(useEHCleanupForArray) {}
1698 
1699     void Emit(CodeGenFunction &CGF, Flags flags) override {
1700       // Find the address of the field.
1701       Address thisValue = CGF.LoadCXXThisAddress();
1702       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1703       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1704       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1705       assert(LV.isSimple());
1706 
1707       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1708                       flags.isForNormalCleanup() && useEHCleanupForArray);
1709     }
1710   };
1711 
1712  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1713              CharUnits::QuantityType PoisonSize) {
1714    // Pass in void pointer and size of region as arguments to runtime
1715    // function
1716    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1717                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1718 
1719    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1720 
1721    llvm::FunctionType *FnType =
1722        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1723    llvm::Value *Fn =
1724        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1725    CGF.EmitNounwindRuntimeCall(Fn, Args);
1726  }
1727 
1728   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1729     const CXXDestructorDecl *Dtor;
1730 
1731   public:
1732     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1733 
1734     // Generate function call for handling object poisoning.
1735     // Disables tail call elimination, to prevent the current stack frame
1736     // from disappearing from the stack trace.
1737     void Emit(CodeGenFunction &CGF, Flags flags) override {
1738       const ASTRecordLayout &Layout =
1739           CGF.getContext().getASTRecordLayout(Dtor->getParent());
1740 
1741       // Nothing to poison.
1742       if (Layout.getFieldCount() == 0)
1743         return;
1744 
1745       // Prevent the current stack frame from disappearing from the stack trace.
1746       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1747 
1748       // Construct pointer to region to begin poisoning, and calculate poison
1749       // size, so that only members declared in this class are poisoned.
1750       ASTContext &Context = CGF.getContext();
1751       unsigned fieldIndex = 0;
1752       int startIndex = -1;
1753       // RecordDecl::field_iterator Field;
1754       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1755         // Poison field if it is trivial
1756         if (FieldHasTrivialDestructorBody(Context, Field)) {
1757           // Start sanitizing at this field
1758           if (startIndex < 0)
1759             startIndex = fieldIndex;
1760 
1761           // Currently on the last field, and it must be poisoned with the
1762           // current block.
1763           if (fieldIndex == Layout.getFieldCount() - 1) {
1764             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1765           }
1766         } else if (startIndex >= 0) {
1767           // No longer within a block of memory to poison, so poison the block
1768           PoisonMembers(CGF, startIndex, fieldIndex);
1769           // Re-set the start index
1770           startIndex = -1;
1771         }
1772         fieldIndex += 1;
1773       }
1774     }
1775 
1776   private:
1777     /// \param layoutStartOffset index of the ASTRecordLayout field to
1778     ///     start poisoning (inclusive)
1779     /// \param layoutEndOffset index of the ASTRecordLayout field to
1780     ///     end poisoning (exclusive)
1781     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1782                      unsigned layoutEndOffset) {
1783       ASTContext &Context = CGF.getContext();
1784       const ASTRecordLayout &Layout =
1785           Context.getASTRecordLayout(Dtor->getParent());
1786 
1787       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1788           CGF.SizeTy,
1789           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1790               .getQuantity());
1791 
1792       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1793           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1794           OffsetSizePtr);
1795 
1796       CharUnits::QuantityType PoisonSize;
1797       if (layoutEndOffset >= Layout.getFieldCount()) {
1798         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1799                      Context.toCharUnitsFromBits(
1800                                 Layout.getFieldOffset(layoutStartOffset))
1801                          .getQuantity();
1802       } else {
1803         PoisonSize = Context.toCharUnitsFromBits(
1804                                 Layout.getFieldOffset(layoutEndOffset) -
1805                                 Layout.getFieldOffset(layoutStartOffset))
1806                          .getQuantity();
1807       }
1808 
1809       if (PoisonSize == 0)
1810         return;
1811 
1812       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1813     }
1814   };
1815 
1816  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1817     const CXXDestructorDecl *Dtor;
1818 
1819   public:
1820     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1821 
1822     // Generate function call for handling vtable pointer poisoning.
1823     void Emit(CodeGenFunction &CGF, Flags flags) override {
1824       assert(Dtor->getParent()->isDynamicClass());
1825       (void)Dtor;
1826       ASTContext &Context = CGF.getContext();
1827       // Poison vtable and vtable ptr if they exist for this class.
1828       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1829 
1830       CharUnits::QuantityType PoisonSize =
1831           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1832       // Pass in void pointer and size of region as arguments to runtime
1833       // function
1834       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1835     }
1836  };
1837 } // end anonymous namespace
1838 
1839 /// \brief Emit all code that comes at the end of class's
1840 /// destructor. This is to call destructors on members and base classes
1841 /// in reverse order of their construction.
1842 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1843                                         CXXDtorType DtorType) {
1844   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1845          "Should not emit dtor epilogue for non-exported trivial dtor!");
1846 
1847   // The deleting-destructor phase just needs to call the appropriate
1848   // operator delete that Sema picked up.
1849   if (DtorType == Dtor_Deleting) {
1850     assert(DD->getOperatorDelete() &&
1851            "operator delete missing - EnterDtorCleanups");
1852     if (CXXStructorImplicitParamValue) {
1853       // If there is an implicit param to the deleting dtor, it's a boolean
1854       // telling whether we should call delete at the end of the dtor.
