1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 LValueBaseInfo *BaseInfo) { 133 // Ask the ABI to compute the actual address. 134 llvm::Value *ptr = 135 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 136 memberPtr, memberPtrType); 137 138 QualType memberType = memberPtrType->getPointeeType(); 139 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo); 140 memberAlign = 141 CGM.getDynamicOffsetAlignment(base.getAlignment(), 142 memberPtrType->getClass()->getAsCXXRecordDecl(), 143 memberAlign); 144 return Address(ptr, memberAlign); 145 } 146 147 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 148 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 149 CastExpr::path_const_iterator End) { 150 CharUnits Offset = CharUnits::Zero(); 151 152 const ASTContext &Context = getContext(); 153 const CXXRecordDecl *RD = DerivedClass; 154 155 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 156 const CXXBaseSpecifier *Base = *I; 157 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 158 159 // Get the layout. 160 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 161 162 const CXXRecordDecl *BaseDecl = 163 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 164 165 // Add the offset. 166 Offset += Layout.getBaseClassOffset(BaseDecl); 167 168 RD = BaseDecl; 169 } 170 171 return Offset; 172 } 173 174 llvm::Constant * 175 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 176 CastExpr::path_const_iterator PathBegin, 177 CastExpr::path_const_iterator PathEnd) { 178 assert(PathBegin != PathEnd && "Base path should not be empty!"); 179 180 CharUnits Offset = 181 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 182 if (Offset.isZero()) 183 return nullptr; 184 185 llvm::Type *PtrDiffTy = 186 Types.ConvertType(getContext().getPointerDiffType()); 187 188 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 189 } 190 191 /// Gets the address of a direct base class within a complete object. 192 /// This should only be used for (1) non-virtual bases or (2) virtual bases 193 /// when the type is known to be complete (e.g. in complete destructors). 194 /// 195 /// The object pointed to by 'This' is assumed to be non-null. 196 Address 197 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 198 const CXXRecordDecl *Derived, 199 const CXXRecordDecl *Base, 200 bool BaseIsVirtual) { 201 // 'this' must be a pointer (in some address space) to Derived. 202 assert(This.getElementType() == ConvertType(Derived)); 203 204 // Compute the offset of the virtual base. 205 CharUnits Offset; 206 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 207 if (BaseIsVirtual) 208 Offset = Layout.getVBaseClassOffset(Base); 209 else 210 Offset = Layout.getBaseClassOffset(Base); 211 212 // Shift and cast down to the base type. 213 // TODO: for complete types, this should be possible with a GEP. 214 Address V = This; 215 if (!Offset.isZero()) { 216 V = Builder.CreateElementBitCast(V, Int8Ty); 217 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 218 } 219 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 220 221 return V; 222 } 223 224 static Address 225 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 226 CharUnits nonVirtualOffset, 227 llvm::Value *virtualOffset, 228 const CXXRecordDecl *derivedClass, 229 const CXXRecordDecl *nearestVBase) { 230 // Assert that we have something to do. 231 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 232 233 // Compute the offset from the static and dynamic components. 234 llvm::Value *baseOffset; 235 if (!nonVirtualOffset.isZero()) { 236 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 237 nonVirtualOffset.getQuantity()); 238 if (virtualOffset) { 239 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 240 } 241 } else { 242 baseOffset = virtualOffset; 243 } 244 245 // Apply the base offset. 246 llvm::Value *ptr = addr.getPointer(); 247 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 248 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 249 250 // If we have a virtual component, the alignment of the result will 251 // be relative only to the known alignment of that vbase. 252 CharUnits alignment; 253 if (virtualOffset) { 254 assert(nearestVBase && "virtual offset without vbase?"); 255 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 256 derivedClass, nearestVBase); 257 } else { 258 alignment = addr.getAlignment(); 259 } 260 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 261 262 return Address(ptr, alignment); 263 } 264 265 Address CodeGenFunction::GetAddressOfBaseClass( 266 Address Value, const CXXRecordDecl *Derived, 267 CastExpr::path_const_iterator PathBegin, 268 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 269 SourceLocation Loc) { 270 assert(PathBegin != PathEnd && "Base path should not be empty!"); 271 272 CastExpr::path_const_iterator Start = PathBegin; 273 const CXXRecordDecl *VBase = nullptr; 274 275 // Sema has done some convenient canonicalization here: if the 276 // access path involved any virtual steps, the conversion path will 277 // *start* with a step down to the correct virtual base subobject, 278 // and hence will not require any further steps. 279 if ((*Start)->isVirtual()) { 280 VBase = 281 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 282 ++Start; 283 } 284 285 // Compute the static offset of the ultimate destination within its 286 // allocating subobject (the virtual base, if there is one, or else 287 // the "complete" object that we see). 288 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 289 VBase ? VBase : Derived, Start, PathEnd); 290 291 // If there's a virtual step, we can sometimes "devirtualize" it. 292 // For now, that's limited to when the derived type is final. 293 // TODO: "devirtualize" this for accesses to known-complete objects. 294 if (VBase && Derived->hasAttr<FinalAttr>()) { 295 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 296 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 297 NonVirtualOffset += vBaseOffset; 298 VBase = nullptr; // we no longer have a virtual step 299 } 300 301 // Get the base pointer type. 302 llvm::Type *BasePtrTy = 303 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 304 305 QualType DerivedTy = getContext().getRecordType(Derived); 306 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 307 308 // If the static offset is zero and we don't have a virtual step, 309 // just do a bitcast; null checks are unnecessary. 310 if (NonVirtualOffset.isZero() && !VBase) { 311 if (sanitizePerformTypeCheck()) { 312 SanitizerSet SkippedChecks; 313 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 314 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 315 DerivedTy, DerivedAlign, SkippedChecks); 316 } 317 return Builder.CreateBitCast(Value, BasePtrTy); 318 } 319 320 llvm::BasicBlock *origBB = nullptr; 321 llvm::BasicBlock *endBB = nullptr; 322 323 // Skip over the offset (and the vtable load) if we're supposed to 324 // null-check the pointer. 325 if (NullCheckValue) { 326 origBB = Builder.GetInsertBlock(); 327 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 328 endBB = createBasicBlock("cast.end"); 329 330 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 331 Builder.CreateCondBr(isNull, endBB, notNullBB); 332 EmitBlock(notNullBB); 333 } 334 335 if (sanitizePerformTypeCheck()) { 336 SanitizerSet SkippedChecks; 337 SkippedChecks.set(SanitizerKind::Null, true); 338 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 339 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 340 } 341 342 // Compute the virtual offset. 343 llvm::Value *VirtualOffset = nullptr; 344 if (VBase) { 345 VirtualOffset = 346 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 347 } 348 349 // Apply both offsets. 350 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 351 VirtualOffset, Derived, VBase); 352 353 // Cast to the destination type. 354 Value = Builder.CreateBitCast(Value, BasePtrTy); 355 356 // Build a phi if we needed a null check. 357 if (NullCheckValue) { 358 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 359 Builder.CreateBr(endBB); 360 EmitBlock(endBB); 361 362 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 363 PHI->addIncoming(Value.getPointer(), notNullBB); 364 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 365 Value = Address(PHI, Value.getAlignment()); 366 } 367 368 return Value; 369 } 370 371 Address 372 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 373 const CXXRecordDecl *Derived, 374 CastExpr::path_const_iterator PathBegin, 375 CastExpr::path_const_iterator PathEnd, 376 bool NullCheckValue) { 377 assert(PathBegin != PathEnd && "Base path should not be empty!"); 378 379 QualType DerivedTy = 380 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 381 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 382 383 llvm::Value *NonVirtualOffset = 384 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 385 386 if (!NonVirtualOffset) { 387 // No offset, we can just cast back. 388 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 389 } 390 391 llvm::BasicBlock *CastNull = nullptr; 392 llvm::BasicBlock *CastNotNull = nullptr; 393 llvm::BasicBlock *CastEnd = nullptr; 394 395 if (NullCheckValue) { 396 CastNull = createBasicBlock("cast.null"); 397 CastNotNull = createBasicBlock("cast.notnull"); 398 CastEnd = createBasicBlock("cast.end"); 399 400 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 401 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 402 EmitBlock(CastNotNull); 403 } 404 405 // Apply the offset. 406 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 407 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 408 "sub.ptr"); 409 410 // Just cast. 411 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 412 413 // Produce a PHI if we had a null-check. 414 if (NullCheckValue) { 415 Builder.CreateBr(CastEnd); 416 EmitBlock(CastNull); 417 Builder.CreateBr(CastEnd); 418 EmitBlock(CastEnd); 419 420 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 421 PHI->addIncoming(Value, CastNotNull); 422 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 423 Value = PHI; 424 } 425 426 return Address(Value, CGM.getClassPointerAlignment(Derived)); 427 } 428 429 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 430 bool ForVirtualBase, 431 bool Delegating) { 432 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 433 // This constructor/destructor does not need a VTT parameter. 434 return nullptr; 435 } 436 437 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 438 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 439 440 llvm::Value *VTT; 441 442 uint64_t SubVTTIndex; 443 444 if (Delegating) { 445 // If this is a delegating constructor call, just load the VTT. 446 return LoadCXXVTT(); 447 } else if (RD == Base) { 448 // If the record matches the base, this is the complete ctor/dtor 449 // variant calling the base variant in a class with virtual bases. 450 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 451 "doing no-op VTT offset in base dtor/ctor?"); 452 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 453 SubVTTIndex = 0; 454 } else { 455 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 456 CharUnits BaseOffset = ForVirtualBase ? 457 Layout.getVBaseClassOffset(Base) : 458 Layout.getBaseClassOffset(Base); 459 460 SubVTTIndex = 461 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 462 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 463 } 464 465 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 466 // A VTT parameter was passed to the constructor, use it. 467 VTT = LoadCXXVTT(); 468 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 469 } else { 470 // We're the complete constructor, so get the VTT by name. 471 VTT = CGM.getVTables().GetAddrOfVTT(RD); 472 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 473 } 474 475 return VTT; 476 } 477 478 namespace { 479 /// Call the destructor for a direct base class. 