1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 33 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 34 CastExpr::path_const_iterator End) { 35 CharUnits Offset = CharUnits::Zero(); 36 37 const ASTContext &Context = getContext(); 38 const CXXRecordDecl *RD = DerivedClass; 39 40 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 41 const CXXBaseSpecifier *Base = *I; 42 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 43 44 // Get the layout. 45 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 46 47 const CXXRecordDecl *BaseDecl = 48 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 49 50 // Add the offset. 51 Offset += Layout.getBaseClassOffset(BaseDecl); 52 53 RD = BaseDecl; 54 } 55 56 return Offset; 57 } 58 59 llvm::Constant * 60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 61 CastExpr::path_const_iterator PathBegin, 62 CastExpr::path_const_iterator PathEnd) { 63 assert(PathBegin != PathEnd && "Base path should not be empty!"); 64 65 CharUnits Offset = 66 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 67 if (Offset.isZero()) 68 return nullptr; 69 70 llvm::Type *PtrDiffTy = 71 Types.ConvertType(getContext().getPointerDiffType()); 72 73 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 74 } 75 76 /// Gets the address of a direct base class within a complete object. 77 /// This should only be used for (1) non-virtual bases or (2) virtual bases 78 /// when the type is known to be complete (e.g. in complete destructors). 79 /// 80 /// The object pointed to by 'This' is assumed to be non-null. 81 llvm::Value * 82 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This, 83 const CXXRecordDecl *Derived, 84 const CXXRecordDecl *Base, 85 bool BaseIsVirtual) { 86 // 'this' must be a pointer (in some address space) to Derived. 87 assert(This->getType()->isPointerTy() && 88 cast<llvm::PointerType>(This->getType())->getElementType() 89 == ConvertType(Derived)); 90 91 // Compute the offset of the virtual base. 92 CharUnits Offset; 93 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 94 if (BaseIsVirtual) 95 Offset = Layout.getVBaseClassOffset(Base); 96 else 97 Offset = Layout.getBaseClassOffset(Base); 98 99 // Shift and cast down to the base type. 100 // TODO: for complete types, this should be possible with a GEP. 101 llvm::Value *V = This; 102 if (Offset.isPositive()) { 103 V = Builder.CreateBitCast(V, Int8PtrTy); 104 V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity()); 105 } 106 V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo()); 107 108 return V; 109 } 110 111 static llvm::Value * 112 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr, 113 CharUnits nonVirtualOffset, 114 llvm::Value *virtualOffset) { 115 // Assert that we have something to do. 116 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 117 118 // Compute the offset from the static and dynamic components. 119 llvm::Value *baseOffset; 120 if (!nonVirtualOffset.isZero()) { 121 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 122 nonVirtualOffset.getQuantity()); 123 if (virtualOffset) { 124 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 125 } 126 } else { 127 baseOffset = virtualOffset; 128 } 129 130 // Apply the base offset. 131 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 132 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 133 return ptr; 134 } 135 136 llvm::Value *CodeGenFunction::GetAddressOfBaseClass( 137 llvm::Value *Value, const CXXRecordDecl *Derived, 138 CastExpr::path_const_iterator PathBegin, 139 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 140 SourceLocation Loc) { 141 assert(PathBegin != PathEnd && "Base path should not be empty!"); 142 143 CastExpr::path_const_iterator Start = PathBegin; 144 const CXXRecordDecl *VBase = nullptr; 145 146 // Sema has done some convenient canonicalization here: if the 147 // access path involved any virtual steps, the conversion path will 148 // *start* with a step down to the correct virtual base subobject, 149 // and hence will not require any further steps. 150 if ((*Start)->isVirtual()) { 151 VBase = 152 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 153 ++Start; 154 } 155 156 // Compute the static offset of the ultimate destination within its 157 // allocating subobject (the virtual base, if there is one, or else 158 // the "complete" object that we see). 159 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 160 VBase ? VBase : Derived, Start, PathEnd); 161 162 // If there's a virtual step, we can sometimes "devirtualize" it. 163 // For now, that's limited to when the derived type is final. 164 // TODO: "devirtualize" this for accesses to known-complete objects. 165 if (VBase && Derived->hasAttr<FinalAttr>()) { 166 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 167 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 168 NonVirtualOffset += vBaseOffset; 169 VBase = nullptr; // we no longer have a virtual step 170 } 171 172 // Get the base pointer type. 173 llvm::Type *BasePtrTy = 174 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 175 176 QualType DerivedTy = getContext().getRecordType(Derived); 177 CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy); 178 179 // If the static offset is zero and we don't have a virtual step, 180 // just do a bitcast; null checks are unnecessary. 181 if (NonVirtualOffset.isZero() && !VBase) { 182 if (sanitizePerformTypeCheck()) { 183 EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign, 184 !NullCheckValue); 185 } 186 return Builder.CreateBitCast(Value, BasePtrTy); 187 } 188 189 llvm::BasicBlock *origBB = nullptr; 190 llvm::BasicBlock *endBB = nullptr; 191 192 // Skip over the offset (and the vtable load) if we're supposed to 193 // null-check the pointer. 194 if (NullCheckValue) { 195 origBB = Builder.GetInsertBlock(); 196 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 197 endBB = createBasicBlock("cast.end"); 198 199 llvm::Value *isNull = Builder.CreateIsNull(Value); 200 Builder.CreateCondBr(isNull, endBB, notNullBB); 201 EmitBlock(notNullBB); 202 } 203 204 if (sanitizePerformTypeCheck()) { 205 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value, 206 DerivedTy, DerivedAlign, true); 207 } 208 209 // Compute the virtual offset. 210 llvm::Value *VirtualOffset = nullptr; 211 if (VBase) { 212 VirtualOffset = 213 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 214 } 215 216 // Apply both offsets. 217 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, 218 NonVirtualOffset, 219 VirtualOffset); 220 221 // Cast to the destination type. 222 Value = Builder.CreateBitCast(Value, BasePtrTy); 223 224 // Build a phi if we needed a null check. 225 if (NullCheckValue) { 226 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 227 Builder.CreateBr(endBB); 228 EmitBlock(endBB); 229 230 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 231 PHI->addIncoming(Value, notNullBB); 232 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 233 Value = PHI; 234 } 235 236 return Value; 237 } 238 239 llvm::Value * 240 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value, 241 const CXXRecordDecl *Derived, 242 CastExpr::path_const_iterator PathBegin, 243 CastExpr::path_const_iterator PathEnd, 244 bool NullCheckValue) { 245 assert(PathBegin != PathEnd && "Base path should not be empty!"); 246 247 QualType DerivedTy = 248 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 249 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 250 251 llvm::Value *NonVirtualOffset = 252 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 253 254 if (!NonVirtualOffset) { 255 // No offset, we can just cast back. 256 return Builder.CreateBitCast(Value, DerivedPtrTy); 257 } 258 259 llvm::BasicBlock *CastNull = nullptr; 260 llvm::BasicBlock *CastNotNull = nullptr; 261 llvm::BasicBlock *CastEnd = nullptr; 262 263 if (NullCheckValue) { 264 CastNull = createBasicBlock("cast.null"); 265 CastNotNull = createBasicBlock("cast.notnull"); 266 CastEnd = createBasicBlock("cast.end"); 267 268 llvm::Value *IsNull = Builder.CreateIsNull(Value); 269 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 270 EmitBlock(CastNotNull); 271 } 272 273 // Apply the offset. 274 Value = Builder.CreateBitCast(Value, Int8PtrTy); 275 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 276 "sub.ptr"); 277 278 // Just cast. 279 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 280 281 if (NullCheckValue) { 282 Builder.CreateBr(CastEnd); 283 EmitBlock(CastNull); 284 Builder.CreateBr(CastEnd); 285 EmitBlock(CastEnd); 286 287 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 288 PHI->addIncoming(Value, CastNotNull); 289 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), 290 CastNull); 291 Value = PHI; 292 } 293 294 return Value; 295 } 296 297 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 298 bool ForVirtualBase, 299 bool Delegating) { 300 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 301 // This constructor/destructor does not need a VTT parameter. 302 return nullptr; 303 } 304 305 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 306 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 307 308 llvm::Value *VTT; 309 310 uint64_t SubVTTIndex; 311 312 if (Delegating) { 313 // If this is a delegating constructor call, just load the VTT. 314 return LoadCXXVTT(); 315 } else if (RD == Base) { 316 // If the record matches the base, this is the complete ctor/dtor 317 // variant calling the base variant in a class with virtual bases. 318 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 319 "doing no-op VTT offset in base dtor/ctor?"); 320 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 321 SubVTTIndex = 0; 322 } else { 323 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 324 CharUnits BaseOffset = ForVirtualBase ? 325 Layout.getVBaseClassOffset(Base) : 326 Layout.getBaseClassOffset(Base); 327 328 SubVTTIndex = 329 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 330 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 331 } 332 333 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 334 // A VTT parameter was passed to the constructor, use it. 335 VTT = LoadCXXVTT(); 336 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 337 } else { 338 // We're the complete constructor, so get the VTT by name. 339 VTT = CGM.getVTables().GetAddrOfVTT(RD); 340 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 341 } 342 343 return VTT; 344 } 345 346 namespace { 347 /// Call the destructor for a direct base class. 