1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 static CharUnits 32 ComputeNonVirtualBaseClassOffset(ASTContext &Context, 33 const CXXRecordDecl *DerivedClass, 34 CastExpr::path_const_iterator Start, 35 CastExpr::path_const_iterator End) { 36 CharUnits Offset = CharUnits::Zero(); 37 38 const CXXRecordDecl *RD = DerivedClass; 39 40 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 41 const CXXBaseSpecifier *Base = *I; 42 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 43 44 // Get the layout. 45 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 46 47 const CXXRecordDecl *BaseDecl = 48 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 49 50 // Add the offset. 51 Offset += Layout.getBaseClassOffset(BaseDecl); 52 53 RD = BaseDecl; 54 } 55 56 return Offset; 57 } 58 59 llvm::Constant * 60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 61 CastExpr::path_const_iterator PathBegin, 62 CastExpr::path_const_iterator PathEnd) { 63 assert(PathBegin != PathEnd && "Base path should not be empty!"); 64 65 CharUnits Offset = 66 ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl, 67 PathBegin, PathEnd); 68 if (Offset.isZero()) 69 return nullptr; 70 71 llvm::Type *PtrDiffTy = 72 Types.ConvertType(getContext().getPointerDiffType()); 73 74 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 75 } 76 77 /// Gets the address of a direct base class within a complete object. 78 /// This should only be used for (1) non-virtual bases or (2) virtual bases 79 /// when the type is known to be complete (e.g. in complete destructors). 80 /// 81 /// The object pointed to by 'This' is assumed to be non-null. 82 llvm::Value * 83 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This, 84 const CXXRecordDecl *Derived, 85 const CXXRecordDecl *Base, 86 bool BaseIsVirtual) { 87 // 'this' must be a pointer (in some address space) to Derived. 88 assert(This->getType()->isPointerTy() && 89 cast<llvm::PointerType>(This->getType())->getElementType() 90 == ConvertType(Derived)); 91 92 // Compute the offset of the virtual base. 93 CharUnits Offset; 94 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 95 if (BaseIsVirtual) 96 Offset = Layout.getVBaseClassOffset(Base); 97 else 98 Offset = Layout.getBaseClassOffset(Base); 99 100 // Shift and cast down to the base type. 101 // TODO: for complete types, this should be possible with a GEP. 102 llvm::Value *V = This; 103 if (Offset.isPositive()) { 104 V = Builder.CreateBitCast(V, Int8PtrTy); 105 V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity()); 106 } 107 V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo()); 108 109 return V; 110 } 111 112 static llvm::Value * 113 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr, 114 CharUnits nonVirtualOffset, 115 llvm::Value *virtualOffset) { 116 // Assert that we have something to do. 117 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 118 119 // Compute the offset from the static and dynamic components. 120 llvm::Value *baseOffset; 121 if (!nonVirtualOffset.isZero()) { 122 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 123 nonVirtualOffset.getQuantity()); 124 if (virtualOffset) { 125 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 126 } 127 } else { 128 baseOffset = virtualOffset; 129 } 130 131 // Apply the base offset. 132 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 133 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 134 return ptr; 135 } 136 137 llvm::Value *CodeGenFunction::GetAddressOfBaseClass( 138 llvm::Value *Value, const CXXRecordDecl *Derived, 139 CastExpr::path_const_iterator PathBegin, 140 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 141 SourceLocation Loc) { 142 assert(PathBegin != PathEnd && "Base path should not be empty!"); 143 144 CastExpr::path_const_iterator Start = PathBegin; 145 const CXXRecordDecl *VBase = nullptr; 146 147 // Sema has done some convenient canonicalization here: if the 148 // access path involved any virtual steps, the conversion path will 149 // *start* with a step down to the correct virtual base subobject, 150 // and hence will not require any further steps. 151 if ((*Start)->isVirtual()) { 152 VBase = 153 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 154 ++Start; 155 } 156 157 // Compute the static offset of the ultimate destination within its 158 // allocating subobject (the virtual base, if there is one, or else 159 // the "complete" object that we see). 160 CharUnits NonVirtualOffset = 161 ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived, 162 Start, PathEnd); 163 164 // If there's a virtual step, we can sometimes "devirtualize" it. 165 // For now, that's limited to when the derived type is final. 166 // TODO: "devirtualize" this for accesses to known-complete objects. 167 if (VBase && Derived->hasAttr<FinalAttr>()) { 168 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 169 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 170 NonVirtualOffset += vBaseOffset; 171 VBase = nullptr; // we no longer have a virtual step 172 } 173 174 // Get the base pointer type. 175 llvm::Type *BasePtrTy = 176 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 177 178 QualType DerivedTy = getContext().getRecordType(Derived); 179 CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy); 180 181 // If the static offset is zero and we don't have a virtual step, 182 // just do a bitcast; null checks are unnecessary. 183 if (NonVirtualOffset.isZero() && !VBase) { 184 if (sanitizePerformTypeCheck()) { 185 EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign, 186 !NullCheckValue); 187 } 188 return Builder.CreateBitCast(Value, BasePtrTy); 189 } 190 191 llvm::BasicBlock *origBB = nullptr; 192 llvm::BasicBlock *endBB = nullptr; 193 194 // Skip over the offset (and the vtable load) if we're supposed to 195 // null-check the pointer. 196 if (NullCheckValue) { 197 origBB = Builder.GetInsertBlock(); 198 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 199 endBB = createBasicBlock("cast.end"); 200 201 llvm::Value *isNull = Builder.CreateIsNull(Value); 202 Builder.CreateCondBr(isNull, endBB, notNullBB); 203 EmitBlock(notNullBB); 204 } 205 206 if (sanitizePerformTypeCheck()) { 207 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value, 208 DerivedTy, DerivedAlign, true); 209 } 210 211 // Compute the virtual offset. 212 llvm::Value *VirtualOffset = nullptr; 213 if (VBase) { 214 VirtualOffset = 215 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 216 } 217 218 // Apply both offsets. 219 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, 220 NonVirtualOffset, 221 VirtualOffset); 222 223 // Cast to the destination type. 224 Value = Builder.CreateBitCast(Value, BasePtrTy); 225 226 // Build a phi if we needed a null check. 227 if (NullCheckValue) { 228 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 229 Builder.CreateBr(endBB); 230 EmitBlock(endBB); 231 232 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 233 PHI->addIncoming(Value, notNullBB); 234 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 235 Value = PHI; 236 } 237 238 return Value; 239 } 240 241 llvm::Value * 242 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value, 243 const CXXRecordDecl *Derived, 244 CastExpr::path_const_iterator PathBegin, 245 CastExpr::path_const_iterator PathEnd, 246 bool NullCheckValue) { 247 assert(PathBegin != PathEnd && "Base path should not be empty!"); 248 249 QualType DerivedTy = 250 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 251 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 252 253 llvm::Value *NonVirtualOffset = 254 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 255 256 if (!NonVirtualOffset) { 257 // No offset, we can just cast back. 258 return Builder.CreateBitCast(Value, DerivedPtrTy); 259 } 260 261 llvm::BasicBlock *CastNull = nullptr; 262 llvm::BasicBlock *CastNotNull = nullptr; 263 llvm::BasicBlock *CastEnd = nullptr; 264 265 if (NullCheckValue) { 266 CastNull = createBasicBlock("cast.null"); 267 CastNotNull = createBasicBlock("cast.notnull"); 268 CastEnd = createBasicBlock("cast.end"); 269 270 llvm::Value *IsNull = Builder.CreateIsNull(Value); 271 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 272 EmitBlock(CastNotNull); 273 } 274 275 // Apply the offset. 276 Value = Builder.CreateBitCast(Value, Int8PtrTy); 277 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 278 "sub.ptr"); 279 280 // Just cast. 281 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 282 283 if (NullCheckValue) { 284 Builder.CreateBr(CastEnd); 285 EmitBlock(CastNull); 286 Builder.CreateBr(CastEnd); 287 EmitBlock(CastEnd); 288 289 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 290 PHI->addIncoming(Value, CastNotNull); 291 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), 292 CastNull); 293 Value = PHI; 294 } 295 296 return Value; 297 } 298 299 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 300 bool ForVirtualBase, 301 bool Delegating) { 302 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 303 // This constructor/destructor does not need a VTT parameter. 304 return nullptr; 305 } 306 307 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 308 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 309 310 llvm::Value *VTT; 311 312 uint64_t SubVTTIndex; 313 314 if (Delegating) { 315 // If this is a delegating constructor call, just load the VTT. 316 return LoadCXXVTT(); 317 } else if (RD == Base) { 318 // If the record matches the base, this is the complete ctor/dtor 319 // variant calling the base variant in a class with virtual bases. 