480 struct CallBaseDtor final : EHScopeStack::Cleanup { 481 const CXXRecordDecl *BaseClass; 482 bool BaseIsVirtual; 483 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 484 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 485 486 void Emit(CodeGenFunction &CGF, Flags flags) override { 487 const CXXRecordDecl *DerivedClass = 488 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 489 490 const CXXDestructorDecl *D = BaseClass->getDestructor(); 491 Address Addr = 492 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 493 DerivedClass, BaseClass, 494 BaseIsVirtual); 495 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 496 /*Delegating=*/false, Addr); 497 } 498 }; 499 500 /// A visitor which checks whether an initializer uses 'this' in a 501 /// way which requires the vtable to be properly set. 502 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 503 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 504 505 bool UsesThis; 506 507 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 508 509 // Black-list all explicit and implicit references to 'this'. 510 // 511 // Do we need to worry about external references to 'this' derived 512 // from arbitrary code? If so, then anything which runs arbitrary 513 // external code might potentially access the vtable. 514 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 515 }; 516 } // end anonymous namespace 517 518 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 519 DynamicThisUseChecker Checker(C); 520 Checker.Visit(Init); 521 return Checker.UsesThis; 522 } 523 524 static void EmitBaseInitializer(CodeGenFunction &CGF, 525 const CXXRecordDecl *ClassDecl, 526 CXXCtorInitializer *BaseInit, 527 CXXCtorType CtorType) { 528 assert(BaseInit->isBaseInitializer() && 529 "Must have base initializer!"); 530 531 Address ThisPtr = CGF.LoadCXXThisAddress(); 532 533 const Type *BaseType = BaseInit->getBaseClass(); 534 CXXRecordDecl *BaseClassDecl = 535 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 536 537 bool isBaseVirtual = BaseInit->isBaseVirtual(); 538 539 // The base constructor doesn't construct virtual bases. 540 if (CtorType == Ctor_Base && isBaseVirtual) 541 return; 542 543 // If the initializer for the base (other than the constructor 544 // itself) accesses 'this' in any way, we need to initialize the 545 // vtables. 546 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 547 CGF.InitializeVTablePointers(ClassDecl); 548 549 // We can pretend to be a complete class because it only matters for 550 // virtual bases, and we only do virtual bases for complete ctors. 551 Address V = 552 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 553 BaseClassDecl, 554 isBaseVirtual); 555 AggValueSlot AggSlot = 556 AggValueSlot::forAddr(V, Qualifiers(), 557 AggValueSlot::IsDestructed, 558 AggValueSlot::DoesNotNeedGCBarriers, 559 AggValueSlot::IsNotAliased); 560 561 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 562 563 if (CGF.CGM.getLangOpts().Exceptions && 564 !BaseClassDecl->hasTrivialDestructor()) 565 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 566 isBaseVirtual); 567 } 568 569 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 570 auto *CD = dyn_cast<CXXConstructorDecl>(D); 571 if (!(CD && CD->isCopyOrMoveConstructor()) && 572 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 573 return false; 574 575 // We can emit a memcpy for a trivial copy or move constructor/assignment. 576 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 577 return true; 578 579 // We *must* emit a memcpy for a defaulted union copy or move op. 580 if (D->getParent()->isUnion() && D->isDefaulted()) 581 return true; 582 583 return false; 584 } 585 586 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 587 CXXCtorInitializer *MemberInit, 588 LValue &LHS) { 589 FieldDecl *Field = MemberInit->getAnyMember(); 590 if (MemberInit->isIndirectMemberInitializer()) { 591 // If we are initializing an anonymous union field, drill down to the field. 592 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 593 for (const auto *I : IndirectField->chain()) 594 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 595 } else { 596 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 597 } 598 } 599 600 static void EmitMemberInitializer(CodeGenFunction &CGF, 601 const CXXRecordDecl *ClassDecl, 602 CXXCtorInitializer *MemberInit, 603 const CXXConstructorDecl *Constructor, 604 FunctionArgList &Args) { 605 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 606 assert(MemberInit->isAnyMemberInitializer() && 607 "Must have member initializer!"); 608 assert(MemberInit->getInit() && "Must have initializer!"); 609 610 // non-static data member initializers. 611 FieldDecl *Field = MemberInit->getAnyMember(); 612 QualType FieldType = Field->getType(); 613 614 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 615 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 616 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 617 618 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 619 620 // Special case: if we are in a copy or move constructor, and we are copying 621 // an array of PODs or classes with trivial copy constructors, ignore the 622 // AST and perform the copy we know is equivalent. 623 // FIXME: This is hacky at best... if we had a bit more explicit information 624 // in the AST, we could generalize it more easily. 625 const ConstantArrayType *Array 626 = CGF.getContext().getAsConstantArrayType(FieldType); 627 if (Array && Constructor->isDefaulted() && 628 Constructor->isCopyOrMoveConstructor()) { 629 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 630 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 631 if (BaseElementTy.isPODType(CGF.getContext()) || 632 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 633 unsigned SrcArgIndex = 634 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 635 llvm::Value *SrcPtr 636 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 637 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 638 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 639 640 // Copy the aggregate. 641 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 642 LHS.isVolatileQualified()); 643 // Ensure that we destroy the objects if an exception is thrown later in 644 // the constructor. 645 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 646 if (CGF.needsEHCleanup(dtorKind)) 647 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 648 return; 649 } 650 } 651 652 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 653 } 654 655 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 656 Expr *Init) { 657 QualType FieldType = Field->getType(); 658 switch (getEvaluationKind(FieldType)) { 659 case TEK_Scalar: 660 if (LHS.isSimple()) { 661 EmitExprAsInit(Init, Field, LHS, false); 662 } else { 663 RValue RHS = RValue::get(EmitScalarExpr(Init)); 664 EmitStoreThroughLValue(RHS, LHS); 665 } 666 break; 667 case TEK_Complex: 668 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 669 break; 670 case TEK_Aggregate: { 671 AggValueSlot Slot = 672 AggValueSlot::forLValue(LHS, 673 AggValueSlot::IsDestructed, 674 AggValueSlot::DoesNotNeedGCBarriers, 675 AggValueSlot::IsNotAliased); 676 EmitAggExpr(Init, Slot); 677 break; 678 } 679 } 680 681 // Ensure that we destroy this object if an exception is thrown 682 // later in the constructor. 683 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 684 if (needsEHCleanup(dtorKind)) 685 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 686 } 687 688 /// Checks whether the given constructor is a valid subject for the 689 /// complete-to-base constructor delegation optimization, i.e. 690 /// emitting the complete constructor as a simple call to the base 691 /// constructor. 692 bool CodeGenFunction::IsConstructorDelegationValid( 693 const CXXConstructorDecl *Ctor) { 694 695 // Currently we disable the optimization for classes with virtual 696 // bases because (1) the addresses of parameter variables need to be 697 // consistent across all initializers but (2) the delegate function 698 // call necessarily creates a second copy of the parameter variable. 699 // 700 // The limiting example (purely theoretical AFAIK): 701 // struct A { A(int &c) { c++; } }; 702 // struct B : virtual A { 703 // B(int count) : A(count) { printf("%d\n", count); } 704 // }; 705 // ...although even this example could in principle be emitted as a 706 // delegation since the address of the parameter doesn't escape. 707 if (Ctor->getParent()->getNumVBases()) { 708 // TODO: white-list trivial vbase initializers. This case wouldn't 709 // be subject to the restrictions below. 710 711 // TODO: white-list cases where: 712 // - there are no non-reference parameters to the constructor 713 // - the initializers don't access any non-reference parameters 714 // - the initializers don't take the address of non-reference 715 // parameters 716 // - etc. 717 // If we ever add any of the above cases, remember that: 718 // - function-try-blocks will always blacklist this optimization 719 // - we need to perform the constructor prologue and cleanup in 720 // EmitConstructorBody. 721 722 return false; 723 } 724 725 // We also disable the optimization for variadic functions because 726 // it's impossible to "re-pass" varargs. 727 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 728 return false; 729 730 // FIXME: Decide if we can do a delegation of a delegating constructor. 731 if (Ctor->isDelegatingConstructor()) 732 return false; 733 734 return true; 735 } 736 737 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 738 // to poison the extra field paddings inserted under 739 // -fsanitize-address-field-padding=1|2. 740 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 741 ASTContext &Context = getContext(); 742 const CXXRecordDecl *ClassDecl = 743 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 744 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 745 if (!ClassDecl->mayInsertExtraPadding()) return; 746 747 struct SizeAndOffset { 748 uint64_t Size; 749 uint64_t Offset; 750 }; 751 752 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 753 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 754 755 // Populate sizes and offsets of fields. 756 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 757 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 758 SSV[i].Offset = 759 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 760 761 size_t NumFields = 0; 762 for (const auto *Field : ClassDecl->fields()) { 763 const FieldDecl *D = Field; 764 std::pair<CharUnits, CharUnits> FieldInfo = 765 Context.getTypeInfoInChars(D->getType()); 766 CharUnits FieldSize = FieldInfo.first; 767 assert(NumFields < SSV.size()); 768 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 769 NumFields++; 770 } 771 assert(NumFields == SSV.size()); 772 if (SSV.size() <= 1) return; 773 774 // We will insert calls to __asan_* run-time functions. 775 // LLVM AddressSanitizer pass may decide to inline them later. 776 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 777 llvm::FunctionType *FTy = 778 llvm::FunctionType::get(CGM.VoidTy, Args, false); 779 llvm::Constant *F = CGM.CreateRuntimeFunction( 780 FTy, Prologue ? "__asan_poison_intra_object_redzone" 781 : "__asan_unpoison_intra_object_redzone"); 782 783 llvm::Value *ThisPtr = LoadCXXThis(); 784 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 785 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 786 // For each field check if it has sufficient padding, 787 // if so (un)poison it with a call. 788 for (size_t i = 0; i < SSV.size(); i++) { 789 uint64_t AsanAlignment = 8; 790 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 791 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 792 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 793 if (PoisonSize < AsanAlignment || !SSV[i].Size || 794 (NextField % AsanAlignment) != 0) 795 continue; 796 Builder.CreateCall( 797 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 798 Builder.getIntN(PtrSize, PoisonSize)}); 799 } 800 } 801 802 /// EmitConstructorBody - Emits the body of the current constructor. 