348 struct CallBaseDtor : EHScopeStack::Cleanup { 349 const CXXRecordDecl *BaseClass; 350 bool BaseIsVirtual; 351 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 352 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 353 354 void Emit(CodeGenFunction &CGF, Flags flags) override { 355 const CXXRecordDecl *DerivedClass = 356 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 357 358 const CXXDestructorDecl *D = BaseClass->getDestructor(); 359 llvm::Value *Addr = 360 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(), 361 DerivedClass, BaseClass, 362 BaseIsVirtual); 363 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 364 /*Delegating=*/false, Addr); 365 } 366 }; 367 368 /// A visitor which checks whether an initializer uses 'this' in a 369 /// way which requires the vtable to be properly set. 370 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 371 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 372 373 bool UsesThis; 374 375 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 376 377 // Black-list all explicit and implicit references to 'this'. 378 // 379 // Do we need to worry about external references to 'this' derived 380 // from arbitrary code? If so, then anything which runs arbitrary 381 // external code might potentially access the vtable. 382 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 383 }; 384 } 385 386 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 387 DynamicThisUseChecker Checker(C); 388 Checker.Visit(Init); 389 return Checker.UsesThis; 390 } 391 392 static void EmitBaseInitializer(CodeGenFunction &CGF, 393 const CXXRecordDecl *ClassDecl, 394 CXXCtorInitializer *BaseInit, 395 CXXCtorType CtorType) { 396 assert(BaseInit->isBaseInitializer() && 397 "Must have base initializer!"); 398 399 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 400 401 const Type *BaseType = BaseInit->getBaseClass(); 402 CXXRecordDecl *BaseClassDecl = 403 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 404 405 bool isBaseVirtual = BaseInit->isBaseVirtual(); 406 407 // The base constructor doesn't construct virtual bases. 408 if (CtorType == Ctor_Base && isBaseVirtual) 409 return; 410 411 // If the initializer for the base (other than the constructor 412 // itself) accesses 'this' in any way, we need to initialize the 413 // vtables. 414 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 415 CGF.InitializeVTablePointers(ClassDecl); 416 417 // We can pretend to be a complete class because it only matters for 418 // virtual bases, and we only do virtual bases for complete ctors. 419 llvm::Value *V = 420 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 421 BaseClassDecl, 422 isBaseVirtual); 423 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType); 424 AggValueSlot AggSlot = 425 AggValueSlot::forAddr(V, Alignment, Qualifiers(), 426 AggValueSlot::IsDestructed, 427 AggValueSlot::DoesNotNeedGCBarriers, 428 AggValueSlot::IsNotAliased); 429 430 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 431 432 if (CGF.CGM.getLangOpts().Exceptions && 433 !BaseClassDecl->hasTrivialDestructor()) 434 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 435 isBaseVirtual); 436 } 437 438 static void EmitAggMemberInitializer(CodeGenFunction &CGF, 439 LValue LHS, 440 Expr *Init, 441 llvm::Value *ArrayIndexVar, 442 QualType T, 443 ArrayRef<VarDecl *> ArrayIndexes, 444 unsigned Index) { 445 if (Index == ArrayIndexes.size()) { 446 LValue LV = LHS; 447 448 if (ArrayIndexVar) { 449 // If we have an array index variable, load it and use it as an offset. 450 // Then, increment the value. 451 llvm::Value *Dest = LHS.getAddress(); 452 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar); 453 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress"); 454 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1); 455 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc"); 456 CGF.Builder.CreateStore(Next, ArrayIndexVar); 457 458 // Update the LValue. 459 LV.setAddress(Dest); 460 CharUnits Align = CGF.getContext().getTypeAlignInChars(T); 461 LV.setAlignment(std::min(Align, LV.getAlignment())); 462 } 463 464 switch (CGF.getEvaluationKind(T)) { 465 case TEK_Scalar: 466 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false); 467 break; 468 case TEK_Complex: 469 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true); 470 break; 471 case TEK_Aggregate: { 472 AggValueSlot Slot = 473 AggValueSlot::forLValue(LV, 474 AggValueSlot::IsDestructed, 475 AggValueSlot::DoesNotNeedGCBarriers, 476 AggValueSlot::IsNotAliased); 477 478 CGF.EmitAggExpr(Init, Slot); 479 break; 480 } 481 } 482 483 return; 484 } 485 486 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T); 487 assert(Array && "Array initialization without the array type?"); 488 llvm::Value *IndexVar 489 = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]); 490 assert(IndexVar && "Array index variable not loaded"); 491 492 // Initialize this index variable to zero. 493 llvm::Value* Zero 494 = llvm::Constant::getNullValue( 495 CGF.ConvertType(CGF.getContext().getSizeType())); 496 CGF.Builder.CreateStore(Zero, IndexVar); 497 498 // Start the loop with a block that tests the condition. 499 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond"); 500 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end"); 501 502 CGF.EmitBlock(CondBlock); 503 504 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body"); 505 // Generate: if (loop-index < number-of-elements) fall to the loop body, 506 // otherwise, go to the block after the for-loop. 507 uint64_t NumElements = Array->getSize().getZExtValue(); 508 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar); 509 llvm::Value *NumElementsPtr = 510 llvm::ConstantInt::get(Counter->getType(), NumElements); 511 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr, 512 "isless"); 513 514 // If the condition is true, execute the body. 515 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor); 516 517 CGF.EmitBlock(ForBody); 518 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc"); 519 520 // Inside the loop body recurse to emit the inner loop or, eventually, the 521 // constructor call. 522 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar, 523 Array->getElementType(), ArrayIndexes, Index + 1); 524 525 CGF.EmitBlock(ContinueBlock); 526 527 // Emit the increment of the loop counter. 528 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1); 529 Counter = CGF.Builder.CreateLoad(IndexVar); 530 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc"); 531 CGF.Builder.CreateStore(NextVal, IndexVar); 532 533 // Finally, branch back up to the condition for the next iteration. 534 CGF.EmitBranch(CondBlock); 535 536 // Emit the fall-through block. 537 CGF.EmitBlock(AfterFor, true); 538 } 539 540 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 541 auto *CD = dyn_cast<CXXConstructorDecl>(D); 542 if (!(CD && CD->isCopyOrMoveConstructor()) && 543 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 544 return false; 545 546 // We can emit a memcpy for a trivial copy or move constructor/assignment. 547 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 548 return true; 549 550 // We *must* emit a memcpy for a defaulted union copy or move op. 551 if (D->getParent()->isUnion() && D->isDefaulted()) 552 return true; 553 554 return false; 555 } 556 557 static void EmitMemberInitializer(CodeGenFunction &CGF, 558 const CXXRecordDecl *ClassDecl, 559 CXXCtorInitializer *MemberInit, 560 const CXXConstructorDecl *Constructor, 561 FunctionArgList &Args) { 562 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 563 assert(MemberInit->isAnyMemberInitializer() && 564 "Must have member initializer!"); 565 assert(MemberInit->getInit() && "Must have initializer!"); 566 567 // non-static data member initializers. 568 FieldDecl *Field = MemberInit->getAnyMember(); 569 QualType FieldType = Field->getType(); 570 571 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 572 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 573 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 574 575 if (MemberInit->isIndirectMemberInitializer()) { 576 // If we are initializing an anonymous union field, drill down to 577 // the field. 578 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 579 for (const auto *I : IndirectField->chain()) 580 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 581 FieldType = MemberInit->getIndirectMember()->getAnonField()->getType(); 582 } else { 583 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 584 } 585 586 // Special case: if we are in a copy or move constructor, and we are copying 587 // an array of PODs or classes with trivial copy constructors, ignore the 588 // AST and perform the copy we know is equivalent. 589 // FIXME: This is hacky at best... if we had a bit more explicit information 590 // in the AST, we could generalize it more easily. 591 const ConstantArrayType *Array 592 = CGF.getContext().getAsConstantArrayType(FieldType); 593 if (Array && Constructor->isDefaulted() && 594 Constructor->isCopyOrMoveConstructor()) { 595 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 596 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 597 if (BaseElementTy.isPODType(CGF.getContext()) || 598 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 599 unsigned SrcArgIndex = 600 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 601 llvm::Value *SrcPtr 602 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 603 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 604 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 605 606 // Copy the aggregate. 607 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 608 LHS.isVolatileQualified()); 609 // Ensure that we destroy the objects if an exception is thrown later in 610 // the constructor. 611 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 612 if (CGF.needsEHCleanup(dtorKind)) 613 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 614 return; 615 } 616 } 617 618 ArrayRef<VarDecl *> ArrayIndexes; 619 if (MemberInit->getNumArrayIndices()) 620 ArrayIndexes = MemberInit->getArrayIndexes(); 621 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes); 622 } 623 624 void CodeGenFunction::EmitInitializerForField( 625 FieldDecl *Field, LValue LHS, Expr *Init, 626 ArrayRef<VarDecl *> ArrayIndexes) { 627 QualType FieldType = Field->getType(); 628 switch (getEvaluationKind(FieldType)) { 629 case TEK_Scalar: 630 if (LHS.isSimple()) { 631 EmitExprAsInit(Init, Field, LHS, false); 632 } else { 633 RValue RHS = RValue::get(EmitScalarExpr(Init)); 634 EmitStoreThroughLValue(RHS, LHS); 635 } 636 break; 637 case TEK_Complex: 638 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 639 break; 640 case TEK_Aggregate: { 641 llvm::Value *ArrayIndexVar = nullptr; 642 if (ArrayIndexes.size()) { 643 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 644 645 // The LHS is a pointer to the first object we'll be constructing, as 646 // a flat array. 