1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 LValueBaseInfo *BaseInfo, 133 TBAAAccessInfo *TBAAInfo) { 134 // Ask the ABI to compute the actual address. 135 llvm::Value *ptr = 136 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 137 memberPtr, memberPtrType); 138 139 QualType memberType = memberPtrType->getPointeeType(); 140 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo, 141 TBAAInfo); 142 memberAlign = 143 CGM.getDynamicOffsetAlignment(base.getAlignment(), 144 memberPtrType->getClass()->getAsCXXRecordDecl(), 145 memberAlign); 146 return Address(ptr, memberAlign); 147 } 148 149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 150 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 151 CastExpr::path_const_iterator End) { 152 CharUnits Offset = CharUnits::Zero(); 153 154 const ASTContext &Context = getContext(); 155 const CXXRecordDecl *RD = DerivedClass; 156 157 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 158 const CXXBaseSpecifier *Base = *I; 159 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 160 161 // Get the layout. 162 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 163 164 const CXXRecordDecl *BaseDecl = 165 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 166 167 // Add the offset. 168 Offset += Layout.getBaseClassOffset(BaseDecl); 169 170 RD = BaseDecl; 171 } 172 173 return Offset; 174 } 175 176 llvm::Constant * 177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 178 CastExpr::path_const_iterator PathBegin, 179 CastExpr::path_const_iterator PathEnd) { 180 assert(PathBegin != PathEnd && "Base path should not be empty!"); 181 182 CharUnits Offset = 183 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 184 if (Offset.isZero()) 185 return nullptr; 186 187 llvm::Type *PtrDiffTy = 188 Types.ConvertType(getContext().getPointerDiffType()); 189 190 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 191 } 192 193 /// Gets the address of a direct base class within a complete object. 194 /// This should only be used for (1) non-virtual bases or (2) virtual bases 195 /// when the type is known to be complete (e.g. in complete destructors). 196 /// 197 /// The object pointed to by 'This' is assumed to be non-null. 198 Address 199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 200 const CXXRecordDecl *Derived, 201 const CXXRecordDecl *Base, 202 bool BaseIsVirtual) { 203 // 'this' must be a pointer (in some address space) to Derived. 204 assert(This.getElementType() == ConvertType(Derived)); 205 206 // Compute the offset of the virtual base. 207 CharUnits Offset; 208 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 209 if (BaseIsVirtual) 210 Offset = Layout.getVBaseClassOffset(Base); 211 else 212 Offset = Layout.getBaseClassOffset(Base); 213 214 // Shift and cast down to the base type. 215 // TODO: for complete types, this should be possible with a GEP. 216 Address V = This; 217 if (!Offset.isZero()) { 218 V = Builder.CreateElementBitCast(V, Int8Ty); 219 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 220 } 221 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 222 223 return V; 224 } 225 226 static Address 227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 228 CharUnits nonVirtualOffset, 229 llvm::Value *virtualOffset, 230 const CXXRecordDecl *derivedClass, 231 const CXXRecordDecl *nearestVBase) { 232 // Assert that we have something to do. 233 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 234 235 // Compute the offset from the static and dynamic components. 236 llvm::Value *baseOffset; 237 if (!nonVirtualOffset.isZero()) { 238 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 239 nonVirtualOffset.getQuantity()); 240 if (virtualOffset) { 241 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 242 } 243 } else { 244 baseOffset = virtualOffset; 245 } 246 247 // Apply the base offset. 248 llvm::Value *ptr = addr.getPointer(); 249 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 250 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 251 252 // If we have a virtual component, the alignment of the result will 253 // be relative only to the known alignment of that vbase. 254 CharUnits alignment; 255 if (virtualOffset) { 256 assert(nearestVBase && "virtual offset without vbase?"); 257 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 258 derivedClass, nearestVBase); 259 } else { 260 alignment = addr.getAlignment(); 261 } 262 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 263 264 return Address(ptr, alignment); 265 } 266 267 Address CodeGenFunction::GetAddressOfBaseClass( 268 Address Value, const CXXRecordDecl *Derived, 269 CastExpr::path_const_iterator PathBegin, 270 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 271 SourceLocation Loc) { 272 assert(PathBegin != PathEnd && "Base path should not be empty!"); 273 274 CastExpr::path_const_iterator Start = PathBegin; 275 const CXXRecordDecl *VBase = nullptr; 276 277 // Sema has done some convenient canonicalization here: if the 278 // access path involved any virtual steps, the conversion path will 279 // *start* with a step down to the correct virtual base subobject, 280 // and hence will not require any further steps. 281 if ((*Start)->isVirtual()) { 282 VBase = 283 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 284 ++Start; 285 } 286 287 // Compute the static offset of the ultimate destination within its 288 // allocating subobject (the virtual base, if there is one, or else 289 // the "complete" object that we see). 290 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 291 VBase ? VBase : Derived, Start, PathEnd); 292 293 // If there's a virtual step, we can sometimes "devirtualize" it. 294 // For now, that's limited to when the derived type is final. 295 // TODO: "devirtualize" this for accesses to known-complete objects. 296 if (VBase && Derived->hasAttr<FinalAttr>()) { 297 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 298 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 299 NonVirtualOffset += vBaseOffset; 300 VBase = nullptr; // we no longer have a virtual step 301 } 302 303 // Get the base pointer type. 304 llvm::Type *BasePtrTy = 305 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 306 307 QualType DerivedTy = getContext().getRecordType(Derived); 308 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 309 310 // If the static offset is zero and we don't have a virtual step, 311 // just do a bitcast; null checks are unnecessary. 312 if (NonVirtualOffset.isZero() && !VBase) { 313 if (sanitizePerformTypeCheck()) { 314 SanitizerSet SkippedChecks; 315 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 316 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 317 DerivedTy, DerivedAlign, SkippedChecks); 318 } 319 return Builder.CreateBitCast(Value, BasePtrTy); 320 } 321 322 llvm::BasicBlock *origBB = nullptr; 323 llvm::BasicBlock *endBB = nullptr; 324 325 // Skip over the offset (and the vtable load) if we're supposed to 326 // null-check the pointer. 327 if (NullCheckValue) { 328 origBB = Builder.GetInsertBlock(); 329 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 330 endBB = createBasicBlock("cast.end"); 331 332 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 333 Builder.CreateCondBr(isNull, endBB, notNullBB); 334 EmitBlock(notNullBB); 335 } 336 337 if (sanitizePerformTypeCheck()) { 338 SanitizerSet SkippedChecks; 339 SkippedChecks.set(SanitizerKind::Null, true); 340 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 341 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 342 } 343 344 // Compute the virtual offset. 345 llvm::Value *VirtualOffset = nullptr; 346 if (VBase) { 347 VirtualOffset = 348 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 349 } 350 351 // Apply both offsets. 352 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 353 VirtualOffset, Derived, VBase); 354 355 // Cast to the destination type. 356 Value = Builder.CreateBitCast(Value, BasePtrTy); 357 358 // Build a phi if we needed a null check. 359 if (NullCheckValue) { 360 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 361 Builder.CreateBr(endBB); 362 EmitBlock(endBB); 363 364 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 365 PHI->addIncoming(Value.getPointer(), notNullBB); 366 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 367 Value = Address(PHI, Value.getAlignment()); 368 } 369 370 return Value; 371 } 372 373 Address 374 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 375 const CXXRecordDecl *Derived, 376 CastExpr::path_const_iterator PathBegin, 377 CastExpr::path_const_iterator PathEnd, 378 bool NullCheckValue) { 379 assert(PathBegin != PathEnd && "Base path should not be empty!"); 380 381 QualType DerivedTy = 382 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 383 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 384 385 llvm::Value *NonVirtualOffset = 386 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 387 388 if (!NonVirtualOffset) { 389 // No offset, we can just cast back. 390 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 391 } 392 393 llvm::BasicBlock *CastNull = nullptr; 394 llvm::BasicBlock *CastNotNull = nullptr; 395 llvm::BasicBlock *CastEnd = nullptr; 396 397 if (NullCheckValue) { 398 CastNull = createBasicBlock("cast.null"); 399 CastNotNull = createBasicBlock("cast.notnull"); 400 CastEnd = createBasicBlock("cast.end"); 401 402 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 403 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 404 EmitBlock(CastNotNull); 405 } 406 407 // Apply the offset. 408 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 409 Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset), 410 "sub.ptr"); 411 412 // Just cast. 413 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 414 415 // Produce a PHI if we had a null-check. 416 if (NullCheckValue) { 417 Builder.CreateBr(CastEnd); 418 EmitBlock(CastNull); 419 Builder.CreateBr(CastEnd); 420 EmitBlock(CastEnd); 421 422 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 423 PHI->addIncoming(Value, CastNotNull); 424 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 425 Value = PHI; 426 } 427 428 return Address(Value, CGM.getClassPointerAlignment(Derived)); 429 } 430 431 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 432 bool ForVirtualBase, 433 bool Delegating) { 434 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 435 // This constructor/destructor does not need a VTT parameter. 436 return nullptr; 437 } 438 439 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 440 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 441 442 llvm::Value *VTT; 443 444 uint64_t SubVTTIndex; 445 446 if (Delegating) { 447 // If this is a delegating constructor call, just load the VTT. 448 return LoadCXXVTT(); 449 } else if (RD == Base) { 450 // If the record matches the base, this is the complete ctor/dtor 451 // variant calling the base variant in a class with virtual bases. 452 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 453 "doing no-op VTT offset in base dtor/ctor?"); 454 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 455 SubVTTIndex = 0; 456 } else { 457 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 458 CharUnits BaseOffset = ForVirtualBase ? 459 Layout.getVBaseClassOffset(Base) : 460 Layout.getBaseClassOffset(Base); 461 462 SubVTTIndex = 463 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 464 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 465 } 466 467 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 468 // A VTT parameter was passed to the constructor, use it. 469 VTT = LoadCXXVTT(); 470 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 471 } else { 472 // We're the complete constructor, so get the VTT by name. 473 VTT = CGM.getVTables().GetAddrOfVTT(RD); 474 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 475 } 476 477 return VTT; 478 } 479 480 namespace { 481 /// Call the destructor for a direct base class. 