1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/Transforms/Utils/SanitizerStats.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 /// Return the best known alignment for an unknown pointer to a
35 /// particular class.
36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
37   if (!RD->isCompleteDefinition())
38     return CharUnits::One(); // Hopefully won't be used anywhere.
39 
40   auto &layout = getContext().getASTRecordLayout(RD);
41 
42   // If the class is final, then we know that the pointer points to an
43   // object of that type and can use the full alignment.
44   if (RD->hasAttr<FinalAttr>()) {
45     return layout.getAlignment();
46 
47   // Otherwise, we have to assume it could be a subclass.
48   } else {
49     return layout.getNonVirtualAlignment();
50   }
51 }
52 
53 /// Return the best known alignment for a pointer to a virtual base,
54 /// given the alignment of a pointer to the derived class.
55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
56                                            const CXXRecordDecl *derivedClass,
57                                            const CXXRecordDecl *vbaseClass) {
58   // The basic idea here is that an underaligned derived pointer might
59   // indicate an underaligned base pointer.
60 
61   assert(vbaseClass->isCompleteDefinition());
62   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
63   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
64 
65   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
66                                    expectedVBaseAlign);
67 }
68 
69 CharUnits
70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
71                                          const CXXRecordDecl *baseDecl,
72                                          CharUnits expectedTargetAlign) {
73   // If the base is an incomplete type (which is, alas, possible with
74   // member pointers), be pessimistic.
75   if (!baseDecl->isCompleteDefinition())
76     return std::min(actualBaseAlign, expectedTargetAlign);
77 
78   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
79   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
80 
81   // If the class is properly aligned, assume the target offset is, too.
82   //
83   // This actually isn't necessarily the right thing to do --- if the
84   // class is a complete object, but it's only properly aligned for a
85   // base subobject, then the alignments of things relative to it are
86   // probably off as well.  (Note that this requires the alignment of
87   // the target to be greater than the NV alignment of the derived
88   // class.)
89   //
90   // However, our approach to this kind of under-alignment can only
91   // ever be best effort; after all, we're never going to propagate
92   // alignments through variables or parameters.  Note, in particular,
93   // that constructing a polymorphic type in an address that's less
94   // than pointer-aligned will generally trap in the constructor,
95   // unless we someday add some sort of attribute to change the
96   // assumed alignment of 'this'.  So our goal here is pretty much
97   // just to allow the user to explicitly say that a pointer is
98   // under-aligned and then safely access its fields and vtables.
99   if (actualBaseAlign >= expectedBaseAlign) {
100     return expectedTargetAlign;
101   }
102 
103   // Otherwise, we might be offset by an arbitrary multiple of the
104   // actual alignment.  The correct adjustment is to take the min of
105   // the two alignments.
106   return std::min(actualBaseAlign, expectedTargetAlign);
107 }
108 
109 Address CodeGenFunction::LoadCXXThisAddress() {
110   assert(CurFuncDecl && "loading 'this' without a func declaration?");
111   assert(isa<CXXMethodDecl>(CurFuncDecl));
112 
113   // Lazily compute CXXThisAlignment.
114   if (CXXThisAlignment.isZero()) {
115     // Just use the best known alignment for the parent.
116     // TODO: if we're currently emitting a complete-object ctor/dtor,
117     // we can always use the complete-object alignment.
118     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
119     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
120   }
121 
122   return Address(LoadCXXThis(), CXXThisAlignment);
123 }
124 
125 /// Emit the address of a field using a member data pointer.
126 ///
127 /// \param E Only used for emergency diagnostics
128 Address
129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
130                                                  llvm::Value *memberPtr,
131                                       const MemberPointerType *memberPtrType,
132                                                  AlignmentSource *alignSource) {
133   // Ask the ABI to compute the actual address.
134   llvm::Value *ptr =
135     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
136                                                  memberPtr, memberPtrType);
137 
138   QualType memberType = memberPtrType->getPointeeType();
139   CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource);
140   memberAlign =
141     CGM.getDynamicOffsetAlignment(base.getAlignment(),
142                             memberPtrType->getClass()->getAsCXXRecordDecl(),
143                                   memberAlign);
144   return Address(ptr, memberAlign);
145 }
146 
147 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
148     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
149     CastExpr::path_const_iterator End) {
150   CharUnits Offset = CharUnits::Zero();
151 
152   const ASTContext &Context = getContext();
153   const CXXRecordDecl *RD = DerivedClass;
154 
155   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
156     const CXXBaseSpecifier *Base = *I;
157     assert(!Base->isVirtual() && "Should not see virtual bases here!");
158 
159     // Get the layout.
160     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
161 
162     const CXXRecordDecl *BaseDecl =
163       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
164 
165     // Add the offset.
166     Offset += Layout.getBaseClassOffset(BaseDecl);
167 
168     RD = BaseDecl;
169   }
170 
171   return Offset;
172 }
173 
174 llvm::Constant *
175 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
176                                    CastExpr::path_const_iterator PathBegin,
177                                    CastExpr::path_const_iterator PathEnd) {
178   assert(PathBegin != PathEnd && "Base path should not be empty!");
179 
180   CharUnits Offset =
181       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
182   if (Offset.isZero())
183     return nullptr;
184 
185   llvm::Type *PtrDiffTy =
186   Types.ConvertType(getContext().getPointerDiffType());
187 
188   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
189 }
190 
191 /// Gets the address of a direct base class within a complete object.
192 /// This should only be used for (1) non-virtual bases or (2) virtual bases
193 /// when the type is known to be complete (e.g. in complete destructors).
194 ///
195 /// The object pointed to by 'This' is assumed to be non-null.
196 Address
197 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
198                                                    const CXXRecordDecl *Derived,
199                                                    const CXXRecordDecl *Base,
200                                                    bool BaseIsVirtual) {
201   // 'this' must be a pointer (in some address space) to Derived.
202   assert(This.getElementType() == ConvertType(Derived));
203 
204   // Compute the offset of the virtual base.
205   CharUnits Offset;
206   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
207   if (BaseIsVirtual)
208     Offset = Layout.getVBaseClassOffset(Base);
209   else
210     Offset = Layout.getBaseClassOffset(Base);
211 
212   // Shift and cast down to the base type.
213   // TODO: for complete types, this should be possible with a GEP.
214   Address V = This;
215   if (!Offset.isZero()) {
216     V = Builder.CreateElementBitCast(V, Int8Ty);
217     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
218   }
219   V = Builder.CreateElementBitCast(V, ConvertType(Base));
220 
221   return V;
222 }
223 
224 static Address
225 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
226                                 CharUnits nonVirtualOffset,
227                                 llvm::Value *virtualOffset,
228                                 const CXXRecordDecl *derivedClass,
229                                 const CXXRecordDecl *nearestVBase) {
230   // Assert that we have something to do.
231   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
232 
233   // Compute the offset from the static and dynamic components.
234   llvm::Value *baseOffset;
235   if (!nonVirtualOffset.isZero()) {
236     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
237                                         nonVirtualOffset.getQuantity());
238     if (virtualOffset) {
239       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
240     }
241   } else {
242     baseOffset = virtualOffset;
243   }
244 
245   // Apply the base offset.
246   llvm::Value *ptr = addr.getPointer();
247   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
248   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
249 
250   // If we have a virtual component, the alignment of the result will
251   // be relative only to the known alignment of that vbase.
252   CharUnits alignment;
253   if (virtualOffset) {
254     assert(nearestVBase && "virtual offset without vbase?");
255     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
256                                           derivedClass, nearestVBase);
257   } else {
258     alignment = addr.getAlignment();
259   }
260   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
261 
262   return Address(ptr, alignment);
263 }
264 
265 Address CodeGenFunction::GetAddressOfBaseClass(
266     Address Value, const CXXRecordDecl *Derived,
267     CastExpr::path_const_iterator PathBegin,
268     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
269     SourceLocation Loc) {
270   assert(PathBegin != PathEnd && "Base path should not be empty!");
271 
272   CastExpr::path_const_iterator Start = PathBegin;
273   const CXXRecordDecl *VBase = nullptr;
274 
275   // Sema has done some convenient canonicalization here: if the
276   // access path involved any virtual steps, the conversion path will
277   // *start* with a step down to the correct virtual base subobject,
278   // and hence will not require any further steps.
279   if ((*Start)->isVirtual()) {
280     VBase =
281       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
282     ++Start;
283   }
284 
285   // Compute the static offset of the ultimate destination within its
286   // allocating subobject (the virtual base, if there is one, or else
287   // the "complete" object that we see).
288   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
289       VBase ? VBase : Derived, Start, PathEnd);
290 
291   // If there's a virtual step, we can sometimes "devirtualize" it.
292   // For now, that's limited to when the derived type is final.
293   // TODO: "devirtualize" this for accesses to known-complete objects.
294   if (VBase && Derived->hasAttr<FinalAttr>()) {
295     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
296     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
297     NonVirtualOffset += vBaseOffset;
298     VBase = nullptr; // we no longer have a virtual step
299   }
300 
301   // Get the base pointer type.
302   llvm::Type *BasePtrTy =
303     ConvertType((PathEnd[-1])->getType())->getPointerTo();
304 
305   QualType DerivedTy = getContext().getRecordType(Derived);
306   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
307 
308   // If the static offset is zero and we don't have a virtual step,
309   // just do a bitcast; null checks are unnecessary.
310   if (NonVirtualOffset.isZero() && !VBase) {
311     if (sanitizePerformTypeCheck()) {
312       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
313                     DerivedTy, DerivedAlign, !NullCheckValue);
314     }
315     return Builder.CreateBitCast(Value, BasePtrTy);
316   }
317 
318   llvm::BasicBlock *origBB = nullptr;
319   llvm::BasicBlock *endBB = nullptr;
320 
321   // Skip over the offset (and the vtable load) if we're supposed to
322   // null-check the pointer.
323   if (NullCheckValue) {
324     origBB = Builder.GetInsertBlock();
325     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
326     endBB = createBasicBlock("cast.end");
327 
328     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
329     Builder.CreateCondBr(isNull, endBB, notNullBB);
330     EmitBlock(notNullBB);
331   }
332 
333   if (sanitizePerformTypeCheck()) {
334     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
335                   Value.getPointer(), DerivedTy, DerivedAlign, true);
336   }
337 
338   // Compute the virtual offset.
339   llvm::Value *VirtualOffset = nullptr;
340   if (VBase) {
341     VirtualOffset =
342       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
343   }
344 
345   // Apply both offsets.
346   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
347                                           VirtualOffset, Derived, VBase);
348 
349   // Cast to the destination type.
350   Value = Builder.CreateBitCast(Value, BasePtrTy);
351 
352   // Build a phi if we needed a null check.
