1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28 
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
33     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
34     CastExpr::path_const_iterator End) {
35   CharUnits Offset = CharUnits::Zero();
36 
37   const ASTContext &Context = getContext();
38   const CXXRecordDecl *RD = DerivedClass;
39 
40   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
41     const CXXBaseSpecifier *Base = *I;
42     assert(!Base->isVirtual() && "Should not see virtual bases here!");
43 
44     // Get the layout.
45     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
46 
47     const CXXRecordDecl *BaseDecl =
48       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
49 
50     // Add the offset.
51     Offset += Layout.getBaseClassOffset(BaseDecl);
52 
53     RD = BaseDecl;
54   }
55 
56   return Offset;
57 }
58 
59 llvm::Constant *
60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
61                                    CastExpr::path_const_iterator PathBegin,
62                                    CastExpr::path_const_iterator PathEnd) {
63   assert(PathBegin != PathEnd && "Base path should not be empty!");
64 
65   CharUnits Offset =
66       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
67   if (Offset.isZero())
68     return nullptr;
69 
70   llvm::Type *PtrDiffTy =
71   Types.ConvertType(getContext().getPointerDiffType());
72 
73   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
74 }
75 
76 /// Gets the address of a direct base class within a complete object.
77 /// This should only be used for (1) non-virtual bases or (2) virtual bases
78 /// when the type is known to be complete (e.g. in complete destructors).
79 ///
80 /// The object pointed to by 'This' is assumed to be non-null.
81 llvm::Value *
82 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
83                                                    const CXXRecordDecl *Derived,
84                                                    const CXXRecordDecl *Base,
85                                                    bool BaseIsVirtual) {
86   // 'this' must be a pointer (in some address space) to Derived.
87   assert(This->getType()->isPointerTy() &&
88          cast<llvm::PointerType>(This->getType())->getElementType()
89            == ConvertType(Derived));
90 
91   // Compute the offset of the virtual base.
92   CharUnits Offset;
93   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
94   if (BaseIsVirtual)
95     Offset = Layout.getVBaseClassOffset(Base);
96   else
97     Offset = Layout.getBaseClassOffset(Base);
98 
99   // Shift and cast down to the base type.
100   // TODO: for complete types, this should be possible with a GEP.
101   llvm::Value *V = This;
102   if (Offset.isPositive()) {
103     V = Builder.CreateBitCast(V, Int8PtrTy);
104     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
105   }
106   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
107 
108   return V;
109 }
110 
111 static llvm::Value *
112 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
113                                 CharUnits nonVirtualOffset,
114                                 llvm::Value *virtualOffset) {
115   // Assert that we have something to do.
116   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
117 
118   // Compute the offset from the static and dynamic components.
119   llvm::Value *baseOffset;
120   if (!nonVirtualOffset.isZero()) {
121     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
122                                         nonVirtualOffset.getQuantity());
123     if (virtualOffset) {
124       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
125     }
126   } else {
127     baseOffset = virtualOffset;
128   }
129 
130   // Apply the base offset.
131   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
132   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
133   return ptr;
134 }
135 
136 llvm::Value *CodeGenFunction::GetAddressOfBaseClass(
137     llvm::Value *Value, const CXXRecordDecl *Derived,
138     CastExpr::path_const_iterator PathBegin,
139     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
140     SourceLocation Loc) {
141   assert(PathBegin != PathEnd && "Base path should not be empty!");
142 
143   CastExpr::path_const_iterator Start = PathBegin;
144   const CXXRecordDecl *VBase = nullptr;
145 
146   // Sema has done some convenient canonicalization here: if the
147   // access path involved any virtual steps, the conversion path will
148   // *start* with a step down to the correct virtual base subobject,
149   // and hence will not require any further steps.
150   if ((*Start)->isVirtual()) {
151     VBase =
152       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
153     ++Start;
154   }
155 
156   // Compute the static offset of the ultimate destination within its
157   // allocating subobject (the virtual base, if there is one, or else
158   // the "complete" object that we see).
159   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
160       VBase ? VBase : Derived, Start, PathEnd);
161 
162   // If there's a virtual step, we can sometimes "devirtualize" it.
163   // For now, that's limited to when the derived type is final.
164   // TODO: "devirtualize" this for accesses to known-complete objects.
165   if (VBase && Derived->hasAttr<FinalAttr>()) {
166     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
167     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
168     NonVirtualOffset += vBaseOffset;
169     VBase = nullptr; // we no longer have a virtual step
170   }
171 
172   // Get the base pointer type.
173   llvm::Type *BasePtrTy =
174     ConvertType((PathEnd[-1])->getType())->getPointerTo();
175 
176   QualType DerivedTy = getContext().getRecordType(Derived);
177   CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy);
178 
179   // If the static offset is zero and we don't have a virtual step,
180   // just do a bitcast; null checks are unnecessary.
181   if (NonVirtualOffset.isZero() && !VBase) {
182     if (sanitizePerformTypeCheck()) {
183       EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign,
184                     !NullCheckValue);
185     }
186     return Builder.CreateBitCast(Value, BasePtrTy);
187   }
188 
189   llvm::BasicBlock *origBB = nullptr;
190   llvm::BasicBlock *endBB = nullptr;
191 
192   // Skip over the offset (and the vtable load) if we're supposed to
193   // null-check the pointer.
194   if (NullCheckValue) {
195     origBB = Builder.GetInsertBlock();
196     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
197     endBB = createBasicBlock("cast.end");
198 
199     llvm::Value *isNull = Builder.CreateIsNull(Value);
200     Builder.CreateCondBr(isNull, endBB, notNullBB);
201     EmitBlock(notNullBB);
202   }
203 
204   if (sanitizePerformTypeCheck()) {
205     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value,
206                   DerivedTy, DerivedAlign, true);
207   }
208 
209   // Compute the virtual offset.
210   llvm::Value *VirtualOffset = nullptr;
211   if (VBase) {
212     VirtualOffset =
213       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
214   }
215 
216   // Apply both offsets.
217   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
218                                           NonVirtualOffset,
219                                           VirtualOffset);
220 
221   // Cast to the destination type.
222   Value = Builder.CreateBitCast(Value, BasePtrTy);
223 
224   // Build a phi if we needed a null check.
225   if (NullCheckValue) {
226     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
227     Builder.CreateBr(endBB);
228     EmitBlock(endBB);
229 
230     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
231     PHI->addIncoming(Value, notNullBB);
232     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
233     Value = PHI;
234   }
235 
236   return Value;
237 }
238 
239 llvm::Value *
240 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
241                                           const CXXRecordDecl *Derived,
242                                         CastExpr::path_const_iterator PathBegin,
243                                           CastExpr::path_const_iterator PathEnd,
244                                           bool NullCheckValue) {
245   assert(PathBegin != PathEnd && "Base path should not be empty!");
246 
247   QualType DerivedTy =
248     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
249   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
250 
251   llvm::Value *NonVirtualOffset =
252     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
253 
254   if (!NonVirtualOffset) {
255     // No offset, we can just cast back.
256     return Builder.CreateBitCast(Value, DerivedPtrTy);
257   }
258 
259   llvm::BasicBlock *CastNull = nullptr;
260   llvm::BasicBlock *CastNotNull = nullptr;
261   llvm::BasicBlock *CastEnd = nullptr;
262 
263   if (NullCheckValue) {
264     CastNull = createBasicBlock("cast.null");
265     CastNotNull = createBasicBlock("cast.notnull");
266     CastEnd = createBasicBlock("cast.end");
267 
268     llvm::Value *IsNull = Builder.CreateIsNull(Value);
269     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
270     EmitBlock(CastNotNull);
271   }
272 
273   // Apply the offset.
274   Value = Builder.CreateBitCast(Value, Int8PtrTy);
275   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
276                             "sub.ptr");
277 
278   // Just cast.
279   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
280 
281   if (NullCheckValue) {
282     Builder.CreateBr(CastEnd);
283     EmitBlock(CastNull);
284     Builder.CreateBr(CastEnd);
285     EmitBlock(CastEnd);
286 
287     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
288     PHI->addIncoming(Value, CastNotNull);
289     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
290                      CastNull);
291     Value = PHI;
292   }
293 
294   return Value;
295 }
296 
297 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
298                                               bool ForVirtualBase,
299                                               bool Delegating) {
300   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
301     // This constructor/destructor does not need a VTT parameter.
302     return nullptr;
303   }
304 
305   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
306   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
307 
308   llvm::Value *VTT;
309 
310   uint64_t SubVTTIndex;
311 
312   if (Delegating) {
313     // If this is a delegating constructor call, just load the VTT.
314     return LoadCXXVTT();
315   } else if (RD == Base) {
316     // If the record matches the base, this is the complete ctor/dtor
317     // variant calling the base variant in a class with virtual bases.
318     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
319            "doing no-op VTT offset in base dtor/ctor?");
320     assert(!ForVirtualBase && "Can't have same class as virtual base!");
321     SubVTTIndex = 0;
322   } else {
323     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
324     CharUnits BaseOffset = ForVirtualBase ?
325       Layout.getVBaseClassOffset(Base) :
326       Layout.getBaseClassOffset(Base);
327 
328     SubVTTIndex =
329       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
330     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
331   }
332 
333   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
334     // A VTT parameter was passed to the constructor, use it.