1855       EHStack.pushCleanup<CallDtorDeleteConditional>(
1856           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1857     } else {
1858       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1859     }
1860     return;
1861   }
1862 
1863   const CXXRecordDecl *ClassDecl = DD->getParent();
1864 
1865   // Unions have no bases and do not call field destructors.
1866   if (ClassDecl->isUnion())
1867     return;
1868 
1869   // The complete-destructor phase just destructs all the virtual bases.
1870   if (DtorType == Dtor_Complete) {
1871     // Poison the vtable pointer such that access after the base
1872     // and member destructors are invoked is invalid.
1873     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1874         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1875         ClassDecl->isPolymorphic())
1876       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1877 
1878     // We push them in the forward order so that they'll be popped in
1879     // the reverse order.
1880     for (const auto &Base : ClassDecl->vbases()) {
1881       CXXRecordDecl *BaseClassDecl
1882         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1883 
1884       // Ignore trivial destructors.
1885       if (BaseClassDecl->hasTrivialDestructor())
1886         continue;
1887 
1888       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1889                                         BaseClassDecl,
1890                                         /*BaseIsVirtual*/ true);
1891     }
1892 
1893     return;
1894   }
1895 
1896   assert(DtorType == Dtor_Base);
1897   // Poison the vtable pointer if it has no virtual bases, but inherits
1898   // virtual functions.
1899   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1900       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1901       ClassDecl->isPolymorphic())
1902     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1903 
1904   // Destroy non-virtual bases.
1905   for (const auto &Base : ClassDecl->bases()) {
1906     // Ignore virtual bases.
1907     if (Base.isVirtual())
1908       continue;
1909 
1910     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1911 
1912     // Ignore trivial destructors.
1913     if (BaseClassDecl->hasTrivialDestructor())
1914       continue;
1915 
1916     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1917                                       BaseClassDecl,
1918                                       /*BaseIsVirtual*/ false);
1919   }
1920 
1921   // Poison fields such that access after their destructors are
1922   // invoked, and before the base class destructor runs, is invalid.
1923   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1924       SanOpts.has(SanitizerKind::Memory))
1925     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1926 
1927   // Destroy direct fields.
1928   for (const auto *Field : ClassDecl->fields()) {
1929     QualType type = Field->getType();
1930     QualType::DestructionKind dtorKind = type.isDestructedType();
1931     if (!dtorKind) continue;
1932 
1933     // Anonymous union members do not have their destructors called.
1934     const RecordType *RT = type->getAsUnionType();
1935     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1936 
1937     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1938     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1939                                       getDestroyer(dtorKind),
1940                                       cleanupKind & EHCleanup);
1941   }
1942 }
1943 
1944 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1945 /// constructor for each of several members of an array.
1946 ///
1947 /// \param ctor the constructor to call for each element
1948 /// \param arrayType the type of the array to initialize
1949 /// \param arrayBegin an arrayType*
1950 /// \param zeroInitialize true if each element should be
1951 ///   zero-initialized before it is constructed
1952 void CodeGenFunction::EmitCXXAggrConstructorCall(
1953     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1954     Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1955   QualType elementType;
1956   llvm::Value *numElements =
1957     emitArrayLength(arrayType, elementType, arrayBegin);
1958 
1959   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1960 }
1961 
1962 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1963 /// constructor for each of several members of an array.
1964 ///
1965 /// \param ctor the constructor to call for each element
1966 /// \param numElements the number of elements in the array;
1967 ///   may be zero
1968 /// \param arrayBase a T*, where T is the type constructed by ctor
1969 /// \param zeroInitialize true if each element should be
1970 ///   zero-initialized before it is constructed
1971 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1972                                                  llvm::Value *numElements,
1973                                                  Address arrayBase,
1974                                                  const CXXConstructExpr *E,
1975                                                  bool zeroInitialize) {
1976   // It's legal for numElements to be zero.  This can happen both
1977   // dynamically, because x can be zero in 'new A[x]', and statically,
1978   // because of GCC extensions that permit zero-length arrays.  There
1979   // are probably legitimate places where we could assume that this
1980   // doesn't happen, but it's not clear that it's worth it.
1981   llvm::BranchInst *zeroCheckBranch = nullptr;
1982 
1983   // Optimize for a constant count.
1984   llvm::ConstantInt *constantCount
1985     = dyn_cast<llvm::ConstantInt>(numElements);
1986   if (constantCount) {
1987     // Just skip out if the constant count is zero.
1988     if (constantCount->isZero()) return;
1989 
1990   // Otherwise, emit the check.
1991   } else {
1992     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1993     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1994     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1995     EmitBlock(loopBB);
1996   }
1997 
1998   // Find the end of the array.
1999   llvm::Value *arrayBegin = arrayBase.getPointer();
2000   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
2001                                                     "arrayctor.end");
2002 
2003   // Enter the loop, setting up a phi for the current location to initialize.
2004   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2005   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2006   EmitBlock(loopBB);
2007   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
2008                                          "arrayctor.cur");
2009   cur->addIncoming(arrayBegin, entryBB);
2010 
2011   // Inside the loop body, emit the constructor call on the array element.
2012 
2013   // The alignment of the base, adjusted by the size of a single element,
2014   // provides a conservative estimate of the alignment of every element.
2015   // (This assumes we never start tracking offsetted alignments.)