353   if (NullCheckValue) {
354     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
355     Builder.CreateBr(endBB);
356     EmitBlock(endBB);
357 
358     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
359     PHI->addIncoming(Value.getPointer(), notNullBB);
360     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
361     Value = Address(PHI, Value.getAlignment());
362   }
363 
364   return Value;
365 }
366 
367 Address
368 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
369                                           const CXXRecordDecl *Derived,
370                                         CastExpr::path_const_iterator PathBegin,
371                                           CastExpr::path_const_iterator PathEnd,
372                                           bool NullCheckValue) {
373   assert(PathBegin != PathEnd && "Base path should not be empty!");
374 
375   QualType DerivedTy =
376     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
377   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
378 
379   llvm::Value *NonVirtualOffset =
380     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
381 
382   if (!NonVirtualOffset) {
383     // No offset, we can just cast back.
384     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
385   }
386 
387   llvm::BasicBlock *CastNull = nullptr;
388   llvm::BasicBlock *CastNotNull = nullptr;
389   llvm::BasicBlock *CastEnd = nullptr;
390 
391   if (NullCheckValue) {
392     CastNull = createBasicBlock("cast.null");
393     CastNotNull = createBasicBlock("cast.notnull");
394     CastEnd = createBasicBlock("cast.end");
395 
396     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
397     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
398     EmitBlock(CastNotNull);
399   }
400 
401   // Apply the offset.
402   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
403   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
404                             "sub.ptr");
405 
406   // Just cast.
407   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
408 
409   // Produce a PHI if we had a null-check.
410   if (NullCheckValue) {
411     Builder.CreateBr(CastEnd);
412     EmitBlock(CastNull);
413     Builder.CreateBr(CastEnd);
414     EmitBlock(CastEnd);
415 
416     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
417     PHI->addIncoming(Value, CastNotNull);
418     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
419     Value = PHI;
420   }
421 
422   return Address(Value, CGM.getClassPointerAlignment(Derived));
423 }
424 
425 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
426                                               bool ForVirtualBase,
427                                               bool Delegating) {
428   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
429     // This constructor/destructor does not need a VTT parameter.
430     return nullptr;
431   }
432 
433   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
434   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
435 
436   llvm::Value *VTT;
437 
438   uint64_t SubVTTIndex;
439 
440   if (Delegating) {
441     // If this is a delegating constructor call, just load the VTT.
442     return LoadCXXVTT();
443   } else if (RD == Base) {
444     // If the record matches the base, this is the complete ctor/dtor
445     // variant calling the base variant in a class with virtual bases.
446     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
447            "doing no-op VTT offset in base dtor/ctor?");
448     assert(!ForVirtualBase && "Can't have same class as virtual base!");
449     SubVTTIndex = 0;
450   } else {
451     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
452     CharUnits BaseOffset = ForVirtualBase ?
453       Layout.getVBaseClassOffset(Base) :
454       Layout.getBaseClassOffset(Base);
455 
456     SubVTTIndex =
457       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
458     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
459   }
460 
461   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
462     // A VTT parameter was passed to the constructor, use it.
463     VTT = LoadCXXVTT();
464     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
465   } else {
466     // We're the complete constructor, so get the VTT by name.
467     VTT = CGM.getVTables().GetAddrOfVTT(RD);
468     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
469   }
470 
471   return VTT;
472 }
473 
474 namespace {
475   /// Call the destructor for a direct base class.
476   struct CallBaseDtor final : EHScopeStack::Cleanup {
477     const CXXRecordDecl *BaseClass;
478     bool BaseIsVirtual;
479     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
480       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
481 
482     void Emit(CodeGenFunction &CGF, Flags flags) override {
483       const CXXRecordDecl *DerivedClass =
484         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
485 
486       const CXXDestructorDecl *D = BaseClass->getDestructor();
487       Address Addr =
488         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
489                                                   DerivedClass, BaseClass,
490                                                   BaseIsVirtual);
491       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
492                                 /*Delegating=*/false, Addr);
493     }
494   };
495 
496   /// A visitor which checks whether an initializer uses 'this' in a
497   /// way which requires the vtable to be properly set.
498   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
499     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
500 
501     bool UsesThis;
502 
503     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
504 
505     // Black-list all explicit and implicit references to 'this'.
506     //
507     // Do we need to worry about external references to 'this' derived
508     // from arbitrary code?  If so, then anything which runs arbitrary
509     // external code might potentially access the vtable.
510     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
511   };
512 } // end anonymous namespace
513 
514 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
515   DynamicThisUseChecker Checker(C);
516   Checker.Visit(Init);
517   return Checker.UsesThis;
518 }
519 
520 static void EmitBaseInitializer(CodeGenFunction &CGF,
521                                 const CXXRecordDecl *ClassDecl,
522                                 CXXCtorInitializer *BaseInit,
523                                 CXXCtorType CtorType) {
524   assert(BaseInit->isBaseInitializer() &&
525          "Must have base initializer!");
526 
527   Address ThisPtr = CGF.LoadCXXThisAddress();
528 
529   const Type *BaseType = BaseInit->getBaseClass();
530   CXXRecordDecl *BaseClassDecl =
531     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
532 
533   bool isBaseVirtual = BaseInit->isBaseVirtual();
534 
535   // The base constructor doesn't construct virtual bases.
536   if (CtorType == Ctor_Base && isBaseVirtual)
537     return;
538 
539   // If the initializer for the base (other than the constructor
540   // itself) accesses 'this' in any way, we need to initialize the
541   // vtables.
542   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
543     CGF.InitializeVTablePointers(ClassDecl);
544 
545   // We can pretend to be a complete class because it only matters for
546   // virtual bases, and we only do virtual bases for complete ctors.
547   Address V =
548     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
549                                               BaseClassDecl,
550                                               isBaseVirtual);
551   AggValueSlot AggSlot =
552     AggValueSlot::forAddr(V, Qualifiers(),
553                           AggValueSlot::IsDestructed,
554                           AggValueSlot::DoesNotNeedGCBarriers,
555                           AggValueSlot::IsNotAliased);
556 
557   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
558 
559   if (CGF.CGM.getLangOpts().Exceptions &&
560       !BaseClassDecl->hasTrivialDestructor())
561     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
562                                           isBaseVirtual);
563 }
564 
565 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
566   auto *CD = dyn_cast<CXXConstructorDecl>(D);
567   if (!(CD && CD->isCopyOrMoveConstructor()) &&
568       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
569     return false;
570 
571   // We can emit a memcpy for a trivial copy or move constructor/assignment.
572   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
573     return true;
574 
575   // We *must* emit a memcpy for a defaulted union copy or move op.
576   if (D->getParent()->isUnion() && D->isDefaulted())
577     return true;
578 
579   return false;
580 }
581 
582 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
583                                                 CXXCtorInitializer *MemberInit,
584                                                 LValue &LHS) {
585   FieldDecl *Field = MemberInit->getAnyMember();
586   if (MemberInit->isIndirectMemberInitializer()) {
587     // If we are initializing an anonymous union field, drill down to the field.
588     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
589     for (const auto *I : IndirectField->chain())
590       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
591   } else {
592     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
593   }
594 }
595 
596 static void EmitMemberInitializer(CodeGenFunction &CGF,
597                                   const CXXRecordDecl *ClassDecl,
598                                   CXXCtorInitializer *MemberInit,
599                                   const CXXConstructorDecl *Constructor,
600                                   FunctionArgList &Args) {
601   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
602   assert(MemberInit->isAnyMemberInitializer() &&
603          "Must have member initializer!");
604   assert(MemberInit->getInit() && "Must have initializer!");
605 
606   // non-static data member initializers.
607   FieldDecl *Field = MemberInit->getAnyMember();
608   QualType FieldType = Field->getType();
609 
610   llvm::Value *ThisPtr = CGF.LoadCXXThis();
611   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
612   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
613 
614   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
615 
616   // Special case: if we are in a copy or move constructor, and we are copying
617   // an array of PODs or classes with trivial copy constructors, ignore the
618   // AST and perform the copy we know is equivalent.
619   // FIXME: This is hacky at best... if we had a bit more explicit information
620   // in the AST, we could generalize it more easily.
621   const ConstantArrayType *Array
622     = CGF.getContext().getAsConstantArrayType(FieldType);
623   if (Array && Constructor->isDefaulted() &&
624       Constructor->isCopyOrMoveConstructor()) {
625     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
626     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
627     if (BaseElementTy.isPODType(CGF.getContext()) ||
628         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
629       unsigned SrcArgIndex =
630           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
631       llvm::Value *SrcPtr
632         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
633       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
634       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
635 
636       // Copy the aggregate.
637       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
638                             LHS.isVolatileQualified());
639       // Ensure that we destroy the objects if an exception is thrown later in
640       // the constructor.
641       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
642       if (CGF.needsEHCleanup(dtorKind))
643         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
644       return;
645     }
646   }
647 
648   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
649 }
650 
651 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
652                                               Expr *Init) {
653   QualType FieldType = Field->getType();
654   switch (getEvaluationKind(FieldType)) {
655   case TEK_Scalar:
656     if (LHS.isSimple()) {
657       EmitExprAsInit(Init, Field, LHS, false);
658     } else {
659       RValue RHS = RValue::get(EmitScalarExpr(Init));
660       EmitStoreThroughLValue(RHS, LHS);
661     }
662     break;
663   case TEK_Complex:
664     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
665     break;
666   case TEK_Aggregate: {
667     AggValueSlot Slot =
668       AggValueSlot::forLValue(LHS,
669                               AggValueSlot::IsDestructed,
670                               AggValueSlot::DoesNotNeedGCBarriers,
671                               AggValueSlot::IsNotAliased);
672     EmitAggExpr(Init, Slot);
673     break;
674   }
675   }
676 
677   // Ensure that we destroy this object if an exception is thrown
678   // later in the constructor.
679   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
680   if (needsEHCleanup(dtorKind))
681     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
682 }
683 
684 /// Checks whether the given constructor is a valid subject for the
685 /// complete-to-base constructor delegation optimization, i.e.
686 /// emitting the complete constructor as a simple call to the base
687 /// constructor.
688 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
689 
690   // Currently we disable the optimization for classes with virtual
691   // bases because (1) the addresses of parameter variables need to be
692   // consistent across all initializers but (2) the delegate function
693   // call necessarily creates a second copy of the parameter variable.
694   //
695   // The limiting example (purely theoretical AFAIK):
696   //   struct A { A(int &c) { c++; } };
697   //   struct B : virtual A {
698   //     B(int count) : A(count) { printf("%d\n", count); }
699   //   };
700   // ...although even this example could in principle be emitted as a
701   // delegation since the address of the parameter doesn't escape.
702   if (Ctor->getParent()->getNumVBases()) {
703     // TODO: white-list trivial vbase initializers.  This case wouldn't
704     // be subject to the restrictions below.
705 
706     // TODO: white-list cases where:
707     //  - there are no non-reference parameters to the constructor
708     //  - the initializers don't access any non-reference parameters
709     //  - the initializers don't take the address of non-reference
710     //    parameters
711     //  - etc.
712     // If we ever add any of the above cases, remember that:
713     //  - function-try-blocks will always blacklist this optimization
714     //  - we need to perform the constructor prologue and cleanup in
715     //    EmitConstructorBody.