335     VTT = LoadCXXVTT();
336     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
337   } else {
338     // We're the complete constructor, so get the VTT by name.
339     VTT = CGM.getVTables().GetAddrOfVTT(RD);
340     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
341   }
342 
343   return VTT;
344 }
345 
346 namespace {
347   /// Call the destructor for a direct base class.
348   struct CallBaseDtor : EHScopeStack::Cleanup {
349     const CXXRecordDecl *BaseClass;
350     bool BaseIsVirtual;
351     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
352       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
353 
354     void Emit(CodeGenFunction &CGF, Flags flags) override {
355       const CXXRecordDecl *DerivedClass =
356         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
357 
358       const CXXDestructorDecl *D = BaseClass->getDestructor();
359       llvm::Value *Addr =
360         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
361                                                   DerivedClass, BaseClass,
362                                                   BaseIsVirtual);
363       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
364                                 /*Delegating=*/false, Addr);
365     }
366   };
367 
368   /// A visitor which checks whether an initializer uses 'this' in a
369   /// way which requires the vtable to be properly set.
370   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
371     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
372 
373     bool UsesThis;
374 
375     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
376 
377     // Black-list all explicit and implicit references to 'this'.
378     //
379     // Do we need to worry about external references to 'this' derived
380     // from arbitrary code?  If so, then anything which runs arbitrary
381     // external code might potentially access the vtable.
382     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
383   };
384 }
385 
386 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
387   DynamicThisUseChecker Checker(C);
388   Checker.Visit(Init);
389   return Checker.UsesThis;
390 }
391 
392 static void EmitBaseInitializer(CodeGenFunction &CGF,
393                                 const CXXRecordDecl *ClassDecl,
394                                 CXXCtorInitializer *BaseInit,
395                                 CXXCtorType CtorType) {
396   assert(BaseInit->isBaseInitializer() &&
397          "Must have base initializer!");
398 
399   llvm::Value *ThisPtr = CGF.LoadCXXThis();
400 
401   const Type *BaseType = BaseInit->getBaseClass();
402   CXXRecordDecl *BaseClassDecl =
403     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
404 
405   bool isBaseVirtual = BaseInit->isBaseVirtual();
406 
407   // The base constructor doesn't construct virtual bases.
408   if (CtorType == Ctor_Base && isBaseVirtual)
409     return;
410 
411   // If the initializer for the base (other than the constructor
412   // itself) accesses 'this' in any way, we need to initialize the
413   // vtables.
414   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
415     CGF.InitializeVTablePointers(ClassDecl);
416 
417   // We can pretend to be a complete class because it only matters for
418   // virtual bases, and we only do virtual bases for complete ctors.
419   llvm::Value *V =
420     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
421                                               BaseClassDecl,
422                                               isBaseVirtual);
423   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
424   AggValueSlot AggSlot =
425     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
426                           AggValueSlot::IsDestructed,
427                           AggValueSlot::DoesNotNeedGCBarriers,
428                           AggValueSlot::IsNotAliased);
429 
430   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
431 
432   if (CGF.CGM.getLangOpts().Exceptions &&
433       !BaseClassDecl->hasTrivialDestructor())
434     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
435                                           isBaseVirtual);
436 }
437 
438 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
439                                      LValue LHS,
440                                      Expr *Init,
441                                      llvm::Value *ArrayIndexVar,
442                                      QualType T,
443                                      ArrayRef<VarDecl *> ArrayIndexes,
444                                      unsigned Index) {
445   if (Index == ArrayIndexes.size()) {
446     LValue LV = LHS;
447 
448     if (ArrayIndexVar) {
449       // If we have an array index variable, load it and use it as an offset.
450       // Then, increment the value.
451       llvm::Value *Dest = LHS.getAddress();
452       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
453       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
454       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
455       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
456       CGF.Builder.CreateStore(Next, ArrayIndexVar);
457 
458       // Update the LValue.
459       LV.setAddress(Dest);
460       CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
461       LV.setAlignment(std::min(Align, LV.getAlignment()));
462     }
463 
464     switch (CGF.getEvaluationKind(T)) {
465     case TEK_Scalar:
466       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
467       break;
468     case TEK_Complex:
469       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
470       break;
471     case TEK_Aggregate: {
472       AggValueSlot Slot =
473         AggValueSlot::forLValue(LV,
474                                 AggValueSlot::IsDestructed,
475                                 AggValueSlot::DoesNotNeedGCBarriers,
476                                 AggValueSlot::IsNotAliased);
477 
478       CGF.EmitAggExpr(Init, Slot);
479       break;
480     }
481     }
482 
483     return;
484   }
485 
486   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
487   assert(Array && "Array initialization without the array type?");
488   llvm::Value *IndexVar
489     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
490   assert(IndexVar && "Array index variable not loaded");
491 
492   // Initialize this index variable to zero.
493   llvm::Value* Zero
494     = llvm::Constant::getNullValue(
495                               CGF.ConvertType(CGF.getContext().getSizeType()));
496   CGF.Builder.CreateStore(Zero, IndexVar);
497 
498   // Start the loop with a block that tests the condition.
499   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
500   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
501 
502   CGF.EmitBlock(CondBlock);
503 
504   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
505   // Generate: if (loop-index < number-of-elements) fall to the loop body,
506   // otherwise, go to the block after the for-loop.
507   uint64_t NumElements = Array->getSize().getZExtValue();
508   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
509   llvm::Value *NumElementsPtr =
510     llvm::ConstantInt::get(Counter->getType(), NumElements);
511   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
512                                                   "isless");
513 
514   // If the condition is true, execute the body.
515   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
516 
517   CGF.EmitBlock(ForBody);
518   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
519 
520   // Inside the loop body recurse to emit the inner loop or, eventually, the
521   // constructor call.
522   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
523                            Array->getElementType(), ArrayIndexes, Index + 1);
524 
525   CGF.EmitBlock(ContinueBlock);
526 
527   // Emit the increment of the loop counter.
528   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
529   Counter = CGF.Builder.CreateLoad(IndexVar);
530   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
531   CGF.Builder.CreateStore(NextVal, IndexVar);
532 
533   // Finally, branch back up to the condition for the next iteration.
534   CGF.EmitBranch(CondBlock);
535 
536   // Emit the fall-through block.
537   CGF.EmitBlock(AfterFor, true);
538 }
539 
540 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
541   auto *CD = dyn_cast<CXXConstructorDecl>(D);
542   if (!(CD && CD->isCopyOrMoveConstructor()) &&
543       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
544     return false;
545 
546   // We can emit a memcpy for a trivial copy or move constructor/assignment.
547   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
548     return true;
549 
550   // We *must* emit a memcpy for a defaulted union copy or move op.
551   if (D->getParent()->isUnion() && D->isDefaulted())
552     return true;
553 
554   return false;
555 }
556 
557 static void EmitMemberInitializer(CodeGenFunction &CGF,
558                                   const CXXRecordDecl *ClassDecl,
559                                   CXXCtorInitializer *MemberInit,
560                                   const CXXConstructorDecl *Constructor,
561                                   FunctionArgList &Args) {
562   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
563   assert(MemberInit->isAnyMemberInitializer() &&
564          "Must have member initializer!");
565   assert(MemberInit->getInit() && "Must have initializer!");
566 
567   // non-static data member initializers.
568   FieldDecl *Field = MemberInit->getAnyMember();
569   QualType FieldType = Field->getType();
570 
571   llvm::Value *ThisPtr = CGF.LoadCXXThis();
572   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
573   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
574 
575   if (MemberInit->isIndirectMemberInitializer()) {
576     // If we are initializing an anonymous union field, drill down to
577     // the field.
578     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
579     for (const auto *I : IndirectField->chain())
580       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
581     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
582   } else {
583     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
584   }
585 
586   // Special case: if we are in a copy or move constructor, and we are copying
587   // an array of PODs or classes with trivial copy constructors, ignore the
588   // AST and perform the copy we know is equivalent.
589   // FIXME: This is hacky at best... if we had a bit more explicit information
590   // in the AST, we could generalize it more easily.
591   const ConstantArrayType *Array
592     = CGF.getContext().getAsConstantArrayType(FieldType);
593   if (Array && Constructor->isDefaulted() &&
594       Constructor->isCopyOrMoveConstructor()) {
595     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
596     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
597     if (BaseElementTy.isPODType(CGF.getContext()) ||
598         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
599       unsigned SrcArgIndex =
600           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
601       llvm::Value *SrcPtr
602         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
603       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
604       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
605 
606       // Copy the aggregate.
607       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
608                             LHS.isVolatileQualified());
609       // Ensure that we destroy the objects if an exception is thrown later in
610       // the constructor.