320 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 321 "doing no-op VTT offset in base dtor/ctor?"); 322 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 323 SubVTTIndex = 0; 324 } else { 325 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 326 CharUnits BaseOffset = ForVirtualBase ? 327 Layout.getVBaseClassOffset(Base) : 328 Layout.getBaseClassOffset(Base); 329 330 SubVTTIndex = 331 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 332 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 333 } 334 335 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 336 // A VTT parameter was passed to the constructor, use it. 337 VTT = LoadCXXVTT(); 338 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 339 } else { 340 // We're the complete constructor, so get the VTT by name. 341 VTT = CGM.getVTables().GetAddrOfVTT(RD); 342 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 343 } 344 345 return VTT; 346 } 347 348 namespace { 349 /// Call the destructor for a direct base class. 350 struct CallBaseDtor : EHScopeStack::Cleanup { 351 const CXXRecordDecl *BaseClass; 352 bool BaseIsVirtual; 353 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 354 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 355 356 void Emit(CodeGenFunction &CGF, Flags flags) override { 357 const CXXRecordDecl *DerivedClass = 358 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 359 360 const CXXDestructorDecl *D = BaseClass->getDestructor(); 361 llvm::Value *Addr = 362 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(), 363 DerivedClass, BaseClass, 364 BaseIsVirtual); 365 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 366 /*Delegating=*/false, Addr); 367 } 368 }; 369 370 /// A visitor which checks whether an initializer uses 'this' in a 371 /// way which requires the vtable to be properly set. 372 struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> { 373 typedef EvaluatedExprVisitor<DynamicThisUseChecker> super; 374 375 bool UsesThis; 376 377 DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {} 378 379 // Black-list all explicit and implicit references to 'this'. 380 // 381 // Do we need to worry about external references to 'this' derived 382 // from arbitrary code? If so, then anything which runs arbitrary 383 // external code might potentially access the vtable. 384 void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; } 385 }; 386 } 387 388 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 389 DynamicThisUseChecker Checker(C); 390 Checker.Visit(const_cast<Expr*>(Init)); 391 return Checker.UsesThis; 392 } 393 394 static void EmitBaseInitializer(CodeGenFunction &CGF, 395 const CXXRecordDecl *ClassDecl, 396 CXXCtorInitializer *BaseInit, 397 CXXCtorType CtorType) { 398 assert(BaseInit->isBaseInitializer() && 399 "Must have base initializer!"); 400 401 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 402 403 const Type *BaseType = BaseInit->getBaseClass(); 404 CXXRecordDecl *BaseClassDecl = 405 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 406 407 bool isBaseVirtual = BaseInit->isBaseVirtual(); 408 409 // The base constructor doesn't construct virtual bases. 410 if (CtorType == Ctor_Base && isBaseVirtual) 411 return; 412 413 // If the initializer for the base (other than the constructor 414 // itself) accesses 'this' in any way, we need to initialize the 415 // vtables. 416 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 417 CGF.InitializeVTablePointers(ClassDecl); 418 419 // We can pretend to be a complete class because it only matters for 420 // virtual bases, and we only do virtual bases for complete ctors. 421 llvm::Value *V = 422 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 423 BaseClassDecl, 424 isBaseVirtual); 425 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType); 426 AggValueSlot AggSlot = 427 AggValueSlot::forAddr(V, Alignment, Qualifiers(), 428 AggValueSlot::IsDestructed, 429 AggValueSlot::DoesNotNeedGCBarriers, 430 AggValueSlot::IsNotAliased); 431 432 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 433 434 if (CGF.CGM.getLangOpts().Exceptions && 435 !BaseClassDecl->hasTrivialDestructor()) 436 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 437 isBaseVirtual); 438 } 439 440 static void EmitAggMemberInitializer(CodeGenFunction &CGF, 441 LValue LHS, 442 Expr *Init, 443 llvm::Value *ArrayIndexVar, 444 QualType T, 445 ArrayRef<VarDecl *> ArrayIndexes, 446 unsigned Index) { 447 if (Index == ArrayIndexes.size()) { 448 LValue LV = LHS; 449 450 if (ArrayIndexVar) { 451 // If we have an array index variable, load it and use it as an offset. 452 // Then, increment the value. 453 llvm::Value *Dest = LHS.getAddress(); 454 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar); 455 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress"); 456 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1); 457 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc"); 458 CGF.Builder.CreateStore(Next, ArrayIndexVar); 459 460 // Update the LValue. 461 LV.setAddress(Dest); 462 CharUnits Align = CGF.getContext().getTypeAlignInChars(T); 463 LV.setAlignment(std::min(Align, LV.getAlignment())); 464 } 465 466 switch (CGF.getEvaluationKind(T)) { 467 case TEK_Scalar: 468 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false); 469 break; 470 case TEK_Complex: 471 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true); 472 break; 473 case TEK_Aggregate: { 474 AggValueSlot Slot = 475 AggValueSlot::forLValue(LV, 476 AggValueSlot::IsDestructed, 477 AggValueSlot::DoesNotNeedGCBarriers, 478 AggValueSlot::IsNotAliased); 479 480 CGF.EmitAggExpr(Init, Slot); 481 break; 482 } 483 } 484 485 return; 486 } 487 488 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T); 489 assert(Array && "Array initialization without the array type?"); 490 llvm::Value *IndexVar 491 = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]); 492 assert(IndexVar && "Array index variable not loaded"); 493 494 // Initialize this index variable to zero. 495 llvm::Value* Zero 496 = llvm::Constant::getNullValue( 497 CGF.ConvertType(CGF.getContext().getSizeType())); 498 CGF.Builder.CreateStore(Zero, IndexVar); 499 500 // Start the loop with a block that tests the condition. 501 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond"); 502 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end"); 503 504 CGF.EmitBlock(CondBlock); 505 506 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body"); 507 // Generate: if (loop-index < number-of-elements) fall to the loop body, 508 // otherwise, go to the block after the for-loop. 509 uint64_t NumElements = Array->getSize().getZExtValue(); 510 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar); 511 llvm::Value *NumElementsPtr = 512 llvm::ConstantInt::get(Counter->getType(), NumElements); 513 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr, 514 "isless"); 515 516 // If the condition is true, execute the body. 517 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor); 518 519 CGF.EmitBlock(ForBody); 520 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc"); 521 522 // Inside the loop body recurse to emit the inner loop or, eventually, the 523 // constructor call. 524 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar, 525 Array->getElementType(), ArrayIndexes, Index + 1); 526 527 CGF.EmitBlock(ContinueBlock); 528 529 // Emit the increment of the loop counter. 530 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1); 531 Counter = CGF.Builder.CreateLoad(IndexVar); 532 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc"); 533 CGF.Builder.CreateStore(NextVal, IndexVar); 534 535 // Finally, branch back up to the condition for the next iteration. 536 CGF.EmitBranch(CondBlock); 537 538 // Emit the fall-through block. 539 CGF.EmitBlock(AfterFor, true); 540 } 541 542 static void EmitMemberInitializer(CodeGenFunction &CGF, 543 const CXXRecordDecl *ClassDecl, 544 CXXCtorInitializer *MemberInit, 545 const CXXConstructorDecl *Constructor, 546 FunctionArgList &Args) { 547 assert(MemberInit->isAnyMemberInitializer() && 548 "Must have member initializer!"); 549 assert(MemberInit->getInit() && "Must have initializer!"); 550 551 // non-static data member initializers. 552 FieldDecl *Field = MemberInit->getAnyMember(); 553 QualType FieldType = Field->getType(); 554 555 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 556 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 557 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 558 559 if (MemberInit->isIndirectMemberInitializer()) { 560 // If we are initializing an anonymous union field, drill down to 561 // the field. 562 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 563 for (const auto *I : IndirectField->chain()) 564 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 565 FieldType = MemberInit->getIndirectMember()->getAnonField()->getType(); 566 } else { 567 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 568 } 569 570 // Special case: if we are in a copy or move constructor, and we are copying 571 // an array of PODs or classes with trivial copy constructors, ignore the 572 // AST and perform the copy we know is equivalent. 573 // FIXME: This is hacky at best... if we had a bit more explicit information 574 // in the AST, we could generalize it more easily. 