803 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 804 EmitAsanPrologueOrEpilogue(true); 805 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 806 CXXCtorType CtorType = CurGD.getCtorType(); 807 808 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 809 CtorType == Ctor_Complete) && 810 "can only generate complete ctor for this ABI"); 811 812 // Before we go any further, try the complete->base constructor 813 // delegation optimization. 814 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 815 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 816 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 817 return; 818 } 819 820 const FunctionDecl *Definition = nullptr; 821 Stmt *Body = Ctor->getBody(Definition); 822 assert(Definition == Ctor && "emitting wrong constructor body"); 823 824 // Enter the function-try-block before the constructor prologue if 825 // applicable. 826 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 827 if (IsTryBody) 828 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 829 830 incrementProfileCounter(Body); 831 832 RunCleanupsScope RunCleanups(*this); 833 834 // TODO: in restricted cases, we can emit the vbase initializers of 835 // a complete ctor and then delegate to the base ctor. 836 837 // Emit the constructor prologue, i.e. the base and member 838 // initializers. 839 EmitCtorPrologue(Ctor, CtorType, Args); 840 841 // Emit the body of the statement. 842 if (IsTryBody) 843 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 844 else if (Body) 845 EmitStmt(Body); 846 847 // Emit any cleanup blocks associated with the member or base 848 // initializers, which includes (along the exceptional path) the 849 // destructors for those members and bases that were fully 850 // constructed. 851 RunCleanups.ForceCleanup(); 852 853 if (IsTryBody) 854 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 855 } 856 857 namespace { 858 /// RAII object to indicate that codegen is copying the value representation 859 /// instead of the object representation. Useful when copying a struct or 860 /// class which has uninitialized members and we're only performing 861 /// lvalue-to-rvalue conversion on the object but not its members. 862 class CopyingValueRepresentation { 863 public: 864 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 865 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 866 CGF.SanOpts.set(SanitizerKind::Bool, false); 867 CGF.SanOpts.set(SanitizerKind::Enum, false); 868 } 869 ~CopyingValueRepresentation() { 870 CGF.SanOpts = OldSanOpts; 871 } 872 private: 873 CodeGenFunction &CGF; 874 SanitizerSet OldSanOpts; 875 }; 876 } // end anonymous namespace 877 878 namespace { 879 class FieldMemcpyizer { 880 public: 881 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 882 const VarDecl *SrcRec) 883 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 884 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 885 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 886 LastFieldOffset(0), LastAddedFieldIndex(0) {} 887 888 bool isMemcpyableField(FieldDecl *F) const { 889 // Never memcpy fields when we are adding poisoned paddings. 890 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 891 return false; 892 Qualifiers Qual = F->getType().getQualifiers(); 893 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 894 return false; 895 return true; 896 } 897 898 void addMemcpyableField(FieldDecl *F) { 899 if (!FirstField) 900 addInitialField(F); 901 else 902 addNextField(F); 903 } 904 905 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 906 unsigned LastFieldSize = 907 LastField->isBitField() ? 908 LastField->getBitWidthValue(CGF.getContext()) : 909 CGF.getContext().getTypeSize(LastField->getType()); 910 uint64_t MemcpySizeBits = 911 LastFieldOffset + LastFieldSize - FirstByteOffset + 912 CGF.getContext().getCharWidth() - 1; 913 CharUnits MemcpySize = 914 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 915 return MemcpySize; 916 } 917 918 void emitMemcpy() { 919 // Give the subclass a chance to bail out if it feels the memcpy isn't 920 // worth it (e.g. Hasn't aggregated enough data). 921 if (!FirstField) { 922 return; 923 } 924 925 uint64_t FirstByteOffset; 926 if (FirstField->isBitField()) { 927 const CGRecordLayout &RL = 928 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 929 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 930 // FirstFieldOffset is not appropriate for bitfields, 931 // we need to use the storage offset instead. 932 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 933 } else { 934 FirstByteOffset = FirstFieldOffset; 935 } 936 937 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 938 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 939 Address ThisPtr = CGF.LoadCXXThisAddress(); 940 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 941 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 942 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 943 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 944 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 945 946 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 947 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 948 MemcpySize); 949 reset(); 950 } 951 952 void reset() { 953 FirstField = nullptr; 954 } 955 956 protected: 957 CodeGenFunction &CGF; 958 const CXXRecordDecl *ClassDecl; 959 960 private: 961 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 962 llvm::PointerType *DPT = DestPtr.getType(); 963 llvm::Type *DBP = 964 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 965 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 966 967 llvm::PointerType *SPT = SrcPtr.getType(); 968 llvm::Type *SBP = 969 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 970 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 971 972 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 973 } 974 975 void addInitialField(FieldDecl *F) { 976 FirstField = F; 977 LastField = F; 978 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 979 LastFieldOffset = FirstFieldOffset; 980 LastAddedFieldIndex = F->getFieldIndex(); 981 } 982 983 void addNextField(FieldDecl *F) { 984 // For the most part, the following invariant will hold: 985 // F->getFieldIndex() == LastAddedFieldIndex + 1 986 // The one exception is that Sema won't add a copy-initializer for an 987 // unnamed bitfield, which will show up here as a gap in the sequence. 988 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 989 "Cannot aggregate fields out of order."); 990 LastAddedFieldIndex = F->getFieldIndex(); 991 992 // The 'first' and 'last' fields are chosen by offset, rather than field 993 // index. This allows the code to support bitfields, as well as regular 994 // fields. 995 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 996 if (FOffset < FirstFieldOffset) { 997 FirstField = F; 998 FirstFieldOffset = FOffset; 999 } else if (FOffset > LastFieldOffset) { 1000 LastField = F; 1001 LastFieldOffset = FOffset; 1002 } 1003 } 1004 1005 const VarDecl *SrcRec; 1006 const ASTRecordLayout &RecLayout; 1007 FieldDecl *FirstField; 1008 FieldDecl *LastField; 1009 uint64_t FirstFieldOffset, LastFieldOffset; 1010 unsigned LastAddedFieldIndex; 1011 }; 1012 1013 class ConstructorMemcpyizer : public FieldMemcpyizer { 1014 private: 1015 /// Get source argument for copy constructor. Returns null if not a copy 1016 /// constructor. 1017 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1018 const CXXConstructorDecl *CD, 1019 FunctionArgList &Args) { 1020 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1021 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1022 return nullptr; 1023 } 1024 1025 // Returns true if a CXXCtorInitializer represents a member initialization 1026 // that can be rolled into a memcpy. 1027 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1028 if (!MemcpyableCtor) 1029 return false; 1030 FieldDecl *Field = MemberInit->getMember(); 1031 assert(Field && "No field for member init."); 1032 QualType FieldType = Field->getType(); 1033 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1034 1035 // Bail out on non-memcpyable, not-trivially-copyable members. 1036 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1037 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1038 FieldType->isReferenceType())) 1039 return false; 1040 1041 // Bail out on volatile fields. 1042 if (!isMemcpyableField(Field)) 1043 return false; 1044 1045 // Otherwise we're good. 1046 return true; 1047 } 1048 1049 public: 1050 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1051 FunctionArgList &Args) 1052 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1053 ConstructorDecl(CD), 1054 MemcpyableCtor(CD->isDefaulted() && 1055 CD->isCopyOrMoveConstructor() && 1056 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1057 Args(Args) { } 1058 1059 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1060 if (isMemberInitMemcpyable(MemberInit)) { 1061 AggregatedInits.push_back(MemberInit); 1062 addMemcpyableField(MemberInit->getMember()); 1063 } else { 1064 emitAggregatedInits(); 1065 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1066 ConstructorDecl, Args); 1067 } 1068 } 1069 1070 void emitAggregatedInits() { 1071 if (AggregatedInits.size() <= 1) { 1072 // This memcpy is too small to be worthwhile. Fall back on default 1073 // codegen. 1074 if (!AggregatedInits.empty()) { 1075 CopyingValueRepresentation CVR(CGF); 1076 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1077 AggregatedInits[0], ConstructorDecl, Args); 1078 AggregatedInits.clear(); 1079 } 1080 reset(); 1081 return; 1082 } 1083 1084 pushEHDestructors(); 1085 emitMemcpy(); 1086 AggregatedInits.clear(); 1087 } 1088 1089 void pushEHDestructors() { 1090 Address ThisPtr = CGF.LoadCXXThisAddress(); 1091 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1092 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1093 1094 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1095 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1096 QualType FieldType = MemberInit->getAnyMember()->getType(); 1097 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1098 if (!CGF.needsEHCleanup(dtorKind)) 1099 continue; 1100 LValue FieldLHS = LHS; 1101 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1102 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1103 } 1104 } 1105 1106 void finish() { 1107 emitAggregatedInits(); 1108 } 1109 1110 private: 1111 const CXXConstructorDecl *ConstructorDecl; 1112 bool MemcpyableCtor; 1113 FunctionArgList &Args; 1114 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1115 }; 1116 1117 class AssignmentMemcpyizer : public FieldMemcpyizer { 1118 private: 1119 // Returns the memcpyable field copied by the given statement, if one 1120 // exists. Otherwise returns null. 1121 FieldDecl *getMemcpyableField(Stmt *S) { 1122 if (!AssignmentsMemcpyable) 1123 return nullptr; 1124 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1125 // Recognise trivial assignments. 