482 struct CallBaseDtor final : EHScopeStack::Cleanup { 483 const CXXRecordDecl *BaseClass; 484 bool BaseIsVirtual; 485 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 486 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 487 488 void Emit(CodeGenFunction &CGF, Flags flags) override { 489 const CXXRecordDecl *DerivedClass = 490 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 491 492 const CXXDestructorDecl *D = BaseClass->getDestructor(); 493 Address Addr = 494 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 495 DerivedClass, BaseClass, 496 BaseIsVirtual); 497 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 498 /*Delegating=*/false, Addr); 499 } 500 }; 501 502 /// A visitor which checks whether an initializer uses 'this' in a 503 /// way which requires the vtable to be properly set. 504 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 505 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 506 507 bool UsesThis; 508 509 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 510 511 // Black-list all explicit and implicit references to 'this'. 512 // 513 // Do we need to worry about external references to 'this' derived 514 // from arbitrary code? If so, then anything which runs arbitrary 515 // external code might potentially access the vtable. 516 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 517 }; 518 } // end anonymous namespace 519 520 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 521 DynamicThisUseChecker Checker(C); 522 Checker.Visit(Init); 523 return Checker.UsesThis; 524 } 525 526 static void EmitBaseInitializer(CodeGenFunction &CGF, 527 const CXXRecordDecl *ClassDecl, 528 CXXCtorInitializer *BaseInit, 529 CXXCtorType CtorType) { 530 assert(BaseInit->isBaseInitializer() && 531 "Must have base initializer!"); 532 533 Address ThisPtr = CGF.LoadCXXThisAddress(); 534 535 const Type *BaseType = BaseInit->getBaseClass(); 536 CXXRecordDecl *BaseClassDecl = 537 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 538 539 bool isBaseVirtual = BaseInit->isBaseVirtual(); 540 541 // The base constructor doesn't construct virtual bases. 542 if (CtorType == Ctor_Base && isBaseVirtual) 543 return; 544 545 // If the initializer for the base (other than the constructor 546 // itself) accesses 'this' in any way, we need to initialize the 547 // vtables. 548 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 549 CGF.InitializeVTablePointers(ClassDecl); 550 551 // We can pretend to be a complete class because it only matters for 552 // virtual bases, and we only do virtual bases for complete ctors. 553 Address V = 554 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 555 BaseClassDecl, 556 isBaseVirtual); 557 AggValueSlot AggSlot = 558 AggValueSlot::forAddr( 559 V, Qualifiers(), 560 AggValueSlot::IsDestructed, 561 AggValueSlot::DoesNotNeedGCBarriers, 562 AggValueSlot::IsNotAliased, 563 CGF.overlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 564 565 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 566 567 if (CGF.CGM.getLangOpts().Exceptions && 568 !BaseClassDecl->hasTrivialDestructor()) 569 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 570 isBaseVirtual); 571 } 572 573 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 574 auto *CD = dyn_cast<CXXConstructorDecl>(D); 575 if (!(CD && CD->isCopyOrMoveConstructor()) && 576 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 577 return false; 578 579 // We can emit a memcpy for a trivial copy or move constructor/assignment. 580 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 581 return true; 582 583 // We *must* emit a memcpy for a defaulted union copy or move op. 584 if (D->getParent()->isUnion() && D->isDefaulted()) 585 return true; 586 587 return false; 588 } 589 590 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 591 CXXCtorInitializer *MemberInit, 592 LValue &LHS) { 593 FieldDecl *Field = MemberInit->getAnyMember(); 594 if (MemberInit->isIndirectMemberInitializer()) { 595 // If we are initializing an anonymous union field, drill down to the field. 596 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 597 for (const auto *I : IndirectField->chain()) 598 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 599 } else { 600 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 601 } 602 } 603 604 static void EmitMemberInitializer(CodeGenFunction &CGF, 605 const CXXRecordDecl *ClassDecl, 606 CXXCtorInitializer *MemberInit, 607 const CXXConstructorDecl *Constructor, 608 FunctionArgList &Args) { 609 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 610 assert(MemberInit->isAnyMemberInitializer() && 611 "Must have member initializer!"); 612 assert(MemberInit->getInit() && "Must have initializer!"); 613 614 // non-static data member initializers. 615 FieldDecl *Field = MemberInit->getAnyMember(); 616 QualType FieldType = Field->getType(); 617 618 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 619 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 620 LValue LHS; 621 622 // If a base constructor is being emitted, create an LValue that has the 623 // non-virtual alignment. 624 if (CGF.CurGD.getCtorType() == Ctor_Base) 625 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 626 else 627 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 628 629 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 630 631 // Special case: if we are in a copy or move constructor, and we are copying 632 // an array of PODs or classes with trivial copy constructors, ignore the 633 // AST and perform the copy we know is equivalent. 634 // FIXME: This is hacky at best... if we had a bit more explicit information 635 // in the AST, we could generalize it more easily. 636 const ConstantArrayType *Array 637 = CGF.getContext().getAsConstantArrayType(FieldType); 638 if (Array && Constructor->isDefaulted() && 639 Constructor->isCopyOrMoveConstructor()) { 640 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 641 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 642 if (BaseElementTy.isPODType(CGF.getContext()) || 643 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 644 unsigned SrcArgIndex = 645 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 646 llvm::Value *SrcPtr 647 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 648 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 649 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 650 651 // Copy the aggregate. 652 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.overlapForFieldInit(Field), 653 LHS.isVolatileQualified()); 654 // Ensure that we destroy the objects if an exception is thrown later in 655 // the constructor. 656 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 657 if (CGF.needsEHCleanup(dtorKind)) 658 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 659 return; 660 } 661 } 662 663 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 664 } 665 666 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 667 Expr *Init) { 668 QualType FieldType = Field->getType(); 669 switch (getEvaluationKind(FieldType)) { 670 case TEK_Scalar: 671 if (LHS.isSimple()) { 672 EmitExprAsInit(Init, Field, LHS, false); 673 } else { 674 RValue RHS = RValue::get(EmitScalarExpr(Init)); 675 EmitStoreThroughLValue(RHS, LHS); 676 } 677 break; 678 case TEK_Complex: 679 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 680 break; 681 case TEK_Aggregate: { 682 AggValueSlot Slot = 683 AggValueSlot::forLValue( 684 LHS, 685 AggValueSlot::IsDestructed, 686 AggValueSlot::DoesNotNeedGCBarriers, 687 AggValueSlot::IsNotAliased, 688 overlapForFieldInit(Field), 689 AggValueSlot::IsNotZeroed, 690 // Checks are made by the code that calls constructor. 691 AggValueSlot::IsSanitizerChecked); 692 EmitAggExpr(Init, Slot); 693 break; 694 } 695 } 696 697 // Ensure that we destroy this object if an exception is thrown 698 // later in the constructor. 699 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 700 if (needsEHCleanup(dtorKind)) 701 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 702 } 703 704 /// Checks whether the given constructor is a valid subject for the 705 /// complete-to-base constructor delegation optimization, i.e. 706 /// emitting the complete constructor as a simple call to the base 707 /// constructor. 708 bool CodeGenFunction::IsConstructorDelegationValid( 709 const CXXConstructorDecl *Ctor) { 710 711 // Currently we disable the optimization for classes with virtual 712 // bases because (1) the addresses of parameter variables need to be 713 // consistent across all initializers but (2) the delegate function 714 // call necessarily creates a second copy of the parameter variable. 715 // 716 // The limiting example (purely theoretical AFAIK): 717 // struct A { A(int &c) { c++; } }; 718 // struct B : virtual A { 719 // B(int count) : A(count) { printf("%d\n", count); } 720 // }; 721 // ...although even this example could in principle be emitted as a 722 // delegation since the address of the parameter doesn't escape. 723 if (Ctor->getParent()->getNumVBases()) { 724 // TODO: white-list trivial vbase initializers. This case wouldn't 725 // be subject to the restrictions below. 726 727 // TODO: white-list cases where: 728 // - there are no non-reference parameters to the constructor 729 // - the initializers don't access any non-reference parameters 730 // - the initializers don't take the address of non-reference 731 // parameters 732 // - etc. 733 // If we ever add any of the above cases, remember that: 734 // - function-try-blocks will always blacklist this optimization 735 // - we need to perform the constructor prologue and cleanup in 736 // EmitConstructorBody. 737 738 return false; 739 } 740 741 // We also disable the optimization for variadic functions because 742 // it's impossible to "re-pass" varargs. 743 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 744 return false; 745 746 // FIXME: Decide if we can do a delegation of a delegating constructor. 747 if (Ctor->isDelegatingConstructor()) 748 return false; 749 750 return true; 751 } 752 753 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 754 // to poison the extra field paddings inserted under 755 // -fsanitize-address-field-padding=1|2. 756 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 757 ASTContext &Context = getContext(); 758 const CXXRecordDecl *ClassDecl = 759 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 760 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 761 if (!ClassDecl->mayInsertExtraPadding()) return; 762 763 struct SizeAndOffset { 764 uint64_t Size; 765 uint64_t Offset; 766 }; 767 768 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 769 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 770 771 // Populate sizes and offsets of fields. 772 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 773 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 774 SSV[i].Offset = 775 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 776 777 size_t NumFields = 0; 778 for (const auto *Field : ClassDecl->fields()) { 779 const FieldDecl *D = Field; 780 std::pair<CharUnits, CharUnits> FieldInfo = 781 Context.getTypeInfoInChars(D->getType()); 782 CharUnits FieldSize = FieldInfo.first; 783 assert(NumFields < SSV.size()); 784 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 785 NumFields++; 786 } 787 assert(NumFields == SSV.size()); 788 if (SSV.size() <= 1) return; 789 790 // We will insert calls to __asan_* run-time functions. 791 // LLVM AddressSanitizer pass may decide to inline them later. 792 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 793 llvm::FunctionType *FTy = 794 llvm::FunctionType::get(CGM.VoidTy, Args, false); 795 llvm::Constant *F = CGM.CreateRuntimeFunction( 796 FTy, Prologue ? "__asan_poison_intra_object_redzone" 797 : "__asan_unpoison_intra_object_redzone"); 798 799 llvm::Value *ThisPtr = LoadCXXThis(); 800 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 801 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 802 // For each field check if it has sufficient padding, 803 // if so (un)poison it with a call. 804 for (size_t i = 0; i < SSV.size(); i++) { 805 uint64_t AsanAlignment = 8; 806 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 807 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 808 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 809 if (PoisonSize < AsanAlignment || !SSV[i].Size || 810 (NextField % AsanAlignment) != 0) 811 continue; 812 Builder.CreateCall( 813 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 814 Builder.getIntN(PtrSize, PoisonSize)}); 815 } 816 } 817 818 /// EmitConstructorBody - Emits the body of the current constructor. 