2016   //
2017   // Note that these are complete objects and so we don't need to
2018   // use the non-virtual size or alignment.
2019   QualType type = getContext().getTypeDeclType(ctor->getParent());
2020   CharUnits eltAlignment =
2021     arrayBase.getAlignment()
2022              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2023   Address curAddr = Address(cur, eltAlignment);
2024 
2025   // Zero initialize the storage, if requested.
2026   if (zeroInitialize)
2027     EmitNullInitialization(curAddr, type);
2028 
2029   // C++ [class.temporary]p4:
2030   // There are two contexts in which temporaries are destroyed at a different
2031   // point than the end of the full-expression. The first context is when a
2032   // default constructor is called to initialize an element of an array.
2033   // If the constructor has one or more default arguments, the destruction of
2034   // every temporary created in a default argument expression is sequenced
2035   // before the construction of the next array element, if any.
2036 
2037   {
2038     RunCleanupsScope Scope(*this);
2039 
2040     // Evaluate the constructor and its arguments in a regular
2041     // partial-destroy cleanup.
2042     if (getLangOpts().Exceptions &&
2043         !ctor->getParent()->hasTrivialDestructor()) {
2044       Destroyer *destroyer = destroyCXXObject;
2045       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2046                                      *destroyer);
2047     }
2048 
2049     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2050                            /*Delegating=*/false, curAddr, E);
2051   }
2052 
2053   // Go to the next element.
2054   llvm::Value *next =
2055     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
2056                               "arrayctor.next");
2057   cur->addIncoming(next, Builder.GetInsertBlock());
2058 
2059   // Check whether that's the end of the loop.
2060   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2061   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2062   Builder.CreateCondBr(done, contBB, loopBB);
2063 
2064   // Patch the earlier check to skip over the loop.
2065   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2066 
2067   EmitBlock(contBB);
2068 }
2069 
2070 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2071                                        Address addr,
2072                                        QualType type) {
2073   const RecordType *rtype = type->castAs<RecordType>();
2074   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2075   const CXXDestructorDecl *dtor = record->getDestructor();
2076   assert(!dtor->isTrivial());
2077   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2078                             /*Delegating=*/false, addr);
2079 }
2080 
2081 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2082                                              CXXCtorType Type,
2083                                              bool ForVirtualBase,
2084                                              bool Delegating, Address This,
2085                                              const CXXConstructExpr *E) {
2086   CallArgList Args;
2087 
2088   // Push the this ptr.
2089   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2090 
2091   // If this is a trivial constructor, emit a memcpy now before we lose
2092   // the alignment information on the argument.
2093   // FIXME: It would be better to preserve alignment information into CallArg.
2094   if (isMemcpyEquivalentSpecialMember(D)) {
2095     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2096 
2097     const Expr *Arg = E->getArg(0);
2098     QualType SrcTy = Arg->getType();
2099     Address Src = EmitLValue(Arg).getAddress();
2100     QualType DestTy = getContext().getTypeDeclType(D->getParent());
2101     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2102     return;
2103   }
2104 
2105   // Add the rest of the user-supplied arguments.
2106   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2107   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor());
2108 
2109   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args);
2110 }
2111 
2112 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2113                                     const CXXConstructorDecl *Ctor,
2114                                     CXXCtorType Type, CallArgList &Args) {
2115   // We can't forward a variadic call.
2116   if (Ctor->isVariadic())
2117     return false;
2118 
2119   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2120     // If the parameters are callee-cleanup, it's not safe to forward.
2121     for (auto *P : Ctor->parameters())
2122       if (P->getType().isDestructedType())
2123         return false;
2124 
2125     // Likewise if they're inalloca.
2126     const CGFunctionInfo &Info =
2127         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0);
2128     if (Info.usesInAlloca())
2129       return false;
2130   }
2131 
2132   // Anything else should be OK.
2133   return true;
2134 }
2135 
2136 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2137                                              CXXCtorType Type,
2138                                              bool ForVirtualBase,
2139                                              bool Delegating,
2140                                              Address This,
2141                                              CallArgList &Args) {
2142   const CXXRecordDecl *ClassDecl = D->getParent();
2143 
2144   // C++11 [class.mfct.non-static]p2:
2145   //   If a non-static member function of a class X is called for an object that
2146   //   is not of type X, or of a type derived from X, the behavior is undefined.
2147   // FIXME: Provide a source location here.
2148   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
2149                 This.getPointer(), getContext().getRecordType(ClassDecl));
2150 
2151   if (D->isTrivial() && D->isDefaultConstructor()) {
2152     assert(Args.size() == 1 && "trivial default ctor with args");
2153     return;
2154   }
2155 
2156   // If this is a trivial constructor, just emit what's needed. If this is a
2157   // union copy constructor, we must emit a memcpy, because the AST does not
2158   // model that copy.
2159   if (isMemcpyEquivalentSpecialMember(D)) {
2160     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2161 
2162     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2163     Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy));
2164     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2165     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2166     return;
2167   }
2168 
2169   // Check whether we can actually emit the constructor before trying to do so.
2170   if (auto Inherited = D->getInheritedConstructor()) {
2171     if (getTypes().inheritingCtorHasParams(Inherited, Type) &&
2172         !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2173       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2174                                               Delegating, Args);
2175       return;
2176     }
2177   }
2178 
2179   // Insert any ABI-specific implicit constructor arguments.