575 const ConstantArrayType *Array 576 = CGF.getContext().getAsConstantArrayType(FieldType); 577 if (Array && Constructor->isDefaulted() && 578 Constructor->isCopyOrMoveConstructor()) { 579 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 580 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 581 if (BaseElementTy.isPODType(CGF.getContext()) || 582 (CE && CE->getConstructor()->isTrivial())) { 583 unsigned SrcArgIndex = 584 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 585 llvm::Value *SrcPtr 586 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 587 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 588 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 589 590 // Copy the aggregate. 591 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 592 LHS.isVolatileQualified()); 593 return; 594 } 595 } 596 597 ArrayRef<VarDecl *> ArrayIndexes; 598 if (MemberInit->getNumArrayIndices()) 599 ArrayIndexes = MemberInit->getArrayIndexes(); 600 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes); 601 } 602 603 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, 604 LValue LHS, Expr *Init, 605 ArrayRef<VarDecl *> ArrayIndexes) { 606 QualType FieldType = Field->getType(); 607 switch (getEvaluationKind(FieldType)) { 608 case TEK_Scalar: 609 if (LHS.isSimple()) { 610 EmitExprAsInit(Init, Field, LHS, false); 611 } else { 612 RValue RHS = RValue::get(EmitScalarExpr(Init)); 613 EmitStoreThroughLValue(RHS, LHS); 614 } 615 break; 616 case TEK_Complex: 617 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 618 break; 619 case TEK_Aggregate: { 620 llvm::Value *ArrayIndexVar = nullptr; 621 if (ArrayIndexes.size()) { 622 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 623 624 // The LHS is a pointer to the first object we'll be constructing, as 625 // a flat array. 626 QualType BaseElementTy = getContext().getBaseElementType(FieldType); 627 llvm::Type *BasePtr = ConvertType(BaseElementTy); 628 BasePtr = llvm::PointerType::getUnqual(BasePtr); 629 llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), 630 BasePtr); 631 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy); 632 633 // Create an array index that will be used to walk over all of the 634 // objects we're constructing. 635 ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index"); 636 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy); 637 Builder.CreateStore(Zero, ArrayIndexVar); 638 639 640 // Emit the block variables for the array indices, if any. 641 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I) 642 EmitAutoVarDecl(*ArrayIndexes[I]); 643 } 644 645 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType, 646 ArrayIndexes, 0); 647 } 648 } 649 650 // Ensure that we destroy this object if an exception is thrown 651 // later in the constructor. 652 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 653 if (needsEHCleanup(dtorKind)) 654 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 655 } 656 657 /// Checks whether the given constructor is a valid subject for the 658 /// complete-to-base constructor delegation optimization, i.e. 659 /// emitting the complete constructor as a simple call to the base 660 /// constructor. 661 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) { 662 663 // Currently we disable the optimization for classes with virtual 664 // bases because (1) the addresses of parameter variables need to be 665 // consistent across all initializers but (2) the delegate function 666 // call necessarily creates a second copy of the parameter variable. 667 // 668 // The limiting example (purely theoretical AFAIK): 669 // struct A { A(int &c) { c++; } }; 670 // struct B : virtual A { 671 // B(int count) : A(count) { printf("%d\n", count); } 672 // }; 673 // ...although even this example could in principle be emitted as a 674 // delegation since the address of the parameter doesn't escape. 675 if (Ctor->getParent()->getNumVBases()) { 676 // TODO: white-list trivial vbase initializers. This case wouldn't 677 // be subject to the restrictions below. 678 679 // TODO: white-list cases where: 680 // - there are no non-reference parameters to the constructor 681 // - the initializers don't access any non-reference parameters 682 // - the initializers don't take the address of non-reference 683 // parameters 684 // - etc. 685 // If we ever add any of the above cases, remember that: 686 // - function-try-blocks will always blacklist this optimization 687 // - we need to perform the constructor prologue and cleanup in 688 // EmitConstructorBody. 689 690 return false; 691 } 692 693 // We also disable the optimization for variadic functions because 694 // it's impossible to "re-pass" varargs. 695 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 696 return false; 697 698 // FIXME: Decide if we can do a delegation of a delegating constructor. 699 if (Ctor->isDelegatingConstructor()) 700 return false; 701 702 return true; 703 } 704 705 /// EmitConstructorBody - Emits the body of the current constructor. 706 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 707 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 708 CXXCtorType CtorType = CurGD.getCtorType(); 709 710 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 711 CtorType == Ctor_Complete) && 712 "can only generate complete ctor for this ABI"); 713 714 // Before we go any further, try the complete->base constructor 715 // delegation optimization. 716 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 717 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 718 if (CGDebugInfo *DI = getDebugInfo()) 719 DI->EmitLocation(Builder, Ctor->getLocEnd()); 720 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 721 return; 722 } 723 724 const FunctionDecl *Definition = 0; 725 Stmt *Body = Ctor->getBody(Definition); 726 assert(Definition == Ctor && "emitting wrong constructor body"); 727 728 // Enter the function-try-block before the constructor prologue if 729 // applicable. 730 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 731 if (IsTryBody) 732 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 733 734 RegionCounter Cnt = getPGORegionCounter(Body); 735 Cnt.beginRegion(Builder); 736 737 RunCleanupsScope RunCleanups(*this); 738 739 // TODO: in restricted cases, we can emit the vbase initializers of 740 // a complete ctor and then delegate to the base ctor. 741 742 // Emit the constructor prologue, i.e. the base and member 743 // initializers. 744 EmitCtorPrologue(Ctor, CtorType, Args); 745 746 // Emit the body of the statement. 747 if (IsTryBody) 748 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 749 else if (Body) 750 EmitStmt(Body); 751 752 // Emit any cleanup blocks associated with the member or base 753 // initializers, which includes (along the exceptional path) the 754 // destructors for those members and bases that were fully 755 // constructed. 756 RunCleanups.ForceCleanup(); 757 758 if (IsTryBody) 759 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 760 } 761 762 namespace { 763 /// RAII object to indicate that codegen is copying the value representation 764 /// instead of the object representation. Useful when copying a struct or 765 /// class which has uninitialized members and we're only performing 766 /// lvalue-to-rvalue conversion on the object but not its members. 767 class CopyingValueRepresentation { 768 public: 769 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 770 : CGF(CGF), SO(*CGF.SanOpts), OldSanOpts(CGF.SanOpts) { 771 SO.Bool = false; 772 SO.Enum = false; 773 CGF.SanOpts = &SO; 774 } 775 ~CopyingValueRepresentation() { 776 CGF.SanOpts = OldSanOpts; 777 } 778 private: 779 CodeGenFunction &CGF; 780 SanitizerOptions SO; 781 const SanitizerOptions *OldSanOpts; 782 }; 783 } 784 785 namespace { 786 class FieldMemcpyizer { 787 public: 788 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 789 const VarDecl *SrcRec) 790 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 791 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 792 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 793 LastFieldOffset(0), LastAddedFieldIndex(0) {} 794 795 static bool isMemcpyableField(FieldDecl *F) { 796 Qualifiers Qual = F->getType().getQualifiers(); 797 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 798 return false; 799 return true; 800 } 801 802 void addMemcpyableField(FieldDecl *F) { 803 if (!FirstField) 804 addInitialField(F); 805 else 806 addNextField(F); 807 } 808 809 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 810 unsigned LastFieldSize = 811 LastField->isBitField() ? 812 LastField->getBitWidthValue(CGF.getContext()) : 813 CGF.getContext().getTypeSize(LastField->getType()); 814 uint64_t MemcpySizeBits = 815 LastFieldOffset + LastFieldSize - FirstByteOffset + 816 CGF.getContext().getCharWidth() - 1; 817 CharUnits MemcpySize = 818 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 819 return MemcpySize; 820 } 821 822 void emitMemcpy() { 823 // Give the subclass a chance to bail out if it feels the memcpy isn't 824 // worth it (e.g. Hasn't aggregated enough data). 825 if (!FirstField) { 826 return; 827 } 828 829 CharUnits Alignment; 830 831 uint64_t FirstByteOffset; 832 if (FirstField->isBitField()) { 833 const CGRecordLayout &RL = 834 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 835 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 836 Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment); 837 // FirstFieldOffset is not appropriate for bitfields, 838 // it won't tell us what the storage offset should be and thus might not 839 // be properly aligned. 