819 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 820 EmitAsanPrologueOrEpilogue(true); 821 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 822 CXXCtorType CtorType = CurGD.getCtorType(); 823 824 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 825 CtorType == Ctor_Complete) && 826 "can only generate complete ctor for this ABI"); 827 828 // Before we go any further, try the complete->base constructor 829 // delegation optimization. 830 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 831 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 832 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 833 return; 834 } 835 836 const FunctionDecl *Definition = nullptr; 837 Stmt *Body = Ctor->getBody(Definition); 838 assert(Definition == Ctor && "emitting wrong constructor body"); 839 840 // Enter the function-try-block before the constructor prologue if 841 // applicable. 842 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 843 if (IsTryBody) 844 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 845 846 incrementProfileCounter(Body); 847 848 RunCleanupsScope RunCleanups(*this); 849 850 // TODO: in restricted cases, we can emit the vbase initializers of 851 // a complete ctor and then delegate to the base ctor. 852 853 // Emit the constructor prologue, i.e. the base and member 854 // initializers. 855 EmitCtorPrologue(Ctor, CtorType, Args); 856 857 // Emit the body of the statement. 858 if (IsTryBody) 859 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 860 else if (Body) 861 EmitStmt(Body); 862 863 // Emit any cleanup blocks associated with the member or base 864 // initializers, which includes (along the exceptional path) the 865 // destructors for those members and bases that were fully 866 // constructed. 867 RunCleanups.ForceCleanup(); 868 869 if (IsTryBody) 870 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 871 } 872 873 namespace { 874 /// RAII object to indicate that codegen is copying the value representation 875 /// instead of the object representation. Useful when copying a struct or 876 /// class which has uninitialized members and we're only performing 877 /// lvalue-to-rvalue conversion on the object but not its members. 878 class CopyingValueRepresentation { 879 public: 880 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 881 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 882 CGF.SanOpts.set(SanitizerKind::Bool, false); 883 CGF.SanOpts.set(SanitizerKind::Enum, false); 884 } 885 ~CopyingValueRepresentation() { 886 CGF.SanOpts = OldSanOpts; 887 } 888 private: 889 CodeGenFunction &CGF; 890 SanitizerSet OldSanOpts; 891 }; 892 } // end anonymous namespace 893 894 namespace { 895 class FieldMemcpyizer { 896 public: 897 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 898 const VarDecl *SrcRec) 899 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 900 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 901 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 902 LastFieldOffset(0), LastAddedFieldIndex(0) {} 903 904 bool isMemcpyableField(FieldDecl *F) const { 905 // Never memcpy fields when we are adding poisoned paddings. 906 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 907 return false; 908 Qualifiers Qual = F->getType().getQualifiers(); 909 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 910 return false; 911 return true; 912 } 913 914 void addMemcpyableField(FieldDecl *F) { 915 if (!FirstField) 916 addInitialField(F); 917 else 918 addNextField(F); 919 } 920 921 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 922 ASTContext &Ctx = CGF.getContext(); 923 unsigned LastFieldSize = 924 LastField->isBitField() 925 ? LastField->getBitWidthValue(Ctx) 926 : Ctx.toBits( 927 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first); 928 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 929 FirstByteOffset + Ctx.getCharWidth() - 1; 930 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 931 return MemcpySize; 932 } 933 934 void emitMemcpy() { 935 // Give the subclass a chance to bail out if it feels the memcpy isn't 936 // worth it (e.g. Hasn't aggregated enough data). 937 if (!FirstField) { 938 return; 939 } 940 941 uint64_t FirstByteOffset; 942 if (FirstField->isBitField()) { 943 const CGRecordLayout &RL = 944 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 945 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 946 // FirstFieldOffset is not appropriate for bitfields, 947 // we need to use the storage offset instead. 948 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 949 } else { 950 FirstByteOffset = FirstFieldOffset; 951 } 952 953 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 954 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 955 Address ThisPtr = CGF.LoadCXXThisAddress(); 956 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 957 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 958 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 959 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 960 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 961 962 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 963 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 964 MemcpySize); 965 reset(); 966 } 967 968 void reset() { 969 FirstField = nullptr; 970 } 971 972 protected: 973 CodeGenFunction &CGF; 974 const CXXRecordDecl *ClassDecl; 975 976 private: 977 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 978 llvm::PointerType *DPT = DestPtr.getType(); 979 llvm::Type *DBP = 980 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 981 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 982 983 llvm::PointerType *SPT = SrcPtr.getType(); 984 llvm::Type *SBP = 985 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 986 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 987 988 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 989 } 990 991 void addInitialField(FieldDecl *F) { 992 FirstField = F; 993 LastField = F; 994 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 995 LastFieldOffset = FirstFieldOffset; 996 LastAddedFieldIndex = F->getFieldIndex(); 997 } 998 999 void addNextField(FieldDecl *F) { 1000 // For the most part, the following invariant will hold: 1001 // F->getFieldIndex() == LastAddedFieldIndex + 1 1002 // The one exception is that Sema won't add a copy-initializer for an 1003 // unnamed bitfield, which will show up here as a gap in the sequence. 1004 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1005 "Cannot aggregate fields out of order."); 1006 LastAddedFieldIndex = F->getFieldIndex(); 1007 1008 // The 'first' and 'last' fields are chosen by offset, rather than field 1009 // index. This allows the code to support bitfields, as well as regular 1010 // fields. 1011 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1012 if (FOffset < FirstFieldOffset) { 1013 FirstField = F; 1014 FirstFieldOffset = FOffset; 1015 } else if (FOffset > LastFieldOffset) { 1016 LastField = F; 1017 LastFieldOffset = FOffset; 1018 } 1019 } 1020 1021 const VarDecl *SrcRec; 1022 const ASTRecordLayout &RecLayout; 1023 FieldDecl *FirstField; 1024 FieldDecl *LastField; 1025 uint64_t FirstFieldOffset, LastFieldOffset; 1026 unsigned LastAddedFieldIndex; 1027 }; 1028 1029 class ConstructorMemcpyizer : public FieldMemcpyizer { 1030 private: 1031 /// Get source argument for copy constructor. Returns null if not a copy 1032 /// constructor. 1033 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1034 const CXXConstructorDecl *CD, 1035 FunctionArgList &Args) { 1036 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1037 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1038 return nullptr; 1039 } 1040 1041 // Returns true if a CXXCtorInitializer represents a member initialization 1042 // that can be rolled into a memcpy. 1043 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1044 if (!MemcpyableCtor) 1045 return false; 1046 FieldDecl *Field = MemberInit->getMember(); 1047 assert(Field && "No field for member init."); 1048 QualType FieldType = Field->getType(); 1049 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1050 1051 // Bail out on non-memcpyable, not-trivially-copyable members. 1052 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1053 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1054 FieldType->isReferenceType())) 1055 return false; 1056 1057 // Bail out on volatile fields. 1058 if (!isMemcpyableField(Field)) 1059 return false; 1060 1061 // Otherwise we're good. 1062 return true; 1063 } 1064 1065 public: 1066 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1067 FunctionArgList &Args) 1068 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1069 ConstructorDecl(CD), 1070 MemcpyableCtor(CD->isDefaulted() && 1071 CD->isCopyOrMoveConstructor() && 1072 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1073 Args(Args) { } 1074 1075 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1076 if (isMemberInitMemcpyable(MemberInit)) { 1077 AggregatedInits.push_back(MemberInit); 1078 addMemcpyableField(MemberInit->getMember()); 1079 } else { 1080 emitAggregatedInits(); 1081 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1082 ConstructorDecl, Args); 1083 } 1084 } 1085 1086 void emitAggregatedInits() { 1087 if (AggregatedInits.size() <= 1) { 1088 // This memcpy is too small to be worthwhile. Fall back on default 1089 // codegen. 1090 if (!AggregatedInits.empty()) { 1091 CopyingValueRepresentation CVR(CGF); 1092 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1093 AggregatedInits[0], ConstructorDecl, Args); 1094 AggregatedInits.clear(); 1095 } 1096 reset(); 1097 return; 1098 } 1099 1100 pushEHDestructors(); 1101 emitMemcpy(); 1102 AggregatedInits.clear(); 1103 } 1104 1105 void pushEHDestructors() { 1106 Address ThisPtr = CGF.LoadCXXThisAddress(); 1107 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1108 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1109 1110 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1111 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1112 QualType FieldType = MemberInit->getAnyMember()->getType(); 1113 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1114 if (!CGF.needsEHCleanup(dtorKind)) 1115 continue; 1116 LValue FieldLHS = LHS; 1117 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1118 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1119 } 1120 } 1121 1122 void finish() { 1123 emitAggregatedInits(); 1124 } 1125 1126 private: 1127 const CXXConstructorDecl *ConstructorDecl; 1128 bool MemcpyableCtor; 1129 FunctionArgList &Args; 1130 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1131 }; 1132 1133 class AssignmentMemcpyizer : public FieldMemcpyizer { 1134 private: 1135 // Returns the memcpyable field copied by the given statement, if one 1136 // exists. Otherwise returns null. 1137 FieldDecl *getMemcpyableField(Stmt *S) { 1138 if (!AssignmentsMemcpyable) 1139 return nullptr; 1140 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1141 // Recognise trivial assignments. 