647 QualType BaseElementTy = getContext().getBaseElementType(FieldType); 648 llvm::Type *BasePtr = ConvertType(BaseElementTy); 649 BasePtr = llvm::PointerType::getUnqual(BasePtr); 650 llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), 651 BasePtr); 652 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy); 653 654 // Create an array index that will be used to walk over all of the 655 // objects we're constructing. 656 ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index"); 657 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy); 658 Builder.CreateStore(Zero, ArrayIndexVar); 659 660 661 // Emit the block variables for the array indices, if any. 662 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I) 663 EmitAutoVarDecl(*ArrayIndexes[I]); 664 } 665 666 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType, 667 ArrayIndexes, 0); 668 } 669 } 670 671 // Ensure that we destroy this object if an exception is thrown 672 // later in the constructor. 673 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 674 if (needsEHCleanup(dtorKind)) 675 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 676 } 677 678 /// Checks whether the given constructor is a valid subject for the 679 /// complete-to-base constructor delegation optimization, i.e. 680 /// emitting the complete constructor as a simple call to the base 681 /// constructor. 682 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) { 683 684 // Currently we disable the optimization for classes with virtual 685 // bases because (1) the addresses of parameter variables need to be 686 // consistent across all initializers but (2) the delegate function 687 // call necessarily creates a second copy of the parameter variable. 688 // 689 // The limiting example (purely theoretical AFAIK): 690 // struct A { A(int &c) { c++; } }; 691 // struct B : virtual A { 692 // B(int count) : A(count) { printf("%d\n", count); } 693 // }; 694 // ...although even this example could in principle be emitted as a 695 // delegation since the address of the parameter doesn't escape. 696 if (Ctor->getParent()->getNumVBases()) { 697 // TODO: white-list trivial vbase initializers. This case wouldn't 698 // be subject to the restrictions below. 699 700 // TODO: white-list cases where: 701 // - there are no non-reference parameters to the constructor 702 // - the initializers don't access any non-reference parameters 703 // - the initializers don't take the address of non-reference 704 // parameters 705 // - etc. 706 // If we ever add any of the above cases, remember that: 707 // - function-try-blocks will always blacklist this optimization 708 // - we need to perform the constructor prologue and cleanup in 709 // EmitConstructorBody. 710 711 return false; 712 } 713 714 // We also disable the optimization for variadic functions because 715 // it's impossible to "re-pass" varargs. 716 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 717 return false; 718 719 // FIXME: Decide if we can do a delegation of a delegating constructor. 720 if (Ctor->isDelegatingConstructor()) 721 return false; 722 723 return true; 724 } 725 726 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 727 // to poison the extra field paddings inserted under 728 // -fsanitize-address-field-padding=1|2. 729 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 730 ASTContext &Context = getContext(); 731 const CXXRecordDecl *ClassDecl = 732 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 733 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 734 if (!ClassDecl->mayInsertExtraPadding()) return; 735 736 struct SizeAndOffset { 737 uint64_t Size; 738 uint64_t Offset; 739 }; 740 741 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 742 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 743 744 // Populate sizes and offsets of fields. 745 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 746 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 747 SSV[i].Offset = 748 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 749 750 size_t NumFields = 0; 751 for (const auto *Field : ClassDecl->fields()) { 752 const FieldDecl *D = Field; 753 std::pair<CharUnits, CharUnits> FieldInfo = 754 Context.getTypeInfoInChars(D->getType()); 755 CharUnits FieldSize = FieldInfo.first; 756 assert(NumFields < SSV.size()); 757 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 758 NumFields++; 759 } 760 assert(NumFields == SSV.size()); 761 if (SSV.size() <= 1) return; 762 763 // We will insert calls to __asan_* run-time functions. 764 // LLVM AddressSanitizer pass may decide to inline them later. 765 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 766 llvm::FunctionType *FTy = 767 llvm::FunctionType::get(CGM.VoidTy, Args, false); 768 llvm::Constant *F = CGM.CreateRuntimeFunction( 769 FTy, Prologue ? "__asan_poison_intra_object_redzone" 770 : "__asan_unpoison_intra_object_redzone"); 771 772 llvm::Value *ThisPtr = LoadCXXThis(); 773 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 774 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 775 // For each field check if it has sufficient padding, 776 // if so (un)poison it with a call. 777 for (size_t i = 0; i < SSV.size(); i++) { 778 uint64_t AsanAlignment = 8; 779 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 780 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 781 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 782 if (PoisonSize < AsanAlignment || !SSV[i].Size || 783 (NextField % AsanAlignment) != 0) 784 continue; 785 Builder.CreateCall( 786 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 787 Builder.getIntN(PtrSize, PoisonSize)}); 788 } 789 } 790 791 /// EmitConstructorBody - Emits the body of the current constructor. 792 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 793 EmitAsanPrologueOrEpilogue(true); 794 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 795 CXXCtorType CtorType = CurGD.getCtorType(); 796 797 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 798 CtorType == Ctor_Complete) && 799 "can only generate complete ctor for this ABI"); 800 801 // Before we go any further, try the complete->base constructor 802 // delegation optimization. 803 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 804 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 805 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 806 return; 807 } 808 809 const FunctionDecl *Definition = 0; 810 Stmt *Body = Ctor->getBody(Definition); 811 assert(Definition == Ctor && "emitting wrong constructor body"); 812 813 // Enter the function-try-block before the constructor prologue if 814 // applicable. 815 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 816 if (IsTryBody) 817 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 818 819 incrementProfileCounter(Body); 820 821 RunCleanupsScope RunCleanups(*this); 822 823 // TODO: in restricted cases, we can emit the vbase initializers of 824 // a complete ctor and then delegate to the base ctor. 825 826 // Emit the constructor prologue, i.e. the base and member 827 // initializers. 828 EmitCtorPrologue(Ctor, CtorType, Args); 829 830 // Emit the body of the statement. 831 if (IsTryBody) 832 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 833 else if (Body) 834 EmitStmt(Body); 835 836 // Emit any cleanup blocks associated with the member or base 837 // initializers, which includes (along the exceptional path) the 838 // destructors for those members and bases that were fully 839 // constructed. 840 RunCleanups.ForceCleanup(); 841 842 if (IsTryBody) 843 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 844 } 845 846 namespace { 847 /// RAII object to indicate that codegen is copying the value representation 848 /// instead of the object representation. Useful when copying a struct or 849 /// class which has uninitialized members and we're only performing 850 /// lvalue-to-rvalue conversion on the object but not its members. 851 class CopyingValueRepresentation { 852 public: 853 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 854 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 855 CGF.SanOpts.set(SanitizerKind::Bool, false); 856 CGF.SanOpts.set(SanitizerKind::Enum, false); 857 } 858 ~CopyingValueRepresentation() { 859 CGF.SanOpts = OldSanOpts; 860 } 861 private: 862 CodeGenFunction &CGF; 863 SanitizerSet OldSanOpts; 864 }; 865 } 866 867 namespace { 868 class FieldMemcpyizer { 869 public: 870 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 871 const VarDecl *SrcRec) 872 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 873 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 874 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 875 LastFieldOffset(0), LastAddedFieldIndex(0) {} 876 877 bool isMemcpyableField(FieldDecl *F) const { 878 // Never memcpy fields when we are adding poisoned paddings. 879 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 880 return false; 881 Qualifiers Qual = F->getType().getQualifiers(); 882 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 883 return false; 884 return true; 885 } 886 887 void addMemcpyableField(FieldDecl *F) { 888 if (!FirstField) 889 addInitialField(F); 890 else 891 addNextField(F); 892 } 893 894 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 895 unsigned LastFieldSize = 896 LastField->isBitField() ? 897 LastField->getBitWidthValue(CGF.getContext()) : 898 CGF.getContext().getTypeSize(LastField->getType()); 899 uint64_t MemcpySizeBits = 900 LastFieldOffset + LastFieldSize - FirstByteOffset + 901 CGF.getContext().getCharWidth() - 1; 902 CharUnits MemcpySize = 903 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 904 return MemcpySize; 905 } 906 907 void emitMemcpy() { 908 // Give the subclass a chance to bail out if it feels the memcpy isn't 909 // worth it (e.g. Hasn't aggregated enough data). 910 if (!FirstField) { 911 return; 912 } 913 914 uint64_t FirstByteOffset; 915 if (FirstField->isBitField()) { 916 const CGRecordLayout &RL = 917 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 918 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 919 // FirstFieldOffset is not appropriate for bitfields, 920 // it won't tell us what the storage offset should be and thus might not 921 // be properly aligned. 