611       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
612       if (CGF.needsEHCleanup(dtorKind))
613         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
614       return;
615     }
616   }
617 
618   ArrayRef<VarDecl *> ArrayIndexes;
619   if (MemberInit->getNumArrayIndices())
620     ArrayIndexes = MemberInit->getArrayIndexes();
621   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
622 }
623 
624 void CodeGenFunction::EmitInitializerForField(
625     FieldDecl *Field, LValue LHS, Expr *Init,
626     ArrayRef<VarDecl *> ArrayIndexes) {
627   QualType FieldType = Field->getType();
628   switch (getEvaluationKind(FieldType)) {
629   case TEK_Scalar:
630     if (LHS.isSimple()) {
631       EmitExprAsInit(Init, Field, LHS, false);
632     } else {
633       RValue RHS = RValue::get(EmitScalarExpr(Init));
634       EmitStoreThroughLValue(RHS, LHS);
635     }
636     break;
637   case TEK_Complex:
638     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
639     break;
640   case TEK_Aggregate: {
641     llvm::Value *ArrayIndexVar = nullptr;
642     if (ArrayIndexes.size()) {
643       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
644 
645       // The LHS is a pointer to the first object we'll be constructing, as
646       // a flat array.
647       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
648       llvm::Type *BasePtr = ConvertType(BaseElementTy);
649       BasePtr = llvm::PointerType::getUnqual(BasePtr);
650       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
651                                                        BasePtr);
652       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
653 
654       // Create an array index that will be used to walk over all of the
655       // objects we're constructing.
656       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
657       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
658       Builder.CreateStore(Zero, ArrayIndexVar);
659 
660 
661       // Emit the block variables for the array indices, if any.
662       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
663         EmitAutoVarDecl(*ArrayIndexes[I]);
664     }
665 
666     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
667                              ArrayIndexes, 0);
668   }
669   }
670 
671   // Ensure that we destroy this object if an exception is thrown
672   // later in the constructor.
673   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
674   if (needsEHCleanup(dtorKind))
675     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
676 }
677 
678 /// Checks whether the given constructor is a valid subject for the
679 /// complete-to-base constructor delegation optimization, i.e.
680 /// emitting the complete constructor as a simple call to the base
681 /// constructor.
682 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
683 
684   // Currently we disable the optimization for classes with virtual
685   // bases because (1) the addresses of parameter variables need to be
686   // consistent across all initializers but (2) the delegate function
687   // call necessarily creates a second copy of the parameter variable.
688   //
689   // The limiting example (purely theoretical AFAIK):
690   //   struct A { A(int &c) { c++; } };
691   //   struct B : virtual A {
692   //     B(int count) : A(count) { printf("%d\n", count); }
693   //   };
694   // ...although even this example could in principle be emitted as a
695   // delegation since the address of the parameter doesn't escape.
696   if (Ctor->getParent()->getNumVBases()) {
697     // TODO: white-list trivial vbase initializers.  This case wouldn't
698     // be subject to the restrictions below.
699 
700     // TODO: white-list cases where:
701     //  - there are no non-reference parameters to the constructor
702     //  - the initializers don't access any non-reference parameters
703     //  - the initializers don't take the address of non-reference
704     //    parameters
705     //  - etc.
706     // If we ever add any of the above cases, remember that:
707     //  - function-try-blocks will always blacklist this optimization
708     //  - we need to perform the constructor prologue and cleanup in
709     //    EmitConstructorBody.
710 
711     return false;
712   }
713 
714   // We also disable the optimization for variadic functions because
715   // it's impossible to "re-pass" varargs.
716   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
717     return false;
718 
719   // FIXME: Decide if we can do a delegation of a delegating constructor.
720   if (Ctor->isDelegatingConstructor())
721     return false;
722 
723   return true;
724 }
725 
726 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
727 // to poison the extra field paddings inserted under
728 // -fsanitize-address-field-padding=1|2.
729 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
730   ASTContext &Context = getContext();
731   const CXXRecordDecl *ClassDecl =
732       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
733                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
734   if (!ClassDecl->mayInsertExtraPadding()) return;
735 
736   struct SizeAndOffset {
737     uint64_t Size;
738     uint64_t Offset;
739   };
740 
741   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
742   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
743 
744   // Populate sizes and offsets of fields.
745   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
746   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
747     SSV[i].Offset =
748         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
749 
750   size_t NumFields = 0;
751   for (const auto *Field : ClassDecl->fields()) {
752     const FieldDecl *D = Field;
753     std::pair<CharUnits, CharUnits> FieldInfo =
754         Context.getTypeInfoInChars(D->getType());
755     CharUnits FieldSize = FieldInfo.first;
756     assert(NumFields < SSV.size());
757     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
758     NumFields++;
759   }
760   assert(NumFields == SSV.size());
761   if (SSV.size() <= 1) return;
762 
763   // We will insert calls to __asan_* run-time functions.
764   // LLVM AddressSanitizer pass may decide to inline them later.
765   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
766   llvm::FunctionType *FTy =
767       llvm::FunctionType::get(CGM.VoidTy, Args, false);
768   llvm::Constant *F = CGM.CreateRuntimeFunction(
769       FTy, Prologue ? "__asan_poison_intra_object_redzone"
770                     : "__asan_unpoison_intra_object_redzone");
771 
772   llvm::Value *ThisPtr = LoadCXXThis();
773   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
774   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
775   // For each field check if it has sufficient padding,
776   // if so (un)poison it with a call.
777   for (size_t i = 0; i < SSV.size(); i++) {
778     uint64_t AsanAlignment = 8;
779     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
780     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
781     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
782     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
783         (NextField % AsanAlignment) != 0)
784       continue;
785     Builder.CreateCall(
786         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
787             Builder.getIntN(PtrSize, PoisonSize)});
788   }
789 }
790 
791 /// EmitConstructorBody - Emits the body of the current constructor.
792 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
793   EmitAsanPrologueOrEpilogue(true);
794   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
795   CXXCtorType CtorType = CurGD.getCtorType();
796 
797   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
798           CtorType == Ctor_Complete) &&
799          "can only generate complete ctor for this ABI");
800 
801   // Before we go any further, try the complete->base constructor
802   // delegation optimization.
803   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
804       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
805     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
806     return;
807   }
808 
809   const FunctionDecl *Definition = 0;
810   Stmt *Body = Ctor->getBody(Definition);
811   assert(Definition == Ctor && "emitting wrong constructor body");
812 
813   // Enter the function-try-block before the constructor prologue if
814   // applicable.
815   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
816   if (IsTryBody)
817     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
818 
819   incrementProfileCounter(Body);
820 
821   RunCleanupsScope RunCleanups(*this);
822 
823   // TODO: in restricted cases, we can emit the vbase initializers of
824   // a complete ctor and then delegate to the base ctor.
825 
826   // Emit the constructor prologue, i.e. the base and member
827   // initializers.
828   EmitCtorPrologue(Ctor, CtorType, Args);
829 
830   // Emit the body of the statement.
831   if (IsTryBody)
832     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
833   else if (Body)
834     EmitStmt(Body);
835 
836   // Emit any cleanup blocks associated with the member or base
837   // initializers, which includes (along the exceptional path) the
838   // destructors for those members and bases that were fully
839   // constructed.
840   RunCleanups.ForceCleanup();
841 
842   if (IsTryBody)
843     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
844 }
845 
846 namespace {
847   /// RAII object to indicate that codegen is copying the value representation
848   /// instead of the object representation. Useful when copying a struct or
849   /// class which has uninitialized members and we're only performing
850   /// lvalue-to-rvalue conversion on the object but not its members.
851   class CopyingValueRepresentation {
852   public:
853     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
854         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
855       CGF.SanOpts.set(SanitizerKind::Bool, false);
856       CGF.SanOpts.set(SanitizerKind::Enum, false);
857     }
858     ~CopyingValueRepresentation() {
859       CGF.SanOpts = OldSanOpts;
860     }
861   private:
862     CodeGenFunction &CGF;
863     SanitizerSet OldSanOpts;
864   };
865 }
866 
867 namespace {
868   class FieldMemcpyizer {
869   public:
870     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
871                     const VarDecl *SrcRec)
872       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
873         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
874         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
875         LastFieldOffset(0), LastAddedFieldIndex(0) {}
876 
877     bool isMemcpyableField(FieldDecl *F) const {
878       // Never memcpy fields when we are adding poisoned paddings.
879       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
880         return false;
881       Qualifiers Qual = F->getType().getQualifiers();
882       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
883         return false;
884       return true;
885     }
886 
887     void addMemcpyableField(FieldDecl *F) {
888       if (!FirstField)
889         addInitialField(F);
890       else
891         addNextField(F);
892     }
893 
894     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
895       unsigned LastFieldSize =
896         LastField->isBitField() ?
897           LastField->getBitWidthValue(CGF.getContext()) :
898           CGF.getContext().getTypeSize(LastField->getType());
899       uint64_t MemcpySizeBits =
900         LastFieldOffset + LastFieldSize - FirstByteOffset +
901         CGF.getContext().getCharWidth() - 1;
902       CharUnits MemcpySize =
903         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
904       return MemcpySize;
905     }
906 
907     void emitMemcpy() {
908       // Give the subclass a chance to bail out if it feels the memcpy isn't
909       // worth it (e.g. Hasn't aggregated enough data).
910       if (!FirstField) {
911         return;
912       }
913 
914       uint64_t FirstByteOffset;
915       if (FirstField->isBitField()) {
916         const CGRecordLayout &RL =
917           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
918         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
919         // FirstFieldOffset is not appropriate for bitfields,
920         // it won't tell us what the storage offset should be and thus might not
921         // be properly aligned.