840 // 841 // Instead calculate the storage offset using the offset of the field in 842 // the struct type. 843 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 844 FirstByteOffset = 845 DL.getStructLayout(RL.getLLVMType()) 846 ->getElementOffsetInBits(RL.getLLVMFieldNo(FirstField)); 847 } else { 848 Alignment = CGF.getContext().getDeclAlign(FirstField); 849 FirstByteOffset = FirstFieldOffset; 850 } 851 852 assert((CGF.getContext().toCharUnitsFromBits(FirstByteOffset) % 853 Alignment) == 0 && "Bad field alignment."); 854 855 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 856 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 857 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 858 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 859 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 860 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 861 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 862 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 863 864 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(), 865 Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(), 866 MemcpySize, Alignment); 867 reset(); 868 } 869 870 void reset() { 871 FirstField = nullptr; 872 } 873 874 protected: 875 CodeGenFunction &CGF; 876 const CXXRecordDecl *ClassDecl; 877 878 private: 879 880 void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr, 881 CharUnits Size, CharUnits Alignment) { 882 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 883 llvm::Type *DBP = 884 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 885 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 886 887 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 888 llvm::Type *SBP = 889 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 890 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 891 892 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(), 893 Alignment.getQuantity()); 894 } 895 896 void addInitialField(FieldDecl *F) { 897 FirstField = F; 898 LastField = F; 899 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 900 LastFieldOffset = FirstFieldOffset; 901 LastAddedFieldIndex = F->getFieldIndex(); 902 return; 903 } 904 905 void addNextField(FieldDecl *F) { 906 // For the most part, the following invariant will hold: 907 // F->getFieldIndex() == LastAddedFieldIndex + 1 908 // The one exception is that Sema won't add a copy-initializer for an 909 // unnamed bitfield, which will show up here as a gap in the sequence. 910 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 911 "Cannot aggregate fields out of order."); 912 LastAddedFieldIndex = F->getFieldIndex(); 913 914 // The 'first' and 'last' fields are chosen by offset, rather than field 915 // index. This allows the code to support bitfields, as well as regular 916 // fields. 917 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 918 if (FOffset < FirstFieldOffset) { 919 FirstField = F; 920 FirstFieldOffset = FOffset; 921 } else if (FOffset > LastFieldOffset) { 922 LastField = F; 923 LastFieldOffset = FOffset; 924 } 925 } 926 927 const VarDecl *SrcRec; 928 const ASTRecordLayout &RecLayout; 929 FieldDecl *FirstField; 930 FieldDecl *LastField; 931 uint64_t FirstFieldOffset, LastFieldOffset; 932 unsigned LastAddedFieldIndex; 933 }; 934 935 class ConstructorMemcpyizer : public FieldMemcpyizer { 936 private: 937 938 /// Get source argument for copy constructor. Returns null if not a copy 939 /// constructor. 940 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 941 const CXXConstructorDecl *CD, 942 FunctionArgList &Args) { 943 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 944 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 945 return nullptr; 946 } 947 948 // Returns true if a CXXCtorInitializer represents a member initialization 949 // that can be rolled into a memcpy. 950 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 951 if (!MemcpyableCtor) 952 return false; 953 FieldDecl *Field = MemberInit->getMember(); 954 assert(Field && "No field for member init."); 955 QualType FieldType = Field->getType(); 956 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 957 958 // Bail out on non-POD, not-trivially-constructable members. 959 if (!(CE && CE->getConstructor()->isTrivial()) && 960 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 961 FieldType->isReferenceType())) 962 return false; 963 964 // Bail out on volatile fields. 965 if (!isMemcpyableField(Field)) 966 return false; 967 968 // Otherwise we're good. 969 return true; 970 } 971 972 public: 973 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 974 FunctionArgList &Args) 975 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 976 ConstructorDecl(CD), 977 MemcpyableCtor(CD->isDefaulted() && 978 CD->isCopyOrMoveConstructor() && 979 CGF.getLangOpts().getGC() == LangOptions::NonGC), 980 Args(Args) { } 981 982 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 983 if (isMemberInitMemcpyable(MemberInit)) { 984 AggregatedInits.push_back(MemberInit); 985 addMemcpyableField(MemberInit->getMember()); 986 } else { 987 emitAggregatedInits(); 988 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 989 ConstructorDecl, Args); 990 } 991 } 992 993 void emitAggregatedInits() { 994 if (AggregatedInits.size() <= 1) { 995 // This memcpy is too small to be worthwhile. Fall back on default 996 // codegen. 997 if (!AggregatedInits.empty()) { 998 CopyingValueRepresentation CVR(CGF); 999 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1000 AggregatedInits[0], ConstructorDecl, Args); 1001 } 1002 reset(); 1003 return; 1004 } 1005 1006 pushEHDestructors(); 1007 emitMemcpy(); 1008 AggregatedInits.clear(); 1009 } 1010 1011 void pushEHDestructors() { 1012 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 1013 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1014 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 1015 1016 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1017 QualType FieldType = AggregatedInits[i]->getMember()->getType(); 1018 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1019 if (CGF.needsEHCleanup(dtorKind)) 1020 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 1021 } 1022 } 1023 1024 void finish() { 1025 emitAggregatedInits(); 1026 } 1027 1028 private: 1029 const CXXConstructorDecl *ConstructorDecl; 1030 bool MemcpyableCtor; 1031 FunctionArgList &Args; 1032 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1033 }; 1034 1035 class AssignmentMemcpyizer : public FieldMemcpyizer { 1036 private: 1037 1038 // Returns the memcpyable field copied by the given statement, if one 1039 // exists. Otherwise returns null. 1040 FieldDecl *getMemcpyableField(Stmt *S) { 1041 if (!AssignmentsMemcpyable) 1042 return nullptr; 1043 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1044 // Recognise trivial assignments. 1045 if (BO->getOpcode() != BO_Assign) 1046 return nullptr; 1047 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1048 if (!ME) 1049 return nullptr; 1050 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1051 if (!Field || !isMemcpyableField(Field)) 1052 return nullptr; 1053 Stmt *RHS = BO->getRHS(); 1054 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1055 RHS = EC->getSubExpr(); 1056 if (!RHS) 1057 return nullptr; 1058 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS); 1059 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field) 1060 return nullptr; 1061 return Field; 1062 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1063 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1064 if (!(MD && (MD->isCopyAssignmentOperator() || 1065 MD->isMoveAssignmentOperator()) && 1066 MD->isTrivial())) 1067 return nullptr; 1068 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1069 if (!IOA) 1070 return nullptr; 1071 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1072 if (!Field || !isMemcpyableField(Field)) 1073 return nullptr; 1074 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1075 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1076 return nullptr; 1077 return Field; 1078 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1079 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1080 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1081 return nullptr; 1082 Expr *DstPtr = CE->getArg(0); 1083 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1084 DstPtr = DC->getSubExpr(); 1085 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1086 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1087 return nullptr; 1088 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1089 if (!ME) 1090 return nullptr; 1091 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1092 if (!Field || !isMemcpyableField(Field)) 1093 return nullptr; 1094 Expr *SrcPtr = CE->getArg(1); 1095 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1096 SrcPtr = SC->getSubExpr(); 1097 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1098 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1099 return nullptr; 1100 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1101 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1102 return nullptr; 1103 return Field; 1104 } 1105 1106 return nullptr; 1107 } 1108 1109 bool AssignmentsMemcpyable; 1110 SmallVector<Stmt*, 16> AggregatedStmts; 1111 1112 public: 1113 1114 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1115 FunctionArgList &Args) 1116 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1117 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1118 assert(Args.size() == 2); 1119 } 1120 1121 void emitAssignment(Stmt *S) { 1122 FieldDecl *F = getMemcpyableField(S); 1123 if (F) { 1124 addMemcpyableField(F); 1125 AggregatedStmts.push_back(S); 1126 } else { 1127 emitAggregatedStmts(); 1128 CGF.EmitStmt(S); 1129 } 1130 } 1131 1132 void emitAggregatedStmts() { 1133 if (AggregatedStmts.size() <= 1) { 1134 if (!AggregatedStmts.empty()) { 1135 CopyingValueRepresentation CVR(CGF); 1136 CGF.EmitStmt(AggregatedStmts[0]); 1137 } 1138 reset(); 1139 } 1140 1141 emitMemcpy(); 1142 AggregatedStmts.clear(); 1143 } 1144 1145 void finish() { 1146 emitAggregatedStmts(); 1147 } 1148 }; 1149 1150 } 1151 1152 /// EmitCtorPrologue - This routine generates necessary code to initialize 1153 /// base classes and non-static data members belonging to this constructor. 