922 // 923 // Instead calculate the storage offset using the offset of the field in 924 // the struct type. 925 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 926 } else { 927 FirstByteOffset = FirstFieldOffset; 928 } 929 930 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 931 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 932 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 933 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 934 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 935 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 936 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 937 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 938 939 CharUnits Offset = CGF.getContext().toCharUnitsFromBits(FirstByteOffset); 940 CharUnits Alignment = DestLV.getAlignment().alignmentAtOffset(Offset); 941 942 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(), 943 Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(), 944 MemcpySize, Alignment); 945 reset(); 946 } 947 948 void reset() { 949 FirstField = nullptr; 950 } 951 952 protected: 953 CodeGenFunction &CGF; 954 const CXXRecordDecl *ClassDecl; 955 956 private: 957 958 void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr, 959 CharUnits Size, CharUnits Alignment) { 960 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 961 llvm::Type *DBP = 962 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 963 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 964 965 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 966 llvm::Type *SBP = 967 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 968 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 969 970 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(), 971 Alignment.getQuantity()); 972 } 973 974 void addInitialField(FieldDecl *F) { 975 FirstField = F; 976 LastField = F; 977 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 978 LastFieldOffset = FirstFieldOffset; 979 LastAddedFieldIndex = F->getFieldIndex(); 980 return; 981 } 982 983 void addNextField(FieldDecl *F) { 984 // For the most part, the following invariant will hold: 985 // F->getFieldIndex() == LastAddedFieldIndex + 1 986 // The one exception is that Sema won't add a copy-initializer for an 987 // unnamed bitfield, which will show up here as a gap in the sequence. 988 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 989 "Cannot aggregate fields out of order."); 990 LastAddedFieldIndex = F->getFieldIndex(); 991 992 // The 'first' and 'last' fields are chosen by offset, rather than field 993 // index. This allows the code to support bitfields, as well as regular 994 // fields. 995 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 996 if (FOffset < FirstFieldOffset) { 997 FirstField = F; 998 FirstFieldOffset = FOffset; 999 } else if (FOffset > LastFieldOffset) { 1000 LastField = F; 1001 LastFieldOffset = FOffset; 1002 } 1003 } 1004 1005 const VarDecl *SrcRec; 1006 const ASTRecordLayout &RecLayout; 1007 FieldDecl *FirstField; 1008 FieldDecl *LastField; 1009 uint64_t FirstFieldOffset, LastFieldOffset; 1010 unsigned LastAddedFieldIndex; 1011 }; 1012 1013 class ConstructorMemcpyizer : public FieldMemcpyizer { 1014 private: 1015 1016 /// Get source argument for copy constructor. Returns null if not a copy 1017 /// constructor. 1018 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1019 const CXXConstructorDecl *CD, 1020 FunctionArgList &Args) { 1021 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1022 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1023 return nullptr; 1024 } 1025 1026 // Returns true if a CXXCtorInitializer represents a member initialization 1027 // that can be rolled into a memcpy. 1028 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1029 if (!MemcpyableCtor) 1030 return false; 1031 FieldDecl *Field = MemberInit->getMember(); 1032 assert(Field && "No field for member init."); 1033 QualType FieldType = Field->getType(); 1034 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1035 1036 // Bail out on non-memcpyable, not-trivially-copyable members. 1037 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1038 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1039 FieldType->isReferenceType())) 1040 return false; 1041 1042 // Bail out on volatile fields. 1043 if (!isMemcpyableField(Field)) 1044 return false; 1045 1046 // Otherwise we're good. 1047 return true; 1048 } 1049 1050 public: 1051 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1052 FunctionArgList &Args) 1053 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1054 ConstructorDecl(CD), 1055 MemcpyableCtor(CD->isDefaulted() && 1056 CD->isCopyOrMoveConstructor() && 1057 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1058 Args(Args) { } 1059 1060 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1061 if (isMemberInitMemcpyable(MemberInit)) { 1062 AggregatedInits.push_back(MemberInit); 1063 addMemcpyableField(MemberInit->getMember()); 1064 } else { 1065 emitAggregatedInits(); 1066 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1067 ConstructorDecl, Args); 1068 } 1069 } 1070 1071 void emitAggregatedInits() { 1072 if (AggregatedInits.size() <= 1) { 1073 // This memcpy is too small to be worthwhile. Fall back on default 1074 // codegen. 1075 if (!AggregatedInits.empty()) { 1076 CopyingValueRepresentation CVR(CGF); 1077 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1078 AggregatedInits[0], ConstructorDecl, Args); 1079 } 1080 reset(); 1081 return; 1082 } 1083 1084 pushEHDestructors(); 1085 emitMemcpy(); 1086 AggregatedInits.clear(); 1087 } 1088 1089 void pushEHDestructors() { 1090 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 1091 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1092 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 1093 1094 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1095 QualType FieldType = AggregatedInits[i]->getMember()->getType(); 1096 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1097 if (CGF.needsEHCleanup(dtorKind)) 1098 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 1099 } 1100 } 1101 1102 void finish() { 1103 emitAggregatedInits(); 1104 } 1105 1106 private: 1107 const CXXConstructorDecl *ConstructorDecl; 1108 bool MemcpyableCtor; 1109 FunctionArgList &Args; 1110 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1111 }; 1112 1113 class AssignmentMemcpyizer : public FieldMemcpyizer { 1114 private: 1115 1116 // Returns the memcpyable field copied by the given statement, if one 1117 // exists. Otherwise returns null. 1118 FieldDecl *getMemcpyableField(Stmt *S) { 1119 if (!AssignmentsMemcpyable) 1120 return nullptr; 1121 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1122 // Recognise trivial assignments. 1123 if (BO->getOpcode() != BO_Assign) 1124 return nullptr; 1125 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1126 if (!ME) 1127 return nullptr; 1128 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1129 if (!Field || !isMemcpyableField(Field)) 1130 return nullptr; 1131 Stmt *RHS = BO->getRHS(); 1132 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1133 RHS = EC->getSubExpr(); 1134 if (!RHS) 1135 return nullptr; 1136 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS); 1137 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field) 1138 return nullptr; 1139 return Field; 1140 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1141 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1142 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1143 return nullptr; 1144 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1145 if (!IOA) 1146 return nullptr; 1147 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1148 if (!Field || !isMemcpyableField(Field)) 1149 return nullptr; 1150 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1151 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1152 return nullptr; 1153 return Field; 1154 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1155 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1156 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1157 return nullptr; 1158 Expr *DstPtr = CE->getArg(0); 1159 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1160 DstPtr = DC->getSubExpr(); 1161 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1162 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1163 return nullptr; 1164 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1165 if (!ME) 1166 return nullptr; 1167 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1168 if (!Field || !isMemcpyableField(Field)) 1169 return nullptr; 1170 Expr *SrcPtr = CE->getArg(1); 1171 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1172 SrcPtr = SC->getSubExpr(); 1173 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1174 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1175 return nullptr; 1176 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1177 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1178 return nullptr; 1179 return Field; 1180 } 1181 1182 return nullptr; 1183 } 1184 1185 bool AssignmentsMemcpyable; 1186 SmallVector<Stmt*, 16> AggregatedStmts; 1187 1188 public: 1189 1190 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1191 FunctionArgList &Args) 1192 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1193 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1194 assert(Args.size() == 2); 1195 } 1196 1197 void emitAssignment(Stmt *S) { 1198 FieldDecl *F = getMemcpyableField(S); 1199 if (F) { 1200 addMemcpyableField(F); 1201 AggregatedStmts.push_back(S); 1202 } else { 1203 emitAggregatedStmts(); 1204 CGF.EmitStmt(S); 1205 } 1206 } 1207 1208 void emitAggregatedStmts() { 1209 if (AggregatedStmts.size() <= 1) { 1210 if (!AggregatedStmts.empty()) { 1211 CopyingValueRepresentation CVR(CGF); 1212 CGF.EmitStmt(AggregatedStmts[0]); 1213 } 1214 reset(); 1215 } 1216 1217 emitMemcpy(); 1218 AggregatedStmts.clear(); 1219 } 1220 1221 void finish() { 1222 emitAggregatedStmts(); 1223 } 1224 }; 1225 1226 } 1227 1228 /// EmitCtorPrologue - This routine generates necessary code to initialize 1229 /// base classes and non-static data members belonging to this constructor. 