922         //
923         // Instead calculate the storage offset using the offset of the field in
924         // the struct type.
925         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
926       } else {
927         FirstByteOffset = FirstFieldOffset;
928       }
929 
930       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
931       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
932       llvm::Value *ThisPtr = CGF.LoadCXXThis();
933       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
934       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
935       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
936       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
937       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
938 
939       CharUnits Offset = CGF.getContext().toCharUnitsFromBits(FirstByteOffset);
940       CharUnits Alignment = DestLV.getAlignment().alignmentAtOffset(Offset);
941 
942       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
943                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
944                    MemcpySize, Alignment);
945       reset();
946     }
947 
948     void reset() {
949       FirstField = nullptr;
950     }
951 
952   protected:
953     CodeGenFunction &CGF;
954     const CXXRecordDecl *ClassDecl;
955 
956   private:
957 
958     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
959                       CharUnits Size, CharUnits Alignment) {
960       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
961       llvm::Type *DBP =
962         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
963       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
964 
965       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
966       llvm::Type *SBP =
967         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
968       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
969 
970       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
971                                Alignment.getQuantity());
972     }
973 
974     void addInitialField(FieldDecl *F) {
975         FirstField = F;
976         LastField = F;
977         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
978         LastFieldOffset = FirstFieldOffset;
979         LastAddedFieldIndex = F->getFieldIndex();
980         return;
981       }
982 
983     void addNextField(FieldDecl *F) {
984       // For the most part, the following invariant will hold:
985       //   F->getFieldIndex() == LastAddedFieldIndex + 1
986       // The one exception is that Sema won't add a copy-initializer for an
987       // unnamed bitfield, which will show up here as a gap in the sequence.
988       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
989              "Cannot aggregate fields out of order.");
990       LastAddedFieldIndex = F->getFieldIndex();
991 
992       // The 'first' and 'last' fields are chosen by offset, rather than field
993       // index. This allows the code to support bitfields, as well as regular
994       // fields.
995       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
996       if (FOffset < FirstFieldOffset) {
997         FirstField = F;
998         FirstFieldOffset = FOffset;
999       } else if (FOffset > LastFieldOffset) {
1000         LastField = F;
1001         LastFieldOffset = FOffset;
1002       }
1003     }
1004 
1005     const VarDecl *SrcRec;
1006     const ASTRecordLayout &RecLayout;
1007     FieldDecl *FirstField;
1008     FieldDecl *LastField;
1009     uint64_t FirstFieldOffset, LastFieldOffset;
1010     unsigned LastAddedFieldIndex;
1011   };
1012 
1013   class ConstructorMemcpyizer : public FieldMemcpyizer {
1014   private:
1015 
1016     /// Get source argument for copy constructor. Returns null if not a copy
1017     /// constructor.
1018     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1019                                                const CXXConstructorDecl *CD,
1020                                                FunctionArgList &Args) {
1021       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1022         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1023       return nullptr;
1024     }
1025 
1026     // Returns true if a CXXCtorInitializer represents a member initialization
1027     // that can be rolled into a memcpy.
1028     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1029       if (!MemcpyableCtor)
1030         return false;
1031       FieldDecl *Field = MemberInit->getMember();
1032       assert(Field && "No field for member init.");
1033       QualType FieldType = Field->getType();
1034       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1035 
1036       // Bail out on non-memcpyable, not-trivially-copyable members.
1037       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1038           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1039             FieldType->isReferenceType()))
1040         return false;
1041 
1042       // Bail out on volatile fields.
1043       if (!isMemcpyableField(Field))
1044         return false;
1045 
1046       // Otherwise we're good.
1047       return true;
1048     }
1049 
1050   public:
1051     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1052                           FunctionArgList &Args)
1053       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1054         ConstructorDecl(CD),
1055         MemcpyableCtor(CD->isDefaulted() &&
1056                        CD->isCopyOrMoveConstructor() &&
1057                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1058         Args(Args) { }
1059 
1060     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1061       if (isMemberInitMemcpyable(MemberInit)) {
1062         AggregatedInits.push_back(MemberInit);
1063         addMemcpyableField(MemberInit->getMember());
1064       } else {
1065         emitAggregatedInits();
1066         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1067                               ConstructorDecl, Args);
1068       }
1069     }
1070 
1071     void emitAggregatedInits() {
1072       if (AggregatedInits.size() <= 1) {
1073         // This memcpy is too small to be worthwhile. Fall back on default
1074         // codegen.
1075         if (!AggregatedInits.empty()) {
1076           CopyingValueRepresentation CVR(CGF);
1077           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1078                                 AggregatedInits[0], ConstructorDecl, Args);
1079         }
1080         reset();
1081         return;
1082       }
1083 
1084       pushEHDestructors();
1085       emitMemcpy();
1086       AggregatedInits.clear();
1087     }
1088 
1089     void pushEHDestructors() {
1090       llvm::Value *ThisPtr = CGF.LoadCXXThis();
1091       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1092       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
1093 
1094       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1095         QualType FieldType = AggregatedInits[i]->getMember()->getType();
1096         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1097         if (CGF.needsEHCleanup(dtorKind))
1098           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
1099       }
1100     }
1101 
1102     void finish() {
1103       emitAggregatedInits();
1104     }
1105 
1106   private:
1107     const CXXConstructorDecl *ConstructorDecl;
1108     bool MemcpyableCtor;
1109     FunctionArgList &Args;
1110     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1111   };
1112 
1113   class AssignmentMemcpyizer : public FieldMemcpyizer {
1114   private:
1115 
1116     // Returns the memcpyable field copied by the given statement, if one
1117     // exists. Otherwise returns null.
1118     FieldDecl *getMemcpyableField(Stmt *S) {
1119       if (!AssignmentsMemcpyable)
1120         return nullptr;
1121       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1122         // Recognise trivial assignments.
1123         if (BO->getOpcode() != BO_Assign)
1124           return nullptr;
1125         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1126         if (!ME)
1127           return nullptr;
1128         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1129         if (!Field || !isMemcpyableField(Field))
1130           return nullptr;
1131         Stmt *RHS = BO->getRHS();
1132         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1133           RHS = EC->getSubExpr();
1134         if (!RHS)
1135           return nullptr;
1136         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1137         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1138           return nullptr;
1139         return Field;
1140       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1141         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1142         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1143           return nullptr;
1144         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1145         if (!IOA)
1146           return nullptr;
1147         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1148         if (!Field || !isMemcpyableField(Field))
1149           return nullptr;
1150         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1151         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1152           return nullptr;
1153         return Field;
1154       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1155         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1156         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1157           return nullptr;
1158         Expr *DstPtr = CE->getArg(0);
1159         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1160           DstPtr = DC->getSubExpr();
1161         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1162         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1163           return nullptr;
1164         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1165         if (!ME)
1166           return nullptr;
1167         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1168         if (!Field || !isMemcpyableField(Field))
1169           return nullptr;
1170         Expr *SrcPtr = CE->getArg(1);
1171         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1172           SrcPtr = SC->getSubExpr();
1173         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1174         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1175           return nullptr;
1176         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1177         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1178           return nullptr;
1179         return Field;
1180       }
1181 
1182       return nullptr;
1183     }
1184 
1185     bool AssignmentsMemcpyable;
1186     SmallVector<Stmt*, 16> AggregatedStmts;
1187 
1188   public:
1189 
1190     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1191                          FunctionArgList &Args)
1192       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1193         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1194       assert(Args.size() == 2);
1195     }
1196 
1197     void emitAssignment(Stmt *S) {
1198       FieldDecl *F = getMemcpyableField(S);
1199       if (F) {
1200         addMemcpyableField(F);
1201         AggregatedStmts.push_back(S);
1202       } else {
1203         emitAggregatedStmts();
1204         CGF.EmitStmt(S);
1205       }
1206     }
1207 
1208     void emitAggregatedStmts() {
1209       if (AggregatedStmts.size() <= 1) {
1210         if (!AggregatedStmts.empty()) {
1211           CopyingValueRepresentation CVR(CGF);
1212           CGF.EmitStmt(AggregatedStmts[0]);
1213         }
1214         reset();
1215       }
1216 
1217       emitMemcpy();
1218       AggregatedStmts.clear();
1219     }
1220 
1221     void finish() {
1222       emitAggregatedStmts();
1223     }
1224   };
1225 
1226 }
1227 
1228 /// EmitCtorPrologue - This routine generates necessary code to initialize
1229 /// base classes and non-static data members belonging to this constructor.
1230 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1231                                        CXXCtorType CtorType,
1232                                        FunctionArgList &Args) {
1233   if (CD->isDelegatingConstructor())
1234     return EmitDelegatingCXXConstructorCall(CD, Args);
1235 
1236   const CXXRecordDecl *ClassDecl = CD->getParent();
1237 
1238   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1239                                           E = CD->init_end();
1240 
1241   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1242   if (ClassDecl->getNumVBases() &&
1243       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1244     // The ABIs that don't have constructor variants need to put a branch
1245     // before the virtual base initialization code.
1246     BaseCtorContinueBB =
1247       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1248     assert(BaseCtorContinueBB);
1249   }
1250 
1251   // Virtual base initializers first.
1252   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1253     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1254   }
1255 
1256   if (BaseCtorContinueBB) {
1257     // Complete object handler should continue to the remaining initializers.