2180   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
2181       *this, D, Type, ForVirtualBase, Delegating, Args);
2182 
2183   // Emit the call.
2184   llvm::Constant *CalleePtr =
2185     CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
2186   const CGFunctionInfo &Info =
2187     CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
2188   CGCallee Callee = CGCallee::forDirect(CalleePtr, D);
2189   EmitCall(Info, Callee, ReturnValueSlot(), Args);
2190 
2191   // Generate vtable assumptions if we're constructing a complete object
2192   // with a vtable.  We don't do this for base subobjects for two reasons:
2193   // first, it's incorrect for classes with virtual bases, and second, we're
2194   // about to overwrite the vptrs anyway.
2195   // We also have to make sure if we can refer to vtable:
2196   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2197   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2198   // sure that definition of vtable is not hidden,
2199   // then we are always safe to refer to it.
2200   // FIXME: It looks like InstCombine is very inefficient on dealing with
2201   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2202   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2203       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2204       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2205       CGM.getCodeGenOpts().StrictVTablePointers)
2206     EmitVTableAssumptionLoads(ClassDecl, This);
2207 }
2208 
2209 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2210     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2211     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2212   CallArgList Args;
2213   CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()),
2214                   /*NeedsCopy=*/false);
2215 
2216   // Forward the parameters.
2217   if (InheritedFromVBase &&
2218       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2219     // Nothing to do; this construction is not responsible for constructing
2220     // the base class containing the inherited constructor.
2221     // FIXME: Can we just pass undef's for the remaining arguments if we don't
2222     // have constructor variants?
2223     Args.push_back(ThisArg);
2224   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2225     // The inheriting constructor was inlined; just inject its arguments.
2226     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2227            "wrong number of parameters for inherited constructor call");
2228     Args = CXXInheritedCtorInitExprArgs;
2229     Args[0] = ThisArg;
2230   } else {
2231     // The inheriting constructor was not inlined. Emit delegating arguments.
2232     Args.push_back(ThisArg);
2233     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2234     assert(OuterCtor->getNumParams() == D->getNumParams());
2235     assert(!OuterCtor->isVariadic() && "should have been inlined");
2236 
2237     for (const auto *Param : OuterCtor->parameters()) {
2238       assert(getContext().hasSameUnqualifiedType(
2239           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2240           Param->getType()));
2241       EmitDelegateCallArg(Args, Param, E->getLocation());
2242 
2243       // Forward __attribute__(pass_object_size).
2244       if (Param->hasAttr<PassObjectSizeAttr>()) {
2245         auto *POSParam = SizeArguments[Param];
2246         assert(POSParam && "missing pass_object_size value for forwarding");
2247         EmitDelegateCallArg(Args, POSParam, E->getLocation());
2248       }
2249     }
2250   }
2251 
2252   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2253                          This, Args);
2254 }
2255 
2256 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2257     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2258     bool Delegating, CallArgList &Args) {
2259   InlinedInheritingConstructorScope Scope(*this, GlobalDecl(Ctor, CtorType));
2260 
2261   // Save the arguments to be passed to the inherited constructor.
2262   CXXInheritedCtorInitExprArgs = Args;
2263 
2264   FunctionArgList Params;
2265   QualType RetType = BuildFunctionArgList(CurGD, Params);
2266   FnRetTy = RetType;
2267 
2268   // Insert any ABI-specific implicit constructor arguments.
2269   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2270                                              ForVirtualBase, Delegating, Args);
2271 
2272   // Emit a simplified prolog. We only need to emit the implicit params.
2273   assert(Args.size() >= Params.size() && "too few arguments for call");
2274   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2275     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2276       const RValue &RV = Args[I].RV;
2277       assert(!RV.isComplex() && "complex indirect params not supported");
2278       ParamValue Val = RV.isScalar()
2279                            ? ParamValue::forDirect(RV.getScalarVal())
2280                            : ParamValue::forIndirect(RV.getAggregateAddress());
2281       EmitParmDecl(*Params[I], Val, I + 1);
2282     }
2283   }
2284 
2285   // Create a return value slot if the ABI implementation wants one.
2286   // FIXME: This is dumb, we should ask the ABI not to try to set the return
2287   // value instead.
2288   if (!RetType->isVoidType())
2289     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2290 
2291   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2292   CXXThisValue = CXXABIThisValue;
2293 
2294   // Directly emit the constructor initializers.
2295   EmitCtorPrologue(Ctor, CtorType, Params);
2296 }
2297 
2298 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2299   llvm::Value *VTableGlobal =
2300       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2301   if (!VTableGlobal)
2302     return;
2303 
2304   // We can just use the base offset in the complete class.
2305   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2306 
2307   if (!NonVirtualOffset.isZero())
2308     This =
2309         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2310                                         Vptr.VTableClass, Vptr.NearestVBase);
2311 
2312   llvm::Value *VPtrValue =
2313       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2314   llvm::Value *Cmp =
2315       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2316   Builder.CreateAssumption(Cmp);
2317 }
2318 
2319 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2320                                                 Address This) {
2321   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2322     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2323       EmitVTableAssumptionLoad(Vptr, This);
2324 }
2325 
2326 void
2327 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2328                                                 Address This, Address Src,
2329                                                 const CXXConstructExpr *E) {
2330   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2331 
2332   CallArgList Args;
2333 
2334   // Push the this ptr.