1154 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1155 CXXCtorType CtorType, 1156 FunctionArgList &Args) { 1157 if (CD->isDelegatingConstructor()) 1158 return EmitDelegatingCXXConstructorCall(CD, Args); 1159 1160 const CXXRecordDecl *ClassDecl = CD->getParent(); 1161 1162 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1163 E = CD->init_end(); 1164 1165 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1166 if (ClassDecl->getNumVBases() && 1167 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1168 // The ABIs that don't have constructor variants need to put a branch 1169 // before the virtual base initialization code. 1170 BaseCtorContinueBB = 1171 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1172 assert(BaseCtorContinueBB); 1173 } 1174 1175 // Virtual base initializers first. 1176 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1177 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1178 } 1179 1180 if (BaseCtorContinueBB) { 1181 // Complete object handler should continue to the remaining initializers. 1182 Builder.CreateBr(BaseCtorContinueBB); 1183 EmitBlock(BaseCtorContinueBB); 1184 } 1185 1186 // Then, non-virtual base initializers. 1187 for (; B != E && (*B)->isBaseInitializer(); B++) { 1188 assert(!(*B)->isBaseVirtual()); 1189 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1190 } 1191 1192 InitializeVTablePointers(ClassDecl); 1193 1194 // And finally, initialize class members. 1195 FieldConstructionScope FCS(*this, CXXThisValue); 1196 ConstructorMemcpyizer CM(*this, CD, Args); 1197 for (; B != E; B++) { 1198 CXXCtorInitializer *Member = (*B); 1199 assert(!Member->isBaseInitializer()); 1200 assert(Member->isAnyMemberInitializer() && 1201 "Delegating initializer on non-delegating constructor"); 1202 CM.addMemberInitializer(Member); 1203 } 1204 CM.finish(); 1205 } 1206 1207 static bool 1208 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1209 1210 static bool 1211 HasTrivialDestructorBody(ASTContext &Context, 1212 const CXXRecordDecl *BaseClassDecl, 1213 const CXXRecordDecl *MostDerivedClassDecl) 1214 { 1215 // If the destructor is trivial we don't have to check anything else. 1216 if (BaseClassDecl->hasTrivialDestructor()) 1217 return true; 1218 1219 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1220 return false; 1221 1222 // Check fields. 1223 for (const auto *Field : BaseClassDecl->fields()) 1224 if (!FieldHasTrivialDestructorBody(Context, Field)) 1225 return false; 1226 1227 // Check non-virtual bases. 1228 for (const auto &I : BaseClassDecl->bases()) { 1229 if (I.isVirtual()) 1230 continue; 1231 1232 const CXXRecordDecl *NonVirtualBase = 1233 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1234 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1235 MostDerivedClassDecl)) 1236 return false; 1237 } 1238 1239 if (BaseClassDecl == MostDerivedClassDecl) { 1240 // Check virtual bases. 1241 for (const auto &I : BaseClassDecl->vbases()) { 1242 const CXXRecordDecl *VirtualBase = 1243 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1244 if (!HasTrivialDestructorBody(Context, VirtualBase, 1245 MostDerivedClassDecl)) 1246 return false; 1247 } 1248 } 1249 1250 return true; 1251 } 1252 1253 static bool 1254 FieldHasTrivialDestructorBody(ASTContext &Context, 1255 const FieldDecl *Field) 1256 { 1257 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1258 1259 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1260 if (!RT) 1261 return true; 1262 1263 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1264 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1265 } 1266 1267 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1268 /// any vtable pointers before calling this destructor. 1269 static bool CanSkipVTablePointerInitialization(ASTContext &Context, 1270 const CXXDestructorDecl *Dtor) { 1271 if (!Dtor->hasTrivialBody()) 1272 return false; 1273 1274 // Check the fields. 1275 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1276 for (const auto *Field : ClassDecl->fields()) 1277 if (!FieldHasTrivialDestructorBody(Context, Field)) 1278 return false; 1279 1280 return true; 1281 } 1282 1283 /// EmitDestructorBody - Emits the body of the current destructor. 1284 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1285 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1286 CXXDtorType DtorType = CurGD.getDtorType(); 1287 1288 // The call to operator delete in a deleting destructor happens 1289 // outside of the function-try-block, which means it's always 1290 // possible to delegate the destructor body to the complete 1291 // destructor. Do so. 1292 if (DtorType == Dtor_Deleting) { 1293 EnterDtorCleanups(Dtor, Dtor_Deleting); 1294 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1295 /*Delegating=*/false, LoadCXXThis()); 1296 PopCleanupBlock(); 1297 return; 1298 } 1299 1300 Stmt *Body = Dtor->getBody(); 1301 1302 // If the body is a function-try-block, enter the try before 1303 // anything else. 1304 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1305 if (isTryBody) 1306 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1307 1308 // Enter the epilogue cleanups. 1309 RunCleanupsScope DtorEpilogue(*this); 1310 1311 // If this is the complete variant, just invoke the base variant; 1312 // the epilogue will destruct the virtual bases. But we can't do 1313 // this optimization if the body is a function-try-block, because 1314 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1315 // always delegate because we might not have a definition in this TU. 1316 switch (DtorType) { 1317 case Dtor_Comdat: 1318 llvm_unreachable("not expecting a COMDAT"); 1319 1320 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1321 1322 case Dtor_Complete: 1323 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1324 "can't emit a dtor without a body for non-Microsoft ABIs"); 1325 1326 // Enter the cleanup scopes for virtual bases. 1327 EnterDtorCleanups(Dtor, Dtor_Complete); 1328 1329 if (!isTryBody) { 1330 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1331 /*Delegating=*/false, LoadCXXThis()); 1332 break; 1333 } 1334 // Fallthrough: act like we're in the base variant. 1335 1336 case Dtor_Base: 1337 assert(Body); 1338 1339 RegionCounter Cnt = getPGORegionCounter(Body); 1340 Cnt.beginRegion(Builder); 1341 1342 // Enter the cleanup scopes for fields and non-virtual bases. 1343 EnterDtorCleanups(Dtor, Dtor_Base); 1344 1345 // Initialize the vtable pointers before entering the body. 1346 if (!CanSkipVTablePointerInitialization(getContext(), Dtor)) 1347 InitializeVTablePointers(Dtor->getParent()); 1348 1349 if (isTryBody) 1350 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1351 else if (Body) 1352 EmitStmt(Body); 1353 else { 1354 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1355 // nothing to do besides what's in the epilogue 1356 } 1357 // -fapple-kext must inline any call to this dtor into 1358 // the caller's body. 1359 if (getLangOpts().AppleKext) 1360 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1361 break; 1362 } 1363 1364 // Jump out through the epilogue cleanups. 1365 DtorEpilogue.ForceCleanup(); 1366 1367 // Exit the try if applicable. 1368 if (isTryBody) 1369 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1370 } 1371 1372 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1373 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1374 const Stmt *RootS = AssignOp->getBody(); 1375 assert(isa<CompoundStmt>(RootS) && 1376 "Body of an implicit assignment operator should be compound stmt."); 1377 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1378 1379 LexicalScope Scope(*this, RootCS->getSourceRange()); 1380 1381 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1382 for (auto *I : RootCS->body()) 1383 AM.emitAssignment(I); 1384 AM.finish(); 1385 } 1386 1387 namespace { 1388 /// Call the operator delete associated with the current destructor. 1389 struct CallDtorDelete : EHScopeStack::Cleanup { 1390 CallDtorDelete() {} 1391 1392 void Emit(CodeGenFunction &CGF, Flags flags) override { 1393 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1394 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1395 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1396 CGF.getContext().getTagDeclType(ClassDecl)); 1397 } 1398 }; 1399 1400 struct CallDtorDeleteConditional : EHScopeStack::Cleanup { 1401 llvm::Value *ShouldDeleteCondition; 1402 public: 1403 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1404 : ShouldDeleteCondition(ShouldDeleteCondition) { 1405 assert(ShouldDeleteCondition != nullptr); 1406 } 1407 1408 void Emit(CodeGenFunction &CGF, Flags flags) override { 1409 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1410 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1411 llvm::Value *ShouldCallDelete 1412 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1413 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1414 1415 CGF.EmitBlock(callDeleteBB); 1416 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1417 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1418 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1419 CGF.getContext().getTagDeclType(ClassDecl)); 1420 CGF.Builder.CreateBr(continueBB); 1421 1422 CGF.EmitBlock(continueBB); 1423 } 1424 }; 1425 1426 class DestroyField : public EHScopeStack::Cleanup { 1427 const FieldDecl *field; 1428 CodeGenFunction::Destroyer *destroyer; 1429 bool useEHCleanupForArray; 1430 1431 public: 1432 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1433 bool useEHCleanupForArray) 1434 : field(field), destroyer(destroyer), 1435 useEHCleanupForArray(useEHCleanupForArray) {} 1436 1437 void Emit(CodeGenFunction &CGF, Flags flags) override { 1438 // Find the address of the field. 