1258     Builder.CreateBr(BaseCtorContinueBB);
1259     EmitBlock(BaseCtorContinueBB);
1260   }
1261 
1262   // Then, non-virtual base initializers.
1263   for (; B != E && (*B)->isBaseInitializer(); B++) {
1264     assert(!(*B)->isBaseVirtual());
1265     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1266   }
1267 
1268   InitializeVTablePointers(ClassDecl);
1269 
1270   // And finally, initialize class members.
1271   FieldConstructionScope FCS(*this, CXXThisValue);
1272   ConstructorMemcpyizer CM(*this, CD, Args);
1273   for (; B != E; B++) {
1274     CXXCtorInitializer *Member = (*B);
1275     assert(!Member->isBaseInitializer());
1276     assert(Member->isAnyMemberInitializer() &&
1277            "Delegating initializer on non-delegating constructor");
1278     CM.addMemberInitializer(Member);
1279   }
1280   CM.finish();
1281 }
1282 
1283 static bool
1284 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1285 
1286 static bool
1287 HasTrivialDestructorBody(ASTContext &Context,
1288                          const CXXRecordDecl *BaseClassDecl,
1289                          const CXXRecordDecl *MostDerivedClassDecl)
1290 {
1291   // If the destructor is trivial we don't have to check anything else.
1292   if (BaseClassDecl->hasTrivialDestructor())
1293     return true;
1294 
1295   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1296     return false;
1297 
1298   // Check fields.
1299   for (const auto *Field : BaseClassDecl->fields())
1300     if (!FieldHasTrivialDestructorBody(Context, Field))
1301       return false;
1302 
1303   // Check non-virtual bases.
1304   for (const auto &I : BaseClassDecl->bases()) {
1305     if (I.isVirtual())
1306       continue;
1307 
1308     const CXXRecordDecl *NonVirtualBase =
1309       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1310     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1311                                   MostDerivedClassDecl))
1312       return false;
1313   }
1314 
1315   if (BaseClassDecl == MostDerivedClassDecl) {
1316     // Check virtual bases.
1317     for (const auto &I : BaseClassDecl->vbases()) {
1318       const CXXRecordDecl *VirtualBase =
1319         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1320       if (!HasTrivialDestructorBody(Context, VirtualBase,
1321                                     MostDerivedClassDecl))
1322         return false;
1323     }
1324   }
1325 
1326   return true;
1327 }
1328 
1329 static bool
1330 FieldHasTrivialDestructorBody(ASTContext &Context,
1331                               const FieldDecl *Field)
1332 {
1333   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1334 
1335   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1336   if (!RT)
1337     return true;
1338 
1339   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1340 
1341   // The destructor for an implicit anonymous union member is never invoked.
1342   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1343     return false;
1344 
1345   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1346 }
1347 
1348 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1349 /// any vtable pointers before calling this destructor.
1350 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
1351                                                const CXXDestructorDecl *Dtor) {
1352   if (!Dtor->hasTrivialBody())
1353     return false;
1354 
1355   // Check the fields.
1356   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1357   for (const auto *Field : ClassDecl->fields())
1358     if (!FieldHasTrivialDestructorBody(Context, Field))
1359       return false;
1360 
1361   return true;
1362 }
1363 
1364 /// EmitDestructorBody - Emits the body of the current destructor.
1365 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1366   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1367   CXXDtorType DtorType = CurGD.getDtorType();
1368 
1369   Stmt *Body = Dtor->getBody();
1370   if (Body)
1371     incrementProfileCounter(Body);
1372 
1373   // The call to operator delete in a deleting destructor happens
1374   // outside of the function-try-block, which means it's always
1375   // possible to delegate the destructor body to the complete
1376   // destructor.  Do so.
1377   if (DtorType == Dtor_Deleting) {
1378     EnterDtorCleanups(Dtor, Dtor_Deleting);
1379     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1380                           /*Delegating=*/false, LoadCXXThis());
1381     PopCleanupBlock();
1382     return;
1383   }
1384 
1385   // If the body is a function-try-block, enter the try before
1386   // anything else.
1387   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1388   if (isTryBody)
1389     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1390   EmitAsanPrologueOrEpilogue(false);
1391 
1392   // Enter the epilogue cleanups.
1393   RunCleanupsScope DtorEpilogue(*this);
1394 
1395   // If this is the complete variant, just invoke the base variant;
1396   // the epilogue will destruct the virtual bases.  But we can't do
1397   // this optimization if the body is a function-try-block, because
1398   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1399   // always delegate because we might not have a definition in this TU.
1400   switch (DtorType) {
1401   case Dtor_Comdat:
1402     llvm_unreachable("not expecting a COMDAT");
1403 
1404   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1405 
1406   case Dtor_Complete:
1407     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1408            "can't emit a dtor without a body for non-Microsoft ABIs");
1409 
1410     // Enter the cleanup scopes for virtual bases.
1411     EnterDtorCleanups(Dtor, Dtor_Complete);
1412 
1413     if (!isTryBody) {
1414       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1415                             /*Delegating=*/false, LoadCXXThis());
1416       break;
1417     }
1418     // Fallthrough: act like we're in the base variant.
1419 
1420   case Dtor_Base:
1421     assert(Body);
1422 
1423     // Enter the cleanup scopes for fields and non-virtual bases.
1424     EnterDtorCleanups(Dtor, Dtor_Base);
1425 
1426     // Initialize the vtable pointers before entering the body.
1427     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
1428         InitializeVTablePointers(Dtor->getParent());
1429 
1430     if (isTryBody)
1431       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1432     else if (Body)
1433       EmitStmt(Body);
1434     else {
1435       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1436       // nothing to do besides what's in the epilogue
1437     }
1438     // -fapple-kext must inline any call to this dtor into
1439     // the caller's body.
1440     if (getLangOpts().AppleKext)
1441       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1442     break;
1443   }
1444 
1445   // Jump out through the epilogue cleanups.
1446   DtorEpilogue.ForceCleanup();
1447 
1448   // Exit the try if applicable.
1449   if (isTryBody)
1450     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1451 }
1452 
1453 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1454   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1455   const Stmt *RootS = AssignOp->getBody();
1456   assert(isa<CompoundStmt>(RootS) &&
1457          "Body of an implicit assignment operator should be compound stmt.");
1458   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1459 
1460   LexicalScope Scope(*this, RootCS->getSourceRange());
1461 
1462   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1463   for (auto *I : RootCS->body())
1464     AM.emitAssignment(I);
1465   AM.finish();
1466 }
1467 
1468 namespace {
1469   /// Call the operator delete associated with the current destructor.
1470   struct CallDtorDelete : EHScopeStack::Cleanup {
1471     CallDtorDelete() {}
1472 
1473     void Emit(CodeGenFunction &CGF, Flags flags) override {
1474       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1475       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1476       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1477                          CGF.getContext().getTagDeclType(ClassDecl));
1478     }
1479   };
1480 
1481   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
1482     llvm::Value *ShouldDeleteCondition;
1483   public:
1484     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1485       : ShouldDeleteCondition(ShouldDeleteCondition) {
1486       assert(ShouldDeleteCondition != nullptr);
1487     }
1488 
1489     void Emit(CodeGenFunction &CGF, Flags flags) override {
1490       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1491       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1492       llvm::Value *ShouldCallDelete
1493         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1494       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1495 
1496       CGF.EmitBlock(callDeleteBB);
1497       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1498       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1499       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1500                          CGF.getContext().getTagDeclType(ClassDecl));
1501       CGF.Builder.CreateBr(continueBB);
1502 
1503       CGF.EmitBlock(continueBB);
1504     }
1505   };
1506 
1507   class DestroyField  : public EHScopeStack::Cleanup {
1508     const FieldDecl *field;
1509     CodeGenFunction::Destroyer *destroyer;
1510     bool useEHCleanupForArray;
1511 
1512   public:
1513     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1514                  bool useEHCleanupForArray)
1515       : field(field), destroyer(destroyer),
1516         useEHCleanupForArray(useEHCleanupForArray) {}
1517 
1518     void Emit(CodeGenFunction &CGF, Flags flags) override {
1519       // Find the address of the field.
1520       llvm::Value *thisValue = CGF.LoadCXXThis();
1521       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1522       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1523       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1524       assert(LV.isSimple());
1525 
1526       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1527                       flags.isForNormalCleanup() && useEHCleanupForArray);
1528     }
1529   };
1530 }
1531 
1532 /// \brief Emit all code that comes at the end of class's
1533 /// destructor. This is to call destructors on members and base classes
1534 /// in reverse order of their construction.
1535 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1536                                         CXXDtorType DtorType) {
1537   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1538          "Should not emit dtor epilogue for non-exported trivial dtor!");
1539 
1540   // The deleting-destructor phase just needs to call the appropriate
1541   // operator delete that Sema picked up.
1542   if (DtorType == Dtor_Deleting) {
1543     assert(DD->getOperatorDelete() &&
1544            "operator delete missing - EnterDtorCleanups");
1545     if (CXXStructorImplicitParamValue) {
1546       // If there is an implicit param to the deleting dtor, it's a boolean
1547       // telling whether we should call delete at the end of the dtor.