716 
717     return false;
718   }
719 
720   // We also disable the optimization for variadic functions because
721   // it's impossible to "re-pass" varargs.
722   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
723     return false;
724 
725   // FIXME: Decide if we can do a delegation of a delegating constructor.
726   if (Ctor->isDelegatingConstructor())
727     return false;
728 
729   return true;
730 }
731 
732 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
733 // to poison the extra field paddings inserted under
734 // -fsanitize-address-field-padding=1|2.
735 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
736   ASTContext &Context = getContext();
737   const CXXRecordDecl *ClassDecl =
738       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
739                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
740   if (!ClassDecl->mayInsertExtraPadding()) return;
741 
742   struct SizeAndOffset {
743     uint64_t Size;
744     uint64_t Offset;
745   };
746 
747   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
748   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
749 
750   // Populate sizes and offsets of fields.
751   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
752   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
753     SSV[i].Offset =
754         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
755 
756   size_t NumFields = 0;
757   for (const auto *Field : ClassDecl->fields()) {
758     const FieldDecl *D = Field;
759     std::pair<CharUnits, CharUnits> FieldInfo =
760         Context.getTypeInfoInChars(D->getType());
761     CharUnits FieldSize = FieldInfo.first;
762     assert(NumFields < SSV.size());
763     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
764     NumFields++;
765   }
766   assert(NumFields == SSV.size());
767   if (SSV.size() <= 1) return;
768 
769   // We will insert calls to __asan_* run-time functions.
770   // LLVM AddressSanitizer pass may decide to inline them later.
771   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
772   llvm::FunctionType *FTy =
773       llvm::FunctionType::get(CGM.VoidTy, Args, false);
774   llvm::Constant *F = CGM.CreateRuntimeFunction(
775       FTy, Prologue ? "__asan_poison_intra_object_redzone"
776                     : "__asan_unpoison_intra_object_redzone");
777 
778   llvm::Value *ThisPtr = LoadCXXThis();
779   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
780   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
781   // For each field check if it has sufficient padding,
782   // if so (un)poison it with a call.
783   for (size_t i = 0; i < SSV.size(); i++) {
784     uint64_t AsanAlignment = 8;
785     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
786     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
787     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
788     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
789         (NextField % AsanAlignment) != 0)
790       continue;
791     Builder.CreateCall(
792         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
793             Builder.getIntN(PtrSize, PoisonSize)});
794   }
795 }
796 
797 /// EmitConstructorBody - Emits the body of the current constructor.
798 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
799   EmitAsanPrologueOrEpilogue(true);
800   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
801   CXXCtorType CtorType = CurGD.getCtorType();
802 
803   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
804           CtorType == Ctor_Complete) &&
805          "can only generate complete ctor for this ABI");
806 
807   // Before we go any further, try the complete->base constructor
808   // delegation optimization.
809   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
810       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
811     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
812     return;
813   }
814 
815   const FunctionDecl *Definition = nullptr;
816   Stmt *Body = Ctor->getBody(Definition);
817   assert(Definition == Ctor && "emitting wrong constructor body");
818 
819   // Enter the function-try-block before the constructor prologue if
820   // applicable.
821   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
822   if (IsTryBody)
823     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
824 
825   incrementProfileCounter(Body);
826 
827   RunCleanupsScope RunCleanups(*this);
828 
829   // TODO: in restricted cases, we can emit the vbase initializers of
830   // a complete ctor and then delegate to the base ctor.
831 
832   // Emit the constructor prologue, i.e. the base and member
833   // initializers.
834   EmitCtorPrologue(Ctor, CtorType, Args);
835 
836   // Emit the body of the statement.
837   if (IsTryBody)
838     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
839   else if (Body)
840     EmitStmt(Body);
841 
842   // Emit any cleanup blocks associated with the member or base
843   // initializers, which includes (along the exceptional path) the
844   // destructors for those members and bases that were fully
845   // constructed.
846   RunCleanups.ForceCleanup();
847 
848   if (IsTryBody)
849     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
850 }
851 
852 namespace {
853   /// RAII object to indicate that codegen is copying the value representation
854   /// instead of the object representation. Useful when copying a struct or
855   /// class which has uninitialized members and we're only performing
856   /// lvalue-to-rvalue conversion on the object but not its members.
857   class CopyingValueRepresentation {
858   public:
859     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
860         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
861       CGF.SanOpts.set(SanitizerKind::Bool, false);
862       CGF.SanOpts.set(SanitizerKind::Enum, false);
863     }
864     ~CopyingValueRepresentation() {
865       CGF.SanOpts = OldSanOpts;
866     }
867   private:
868     CodeGenFunction &CGF;
869     SanitizerSet OldSanOpts;
870   };
871 } // end anonymous namespace
872 
873 namespace {
874   class FieldMemcpyizer {
875   public:
876     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
877                     const VarDecl *SrcRec)
878       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
879         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
880         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
881         LastFieldOffset(0), LastAddedFieldIndex(0) {}
882 
883     bool isMemcpyableField(FieldDecl *F) const {
884       // Never memcpy fields when we are adding poisoned paddings.
885       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
886         return false;
887       Qualifiers Qual = F->getType().getQualifiers();
888       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
889         return false;
890       return true;
891     }
892 
893     void addMemcpyableField(FieldDecl *F) {
894       if (!FirstField)
895         addInitialField(F);
896       else
897         addNextField(F);
898     }
899 
900     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
901       unsigned LastFieldSize =
902         LastField->isBitField() ?
903           LastField->getBitWidthValue(CGF.getContext()) :
904           CGF.getContext().getTypeSize(LastField->getType());
905       uint64_t MemcpySizeBits =
906         LastFieldOffset + LastFieldSize - FirstByteOffset +
907         CGF.getContext().getCharWidth() - 1;
908       CharUnits MemcpySize =
909         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
910       return MemcpySize;
911     }
912 
913     void emitMemcpy() {
914       // Give the subclass a chance to bail out if it feels the memcpy isn't
915       // worth it (e.g. Hasn't aggregated enough data).
916       if (!FirstField) {
917         return;
918       }
919 
920       uint64_t FirstByteOffset;
921       if (FirstField->isBitField()) {
922         const CGRecordLayout &RL =
923           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
924         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
925         // FirstFieldOffset is not appropriate for bitfields,
926         // we need to use the storage offset instead.
927         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
928       } else {
929         FirstByteOffset = FirstFieldOffset;
930       }
931 
932       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
933       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
934       Address ThisPtr = CGF.LoadCXXThisAddress();
935       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
936       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
937       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
938       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
939       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
940 
941       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
942                    Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
943                    MemcpySize);
944       reset();
945     }
946 
947     void reset() {
948       FirstField = nullptr;
949     }
950 
951   protected:
952     CodeGenFunction &CGF;
953     const CXXRecordDecl *ClassDecl;
954 
955   private:
956     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
957       llvm::PointerType *DPT = DestPtr.getType();
958       llvm::Type *DBP =
959         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
960       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
961 
962       llvm::PointerType *SPT = SrcPtr.getType();
963       llvm::Type *SBP =
964         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
965       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
966 
967       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
968     }
969 
970     void addInitialField(FieldDecl *F) {
971       FirstField = F;
972       LastField = F;
973       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
974       LastFieldOffset = FirstFieldOffset;
975       LastAddedFieldIndex = F->getFieldIndex();
976     }
977 
978     void addNextField(FieldDecl *F) {
979       // For the most part, the following invariant will hold:
980       //   F->getFieldIndex() == LastAddedFieldIndex + 1
981       // The one exception is that Sema won't add a copy-initializer for an
982       // unnamed bitfield, which will show up here as a gap in the sequence.
983       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
984              "Cannot aggregate fields out of order.");
985       LastAddedFieldIndex = F->getFieldIndex();
986 
987       // The 'first' and 'last' fields are chosen by offset, rather than field
988       // index. This allows the code to support bitfields, as well as regular
989       // fields.
990       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
991       if (FOffset < FirstFieldOffset) {
992         FirstField = F;
993         FirstFieldOffset = FOffset;
994       } else if (FOffset > LastFieldOffset) {
995         LastField = F;
996         LastFieldOffset = FOffset;
997       }
998     }
999 
1000     const VarDecl *SrcRec;
1001     const ASTRecordLayout &RecLayout;
1002     FieldDecl *FirstField;
1003     FieldDecl *LastField;
1004     uint64_t FirstFieldOffset, LastFieldOffset;
1005     unsigned LastAddedFieldIndex;
1006   };
1007 
1008   class ConstructorMemcpyizer : public FieldMemcpyizer {
1009   private:
1010     /// Get source argument for copy constructor. Returns null if not a copy
1011     /// constructor.
1012     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1013                                                const CXXConstructorDecl *CD,
1014                                                FunctionArgList &Args) {
1015       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1016         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1017       return nullptr;
1018     }
1019 
1020     // Returns true if a CXXCtorInitializer represents a member initialization
1021     // that can be rolled into a memcpy.
1022     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1023       if (!MemcpyableCtor)
1024         return false;
1025       FieldDecl *Field = MemberInit->getMember();
1026       assert(Field && "No field for member init.");
1027       QualType FieldType = Field->getType();
1028       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1029 
1030       // Bail out on non-memcpyable, not-trivially-copyable members.
1031       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1032           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1033             FieldType->isReferenceType()))
1034         return false;
1035 
1036       // Bail out on volatile fields.
1037       if (!isMemcpyableField(Field))
1038         return false;
1039 
1040       // Otherwise we're good.
1041       return true;
1042     }
1043 
1044   public:
1045     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1046                           FunctionArgList &Args)
1047       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1048         ConstructorDecl(CD),
1049         MemcpyableCtor(CD->isDefaulted() &&
1050                        CD->isCopyOrMoveConstructor() &&
1051                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1052         Args(Args) { }
1053 
1054     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1055       if (isMemberInitMemcpyable(MemberInit)) {
1056         AggregatedInits.push_back(MemberInit);
1057         addMemcpyableField(MemberInit->getMember());
1058       } else {
1059         emitAggregatedInits();
1060         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1061                               ConstructorDecl, Args);
1062       }
1063     }
1064 
1065     void emitAggregatedInits() {
1066       if (AggregatedInits.size() <= 1) {
1067         // This memcpy is too small to be worthwhile. Fall back on default
1068         // codegen.
1069         if (!AggregatedInits.empty()) {
1070           CopyingValueRepresentation CVR(CGF);
1071           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1072                                 AggregatedInits[0], ConstructorDecl, Args);
1073           AggregatedInits.clear();
1074         }
1075         reset();
1076         return;
1077       }
1078 
1079       pushEHDestructors();
1080       emitMemcpy();
1081       AggregatedInits.clear();
1082     }
1083 
1084     void pushEHDestructors() {
1085       Address ThisPtr = CGF.LoadCXXThisAddress();
1086       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1087       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1088 
1089       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1090         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1091         QualType FieldType = MemberInit->getAnyMember()->getType();
1092         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1093         if (!CGF.needsEHCleanup(dtorKind))
1094           continue;
1095         LValue FieldLHS = LHS;
1096         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1097         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1098       }
1099     }
1100 
1101     void finish() {
1102       emitAggregatedInits();
1103     }
1104 
1105   private:
1106     const CXXConstructorDecl *ConstructorDecl;
1107     bool MemcpyableCtor;
1108     FunctionArgList &Args;
1109     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1110   };
1111 
1112   class AssignmentMemcpyizer : public FieldMemcpyizer {
1113   private:
1114     // Returns the memcpyable field copied by the given statement, if one
1115     // exists. Otherwise returns null.