2335   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2336 
2337   // Push the src ptr.
2338   QualType QT = *(FPT->param_type_begin());
2339   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2340   Src = Builder.CreateBitCast(Src, t);
2341   Args.add(RValue::get(Src.getPointer()), QT);
2342 
2343   // Skip over first argument (Src).
2344   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2345                /*ParamsToSkip*/ 1);
2346 
2347   EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args);
2348 }
2349 
2350 void
2351 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2352                                                 CXXCtorType CtorType,
2353                                                 const FunctionArgList &Args,
2354                                                 SourceLocation Loc) {
2355   CallArgList DelegateArgs;
2356 
2357   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2358   assert(I != E && "no parameters to constructor");
2359 
2360   // this
2361   Address This = LoadCXXThisAddress();
2362   DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2363   ++I;
2364 
2365   // FIXME: The location of the VTT parameter in the parameter list is
2366   // specific to the Itanium ABI and shouldn't be hardcoded here.
2367   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2368     assert(I != E && "cannot skip vtt parameter, already done with args");
2369     assert((*I)->getType()->isPointerType() &&
2370            "skipping parameter not of vtt type");
2371     ++I;
2372   }
2373 
2374   // Explicit arguments.
2375   for (; I != E; ++I) {
2376     const VarDecl *param = *I;
2377     // FIXME: per-argument source location
2378     EmitDelegateCallArg(DelegateArgs, param, Loc);
2379   }
2380 
2381   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2382                          /*Delegating=*/true, This, DelegateArgs);
2383 }
2384 
2385 namespace {
2386   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2387     const CXXDestructorDecl *Dtor;
2388     Address Addr;
2389     CXXDtorType Type;
2390 
2391     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2392                            CXXDtorType Type)
2393       : Dtor(D), Addr(Addr), Type(Type) {}
2394 
2395     void Emit(CodeGenFunction &CGF, Flags flags) override {
2396       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2397                                 /*Delegating=*/true, Addr);
2398     }
2399   };
2400 } // end anonymous namespace
2401 
2402 void
2403 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2404                                                   const FunctionArgList &Args) {
2405   assert(Ctor->isDelegatingConstructor());
2406 
2407   Address ThisPtr = LoadCXXThisAddress();
2408 
2409   AggValueSlot AggSlot =
2410     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2411                           AggValueSlot::IsDestructed,
2412                           AggValueSlot::DoesNotNeedGCBarriers,
2413                           AggValueSlot::IsNotAliased);
2414 
2415   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2416 
2417   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2418   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2419     CXXDtorType Type =
2420       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2421 
2422     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2423                                                 ClassDecl->getDestructor(),
2424                                                 ThisPtr, Type);
2425   }
2426 }
2427 
2428 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2429                                             CXXDtorType Type,
2430                                             bool ForVirtualBase,
2431                                             bool Delegating,
2432                                             Address This) {
2433   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2434                                      Delegating, This);
2435 }
2436 
2437 namespace {
2438   struct CallLocalDtor final : EHScopeStack::Cleanup {
2439     const CXXDestructorDecl *Dtor;
2440     Address Addr;
2441 
2442     CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
2443       : Dtor(D), Addr(Addr) {}
2444 
2445     void Emit(CodeGenFunction &CGF, Flags flags) override {
2446       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2447                                 /*ForVirtualBase=*/false,
2448                                 /*Delegating=*/false, Addr);
2449     }
2450   };
2451 } // end anonymous namespace
2452 
2453 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2454                                             Address Addr) {
2455   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
2456 }
2457 
2458 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2459   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2460   if (!ClassDecl) return;
2461   if (ClassDecl->hasTrivialDestructor()) return;
2462 
2463   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2464   assert(D && D->isUsed() && "destructor not marked as used!");
2465   PushDestructorCleanup(D, Addr);
2466 }
2467 
2468 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2469   // Compute the address point.
2470   llvm::Value *VTableAddressPoint =
2471       CGM.getCXXABI().getVTableAddressPointInStructor(
2472           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2473 
2474   if (!VTableAddressPoint)
2475     return;
2476 
2477   // Compute where to store the address point.
2478   llvm::Value *VirtualOffset = nullptr;
2479   CharUnits NonVirtualOffset = CharUnits::Zero();
2480 
2481   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2482     // We need to use the virtual base offset offset because the virtual base
2483     // might have a different offset in the most derived class.
2484 
2485     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2486         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2487     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2488   } else {
2489     // We can just use the base offset in the complete class.
2490     NonVirtualOffset = Vptr.Base.getBaseOffset();
2491   }
2492 
2493   // Apply the offsets.
2494   Address VTableField = LoadCXXThisAddress();
2495 
2496   if (!NonVirtualOffset.isZero() || VirtualOffset)
2497     VTableField = ApplyNonVirtualAndVirtualOffset(
2498         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2499         Vptr.NearestVBase);
2500 
2501   // Finally, store the address point. Use the same LLVM types as the field to
2502   // support optimization.