1548       EHStack.pushCleanup<CallDtorDeleteConditional>(
1549           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1550     } else {
1551       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1552     }
1553     return;
1554   }
1555 
1556   const CXXRecordDecl *ClassDecl = DD->getParent();
1557 
1558   // Unions have no bases and do not call field destructors.
1559   if (ClassDecl->isUnion())
1560     return;
1561 
1562   // The complete-destructor phase just destructs all the virtual bases.
1563   if (DtorType == Dtor_Complete) {
1564 
1565     // We push them in the forward order so that they'll be popped in
1566     // the reverse order.
1567     for (const auto &Base : ClassDecl->vbases()) {
1568       CXXRecordDecl *BaseClassDecl
1569         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1570 
1571       // Ignore trivial destructors.
1572       if (BaseClassDecl->hasTrivialDestructor())
1573         continue;
1574 
1575       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1576                                         BaseClassDecl,
1577                                         /*BaseIsVirtual*/ true);
1578     }
1579 
1580     return;
1581   }
1582 
1583   assert(DtorType == Dtor_Base);
1584 
1585   // Destroy non-virtual bases.
1586   for (const auto &Base : ClassDecl->bases()) {
1587     // Ignore virtual bases.
1588     if (Base.isVirtual())
1589       continue;
1590 
1591     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1592 
1593     // Ignore trivial destructors.
1594     if (BaseClassDecl->hasTrivialDestructor())
1595       continue;
1596 
1597     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1598                                       BaseClassDecl,
1599                                       /*BaseIsVirtual*/ false);
1600   }
1601 
1602   // Destroy direct fields.
1603   for (const auto *Field : ClassDecl->fields()) {
1604     QualType type = Field->getType();
1605     QualType::DestructionKind dtorKind = type.isDestructedType();
1606     if (!dtorKind) continue;
1607 
1608     // Anonymous union members do not have their destructors called.
1609     const RecordType *RT = type->getAsUnionType();
1610     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1611 
1612     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1613     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1614                                       getDestroyer(dtorKind),
1615                                       cleanupKind & EHCleanup);
1616   }
1617 }
1618 
1619 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1620 /// constructor for each of several members of an array.
1621 ///
1622 /// \param ctor the constructor to call for each element
1623 /// \param arrayType the type of the array to initialize
1624 /// \param arrayBegin an arrayType*
1625 /// \param zeroInitialize true if each element should be
1626 ///   zero-initialized before it is constructed
1627 void CodeGenFunction::EmitCXXAggrConstructorCall(
1628     const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
1629     llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1630   QualType elementType;
1631   llvm::Value *numElements =
1632     emitArrayLength(arrayType, elementType, arrayBegin);
1633 
1634   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1635 }
1636 
1637 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1638 /// constructor for each of several members of an array.
1639 ///
1640 /// \param ctor the constructor to call for each element
1641 /// \param numElements the number of elements in the array;
1642 ///   may be zero
1643 /// \param arrayBegin a T*, where T is the type constructed by ctor
1644 /// \param zeroInitialize true if each element should be
1645 ///   zero-initialized before it is constructed
1646 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1647                                                  llvm::Value *numElements,
1648                                                  llvm::Value *arrayBegin,
1649                                                  const CXXConstructExpr *E,
1650                                                  bool zeroInitialize) {
1651 
1652   // It's legal for numElements to be zero.  This can happen both
1653   // dynamically, because x can be zero in 'new A[x]', and statically,
1654   // because of GCC extensions that permit zero-length arrays.  There
1655   // are probably legitimate places where we could assume that this
1656   // doesn't happen, but it's not clear that it's worth it.
1657   llvm::BranchInst *zeroCheckBranch = nullptr;
1658 
1659   // Optimize for a constant count.
1660   llvm::ConstantInt *constantCount
1661     = dyn_cast<llvm::ConstantInt>(numElements);
1662   if (constantCount) {
1663     // Just skip out if the constant count is zero.
1664     if (constantCount->isZero()) return;
1665 
1666   // Otherwise, emit the check.
1667   } else {
1668     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1669     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1670     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1671     EmitBlock(loopBB);
1672   }
1673 
1674   // Find the end of the array.
1675   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1676                                                     "arrayctor.end");
1677 
1678   // Enter the loop, setting up a phi for the current location to initialize.
1679   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1680   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1681   EmitBlock(loopBB);
1682   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1683                                          "arrayctor.cur");
1684   cur->addIncoming(arrayBegin, entryBB);
1685 
1686   // Inside the loop body, emit the constructor call on the array element.
1687 
1688   QualType type = getContext().getTypeDeclType(ctor->getParent());
1689 
1690   // Zero initialize the storage, if requested.
1691   if (zeroInitialize)
1692     EmitNullInitialization(cur, type);
1693 
1694   // C++ [class.temporary]p4:
1695   // There are two contexts in which temporaries are destroyed at a different
1696   // point than the end of the full-expression. The first context is when a
1697   // default constructor is called to initialize an element of an array.
1698   // If the constructor has one or more default arguments, the destruction of
1699   // every temporary created in a default argument expression is sequenced
1700   // before the construction of the next array element, if any.
1701 
1702   {
1703     RunCleanupsScope Scope(*this);
1704 
1705     // Evaluate the constructor and its arguments in a regular
1706     // partial-destroy cleanup.
1707     if (getLangOpts().Exceptions &&
1708         !ctor->getParent()->hasTrivialDestructor()) {
1709       Destroyer *destroyer = destroyCXXObject;
1710       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1711     }
1712 
1713     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
1714                            /*Delegating=*/false, cur, E);
1715   }
1716 
1717   // Go to the next element.
1718   llvm::Value *next =
1719     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1720                               "arrayctor.next");
1721   cur->addIncoming(next, Builder.GetInsertBlock());
1722 
1723   // Check whether that's the end of the loop.
1724   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1725   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1726   Builder.CreateCondBr(done, contBB, loopBB);
1727 
1728   // Patch the earlier check to skip over the loop.
1729   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1730 
1731   EmitBlock(contBB);
1732 }
1733 
1734 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1735                                        llvm::Value *addr,
1736                                        QualType type) {
1737   const RecordType *rtype = type->castAs<RecordType>();
1738   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1739   const CXXDestructorDecl *dtor = record->getDestructor();
1740   assert(!dtor->isTrivial());
1741   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1742                             /*Delegating=*/false, addr);
1743 }
1744 
1745 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1746                                              CXXCtorType Type,
1747                                              bool ForVirtualBase,
1748                                              bool Delegating, llvm::Value *This,
1749                                              const CXXConstructExpr *E) {
1750   // C++11 [class.mfct.non-static]p2:
1751   //   If a non-static member function of a class X is called for an object that
1752   //   is not of type X, or of a type derived from X, the behavior is undefined.
1753   // FIXME: Provide a source location here.
1754   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This,
1755                 getContext().getRecordType(D->getParent()));
1756 
1757   if (D->isTrivial() && D->isDefaultConstructor()) {
1758     assert(E->getNumArgs() == 0 && "trivial default ctor with args");
1759     return;
1760   }
1761 
1762   // If this is a trivial constructor, just emit what's needed. If this is a
1763   // union copy constructor, we must emit a memcpy, because the AST does not
1764   // model that copy.
1765   if (isMemcpyEquivalentSpecialMember(D)) {
1766     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1767 
1768     const Expr *Arg = E->getArg(0);
1769     QualType SrcTy = Arg->getType();
1770     llvm::Value *Src = EmitLValue(Arg).getAddress();
1771     QualType DestTy = getContext().getTypeDeclType(D->getParent());
1772     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
1773     return;
1774   }
1775 
1776   CallArgList Args;
1777 
1778   // Push the this ptr.
1779   Args.add(RValue::get(This), D->getThisType(getContext()));
1780 
1781   // Add the rest of the user-supplied arguments.
1782   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1783   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor());
1784 
1785   // Insert any ABI-specific implicit constructor arguments.
1786   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
1787       *this, D, Type, ForVirtualBase, Delegating, Args);
1788 
1789   // Emit the call.
1790   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
1791   const CGFunctionInfo &Info =
1792       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
1793   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
1794 }
1795 
1796 void
1797 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1798                                         llvm::Value *This, llvm::Value *Src,
1799                                         const CXXConstructExpr *E) {
1800   if (isMemcpyEquivalentSpecialMember(D)) {
1801     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1802     assert(D->isCopyOrMoveConstructor() &&
1803            "trivial 1-arg ctor not a copy/move ctor");
1804     EmitAggregateCopyCtor(This, Src,
1805                           getContext().getTypeDeclType(D->getParent()),
1806                           E->arg_begin()->getType());
1807     return;
1808   }
1809   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
1810   assert(D->isInstance() &&
1811          "Trying to emit a member call expr on a static method!");
1812 
1813   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1814 
1815   CallArgList Args;
1816 
1817   // Push the this ptr.
1818   Args.add(RValue::get(This), D->getThisType(getContext()));
1819 
1820   // Push the src ptr.
1821   QualType QT = *(FPT->param_type_begin());
1822   llvm::Type *t = CGM.getTypes().ConvertType(QT);
1823   Src = Builder.CreateBitCast(Src, t);
1824   Args.add(RValue::get(Src), QT);
1825 
1826   // Skip over first argument (Src).