1142 if (BO->getOpcode() != BO_Assign) 1143 return nullptr; 1144 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1145 if (!ME) 1146 return nullptr; 1147 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1148 if (!Field || !isMemcpyableField(Field)) 1149 return nullptr; 1150 Stmt *RHS = BO->getRHS(); 1151 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1152 RHS = EC->getSubExpr(); 1153 if (!RHS) 1154 return nullptr; 1155 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1156 if (ME2->getMemberDecl() == Field) 1157 return Field; 1158 } 1159 return nullptr; 1160 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1161 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1162 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1163 return nullptr; 1164 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1165 if (!IOA) 1166 return nullptr; 1167 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1168 if (!Field || !isMemcpyableField(Field)) 1169 return nullptr; 1170 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1171 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1172 return nullptr; 1173 return Field; 1174 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1175 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1176 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1177 return nullptr; 1178 Expr *DstPtr = CE->getArg(0); 1179 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1180 DstPtr = DC->getSubExpr(); 1181 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1182 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1183 return nullptr; 1184 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1185 if (!ME) 1186 return nullptr; 1187 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1188 if (!Field || !isMemcpyableField(Field)) 1189 return nullptr; 1190 Expr *SrcPtr = CE->getArg(1); 1191 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1192 SrcPtr = SC->getSubExpr(); 1193 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1194 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1195 return nullptr; 1196 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1197 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1198 return nullptr; 1199 return Field; 1200 } 1201 1202 return nullptr; 1203 } 1204 1205 bool AssignmentsMemcpyable; 1206 SmallVector<Stmt*, 16> AggregatedStmts; 1207 1208 public: 1209 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1210 FunctionArgList &Args) 1211 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1212 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1213 assert(Args.size() == 2); 1214 } 1215 1216 void emitAssignment(Stmt *S) { 1217 FieldDecl *F = getMemcpyableField(S); 1218 if (F) { 1219 addMemcpyableField(F); 1220 AggregatedStmts.push_back(S); 1221 } else { 1222 emitAggregatedStmts(); 1223 CGF.EmitStmt(S); 1224 } 1225 } 1226 1227 void emitAggregatedStmts() { 1228 if (AggregatedStmts.size() <= 1) { 1229 if (!AggregatedStmts.empty()) { 1230 CopyingValueRepresentation CVR(CGF); 1231 CGF.EmitStmt(AggregatedStmts[0]); 1232 } 1233 reset(); 1234 } 1235 1236 emitMemcpy(); 1237 AggregatedStmts.clear(); 1238 } 1239 1240 void finish() { 1241 emitAggregatedStmts(); 1242 } 1243 }; 1244 } // end anonymous namespace 1245 1246 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1247 const Type *BaseType = BaseInit->getBaseClass(); 1248 const auto *BaseClassDecl = 1249 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1250 return BaseClassDecl->isDynamicClass(); 1251 } 1252 1253 /// EmitCtorPrologue - This routine generates necessary code to initialize 1254 /// base classes and non-static data members belonging to this constructor. 1255 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1256 CXXCtorType CtorType, 1257 FunctionArgList &Args) { 1258 if (CD->isDelegatingConstructor()) 1259 return EmitDelegatingCXXConstructorCall(CD, Args); 1260 1261 const CXXRecordDecl *ClassDecl = CD->getParent(); 1262 1263 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1264 E = CD->init_end(); 1265 1266 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1267 if (ClassDecl->getNumVBases() && 1268 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1269 // The ABIs that don't have constructor variants need to put a branch 1270 // before the virtual base initialization code. 1271 BaseCtorContinueBB = 1272 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1273 assert(BaseCtorContinueBB); 1274 } 1275 1276 llvm::Value *const OldThis = CXXThisValue; 1277 // Virtual base initializers first. 1278 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1279 if (CGM.getCodeGenOpts().StrictVTablePointers && 1280 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1281 isInitializerOfDynamicClass(*B)) 1282 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1283 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1284 } 1285 1286 if (BaseCtorContinueBB) { 1287 // Complete object handler should continue to the remaining initializers. 1288 Builder.CreateBr(BaseCtorContinueBB); 1289 EmitBlock(BaseCtorContinueBB); 1290 } 1291 1292 // Then, non-virtual base initializers. 1293 for (; B != E && (*B)->isBaseInitializer(); B++) { 1294 assert(!(*B)->isBaseVirtual()); 1295 1296 if (CGM.getCodeGenOpts().StrictVTablePointers && 1297 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1298 isInitializerOfDynamicClass(*B)) 1299 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1300 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1301 } 1302 1303 CXXThisValue = OldThis; 1304 1305 InitializeVTablePointers(ClassDecl); 1306 1307 // And finally, initialize class members. 1308 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1309 ConstructorMemcpyizer CM(*this, CD, Args); 1310 for (; B != E; B++) { 1311 CXXCtorInitializer *Member = (*B); 1312 assert(!Member->isBaseInitializer()); 1313 assert(Member->isAnyMemberInitializer() && 1314 "Delegating initializer on non-delegating constructor"); 1315 CM.addMemberInitializer(Member); 1316 } 1317 CM.finish(); 1318 } 1319 1320 static bool 1321 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1322 1323 static bool 1324 HasTrivialDestructorBody(ASTContext &Context, 1325 const CXXRecordDecl *BaseClassDecl, 1326 const CXXRecordDecl *MostDerivedClassDecl) 1327 { 1328 // If the destructor is trivial we don't have to check anything else. 1329 if (BaseClassDecl->hasTrivialDestructor()) 1330 return true; 1331 1332 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1333 return false; 1334 1335 // Check fields. 1336 for (const auto *Field : BaseClassDecl->fields()) 1337 if (!FieldHasTrivialDestructorBody(Context, Field)) 1338 return false; 1339 1340 // Check non-virtual bases. 1341 for (const auto &I : BaseClassDecl->bases()) { 1342 if (I.isVirtual()) 1343 continue; 1344 1345 const CXXRecordDecl *NonVirtualBase = 1346 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1347 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1348 MostDerivedClassDecl)) 1349 return false; 1350 } 1351 1352 if (BaseClassDecl == MostDerivedClassDecl) { 1353 // Check virtual bases. 1354 for (const auto &I : BaseClassDecl->vbases()) { 1355 const CXXRecordDecl *VirtualBase = 1356 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1357 if (!HasTrivialDestructorBody(Context, VirtualBase, 1358 MostDerivedClassDecl)) 1359 return false; 1360 } 1361 } 1362 1363 return true; 1364 } 1365 1366 static bool 1367 FieldHasTrivialDestructorBody(ASTContext &Context, 1368 const FieldDecl *Field) 1369 { 1370 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1371 1372 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1373 if (!RT) 1374 return true; 1375 1376 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1377 1378 // The destructor for an implicit anonymous union member is never invoked. 1379 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1380 return false; 1381 1382 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1383 } 1384 1385 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1386 /// any vtable pointers before calling this destructor. 1387 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1388 const CXXDestructorDecl *Dtor) { 1389 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1390 if (!ClassDecl->isDynamicClass()) 1391 return true; 1392 1393 if (!Dtor->hasTrivialBody()) 1394 return false; 1395 1396 // Check the fields. 1397 for (const auto *Field : ClassDecl->fields()) 1398 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1399 return false; 1400 1401 return true; 1402 } 1403 1404 /// EmitDestructorBody - Emits the body of the current destructor. 1405 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1406 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1407 CXXDtorType DtorType = CurGD.getDtorType(); 1408 1409 // For an abstract class, non-base destructors are never used (and can't 1410 // be emitted in general, because vbase dtors may not have been validated 1411 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1412 // in fact emit references to them from other compilations, so emit them 1413 // as functions containing a trap instruction. 1414 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1415 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1416 TrapCall->setDoesNotReturn(); 1417 TrapCall->setDoesNotThrow(); 1418 Builder.CreateUnreachable(); 1419 Builder.ClearInsertionPoint(); 1420 return; 1421 } 1422 1423 Stmt *Body = Dtor->getBody(); 1424 if (Body) 1425 incrementProfileCounter(Body); 1426 1427 // The call to operator delete in a deleting destructor happens 1428 // outside of the function-try-block, which means it's always 1429 // possible to delegate the destructor body to the complete 1430 // destructor. Do so. 1431 if (DtorType == Dtor_Deleting) { 1432 RunCleanupsScope DtorEpilogue(*this); 1433 EnterDtorCleanups(Dtor, Dtor_Deleting); 1434 if (HaveInsertPoint()) 1435 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1436 /*Delegating=*/false, LoadCXXThisAddress()); 1437 return; 1438 } 1439 1440 // If the body is a function-try-block, enter the try before 1441 // anything else. 1442 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1443 if (isTryBody) 1444 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1445 EmitAsanPrologueOrEpilogue(false); 1446 1447 // Enter the epilogue cleanups. 1448 RunCleanupsScope DtorEpilogue(*this); 1449 1450 // If this is the complete variant, just invoke the base variant; 1451 // the epilogue will destruct the virtual bases. But we can't do 1452 // this optimization if the body is a function-try-block, because 1453 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1454 // always delegate because we might not have a definition in this TU. 1455 switch (DtorType) { 1456 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1457 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1458 1459 case Dtor_Complete: 1460 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1461 "can't emit a dtor without a body for non-Microsoft ABIs"); 1462 1463 // Enter the cleanup scopes for virtual bases. 1464 EnterDtorCleanups(Dtor, Dtor_Complete); 1465 1466 if (!isTryBody) { 1467 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1468 /*Delegating=*/false, LoadCXXThisAddress()); 1469 break; 1470 } 1471 1472 // Fallthrough: act like we're in the base variant. 1473 LLVM_FALLTHROUGH; 1474 1475 case Dtor_Base: 1476 assert(Body); 1477 1478 // Enter the cleanup scopes for fields and non-virtual bases. 1479 EnterDtorCleanups(Dtor, Dtor_Base); 1480 1481 // Initialize the vtable pointers before entering the body. 1482 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1483 // Insert the llvm.launder.invariant.group intrinsic before initializing 1484 // the vptrs to cancel any previous assumptions we might have made. 1485 if (CGM.getCodeGenOpts().StrictVTablePointers && 1486 CGM.getCodeGenOpts().OptimizationLevel > 0) 1487 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1488 InitializeVTablePointers(Dtor->getParent()); 1489 } 1490 1491 if (isTryBody) 1492 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1493 else if (Body) 1494 EmitStmt(Body); 1495 else { 1496 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1497 // nothing to do besides what's in the epilogue 1498 } 1499 // -fapple-kext must inline any call to this dtor into 1500 // the caller's body. 1501 if (getLangOpts().AppleKext) 1502 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1503 1504 break; 1505 } 1506 1507 // Jump out through the epilogue cleanups. 1508 DtorEpilogue.ForceCleanup(); 1509 1510 // Exit the try if applicable. 1511 if (isTryBody) 1512 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1513 } 1514 1515 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1516 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1517 const Stmt *RootS = AssignOp->getBody(); 1518 assert(isa<CompoundStmt>(RootS) && 1519 "Body of an implicit assignment operator should be compound stmt."); 1520 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1521 1522 LexicalScope Scope(*this, RootCS->getSourceRange()); 1523 1524 incrementProfileCounter(RootCS); 1525 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1526 for (auto *I : RootCS->body()) 1527 AM.emitAssignment(I); 1528 AM.finish(); 1529 } 1530 1531 namespace { 1532 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1533 const CXXDestructorDecl *DD) { 1534 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1535 return CGF.EmitScalarExpr(ThisArg); 1536 return CGF.LoadCXXThis(); 1537 } 1538 1539 /// Call the operator delete associated with the current destructor. 