1126 if (BO->getOpcode() != BO_Assign) 1127 return nullptr; 1128 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1129 if (!ME) 1130 return nullptr; 1131 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1132 if (!Field || !isMemcpyableField(Field)) 1133 return nullptr; 1134 Stmt *RHS = BO->getRHS(); 1135 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1136 RHS = EC->getSubExpr(); 1137 if (!RHS) 1138 return nullptr; 1139 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1140 if (ME2->getMemberDecl() == Field) 1141 return Field; 1142 } 1143 return nullptr; 1144 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1145 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1146 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1147 return nullptr; 1148 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1149 if (!IOA) 1150 return nullptr; 1151 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1152 if (!Field || !isMemcpyableField(Field)) 1153 return nullptr; 1154 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1155 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1156 return nullptr; 1157 return Field; 1158 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1159 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1160 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1161 return nullptr; 1162 Expr *DstPtr = CE->getArg(0); 1163 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1164 DstPtr = DC->getSubExpr(); 1165 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1166 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1167 return nullptr; 1168 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1169 if (!ME) 1170 return nullptr; 1171 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1172 if (!Field || !isMemcpyableField(Field)) 1173 return nullptr; 1174 Expr *SrcPtr = CE->getArg(1); 1175 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1176 SrcPtr = SC->getSubExpr(); 1177 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1178 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1179 return nullptr; 1180 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1181 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1182 return nullptr; 1183 return Field; 1184 } 1185 1186 return nullptr; 1187 } 1188 1189 bool AssignmentsMemcpyable; 1190 SmallVector<Stmt*, 16> AggregatedStmts; 1191 1192 public: 1193 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1194 FunctionArgList &Args) 1195 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1196 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1197 assert(Args.size() == 2); 1198 } 1199 1200 void emitAssignment(Stmt *S) { 1201 FieldDecl *F = getMemcpyableField(S); 1202 if (F) { 1203 addMemcpyableField(F); 1204 AggregatedStmts.push_back(S); 1205 } else { 1206 emitAggregatedStmts(); 1207 CGF.EmitStmt(S); 1208 } 1209 } 1210 1211 void emitAggregatedStmts() { 1212 if (AggregatedStmts.size() <= 1) { 1213 if (!AggregatedStmts.empty()) { 1214 CopyingValueRepresentation CVR(CGF); 1215 CGF.EmitStmt(AggregatedStmts[0]); 1216 } 1217 reset(); 1218 } 1219 1220 emitMemcpy(); 1221 AggregatedStmts.clear(); 1222 } 1223 1224 void finish() { 1225 emitAggregatedStmts(); 1226 } 1227 }; 1228 } // end anonymous namespace 1229 1230 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1231 const Type *BaseType = BaseInit->getBaseClass(); 1232 const auto *BaseClassDecl = 1233 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1234 return BaseClassDecl->isDynamicClass(); 1235 } 1236 1237 /// EmitCtorPrologue - This routine generates necessary code to initialize 1238 /// base classes and non-static data members belonging to this constructor. 1239 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1240 CXXCtorType CtorType, 1241 FunctionArgList &Args) { 1242 if (CD->isDelegatingConstructor()) 1243 return EmitDelegatingCXXConstructorCall(CD, Args); 1244 1245 const CXXRecordDecl *ClassDecl = CD->getParent(); 1246 1247 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1248 E = CD->init_end(); 1249 1250 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1251 if (ClassDecl->getNumVBases() && 1252 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1253 // The ABIs that don't have constructor variants need to put a branch 1254 // before the virtual base initialization code. 1255 BaseCtorContinueBB = 1256 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1257 assert(BaseCtorContinueBB); 1258 } 1259 1260 llvm::Value *const OldThis = CXXThisValue; 1261 // Virtual base initializers first. 1262 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1263 if (CGM.getCodeGenOpts().StrictVTablePointers && 1264 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1265 isInitializerOfDynamicClass(*B)) 1266 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1267 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1268 } 1269 1270 if (BaseCtorContinueBB) { 1271 // Complete object handler should continue to the remaining initializers. 1272 Builder.CreateBr(BaseCtorContinueBB); 1273 EmitBlock(BaseCtorContinueBB); 1274 } 1275 1276 // Then, non-virtual base initializers. 1277 for (; B != E && (*B)->isBaseInitializer(); B++) { 1278 assert(!(*B)->isBaseVirtual()); 1279 1280 if (CGM.getCodeGenOpts().StrictVTablePointers && 1281 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1282 isInitializerOfDynamicClass(*B)) 1283 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1284 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1285 } 1286 1287 CXXThisValue = OldThis; 1288 1289 InitializeVTablePointers(ClassDecl); 1290 1291 // And finally, initialize class members. 1292 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1293 ConstructorMemcpyizer CM(*this, CD, Args); 1294 for (; B != E; B++) { 1295 CXXCtorInitializer *Member = (*B); 1296 assert(!Member->isBaseInitializer()); 1297 assert(Member->isAnyMemberInitializer() && 1298 "Delegating initializer on non-delegating constructor"); 1299 CM.addMemberInitializer(Member); 1300 } 1301 CM.finish(); 1302 } 1303 1304 static bool 1305 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1306 1307 static bool 1308 HasTrivialDestructorBody(ASTContext &Context, 1309 const CXXRecordDecl *BaseClassDecl, 1310 const CXXRecordDecl *MostDerivedClassDecl) 1311 { 1312 // If the destructor is trivial we don't have to check anything else. 1313 if (BaseClassDecl->hasTrivialDestructor()) 1314 return true; 1315 1316 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1317 return false; 1318 1319 // Check fields. 1320 for (const auto *Field : BaseClassDecl->fields()) 1321 if (!FieldHasTrivialDestructorBody(Context, Field)) 1322 return false; 1323 1324 // Check non-virtual bases. 1325 for (const auto &I : BaseClassDecl->bases()) { 1326 if (I.isVirtual()) 1327 continue; 1328 1329 const CXXRecordDecl *NonVirtualBase = 1330 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1331 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1332 MostDerivedClassDecl)) 1333 return false; 1334 } 1335 1336 if (BaseClassDecl == MostDerivedClassDecl) { 1337 // Check virtual bases. 1338 for (const auto &I : BaseClassDecl->vbases()) { 1339 const CXXRecordDecl *VirtualBase = 1340 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1341 if (!HasTrivialDestructorBody(Context, VirtualBase, 1342 MostDerivedClassDecl)) 1343 return false; 1344 } 1345 } 1346 1347 return true; 1348 } 1349 1350 static bool 1351 FieldHasTrivialDestructorBody(ASTContext &Context, 1352 const FieldDecl *Field) 1353 { 1354 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1355 1356 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1357 if (!RT) 1358 return true; 1359 1360 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1361 1362 // The destructor for an implicit anonymous union member is never invoked. 1363 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1364 return false; 1365 1366 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1367 } 1368 1369 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1370 /// any vtable pointers before calling this destructor. 1371 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1372 const CXXDestructorDecl *Dtor) { 1373 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1374 if (!ClassDecl->isDynamicClass()) 1375 return true; 1376 1377 if (!Dtor->hasTrivialBody()) 1378 return false; 1379 1380 // Check the fields. 1381 for (const auto *Field : ClassDecl->fields()) 1382 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1383 return false; 1384 1385 return true; 1386 } 1387 1388 /// EmitDestructorBody - Emits the body of the current destructor. 1389 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1390 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1391 CXXDtorType DtorType = CurGD.getDtorType(); 1392 1393 // For an abstract class, non-base destructors are never used (and can't 1394 // be emitted in general, because vbase dtors may not have been validated 1395 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1396 // in fact emit references to them from other compilations, so emit them 1397 // as functions containing a trap instruction. 1398 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1399 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1400 TrapCall->setDoesNotReturn(); 1401 TrapCall->setDoesNotThrow(); 1402 Builder.CreateUnreachable(); 1403 Builder.ClearInsertionPoint(); 1404 return; 1405 } 1406 1407 Stmt *Body = Dtor->getBody(); 1408 if (Body) 1409 incrementProfileCounter(Body); 1410 1411 // The call to operator delete in a deleting destructor happens 1412 // outside of the function-try-block, which means it's always 1413 // possible to delegate the destructor body to the complete 1414 // destructor. Do so. 1415 if (DtorType == Dtor_Deleting) { 1416 EnterDtorCleanups(Dtor, Dtor_Deleting); 1417 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1418 /*Delegating=*/false, LoadCXXThisAddress()); 1419 PopCleanupBlock(); 1420 return; 1421 } 1422 1423 // If the body is a function-try-block, enter the try before 1424 // anything else. 1425 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1426 if (isTryBody) 1427 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1428 EmitAsanPrologueOrEpilogue(false); 1429 1430 // Enter the epilogue cleanups. 1431 RunCleanupsScope DtorEpilogue(*this); 1432 1433 // If this is the complete variant, just invoke the base variant; 1434 // the epilogue will destruct the virtual bases. But we can't do 1435 // this optimization if the body is a function-try-block, because 1436 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1437 // always delegate because we might not have a definition in this TU. 1438 switch (DtorType) { 1439 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1440 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1441 1442 case Dtor_Complete: 1443 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1444 "can't emit a dtor without a body for non-Microsoft ABIs"); 1445 1446 // Enter the cleanup scopes for virtual bases. 1447 EnterDtorCleanups(Dtor, Dtor_Complete); 1448 1449 if (!isTryBody) { 1450 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1451 /*Delegating=*/false, LoadCXXThisAddress()); 1452 break; 1453 } 1454 1455 // Fallthrough: act like we're in the base variant. 1456 LLVM_FALLTHROUGH; 1457 1458 case Dtor_Base: 1459 assert(Body); 1460 1461 // Enter the cleanup scopes for fields and non-virtual bases. 1462 EnterDtorCleanups(Dtor, Dtor_Base); 1463 1464 // Initialize the vtable pointers before entering the body. 1465 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1466 // Insert the llvm.invariant.group.barrier intrinsic before initializing 1467 // the vptrs to cancel any previous assumptions we might have made. 1468 if (CGM.getCodeGenOpts().StrictVTablePointers && 1469 CGM.getCodeGenOpts().OptimizationLevel > 0) 1470 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1471 InitializeVTablePointers(Dtor->getParent()); 1472 } 1473 1474 if (isTryBody) 1475 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1476 else if (Body) 1477 EmitStmt(Body); 1478 else { 1479 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1480 // nothing to do besides what's in the epilogue 1481 } 1482 // -fapple-kext must inline any call to this dtor into 1483 // the caller's body. 1484 if (getLangOpts().AppleKext) 1485 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1486 1487 break; 1488 } 1489 1490 // Jump out through the epilogue cleanups. 1491 DtorEpilogue.ForceCleanup(); 1492 1493 // Exit the try if applicable. 