2503   llvm::Type *VTablePtrTy =
2504       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2505           ->getPointerTo()
2506           ->getPointerTo();
2507   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2508   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2509 
2510   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2511   CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr());
2512   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2513       CGM.getCodeGenOpts().StrictVTablePointers)
2514     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2515 }
2516 
2517 CodeGenFunction::VPtrsVector
2518 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2519   CodeGenFunction::VPtrsVector VPtrsResult;
2520   VisitedVirtualBasesSetTy VBases;
2521   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2522                     /*NearestVBase=*/nullptr,
2523                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2524                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2525                     VPtrsResult);
2526   return VPtrsResult;
2527 }
2528 
2529 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2530                                         const CXXRecordDecl *NearestVBase,
2531                                         CharUnits OffsetFromNearestVBase,
2532                                         bool BaseIsNonVirtualPrimaryBase,
2533                                         const CXXRecordDecl *VTableClass,
2534                                         VisitedVirtualBasesSetTy &VBases,
2535                                         VPtrsVector &Vptrs) {
2536   // If this base is a non-virtual primary base the address point has already
2537   // been set.
2538   if (!BaseIsNonVirtualPrimaryBase) {
2539     // Initialize the vtable pointer for this base.
2540     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2541     Vptrs.push_back(Vptr);
2542   }
2543 
2544   const CXXRecordDecl *RD = Base.getBase();
2545 
2546   // Traverse bases.
2547   for (const auto &I : RD->bases()) {
2548     CXXRecordDecl *BaseDecl
2549       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2550 
2551     // Ignore classes without a vtable.
2552     if (!BaseDecl->isDynamicClass())
2553       continue;
2554 
2555     CharUnits BaseOffset;
2556     CharUnits BaseOffsetFromNearestVBase;
2557     bool BaseDeclIsNonVirtualPrimaryBase;
2558 
2559     if (I.isVirtual()) {
2560       // Check if we've visited this virtual base before.
2561       if (!VBases.insert(BaseDecl).second)
2562         continue;
2563 
2564       const ASTRecordLayout &Layout =
2565         getContext().getASTRecordLayout(VTableClass);
2566 
2567       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2568       BaseOffsetFromNearestVBase = CharUnits::Zero();
2569       BaseDeclIsNonVirtualPrimaryBase = false;
2570     } else {
2571       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2572 
2573       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2574       BaseOffsetFromNearestVBase =
2575         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2576       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2577     }
2578 
2579     getVTablePointers(
2580         BaseSubobject(BaseDecl, BaseOffset),
2581         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2582         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2583   }
2584 }
2585 
2586 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2587   // Ignore classes without a vtable.
2588   if (!RD->isDynamicClass())
2589     return;
2590 
2591   // Initialize the vtable pointers for this class and all of its bases.
2592   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2593     for (const VPtr &Vptr : getVTablePointers(RD))
2594       InitializeVTablePointer(Vptr);
2595 
2596   if (RD->getNumVBases())
2597     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2598 }
2599 
2600 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2601                                            llvm::Type *VTableTy,
2602                                            const CXXRecordDecl *RD) {
2603   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2604   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2605   CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr());
2606 
2607   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2608       CGM.getCodeGenOpts().StrictVTablePointers)
2609     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2610 
2611   return VTable;
2612 }
2613 
2614 // If a class has a single non-virtual base and does not introduce or override
2615 // virtual member functions or fields, it will have the same layout as its base.
2616 // This function returns the least derived such class.
2617 //
2618 // Casting an instance of a base class to such a derived class is technically
2619 // undefined behavior, but it is a relatively common hack for introducing member
2620 // functions on class instances with specific properties (e.g. llvm::Operator)
2621 // that works under most compilers and should not have security implications, so
2622 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2623 static const CXXRecordDecl *
2624 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2625   if (!RD->field_empty())
2626     return RD;
2627 
2628   if (RD->getNumVBases() != 0)
2629     return RD;
2630 
2631   if (RD->getNumBases() != 1)
2632     return RD;
2633 
2634   for (const CXXMethodDecl *MD : RD->methods()) {
2635     if (MD->isVirtual()) {
2636       // Virtual member functions are only ok if they are implicit destructors
2637       // because the implicit destructor will have the same semantics as the
2638       // base class's destructor if no fields are added.