1827   EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(),
1828                /*ParamsToSkip*/ 1);
1829 
1830   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1831            Callee, ReturnValueSlot(), Args, D);
1832 }
1833 
1834 void
1835 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1836                                                 CXXCtorType CtorType,
1837                                                 const FunctionArgList &Args,
1838                                                 SourceLocation Loc) {
1839   CallArgList DelegateArgs;
1840 
1841   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1842   assert(I != E && "no parameters to constructor");
1843 
1844   // this
1845   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1846   ++I;
1847 
1848   // vtt
1849   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
1850                                          /*ForVirtualBase=*/false,
1851                                          /*Delegating=*/true)) {
1852     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1853     DelegateArgs.add(RValue::get(VTT), VoidPP);
1854 
1855     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
1856       assert(I != E && "cannot skip vtt parameter, already done with args");
1857       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1858       ++I;
1859     }
1860   }
1861 
1862   // Explicit arguments.
1863   for (; I != E; ++I) {
1864     const VarDecl *param = *I;
1865     // FIXME: per-argument source location
1866     EmitDelegateCallArg(DelegateArgs, param, Loc);
1867   }
1868 
1869   llvm::Value *Callee =
1870       CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
1871   EmitCall(CGM.getTypes()
1872                .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
1873            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
1874 }
1875 
1876 namespace {
1877   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1878     const CXXDestructorDecl *Dtor;
1879     llvm::Value *Addr;
1880     CXXDtorType Type;
1881 
1882     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1883                            CXXDtorType Type)
1884       : Dtor(D), Addr(Addr), Type(Type) {}
1885 
1886     void Emit(CodeGenFunction &CGF, Flags flags) override {
1887       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1888                                 /*Delegating=*/true, Addr);
1889     }
1890   };
1891 }
1892 
1893 void
1894 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1895                                                   const FunctionArgList &Args) {
1896   assert(Ctor->isDelegatingConstructor());
1897 
1898   llvm::Value *ThisPtr = LoadCXXThis();
1899 
1900   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1901   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1902   AggValueSlot AggSlot =
1903     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1904                           AggValueSlot::IsDestructed,
1905                           AggValueSlot::DoesNotNeedGCBarriers,
1906                           AggValueSlot::IsNotAliased);
1907 
1908   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1909 
1910   const CXXRecordDecl *ClassDecl = Ctor->getParent();
1911   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1912     CXXDtorType Type =
1913       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1914 
1915     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1916                                                 ClassDecl->getDestructor(),
1917                                                 ThisPtr, Type);
1918   }
1919 }
1920 
1921 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1922                                             CXXDtorType Type,
1923                                             bool ForVirtualBase,
1924                                             bool Delegating,
1925                                             llvm::Value *This) {
1926   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
1927                                      Delegating, This);
1928 }
1929 
1930 namespace {
1931   struct CallLocalDtor : EHScopeStack::Cleanup {
1932     const CXXDestructorDecl *Dtor;
1933     llvm::Value *Addr;
1934 
1935     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1936       : Dtor(D), Addr(Addr) {}
1937 
1938     void Emit(CodeGenFunction &CGF, Flags flags) override {
1939       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1940                                 /*ForVirtualBase=*/false,
1941                                 /*Delegating=*/false, Addr);
1942     }
1943   };
1944 }
1945 
1946 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1947                                             llvm::Value *Addr) {
1948   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1949 }
1950 
1951 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1952   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1953   if (!ClassDecl) return;
1954   if (ClassDecl->hasTrivialDestructor()) return;
1955 
1956   const CXXDestructorDecl *D = ClassDecl->getDestructor();
1957   assert(D && D->isUsed() && "destructor not marked as used!");
1958   PushDestructorCleanup(D, Addr);
1959 }
1960 
1961 void
1962 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1963                                          const CXXRecordDecl *NearestVBase,
1964                                          CharUnits OffsetFromNearestVBase,
1965                                          const CXXRecordDecl *VTableClass) {
1966   const CXXRecordDecl *RD = Base.getBase();
1967 
1968   // Don't initialize the vtable pointer if the class is marked with the
1969   // 'novtable' attribute.
1970   if ((RD == VTableClass || RD == NearestVBase) &&
1971       VTableClass->hasAttr<MSNoVTableAttr>())
1972     return;
1973 
1974   // Compute the address point.
1975   bool NeedsVirtualOffset;
1976   llvm::Value *VTableAddressPoint =
1977       CGM.getCXXABI().getVTableAddressPointInStructor(
1978           *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
1979   if (!VTableAddressPoint)
1980     return;
1981 
1982   // Compute where to store the address point.
1983   llvm::Value *VirtualOffset = nullptr;
1984   CharUnits NonVirtualOffset = CharUnits::Zero();
1985 
1986   if (NeedsVirtualOffset) {
1987     // We need to use the virtual base offset offset because the virtual base
1988     // might have a different offset in the most derived class.
1989     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
1990                                                               LoadCXXThis(),
1991                                                               VTableClass,
1992                                                               NearestVBase);
1993     NonVirtualOffset = OffsetFromNearestVBase;
1994   } else {
1995     // We can just use the base offset in the complete class.
1996     NonVirtualOffset = Base.getBaseOffset();
1997   }
1998 
1999   // Apply the offsets.
2000   llvm::Value *VTableField = LoadCXXThis();
2001 
2002   if (!NonVirtualOffset.isZero() || VirtualOffset)
2003     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
2004                                                   NonVirtualOffset,
2005                                                   VirtualOffset);
2006 
2007   // Finally, store the address point. Use the same LLVM types as the field to
2008   // support optimization.
2009   llvm::Type *VTablePtrTy =
2010       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2011           ->getPointerTo()
2012           ->getPointerTo();
2013   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2014   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2015   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2016   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
2017 }
2018 
2019 void
2020 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
2021                                           const CXXRecordDecl *NearestVBase,
2022                                           CharUnits OffsetFromNearestVBase,
2023                                           bool BaseIsNonVirtualPrimaryBase,
2024                                           const CXXRecordDecl *VTableClass,
2025                                           VisitedVirtualBasesSetTy& VBases) {
2026   // If this base is a non-virtual primary base the address point has already
2027   // been set.
2028   if (!BaseIsNonVirtualPrimaryBase) {
2029     // Initialize the vtable pointer for this base.
2030     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
2031                             VTableClass);
2032   }
2033 
2034   const CXXRecordDecl *RD = Base.getBase();
2035 
2036   // Traverse bases.
2037   for (const auto &I : RD->bases()) {
2038     CXXRecordDecl *BaseDecl
2039       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2040 
2041     // Ignore classes without a vtable.
2042     if (!BaseDecl->isDynamicClass())
2043       continue;
2044 
2045     CharUnits BaseOffset;
2046     CharUnits BaseOffsetFromNearestVBase;
2047     bool BaseDeclIsNonVirtualPrimaryBase;
2048 
2049     if (I.isVirtual()) {
2050       // Check if we've visited this virtual base before.
2051       if (!VBases.insert(BaseDecl).second)
2052         continue;
2053 
2054       const ASTRecordLayout &Layout =
2055         getContext().getASTRecordLayout(VTableClass);
2056 
2057       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2058       BaseOffsetFromNearestVBase = CharUnits::Zero();
2059       BaseDeclIsNonVirtualPrimaryBase = false;
2060     } else {
2061       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2062 
2063       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2064       BaseOffsetFromNearestVBase =
2065         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2066       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2067     }
2068 
2069     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
2070                              I.isVirtual() ? BaseDecl : NearestVBase,
2071                              BaseOffsetFromNearestVBase,
2072                              BaseDeclIsNonVirtualPrimaryBase,
2073                              VTableClass, VBases);
2074   }
2075 }
2076 
2077 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2078   // Ignore classes without a vtable.
2079   if (!RD->isDynamicClass())
2080     return;
2081 
2082   // Initialize the vtable pointers for this class and all of its bases.
2083   VisitedVirtualBasesSetTy VBases;
2084   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
2085                            /*NearestVBase=*/nullptr,
2086                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2087                            /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
2088 
2089   if (RD->getNumVBases())
2090     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2091 }
2092 
2093 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
2094                                            llvm::Type *Ty) {
2095   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
2096   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2097   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
2098   return VTable;
2099 }
2100 
2101 // If a class has a single non-virtual base and does not introduce or override
2102 // virtual member functions or fields, it will have the same layout as its base.
2103 // This function returns the least derived such class.
2104 //
2105 // Casting an instance of a base class to such a derived class is technically
2106 // undefined behavior, but it is a relatively common hack for introducing member
2107 // functions on class instances with specific properties (e.g. llvm::Operator)
2108 // that works under most compilers and should not have security implications, so
2109 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2110 static const CXXRecordDecl *
2111 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2112   if (!RD->field_empty())
2113     return RD;
2114 
2115   if (RD->getNumVBases() != 0)
2116     return RD;
2117 
2118   if (RD->getNumBases() != 1)
2119     return RD;
2120 
2121   for (const CXXMethodDecl *MD : RD->methods()) {
2122     if (MD->isVirtual()) {
2123       // Virtual member functions are only ok if they are implicit destructors
2124       // because the implicit destructor will have the same semantics as the
2125       // base class's destructor if no fields are added.