1494 if (isTryBody) 1495 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1496 } 1497 1498 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1499 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1500 const Stmt *RootS = AssignOp->getBody(); 1501 assert(isa<CompoundStmt>(RootS) && 1502 "Body of an implicit assignment operator should be compound stmt."); 1503 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1504 1505 LexicalScope Scope(*this, RootCS->getSourceRange()); 1506 1507 incrementProfileCounter(RootCS); 1508 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1509 for (auto *I : RootCS->body()) 1510 AM.emitAssignment(I); 1511 AM.finish(); 1512 } 1513 1514 namespace { 1515 /// Call the operator delete associated with the current destructor. 1516 struct CallDtorDelete final : EHScopeStack::Cleanup { 1517 CallDtorDelete() {} 1518 1519 void Emit(CodeGenFunction &CGF, Flags flags) override { 1520 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1521 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1522 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1523 CGF.getContext().getTagDeclType(ClassDecl)); 1524 } 1525 }; 1526 1527 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1528 llvm::Value *ShouldDeleteCondition; 1529 1530 public: 1531 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1532 : ShouldDeleteCondition(ShouldDeleteCondition) { 1533 assert(ShouldDeleteCondition != nullptr); 1534 } 1535 1536 void Emit(CodeGenFunction &CGF, Flags flags) override { 1537 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1538 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1539 llvm::Value *ShouldCallDelete 1540 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1541 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1542 1543 CGF.EmitBlock(callDeleteBB); 1544 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1545 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1546 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1547 CGF.getContext().getTagDeclType(ClassDecl)); 1548 CGF.Builder.CreateBr(continueBB); 1549 1550 CGF.EmitBlock(continueBB); 1551 } 1552 }; 1553 1554 class DestroyField final : public EHScopeStack::Cleanup { 1555 const FieldDecl *field; 1556 CodeGenFunction::Destroyer *destroyer; 1557 bool useEHCleanupForArray; 1558 1559 public: 1560 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1561 bool useEHCleanupForArray) 1562 : field(field), destroyer(destroyer), 1563 useEHCleanupForArray(useEHCleanupForArray) {} 1564 1565 void Emit(CodeGenFunction &CGF, Flags flags) override { 1566 // Find the address of the field. 1567 Address thisValue = CGF.LoadCXXThisAddress(); 1568 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1569 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1570 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1571 assert(LV.isSimple()); 1572 1573 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1574 flags.isForNormalCleanup() && useEHCleanupForArray); 1575 } 1576 }; 1577 1578 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1579 CharUnits::QuantityType PoisonSize) { 1580 CodeGenFunction::SanitizerScope SanScope(&CGF); 1581 // Pass in void pointer and size of region as arguments to runtime 1582 // function 1583 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1584 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1585 1586 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1587 1588 llvm::FunctionType *FnType = 1589 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1590 llvm::Value *Fn = 1591 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1592 CGF.EmitNounwindRuntimeCall(Fn, Args); 1593 } 1594 1595 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1596 const CXXDestructorDecl *Dtor; 1597 1598 public: 1599 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1600 1601 // Generate function call for handling object poisoning. 1602 // Disables tail call elimination, to prevent the current stack frame 1603 // from disappearing from the stack trace. 1604 void Emit(CodeGenFunction &CGF, Flags flags) override { 1605 const ASTRecordLayout &Layout = 1606 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1607 1608 // Nothing to poison. 1609 if (Layout.getFieldCount() == 0) 1610 return; 1611 1612 // Prevent the current stack frame from disappearing from the stack trace. 1613 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1614 1615 // Construct pointer to region to begin poisoning, and calculate poison 1616 // size, so that only members declared in this class are poisoned. 1617 ASTContext &Context = CGF.getContext(); 1618 unsigned fieldIndex = 0; 1619 int startIndex = -1; 1620 // RecordDecl::field_iterator Field; 1621 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1622 // Poison field if it is trivial 1623 if (FieldHasTrivialDestructorBody(Context, Field)) { 1624 // Start sanitizing at this field 1625 if (startIndex < 0) 1626 startIndex = fieldIndex; 1627 1628 // Currently on the last field, and it must be poisoned with the 1629 // current block. 1630 if (fieldIndex == Layout.getFieldCount() - 1) { 1631 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1632 } 1633 } else if (startIndex >= 0) { 1634 // No longer within a block of memory to poison, so poison the block 1635 PoisonMembers(CGF, startIndex, fieldIndex); 1636 // Re-set the start index 1637 startIndex = -1; 1638 } 1639 fieldIndex += 1; 1640 } 1641 } 1642 1643 private: 1644 /// \param layoutStartOffset index of the ASTRecordLayout field to 1645 /// start poisoning (inclusive) 1646 /// \param layoutEndOffset index of the ASTRecordLayout field to 1647 /// end poisoning (exclusive) 1648 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1649 unsigned layoutEndOffset) { 1650 ASTContext &Context = CGF.getContext(); 1651 const ASTRecordLayout &Layout = 1652 Context.getASTRecordLayout(Dtor->getParent()); 1653 1654 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1655 CGF.SizeTy, 1656 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1657 .getQuantity()); 1658 1659 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1660 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1661 OffsetSizePtr); 1662 1663 CharUnits::QuantityType PoisonSize; 1664 if (layoutEndOffset >= Layout.getFieldCount()) { 1665 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1666 Context.toCharUnitsFromBits( 1667 Layout.getFieldOffset(layoutStartOffset)) 1668 .getQuantity(); 1669 } else { 1670 PoisonSize = Context.toCharUnitsFromBits( 1671 Layout.getFieldOffset(layoutEndOffset) - 1672 Layout.getFieldOffset(layoutStartOffset)) 1673 .getQuantity(); 1674 } 1675 1676 if (PoisonSize == 0) 1677 return; 1678 1679 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1680 } 1681 }; 1682 1683 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1684 const CXXDestructorDecl *Dtor; 1685 1686 public: 1687 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1688 1689 // Generate function call for handling vtable pointer poisoning. 1690 void Emit(CodeGenFunction &CGF, Flags flags) override { 1691 assert(Dtor->getParent()->isDynamicClass()); 1692 (void)Dtor; 1693 ASTContext &Context = CGF.getContext(); 1694 // Poison vtable and vtable ptr if they exist for this class. 1695 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1696 1697 CharUnits::QuantityType PoisonSize = 1698 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1699 // Pass in void pointer and size of region as arguments to runtime 1700 // function 1701 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1702 } 1703 }; 1704 } // end anonymous namespace 1705 1706 /// \brief Emit all code that comes at the end of class's 1707 /// destructor. This is to call destructors on members and base classes 1708 /// in reverse order of their construction. 1709 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1710 CXXDtorType DtorType) { 1711 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1712 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1713 1714 // The deleting-destructor phase just needs to call the appropriate 1715 // operator delete that Sema picked up. 1716 if (DtorType == Dtor_Deleting) { 1717 assert(DD->getOperatorDelete() && 1718 "operator delete missing - EnterDtorCleanups"); 1719 if (CXXStructorImplicitParamValue) { 1720 // If there is an implicit param to the deleting dtor, it's a boolean 1721 // telling whether we should call delete at the end of the dtor. 1722 EHStack.pushCleanup<CallDtorDeleteConditional>( 1723 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1724 } else { 1725 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1726 } 1727 return; 1728 } 1729 1730 const CXXRecordDecl *ClassDecl = DD->getParent(); 1731 1732 // Unions have no bases and do not call field destructors. 1733 if (ClassDecl->isUnion()) 1734 return; 1735 1736 // The complete-destructor phase just destructs all the virtual bases. 1737 if (DtorType == Dtor_Complete) { 1738 // Poison the vtable pointer such that access after the base 1739 // and member destructors are invoked is invalid. 1740 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1741 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1742 ClassDecl->isPolymorphic()) 1743 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1744 1745 // We push them in the forward order so that they'll be popped in 1746 // the reverse order. 1747 for (const auto &Base : ClassDecl->vbases()) { 1748 CXXRecordDecl *BaseClassDecl 1749 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1750 1751 // Ignore trivial destructors. 1752 if (BaseClassDecl->hasTrivialDestructor()) 1753 continue; 1754 1755 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1756 BaseClassDecl, 1757 /*BaseIsVirtual*/ true); 1758 } 1759 1760 return; 1761 } 1762 1763 assert(DtorType == Dtor_Base); 1764 // Poison the vtable pointer if it has no virtual bases, but inherits 1765 // virtual functions. 1766 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1767 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1768 ClassDecl->isPolymorphic()) 1769 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1770 1771 // Destroy non-virtual bases. 1772 for (const auto &Base : ClassDecl->bases()) { 1773 // Ignore virtual bases. 1774 if (Base.isVirtual()) 1775 continue; 1776 1777 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1778 1779 // Ignore trivial destructors. 1780 if (BaseClassDecl->hasTrivialDestructor()) 1781 continue; 1782 1783 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1784 BaseClassDecl, 1785 /*BaseIsVirtual*/ false); 1786 } 1787 1788 // Poison fields such that access after their destructors are 1789 // invoked, and before the base class destructor runs, is invalid. 1790 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1791 SanOpts.has(SanitizerKind::Memory)) 1792 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1793 1794 // Destroy direct fields. 1795 for (const auto *Field : ClassDecl->fields()) { 1796 QualType type = Field->getType(); 1797 QualType::DestructionKind dtorKind = type.isDestructedType(); 1798 if (!dtorKind) continue; 1799 1800 // Anonymous union members do not have their destructors called. 1801 const RecordType *RT = type->getAsUnionType(); 1802 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1803 1804 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1805 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1806 getDestroyer(dtorKind), 1807 cleanupKind & EHCleanup); 1808 } 1809 } 1810 1811 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1812 /// constructor for each of several members of an array. 1813 /// 1814 /// \param ctor the constructor to call for each element 1815 /// \param arrayType the type of the array to initialize 1816 /// \param arrayBegin an arrayType* 1817 /// \param zeroInitialize true if each element should be 1818 /// zero-initialized before it is constructed 1819 void CodeGenFunction::EmitCXXAggrConstructorCall( 1820 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1821 Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1822 QualType elementType; 1823 llvm::Value *numElements = 1824 emitArrayLength(arrayType, elementType, arrayBegin); 1825 1826 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1827 } 1828 1829 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1830 /// constructor for each of several members of an array. 