1116     FieldDecl *getMemcpyableField(Stmt *S) {
1117       if (!AssignmentsMemcpyable)
1118         return nullptr;
1119       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1120         // Recognise trivial assignments.
1121         if (BO->getOpcode() != BO_Assign)
1122           return nullptr;
1123         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1124         if (!ME)
1125           return nullptr;
1126         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1127         if (!Field || !isMemcpyableField(Field))
1128           return nullptr;
1129         Stmt *RHS = BO->getRHS();
1130         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1131           RHS = EC->getSubExpr();
1132         if (!RHS)
1133           return nullptr;
1134         if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1135           if (ME2->getMemberDecl() == Field)
1136             return Field;
1137         }
1138         return nullptr;
1139       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1140         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1141         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1142           return nullptr;
1143         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1144         if (!IOA)
1145           return nullptr;
1146         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1147         if (!Field || !isMemcpyableField(Field))
1148           return nullptr;
1149         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1150         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1151           return nullptr;
1152         return Field;
1153       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1154         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1155         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1156           return nullptr;
1157         Expr *DstPtr = CE->getArg(0);
1158         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1159           DstPtr = DC->getSubExpr();
1160         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1161         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1162           return nullptr;
1163         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1164         if (!ME)
1165           return nullptr;
1166         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1167         if (!Field || !isMemcpyableField(Field))
1168           return nullptr;
1169         Expr *SrcPtr = CE->getArg(1);
1170         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1171           SrcPtr = SC->getSubExpr();
1172         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1173         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1174           return nullptr;
1175         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1176         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1177           return nullptr;
1178         return Field;
1179       }
1180 
1181       return nullptr;
1182     }
1183 
1184     bool AssignmentsMemcpyable;
1185     SmallVector<Stmt*, 16> AggregatedStmts;
1186 
1187   public:
1188     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1189                          FunctionArgList &Args)
1190       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1191         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1192       assert(Args.size() == 2);
1193     }
1194 
1195     void emitAssignment(Stmt *S) {
1196       FieldDecl *F = getMemcpyableField(S);
1197       if (F) {
1198         addMemcpyableField(F);
1199         AggregatedStmts.push_back(S);
1200       } else {
1201         emitAggregatedStmts();
1202         CGF.EmitStmt(S);
1203       }
1204     }
1205 
1206     void emitAggregatedStmts() {
1207       if (AggregatedStmts.size() <= 1) {
1208         if (!AggregatedStmts.empty()) {
1209           CopyingValueRepresentation CVR(CGF);
1210           CGF.EmitStmt(AggregatedStmts[0]);
1211         }
1212         reset();
1213       }
1214 
1215       emitMemcpy();
1216       AggregatedStmts.clear();
1217     }
1218 
1219     void finish() {
1220       emitAggregatedStmts();
1221     }
1222   };
1223 } // end anonymous namespace
1224 
1225 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1226   const Type *BaseType = BaseInit->getBaseClass();
1227   const auto *BaseClassDecl =
1228           cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
1229   return BaseClassDecl->isDynamicClass();
1230 }
1231 
1232 /// EmitCtorPrologue - This routine generates necessary code to initialize
1233 /// base classes and non-static data members belonging to this constructor.
1234 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1235                                        CXXCtorType CtorType,
1236                                        FunctionArgList &Args) {
1237   if (CD->isDelegatingConstructor())
1238     return EmitDelegatingCXXConstructorCall(CD, Args);
1239 
1240   const CXXRecordDecl *ClassDecl = CD->getParent();
1241 
1242   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1243                                           E = CD->init_end();
1244 
1245   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1246   if (ClassDecl->getNumVBases() &&
1247       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1248     // The ABIs that don't have constructor variants need to put a branch
1249     // before the virtual base initialization code.
1250     BaseCtorContinueBB =
1251       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1252     assert(BaseCtorContinueBB);
1253   }
1254 
1255   llvm::Value *const OldThis = CXXThisValue;
1256   // Virtual base initializers first.
1257   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1258     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1259         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1260         isInitializerOfDynamicClass(*B))
1261       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1262     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1263   }
1264 
1265   if (BaseCtorContinueBB) {
1266     // Complete object handler should continue to the remaining initializers.
1267     Builder.CreateBr(BaseCtorContinueBB);
1268     EmitBlock(BaseCtorContinueBB);
1269   }
1270 
1271   // Then, non-virtual base initializers.
1272   for (; B != E && (*B)->isBaseInitializer(); B++) {
1273     assert(!(*B)->isBaseVirtual());
1274 
1275     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1276         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1277         isInitializerOfDynamicClass(*B))
1278       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1279     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1280   }
1281 
1282   CXXThisValue = OldThis;
1283 
1284   InitializeVTablePointers(ClassDecl);
1285 
1286   // And finally, initialize class members.
1287   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1288   ConstructorMemcpyizer CM(*this, CD, Args);
1289   for (; B != E; B++) {
1290     CXXCtorInitializer *Member = (*B);
1291     assert(!Member->isBaseInitializer());
1292     assert(Member->isAnyMemberInitializer() &&
1293            "Delegating initializer on non-delegating constructor");
1294     CM.addMemberInitializer(Member);
1295   }
1296   CM.finish();
1297 }
1298 
1299 static bool
1300 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1301 
1302 static bool
1303 HasTrivialDestructorBody(ASTContext &Context,
1304                          const CXXRecordDecl *BaseClassDecl,
1305                          const CXXRecordDecl *MostDerivedClassDecl)
1306 {
1307   // If the destructor is trivial we don't have to check anything else.
1308   if (BaseClassDecl->hasTrivialDestructor())
1309     return true;
1310 
1311   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1312     return false;
1313 
1314   // Check fields.
1315   for (const auto *Field : BaseClassDecl->fields())
1316     if (!FieldHasTrivialDestructorBody(Context, Field))
1317       return false;
1318 
1319   // Check non-virtual bases.
1320   for (const auto &I : BaseClassDecl->bases()) {
1321     if (I.isVirtual())
1322       continue;
1323 
1324     const CXXRecordDecl *NonVirtualBase =
1325       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1326     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1327                                   MostDerivedClassDecl))
1328       return false;
1329   }
1330 
1331   if (BaseClassDecl == MostDerivedClassDecl) {
1332     // Check virtual bases.
1333     for (const auto &I : BaseClassDecl->vbases()) {
1334       const CXXRecordDecl *VirtualBase =
1335         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1336       if (!HasTrivialDestructorBody(Context, VirtualBase,
1337                                     MostDerivedClassDecl))
1338         return false;
1339     }
1340   }
1341 
1342   return true;
1343 }
1344 
1345 static bool
1346 FieldHasTrivialDestructorBody(ASTContext &Context,
1347                                           const FieldDecl *Field)
1348 {
1349   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1350 
1351   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1352   if (!RT)
1353     return true;
1354 
1355   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1356 
1357   // The destructor for an implicit anonymous union member is never invoked.
1358   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1359     return false;
1360 
1361   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1362 }
1363 
1364 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1365 /// any vtable pointers before calling this destructor.
1366 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1367                                                const CXXDestructorDecl *Dtor) {
1368   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1369   if (!ClassDecl->isDynamicClass())
1370     return true;
1371 
1372   if (!Dtor->hasTrivialBody())
1373     return false;
1374 
1375   // Check the fields.
1376   for (const auto *Field : ClassDecl->fields())
1377     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1378       return false;
1379 
1380   return true;
1381 }
1382 
1383 /// EmitDestructorBody - Emits the body of the current destructor.
1384 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1385   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1386   CXXDtorType DtorType = CurGD.getDtorType();
1387 
1388   Stmt *Body = Dtor->getBody();
1389   if (Body)
1390     incrementProfileCounter(Body);
1391 
1392   // The call to operator delete in a deleting destructor happens
1393   // outside of the function-try-block, which means it's always
1394   // possible to delegate the destructor body to the complete
1395   // destructor.  Do so.
1396   if (DtorType == Dtor_Deleting) {
1397     EnterDtorCleanups(Dtor, Dtor_Deleting);
1398     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1399                           /*Delegating=*/false, LoadCXXThisAddress());
1400     PopCleanupBlock();
1401     return;
1402   }
1403 
1404   // If the body is a function-try-block, enter the try before
1405   // anything else.
1406   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1407   if (isTryBody)
1408     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1409   EmitAsanPrologueOrEpilogue(false);
1410 
1411   // Enter the epilogue cleanups.
1412   RunCleanupsScope DtorEpilogue(*this);
1413 
1414   // If this is the complete variant, just invoke the base variant;
1415   // the epilogue will destruct the virtual bases.  But we can't do
1416   // this optimization if the body is a function-try-block, because
1417   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1418   // always delegate because we might not have a definition in this TU.
1419   switch (DtorType) {
1420   case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1421   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1422 
1423   case Dtor_Complete:
1424     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1425            "can't emit a dtor without a body for non-Microsoft ABIs");
1426 
1427     // Enter the cleanup scopes for virtual bases.
1428     EnterDtorCleanups(Dtor, Dtor_Complete);
1429 
1430     if (!isTryBody) {
1431       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1432                             /*Delegating=*/false, LoadCXXThisAddress());
1433       break;
1434     }
1435 
1436     // Fallthrough: act like we're in the base variant.
1437     LLVM_FALLTHROUGH;
1438 
1439   case Dtor_Base:
1440     assert(Body);
1441 
1442     // Enter the cleanup scopes for fields and non-virtual bases.
1443     EnterDtorCleanups(Dtor, Dtor_Base);
1444 
1445     // Initialize the vtable pointers before entering the body.
1446     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1447       // Insert the llvm.invariant.group.barrier intrinsic before initializing
1448       // the vptrs to cancel any previous assumptions we might have made.
1449       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1450           CGM.getCodeGenOpts().OptimizationLevel > 0)
1451         CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1452       InitializeVTablePointers(Dtor->getParent());
1453     }
1454 
1455     if (isTryBody)
1456       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1457     else if (Body)
1458       EmitStmt(Body);
1459     else {
1460       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1461       // nothing to do besides what's in the epilogue
1462     }
1463     // -fapple-kext must inline any call to this dtor into
1464     // the caller's body.
1465     if (getLangOpts().AppleKext)
1466       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1467 
1468     break;
1469   }
1470 
1471   // Jump out through the epilogue cleanups.
1472   DtorEpilogue.ForceCleanup();
1473 
1474   // Exit the try if applicable.