1439 llvm::Value *thisValue = CGF.LoadCXXThis(); 1440 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1441 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1442 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1443 assert(LV.isSimple()); 1444 1445 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1446 flags.isForNormalCleanup() && useEHCleanupForArray); 1447 } 1448 }; 1449 } 1450 1451 /// \brief Emit all code that comes at the end of class's 1452 /// destructor. This is to call destructors on members and base classes 1453 /// in reverse order of their construction. 1454 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1455 CXXDtorType DtorType) { 1456 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1457 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1458 1459 // The deleting-destructor phase just needs to call the appropriate 1460 // operator delete that Sema picked up. 1461 if (DtorType == Dtor_Deleting) { 1462 assert(DD->getOperatorDelete() && 1463 "operator delete missing - EnterDtorCleanups"); 1464 if (CXXStructorImplicitParamValue) { 1465 // If there is an implicit param to the deleting dtor, it's a boolean 1466 // telling whether we should call delete at the end of the dtor. 1467 EHStack.pushCleanup<CallDtorDeleteConditional>( 1468 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1469 } else { 1470 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1471 } 1472 return; 1473 } 1474 1475 const CXXRecordDecl *ClassDecl = DD->getParent(); 1476 1477 // Unions have no bases and do not call field destructors. 1478 if (ClassDecl->isUnion()) 1479 return; 1480 1481 // The complete-destructor phase just destructs all the virtual bases. 1482 if (DtorType == Dtor_Complete) { 1483 1484 // We push them in the forward order so that they'll be popped in 1485 // the reverse order. 1486 for (const auto &Base : ClassDecl->vbases()) { 1487 CXXRecordDecl *BaseClassDecl 1488 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1489 1490 // Ignore trivial destructors. 1491 if (BaseClassDecl->hasTrivialDestructor()) 1492 continue; 1493 1494 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1495 BaseClassDecl, 1496 /*BaseIsVirtual*/ true); 1497 } 1498 1499 return; 1500 } 1501 1502 assert(DtorType == Dtor_Base); 1503 1504 // Destroy non-virtual bases. 1505 for (const auto &Base : ClassDecl->bases()) { 1506 // Ignore virtual bases. 1507 if (Base.isVirtual()) 1508 continue; 1509 1510 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1511 1512 // Ignore trivial destructors. 1513 if (BaseClassDecl->hasTrivialDestructor()) 1514 continue; 1515 1516 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1517 BaseClassDecl, 1518 /*BaseIsVirtual*/ false); 1519 } 1520 1521 // Destroy direct fields. 1522 for (const auto *Field : ClassDecl->fields()) { 1523 QualType type = Field->getType(); 1524 QualType::DestructionKind dtorKind = type.isDestructedType(); 1525 if (!dtorKind) continue; 1526 1527 // Anonymous union members do not have their destructors called. 1528 const RecordType *RT = type->getAsUnionType(); 1529 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1530 1531 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1532 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1533 getDestroyer(dtorKind), 1534 cleanupKind & EHCleanup); 1535 } 1536 } 1537 1538 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1539 /// constructor for each of several members of an array. 1540 /// 1541 /// \param ctor the constructor to call for each element 1542 /// \param arrayType the type of the array to initialize 1543 /// \param arrayBegin an arrayType* 1544 /// \param zeroInitialize true if each element should be 1545 /// zero-initialized before it is constructed 1546 void CodeGenFunction::EmitCXXAggrConstructorCall( 1547 const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType, 1548 llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1549 QualType elementType; 1550 llvm::Value *numElements = 1551 emitArrayLength(arrayType, elementType, arrayBegin); 1552 1553 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1554 } 1555 1556 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1557 /// constructor for each of several members of an array. 1558 /// 1559 /// \param ctor the constructor to call for each element 1560 /// \param numElements the number of elements in the array; 1561 /// may be zero 1562 /// \param arrayBegin a T*, where T is the type constructed by ctor 1563 /// \param zeroInitialize true if each element should be 1564 /// zero-initialized before it is constructed 1565 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1566 llvm::Value *numElements, 1567 llvm::Value *arrayBegin, 1568 const CXXConstructExpr *E, 1569 bool zeroInitialize) { 1570 1571 // It's legal for numElements to be zero. This can happen both 1572 // dynamically, because x can be zero in 'new A[x]', and statically, 1573 // because of GCC extensions that permit zero-length arrays. There 1574 // are probably legitimate places where we could assume that this 1575 // doesn't happen, but it's not clear that it's worth it. 1576 llvm::BranchInst *zeroCheckBranch = nullptr; 1577 1578 // Optimize for a constant count. 1579 llvm::ConstantInt *constantCount 1580 = dyn_cast<llvm::ConstantInt>(numElements); 1581 if (constantCount) { 1582 // Just skip out if the constant count is zero. 1583 if (constantCount->isZero()) return; 1584 1585 // Otherwise, emit the check. 1586 } else { 1587 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1588 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1589 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1590 EmitBlock(loopBB); 1591 } 1592 1593 // Find the end of the array. 1594 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1595 "arrayctor.end"); 1596 1597 // Enter the loop, setting up a phi for the current location to initialize. 1598 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1599 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1600 EmitBlock(loopBB); 1601 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1602 "arrayctor.cur"); 1603 cur->addIncoming(arrayBegin, entryBB); 1604 1605 // Inside the loop body, emit the constructor call on the array element. 1606 1607 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1608 1609 // Zero initialize the storage, if requested. 1610 if (zeroInitialize) 1611 EmitNullInitialization(cur, type); 1612 1613 // C++ [class.temporary]p4: 1614 // There are two contexts in which temporaries are destroyed at a different 1615 // point than the end of the full-expression. The first context is when a 1616 // default constructor is called to initialize an element of an array. 1617 // If the constructor has one or more default arguments, the destruction of 1618 // every temporary created in a default argument expression is sequenced 1619 // before the construction of the next array element, if any. 1620 1621 { 1622 RunCleanupsScope Scope(*this); 1623 1624 // Evaluate the constructor and its arguments in a regular 1625 // partial-destroy cleanup. 1626 if (getLangOpts().Exceptions && 1627 !ctor->getParent()->hasTrivialDestructor()) { 1628 Destroyer *destroyer = destroyCXXObject; 1629 pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer); 1630 } 1631 1632 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1633 /*Delegating=*/false, cur, E); 1634 } 1635 1636 // Go to the next element. 1637 llvm::Value *next = 1638 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1639 "arrayctor.next"); 1640 cur->addIncoming(next, Builder.GetInsertBlock()); 1641 1642 // Check whether that's the end of the loop. 1643 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1644 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1645 Builder.CreateCondBr(done, contBB, loopBB); 1646 1647 // Patch the earlier check to skip over the loop. 1648 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1649 1650 EmitBlock(contBB); 1651 } 1652 1653 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1654 llvm::Value *addr, 1655 QualType type) { 1656 const RecordType *rtype = type->castAs<RecordType>(); 1657 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1658 const CXXDestructorDecl *dtor = record->getDestructor(); 1659 assert(!dtor->isTrivial()); 1660 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1661 /*Delegating=*/false, addr); 1662 } 1663 1664 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1665 CXXCtorType Type, 1666 bool ForVirtualBase, 1667 bool Delegating, llvm::Value *This, 1668 const CXXConstructExpr *E) { 1669 // If this is a trivial constructor, just emit what's needed. 