1831 /// 1832 /// \param ctor the constructor to call for each element 1833 /// \param numElements the number of elements in the array; 1834 /// may be zero 1835 /// \param arrayBase a T*, where T is the type constructed by ctor 1836 /// \param zeroInitialize true if each element should be 1837 /// zero-initialized before it is constructed 1838 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1839 llvm::Value *numElements, 1840 Address arrayBase, 1841 const CXXConstructExpr *E, 1842 bool zeroInitialize) { 1843 // It's legal for numElements to be zero. This can happen both 1844 // dynamically, because x can be zero in 'new A[x]', and statically, 1845 // because of GCC extensions that permit zero-length arrays. There 1846 // are probably legitimate places where we could assume that this 1847 // doesn't happen, but it's not clear that it's worth it. 1848 llvm::BranchInst *zeroCheckBranch = nullptr; 1849 1850 // Optimize for a constant count. 1851 llvm::ConstantInt *constantCount 1852 = dyn_cast<llvm::ConstantInt>(numElements); 1853 if (constantCount) { 1854 // Just skip out if the constant count is zero. 1855 if (constantCount->isZero()) return; 1856 1857 // Otherwise, emit the check. 1858 } else { 1859 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1860 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1861 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1862 EmitBlock(loopBB); 1863 } 1864 1865 // Find the end of the array. 1866 llvm::Value *arrayBegin = arrayBase.getPointer(); 1867 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1868 "arrayctor.end"); 1869 1870 // Enter the loop, setting up a phi for the current location to initialize. 1871 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1872 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1873 EmitBlock(loopBB); 1874 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1875 "arrayctor.cur"); 1876 cur->addIncoming(arrayBegin, entryBB); 1877 1878 // Inside the loop body, emit the constructor call on the array element. 1879 1880 // The alignment of the base, adjusted by the size of a single element, 1881 // provides a conservative estimate of the alignment of every element. 1882 // (This assumes we never start tracking offsetted alignments.) 1883 // 1884 // Note that these are complete objects and so we don't need to 1885 // use the non-virtual size or alignment. 1886 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1887 CharUnits eltAlignment = 1888 arrayBase.getAlignment() 1889 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1890 Address curAddr = Address(cur, eltAlignment); 1891 1892 // Zero initialize the storage, if requested. 1893 if (zeroInitialize) 1894 EmitNullInitialization(curAddr, type); 1895 1896 // C++ [class.temporary]p4: 1897 // There are two contexts in which temporaries are destroyed at a different 1898 // point than the end of the full-expression. The first context is when a 1899 // default constructor is called to initialize an element of an array. 1900 // If the constructor has one or more default arguments, the destruction of 1901 // every temporary created in a default argument expression is sequenced 1902 // before the construction of the next array element, if any. 1903 1904 { 1905 RunCleanupsScope Scope(*this); 1906 1907 // Evaluate the constructor and its arguments in a regular 1908 // partial-destroy cleanup. 1909 if (getLangOpts().Exceptions && 1910 !ctor->getParent()->hasTrivialDestructor()) { 1911 Destroyer *destroyer = destroyCXXObject; 1912 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1913 *destroyer); 1914 } 1915 1916 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1917 /*Delegating=*/false, curAddr, E); 1918 } 1919 1920 // Go to the next element. 1921 llvm::Value *next = 1922 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1923 "arrayctor.next"); 1924 cur->addIncoming(next, Builder.GetInsertBlock()); 1925 1926 // Check whether that's the end of the loop. 1927 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1928 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1929 Builder.CreateCondBr(done, contBB, loopBB); 1930 1931 // Patch the earlier check to skip over the loop. 1932 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1933 1934 EmitBlock(contBB); 1935 } 1936 1937 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1938 Address addr, 1939 QualType type) { 1940 const RecordType *rtype = type->castAs<RecordType>(); 1941 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1942 const CXXDestructorDecl *dtor = record->getDestructor(); 1943 assert(!dtor->isTrivial()); 1944 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1945 /*Delegating=*/false, addr); 1946 } 1947 1948 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1949 CXXCtorType Type, 1950 bool ForVirtualBase, 1951 bool Delegating, Address This, 1952 const CXXConstructExpr *E) { 1953 CallArgList Args; 1954 1955 // Push the this ptr. 1956 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 1957 1958 // If this is a trivial constructor, emit a memcpy now before we lose 1959 // the alignment information on the argument. 1960 // FIXME: It would be better to preserve alignment information into CallArg. 1961 if (isMemcpyEquivalentSpecialMember(D)) { 1962 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1963 1964 const Expr *Arg = E->getArg(0); 1965 QualType SrcTy = Arg->getType(); 1966 Address Src = EmitLValue(Arg).getAddress(); 1967 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 1968 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 1969 return; 1970 } 1971 1972 // Add the rest of the user-supplied arguments. 1973 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1974 EvaluationOrder Order = E->isListInitialization() 1975 ? EvaluationOrder::ForceLeftToRight 1976 : EvaluationOrder::Default; 1977 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 1978 /*ParamsToSkip*/ 0, Order); 1979 1980 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args); 1981 } 1982 1983 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 1984 const CXXConstructorDecl *Ctor, 1985 CXXCtorType Type, CallArgList &Args) { 1986 // We can't forward a variadic call. 1987 if (Ctor->isVariadic()) 1988 return false; 1989 1990 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1991 // If the parameters are callee-cleanup, it's not safe to forward. 1992 for (auto *P : Ctor->parameters()) 1993 if (P->getType().isDestructedType()) 1994 return false; 1995 1996 // Likewise if they're inalloca. 1997 const CGFunctionInfo &Info = 1998 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 1999 if (Info.usesInAlloca()) 2000 return false; 2001 } 2002 2003 // Anything else should be OK. 2004 return true; 2005 } 2006 2007 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2008 CXXCtorType Type, 2009 bool ForVirtualBase, 2010 bool Delegating, 2011 Address This, 2012 CallArgList &Args) { 2013 const CXXRecordDecl *ClassDecl = D->getParent(); 2014 2015 // C++11 [class.mfct.non-static]p2: 2016 // If a non-static member function of a class X is called for an object that 2017 // is not of type X, or of a type derived from X, the behavior is undefined. 2018 // FIXME: Provide a source location here. 2019 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), 2020 This.getPointer(), getContext().getRecordType(ClassDecl)); 2021 2022 if (D->isTrivial() && D->isDefaultConstructor()) { 2023 assert(Args.size() == 1 && "trivial default ctor with args"); 2024 return; 2025 } 2026 2027 // If this is a trivial constructor, just emit what's needed. If this is a 2028 // union copy constructor, we must emit a memcpy, because the AST does not 2029 // model that copy. 2030 if (isMemcpyEquivalentSpecialMember(D)) { 2031 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2032 2033 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2034 Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy)); 2035 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2036 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 2037 return; 2038 } 2039 2040 bool PassPrototypeArgs = true; 2041 // Check whether we can actually emit the constructor before trying to do so. 2042 if (auto Inherited = D->getInheritedConstructor()) { 2043 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2044 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2045 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2046 Delegating, Args); 2047 return; 2048 } 2049 } 2050 2051 // Insert any ABI-specific implicit constructor arguments. 2052 CGCXXABI::AddedStructorArgs ExtraArgs = 2053 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2054 Delegating, Args); 2055 2056 // Emit the call. 2057 llvm::Constant *CalleePtr = 2058 CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 2059 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2060 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2061 CGCallee Callee = CGCallee::forDirect(CalleePtr, D); 2062 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2063 2064 // Generate vtable assumptions if we're constructing a complete object 2065 // with a vtable. We don't do this for base subobjects for two reasons: 2066 // first, it's incorrect for classes with virtual bases, and second, we're 2067 // about to overwrite the vptrs anyway. 2068 // We also have to make sure if we can refer to vtable: 2069 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2070 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2071 // sure that definition of vtable is not hidden, 2072 // then we are always safe to refer to it. 2073 // FIXME: It looks like InstCombine is very inefficient on dealing with 2074 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2075 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2076 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2077 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2078 CGM.getCodeGenOpts().StrictVTablePointers) 2079 EmitVTableAssumptionLoads(ClassDecl, This); 2080 } 2081 2082 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2083 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2084 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2085 CallArgList Args; 2086 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()), 2087 /*NeedsCopy=*/false); 2088 2089 // Forward the parameters. 2090 if (InheritedFromVBase && 2091 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2092 // Nothing to do; this construction is not responsible for constructing 2093 // the base class containing the inherited constructor. 2094 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2095 // have constructor variants? 2096 Args.push_back(ThisArg); 2097 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2098 // The inheriting constructor was inlined; just inject its arguments. 2099 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2100 "wrong number of parameters for inherited constructor call"); 2101 Args = CXXInheritedCtorInitExprArgs; 2102 Args[0] = ThisArg; 2103 } else { 2104 // The inheriting constructor was not inlined. Emit delegating arguments. 2105 Args.push_back(ThisArg); 2106 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2107 assert(OuterCtor->getNumParams() == D->getNumParams()); 2108 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2109 2110 for (const auto *Param : OuterCtor->parameters()) { 2111 assert(getContext().hasSameUnqualifiedType( 2112 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2113 Param->getType())); 2114 EmitDelegateCallArg(Args, Param, E->getLocation()); 2115 2116 // Forward __attribute__(pass_object_size). 