1230 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1231 CXXCtorType CtorType, 1232 FunctionArgList &Args) { 1233 if (CD->isDelegatingConstructor()) 1234 return EmitDelegatingCXXConstructorCall(CD, Args); 1235 1236 const CXXRecordDecl *ClassDecl = CD->getParent(); 1237 1238 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1239 E = CD->init_end(); 1240 1241 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1242 if (ClassDecl->getNumVBases() && 1243 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1244 // The ABIs that don't have constructor variants need to put a branch 1245 // before the virtual base initialization code. 1246 BaseCtorContinueBB = 1247 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1248 assert(BaseCtorContinueBB); 1249 } 1250 1251 // Virtual base initializers first. 1252 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1253 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1254 } 1255 1256 if (BaseCtorContinueBB) { 1257 // Complete object handler should continue to the remaining initializers. 1258 Builder.CreateBr(BaseCtorContinueBB); 1259 EmitBlock(BaseCtorContinueBB); 1260 } 1261 1262 // Then, non-virtual base initializers. 1263 for (; B != E && (*B)->isBaseInitializer(); B++) { 1264 assert(!(*B)->isBaseVirtual()); 1265 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1266 } 1267 1268 InitializeVTablePointers(ClassDecl); 1269 1270 // And finally, initialize class members. 1271 FieldConstructionScope FCS(*this, CXXThisValue); 1272 ConstructorMemcpyizer CM(*this, CD, Args); 1273 for (; B != E; B++) { 1274 CXXCtorInitializer *Member = (*B); 1275 assert(!Member->isBaseInitializer()); 1276 assert(Member->isAnyMemberInitializer() && 1277 "Delegating initializer on non-delegating constructor"); 1278 CM.addMemberInitializer(Member); 1279 } 1280 CM.finish(); 1281 } 1282 1283 static bool 1284 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1285 1286 static bool 1287 HasTrivialDestructorBody(ASTContext &Context, 1288 const CXXRecordDecl *BaseClassDecl, 1289 const CXXRecordDecl *MostDerivedClassDecl) 1290 { 1291 // If the destructor is trivial we don't have to check anything else. 1292 if (BaseClassDecl->hasTrivialDestructor()) 1293 return true; 1294 1295 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1296 return false; 1297 1298 // Check fields. 1299 for (const auto *Field : BaseClassDecl->fields()) 1300 if (!FieldHasTrivialDestructorBody(Context, Field)) 1301 return false; 1302 1303 // Check non-virtual bases. 1304 for (const auto &I : BaseClassDecl->bases()) { 1305 if (I.isVirtual()) 1306 continue; 1307 1308 const CXXRecordDecl *NonVirtualBase = 1309 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1310 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1311 MostDerivedClassDecl)) 1312 return false; 1313 } 1314 1315 if (BaseClassDecl == MostDerivedClassDecl) { 1316 // Check virtual bases. 1317 for (const auto &I : BaseClassDecl->vbases()) { 1318 const CXXRecordDecl *VirtualBase = 1319 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1320 if (!HasTrivialDestructorBody(Context, VirtualBase, 1321 MostDerivedClassDecl)) 1322 return false; 1323 } 1324 } 1325 1326 return true; 1327 } 1328 1329 static bool 1330 FieldHasTrivialDestructorBody(ASTContext &Context, 1331 const FieldDecl *Field) 1332 { 1333 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1334 1335 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1336 if (!RT) 1337 return true; 1338 1339 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1340 1341 // The destructor for an implicit anonymous union member is never invoked. 1342 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1343 return false; 1344 1345 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1346 } 1347 1348 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1349 /// any vtable pointers before calling this destructor. 1350 static bool CanSkipVTablePointerInitialization(ASTContext &Context, 1351 const CXXDestructorDecl *Dtor) { 1352 if (!Dtor->hasTrivialBody()) 1353 return false; 1354 1355 // Check the fields. 1356 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1357 for (const auto *Field : ClassDecl->fields()) 1358 if (!FieldHasTrivialDestructorBody(Context, Field)) 1359 return false; 1360 1361 return true; 1362 } 1363 1364 /// EmitDestructorBody - Emits the body of the current destructor. 1365 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1366 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1367 CXXDtorType DtorType = CurGD.getDtorType(); 1368 1369 Stmt *Body = Dtor->getBody(); 1370 if (Body) 1371 incrementProfileCounter(Body); 1372 1373 // The call to operator delete in a deleting destructor happens 1374 // outside of the function-try-block, which means it's always 1375 // possible to delegate the destructor body to the complete 1376 // destructor. Do so. 1377 if (DtorType == Dtor_Deleting) { 1378 EnterDtorCleanups(Dtor, Dtor_Deleting); 1379 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1380 /*Delegating=*/false, LoadCXXThis()); 1381 PopCleanupBlock(); 1382 return; 1383 } 1384 1385 // If the body is a function-try-block, enter the try before 1386 // anything else. 1387 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1388 if (isTryBody) 1389 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1390 EmitAsanPrologueOrEpilogue(false); 1391 1392 // Enter the epilogue cleanups. 1393 RunCleanupsScope DtorEpilogue(*this); 1394 1395 // If this is the complete variant, just invoke the base variant; 1396 // the epilogue will destruct the virtual bases. But we can't do 1397 // this optimization if the body is a function-try-block, because 1398 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1399 // always delegate because we might not have a definition in this TU. 1400 switch (DtorType) { 1401 case Dtor_Comdat: 1402 llvm_unreachable("not expecting a COMDAT"); 1403 1404 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1405 1406 case Dtor_Complete: 1407 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1408 "can't emit a dtor without a body for non-Microsoft ABIs"); 1409 1410 // Enter the cleanup scopes for virtual bases. 1411 EnterDtorCleanups(Dtor, Dtor_Complete); 1412 1413 if (!isTryBody) { 1414 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1415 /*Delegating=*/false, LoadCXXThis()); 1416 break; 1417 } 1418 // Fallthrough: act like we're in the base variant. 1419 1420 case Dtor_Base: 1421 assert(Body); 1422 1423 // Enter the cleanup scopes for fields and non-virtual bases. 1424 EnterDtorCleanups(Dtor, Dtor_Base); 1425 1426 // Initialize the vtable pointers before entering the body. 1427 if (!CanSkipVTablePointerInitialization(getContext(), Dtor)) 1428 InitializeVTablePointers(Dtor->getParent()); 1429 1430 if (isTryBody) 1431 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1432 else if (Body) 1433 EmitStmt(Body); 1434 else { 1435 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1436 // nothing to do besides what's in the epilogue 1437 } 1438 // -fapple-kext must inline any call to this dtor into 1439 // the caller's body. 1440 if (getLangOpts().AppleKext) 1441 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1442 break; 1443 } 1444 1445 // Jump out through the epilogue cleanups. 1446 DtorEpilogue.ForceCleanup(); 1447 1448 // Exit the try if applicable. 1449 if (isTryBody) 1450 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1451 } 1452 1453 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1454 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1455 const Stmt *RootS = AssignOp->getBody(); 1456 assert(isa<CompoundStmt>(RootS) && 1457 "Body of an implicit assignment operator should be compound stmt."); 1458 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1459 1460 LexicalScope Scope(*this, RootCS->getSourceRange()); 1461 1462 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1463 for (auto *I : RootCS->body()) 1464 AM.emitAssignment(I); 1465 AM.finish(); 1466 } 1467 1468 namespace { 1469 /// Call the operator delete associated with the current destructor. 1470 struct CallDtorDelete : EHScopeStack::Cleanup { 1471 CallDtorDelete() {} 1472 1473 void Emit(CodeGenFunction &CGF, Flags flags) override { 1474 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1475 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1476 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1477 CGF.getContext().getTagDeclType(ClassDecl)); 1478 } 1479 }; 1480 1481 struct CallDtorDeleteConditional : EHScopeStack::Cleanup { 1482 llvm::Value *ShouldDeleteCondition; 1483 public: 1484 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1485 : ShouldDeleteCondition(ShouldDeleteCondition) { 1486 assert(ShouldDeleteCondition != nullptr); 1487 } 1488 1489 void Emit(CodeGenFunction &CGF, Flags flags) override { 1490 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1491 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1492 llvm::Value *ShouldCallDelete 1493 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1494 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1495 1496 CGF.EmitBlock(callDeleteBB); 1497 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1498 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1499 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1500 CGF.getContext().getTagDeclType(ClassDecl)); 1501 CGF.Builder.CreateBr(continueBB); 1502 1503 CGF.EmitBlock(continueBB); 1504 } 1505 }; 1506 1507 class DestroyField : public EHScopeStack::Cleanup { 1508 const FieldDecl *field; 1509 CodeGenFunction::Destroyer *destroyer; 1510 bool useEHCleanupForArray; 1511 1512 public: 1513 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1514 bool useEHCleanupForArray) 1515 : field(field), destroyer(destroyer), 1516 useEHCleanupForArray(useEHCleanupForArray) {} 1517 1518 void Emit(CodeGenFunction &CGF, Flags flags) override { 1519 // Find the address of the field. 1520 llvm::Value *thisValue = CGF.LoadCXXThis(); 1521 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1522 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1523 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1524 assert(LV.isSimple()); 1525 1526 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1527 flags.isForNormalCleanup() && useEHCleanupForArray); 1528 } 1529 }; 1530 } 1531 1532 /// \brief Emit all code that comes at the end of class's 1533 /// destructor. This is to call destructors on members and base classes 1534 /// in reverse order of their construction. 