1475   if (isTryBody)
1476     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1477 }
1478 
1479 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1480   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1481   const Stmt *RootS = AssignOp->getBody();
1482   assert(isa<CompoundStmt>(RootS) &&
1483          "Body of an implicit assignment operator should be compound stmt.");
1484   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1485 
1486   LexicalScope Scope(*this, RootCS->getSourceRange());
1487 
1488   incrementProfileCounter(RootCS);
1489   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1490   for (auto *I : RootCS->body())
1491     AM.emitAssignment(I);
1492   AM.finish();
1493 }
1494 
1495 namespace {
1496   /// Call the operator delete associated with the current destructor.
1497   struct CallDtorDelete final : EHScopeStack::Cleanup {
1498     CallDtorDelete() {}
1499 
1500     void Emit(CodeGenFunction &CGF, Flags flags) override {
1501       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1502       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1503       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1504                          CGF.getContext().getTagDeclType(ClassDecl));
1505     }
1506   };
1507 
1508   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1509     llvm::Value *ShouldDeleteCondition;
1510 
1511   public:
1512     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1513         : ShouldDeleteCondition(ShouldDeleteCondition) {
1514       assert(ShouldDeleteCondition != nullptr);
1515     }
1516 
1517     void Emit(CodeGenFunction &CGF, Flags flags) override {
1518       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1519       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1520       llvm::Value *ShouldCallDelete
1521         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1522       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1523 
1524       CGF.EmitBlock(callDeleteBB);
1525       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1526       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1527       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1528                          CGF.getContext().getTagDeclType(ClassDecl));
1529       CGF.Builder.CreateBr(continueBB);
1530 
1531       CGF.EmitBlock(continueBB);
1532     }
1533   };
1534 
1535   class DestroyField  final : public EHScopeStack::Cleanup {
1536     const FieldDecl *field;
1537     CodeGenFunction::Destroyer *destroyer;
1538     bool useEHCleanupForArray;
1539 
1540   public:
1541     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1542                  bool useEHCleanupForArray)
1543         : field(field), destroyer(destroyer),
1544           useEHCleanupForArray(useEHCleanupForArray) {}
1545 
1546     void Emit(CodeGenFunction &CGF, Flags flags) override {
1547       // Find the address of the field.
1548       Address thisValue = CGF.LoadCXXThisAddress();
1549       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1550       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1551       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1552       assert(LV.isSimple());
1553 
1554       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1555                       flags.isForNormalCleanup() && useEHCleanupForArray);
1556     }
1557   };
1558 
1559  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1560              CharUnits::QuantityType PoisonSize) {
1561    // Pass in void pointer and size of region as arguments to runtime
1562    // function
1563    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1564                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1565 
1566    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1567 
1568    llvm::FunctionType *FnType =
1569        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1570    llvm::Value *Fn =
1571        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1572    CGF.EmitNounwindRuntimeCall(Fn, Args);
1573  }
1574 
1575   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1576     const CXXDestructorDecl *Dtor;
1577 
1578   public:
1579     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1580 
1581     // Generate function call for handling object poisoning.
1582     // Disables tail call elimination, to prevent the current stack frame
1583     // from disappearing from the stack trace.
1584     void Emit(CodeGenFunction &CGF, Flags flags) override {
1585       const ASTRecordLayout &Layout =
1586           CGF.getContext().getASTRecordLayout(Dtor->getParent());
1587 
1588       // Nothing to poison.
1589       if (Layout.getFieldCount() == 0)
1590         return;
1591 
1592       // Prevent the current stack frame from disappearing from the stack trace.
1593       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1594 
1595       // Construct pointer to region to begin poisoning, and calculate poison
1596       // size, so that only members declared in this class are poisoned.
1597       ASTContext &Context = CGF.getContext();
1598       unsigned fieldIndex = 0;
1599       int startIndex = -1;
1600       // RecordDecl::field_iterator Field;
1601       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1602         // Poison field if it is trivial
1603         if (FieldHasTrivialDestructorBody(Context, Field)) {
1604           // Start sanitizing at this field
1605           if (startIndex < 0)
1606             startIndex = fieldIndex;
1607 
1608           // Currently on the last field, and it must be poisoned with the
1609           // current block.
1610           if (fieldIndex == Layout.getFieldCount() - 1) {
1611             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1612           }
1613         } else if (startIndex >= 0) {
1614           // No longer within a block of memory to poison, so poison the block
1615           PoisonMembers(CGF, startIndex, fieldIndex);
1616           // Re-set the start index
1617           startIndex = -1;
1618         }
1619         fieldIndex += 1;
1620       }
1621     }
1622 
1623   private:
1624     /// \param layoutStartOffset index of the ASTRecordLayout field to
1625     ///     start poisoning (inclusive)
1626     /// \param layoutEndOffset index of the ASTRecordLayout field to
1627     ///     end poisoning (exclusive)
1628     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1629                      unsigned layoutEndOffset) {
1630       ASTContext &Context = CGF.getContext();
1631       const ASTRecordLayout &Layout =
1632           Context.getASTRecordLayout(Dtor->getParent());
1633 
1634       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1635           CGF.SizeTy,
1636           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1637               .getQuantity());
1638 
1639       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1640           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1641           OffsetSizePtr);
1642 
1643       CharUnits::QuantityType PoisonSize;
1644       if (layoutEndOffset >= Layout.getFieldCount()) {
1645         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1646                      Context.toCharUnitsFromBits(
1647                                 Layout.getFieldOffset(layoutStartOffset))
1648                          .getQuantity();
1649       } else {
1650         PoisonSize = Context.toCharUnitsFromBits(
1651                                 Layout.getFieldOffset(layoutEndOffset) -
1652                                 Layout.getFieldOffset(layoutStartOffset))
1653                          .getQuantity();
1654       }
1655 
1656       if (PoisonSize == 0)
1657         return;
1658 
1659       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1660     }
1661   };
1662 
1663  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1664     const CXXDestructorDecl *Dtor;
1665 
1666   public:
1667     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1668 
1669     // Generate function call for handling vtable pointer poisoning.
1670     void Emit(CodeGenFunction &CGF, Flags flags) override {
1671       assert(Dtor->getParent()->isDynamicClass());
1672       (void)Dtor;
1673       ASTContext &Context = CGF.getContext();
1674       // Poison vtable and vtable ptr if they exist for this class.
1675       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1676 
1677       CharUnits::QuantityType PoisonSize =
1678           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1679       // Pass in void pointer and size of region as arguments to runtime
1680       // function
1681       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1682     }
1683  };
1684 } // end anonymous namespace
1685 
1686 /// \brief Emit all code that comes at the end of class's
1687 /// destructor. This is to call destructors on members and base classes
1688 /// in reverse order of their construction.
1689 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1690                                         CXXDtorType DtorType) {
1691   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1692          "Should not emit dtor epilogue for non-exported trivial dtor!");
1693 
1694   // The deleting-destructor phase just needs to call the appropriate
1695   // operator delete that Sema picked up.
1696   if (DtorType == Dtor_Deleting) {
1697     assert(DD->getOperatorDelete() &&
1698            "operator delete missing - EnterDtorCleanups");
1699     if (CXXStructorImplicitParamValue) {
1700       // If there is an implicit param to the deleting dtor, it's a boolean
1701       // telling whether we should call delete at the end of the dtor.
1702       EHStack.pushCleanup<CallDtorDeleteConditional>(
1703           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1704     } else {
1705       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1706     }
1707     return;
1708   }
1709 
1710   const CXXRecordDecl *ClassDecl = DD->getParent();
1711 
1712   // Unions have no bases and do not call field destructors.
1713   if (ClassDecl->isUnion())
1714     return;
1715 
1716   // The complete-destructor phase just destructs all the virtual bases.
1717   if (DtorType == Dtor_Complete) {
1718     // Poison the vtable pointer such that access after the base
1719     // and member destructors are invoked is invalid.
1720     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1721         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1722         ClassDecl->isPolymorphic())
1723       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1724 
1725     // We push them in the forward order so that they'll be popped in
1726     // the reverse order.
1727     for (const auto &Base : ClassDecl->vbases()) {
1728       CXXRecordDecl *BaseClassDecl
1729         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1730 
1731       // Ignore trivial destructors.
1732       if (BaseClassDecl->hasTrivialDestructor())
1733         continue;
1734 
1735       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1736                                         BaseClassDecl,
1737                                         /*BaseIsVirtual*/ true);
1738     }
1739 
1740     return;
1741   }
1742 
1743   assert(DtorType == Dtor_Base);
1744   // Poison the vtable pointer if it has no virtual bases, but inherits
1745   // virtual functions.
1746   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1747       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1748       ClassDecl->isPolymorphic())
1749     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1750 
1751   // Destroy non-virtual bases.
1752   for (const auto &Base : ClassDecl->bases()) {
1753     // Ignore virtual bases.
1754     if (Base.isVirtual())
1755       continue;
1756 
1757     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1758 
1759     // Ignore trivial destructors.
1760     if (BaseClassDecl->hasTrivialDestructor())
1761       continue;
1762 
1763     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1764                                       BaseClassDecl,
1765                                       /*BaseIsVirtual*/ false);
1766   }
1767 
1768   // Poison fields such that access after their destructors are
1769   // invoked, and before the base class destructor runs, is invalid.
1770   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1771       SanOpts.has(SanitizerKind::Memory))
1772     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1773 
1774   // Destroy direct fields.
1775   for (const auto *Field : ClassDecl->fields()) {
1776     QualType type = Field->getType();
1777     QualType::DestructionKind dtorKind = type.isDestructedType();
1778     if (!dtorKind) continue;
1779 
1780     // Anonymous union members do not have their destructors called.
1781     const RecordType *RT = type->getAsUnionType();
1782     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1783 
1784     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1785     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1786                                       getDestroyer(dtorKind),
1787                                       cleanupKind & EHCleanup);
1788   }
1789 }
1790 
1791 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1792 /// constructor for each of several members of an array.
1793 ///
1794 /// \param ctor the constructor to call for each element
1795 /// \param arrayType the type of the array to initialize
1796 /// \param arrayBegin an arrayType*
1797 /// \param zeroInitialize true if each element should be
1798 ///   zero-initialized before it is constructed
1799 void CodeGenFunction::EmitCXXAggrConstructorCall(
1800     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1801     Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1802   QualType elementType;
1803   llvm::Value *numElements =
1804     emitArrayLength(arrayType, elementType, arrayBegin);
1805 
1806   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1807 }
1808 
1809 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1810 /// constructor for each of several members of an array.
1811 ///
1812 /// \param ctor the constructor to call for each element
1813 /// \param numElements the number of elements in the array;
1814 ///   may be zero
1815 /// \param arrayBase a T*, where T is the type constructed by ctor
1816 /// \param zeroInitialize true if each element should be
1817 ///   zero-initialized before it is constructed
1818 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1819                                                  llvm::Value *numElements,
1820                                                  Address arrayBase,
1821                                                  const CXXConstructExpr *E,
1822                                                  bool zeroInitialize) {
1823   // It's legal for numElements to be zero.  This can happen both
1824   // dynamically, because x can be zero in 'new A[x]', and statically,
1825   // because of GCC extensions that permit zero-length arrays.  There
1826   // are probably legitimate places where we could assume that this
1827   // doesn't happen, but it's not clear that it's worth it.