2117 if (Param->hasAttr<PassObjectSizeAttr>()) { 2118 auto *POSParam = SizeArguments[Param]; 2119 assert(POSParam && "missing pass_object_size value for forwarding"); 2120 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2121 } 2122 } 2123 } 2124 2125 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2126 This, Args); 2127 } 2128 2129 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2130 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2131 bool Delegating, CallArgList &Args) { 2132 GlobalDecl GD(Ctor, CtorType); 2133 InlinedInheritingConstructorScope Scope(*this, GD); 2134 ApplyInlineDebugLocation DebugScope(*this, GD); 2135 2136 // Save the arguments to be passed to the inherited constructor. 2137 CXXInheritedCtorInitExprArgs = Args; 2138 2139 FunctionArgList Params; 2140 QualType RetType = BuildFunctionArgList(CurGD, Params); 2141 FnRetTy = RetType; 2142 2143 // Insert any ABI-specific implicit constructor arguments. 2144 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2145 ForVirtualBase, Delegating, Args); 2146 2147 // Emit a simplified prolog. We only need to emit the implicit params. 2148 assert(Args.size() >= Params.size() && "too few arguments for call"); 2149 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2150 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2151 const RValue &RV = Args[I].RV; 2152 assert(!RV.isComplex() && "complex indirect params not supported"); 2153 ParamValue Val = RV.isScalar() 2154 ? ParamValue::forDirect(RV.getScalarVal()) 2155 : ParamValue::forIndirect(RV.getAggregateAddress()); 2156 EmitParmDecl(*Params[I], Val, I + 1); 2157 } 2158 } 2159 2160 // Create a return value slot if the ABI implementation wants one. 2161 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2162 // value instead. 2163 if (!RetType->isVoidType()) 2164 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2165 2166 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2167 CXXThisValue = CXXABIThisValue; 2168 2169 // Directly emit the constructor initializers. 2170 EmitCtorPrologue(Ctor, CtorType, Params); 2171 } 2172 2173 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2174 llvm::Value *VTableGlobal = 2175 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2176 if (!VTableGlobal) 2177 return; 2178 2179 // We can just use the base offset in the complete class. 2180 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2181 2182 if (!NonVirtualOffset.isZero()) 2183 This = 2184 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2185 Vptr.VTableClass, Vptr.NearestVBase); 2186 2187 llvm::Value *VPtrValue = 2188 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2189 llvm::Value *Cmp = 2190 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2191 Builder.CreateAssumption(Cmp); 2192 } 2193 2194 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2195 Address This) { 2196 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2197 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2198 EmitVTableAssumptionLoad(Vptr, This); 2199 } 2200 2201 void 2202 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2203 Address This, Address Src, 2204 const CXXConstructExpr *E) { 2205 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2206 2207 CallArgList Args; 2208 2209 // Push the this ptr. 2210 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2211 2212 // Push the src ptr. 2213 QualType QT = *(FPT->param_type_begin()); 2214 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2215 Src = Builder.CreateBitCast(Src, t); 2216 Args.add(RValue::get(Src.getPointer()), QT); 2217 2218 // Skip over first argument (Src). 2219 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2220 /*ParamsToSkip*/ 1); 2221 2222 EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args); 2223 } 2224 2225 void 2226 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2227 CXXCtorType CtorType, 2228 const FunctionArgList &Args, 2229 SourceLocation Loc) { 2230 CallArgList DelegateArgs; 2231 2232 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2233 assert(I != E && "no parameters to constructor"); 2234 2235 // this 2236 Address This = LoadCXXThisAddress(); 2237 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2238 ++I; 2239 2240 // FIXME: The location of the VTT parameter in the parameter list is 2241 // specific to the Itanium ABI and shouldn't be hardcoded here. 2242 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2243 assert(I != E && "cannot skip vtt parameter, already done with args"); 2244 assert((*I)->getType()->isPointerType() && 2245 "skipping parameter not of vtt type"); 2246 ++I; 2247 } 2248 2249 // Explicit arguments. 2250 for (; I != E; ++I) { 2251 const VarDecl *param = *I; 2252 // FIXME: per-argument source location 2253 EmitDelegateCallArg(DelegateArgs, param, Loc); 2254 } 2255 2256 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2257 /*Delegating=*/true, This, DelegateArgs); 2258 } 2259 2260 namespace { 2261 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2262 const CXXDestructorDecl *Dtor; 2263 Address Addr; 2264 CXXDtorType Type; 2265 2266 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2267 CXXDtorType Type) 2268 : Dtor(D), Addr(Addr), Type(Type) {} 2269 2270 void Emit(CodeGenFunction &CGF, Flags flags) override { 2271 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2272 /*Delegating=*/true, Addr); 2273 } 2274 }; 2275 } // end anonymous namespace 2276 2277 void 2278 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2279 const FunctionArgList &Args) { 2280 assert(Ctor->isDelegatingConstructor()); 2281 2282 Address ThisPtr = LoadCXXThisAddress(); 2283 2284 AggValueSlot AggSlot = 2285 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2286 AggValueSlot::IsDestructed, 2287 AggValueSlot::DoesNotNeedGCBarriers, 2288 AggValueSlot::IsNotAliased); 2289 2290 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2291 2292 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2293 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2294 CXXDtorType Type = 2295 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2296 2297 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2298 ClassDecl->getDestructor(), 2299 ThisPtr, Type); 2300 } 2301 } 2302 2303 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2304 CXXDtorType Type, 2305 bool ForVirtualBase, 2306 bool Delegating, 2307 Address This) { 2308 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2309 Delegating, This); 2310 } 2311 2312 namespace { 2313 struct CallLocalDtor final : EHScopeStack::Cleanup { 2314 const CXXDestructorDecl *Dtor; 2315 Address Addr; 2316 2317 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2318 : Dtor(D), Addr(Addr) {} 2319 2320 void Emit(CodeGenFunction &CGF, Flags flags) override { 2321 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2322 /*ForVirtualBase=*/false, 2323 /*Delegating=*/false, Addr); 2324 } 2325 }; 2326 } // end anonymous namespace 2327 2328 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2329 Address Addr) { 2330 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2331 } 2332 2333 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2334 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2335 if (!ClassDecl) return; 2336 if (ClassDecl->hasTrivialDestructor()) return; 2337 2338 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2339 assert(D && D->isUsed() && "destructor not marked as used!"); 2340 PushDestructorCleanup(D, Addr); 2341 } 2342 2343 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2344 // Compute the address point. 2345 llvm::Value *VTableAddressPoint = 2346 CGM.getCXXABI().getVTableAddressPointInStructor( 2347 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2348 2349 if (!VTableAddressPoint) 2350 return; 2351 2352 // Compute where to store the address point. 2353 llvm::Value *VirtualOffset = nullptr; 2354 CharUnits NonVirtualOffset = CharUnits::Zero(); 2355 2356 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2357 // We need to use the virtual base offset offset because the virtual base 2358 // might have a different offset in the most derived class. 2359 2360 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2361 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2362 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2363 } else { 2364 // We can just use the base offset in the complete class. 2365 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2366 } 2367 2368 // Apply the offsets. 2369 Address VTableField = LoadCXXThisAddress(); 2370 2371 if (!NonVirtualOffset.isZero() || VirtualOffset) 2372 VTableField = ApplyNonVirtualAndVirtualOffset( 2373 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2374 Vptr.NearestVBase); 2375 2376 // Finally, store the address point. Use the same LLVM types as the field to 2377 // support optimization. 2378 llvm::Type *VTablePtrTy = 2379 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2380 ->getPointerTo() 2381 ->getPointerTo(); 2382 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2383 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2384 2385 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2386 CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr()); 2387 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2388 CGM.getCodeGenOpts().StrictVTablePointers) 2389 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2390 } 2391 2392 CodeGenFunction::VPtrsVector 2393 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2394 CodeGenFunction::VPtrsVector VPtrsResult; 2395 VisitedVirtualBasesSetTy VBases; 2396 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2397 /*NearestVBase=*/nullptr, 2398 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2399 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2400 VPtrsResult); 2401 return VPtrsResult; 2402 } 2403 2404 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2405 const CXXRecordDecl *NearestVBase, 2406 CharUnits OffsetFromNearestVBase, 2407 bool BaseIsNonVirtualPrimaryBase, 2408 const CXXRecordDecl *VTableClass, 2409 VisitedVirtualBasesSetTy &VBases, 2410 VPtrsVector &Vptrs) { 2411 // If this base is a non-virtual primary base the address point has already 2412 // been set. 2413 if (!BaseIsNonVirtualPrimaryBase) { 2414 // Initialize the vtable pointer for this base. 2415 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2416 Vptrs.push_back(Vptr); 2417 } 2418 2419 const CXXRecordDecl *RD = Base.getBase(); 2420 2421 // Traverse bases. 2422 for (const auto &I : RD->bases()) { 2423 CXXRecordDecl *BaseDecl 2424 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2425 2426 // Ignore classes without a vtable. 2427 if (!BaseDecl->isDynamicClass()) 2428 continue; 2429 2430 CharUnits BaseOffset; 2431 CharUnits BaseOffsetFromNearestVBase; 2432 bool BaseDeclIsNonVirtualPrimaryBase; 2433 2434 if (I.isVirtual()) { 2435 // Check if we've visited this virtual base before. 2436 if (!VBases.insert(BaseDecl).second) 2437 continue; 2438 2439 const ASTRecordLayout &Layout = 2440 getContext().getASTRecordLayout(VTableClass); 2441 2442 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2443 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2444 BaseDeclIsNonVirtualPrimaryBase = false; 2445 } else { 2446 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2447 2448 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2449 BaseOffsetFromNearestVBase = 2450 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2451 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2452 } 2453 2454 getVTablePointers( 2455 BaseSubobject(BaseDecl, BaseOffset), 2456 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2457 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2458 } 2459 } 2460 2461 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2462 // Ignore classes without a vtable. 2463 if (!RD->isDynamicClass()) 2464 return; 2465 2466 // Initialize the vtable pointers for this class and all of its bases. 