2126       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2127         continue;
2128       return RD;
2129     }
2130   }
2131 
2132   return LeastDerivedClassWithSameLayout(
2133       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2134 }
2135 
2136 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD,
2137                                                 llvm::Value *VTable,
2138                                                 CFITypeCheckKind TCK,
2139                                                 SourceLocation Loc) {
2140   const CXXRecordDecl *ClassDecl = MD->getParent();
2141   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2142     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2143 
2144   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2145 }
2146 
2147 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2148                                                 llvm::Value *Derived,
2149                                                 bool MayBeNull,
2150                                                 CFITypeCheckKind TCK,
2151                                                 SourceLocation Loc) {
2152   if (!getLangOpts().CPlusPlus)
2153     return;
2154 
2155   auto *ClassTy = T->getAs<RecordType>();
2156   if (!ClassTy)
2157     return;
2158 
2159   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2160 
2161   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2162     return;
2163 
2164   SmallString<64> MangledName;
2165   llvm::raw_svector_ostream Out(MangledName);
2166   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(T.getUnqualifiedType(),
2167                                                    Out);
2168 
2169   // Blacklist based on the mangled type.
2170   if (CGM.getContext().getSanitizerBlacklist().isBlacklistedType(Out.str()))
2171     return;
2172 
2173   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2174     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2175 
2176   llvm::BasicBlock *ContBlock = 0;
2177 
2178   if (MayBeNull) {
2179     llvm::Value *DerivedNotNull =
2180         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2181 
2182     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2183     ContBlock = createBasicBlock("cast.cont");
2184 
2185     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2186 
2187     EmitBlock(CheckBlock);
2188   }
2189 
2190   llvm::Value *VTable = GetVTablePtr(Derived, Int8PtrTy);
2191   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2192 
2193   if (MayBeNull) {
2194     Builder.CreateBr(ContBlock);
2195     EmitBlock(ContBlock);
2196   }
2197 }
2198 
2199 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2200                                          llvm::Value *VTable,
2201                                          CFITypeCheckKind TCK,
2202                                          SourceLocation Loc) {
2203   if (CGM.IsCFIBlacklistedRecord(RD))
2204     return;
2205 
2206   SanitizerScope SanScope(this);
2207 
2208   std::string OutName;
2209   llvm::raw_string_ostream Out(OutName);
2210   CGM.getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out);
2211 
2212   llvm::Value *BitSetName = llvm::MetadataAsValue::get(
2213       getLLVMContext(), llvm::MDString::get(getLLVMContext(), Out.str()));
2214 
2215   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2216   llvm::Value *BitSetTest =
2217       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
2218                          {CastedVTable, BitSetName});
2219 
2220   SanitizerMask M;
2221   switch (TCK) {
2222   case CFITCK_VCall:
2223     M = SanitizerKind::CFIVCall;
2224     break;
2225   case CFITCK_NVCall:
2226     M = SanitizerKind::CFINVCall;
2227     break;
2228   case CFITCK_DerivedCast:
2229     M = SanitizerKind::CFIDerivedCast;
2230     break;
2231   case CFITCK_UnrelatedCast:
2232     M = SanitizerKind::CFIUnrelatedCast;
2233     break;
2234   }
2235 
2236   llvm::Constant *StaticData[] = {
2237     EmitCheckSourceLocation(Loc),
2238     EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2239     llvm::ConstantInt::get(Int8Ty, TCK),
2240   };
2241   EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData,
2242             CastedVTable);
2243 }
2244 
2245 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2246 // quite what we want.
2247 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2248   while (true) {
2249     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2250       E = PE->getSubExpr();
2251       continue;
2252     }
2253 
2254     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2255       if (CE->getCastKind() == CK_NoOp) {
2256         E = CE->getSubExpr();
2257         continue;
2258       }
2259     }
2260     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2261       if (UO->getOpcode() == UO_Extension) {
2262         E = UO->getSubExpr();
2263         continue;
2264       }
2265     }
2266     return E;
2267   }
2268 }
2269 
2270 bool
2271 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2272                                                    const CXXMethodDecl *MD) {
2273   // When building with -fapple-kext, all calls must go through the vtable since
2274   // the kernel linker can do runtime patching of vtables.
2275   if (getLangOpts().AppleKext)
2276     return false;
2277 
2278   // If the most derived class is marked final, we know that no subclass can
2279   // override this member function and so we can devirtualize it. For example:
2280   //
2281   // struct A { virtual void f(); }
2282   // struct B final : A { };
2283   //
2284   // void f(B *b) {
2285   //   b->f();
2286   // }
2287   //
2288   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2289   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2290     return true;
2291 
2292   // If the member function is marked 'final', we know that it can't be
2293   // overridden and can therefore devirtualize it.
2294   if (MD->hasAttr<FinalAttr>())
2295     return true;
2296 
2297   // Similarly, if the class itself is marked 'final' it can't be overridden
2298   // and we can therefore devirtualize the member function call.
2299   if (MD->getParent()->hasAttr<FinalAttr>())
2300     return true;
2301 
2302   Base = skipNoOpCastsAndParens(Base);
2303   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2304     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2305       // This is a record decl. We know the type and can devirtualize it.
2306       return VD->getType()->isRecordType();
2307     }
2308 
2309     return false;
2310   }
2311 
2312   // We can devirtualize calls on an object accessed by a class member access
2313   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2314   // a derived class object constructed in the same location.
2315   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2316     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2317       return VD->getType()->isRecordType();
2318 
2319   // We can always devirtualize calls on temporary object expressions.
2320   if (isa<CXXConstructExpr>(Base))
2321     return true;
2322 
2323   // And calls on bound temporaries.
2324   if (isa<CXXBindTemporaryExpr>(Base))
2325     return true;
2326 
2327   // Check if this is a call expr that returns a record type.
2328   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2329     return CE->getCallReturnType(getContext())->isRecordType();
2330 
2331   // We can't devirtualize the call.
2332   return false;
2333 }
2334 
2335 void CodeGenFunction::EmitForwardingCallToLambda(
2336                                       const CXXMethodDecl *callOperator,
2337                                       CallArgList &callArgs) {
2338   // Get the address of the call operator.
2339   const CGFunctionInfo &calleeFnInfo =
2340     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2341   llvm::Value *callee =
2342     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2343                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2344 
2345   // Prepare the return slot.
2346   const FunctionProtoType *FPT =
2347     callOperator->getType()->castAs<FunctionProtoType>();
2348   QualType resultType = FPT->getReturnType();
2349   ReturnValueSlot returnSlot;
2350   if (!resultType->isVoidType() &&
2351       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2352       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2353     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2354 
2355   // We don't need to separately arrange the call arguments because
2356   // the call can't be variadic anyway --- it's impossible to forward
2357   // variadic arguments.
2358 
2359   // Now emit our call.
2360   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2361                        callArgs, callOperator);
2362 
2363   // If necessary, copy the returned value into the slot.
2364   if (!resultType->isVoidType() && returnSlot.isNull())
2365     EmitReturnOfRValue(RV, resultType);
2366   else
2367     EmitBranchThroughCleanup(ReturnBlock);
2368 }
2369 
2370 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2371   const BlockDecl *BD = BlockInfo->getBlockDecl();
2372   const VarDecl *variable = BD->capture_begin()->getVariable();
2373   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2374 
2375   // Start building arguments for forwarding call
2376   CallArgList CallArgs;
2377 
2378   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2379   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
2380   CallArgs.add(RValue::get(ThisPtr), ThisType);
2381 
2382   // Add the rest of the parameters.
2383   for (auto param : BD->params())
2384     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2385 
2386   assert(!Lambda->isGenericLambda() &&
2387             "generic lambda interconversion to block not implemented");
2388   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2389 }
2390 
2391 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2392   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2393     // FIXME: Making this work correctly is nasty because it requires either
2394     // cloning the body of the call operator or making the call operator forward.
2395     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2396     return;
2397   }
2398 
2399   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2400 }
2401 
2402 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2403   const CXXRecordDecl *Lambda = MD->getParent();
2404 
2405   // Start building arguments for forwarding call
2406   CallArgList CallArgs;
2407 
2408   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2409   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2410   CallArgs.add(RValue::get(ThisPtr), ThisType);
2411 
2412   // Add the rest of the parameters.
2413   for (auto Param : MD->params())
2414     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2415 
2416   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2417   // For a generic lambda, find the corresponding call operator specialization
2418   // to which the call to the static-invoker shall be forwarded.
2419   if (Lambda->isGenericLambda()) {
2420     assert(MD->isFunctionTemplateSpecialization());
2421     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2422     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2423     void *InsertPos = nullptr;
2424     FunctionDecl *CorrespondingCallOpSpecialization =
2425         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2426     assert(CorrespondingCallOpSpecialization);
2427     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2428   }
2429   EmitForwardingCallToLambda(CallOp, CallArgs);
2430 }
2431 
2432 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2433   if (MD->isVariadic()) {
2434     // FIXME: Making this work correctly is nasty because it requires either
2435     // cloning the body of the call operator or making the call operator forward.
2436     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2437     return;
2438   }
2439 
2440   EmitLambdaDelegatingInvokeBody(MD);
2441 }
2442