1535 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1536 CXXDtorType DtorType) { 1537 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1538 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1539 1540 // The deleting-destructor phase just needs to call the appropriate 1541 // operator delete that Sema picked up. 1542 if (DtorType == Dtor_Deleting) { 1543 assert(DD->getOperatorDelete() && 1544 "operator delete missing - EnterDtorCleanups"); 1545 if (CXXStructorImplicitParamValue) { 1546 // If there is an implicit param to the deleting dtor, it's a boolean 1547 // telling whether we should call delete at the end of the dtor. 1548 EHStack.pushCleanup<CallDtorDeleteConditional>( 1549 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1550 } else { 1551 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1552 } 1553 return; 1554 } 1555 1556 const CXXRecordDecl *ClassDecl = DD->getParent(); 1557 1558 // Unions have no bases and do not call field destructors. 1559 if (ClassDecl->isUnion()) 1560 return; 1561 1562 // The complete-destructor phase just destructs all the virtual bases. 1563 if (DtorType == Dtor_Complete) { 1564 1565 // We push them in the forward order so that they'll be popped in 1566 // the reverse order. 1567 for (const auto &Base : ClassDecl->vbases()) { 1568 CXXRecordDecl *BaseClassDecl 1569 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1570 1571 // Ignore trivial destructors. 1572 if (BaseClassDecl->hasTrivialDestructor()) 1573 continue; 1574 1575 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1576 BaseClassDecl, 1577 /*BaseIsVirtual*/ true); 1578 } 1579 1580 return; 1581 } 1582 1583 assert(DtorType == Dtor_Base); 1584 1585 // Destroy non-virtual bases. 1586 for (const auto &Base : ClassDecl->bases()) { 1587 // Ignore virtual bases. 1588 if (Base.isVirtual()) 1589 continue; 1590 1591 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1592 1593 // Ignore trivial destructors. 1594 if (BaseClassDecl->hasTrivialDestructor()) 1595 continue; 1596 1597 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1598 BaseClassDecl, 1599 /*BaseIsVirtual*/ false); 1600 } 1601 1602 // Destroy direct fields. 1603 for (const auto *Field : ClassDecl->fields()) { 1604 QualType type = Field->getType(); 1605 QualType::DestructionKind dtorKind = type.isDestructedType(); 1606 if (!dtorKind) continue; 1607 1608 // Anonymous union members do not have their destructors called. 1609 const RecordType *RT = type->getAsUnionType(); 1610 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1611 1612 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1613 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1614 getDestroyer(dtorKind), 1615 cleanupKind & EHCleanup); 1616 } 1617 } 1618 1619 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1620 /// constructor for each of several members of an array. 1621 /// 1622 /// \param ctor the constructor to call for each element 1623 /// \param arrayType the type of the array to initialize 1624 /// \param arrayBegin an arrayType* 1625 /// \param zeroInitialize true if each element should be 1626 /// zero-initialized before it is constructed 1627 void CodeGenFunction::EmitCXXAggrConstructorCall( 1628 const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType, 1629 llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1630 QualType elementType; 1631 llvm::Value *numElements = 1632 emitArrayLength(arrayType, elementType, arrayBegin); 1633 1634 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1635 } 1636 1637 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1638 /// constructor for each of several members of an array. 1639 /// 1640 /// \param ctor the constructor to call for each element 1641 /// \param numElements the number of elements in the array; 1642 /// may be zero 1643 /// \param arrayBegin a T*, where T is the type constructed by ctor 1644 /// \param zeroInitialize true if each element should be 1645 /// zero-initialized before it is constructed 1646 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1647 llvm::Value *numElements, 1648 llvm::Value *arrayBegin, 1649 const CXXConstructExpr *E, 1650 bool zeroInitialize) { 1651 1652 // It's legal for numElements to be zero. This can happen both 1653 // dynamically, because x can be zero in 'new A[x]', and statically, 1654 // because of GCC extensions that permit zero-length arrays. There 1655 // are probably legitimate places where we could assume that this 1656 // doesn't happen, but it's not clear that it's worth it. 1657 llvm::BranchInst *zeroCheckBranch = nullptr; 1658 1659 // Optimize for a constant count. 1660 llvm::ConstantInt *constantCount 1661 = dyn_cast<llvm::ConstantInt>(numElements); 1662 if (constantCount) { 1663 // Just skip out if the constant count is zero. 1664 if (constantCount->isZero()) return; 1665 1666 // Otherwise, emit the check. 1667 } else { 1668 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1669 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1670 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1671 EmitBlock(loopBB); 1672 } 1673 1674 // Find the end of the array. 1675 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1676 "arrayctor.end"); 1677 1678 // Enter the loop, setting up a phi for the current location to initialize. 1679 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1680 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1681 EmitBlock(loopBB); 1682 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1683 "arrayctor.cur"); 1684 cur->addIncoming(arrayBegin, entryBB); 1685 1686 // Inside the loop body, emit the constructor call on the array element. 1687 1688 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1689 1690 // Zero initialize the storage, if requested. 1691 if (zeroInitialize) 1692 EmitNullInitialization(cur, type); 1693 1694 // C++ [class.temporary]p4: 1695 // There are two contexts in which temporaries are destroyed at a different 1696 // point than the end of the full-expression. The first context is when a 1697 // default constructor is called to initialize an element of an array. 1698 // If the constructor has one or more default arguments, the destruction of 1699 // every temporary created in a default argument expression is sequenced 1700 // before the construction of the next array element, if any. 1701 1702 { 1703 RunCleanupsScope Scope(*this); 1704 1705 // Evaluate the constructor and its arguments in a regular 1706 // partial-destroy cleanup. 1707 if (getLangOpts().Exceptions && 1708 !ctor->getParent()->hasTrivialDestructor()) { 1709 Destroyer *destroyer = destroyCXXObject; 1710 pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer); 1711 } 1712 1713 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1714 /*Delegating=*/false, cur, E); 1715 } 1716 1717 // Go to the next element. 1718 llvm::Value *next = 1719 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1720 "arrayctor.next"); 1721 cur->addIncoming(next, Builder.GetInsertBlock()); 1722 1723 // Check whether that's the end of the loop. 1724 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1725 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1726 Builder.CreateCondBr(done, contBB, loopBB); 1727 1728 // Patch the earlier check to skip over the loop. 1729 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1730 1731 EmitBlock(contBB); 1732 } 1733 1734 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1735 llvm::Value *addr, 1736 QualType type) { 1737 const RecordType *rtype = type->castAs<RecordType>(); 1738 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1739 const CXXDestructorDecl *dtor = record->getDestructor(); 1740 assert(!dtor->isTrivial()); 1741 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1742 /*Delegating=*/false, addr); 1743 } 1744 1745 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1746 CXXCtorType Type, 1747 bool ForVirtualBase, 1748 bool Delegating, llvm::Value *This, 1749 const CXXConstructExpr *E) { 1750 // C++11 [class.mfct.non-static]p2: 1751 // If a non-static member function of a class X is called for an object that 1752 // is not of type X, or of a type derived from X, the behavior is undefined. 1753 // FIXME: Provide a source location here. 1754 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This, 1755 getContext().getRecordType(D->getParent())); 1756 1757 if (D->isTrivial() && D->isDefaultConstructor()) { 1758 assert(E->getNumArgs() == 0 && "trivial default ctor with args"); 1759 return; 1760 } 1761 1762 // If this is a trivial constructor, just emit what's needed. If this is a 1763 // union copy constructor, we must emit a memcpy, because the AST does not 1764 // model that copy. 1765 if (isMemcpyEquivalentSpecialMember(D)) { 1766 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1767 1768 const Expr *Arg = E->getArg(0); 1769 QualType SrcTy = Arg->getType(); 1770 llvm::Value *Src = EmitLValue(Arg).getAddress(); 1771 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 1772 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 1773 return; 1774 } 1775 1776 CallArgList Args; 1777 1778 // Push the this ptr. 1779 Args.add(RValue::get(This), D->getThisType(getContext())); 1780 1781 // Add the rest of the user-supplied arguments. 1782 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1783 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor()); 1784 1785 // Insert any ABI-specific implicit constructor arguments. 1786 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs( 1787 *this, D, Type, ForVirtualBase, Delegating, Args); 1788 1789 // Emit the call. 1790 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 1791 const CGFunctionInfo &Info = 1792 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs); 1793 EmitCall(Info, Callee, ReturnValueSlot(), Args, D); 1794 } 1795 1796 void 1797 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1798 llvm::Value *This, llvm::Value *Src, 1799 const CXXConstructExpr *E) { 1800 if (isMemcpyEquivalentSpecialMember(D)) { 1801 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1802 assert(D->isCopyOrMoveConstructor() && 1803 "trivial 1-arg ctor not a copy/move ctor"); 1804 EmitAggregateCopyCtor(This, Src, 1805 getContext().getTypeDeclType(D->getParent()), 1806 E->arg_begin()->getType()); 1807 return; 1808 } 1809 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete); 1810 assert(D->isInstance() && 1811 "Trying to emit a member call expr on a static method!"); 1812 1813 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1814 1815 CallArgList Args; 1816 1817 // Push the this ptr. 1818 Args.add(RValue::get(This), D->getThisType(getContext())); 1819 1820 // Push the src ptr. 1821 QualType QT = *(FPT->param_type_begin()); 1822 llvm::Type *t = CGM.getTypes().ConvertType(QT); 1823 Src = Builder.CreateBitCast(Src, t); 1824 Args.add(RValue::get(Src), QT); 1825 1826 // Skip over first argument (Src). 