1828   llvm::BranchInst *zeroCheckBranch = nullptr;
1829 
1830   // Optimize for a constant count.
1831   llvm::ConstantInt *constantCount
1832     = dyn_cast<llvm::ConstantInt>(numElements);
1833   if (constantCount) {
1834     // Just skip out if the constant count is zero.
1835     if (constantCount->isZero()) return;
1836 
1837   // Otherwise, emit the check.
1838   } else {
1839     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1840     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1841     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1842     EmitBlock(loopBB);
1843   }
1844 
1845   // Find the end of the array.
1846   llvm::Value *arrayBegin = arrayBase.getPointer();
1847   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1848                                                     "arrayctor.end");
1849 
1850   // Enter the loop, setting up a phi for the current location to initialize.
1851   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1852   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1853   EmitBlock(loopBB);
1854   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1855                                          "arrayctor.cur");
1856   cur->addIncoming(arrayBegin, entryBB);
1857 
1858   // Inside the loop body, emit the constructor call on the array element.
1859 
1860   // The alignment of the base, adjusted by the size of a single element,
1861   // provides a conservative estimate of the alignment of every element.
1862   // (This assumes we never start tracking offsetted alignments.)
1863   //
1864   // Note that these are complete objects and so we don't need to
1865   // use the non-virtual size or alignment.
1866   QualType type = getContext().getTypeDeclType(ctor->getParent());
1867   CharUnits eltAlignment =
1868     arrayBase.getAlignment()
1869              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1870   Address curAddr = Address(cur, eltAlignment);
1871 
1872   // Zero initialize the storage, if requested.
1873   if (zeroInitialize)
1874     EmitNullInitialization(curAddr, type);
1875 
1876   // C++ [class.temporary]p4:
1877   // There are two contexts in which temporaries are destroyed at a different
1878   // point than the end of the full-expression. The first context is when a
1879   // default constructor is called to initialize an element of an array.
1880   // If the constructor has one or more default arguments, the destruction of
1881   // every temporary created in a default argument expression is sequenced
1882   // before the construction of the next array element, if any.
1883 
1884   {
1885     RunCleanupsScope Scope(*this);
1886 
1887     // Evaluate the constructor and its arguments in a regular
1888     // partial-destroy cleanup.
1889     if (getLangOpts().Exceptions &&
1890         !ctor->getParent()->hasTrivialDestructor()) {
1891       Destroyer *destroyer = destroyCXXObject;
1892       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
1893                                      *destroyer);
1894     }
1895 
1896     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
1897                            /*Delegating=*/false, curAddr, E);
1898   }
1899 
1900   // Go to the next element.
1901   llvm::Value *next =
1902     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1903                               "arrayctor.next");
1904   cur->addIncoming(next, Builder.GetInsertBlock());
1905 
1906   // Check whether that's the end of the loop.
1907   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1908   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1909   Builder.CreateCondBr(done, contBB, loopBB);
1910 
1911   // Patch the earlier check to skip over the loop.
1912   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1913 
1914   EmitBlock(contBB);
1915 }
1916 
1917 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1918                                        Address addr,
1919                                        QualType type) {
1920   const RecordType *rtype = type->castAs<RecordType>();
1921   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1922   const CXXDestructorDecl *dtor = record->getDestructor();
1923   assert(!dtor->isTrivial());
1924   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1925                             /*Delegating=*/false, addr);
1926 }
1927 
1928 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1929                                              CXXCtorType Type,
1930                                              bool ForVirtualBase,
1931                                              bool Delegating, Address This,
1932                                              const CXXConstructExpr *E) {
1933   CallArgList Args;
1934 
1935   // Push the this ptr.
1936   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
1937 
1938   // If this is a trivial constructor, emit a memcpy now before we lose
1939   // the alignment information on the argument.
1940   // FIXME: It would be better to preserve alignment information into CallArg.
1941   if (isMemcpyEquivalentSpecialMember(D)) {
1942     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1943 
1944     const Expr *Arg = E->getArg(0);
1945     QualType SrcTy = Arg->getType();
1946     Address Src = EmitLValue(Arg).getAddress();
1947     QualType DestTy = getContext().getTypeDeclType(D->getParent());
1948     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
1949     return;
1950   }
1951 
1952   // Add the rest of the user-supplied arguments.
1953   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1954   EvaluationOrder Order = E->isListInitialization()
1955                               ? EvaluationOrder::ForceLeftToRight
1956                               : EvaluationOrder::Default;
1957   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
1958                /*ParamsToSkip*/ 0, Order);
1959 
1960   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args);
1961 }
1962 
1963 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
1964                                     const CXXConstructorDecl *Ctor,
1965                                     CXXCtorType Type, CallArgList &Args) {
1966   // We can't forward a variadic call.
1967   if (Ctor->isVariadic())
1968     return false;
1969 
1970   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1971     // If the parameters are callee-cleanup, it's not safe to forward.
1972     for (auto *P : Ctor->parameters())
1973       if (P->getType().isDestructedType())
1974         return false;
1975 
1976     // Likewise if they're inalloca.
1977     const CGFunctionInfo &Info =
1978         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0);
1979     if (Info.usesInAlloca())
1980       return false;
1981   }
1982 
1983   // Anything else should be OK.
1984   return true;
1985 }
1986 
1987 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1988                                              CXXCtorType Type,
1989                                              bool ForVirtualBase,
1990                                              bool Delegating,
1991                                              Address This,
1992                                              CallArgList &Args) {
1993   const CXXRecordDecl *ClassDecl = D->getParent();
1994 
1995   // C++11 [class.mfct.non-static]p2:
1996   //   If a non-static member function of a class X is called for an object that
1997   //   is not of type X, or of a type derived from X, the behavior is undefined.
1998   // FIXME: Provide a source location here.
1999   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
2000                 This.getPointer(), getContext().getRecordType(ClassDecl));
2001 
2002   if (D->isTrivial() && D->isDefaultConstructor()) {
2003     assert(Args.size() == 1 && "trivial default ctor with args");
2004     return;
2005   }
2006 
2007   // If this is a trivial constructor, just emit what's needed. If this is a
2008   // union copy constructor, we must emit a memcpy, because the AST does not
2009   // model that copy.
2010   if (isMemcpyEquivalentSpecialMember(D)) {
2011     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2012 
2013     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2014     Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy));
2015     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2016     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2017     return;
2018   }
2019 
2020   // Check whether we can actually emit the constructor before trying to do so.
2021   if (auto Inherited = D->getInheritedConstructor()) {
2022     if (getTypes().inheritingCtorHasParams(Inherited, Type) &&
2023         !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2024       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2025                                               Delegating, Args);
2026       return;
2027     }
2028   }
2029 
2030   // Insert any ABI-specific implicit constructor arguments.
2031   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
2032       *this, D, Type, ForVirtualBase, Delegating, Args);
2033 
2034   // Emit the call.
2035   llvm::Constant *CalleePtr =
2036     CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
2037   const CGFunctionInfo &Info =
2038     CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
2039   CGCallee Callee = CGCallee::forDirect(CalleePtr, D);
2040   EmitCall(Info, Callee, ReturnValueSlot(), Args);
2041 
2042   // Generate vtable assumptions if we're constructing a complete object
2043   // with a vtable.  We don't do this for base subobjects for two reasons:
2044   // first, it's incorrect for classes with virtual bases, and second, we're
2045   // about to overwrite the vptrs anyway.
2046   // We also have to make sure if we can refer to vtable:
2047   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2048   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2049   // sure that definition of vtable is not hidden,
2050   // then we are always safe to refer to it.
2051   // FIXME: It looks like InstCombine is very inefficient on dealing with
2052   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2053   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2054       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2055       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2056       CGM.getCodeGenOpts().StrictVTablePointers)
2057     EmitVTableAssumptionLoads(ClassDecl, This);
2058 }
2059 
2060 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2061     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2062     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2063   CallArgList Args;
2064   CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()),
2065                   /*NeedsCopy=*/false);
2066 
2067   // Forward the parameters.
2068   if (InheritedFromVBase &&
2069       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2070     // Nothing to do; this construction is not responsible for constructing
2071     // the base class containing the inherited constructor.
2072     // FIXME: Can we just pass undef's for the remaining arguments if we don't
2073     // have constructor variants?
2074     Args.push_back(ThisArg);
2075   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2076     // The inheriting constructor was inlined; just inject its arguments.
2077     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2078            "wrong number of parameters for inherited constructor call");
2079     Args = CXXInheritedCtorInitExprArgs;
2080     Args[0] = ThisArg;
2081   } else {
2082     // The inheriting constructor was not inlined. Emit delegating arguments.
2083     Args.push_back(ThisArg);
2084     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2085     assert(OuterCtor->getNumParams() == D->getNumParams());
2086     assert(!OuterCtor->isVariadic() && "should have been inlined");
2087 
2088     for (const auto *Param : OuterCtor->parameters()) {
2089       assert(getContext().hasSameUnqualifiedType(
2090           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2091           Param->getType()));
2092       EmitDelegateCallArg(Args, Param, E->getLocation());
2093 
2094       // Forward __attribute__(pass_object_size).
2095       if (Param->hasAttr<PassObjectSizeAttr>()) {
2096         auto *POSParam = SizeArguments[Param];
2097         assert(POSParam && "missing pass_object_size value for forwarding");
2098         EmitDelegateCallArg(Args, POSParam, E->getLocation());
2099       }
2100     }
2101   }
2102 
2103   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2104                          This, Args);
2105 }
2106 
2107 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2108     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2109     bool Delegating, CallArgList &Args) {
2110   InlinedInheritingConstructorScope Scope(*this, GlobalDecl(Ctor, CtorType));
2111 
2112   // Save the arguments to be passed to the inherited constructor.
2113   CXXInheritedCtorInitExprArgs = Args;
2114 
2115   FunctionArgList Params;
2116   QualType RetType = BuildFunctionArgList(CurGD, Params);
2117   FnRetTy = RetType;
2118 
2119   // Insert any ABI-specific implicit constructor arguments.
2120   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2121                                              ForVirtualBase, Delegating, Args);
2122 
2123   // Emit a simplified prolog. We only need to emit the implicit params.
2124   assert(Args.size() >= Params.size() && "too few arguments for call");
2125   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2126     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2127       const RValue &RV = Args[I].RV;
2128       assert(!RV.isComplex() && "complex indirect params not supported");
2129       ParamValue Val = RV.isScalar()
2130                            ? ParamValue::forDirect(RV.getScalarVal())
2131                            : ParamValue::forIndirect(RV.getAggregateAddress());
2132       EmitParmDecl(*Params[I], Val, I + 1);
2133     }
2134   }
2135 
2136   // Create a return value slot if the ABI implementation wants one.