1670 if (D->isTrivial()) { 1671 if (E->getNumArgs() == 0) { 1672 // Trivial default constructor, no codegen required. 1673 assert(D->isDefaultConstructor() && 1674 "trivial 0-arg ctor not a default ctor"); 1675 return; 1676 } 1677 1678 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1679 assert(D->isCopyOrMoveConstructor() && 1680 "trivial 1-arg ctor not a copy/move ctor"); 1681 1682 const Expr *Arg = E->getArg(0); 1683 QualType Ty = Arg->getType(); 1684 llvm::Value *Src = EmitLValue(Arg).getAddress(); 1685 EmitAggregateCopy(This, Src, Ty); 1686 return; 1687 } 1688 1689 // C++11 [class.mfct.non-static]p2: 1690 // If a non-static member function of a class X is called for an object that 1691 // is not of type X, or of a type derived from X, the behavior is undefined. 1692 // FIXME: Provide a source location here. 1693 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This, 1694 getContext().getRecordType(D->getParent())); 1695 1696 CallArgList Args; 1697 1698 // Push the this ptr. 1699 Args.add(RValue::get(This), D->getThisType(getContext())); 1700 1701 // Add the rest of the user-supplied arguments. 1702 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1703 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor()); 1704 1705 // Insert any ABI-specific implicit constructor arguments. 1706 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs( 1707 *this, D, Type, ForVirtualBase, Delegating, Args); 1708 1709 // Emit the call. 1710 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 1711 const CGFunctionInfo &Info = 1712 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs); 1713 EmitCall(Info, Callee, ReturnValueSlot(), Args, D); 1714 } 1715 1716 void 1717 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1718 llvm::Value *This, llvm::Value *Src, 1719 const CXXConstructExpr *E) { 1720 if (D->isTrivial()) { 1721 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1722 assert(D->isCopyOrMoveConstructor() && 1723 "trivial 1-arg ctor not a copy/move ctor"); 1724 EmitAggregateCopy(This, Src, E->arg_begin()->getType()); 1725 return; 1726 } 1727 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete); 1728 assert(D->isInstance() && 1729 "Trying to emit a member call expr on a static method!"); 1730 1731 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1732 1733 CallArgList Args; 1734 1735 // Push the this ptr. 1736 Args.add(RValue::get(This), D->getThisType(getContext())); 1737 1738 // Push the src ptr. 1739 QualType QT = *(FPT->param_type_begin()); 1740 llvm::Type *t = CGM.getTypes().ConvertType(QT); 1741 Src = Builder.CreateBitCast(Src, t); 1742 Args.add(RValue::get(Src), QT); 1743 1744 // Skip over first argument (Src). 1745 EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(), 1746 /*ParamsToSkip*/ 1); 1747 1748 EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All), 1749 Callee, ReturnValueSlot(), Args, D); 1750 } 1751 1752 void 1753 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1754 CXXCtorType CtorType, 1755 const FunctionArgList &Args, 1756 SourceLocation Loc) { 1757 CallArgList DelegateArgs; 1758 1759 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 1760 assert(I != E && "no parameters to constructor"); 1761 1762 // this 1763 DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType()); 1764 ++I; 1765 1766 // vtt 1767 if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType), 1768 /*ForVirtualBase=*/false, 1769 /*Delegating=*/true)) { 1770 QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy); 1771 DelegateArgs.add(RValue::get(VTT), VoidPP); 1772 1773 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 1774 assert(I != E && "cannot skip vtt parameter, already done with args"); 1775 assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type"); 1776 ++I; 1777 } 1778 } 1779 1780 // Explicit arguments. 1781 for (; I != E; ++I) { 1782 const VarDecl *param = *I; 1783 // FIXME: per-argument source location 1784 EmitDelegateCallArg(DelegateArgs, param, Loc); 1785 } 1786 1787 llvm::Value *Callee = 1788 CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType)); 1789 EmitCall(CGM.getTypes() 1790 .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)), 1791 Callee, ReturnValueSlot(), DelegateArgs, Ctor); 1792 } 1793 1794 namespace { 1795 struct CallDelegatingCtorDtor : EHScopeStack::Cleanup { 1796 const CXXDestructorDecl *Dtor; 1797 llvm::Value *Addr; 1798 CXXDtorType Type; 1799 1800 CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr, 1801 CXXDtorType Type) 1802 : Dtor(D), Addr(Addr), Type(Type) {} 1803 1804 void Emit(CodeGenFunction &CGF, Flags flags) override { 1805 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 1806 /*Delegating=*/true, Addr); 1807 } 1808 }; 1809 } 1810 1811 void 1812 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1813 const FunctionArgList &Args) { 1814 assert(Ctor->isDelegatingConstructor()); 1815 1816 llvm::Value *ThisPtr = LoadCXXThis(); 1817 1818 QualType Ty = getContext().getTagDeclType(Ctor->getParent()); 1819 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1820 AggValueSlot AggSlot = 1821 AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(), 1822 AggValueSlot::IsDestructed, 1823 AggValueSlot::DoesNotNeedGCBarriers, 1824 AggValueSlot::IsNotAliased); 1825 1826 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 1827 1828 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 1829 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 1830 CXXDtorType Type = 1831 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 1832 1833 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 1834 ClassDecl->getDestructor(), 1835 ThisPtr, Type); 1836 } 1837 } 1838 1839 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 1840 CXXDtorType Type, 1841 bool ForVirtualBase, 1842 bool Delegating, 1843 llvm::Value *This) { 1844 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 1845 Delegating, This); 1846 } 1847 1848 namespace { 1849 struct CallLocalDtor : EHScopeStack::Cleanup { 1850 const CXXDestructorDecl *Dtor; 1851 llvm::Value *Addr; 1852 1853 CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr) 1854 : Dtor(D), Addr(Addr) {} 1855 1856 void Emit(CodeGenFunction &CGF, Flags flags) override { 1857 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1858 /*ForVirtualBase=*/false, 1859 /*Delegating=*/false, Addr); 1860 } 1861 }; 1862 } 1863 1864 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 1865 llvm::Value *Addr) { 1866 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 1867 } 1868 1869 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) { 1870 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 1871 if (!ClassDecl) return; 1872 if (ClassDecl->hasTrivialDestructor()) return; 1873 1874 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 1875 assert(D && D->isUsed() && "destructor not marked as used!"); 1876 PushDestructorCleanup(D, Addr); 1877 } 1878 1879 void 1880 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base, 1881 const CXXRecordDecl *NearestVBase, 1882 CharUnits OffsetFromNearestVBase, 1883 const CXXRecordDecl *VTableClass) { 1884 // Compute the address point. 1885 bool NeedsVirtualOffset; 1886 llvm::Value *VTableAddressPoint = 1887 CGM.getCXXABI().getVTableAddressPointInStructor( 1888 *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset); 1889 if (!VTableAddressPoint) 1890 return; 1891 1892 // Compute where to store the address point. 1893 llvm::Value *VirtualOffset = nullptr; 1894 CharUnits NonVirtualOffset = CharUnits::Zero(); 1895 1896 if (NeedsVirtualOffset) { 1897 // We need to use the virtual base offset offset because the virtual base 1898 // might have a different offset in the most derived class. 1899 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this, 1900 LoadCXXThis(), 1901 VTableClass, 1902 NearestVBase); 1903 NonVirtualOffset = OffsetFromNearestVBase; 1904 } else { 1905 // We can just use the base offset in the complete class. 1906 NonVirtualOffset = Base.getBaseOffset(); 1907 } 1908 1909 // Apply the offsets. 1910 llvm::Value *VTableField = LoadCXXThis(); 1911 1912 if (!NonVirtualOffset.isZero() || VirtualOffset) 1913 VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField, 1914 NonVirtualOffset, 1915 VirtualOffset); 1916 1917 // Finally, store the address point. 1918 llvm::Type *AddressPointPtrTy = 1919 VTableAddressPoint->getType()->getPointerTo(); 1920 VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy); 1921 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 1922 CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr()); 1923 } 1924 1925 void 1926 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base, 1927 const CXXRecordDecl *NearestVBase, 1928 CharUnits OffsetFromNearestVBase, 1929 bool BaseIsNonVirtualPrimaryBase, 1930 const CXXRecordDecl *VTableClass, 1931 VisitedVirtualBasesSetTy& VBases) { 1932 // If this base is a non-virtual primary base the address point has already 1933 // been set. 1934 if (!BaseIsNonVirtualPrimaryBase) { 1935 // Initialize the vtable pointer for this base. 1936 InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase, 1937 VTableClass); 1938 } 1939 1940 const CXXRecordDecl *RD = Base.getBase(); 1941 1942 // Traverse bases. 1943 for (const auto &I : RD->bases()) { 1944 CXXRecordDecl *BaseDecl 1945 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1946 1947 // Ignore classes without a vtable. 1948 if (!BaseDecl->isDynamicClass()) 1949 continue; 1950 1951 CharUnits BaseOffset; 1952 CharUnits BaseOffsetFromNearestVBase; 1953 bool BaseDeclIsNonVirtualPrimaryBase; 1954 1955 if (I.isVirtual()) { 1956 // Check if we've visited this virtual base before. 