2639       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2640         continue;
2641       return RD;
2642     }
2643   }
2644 
2645   return LeastDerivedClassWithSameLayout(
2646       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2647 }
2648 
2649 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2650                                                    llvm::Value *VTable,
2651                                                    SourceLocation Loc) {
2652   if (CGM.getCodeGenOpts().WholeProgramVTables &&
2653       CGM.HasHiddenLTOVisibility(RD)) {
2654     llvm::Metadata *MD =
2655         CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2656     llvm::Value *TypeId =
2657         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2658 
2659     llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2660     llvm::Value *TypeTest =
2661         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2662                            {CastedVTable, TypeId});
2663     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2664   }
2665 
2666   if (SanOpts.has(SanitizerKind::CFIVCall))
2667     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2668 }
2669 
2670 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2671                                                 llvm::Value *VTable,
2672                                                 CFITypeCheckKind TCK,
2673                                                 SourceLocation Loc) {
2674   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2675     RD = LeastDerivedClassWithSameLayout(RD);
2676 
2677   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2678 }
2679 
2680 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2681                                                 llvm::Value *Derived,
2682                                                 bool MayBeNull,
2683                                                 CFITypeCheckKind TCK,
2684                                                 SourceLocation Loc) {
2685   if (!getLangOpts().CPlusPlus)
2686     return;
2687 
2688   auto *ClassTy = T->getAs<RecordType>();
2689   if (!ClassTy)
2690     return;
2691 
2692   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2693 
2694   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2695     return;
2696 
2697   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2698     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2699 
2700   llvm::BasicBlock *ContBlock = nullptr;
2701 
2702   if (MayBeNull) {
2703     llvm::Value *DerivedNotNull =
2704         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2705 
2706     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2707     ContBlock = createBasicBlock("cast.cont");
2708 
2709     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2710 
2711     EmitBlock(CheckBlock);
2712   }
2713 
2714   llvm::Value *VTable =
2715     GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl);
2716 
2717   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2718 
2719   if (MayBeNull) {
2720     Builder.CreateBr(ContBlock);
2721     EmitBlock(ContBlock);
2722   }
2723 }
2724 
2725 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2726                                          llvm::Value *VTable,
2727                                          CFITypeCheckKind TCK,
2728                                          SourceLocation Loc) {
2729   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2730       !CGM.HasHiddenLTOVisibility(RD))
2731     return;
2732 
2733   std::string TypeName = RD->getQualifiedNameAsString();
2734   if (getContext().getSanitizerBlacklist().isBlacklistedType(TypeName))
2735     return;
2736 
2737   SanitizerScope SanScope(this);
2738   llvm::SanitizerStatKind SSK;
2739   switch (TCK) {
2740   case CFITCK_VCall:
2741     SSK = llvm::SanStat_CFI_VCall;
2742     break;
2743   case CFITCK_NVCall:
2744     SSK = llvm::SanStat_CFI_NVCall;
2745     break;
2746   case CFITCK_DerivedCast:
2747     SSK = llvm::SanStat_CFI_DerivedCast;
2748     break;
2749   case CFITCK_UnrelatedCast:
2750     SSK = llvm::SanStat_CFI_UnrelatedCast;
2751     break;
2752   case CFITCK_ICall:
2753     llvm_unreachable("not expecting CFITCK_ICall");
2754   }
2755   EmitSanitizerStatReport(SSK);
2756 
2757   llvm::Metadata *MD =
2758       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2759   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2760 
2761   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2762   llvm::Value *TypeTest = Builder.CreateCall(
2763       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
2764 
2765   SanitizerMask M;
2766   switch (TCK) {
2767   case CFITCK_VCall:
2768     M = SanitizerKind::CFIVCall;
2769     break;
2770   case CFITCK_NVCall:
2771     M = SanitizerKind::CFINVCall;
2772     break;
2773   case CFITCK_DerivedCast:
2774     M = SanitizerKind::CFIDerivedCast;
2775     break;
2776   case CFITCK_UnrelatedCast:
2777     M = SanitizerKind::CFIUnrelatedCast;
2778     break;
2779   case CFITCK_ICall:
2780     llvm_unreachable("not expecting CFITCK_ICall");
2781   }
2782 
2783   llvm::Constant *StaticData[] = {
2784       llvm::ConstantInt::get(Int8Ty, TCK),
2785       EmitCheckSourceLocation(Loc),
2786       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2787   };
2788 
2789   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2790   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2791     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
2792     return;
2793   }
2794 
2795   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2796     EmitTrapCheck(TypeTest);
2797     return;
2798   }
2799 
2800   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2801       CGM.getLLVMContext(),
2802       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2803   llvm::Value *ValidVtable = Builder.CreateCall(
2804       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
2805   EmitCheck(std::make_pair(TypeTest, M), "cfi_check_fail", StaticData,
2806             {CastedVTable, ValidVtable});
2807 }
2808 
2809 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2810   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2811       !SanOpts.has(SanitizerKind::CFIVCall) ||
2812       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) ||
2813       !CGM.HasHiddenLTOVisibility(RD))
2814     return false;
2815 
2816   std::string TypeName = RD->getQualifiedNameAsString();
2817   return !getContext().getSanitizerBlacklist().isBlacklistedType(TypeName);
2818 }
2819 
2820 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2821     const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
2822   SanitizerScope SanScope(this);
2823 
2824   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2825 
2826   llvm::Metadata *MD =
2827       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2828   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2829 
2830   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2831   llvm::Value *CheckedLoad = Builder.CreateCall(
2832       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2833       {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
2834        TypeId});
2835   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2836 
2837   EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2838             "cfi_check_fail", nullptr, nullptr);
2839 
2840   return Builder.CreateBitCast(
2841       Builder.CreateExtractValue(CheckedLoad, 0),
2842       cast<llvm::PointerType>(VTable->getType())->getElementType());
2843 }
2844 
2845 bool
2846 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2847                                                    const CXXMethodDecl *MD) {
2848   // When building with -fapple-kext, all calls must go through the vtable since
2849   // the kernel linker can do runtime patching of vtables.
2850   if (getLangOpts().AppleKext)
2851     return false;
2852 
2853   // If the member function is marked 'final', we know that it can't be
2854   // overridden and can therefore devirtualize it unless it's pure virtual.
2855   if (MD->hasAttr<FinalAttr>())
2856     return !MD->isPure();
2857 
2858   // If the base expression (after skipping derived-to-base conversions) is a
2859   // class prvalue, then we can devirtualize.
