1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/EvaluatedExprVisitor.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
26 static CharUnits
27 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
28                                  const CXXRecordDecl *DerivedClass,
29                                  CastExpr::path_const_iterator Start,
30                                  CastExpr::path_const_iterator End) {
31   CharUnits Offset = CharUnits::Zero();
32 
33   const CXXRecordDecl *RD = DerivedClass;
34 
35   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
36     const CXXBaseSpecifier *Base = *I;
37     assert(!Base->isVirtual() && "Should not see virtual bases here!");
38 
39     // Get the layout.
40     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
41 
42     const CXXRecordDecl *BaseDecl =
43       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
44 
45     // Add the offset.
46     Offset += Layout.getBaseClassOffset(BaseDecl);
47 
48     RD = BaseDecl;
49   }
50 
51   return Offset;
52 }
53 
54 llvm::Constant *
55 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
56                                    CastExpr::path_const_iterator PathBegin,
57                                    CastExpr::path_const_iterator PathEnd) {
58   assert(PathBegin != PathEnd && "Base path should not be empty!");
59 
60   CharUnits Offset =
61     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
62                                      PathBegin, PathEnd);
63   if (Offset.isZero())
64     return 0;
65 
66   llvm::Type *PtrDiffTy =
67   Types.ConvertType(getContext().getPointerDiffType());
68 
69   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
70 }
71 
72 /// Gets the address of a direct base class within a complete object.
73 /// This should only be used for (1) non-virtual bases or (2) virtual bases
74 /// when the type is known to be complete (e.g. in complete destructors).
75 ///
76 /// The object pointed to by 'This' is assumed to be non-null.
77 llvm::Value *
78 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
79                                                    const CXXRecordDecl *Derived,
80                                                    const CXXRecordDecl *Base,
81                                                    bool BaseIsVirtual) {
82   // 'this' must be a pointer (in some address space) to Derived.
83   assert(This->getType()->isPointerTy() &&
84          cast<llvm::PointerType>(This->getType())->getElementType()
85            == ConvertType(Derived));
86 
87   // Compute the offset of the virtual base.
88   CharUnits Offset;
89   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
90   if (BaseIsVirtual)
91     Offset = Layout.getVBaseClassOffset(Base);
92   else
93     Offset = Layout.getBaseClassOffset(Base);
94 
95   // Shift and cast down to the base type.
96   // TODO: for complete types, this should be possible with a GEP.
97   llvm::Value *V = This;
98   if (Offset.isPositive()) {
99     V = Builder.CreateBitCast(V, Int8PtrTy);
100     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
101   }
102   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
103 
104   return V;
105 }
106 
107 static llvm::Value *
108 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
109                                 CharUnits nonVirtualOffset,
110                                 llvm::Value *virtualOffset) {
111   // Assert that we have something to do.
112   assert(!nonVirtualOffset.isZero() || virtualOffset != 0);
113 
114   // Compute the offset from the static and dynamic components.
115   llvm::Value *baseOffset;
116   if (!nonVirtualOffset.isZero()) {
117     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
118                                         nonVirtualOffset.getQuantity());
119     if (virtualOffset) {
120       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
121     }
122   } else {
123     baseOffset = virtualOffset;
124   }
125 
126   // Apply the base offset.
127   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
128   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
129   return ptr;
130 }
131 
132 llvm::Value *
133 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
134                                        const CXXRecordDecl *Derived,
135                                        CastExpr::path_const_iterator PathBegin,
136                                        CastExpr::path_const_iterator PathEnd,
137                                        bool NullCheckValue) {
138   assert(PathBegin != PathEnd && "Base path should not be empty!");
139 
140   CastExpr::path_const_iterator Start = PathBegin;
141   const CXXRecordDecl *VBase = 0;
142 
143   // Sema has done some convenient canonicalization here: if the
144   // access path involved any virtual steps, the conversion path will
145   // *start* with a step down to the correct virtual base subobject,
146   // and hence will not require any further steps.
147   if ((*Start)->isVirtual()) {
148     VBase =
149       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
150     ++Start;
151   }
152 
153   // Compute the static offset of the ultimate destination within its
154   // allocating subobject (the virtual base, if there is one, or else
155   // the "complete" object that we see).
156   CharUnits NonVirtualOffset =
157     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
158                                      Start, PathEnd);
159 
160   // If there's a virtual step, we can sometimes "devirtualize" it.
161   // For now, that's limited to when the derived type is final.
162   // TODO: "devirtualize" this for accesses to known-complete objects.
163   if (VBase && Derived->hasAttr<FinalAttr>()) {
164     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
165     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
166     NonVirtualOffset += vBaseOffset;
167     VBase = 0; // we no longer have a virtual step
168   }
169 
170   // Get the base pointer type.
171   llvm::Type *BasePtrTy =
172     ConvertType((PathEnd[-1])->getType())->getPointerTo();
173 
174   // If the static offset is zero and we don't have a virtual step,
175   // just do a bitcast; null checks are unnecessary.
176   if (NonVirtualOffset.isZero() && !VBase) {
177     return Builder.CreateBitCast(Value, BasePtrTy);
178   }
179 
180   llvm::BasicBlock *origBB = 0;
181   llvm::BasicBlock *endBB = 0;
182 
183   // Skip over the offset (and the vtable load) if we're supposed to
184   // null-check the pointer.