1957 if (!VBases.insert(BaseDecl)) 1958 continue; 1959 1960 const ASTRecordLayout &Layout = 1961 getContext().getASTRecordLayout(VTableClass); 1962 1963 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 1964 BaseOffsetFromNearestVBase = CharUnits::Zero(); 1965 BaseDeclIsNonVirtualPrimaryBase = false; 1966 } else { 1967 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1968 1969 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 1970 BaseOffsetFromNearestVBase = 1971 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 1972 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 1973 } 1974 1975 InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset), 1976 I.isVirtual() ? BaseDecl : NearestVBase, 1977 BaseOffsetFromNearestVBase, 1978 BaseDeclIsNonVirtualPrimaryBase, 1979 VTableClass, VBases); 1980 } 1981 } 1982 1983 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 1984 // Ignore classes without a vtable. 1985 if (!RD->isDynamicClass()) 1986 return; 1987 1988 // Initialize the vtable pointers for this class and all of its bases. 1989 VisitedVirtualBasesSetTy VBases; 1990 InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()), 1991 /*NearestVBase=*/nullptr, 1992 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 1993 /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases); 1994 1995 if (RD->getNumVBases()) 1996 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 1997 } 1998 1999 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This, 2000 llvm::Type *Ty) { 2001 llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo()); 2002 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2003 CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr()); 2004 return VTable; 2005 } 2006 2007 2008 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 2009 // quite what we want. 2010 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 2011 while (true) { 2012 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 2013 E = PE->getSubExpr(); 2014 continue; 2015 } 2016 2017 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 2018 if (CE->getCastKind() == CK_NoOp) { 2019 E = CE->getSubExpr(); 2020 continue; 2021 } 2022 } 2023 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 2024 if (UO->getOpcode() == UO_Extension) { 2025 E = UO->getSubExpr(); 2026 continue; 2027 } 2028 } 2029 return E; 2030 } 2031 } 2032 2033 bool 2034 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base, 2035 const CXXMethodDecl *MD) { 2036 // When building with -fapple-kext, all calls must go through the vtable since 2037 // the kernel linker can do runtime patching of vtables. 2038 if (getLangOpts().AppleKext) 2039 return false; 2040 2041 // If the most derived class is marked final, we know that no subclass can 2042 // override this member function and so we can devirtualize it. For example: 2043 // 2044 // struct A { virtual void f(); } 2045 // struct B final : A { }; 2046 // 2047 // void f(B *b) { 2048 // b->f(); 2049 // } 2050 // 2051 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 2052 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 2053 return true; 2054 2055 // If the member function is marked 'final', we know that it can't be 2056 // overridden and can therefore devirtualize it. 2057 if (MD->hasAttr<FinalAttr>()) 2058 return true; 2059 2060 // Similarly, if the class itself is marked 'final' it can't be overridden 2061 // and we can therefore devirtualize the member function call. 2062 if (MD->getParent()->hasAttr<FinalAttr>()) 2063 return true; 2064 2065 Base = skipNoOpCastsAndParens(Base); 2066 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 2067 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 2068 // This is a record decl. We know the type and can devirtualize it. 2069 return VD->getType()->isRecordType(); 2070 } 2071 2072 return false; 2073 } 2074 2075 // We can devirtualize calls on an object accessed by a class member access 2076 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2077 // a derived class object constructed in the same location. 2078 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 2079 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 2080 return VD->getType()->isRecordType(); 2081 2082 // We can always devirtualize calls on temporary object expressions. 2083 if (isa<CXXConstructExpr>(Base)) 2084 return true; 2085 2086 // And calls on bound temporaries. 2087 if (isa<CXXBindTemporaryExpr>(Base)) 2088 return true; 2089 2090 // Check if this is a call expr that returns a record type. 2091 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 2092 return CE->getCallReturnType()->isRecordType(); 2093 2094 // We can't devirtualize the call. 2095 return false; 2096 } 2097 2098 llvm::Value * 2099 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2100 const CXXMethodDecl *MD, 2101 llvm::Value *This) { 2102 llvm::FunctionType *fnType = 2103 CGM.getTypes().GetFunctionType( 2104 CGM.getTypes().arrangeCXXMethodDeclaration(MD)); 2105 2106 if (MD->isVirtual() && !CanDevirtualizeMemberFunctionCall(E->getArg(0), MD)) 2107 return CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, fnType); 2108 2109 return CGM.GetAddrOfFunction(MD, fnType); 2110 } 2111 2112 void CodeGenFunction::EmitForwardingCallToLambda( 2113 const CXXMethodDecl *callOperator, 2114 CallArgList &callArgs) { 2115 // Get the address of the call operator. 2116 const CGFunctionInfo &calleeFnInfo = 2117 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2118 llvm::Value *callee = 2119 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2120 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2121 2122 // Prepare the return slot. 2123 const FunctionProtoType *FPT = 2124 callOperator->getType()->castAs<FunctionProtoType>(); 2125 QualType resultType = FPT->getReturnType(); 2126 ReturnValueSlot returnSlot; 2127 if (!resultType->isVoidType() && 2128 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2129 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2130 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2131 2132 // We don't need to separately arrange the call arguments because 2133 // the call can't be variadic anyway --- it's impossible to forward 2134 // variadic arguments. 2135 2136 // Now emit our call. 2137 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, 2138 callArgs, callOperator); 2139 2140 // If necessary, copy the returned value into the slot. 2141 if (!resultType->isVoidType() && returnSlot.isNull()) 2142 EmitReturnOfRValue(RV, resultType); 2143 else 2144 EmitBranchThroughCleanup(ReturnBlock); 2145 } 2146 2147 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2148 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2149 const VarDecl *variable = BD->capture_begin()->getVariable(); 2150 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2151 2152 // Start building arguments for forwarding call 2153 CallArgList CallArgs; 2154 2155 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2156 llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false); 2157 CallArgs.add(RValue::get(ThisPtr), ThisType); 2158 2159 // Add the rest of the parameters. 2160 for (auto param : BD->params()) 2161 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2162 2163 assert(!Lambda->isGenericLambda() && 2164 "generic lambda interconversion to block not implemented"); 2165 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs); 2166 } 2167 2168 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 2169 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) { 2170 // FIXME: Making this work correctly is nasty because it requires either 2171 // cloning the body of the call operator or making the call operator forward. 2172 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2173 return; 2174 } 2175 2176 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody()); 2177 } 2178 2179 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2180 const CXXRecordDecl *Lambda = MD->getParent(); 2181 2182 // Start building arguments for forwarding call 2183 CallArgList CallArgs; 2184 2185 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2186 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2187 CallArgs.add(RValue::get(ThisPtr), ThisType); 2188 2189 // Add the rest of the parameters. 2190 for (auto Param : MD->params()) 2191 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2192 2193 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2194 // For a generic lambda, find the corresponding call operator specialization 2195 // to which the call to the static-invoker shall be forwarded. 2196 if (Lambda->isGenericLambda()) { 2197 assert(MD->isFunctionTemplateSpecialization()); 2198 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2199 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2200 void *InsertPos = nullptr; 2201 FunctionDecl *CorrespondingCallOpSpecialization = 2202 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2203 assert(CorrespondingCallOpSpecialization); 2204 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2205 } 2206 EmitForwardingCallToLambda(CallOp, CallArgs); 2207 } 2208 2209 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 2210 if (MD->isVariadic()) { 2211 // FIXME: Making this work correctly is nasty because it requires either 2212 // cloning the body of the call operator or making the call operator forward. 2213 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2214 return; 2215 } 2216 2217 EmitLambdaDelegatingInvokeBody(MD); 2218 } 2219