1540 struct CallDtorDelete final : EHScopeStack::Cleanup { 1541 CallDtorDelete() {} 1542 1543 void Emit(CodeGenFunction &CGF, Flags flags) override { 1544 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1545 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1546 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1547 LoadThisForDtorDelete(CGF, Dtor), 1548 CGF.getContext().getTagDeclType(ClassDecl)); 1549 } 1550 }; 1551 1552 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1553 llvm::Value *ShouldDeleteCondition, 1554 bool ReturnAfterDelete) { 1555 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1556 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1557 llvm::Value *ShouldCallDelete 1558 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1559 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1560 1561 CGF.EmitBlock(callDeleteBB); 1562 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1563 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1564 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1565 LoadThisForDtorDelete(CGF, Dtor), 1566 CGF.getContext().getTagDeclType(ClassDecl)); 1567 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1568 ReturnAfterDelete && 1569 "unexpected value for ReturnAfterDelete"); 1570 if (ReturnAfterDelete) 1571 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1572 else 1573 CGF.Builder.CreateBr(continueBB); 1574 1575 CGF.EmitBlock(continueBB); 1576 } 1577 1578 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1579 llvm::Value *ShouldDeleteCondition; 1580 1581 public: 1582 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1583 : ShouldDeleteCondition(ShouldDeleteCondition) { 1584 assert(ShouldDeleteCondition != nullptr); 1585 } 1586 1587 void Emit(CodeGenFunction &CGF, Flags flags) override { 1588 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1589 /*ReturnAfterDelete*/false); 1590 } 1591 }; 1592 1593 class DestroyField final : public EHScopeStack::Cleanup { 1594 const FieldDecl *field; 1595 CodeGenFunction::Destroyer *destroyer; 1596 bool useEHCleanupForArray; 1597 1598 public: 1599 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1600 bool useEHCleanupForArray) 1601 : field(field), destroyer(destroyer), 1602 useEHCleanupForArray(useEHCleanupForArray) {} 1603 1604 void Emit(CodeGenFunction &CGF, Flags flags) override { 1605 // Find the address of the field. 1606 Address thisValue = CGF.LoadCXXThisAddress(); 1607 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1608 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1609 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1610 assert(LV.isSimple()); 1611 1612 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1613 flags.isForNormalCleanup() && useEHCleanupForArray); 1614 } 1615 }; 1616 1617 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1618 CharUnits::QuantityType PoisonSize) { 1619 CodeGenFunction::SanitizerScope SanScope(&CGF); 1620 // Pass in void pointer and size of region as arguments to runtime 1621 // function 1622 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1623 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1624 1625 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1626 1627 llvm::FunctionType *FnType = 1628 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1629 llvm::Value *Fn = 1630 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1631 CGF.EmitNounwindRuntimeCall(Fn, Args); 1632 } 1633 1634 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1635 const CXXDestructorDecl *Dtor; 1636 1637 public: 1638 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1639 1640 // Generate function call for handling object poisoning. 1641 // Disables tail call elimination, to prevent the current stack frame 1642 // from disappearing from the stack trace. 1643 void Emit(CodeGenFunction &CGF, Flags flags) override { 1644 const ASTRecordLayout &Layout = 1645 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1646 1647 // Nothing to poison. 1648 if (Layout.getFieldCount() == 0) 1649 return; 1650 1651 // Prevent the current stack frame from disappearing from the stack trace. 1652 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1653 1654 // Construct pointer to region to begin poisoning, and calculate poison 1655 // size, so that only members declared in this class are poisoned. 1656 ASTContext &Context = CGF.getContext(); 1657 unsigned fieldIndex = 0; 1658 int startIndex = -1; 1659 // RecordDecl::field_iterator Field; 1660 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1661 // Poison field if it is trivial 1662 if (FieldHasTrivialDestructorBody(Context, Field)) { 1663 // Start sanitizing at this field 1664 if (startIndex < 0) 1665 startIndex = fieldIndex; 1666 1667 // Currently on the last field, and it must be poisoned with the 1668 // current block. 1669 if (fieldIndex == Layout.getFieldCount() - 1) { 1670 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1671 } 1672 } else if (startIndex >= 0) { 1673 // No longer within a block of memory to poison, so poison the block 1674 PoisonMembers(CGF, startIndex, fieldIndex); 1675 // Re-set the start index 1676 startIndex = -1; 1677 } 1678 fieldIndex += 1; 1679 } 1680 } 1681 1682 private: 1683 /// \param layoutStartOffset index of the ASTRecordLayout field to 1684 /// start poisoning (inclusive) 1685 /// \param layoutEndOffset index of the ASTRecordLayout field to 1686 /// end poisoning (exclusive) 1687 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1688 unsigned layoutEndOffset) { 1689 ASTContext &Context = CGF.getContext(); 1690 const ASTRecordLayout &Layout = 1691 Context.getASTRecordLayout(Dtor->getParent()); 1692 1693 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1694 CGF.SizeTy, 1695 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1696 .getQuantity()); 1697 1698 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1699 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1700 OffsetSizePtr); 1701 1702 CharUnits::QuantityType PoisonSize; 1703 if (layoutEndOffset >= Layout.getFieldCount()) { 1704 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1705 Context.toCharUnitsFromBits( 1706 Layout.getFieldOffset(layoutStartOffset)) 1707 .getQuantity(); 1708 } else { 1709 PoisonSize = Context.toCharUnitsFromBits( 1710 Layout.getFieldOffset(layoutEndOffset) - 1711 Layout.getFieldOffset(layoutStartOffset)) 1712 .getQuantity(); 1713 } 1714 1715 if (PoisonSize == 0) 1716 return; 1717 1718 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1719 } 1720 }; 1721 1722 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1723 const CXXDestructorDecl *Dtor; 1724 1725 public: 1726 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1727 1728 // Generate function call for handling vtable pointer poisoning. 1729 void Emit(CodeGenFunction &CGF, Flags flags) override { 1730 assert(Dtor->getParent()->isDynamicClass()); 1731 (void)Dtor; 1732 ASTContext &Context = CGF.getContext(); 1733 // Poison vtable and vtable ptr if they exist for this class. 1734 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1735 1736 CharUnits::QuantityType PoisonSize = 1737 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1738 // Pass in void pointer and size of region as arguments to runtime 1739 // function 1740 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1741 } 1742 }; 1743 } // end anonymous namespace 1744 1745 /// Emit all code that comes at the end of class's 1746 /// destructor. This is to call destructors on members and base classes 1747 /// in reverse order of their construction. 1748 /// 1749 /// For a deleting destructor, this also handles the case where a destroying 1750 /// operator delete completely overrides the definition. 1751 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1752 CXXDtorType DtorType) { 1753 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1754 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1755 1756 // The deleting-destructor phase just needs to call the appropriate 1757 // operator delete that Sema picked up. 1758 if (DtorType == Dtor_Deleting) { 1759 assert(DD->getOperatorDelete() && 1760 "operator delete missing - EnterDtorCleanups"); 1761 if (CXXStructorImplicitParamValue) { 1762 // If there is an implicit param to the deleting dtor, it's a boolean 1763 // telling whether this is a deleting destructor. 1764 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1765 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1766 /*ReturnAfterDelete*/true); 1767 else 1768 EHStack.pushCleanup<CallDtorDeleteConditional>( 1769 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1770 } else { 1771 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1772 const CXXRecordDecl *ClassDecl = DD->getParent(); 1773 EmitDeleteCall(DD->getOperatorDelete(), 1774 LoadThisForDtorDelete(*this, DD), 1775 getContext().getTagDeclType(ClassDecl)); 1776 EmitBranchThroughCleanup(ReturnBlock); 1777 } else { 1778 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1779 } 1780 } 1781 return; 1782 } 1783 1784 const CXXRecordDecl *ClassDecl = DD->getParent(); 1785 1786 // Unions have no bases and do not call field destructors. 1787 if (ClassDecl->isUnion()) 1788 return; 1789 1790 // The complete-destructor phase just destructs all the virtual bases. 1791 if (DtorType == Dtor_Complete) { 1792 // Poison the vtable pointer such that access after the base 1793 // and member destructors are invoked is invalid. 1794 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1795 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1796 ClassDecl->isPolymorphic()) 1797 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1798 1799 // We push them in the forward order so that they'll be popped in 1800 // the reverse order. 1801 for (const auto &Base : ClassDecl->vbases()) { 1802 CXXRecordDecl *BaseClassDecl 1803 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1804 1805 // Ignore trivial destructors. 1806 if (BaseClassDecl->hasTrivialDestructor()) 1807 continue; 1808 1809 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1810 BaseClassDecl, 1811 /*BaseIsVirtual*/ true); 1812 } 1813 1814 return; 1815 } 1816 1817 assert(DtorType == Dtor_Base); 1818 // Poison the vtable pointer if it has no virtual bases, but inherits 1819 // virtual functions. 1820 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1821 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1822 ClassDecl->isPolymorphic()) 1823 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1824 1825 // Destroy non-virtual bases. 1826 for (const auto &Base : ClassDecl->bases()) { 1827 // Ignore virtual bases. 1828 if (Base.isVirtual()) 1829 continue; 1830 1831 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1832 1833 // Ignore trivial destructors. 1834 if (BaseClassDecl->hasTrivialDestructor()) 1835 continue; 1836 1837 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1838 BaseClassDecl, 1839 /*BaseIsVirtual*/ false); 1840 } 1841 1842 // Poison fields such that access after their destructors are 1843 // invoked, and before the base class destructor runs, is invalid. 1844 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1845 SanOpts.has(SanitizerKind::Memory)) 1846 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1847 1848 // Destroy direct fields. 1849 for (const auto *Field : ClassDecl->fields()) { 1850 QualType type = Field->getType(); 1851 QualType::DestructionKind dtorKind = type.isDestructedType(); 1852 if (!dtorKind) continue; 1853 1854 // Anonymous union members do not have their destructors called. 1855 const RecordType *RT = type->getAsUnionType(); 1856 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1857 1858 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1859 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1860 getDestroyer(dtorKind), 1861 cleanupKind & EHCleanup); 1862 } 1863 } 1864 1865 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1866 /// constructor for each of several members of an array. 1867 /// 1868 /// \param ctor the constructor to call for each element 1869 /// \param arrayType the type of the array to initialize 1870 /// \param arrayBegin an arrayType* 1871 /// \param zeroInitialize true if each element should be 1872 /// zero-initialized before it is constructed 1873 void CodeGenFunction::EmitCXXAggrConstructorCall( 1874 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1875 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1876 bool zeroInitialize) { 1877 QualType elementType; 1878 llvm::Value *numElements = 1879 emitArrayLength(arrayType, elementType, arrayBegin); 1880 1881 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1882 NewPointerIsChecked, zeroInitialize); 1883 } 1884 1885 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1886 /// constructor for each of several members of an array. 