2860   Base = Base->getBestDynamicClassTypeExpr();
2861   if (Base->isRValue() && Base->getType()->isRecordType())
2862     return true;
2863 
2864   // If we don't even know what we would call, we can't devirtualize.
2865   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2866   if (!BestDynamicDecl)
2867     return false;
2868 
2869   // There may be a method corresponding to MD in a derived class.
2870   const CXXMethodDecl *DevirtualizedMethod =
2871       MD->getCorrespondingMethodInClass(BestDynamicDecl);
2872 
2873   // If that method is pure virtual, we can't devirtualize. If this code is
2874   // reached, the result would be UB, not a direct call to the derived class
2875   // function, and we can't assume the derived class function is defined.
2876   if (DevirtualizedMethod->isPure())
2877     return false;
2878 
2879   // If that method is marked final, we can devirtualize it.
2880   if (DevirtualizedMethod->hasAttr<FinalAttr>())
2881     return true;
2882 
2883   // Similarly, if the class itself is marked 'final' it can't be overridden
2884   // and we can therefore devirtualize the member function call.
2885   if (BestDynamicDecl->hasAttr<FinalAttr>())
2886     return true;
2887 
2888   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2889     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2890       // This is a record decl. We know the type and can devirtualize it.
2891       return VD->getType()->isRecordType();
2892     }
2893 
2894     return false;
2895   }
2896 
2897   // We can devirtualize calls on an object accessed by a class member access
2898   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2899   // a derived class object constructed in the same location.
2900   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2901     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2902       return VD->getType()->isRecordType();
2903 
2904   // Likewise for calls on an object accessed by a (non-reference) pointer to
2905   // member access.
2906   if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2907     if (BO->isPtrMemOp()) {
2908       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2909       if (MPT->getPointeeType()->isRecordType())
2910         return true;
2911     }
2912   }
2913 
2914   // We can't devirtualize the call.
2915   return false;
2916 }
2917 
2918 void CodeGenFunction::EmitForwardingCallToLambda(
2919                                       const CXXMethodDecl *callOperator,
2920                                       CallArgList &callArgs) {
2921   // Get the address of the call operator.
2922   const CGFunctionInfo &calleeFnInfo =
2923     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2924   llvm::Constant *calleePtr =
2925     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2926                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2927 
2928   // Prepare the return slot.
2929   const FunctionProtoType *FPT =
2930     callOperator->getType()->castAs<FunctionProtoType>();
2931   QualType resultType = FPT->getReturnType();
2932   ReturnValueSlot returnSlot;
2933   if (!resultType->isVoidType() &&
2934       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2935       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2936     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2937 
2938   // We don't need to separately arrange the call arguments because
2939   // the call can't be variadic anyway --- it's impossible to forward
2940   // variadic arguments.
2941 
2942   // Now emit our call.
2943   auto callee = CGCallee::forDirect(calleePtr, callOperator);
2944   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs);
2945 
2946   // If necessary, copy the returned value into the slot.
2947   if (!resultType->isVoidType() && returnSlot.isNull())
2948     EmitReturnOfRValue(RV, resultType);
2949   else
2950     EmitBranchThroughCleanup(ReturnBlock);
2951 }
2952 
2953 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2954   const BlockDecl *BD = BlockInfo->getBlockDecl();
2955   const VarDecl *variable = BD->capture_begin()->getVariable();
2956   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2957 
2958   // Start building arguments for forwarding call
2959   CallArgList CallArgs;
2960 
2961   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2962   Address ThisPtr = GetAddrOfBlockDecl(variable, false);
2963   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2964 
2965   // Add the rest of the parameters.
2966   for (auto param : BD->parameters())
2967     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2968 
2969   assert(!Lambda->isGenericLambda() &&
2970             "generic lambda interconversion to block not implemented");
2971   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2972 }
2973 
2974 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2975   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2976     // FIXME: Making this work correctly is nasty because it requires either
2977     // cloning the body of the call operator or making the call operator forward.
2978     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2979     return;
2980   }
2981 
2982   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2983 }
2984 
2985 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2986   const CXXRecordDecl *Lambda = MD->getParent();
2987 
2988   // Start building arguments for forwarding call
2989   CallArgList CallArgs;
2990 
2991   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2992   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2993   CallArgs.add(RValue::get(ThisPtr), ThisType);
2994 
2995   // Add the rest of the parameters.
2996   for (auto Param : MD->parameters())
2997     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2998 
2999   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3000   // For a generic lambda, find the corresponding call operator specialization
3001   // to which the call to the static-invoker shall be forwarded.
3002   if (Lambda->isGenericLambda()) {
3003     assert(MD->isFunctionTemplateSpecialization());
3004     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
3005     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
3006     void *InsertPos = nullptr;
3007     FunctionDecl *CorrespondingCallOpSpecialization =
3008         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
3009     assert(CorrespondingCallOpSpecialization);
3010     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
3011   }
3012   EmitForwardingCallToLambda(CallOp, CallArgs);
3013 }
3014 
3015 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
3016   if (MD->isVariadic()) {
3017     // FIXME: Making this work correctly is nasty because it requires either
3018     // cloning the body of the call operator or making the call operator forward.
3019     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3020     return;
3021   }
3022 
3023   EmitLambdaDelegatingInvokeBody(MD);
3024 }
3025