2467 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2468 for (const VPtr &Vptr : getVTablePointers(RD)) 2469 InitializeVTablePointer(Vptr); 2470 2471 if (RD->getNumVBases()) 2472 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2473 } 2474 2475 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2476 llvm::Type *VTableTy, 2477 const CXXRecordDecl *RD) { 2478 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2479 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2480 CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr()); 2481 2482 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2483 CGM.getCodeGenOpts().StrictVTablePointers) 2484 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2485 2486 return VTable; 2487 } 2488 2489 // If a class has a single non-virtual base and does not introduce or override 2490 // virtual member functions or fields, it will have the same layout as its base. 2491 // This function returns the least derived such class. 2492 // 2493 // Casting an instance of a base class to such a derived class is technically 2494 // undefined behavior, but it is a relatively common hack for introducing member 2495 // functions on class instances with specific properties (e.g. llvm::Operator) 2496 // that works under most compilers and should not have security implications, so 2497 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2498 static const CXXRecordDecl * 2499 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2500 if (!RD->field_empty()) 2501 return RD; 2502 2503 if (RD->getNumVBases() != 0) 2504 return RD; 2505 2506 if (RD->getNumBases() != 1) 2507 return RD; 2508 2509 for (const CXXMethodDecl *MD : RD->methods()) { 2510 if (MD->isVirtual()) { 2511 // Virtual member functions are only ok if they are implicit destructors 2512 // because the implicit destructor will have the same semantics as the 2513 // base class's destructor if no fields are added. 2514 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2515 continue; 2516 return RD; 2517 } 2518 } 2519 2520 return LeastDerivedClassWithSameLayout( 2521 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2522 } 2523 2524 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2525 llvm::Value *VTable, 2526 SourceLocation Loc) { 2527 if (SanOpts.has(SanitizerKind::CFIVCall)) 2528 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2529 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2530 CGM.HasHiddenLTOVisibility(RD)) { 2531 llvm::Metadata *MD = 2532 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2533 llvm::Value *TypeId = 2534 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2535 2536 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2537 llvm::Value *TypeTest = 2538 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2539 {CastedVTable, TypeId}); 2540 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2541 } 2542 } 2543 2544 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2545 llvm::Value *VTable, 2546 CFITypeCheckKind TCK, 2547 SourceLocation Loc) { 2548 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2549 RD = LeastDerivedClassWithSameLayout(RD); 2550 2551 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2552 } 2553 2554 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2555 llvm::Value *Derived, 2556 bool MayBeNull, 2557 CFITypeCheckKind TCK, 2558 SourceLocation Loc) { 2559 if (!getLangOpts().CPlusPlus) 2560 return; 2561 2562 auto *ClassTy = T->getAs<RecordType>(); 2563 if (!ClassTy) 2564 return; 2565 2566 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2567 2568 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2569 return; 2570 2571 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2572 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2573 2574 llvm::BasicBlock *ContBlock = nullptr; 2575 2576 if (MayBeNull) { 2577 llvm::Value *DerivedNotNull = 2578 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2579 2580 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2581 ContBlock = createBasicBlock("cast.cont"); 2582 2583 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2584 2585 EmitBlock(CheckBlock); 2586 } 2587 2588 llvm::Value *VTable = 2589 GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl); 2590 2591 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2592 2593 if (MayBeNull) { 2594 Builder.CreateBr(ContBlock); 2595 EmitBlock(ContBlock); 2596 } 2597 } 2598 2599 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2600 llvm::Value *VTable, 2601 CFITypeCheckKind TCK, 2602 SourceLocation Loc) { 2603 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2604 !CGM.HasHiddenLTOVisibility(RD)) 2605 return; 2606 2607 SanitizerMask M; 2608 llvm::SanitizerStatKind SSK; 2609 switch (TCK) { 2610 case CFITCK_VCall: 2611 M = SanitizerKind::CFIVCall; 2612 SSK = llvm::SanStat_CFI_VCall; 2613 break; 2614 case CFITCK_NVCall: 2615 M = SanitizerKind::CFINVCall; 2616 SSK = llvm::SanStat_CFI_NVCall; 2617 break; 2618 case CFITCK_DerivedCast: 2619 M = SanitizerKind::CFIDerivedCast; 2620 SSK = llvm::SanStat_CFI_DerivedCast; 2621 break; 2622 case CFITCK_UnrelatedCast: 2623 M = SanitizerKind::CFIUnrelatedCast; 2624 SSK = llvm::SanStat_CFI_UnrelatedCast; 2625 break; 2626 case CFITCK_ICall: 2627 llvm_unreachable("not expecting CFITCK_ICall"); 2628 } 2629 2630 std::string TypeName = RD->getQualifiedNameAsString(); 2631 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2632 return; 2633 2634 SanitizerScope SanScope(this); 2635 EmitSanitizerStatReport(SSK); 2636 2637 llvm::Metadata *MD = 2638 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2639 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2640 2641 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2642 llvm::Value *TypeTest = Builder.CreateCall( 2643 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2644 2645 llvm::Constant *StaticData[] = { 2646 llvm::ConstantInt::get(Int8Ty, TCK), 2647 EmitCheckSourceLocation(Loc), 2648 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2649 }; 2650 2651 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2652 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2653 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2654 return; 2655 } 2656 2657 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2658 EmitTrapCheck(TypeTest); 2659 return; 2660 } 2661 2662 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2663 CGM.getLLVMContext(), 2664 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2665 llvm::Value *ValidVtable = Builder.CreateCall( 2666 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2667 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2668 StaticData, {CastedVTable, ValidVtable}); 2669 } 2670 2671 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2672 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2673 !SanOpts.has(SanitizerKind::CFIVCall) || 2674 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2675 !CGM.HasHiddenLTOVisibility(RD)) 2676 return false; 2677 2678 std::string TypeName = RD->getQualifiedNameAsString(); 2679 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2680 SanitizerKind::CFIVCall, TypeName); 2681 } 2682 2683 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2684 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2685 SanitizerScope SanScope(this); 2686 2687 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2688 2689 llvm::Metadata *MD = 2690 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2691 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2692 2693 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2694 llvm::Value *CheckedLoad = Builder.CreateCall( 2695 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2696 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2697 TypeId}); 2698 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2699 2700 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2701 SanitizerHandler::CFICheckFail, nullptr, nullptr); 2702 2703 return Builder.CreateBitCast( 2704 Builder.CreateExtractValue(CheckedLoad, 0), 2705 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2706 } 2707 2708 void CodeGenFunction::EmitForwardingCallToLambda( 2709 const CXXMethodDecl *callOperator, 2710 CallArgList &callArgs) { 2711 // Get the address of the call operator. 2712 const CGFunctionInfo &calleeFnInfo = 2713 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2714 llvm::Constant *calleePtr = 2715 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2716 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2717 2718 // Prepare the return slot. 2719 const FunctionProtoType *FPT = 2720 callOperator->getType()->castAs<FunctionProtoType>(); 2721 QualType resultType = FPT->getReturnType(); 2722 ReturnValueSlot returnSlot; 2723 if (!resultType->isVoidType() && 2724 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2725 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2726 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2727 2728 // We don't need to separately arrange the call arguments because 2729 // the call can't be variadic anyway --- it's impossible to forward 2730 // variadic arguments. 2731 2732 // Now emit our call. 2733 auto callee = CGCallee::forDirect(calleePtr, callOperator); 2734 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2735 2736 // If necessary, copy the returned value into the slot. 2737 if (!resultType->isVoidType() && returnSlot.isNull()) 2738 EmitReturnOfRValue(RV, resultType); 2739 else 2740 EmitBranchThroughCleanup(ReturnBlock); 2741 } 2742 2743 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2744 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2745 const VarDecl *variable = BD->capture_begin()->getVariable(); 2746 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2747 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2748 2749 if (CallOp->isVariadic()) { 2750 // FIXME: Making this work correctly is nasty because it requires either 2751 // cloning the body of the call operator or making the call operator 2752 // forward. 2753 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2754 return; 2755 } 2756 2757 // Start building arguments for forwarding call 2758 CallArgList CallArgs; 2759 2760 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2761 Address ThisPtr = GetAddrOfBlockDecl(variable, false); 2762 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2763 2764 // Add the rest of the parameters. 2765 for (auto param : BD->parameters()) 2766 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2767 2768 assert(!Lambda->isGenericLambda() && 2769 "generic lambda interconversion to block not implemented"); 2770 EmitForwardingCallToLambda(CallOp, CallArgs); 2771 } 2772 2773 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2774 const CXXRecordDecl *Lambda = MD->getParent(); 2775 2776 // Start building arguments for forwarding call 2777 CallArgList CallArgs; 2778 2779 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2780 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2781 CallArgs.add(RValue::get(ThisPtr), ThisType); 2782 2783 // Add the rest of the parameters. 2784 for (auto Param : MD->parameters()) 2785 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2786 2787 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2788 // For a generic lambda, find the corresponding call operator specialization 2789 // to which the call to the static-invoker shall be forwarded. 2790 if (Lambda->isGenericLambda()) { 2791 assert(MD->isFunctionTemplateSpecialization()); 2792 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2793 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2794 void *InsertPos = nullptr; 2795 FunctionDecl *CorrespondingCallOpSpecialization = 2796 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2797 assert(CorrespondingCallOpSpecialization); 2798 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2799 } 2800 EmitForwardingCallToLambda(CallOp, CallArgs); 2801 } 2802 2803 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2804 if (MD->isVariadic()) { 2805 // FIXME: Making this work correctly is nasty because it requires either 2806 // cloning the body of the call operator or making the call operator forward. 2807 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2808 return; 2809 } 2810 2811 EmitLambdaDelegatingInvokeBody(MD); 2812 } 2813