1887 /// 1888 /// \param ctor the constructor to call for each element 1889 /// \param numElements the number of elements in the array; 1890 /// may be zero 1891 /// \param arrayBase a T*, where T is the type constructed by ctor 1892 /// \param zeroInitialize true if each element should be 1893 /// zero-initialized before it is constructed 1894 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1895 llvm::Value *numElements, 1896 Address arrayBase, 1897 const CXXConstructExpr *E, 1898 bool NewPointerIsChecked, 1899 bool zeroInitialize) { 1900 // It's legal for numElements to be zero. This can happen both 1901 // dynamically, because x can be zero in 'new A[x]', and statically, 1902 // because of GCC extensions that permit zero-length arrays. There 1903 // are probably legitimate places where we could assume that this 1904 // doesn't happen, but it's not clear that it's worth it. 1905 llvm::BranchInst *zeroCheckBranch = nullptr; 1906 1907 // Optimize for a constant count. 1908 llvm::ConstantInt *constantCount 1909 = dyn_cast<llvm::ConstantInt>(numElements); 1910 if (constantCount) { 1911 // Just skip out if the constant count is zero. 1912 if (constantCount->isZero()) return; 1913 1914 // Otherwise, emit the check. 1915 } else { 1916 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1917 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1918 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1919 EmitBlock(loopBB); 1920 } 1921 1922 // Find the end of the array. 1923 llvm::Value *arrayBegin = arrayBase.getPointer(); 1924 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1925 "arrayctor.end"); 1926 1927 // Enter the loop, setting up a phi for the current location to initialize. 1928 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1929 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1930 EmitBlock(loopBB); 1931 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1932 "arrayctor.cur"); 1933 cur->addIncoming(arrayBegin, entryBB); 1934 1935 // Inside the loop body, emit the constructor call on the array element. 1936 1937 // The alignment of the base, adjusted by the size of a single element, 1938 // provides a conservative estimate of the alignment of every element. 1939 // (This assumes we never start tracking offsetted alignments.) 1940 // 1941 // Note that these are complete objects and so we don't need to 1942 // use the non-virtual size or alignment. 1943 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1944 CharUnits eltAlignment = 1945 arrayBase.getAlignment() 1946 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1947 Address curAddr = Address(cur, eltAlignment); 1948 1949 // Zero initialize the storage, if requested. 1950 if (zeroInitialize) 1951 EmitNullInitialization(curAddr, type); 1952 1953 // C++ [class.temporary]p4: 1954 // There are two contexts in which temporaries are destroyed at a different 1955 // point than the end of the full-expression. The first context is when a 1956 // default constructor is called to initialize an element of an array. 1957 // If the constructor has one or more default arguments, the destruction of 1958 // every temporary created in a default argument expression is sequenced 1959 // before the construction of the next array element, if any. 1960 1961 { 1962 RunCleanupsScope Scope(*this); 1963 1964 // Evaluate the constructor and its arguments in a regular 1965 // partial-destroy cleanup. 1966 if (getLangOpts().Exceptions && 1967 !ctor->getParent()->hasTrivialDestructor()) { 1968 Destroyer *destroyer = destroyCXXObject; 1969 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1970 *destroyer); 1971 } 1972 1973 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1974 /*Delegating=*/false, curAddr, E, 1975 AggValueSlot::DoesNotOverlap, NewPointerIsChecked); 1976 } 1977 1978 // Go to the next element. 1979 llvm::Value *next = 1980 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1981 "arrayctor.next"); 1982 cur->addIncoming(next, Builder.GetInsertBlock()); 1983 1984 // Check whether that's the end of the loop. 1985 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1986 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1987 Builder.CreateCondBr(done, contBB, loopBB); 1988 1989 // Patch the earlier check to skip over the loop. 1990 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1991 1992 EmitBlock(contBB); 1993 } 1994 1995 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1996 Address addr, 1997 QualType type) { 1998 const RecordType *rtype = type->castAs<RecordType>(); 1999 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2000 const CXXDestructorDecl *dtor = record->getDestructor(); 2001 assert(!dtor->isTrivial()); 2002 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2003 /*Delegating=*/false, addr); 2004 } 2005 2006 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2007 CXXCtorType Type, 2008 bool ForVirtualBase, 2009 bool Delegating, Address This, 2010 const CXXConstructExpr *E, 2011 AggValueSlot::Overlap_t Overlap, 2012 bool NewPointerIsChecked) { 2013 CallArgList Args; 2014 2015 // Push the this ptr. 2016 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2017 2018 // If this is a trivial constructor, emit a memcpy now before we lose 2019 // the alignment information on the argument. 2020 // FIXME: It would be better to preserve alignment information into CallArg. 2021 if (isMemcpyEquivalentSpecialMember(D)) { 2022 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2023 2024 const Expr *Arg = E->getArg(0); 2025 LValue Src = EmitLValue(Arg); 2026 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2027 LValue Dest = MakeAddrLValue(This, DestTy); 2028 EmitAggregateCopyCtor(Dest, Src, Overlap); 2029 return; 2030 } 2031 2032 // Add the rest of the user-supplied arguments. 2033 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2034 EvaluationOrder Order = E->isListInitialization() 2035 ? EvaluationOrder::ForceLeftToRight 2036 : EvaluationOrder::Default; 2037 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2038 /*ParamsToSkip*/ 0, Order); 2039 2040 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2041 Overlap, E->getExprLoc(), NewPointerIsChecked); 2042 } 2043 2044 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2045 const CXXConstructorDecl *Ctor, 2046 CXXCtorType Type, CallArgList &Args) { 2047 // We can't forward a variadic call. 2048 if (Ctor->isVariadic()) 2049 return false; 2050 2051 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2052 // If the parameters are callee-cleanup, it's not safe to forward. 2053 for (auto *P : Ctor->parameters()) 2054 if (P->getType().isDestructedType()) 2055 return false; 2056 2057 // Likewise if they're inalloca. 2058 const CGFunctionInfo &Info = 2059 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2060 if (Info.usesInAlloca()) 2061 return false; 2062 } 2063 2064 // Anything else should be OK. 2065 return true; 2066 } 2067 2068 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2069 CXXCtorType Type, 2070 bool ForVirtualBase, 2071 bool Delegating, 2072 Address This, 2073 CallArgList &Args, 2074 AggValueSlot::Overlap_t Overlap, 2075 SourceLocation Loc, 2076 bool NewPointerIsChecked) { 2077 const CXXRecordDecl *ClassDecl = D->getParent(); 2078 2079 if (!NewPointerIsChecked) 2080 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2081 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2082 2083 if (D->isTrivial() && D->isDefaultConstructor()) { 2084 assert(Args.size() == 1 && "trivial default ctor with args"); 2085 return; 2086 } 2087 2088 // If this is a trivial constructor, just emit what's needed. If this is a 2089 // union copy constructor, we must emit a memcpy, because the AST does not 2090 // model that copy. 2091 if (isMemcpyEquivalentSpecialMember(D)) { 2092 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2093 2094 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2095 Address Src(Args[1].getRValue(*this).getScalarVal(), 2096 getNaturalTypeAlignment(SrcTy)); 2097 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2098 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2099 LValue DestLVal = MakeAddrLValue(This, DestTy); 2100 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2101 return; 2102 } 2103 2104 bool PassPrototypeArgs = true; 2105 // Check whether we can actually emit the constructor before trying to do so. 2106 if (auto Inherited = D->getInheritedConstructor()) { 2107 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2108 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2109 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2110 Delegating, Args); 2111 return; 2112 } 2113 } 2114 2115 // Insert any ABI-specific implicit constructor arguments. 2116 CGCXXABI::AddedStructorArgs ExtraArgs = 2117 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2118 Delegating, Args); 2119 2120 // Emit the call. 2121 llvm::Constant *CalleePtr = 2122 CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 2123 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2124 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2125 CGCallee Callee = CGCallee::forDirect(CalleePtr, D); 2126 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2127 2128 // Generate vtable assumptions if we're constructing a complete object 2129 // with a vtable. We don't do this for base subobjects for two reasons: 2130 // first, it's incorrect for classes with virtual bases, and second, we're 2131 // about to overwrite the vptrs anyway. 2132 // We also have to make sure if we can refer to vtable: 2133 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2134 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2135 // sure that definition of vtable is not hidden, 2136 // then we are always safe to refer to it. 2137 // FIXME: It looks like InstCombine is very inefficient on dealing with 2138 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2139 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2140 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2141 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2142 CGM.getCodeGenOpts().StrictVTablePointers) 2143 EmitVTableAssumptionLoads(ClassDecl, This); 2144 } 2145 2146 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2147 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2148 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2149 CallArgList Args; 2150 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext())); 2151 2152 // Forward the parameters. 2153 if (InheritedFromVBase && 2154 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2155 // Nothing to do; this construction is not responsible for constructing 2156 // the base class containing the inherited constructor. 2157 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2158 // have constructor variants? 2159 Args.push_back(ThisArg); 2160 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2161 // The inheriting constructor was inlined; just inject its arguments. 2162 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2163 "wrong number of parameters for inherited constructor call"); 2164 Args = CXXInheritedCtorInitExprArgs; 2165 Args[0] = ThisArg; 2166 } else { 2167 // The inheriting constructor was not inlined. Emit delegating arguments. 2168 Args.push_back(ThisArg); 2169 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2170 assert(OuterCtor->getNumParams() == D->getNumParams()); 2171 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2172 2173 for (const auto *Param : OuterCtor->parameters()) { 2174 assert(getContext().hasSameUnqualifiedType( 2175 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2176 Param->getType())); 2177 EmitDelegateCallArg(Args, Param, E->getLocation()); 2178 2179 // Forward __attribute__(pass_object_size). 