1827 EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(), 1828 /*ParamsToSkip*/ 1); 1829 1830 EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All), 1831 Callee, ReturnValueSlot(), Args, D); 1832 } 1833 1834 void 1835 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1836 CXXCtorType CtorType, 1837 const FunctionArgList &Args, 1838 SourceLocation Loc) { 1839 CallArgList DelegateArgs; 1840 1841 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 1842 assert(I != E && "no parameters to constructor"); 1843 1844 // this 1845 DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType()); 1846 ++I; 1847 1848 // vtt 1849 if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType), 1850 /*ForVirtualBase=*/false, 1851 /*Delegating=*/true)) { 1852 QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy); 1853 DelegateArgs.add(RValue::get(VTT), VoidPP); 1854 1855 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 1856 assert(I != E && "cannot skip vtt parameter, already done with args"); 1857 assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type"); 1858 ++I; 1859 } 1860 } 1861 1862 // Explicit arguments. 1863 for (; I != E; ++I) { 1864 const VarDecl *param = *I; 1865 // FIXME: per-argument source location 1866 EmitDelegateCallArg(DelegateArgs, param, Loc); 1867 } 1868 1869 llvm::Value *Callee = 1870 CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType)); 1871 EmitCall(CGM.getTypes() 1872 .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)), 1873 Callee, ReturnValueSlot(), DelegateArgs, Ctor); 1874 } 1875 1876 namespace { 1877 struct CallDelegatingCtorDtor : EHScopeStack::Cleanup { 1878 const CXXDestructorDecl *Dtor; 1879 llvm::Value *Addr; 1880 CXXDtorType Type; 1881 1882 CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr, 1883 CXXDtorType Type) 1884 : Dtor(D), Addr(Addr), Type(Type) {} 1885 1886 void Emit(CodeGenFunction &CGF, Flags flags) override { 1887 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 1888 /*Delegating=*/true, Addr); 1889 } 1890 }; 1891 } 1892 1893 void 1894 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1895 const FunctionArgList &Args) { 1896 assert(Ctor->isDelegatingConstructor()); 1897 1898 llvm::Value *ThisPtr = LoadCXXThis(); 1899 1900 QualType Ty = getContext().getTagDeclType(Ctor->getParent()); 1901 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1902 AggValueSlot AggSlot = 1903 AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(), 1904 AggValueSlot::IsDestructed, 1905 AggValueSlot::DoesNotNeedGCBarriers, 1906 AggValueSlot::IsNotAliased); 1907 1908 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 1909 1910 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 1911 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 1912 CXXDtorType Type = 1913 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 1914 1915 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 1916 ClassDecl->getDestructor(), 1917 ThisPtr, Type); 1918 } 1919 } 1920 1921 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 1922 CXXDtorType Type, 1923 bool ForVirtualBase, 1924 bool Delegating, 1925 llvm::Value *This) { 1926 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 1927 Delegating, This); 1928 } 1929 1930 namespace { 1931 struct CallLocalDtor : EHScopeStack::Cleanup { 1932 const CXXDestructorDecl *Dtor; 1933 llvm::Value *Addr; 1934 1935 CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr) 1936 : Dtor(D), Addr(Addr) {} 1937 1938 void Emit(CodeGenFunction &CGF, Flags flags) override { 1939 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1940 /*ForVirtualBase=*/false, 1941 /*Delegating=*/false, Addr); 1942 } 1943 }; 1944 } 1945 1946 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 1947 llvm::Value *Addr) { 1948 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 1949 } 1950 1951 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) { 1952 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 1953 if (!ClassDecl) return; 1954 if (ClassDecl->hasTrivialDestructor()) return; 1955 1956 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 1957 assert(D && D->isUsed() && "destructor not marked as used!"); 1958 PushDestructorCleanup(D, Addr); 1959 } 1960 1961 void 1962 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base, 1963 const CXXRecordDecl *NearestVBase, 1964 CharUnits OffsetFromNearestVBase, 1965 const CXXRecordDecl *VTableClass) { 1966 const CXXRecordDecl *RD = Base.getBase(); 1967 1968 // Don't initialize the vtable pointer if the class is marked with the 1969 // 'novtable' attribute. 1970 if ((RD == VTableClass || RD == NearestVBase) && 1971 VTableClass->hasAttr<MSNoVTableAttr>()) 1972 return; 1973 1974 // Compute the address point. 1975 bool NeedsVirtualOffset; 1976 llvm::Value *VTableAddressPoint = 1977 CGM.getCXXABI().getVTableAddressPointInStructor( 1978 *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset); 1979 if (!VTableAddressPoint) 1980 return; 1981 1982 // Compute where to store the address point. 1983 llvm::Value *VirtualOffset = nullptr; 1984 CharUnits NonVirtualOffset = CharUnits::Zero(); 1985 1986 if (NeedsVirtualOffset) { 1987 // We need to use the virtual base offset offset because the virtual base 1988 // might have a different offset in the most derived class. 1989 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this, 1990 LoadCXXThis(), 1991 VTableClass, 1992 NearestVBase); 1993 NonVirtualOffset = OffsetFromNearestVBase; 1994 } else { 1995 // We can just use the base offset in the complete class. 1996 NonVirtualOffset = Base.getBaseOffset(); 1997 } 1998 1999 // Apply the offsets. 2000 llvm::Value *VTableField = LoadCXXThis(); 2001 2002 if (!NonVirtualOffset.isZero() || VirtualOffset) 2003 VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField, 2004 NonVirtualOffset, 2005 VirtualOffset); 2006 2007 // Finally, store the address point. Use the same LLVM types as the field to 2008 // support optimization. 2009 llvm::Type *VTablePtrTy = 2010 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2011 ->getPointerTo() 2012 ->getPointerTo(); 2013 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2014 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2015 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2016 CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr()); 2017 } 2018 2019 void 2020 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base, 2021 const CXXRecordDecl *NearestVBase, 2022 CharUnits OffsetFromNearestVBase, 2023 bool BaseIsNonVirtualPrimaryBase, 2024 const CXXRecordDecl *VTableClass, 2025 VisitedVirtualBasesSetTy& VBases) { 2026 // If this base is a non-virtual primary base the address point has already 2027 // been set. 2028 if (!BaseIsNonVirtualPrimaryBase) { 2029 // Initialize the vtable pointer for this base. 2030 InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase, 2031 VTableClass); 2032 } 2033 2034 const CXXRecordDecl *RD = Base.getBase(); 2035 2036 // Traverse bases. 2037 for (const auto &I : RD->bases()) { 2038 CXXRecordDecl *BaseDecl 2039 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2040 2041 // Ignore classes without a vtable. 2042 if (!BaseDecl->isDynamicClass()) 2043 continue; 2044 2045 CharUnits BaseOffset; 2046 CharUnits BaseOffsetFromNearestVBase; 2047 bool BaseDeclIsNonVirtualPrimaryBase; 2048 2049 if (I.isVirtual()) { 2050 // Check if we've visited this virtual base before. 2051 if (!VBases.insert(BaseDecl).second) 2052 continue; 2053 2054 const ASTRecordLayout &Layout = 2055 getContext().getASTRecordLayout(VTableClass); 2056 2057 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2058 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2059 BaseDeclIsNonVirtualPrimaryBase = false; 2060 } else { 2061 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2062 2063 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2064 BaseOffsetFromNearestVBase = 2065 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2066 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2067 } 2068 2069 InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset), 2070 I.isVirtual() ? BaseDecl : NearestVBase, 2071 BaseOffsetFromNearestVBase, 2072 BaseDeclIsNonVirtualPrimaryBase, 2073 VTableClass, VBases); 2074 } 2075 } 2076 2077 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2078 // Ignore classes without a vtable. 2079 if (!RD->isDynamicClass()) 2080 return; 2081 2082 // Initialize the vtable pointers for this class and all of its bases. 2083 VisitedVirtualBasesSetTy VBases; 2084 InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()), 2085 /*NearestVBase=*/nullptr, 2086 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2087 /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases); 2088 2089 if (RD->getNumVBases()) 2090 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2091 } 2092 2093 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This, 2094 llvm::Type *Ty) { 2095 llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo()); 2096 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2097 CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr()); 2098 return VTable; 2099 } 2100 2101 // If a class has a single non-virtual base and does not introduce or override 2102 // virtual member functions or fields, it will have the same layout as its base. 2103 // This function returns the least derived such class. 2104 // 2105 // Casting an instance of a base class to such a derived class is technically 2106 // undefined behavior, but it is a relatively common hack for introducing member 2107 // functions on class instances with specific properties (e.g. llvm::Operator) 2108 // that works under most compilers and should not have security implications, so 2109 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2110 static const CXXRecordDecl * 2111 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2112 if (!RD->field_empty()) 2113 return RD; 2114 2115 if (RD->getNumVBases() != 0) 2116 return RD; 2117 2118 if (RD->getNumBases() != 1) 2119 return RD; 2120 2121 for (const CXXMethodDecl *MD : RD->methods()) { 2122 if (MD->isVirtual()) { 2123 // Virtual member functions are only ok if they are implicit destructors 2124 // because the implicit destructor will have the same semantics as the 2125 // base class's destructor if no fields are added. 