2137   // FIXME: This is dumb, we should ask the ABI not to try to set the return
2138   // value instead.
2139   if (!RetType->isVoidType())
2140     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2141 
2142   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2143   CXXThisValue = CXXABIThisValue;
2144 
2145   // Directly emit the constructor initializers.
2146   EmitCtorPrologue(Ctor, CtorType, Params);
2147 }
2148 
2149 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2150   llvm::Value *VTableGlobal =
2151       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2152   if (!VTableGlobal)
2153     return;
2154 
2155   // We can just use the base offset in the complete class.
2156   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2157 
2158   if (!NonVirtualOffset.isZero())
2159     This =
2160         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2161                                         Vptr.VTableClass, Vptr.NearestVBase);
2162 
2163   llvm::Value *VPtrValue =
2164       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2165   llvm::Value *Cmp =
2166       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2167   Builder.CreateAssumption(Cmp);
2168 }
2169 
2170 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2171                                                 Address This) {
2172   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2173     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2174       EmitVTableAssumptionLoad(Vptr, This);
2175 }
2176 
2177 void
2178 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2179                                                 Address This, Address Src,
2180                                                 const CXXConstructExpr *E) {
2181   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2182 
2183   CallArgList Args;
2184 
2185   // Push the this ptr.
2186   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2187 
2188   // Push the src ptr.
2189   QualType QT = *(FPT->param_type_begin());
2190   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2191   Src = Builder.CreateBitCast(Src, t);
2192   Args.add(RValue::get(Src.getPointer()), QT);
2193 
2194   // Skip over first argument (Src).
2195   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2196                /*ParamsToSkip*/ 1);
2197 
2198   EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args);
2199 }
2200 
2201 void
2202 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2203                                                 CXXCtorType CtorType,
2204                                                 const FunctionArgList &Args,
2205                                                 SourceLocation Loc) {
2206   CallArgList DelegateArgs;
2207 
2208   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2209   assert(I != E && "no parameters to constructor");
2210 
2211   // this
2212   Address This = LoadCXXThisAddress();
2213   DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2214   ++I;
2215 
2216   // FIXME: The location of the VTT parameter in the parameter list is
2217   // specific to the Itanium ABI and shouldn't be hardcoded here.
2218   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2219     assert(I != E && "cannot skip vtt parameter, already done with args");
2220     assert((*I)->getType()->isPointerType() &&
2221            "skipping parameter not of vtt type");
2222     ++I;
2223   }
2224 
2225   // Explicit arguments.
2226   for (; I != E; ++I) {
2227     const VarDecl *param = *I;
2228     // FIXME: per-argument source location
2229     EmitDelegateCallArg(DelegateArgs, param, Loc);
2230   }
2231 
2232   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2233                          /*Delegating=*/true, This, DelegateArgs);
2234 }
2235 
2236 namespace {
2237   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2238     const CXXDestructorDecl *Dtor;
2239     Address Addr;
2240     CXXDtorType Type;
2241 
2242     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2243                            CXXDtorType Type)
2244       : Dtor(D), Addr(Addr), Type(Type) {}
2245 
2246     void Emit(CodeGenFunction &CGF, Flags flags) override {
2247       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2248                                 /*Delegating=*/true, Addr);
2249     }
2250   };
2251 } // end anonymous namespace
2252 
2253 void
2254 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2255                                                   const FunctionArgList &Args) {
2256   assert(Ctor->isDelegatingConstructor());
2257 
2258   Address ThisPtr = LoadCXXThisAddress();
2259 
2260   AggValueSlot AggSlot =
2261     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2262                           AggValueSlot::IsDestructed,
2263                           AggValueSlot::DoesNotNeedGCBarriers,
2264                           AggValueSlot::IsNotAliased);
2265 
2266   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2267 
2268   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2269   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2270     CXXDtorType Type =
2271       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2272 
2273     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2274                                                 ClassDecl->getDestructor(),
2275                                                 ThisPtr, Type);
2276   }
2277 }
2278 
2279 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2280                                             CXXDtorType Type,
2281                                             bool ForVirtualBase,
2282                                             bool Delegating,
2283                                             Address This) {
2284   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2285                                      Delegating, This);
2286 }
2287 
2288 namespace {
2289   struct CallLocalDtor final : EHScopeStack::Cleanup {
2290     const CXXDestructorDecl *Dtor;
2291     Address Addr;
2292 
2293     CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
2294       : Dtor(D), Addr(Addr) {}
2295 
2296     void Emit(CodeGenFunction &CGF, Flags flags) override {
2297       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2298                                 /*ForVirtualBase=*/false,
2299                                 /*Delegating=*/false, Addr);
2300     }
2301   };
2302 } // end anonymous namespace
2303 
2304 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2305                                             Address Addr) {
2306   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
2307 }
2308 
2309 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2310   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2311   if (!ClassDecl) return;
2312   if (ClassDecl->hasTrivialDestructor()) return;
2313 
2314   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2315   assert(D && D->isUsed() && "destructor not marked as used!");
2316   PushDestructorCleanup(D, Addr);
2317 }
2318 
2319 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2320   // Compute the address point.
2321   llvm::Value *VTableAddressPoint =
2322       CGM.getCXXABI().getVTableAddressPointInStructor(
2323           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2324 
2325   if (!VTableAddressPoint)
2326     return;
2327 
2328   // Compute where to store the address point.
2329   llvm::Value *VirtualOffset = nullptr;
2330   CharUnits NonVirtualOffset = CharUnits::Zero();
2331 
2332   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2333     // We need to use the virtual base offset offset because the virtual base
2334     // might have a different offset in the most derived class.
2335 
2336     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2337         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2338     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2339   } else {
2340     // We can just use the base offset in the complete class.
2341     NonVirtualOffset = Vptr.Base.getBaseOffset();
2342   }
2343 
2344   // Apply the offsets.
2345   Address VTableField = LoadCXXThisAddress();
2346 
2347   if (!NonVirtualOffset.isZero() || VirtualOffset)
2348     VTableField = ApplyNonVirtualAndVirtualOffset(
2349         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2350         Vptr.NearestVBase);
2351 
2352   // Finally, store the address point. Use the same LLVM types as the field to
2353   // support optimization.
2354   llvm::Type *VTablePtrTy =
2355       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2356           ->getPointerTo()
2357           ->getPointerTo();
2358   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2359   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2360 
2361   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2362   CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr());
2363   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2364       CGM.getCodeGenOpts().StrictVTablePointers)
2365     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2366 }
2367 
2368 CodeGenFunction::VPtrsVector
2369 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2370   CodeGenFunction::VPtrsVector VPtrsResult;
2371   VisitedVirtualBasesSetTy VBases;
2372   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2373                     /*NearestVBase=*/nullptr,
2374                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2375                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2376                     VPtrsResult);
2377   return VPtrsResult;
2378 }
2379 
2380 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2381                                         const CXXRecordDecl *NearestVBase,
2382                                         CharUnits OffsetFromNearestVBase,
2383                                         bool BaseIsNonVirtualPrimaryBase,
2384                                         const CXXRecordDecl *VTableClass,
2385                                         VisitedVirtualBasesSetTy &VBases,
2386                                         VPtrsVector &Vptrs) {
2387   // If this base is a non-virtual primary base the address point has already
2388   // been set.
2389   if (!BaseIsNonVirtualPrimaryBase) {
2390     // Initialize the vtable pointer for this base.
2391     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2392     Vptrs.push_back(Vptr);
2393   }
2394 
2395   const CXXRecordDecl *RD = Base.getBase();
2396 
2397   // Traverse bases.
2398   for (const auto &I : RD->bases()) {
2399     CXXRecordDecl *BaseDecl
2400       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2401 
2402     // Ignore classes without a vtable.
2403     if (!BaseDecl->isDynamicClass())
2404       continue;
2405 
2406     CharUnits BaseOffset;
2407     CharUnits BaseOffsetFromNearestVBase;
2408     bool BaseDeclIsNonVirtualPrimaryBase;
2409 
2410     if (I.isVirtual()) {
2411       // Check if we've visited this virtual base before.
2412       if (!VBases.insert(BaseDecl).second)
2413         continue;
2414 
2415       const ASTRecordLayout &Layout =
2416         getContext().getASTRecordLayout(VTableClass);
2417 
2418       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2419       BaseOffsetFromNearestVBase = CharUnits::Zero();
2420       BaseDeclIsNonVirtualPrimaryBase = false;
2421     } else {
2422       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2423 
2424       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2425       BaseOffsetFromNearestVBase =
2426         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2427       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2428     }
2429 
2430     getVTablePointers(
2431         BaseSubobject(BaseDecl, BaseOffset),
2432         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2433         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2434   }
2435 }
2436 
2437 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2438   // Ignore classes without a vtable.
2439   if (!RD->isDynamicClass())
2440     return;
2441 
2442   // Initialize the vtable pointers for this class and all of its bases.
2443   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2444     for (const VPtr &Vptr : getVTablePointers(RD))
2445       InitializeVTablePointer(Vptr);
2446 
2447   if (RD->getNumVBases())
2448     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2449 }
2450 
2451 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2452                                            llvm::Type *VTableTy,
2453                                            const CXXRecordDecl *RD) {
2454   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2455   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2456   CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr());
2457 
2458   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2459       CGM.getCodeGenOpts().StrictVTablePointers)
2460     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2461 
2462   return VTable;
2463 }
2464 
2465 // If a class has a single non-virtual base and does not introduce or override
2466 // virtual member functions or fields, it will have the same layout as its base.
2467 // This function returns the least derived such class.
2468 //
2469 // Casting an instance of a base class to such a derived class is technically
2470 // undefined behavior, but it is a relatively common hack for introducing member
2471 // functions on class instances with specific properties (e.g. llvm::Operator)
2472 // that works under most compilers and should not have security implications, so
2473 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2474 static const CXXRecordDecl *
2475 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2476   if (!RD->field_empty())
2477     return RD;
2478 
2479   if (RD->getNumVBases() != 0)
2480     return RD;
2481 
2482   if (RD->getNumBases() != 1)
2483     return RD;
2484 
2485   for (const CXXMethodDecl *MD : RD->methods()) {
2486     if (MD->isVirtual()) {
2487       // Virtual member functions are only ok if they are implicit destructors
2488       // because the implicit destructor will have the same semantics as the
2489       // base class's destructor if no fields are added.