2180 if (Param->hasAttr<PassObjectSizeAttr>()) { 2181 auto *POSParam = SizeArguments[Param]; 2182 assert(POSParam && "missing pass_object_size value for forwarding"); 2183 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2184 } 2185 } 2186 } 2187 2188 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2189 This, Args, AggValueSlot::MayOverlap, 2190 E->getLocation(), /*NewPointerIsChecked*/true); 2191 } 2192 2193 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2194 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2195 bool Delegating, CallArgList &Args) { 2196 GlobalDecl GD(Ctor, CtorType); 2197 InlinedInheritingConstructorScope Scope(*this, GD); 2198 ApplyInlineDebugLocation DebugScope(*this, GD); 2199 2200 // Save the arguments to be passed to the inherited constructor. 2201 CXXInheritedCtorInitExprArgs = Args; 2202 2203 FunctionArgList Params; 2204 QualType RetType = BuildFunctionArgList(CurGD, Params); 2205 FnRetTy = RetType; 2206 2207 // Insert any ABI-specific implicit constructor arguments. 2208 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2209 ForVirtualBase, Delegating, Args); 2210 2211 // Emit a simplified prolog. We only need to emit the implicit params. 2212 assert(Args.size() >= Params.size() && "too few arguments for call"); 2213 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2214 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2215 const RValue &RV = Args[I].getRValue(*this); 2216 assert(!RV.isComplex() && "complex indirect params not supported"); 2217 ParamValue Val = RV.isScalar() 2218 ? ParamValue::forDirect(RV.getScalarVal()) 2219 : ParamValue::forIndirect(RV.getAggregateAddress()); 2220 EmitParmDecl(*Params[I], Val, I + 1); 2221 } 2222 } 2223 2224 // Create a return value slot if the ABI implementation wants one. 2225 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2226 // value instead. 2227 if (!RetType->isVoidType()) 2228 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2229 2230 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2231 CXXThisValue = CXXABIThisValue; 2232 2233 // Directly emit the constructor initializers. 2234 EmitCtorPrologue(Ctor, CtorType, Params); 2235 } 2236 2237 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2238 llvm::Value *VTableGlobal = 2239 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2240 if (!VTableGlobal) 2241 return; 2242 2243 // We can just use the base offset in the complete class. 2244 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2245 2246 if (!NonVirtualOffset.isZero()) 2247 This = 2248 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2249 Vptr.VTableClass, Vptr.NearestVBase); 2250 2251 llvm::Value *VPtrValue = 2252 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2253 llvm::Value *Cmp = 2254 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2255 Builder.CreateAssumption(Cmp); 2256 } 2257 2258 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2259 Address This) { 2260 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2261 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2262 EmitVTableAssumptionLoad(Vptr, This); 2263 } 2264 2265 void 2266 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2267 Address This, Address Src, 2268 const CXXConstructExpr *E) { 2269 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2270 2271 CallArgList Args; 2272 2273 // Push the this ptr. 2274 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2275 2276 // Push the src ptr. 2277 QualType QT = *(FPT->param_type_begin()); 2278 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2279 Src = Builder.CreateBitCast(Src, t); 2280 Args.add(RValue::get(Src.getPointer()), QT); 2281 2282 // Skip over first argument (Src). 2283 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2284 /*ParamsToSkip*/ 1); 2285 2286 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2287 /*Delegating*/false, This, Args, 2288 AggValueSlot::MayOverlap, E->getExprLoc(), 2289 /*NewPointerIsChecked*/false); 2290 } 2291 2292 void 2293 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2294 CXXCtorType CtorType, 2295 const FunctionArgList &Args, 2296 SourceLocation Loc) { 2297 CallArgList DelegateArgs; 2298 2299 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2300 assert(I != E && "no parameters to constructor"); 2301 2302 // this 2303 Address This = LoadCXXThisAddress(); 2304 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2305 ++I; 2306 2307 // FIXME: The location of the VTT parameter in the parameter list is 2308 // specific to the Itanium ABI and shouldn't be hardcoded here. 2309 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2310 assert(I != E && "cannot skip vtt parameter, already done with args"); 2311 assert((*I)->getType()->isPointerType() && 2312 "skipping parameter not of vtt type"); 2313 ++I; 2314 } 2315 2316 // Explicit arguments. 2317 for (; I != E; ++I) { 2318 const VarDecl *param = *I; 2319 // FIXME: per-argument source location 2320 EmitDelegateCallArg(DelegateArgs, param, Loc); 2321 } 2322 2323 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2324 /*Delegating=*/true, This, DelegateArgs, 2325 AggValueSlot::MayOverlap, Loc, 2326 /*NewPointerIsChecked=*/true); 2327 } 2328 2329 namespace { 2330 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2331 const CXXDestructorDecl *Dtor; 2332 Address Addr; 2333 CXXDtorType Type; 2334 2335 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2336 CXXDtorType Type) 2337 : Dtor(D), Addr(Addr), Type(Type) {} 2338 2339 void Emit(CodeGenFunction &CGF, Flags flags) override { 2340 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2341 /*Delegating=*/true, Addr); 2342 } 2343 }; 2344 } // end anonymous namespace 2345 2346 void 2347 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2348 const FunctionArgList &Args) { 2349 assert(Ctor->isDelegatingConstructor()); 2350 2351 Address ThisPtr = LoadCXXThisAddress(); 2352 2353 AggValueSlot AggSlot = 2354 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2355 AggValueSlot::IsDestructed, 2356 AggValueSlot::DoesNotNeedGCBarriers, 2357 AggValueSlot::IsNotAliased, 2358 AggValueSlot::MayOverlap, 2359 AggValueSlot::IsNotZeroed, 2360 // Checks are made by the code that calls constructor. 2361 AggValueSlot::IsSanitizerChecked); 2362 2363 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2364 2365 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2366 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2367 CXXDtorType Type = 2368 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2369 2370 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2371 ClassDecl->getDestructor(), 2372 ThisPtr, Type); 2373 } 2374 } 2375 2376 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2377 CXXDtorType Type, 2378 bool ForVirtualBase, 2379 bool Delegating, 2380 Address This) { 2381 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2382 Delegating, This); 2383 } 2384 2385 namespace { 2386 struct CallLocalDtor final : EHScopeStack::Cleanup { 2387 const CXXDestructorDecl *Dtor; 2388 Address Addr; 2389 2390 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2391 : Dtor(D), Addr(Addr) {} 2392 2393 void Emit(CodeGenFunction &CGF, Flags flags) override { 2394 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2395 /*ForVirtualBase=*/false, 2396 /*Delegating=*/false, Addr); 2397 } 2398 }; 2399 } // end anonymous namespace 2400 2401 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2402 Address Addr) { 2403 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2404 } 2405 2406 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2407 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2408 if (!ClassDecl) return; 2409 if (ClassDecl->hasTrivialDestructor()) return; 2410 2411 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2412 assert(D && D->isUsed() && "destructor not marked as used!"); 2413 PushDestructorCleanup(D, Addr); 2414 } 2415 2416 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2417 // Compute the address point. 2418 llvm::Value *VTableAddressPoint = 2419 CGM.getCXXABI().getVTableAddressPointInStructor( 2420 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2421 2422 if (!VTableAddressPoint) 2423 return; 2424 2425 // Compute where to store the address point. 2426 llvm::Value *VirtualOffset = nullptr; 2427 CharUnits NonVirtualOffset = CharUnits::Zero(); 2428 2429 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2430 // We need to use the virtual base offset offset because the virtual base 2431 // might have a different offset in the most derived class. 2432 2433 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2434 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2435 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2436 } else { 2437 // We can just use the base offset in the complete class. 2438 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2439 } 2440 2441 // Apply the offsets. 2442 Address VTableField = LoadCXXThisAddress(); 2443 2444 if (!NonVirtualOffset.isZero() || VirtualOffset) 2445 VTableField = ApplyNonVirtualAndVirtualOffset( 2446 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2447 Vptr.NearestVBase); 2448 2449 // Finally, store the address point. Use the same LLVM types as the field to 2450 // support optimization. 2451 llvm::Type *VTablePtrTy = 2452 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2453 ->getPointerTo() 2454 ->getPointerTo(); 2455 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2456 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2457 2458 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2459 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2460 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2461 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2462 CGM.getCodeGenOpts().StrictVTablePointers) 2463 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2464 } 2465 2466 CodeGenFunction::VPtrsVector 2467 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2468 CodeGenFunction::VPtrsVector VPtrsResult; 2469 VisitedVirtualBasesSetTy VBases; 2470 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2471 /*NearestVBase=*/nullptr, 2472 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2473 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2474 VPtrsResult); 2475 return VPtrsResult; 2476 } 2477 2478 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2479 const CXXRecordDecl *NearestVBase, 2480 CharUnits OffsetFromNearestVBase, 2481 bool BaseIsNonVirtualPrimaryBase, 2482 const CXXRecordDecl *VTableClass, 2483 VisitedVirtualBasesSetTy &VBases, 2484 VPtrsVector &Vptrs) { 2485 // If this base is a non-virtual primary base the address point has already 2486 // been set. 2487 if (!BaseIsNonVirtualPrimaryBase) { 2488 // Initialize the vtable pointer for this base. 2489 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2490 Vptrs.push_back(Vptr); 2491 } 2492 2493 const CXXRecordDecl *RD = Base.getBase(); 2494 2495 // Traverse bases. 2496 for (const auto &I : RD->bases()) { 2497 CXXRecordDecl *BaseDecl 2498 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2499 2500 // Ignore classes without a vtable. 2501 if (!BaseDecl->isDynamicClass()) 2502 continue; 2503 2504 CharUnits BaseOffset; 2505 CharUnits BaseOffsetFromNearestVBase; 2506 bool BaseDeclIsNonVirtualPrimaryBase; 2507 2508 if (I.isVirtual()) { 2509 // Check if we've visited this virtual base before. 2510 if (!VBases.insert(BaseDecl).second) 2511 continue; 2512 2513 const ASTRecordLayout &Layout = 2514 getContext().getASTRecordLayout(VTableClass); 2515 2516 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2517 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2518 BaseDeclIsNonVirtualPrimaryBase = false; 2519 } else { 2520 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2521 2522 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2523 BaseOffsetFromNearestVBase = 2524 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2525 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2526 } 2527 2528 getVTablePointers( 2529 BaseSubobject(BaseDecl, BaseOffset), 2530 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2531 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2532 } 2533 } 2534 2535 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2536 // Ignore classes without a vtable. 2537 if (!RD->isDynamicClass()) 2538 return; 2539 2540 // Initialize the vtable pointers for this class and all of its bases. 