2126 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2127 continue; 2128 return RD; 2129 } 2130 } 2131 2132 return LeastDerivedClassWithSameLayout( 2133 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2134 } 2135 2136 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, 2137 llvm::Value *VTable, 2138 CFITypeCheckKind TCK, 2139 SourceLocation Loc) { 2140 const CXXRecordDecl *ClassDecl = MD->getParent(); 2141 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2142 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2143 2144 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2145 } 2146 2147 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2148 llvm::Value *Derived, 2149 bool MayBeNull, 2150 CFITypeCheckKind TCK, 2151 SourceLocation Loc) { 2152 if (!getLangOpts().CPlusPlus) 2153 return; 2154 2155 auto *ClassTy = T->getAs<RecordType>(); 2156 if (!ClassTy) 2157 return; 2158 2159 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2160 2161 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2162 return; 2163 2164 SmallString<64> MangledName; 2165 llvm::raw_svector_ostream Out(MangledName); 2166 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(T.getUnqualifiedType(), 2167 Out); 2168 2169 // Blacklist based on the mangled type. 2170 if (CGM.getContext().getSanitizerBlacklist().isBlacklistedType(Out.str())) 2171 return; 2172 2173 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2174 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2175 2176 llvm::BasicBlock *ContBlock = 0; 2177 2178 if (MayBeNull) { 2179 llvm::Value *DerivedNotNull = 2180 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2181 2182 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2183 ContBlock = createBasicBlock("cast.cont"); 2184 2185 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2186 2187 EmitBlock(CheckBlock); 2188 } 2189 2190 llvm::Value *VTable = GetVTablePtr(Derived, Int8PtrTy); 2191 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2192 2193 if (MayBeNull) { 2194 Builder.CreateBr(ContBlock); 2195 EmitBlock(ContBlock); 2196 } 2197 } 2198 2199 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2200 llvm::Value *VTable, 2201 CFITypeCheckKind TCK, 2202 SourceLocation Loc) { 2203 if (CGM.IsCFIBlacklistedRecord(RD)) 2204 return; 2205 2206 SanitizerScope SanScope(this); 2207 2208 std::string OutName; 2209 llvm::raw_string_ostream Out(OutName); 2210 CGM.getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out); 2211 2212 llvm::Value *BitSetName = llvm::MetadataAsValue::get( 2213 getLLVMContext(), llvm::MDString::get(getLLVMContext(), Out.str())); 2214 2215 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2216 llvm::Value *BitSetTest = 2217 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test), 2218 {CastedVTable, BitSetName}); 2219 2220 SanitizerMask M; 2221 switch (TCK) { 2222 case CFITCK_VCall: 2223 M = SanitizerKind::CFIVCall; 2224 break; 2225 case CFITCK_NVCall: 2226 M = SanitizerKind::CFINVCall; 2227 break; 2228 case CFITCK_DerivedCast: 2229 M = SanitizerKind::CFIDerivedCast; 2230 break; 2231 case CFITCK_UnrelatedCast: 2232 M = SanitizerKind::CFIUnrelatedCast; 2233 break; 2234 } 2235 2236 llvm::Constant *StaticData[] = { 2237 EmitCheckSourceLocation(Loc), 2238 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2239 llvm::ConstantInt::get(Int8Ty, TCK), 2240 }; 2241 EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData, 2242 CastedVTable); 2243 } 2244 2245 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 2246 // quite what we want. 2247 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 2248 while (true) { 2249 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 2250 E = PE->getSubExpr(); 2251 continue; 2252 } 2253 2254 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 2255 if (CE->getCastKind() == CK_NoOp) { 2256 E = CE->getSubExpr(); 2257 continue; 2258 } 2259 } 2260 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 2261 if (UO->getOpcode() == UO_Extension) { 2262 E = UO->getSubExpr(); 2263 continue; 2264 } 2265 } 2266 return E; 2267 } 2268 } 2269 2270 bool 2271 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base, 2272 const CXXMethodDecl *MD) { 2273 // When building with -fapple-kext, all calls must go through the vtable since 2274 // the kernel linker can do runtime patching of vtables. 2275 if (getLangOpts().AppleKext) 2276 return false; 2277 2278 // If the most derived class is marked final, we know that no subclass can 2279 // override this member function and so we can devirtualize it. For example: 2280 // 2281 // struct A { virtual void f(); } 2282 // struct B final : A { }; 2283 // 2284 // void f(B *b) { 2285 // b->f(); 2286 // } 2287 // 2288 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 2289 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 2290 return true; 2291 2292 // If the member function is marked 'final', we know that it can't be 2293 // overridden and can therefore devirtualize it. 2294 if (MD->hasAttr<FinalAttr>()) 2295 return true; 2296 2297 // Similarly, if the class itself is marked 'final' it can't be overridden 2298 // and we can therefore devirtualize the member function call. 2299 if (MD->getParent()->hasAttr<FinalAttr>()) 2300 return true; 2301 2302 Base = skipNoOpCastsAndParens(Base); 2303 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 2304 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 2305 // This is a record decl. We know the type and can devirtualize it. 2306 return VD->getType()->isRecordType(); 2307 } 2308 2309 return false; 2310 } 2311 2312 // We can devirtualize calls on an object accessed by a class member access 2313 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2314 // a derived class object constructed in the same location. 2315 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 2316 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 2317 return VD->getType()->isRecordType(); 2318 2319 // We can always devirtualize calls on temporary object expressions. 2320 if (isa<CXXConstructExpr>(Base)) 2321 return true; 2322 2323 // And calls on bound temporaries. 2324 if (isa<CXXBindTemporaryExpr>(Base)) 2325 return true; 2326 2327 // Check if this is a call expr that returns a record type. 2328 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 2329 return CE->getCallReturnType(getContext())->isRecordType(); 2330 2331 // We can't devirtualize the call. 2332 return false; 2333 } 2334 2335 void CodeGenFunction::EmitForwardingCallToLambda( 2336 const CXXMethodDecl *callOperator, 2337 CallArgList &callArgs) { 2338 // Get the address of the call operator. 2339 const CGFunctionInfo &calleeFnInfo = 2340 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2341 llvm::Value *callee = 2342 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2343 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2344 2345 // Prepare the return slot. 2346 const FunctionProtoType *FPT = 2347 callOperator->getType()->castAs<FunctionProtoType>(); 2348 QualType resultType = FPT->getReturnType(); 2349 ReturnValueSlot returnSlot; 2350 if (!resultType->isVoidType() && 2351 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2352 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2353 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2354 2355 // We don't need to separately arrange the call arguments because 2356 // the call can't be variadic anyway --- it's impossible to forward 2357 // variadic arguments. 2358 2359 // Now emit our call. 2360 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, 2361 callArgs, callOperator); 2362 2363 // If necessary, copy the returned value into the slot. 2364 if (!resultType->isVoidType() && returnSlot.isNull()) 2365 EmitReturnOfRValue(RV, resultType); 2366 else 2367 EmitBranchThroughCleanup(ReturnBlock); 2368 } 2369 2370 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2371 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2372 const VarDecl *variable = BD->capture_begin()->getVariable(); 2373 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2374 2375 // Start building arguments for forwarding call 2376 CallArgList CallArgs; 2377 2378 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2379 llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false); 2380 CallArgs.add(RValue::get(ThisPtr), ThisType); 2381 2382 // Add the rest of the parameters. 2383 for (auto param : BD->params()) 2384 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2385 2386 assert(!Lambda->isGenericLambda() && 2387 "generic lambda interconversion to block not implemented"); 2388 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs); 2389 } 2390 2391 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 2392 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) { 2393 // FIXME: Making this work correctly is nasty because it requires either 2394 // cloning the body of the call operator or making the call operator forward. 2395 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2396 return; 2397 } 2398 2399 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody()); 2400 } 2401 2402 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2403 const CXXRecordDecl *Lambda = MD->getParent(); 2404 2405 // Start building arguments for forwarding call 2406 CallArgList CallArgs; 2407 2408 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2409 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2410 CallArgs.add(RValue::get(ThisPtr), ThisType); 2411 2412 // Add the rest of the parameters. 2413 for (auto Param : MD->params()) 2414 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2415 2416 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2417 // For a generic lambda, find the corresponding call operator specialization 2418 // to which the call to the static-invoker shall be forwarded. 2419 if (Lambda->isGenericLambda()) { 2420 assert(MD->isFunctionTemplateSpecialization()); 2421 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2422 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2423 void *InsertPos = nullptr; 2424 FunctionDecl *CorrespondingCallOpSpecialization = 2425 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2426 assert(CorrespondingCallOpSpecialization); 2427 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2428 } 2429 EmitForwardingCallToLambda(CallOp, CallArgs); 2430 } 2431 2432 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 2433 if (MD->isVariadic()) { 2434 // FIXME: Making this work correctly is nasty because it requires either 2435 // cloning the body of the call operator or making the call operator forward. 2436 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2437 return; 2438 } 2439 2440 EmitLambdaDelegatingInvokeBody(MD); 2441 } 2442