2490       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2491         continue;
2492       return RD;
2493     }
2494   }
2495 
2496   return LeastDerivedClassWithSameLayout(
2497       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2498 }
2499 
2500 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2501                                                    llvm::Value *VTable,
2502                                                    SourceLocation Loc) {
2503   if (CGM.getCodeGenOpts().WholeProgramVTables &&
2504       CGM.HasHiddenLTOVisibility(RD)) {
2505     llvm::Metadata *MD =
2506         CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2507     llvm::Value *TypeId =
2508         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2509 
2510     llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2511     llvm::Value *TypeTest =
2512         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2513                            {CastedVTable, TypeId});
2514     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2515   }
2516 
2517   if (SanOpts.has(SanitizerKind::CFIVCall))
2518     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2519 }
2520 
2521 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2522                                                 llvm::Value *VTable,
2523                                                 CFITypeCheckKind TCK,
2524                                                 SourceLocation Loc) {
2525   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2526     RD = LeastDerivedClassWithSameLayout(RD);
2527 
2528   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2529 }
2530 
2531 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2532                                                 llvm::Value *Derived,
2533                                                 bool MayBeNull,
2534                                                 CFITypeCheckKind TCK,
2535                                                 SourceLocation Loc) {
2536   if (!getLangOpts().CPlusPlus)
2537     return;
2538 
2539   auto *ClassTy = T->getAs<RecordType>();
2540   if (!ClassTy)
2541     return;
2542 
2543   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2544 
2545   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2546     return;
2547 
2548   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2549     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2550 
2551   llvm::BasicBlock *ContBlock = nullptr;
2552 
2553   if (MayBeNull) {
2554     llvm::Value *DerivedNotNull =
2555         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2556 
2557     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2558     ContBlock = createBasicBlock("cast.cont");
2559 
2560     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2561 
2562     EmitBlock(CheckBlock);
2563   }
2564 
2565   llvm::Value *VTable =
2566     GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl);
2567 
2568   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2569 
2570   if (MayBeNull) {
2571     Builder.CreateBr(ContBlock);
2572     EmitBlock(ContBlock);
2573   }
2574 }
2575 
2576 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2577                                          llvm::Value *VTable,
2578                                          CFITypeCheckKind TCK,
2579                                          SourceLocation Loc) {
2580   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2581       !CGM.HasHiddenLTOVisibility(RD))
2582     return;
2583 
2584   std::string TypeName = RD->getQualifiedNameAsString();
2585   if (getContext().getSanitizerBlacklist().isBlacklistedType(TypeName))
2586     return;
2587 
2588   SanitizerScope SanScope(this);
2589   llvm::SanitizerStatKind SSK;
2590   switch (TCK) {
2591   case CFITCK_VCall:
2592     SSK = llvm::SanStat_CFI_VCall;
2593     break;
2594   case CFITCK_NVCall:
2595     SSK = llvm::SanStat_CFI_NVCall;
2596     break;
2597   case CFITCK_DerivedCast:
2598     SSK = llvm::SanStat_CFI_DerivedCast;
2599     break;
2600   case CFITCK_UnrelatedCast:
2601     SSK = llvm::SanStat_CFI_UnrelatedCast;
2602     break;
2603   case CFITCK_ICall:
2604     llvm_unreachable("not expecting CFITCK_ICall");
2605   }
2606   EmitSanitizerStatReport(SSK);
2607 
2608   llvm::Metadata *MD =
2609       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2610   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2611 
2612   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2613   llvm::Value *TypeTest = Builder.CreateCall(
2614       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
2615 
2616   SanitizerMask M;
2617   switch (TCK) {
2618   case CFITCK_VCall:
2619     M = SanitizerKind::CFIVCall;
2620     break;
2621   case CFITCK_NVCall:
2622     M = SanitizerKind::CFINVCall;
2623     break;
2624   case CFITCK_DerivedCast:
2625     M = SanitizerKind::CFIDerivedCast;
2626     break;
2627   case CFITCK_UnrelatedCast:
2628     M = SanitizerKind::CFIUnrelatedCast;
2629     break;
2630   case CFITCK_ICall:
2631     llvm_unreachable("not expecting CFITCK_ICall");
2632   }
2633 
2634   llvm::Constant *StaticData[] = {
2635       llvm::ConstantInt::get(Int8Ty, TCK),
2636       EmitCheckSourceLocation(Loc),
2637       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2638   };
2639 
2640   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2641   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2642     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
2643     return;
2644   }
2645 
2646   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2647     EmitTrapCheck(TypeTest);
2648     return;
2649   }
2650 
2651   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2652       CGM.getLLVMContext(),
2653       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2654   llvm::Value *ValidVtable = Builder.CreateCall(
2655       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
2656   EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2657             StaticData, {CastedVTable, ValidVtable});
2658 }
2659 
2660 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2661   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2662       !SanOpts.has(SanitizerKind::CFIVCall) ||
2663       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) ||
2664       !CGM.HasHiddenLTOVisibility(RD))
2665     return false;
2666 
2667   std::string TypeName = RD->getQualifiedNameAsString();
2668   return !getContext().getSanitizerBlacklist().isBlacklistedType(TypeName);
2669 }
2670 
2671 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2672     const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
2673   SanitizerScope SanScope(this);
2674 
2675   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2676 
2677   llvm::Metadata *MD =
2678       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2679   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2680 
2681   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2682   llvm::Value *CheckedLoad = Builder.CreateCall(
2683       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2684       {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
2685        TypeId});
2686   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2687 
2688   EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2689             SanitizerHandler::CFICheckFail, nullptr, nullptr);
2690 
2691   return Builder.CreateBitCast(
2692       Builder.CreateExtractValue(CheckedLoad, 0),
2693       cast<llvm::PointerType>(VTable->getType())->getElementType());
2694 }
2695 
2696 bool
2697 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2698                                                    const CXXMethodDecl *MD) {
2699   // When building with -fapple-kext, all calls must go through the vtable since
2700   // the kernel linker can do runtime patching of vtables.
2701   if (getLangOpts().AppleKext)
2702     return false;
2703 
2704   // If the member function is marked 'final', we know that it can't be
2705   // overridden and can therefore devirtualize it unless it's pure virtual.
2706   if (MD->hasAttr<FinalAttr>())
2707     return !MD->isPure();
2708 
2709   // If the base expression (after skipping derived-to-base conversions) is a
2710   // class prvalue, then we can devirtualize.
2711   Base = Base->getBestDynamicClassTypeExpr();
2712   if (Base->isRValue() && Base->getType()->isRecordType())
2713     return true;
2714 
2715   // If we don't even know what we would call, we can't devirtualize.
2716   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2717   if (!BestDynamicDecl)
2718     return false;
2719 
2720   // There may be a method corresponding to MD in a derived class.
2721   const CXXMethodDecl *DevirtualizedMethod =
2722       MD->getCorrespondingMethodInClass(BestDynamicDecl);
2723 
2724   // If that method is pure virtual, we can't devirtualize. If this code is
2725   // reached, the result would be UB, not a direct call to the derived class
2726   // function, and we can't assume the derived class function is defined.
2727   if (DevirtualizedMethod->isPure())
2728     return false;
2729 
2730   // If that method is marked final, we can devirtualize it.
2731   if (DevirtualizedMethod->hasAttr<FinalAttr>())
2732     return true;
2733 
2734   // Similarly, if the class itself is marked 'final' it can't be overridden
2735   // and we can therefore devirtualize the member function call.
2736   if (BestDynamicDecl->hasAttr<FinalAttr>())
2737     return true;
2738 
2739   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2740     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2741       // This is a record decl. We know the type and can devirtualize it.
2742       return VD->getType()->isRecordType();
2743     }
2744 
2745     return false;
2746   }
2747 
2748   // We can devirtualize calls on an object accessed by a class member access
2749   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2750   // a derived class object constructed in the same location.
2751   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2752     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2753       return VD->getType()->isRecordType();
2754 
2755   // Likewise for calls on an object accessed by a (non-reference) pointer to
2756   // member access.
2757   if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2758     if (BO->isPtrMemOp()) {
2759       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2760       if (MPT->getPointeeType()->isRecordType())
2761         return true;
2762     }
2763   }
2764 
2765   // We can't devirtualize the call.
2766   return false;
2767 }
2768 
2769 void CodeGenFunction::EmitForwardingCallToLambda(
2770                                       const CXXMethodDecl *callOperator,
2771                                       CallArgList &callArgs) {
2772   // Get the address of the call operator.
2773   const CGFunctionInfo &calleeFnInfo =
2774     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2775   llvm::Constant *calleePtr =
2776     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2777                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2778 
2779   // Prepare the return slot.
2780   const FunctionProtoType *FPT =
2781     callOperator->getType()->castAs<FunctionProtoType>();
2782   QualType resultType = FPT->getReturnType();
2783   ReturnValueSlot returnSlot;
2784   if (!resultType->isVoidType() &&
2785       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2786       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2787     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2788 
2789   // We don't need to separately arrange the call arguments because
2790   // the call can't be variadic anyway --- it's impossible to forward
2791   // variadic arguments.
2792 
2793   // Now emit our call.
2794   auto callee = CGCallee::forDirect(calleePtr, callOperator);
2795   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs);
2796 
2797   // If necessary, copy the returned value into the slot.
2798   if (!resultType->isVoidType() && returnSlot.isNull())
2799     EmitReturnOfRValue(RV, resultType);
2800   else
2801     EmitBranchThroughCleanup(ReturnBlock);
2802 }
2803 
2804 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2805   const BlockDecl *BD = BlockInfo->getBlockDecl();
2806   const VarDecl *variable = BD->capture_begin()->getVariable();
2807   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2808 
2809   // Start building arguments for forwarding call
2810   CallArgList CallArgs;
2811 
2812   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2813   Address ThisPtr = GetAddrOfBlockDecl(variable, false);
2814   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2815 
2816   // Add the rest of the parameters.
2817   for (auto param : BD->parameters())
2818     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2819 
2820   assert(!Lambda->isGenericLambda() &&
2821             "generic lambda interconversion to block not implemented");
2822   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2823 }
2824 
2825 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2826   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2827     // FIXME: Making this work correctly is nasty because it requires either
2828     // cloning the body of the call operator or making the call operator forward.
2829     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2830     return;
2831   }
2832 
2833   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2834 }
2835 
2836 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2837   const CXXRecordDecl *Lambda = MD->getParent();
2838 
2839   // Start building arguments for forwarding call
2840   CallArgList CallArgs;
2841 
2842   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2843   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2844   CallArgs.add(RValue::get(ThisPtr), ThisType);
2845 
2846   // Add the rest of the parameters.
2847   for (auto Param : MD->parameters())
2848     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2849 
2850   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2851   // For a generic lambda, find the corresponding call operator specialization
2852   // to which the call to the static-invoker shall be forwarded.
2853   if (Lambda->isGenericLambda()) {
2854     assert(MD->isFunctionTemplateSpecialization());
2855     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2856     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2857     void *InsertPos = nullptr;
2858     FunctionDecl *CorrespondingCallOpSpecialization =
2859         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2860     assert(CorrespondingCallOpSpecialization);
2861     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2862   }
2863   EmitForwardingCallToLambda(CallOp, CallArgs);
2864 }
2865 
2866 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2867   if (MD->isVariadic()) {
2868     // FIXME: Making this work correctly is nasty because it requires either
2869     // cloning the body of the call operator or making the call operator forward.
2870     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2871     return;
2872   }
2873 
2874   EmitLambdaDelegatingInvokeBody(MD);
2875 }
2876