2541 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2542 for (const VPtr &Vptr : getVTablePointers(RD)) 2543 InitializeVTablePointer(Vptr); 2544 2545 if (RD->getNumVBases()) 2546 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2547 } 2548 2549 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2550 llvm::Type *VTableTy, 2551 const CXXRecordDecl *RD) { 2552 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2553 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2554 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2555 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2556 2557 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2558 CGM.getCodeGenOpts().StrictVTablePointers) 2559 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2560 2561 return VTable; 2562 } 2563 2564 // If a class has a single non-virtual base and does not introduce or override 2565 // virtual member functions or fields, it will have the same layout as its base. 2566 // This function returns the least derived such class. 2567 // 2568 // Casting an instance of a base class to such a derived class is technically 2569 // undefined behavior, but it is a relatively common hack for introducing member 2570 // functions on class instances with specific properties (e.g. llvm::Operator) 2571 // that works under most compilers and should not have security implications, so 2572 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2573 static const CXXRecordDecl * 2574 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2575 if (!RD->field_empty()) 2576 return RD; 2577 2578 if (RD->getNumVBases() != 0) 2579 return RD; 2580 2581 if (RD->getNumBases() != 1) 2582 return RD; 2583 2584 for (const CXXMethodDecl *MD : RD->methods()) { 2585 if (MD->isVirtual()) { 2586 // Virtual member functions are only ok if they are implicit destructors 2587 // because the implicit destructor will have the same semantics as the 2588 // base class's destructor if no fields are added. 2589 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2590 continue; 2591 return RD; 2592 } 2593 } 2594 2595 return LeastDerivedClassWithSameLayout( 2596 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2597 } 2598 2599 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2600 llvm::Value *VTable, 2601 SourceLocation Loc) { 2602 if (SanOpts.has(SanitizerKind::CFIVCall)) 2603 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2604 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2605 CGM.HasHiddenLTOVisibility(RD)) { 2606 llvm::Metadata *MD = 2607 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2608 llvm::Value *TypeId = 2609 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2610 2611 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2612 llvm::Value *TypeTest = 2613 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2614 {CastedVTable, TypeId}); 2615 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2616 } 2617 } 2618 2619 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2620 llvm::Value *VTable, 2621 CFITypeCheckKind TCK, 2622 SourceLocation Loc) { 2623 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2624 RD = LeastDerivedClassWithSameLayout(RD); 2625 2626 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2627 } 2628 2629 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2630 llvm::Value *Derived, 2631 bool MayBeNull, 2632 CFITypeCheckKind TCK, 2633 SourceLocation Loc) { 2634 if (!getLangOpts().CPlusPlus) 2635 return; 2636 2637 auto *ClassTy = T->getAs<RecordType>(); 2638 if (!ClassTy) 2639 return; 2640 2641 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2642 2643 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2644 return; 2645 2646 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2647 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2648 2649 llvm::BasicBlock *ContBlock = nullptr; 2650 2651 if (MayBeNull) { 2652 llvm::Value *DerivedNotNull = 2653 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2654 2655 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2656 ContBlock = createBasicBlock("cast.cont"); 2657 2658 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2659 2660 EmitBlock(CheckBlock); 2661 } 2662 2663 llvm::Value *VTable; 2664 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2665 *this, Address(Derived, getPointerAlign()), ClassDecl); 2666 2667 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2668 2669 if (MayBeNull) { 2670 Builder.CreateBr(ContBlock); 2671 EmitBlock(ContBlock); 2672 } 2673 } 2674 2675 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2676 llvm::Value *VTable, 2677 CFITypeCheckKind TCK, 2678 SourceLocation Loc) { 2679 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2680 !CGM.HasHiddenLTOVisibility(RD)) 2681 return; 2682 2683 SanitizerMask M; 2684 llvm::SanitizerStatKind SSK; 2685 switch (TCK) { 2686 case CFITCK_VCall: 2687 M = SanitizerKind::CFIVCall; 2688 SSK = llvm::SanStat_CFI_VCall; 2689 break; 2690 case CFITCK_NVCall: 2691 M = SanitizerKind::CFINVCall; 2692 SSK = llvm::SanStat_CFI_NVCall; 2693 break; 2694 case CFITCK_DerivedCast: 2695 M = SanitizerKind::CFIDerivedCast; 2696 SSK = llvm::SanStat_CFI_DerivedCast; 2697 break; 2698 case CFITCK_UnrelatedCast: 2699 M = SanitizerKind::CFIUnrelatedCast; 2700 SSK = llvm::SanStat_CFI_UnrelatedCast; 2701 break; 2702 case CFITCK_ICall: 2703 case CFITCK_NVMFCall: 2704 case CFITCK_VMFCall: 2705 llvm_unreachable("unexpected sanitizer kind"); 2706 } 2707 2708 std::string TypeName = RD->getQualifiedNameAsString(); 2709 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2710 return; 2711 2712 SanitizerScope SanScope(this); 2713 EmitSanitizerStatReport(SSK); 2714 2715 llvm::Metadata *MD = 2716 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2717 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2718 2719 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2720 llvm::Value *TypeTest = Builder.CreateCall( 2721 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2722 2723 llvm::Constant *StaticData[] = { 2724 llvm::ConstantInt::get(Int8Ty, TCK), 2725 EmitCheckSourceLocation(Loc), 2726 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2727 }; 2728 2729 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2730 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2731 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2732 return; 2733 } 2734 2735 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2736 EmitTrapCheck(TypeTest); 2737 return; 2738 } 2739 2740 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2741 CGM.getLLVMContext(), 2742 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2743 llvm::Value *ValidVtable = Builder.CreateCall( 2744 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2745 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2746 StaticData, {CastedVTable, ValidVtable}); 2747 } 2748 2749 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2750 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2751 !SanOpts.has(SanitizerKind::CFIVCall) || 2752 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2753 !CGM.HasHiddenLTOVisibility(RD)) 2754 return false; 2755 2756 std::string TypeName = RD->getQualifiedNameAsString(); 2757 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2758 SanitizerKind::CFIVCall, TypeName); 2759 } 2760 2761 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2762 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2763 SanitizerScope SanScope(this); 2764 2765 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2766 2767 llvm::Metadata *MD = 2768 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2769 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2770 2771 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2772 llvm::Value *CheckedLoad = Builder.CreateCall( 2773 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2774 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2775 TypeId}); 2776 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2777 2778 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2779 SanitizerHandler::CFICheckFail, nullptr, nullptr); 2780 2781 return Builder.CreateBitCast( 2782 Builder.CreateExtractValue(CheckedLoad, 0), 2783 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2784 } 2785 2786 void CodeGenFunction::EmitForwardingCallToLambda( 2787 const CXXMethodDecl *callOperator, 2788 CallArgList &callArgs) { 2789 // Get the address of the call operator. 2790 const CGFunctionInfo &calleeFnInfo = 2791 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2792 llvm::Constant *calleePtr = 2793 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2794 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2795 2796 // Prepare the return slot. 2797 const FunctionProtoType *FPT = 2798 callOperator->getType()->castAs<FunctionProtoType>(); 2799 QualType resultType = FPT->getReturnType(); 2800 ReturnValueSlot returnSlot; 2801 if (!resultType->isVoidType() && 2802 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2803 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2804 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2805 2806 // We don't need to separately arrange the call arguments because 2807 // the call can't be variadic anyway --- it's impossible to forward 2808 // variadic arguments. 2809 2810 // Now emit our call. 2811 auto callee = CGCallee::forDirect(calleePtr, callOperator); 2812 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2813 2814 // If necessary, copy the returned value into the slot. 2815 if (!resultType->isVoidType() && returnSlot.isNull()) { 2816 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2817 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2818 } 2819 EmitReturnOfRValue(RV, resultType); 2820 } else 2821 EmitBranchThroughCleanup(ReturnBlock); 2822 } 2823 2824 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2825 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2826 const VarDecl *variable = BD->capture_begin()->getVariable(); 2827 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2828 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2829 2830 if (CallOp->isVariadic()) { 2831 // FIXME: Making this work correctly is nasty because it requires either 2832 // cloning the body of the call operator or making the call operator 2833 // forward. 2834 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2835 return; 2836 } 2837 2838 // Start building arguments for forwarding call 2839 CallArgList CallArgs; 2840 2841 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2842 Address ThisPtr = GetAddrOfBlockDecl(variable, false); 2843 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2844 2845 // Add the rest of the parameters. 2846 for (auto param : BD->parameters()) 2847 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2848 2849 assert(!Lambda->isGenericLambda() && 2850 "generic lambda interconversion to block not implemented"); 2851 EmitForwardingCallToLambda(CallOp, CallArgs); 2852 } 2853 2854 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2855 const CXXRecordDecl *Lambda = MD->getParent(); 2856 2857 // Start building arguments for forwarding call 2858 CallArgList CallArgs; 2859 2860 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2861 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2862 CallArgs.add(RValue::get(ThisPtr), ThisType); 2863 2864 // Add the rest of the parameters. 2865 for (auto Param : MD->parameters()) 2866 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 2867 2868 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2869 // For a generic lambda, find the corresponding call operator specialization 2870 // to which the call to the static-invoker shall be forwarded. 2871 if (Lambda->isGenericLambda()) { 2872 assert(MD->isFunctionTemplateSpecialization()); 2873 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2874 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2875 void *InsertPos = nullptr; 2876 FunctionDecl *CorrespondingCallOpSpecialization = 2877 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2878 assert(CorrespondingCallOpSpecialization); 2879 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2880 } 2881 EmitForwardingCallToLambda(CallOp, CallArgs); 2882 } 2883 2884 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2885 if (MD->isVariadic()) { 2886 // FIXME: Making this work correctly is nasty because it requires either 2887 // cloning the body of the call operator or making the call operator forward. 2888 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2889 return; 2890 } 2891 2892 EmitLambdaDelegatingInvokeBody(MD); 2893 } 2894