185   if (NullCheckValue) {
186     origBB = Builder.GetInsertBlock();
187     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
188     endBB = createBasicBlock("cast.end");
189 
190     llvm::Value *isNull = Builder.CreateIsNull(Value);
191     Builder.CreateCondBr(isNull, endBB, notNullBB);
192     EmitBlock(notNullBB);
193   }
194 
195   // Compute the virtual offset.
196   llvm::Value *VirtualOffset = 0;
197   if (VBase) {
198     VirtualOffset = GetVirtualBaseClassOffset(Value, Derived, VBase);
199   }
200 
201   // Apply both offsets.
202   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
203                                           NonVirtualOffset,
204                                           VirtualOffset);
205 
206   // Cast to the destination type.
207   Value = Builder.CreateBitCast(Value, BasePtrTy);
208 
209   // Build a phi if we needed a null check.
210   if (NullCheckValue) {
211     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
212     Builder.CreateBr(endBB);
213     EmitBlock(endBB);
214 
215     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
216     PHI->addIncoming(Value, notNullBB);
217     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
218     Value = PHI;
219   }
220 
221   return Value;
222 }
223 
224 llvm::Value *
225 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
226                                           const CXXRecordDecl *Derived,
227                                         CastExpr::path_const_iterator PathBegin,
228                                           CastExpr::path_const_iterator PathEnd,
229                                           bool NullCheckValue) {
230   assert(PathBegin != PathEnd && "Base path should not be empty!");
231 
232   QualType DerivedTy =
233     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
234   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
235 
236   llvm::Value *NonVirtualOffset =
237     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
238 
239   if (!NonVirtualOffset) {
240     // No offset, we can just cast back.
241     return Builder.CreateBitCast(Value, DerivedPtrTy);
242   }
243 
244   llvm::BasicBlock *CastNull = 0;
245   llvm::BasicBlock *CastNotNull = 0;
246   llvm::BasicBlock *CastEnd = 0;
247 
248   if (NullCheckValue) {
249     CastNull = createBasicBlock("cast.null");
250     CastNotNull = createBasicBlock("cast.notnull");
251     CastEnd = createBasicBlock("cast.end");
252 
253     llvm::Value *IsNull = Builder.CreateIsNull(Value);
254     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
255     EmitBlock(CastNotNull);
256   }
257 
258   // Apply the offset.
259   Value = Builder.CreateBitCast(Value, Int8PtrTy);
260   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
261                             "sub.ptr");
262 
263   // Just cast.
264   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
265 
266   if (NullCheckValue) {
267     Builder.CreateBr(CastEnd);
268     EmitBlock(CastNull);
269     Builder.CreateBr(CastEnd);
270     EmitBlock(CastEnd);
271 
272     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
273     PHI->addIncoming(Value, CastNotNull);
274     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
275                      CastNull);
276     Value = PHI;
277   }
278 
279   return Value;
280 }
281 
282 /// GetVTTParameter - Return the VTT parameter that should be passed to a
283 /// base constructor/destructor with virtual bases.
284 static llvm::Value *GetVTTParameter(CodeGenFunction &CGF, GlobalDecl GD,
285                                     bool ForVirtualBase) {
286   if (!CodeGenVTables::needsVTTParameter(GD)) {
287     // This constructor/destructor does not need a VTT parameter.
288     return 0;
289   }
290 
291   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CGF.CurFuncDecl)->getParent();
292   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
293 
294   llvm::Value *VTT;
295 
296   uint64_t SubVTTIndex;
297 
298   // If the record matches the base, this is the complete ctor/dtor
299   // variant calling the base variant in a class with virtual bases.
300   if (RD == Base) {
301     assert(!CodeGenVTables::needsVTTParameter(CGF.CurGD) &&
302            "doing no-op VTT offset in base dtor/ctor?");
303     assert(!ForVirtualBase && "Can't have same class as virtual base!");
304     SubVTTIndex = 0;
305   } else {
306     const ASTRecordLayout &Layout =
307       CGF.getContext().getASTRecordLayout(RD);
308     CharUnits BaseOffset = ForVirtualBase ?
309       Layout.getVBaseClassOffset(Base) :
310       Layout.getBaseClassOffset(Base);
311 
312     SubVTTIndex =
313       CGF.CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
314     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
315   }
316 
317   if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
318     // A VTT parameter was passed to the constructor, use it.
319     VTT = CGF.LoadCXXVTT();
320     VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
321   } else {
322     // We're the complete constructor, so get the VTT by name.
323     VTT = CGF.CGM.getVTables().GetAddrOfVTT(RD);
324     VTT = CGF.Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
325   }
326 
327   return VTT;
328 }
329 
330 namespace {
331   /// Call the destructor for a direct base class.
332   struct CallBaseDtor : EHScopeStack::Cleanup {
333     const CXXRecordDecl *BaseClass;
334     bool BaseIsVirtual;
335     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
336       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
337 
338     void Emit(CodeGenFunction &CGF, Flags flags) {
339       const CXXRecordDecl *DerivedClass =
340         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
341 
342       const CXXDestructorDecl *D = BaseClass->getDestructor();
343       llvm::Value *Addr =
344         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
345                                                   DerivedClass, BaseClass,
346                                                   BaseIsVirtual);
347       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, Addr);
348     }
349   };
350 
351   /// A visitor which checks whether an initializer uses 'this' in a
352   /// way which requires the vtable to be properly set.
353   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
354     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
355 
356     bool UsesThis;
357 
358     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
359 
360     // Black-list all explicit and implicit references to 'this'.
361     //
362     // Do we need to worry about external references to 'this' derived
363     // from arbitrary code?  If so, then anything which runs arbitrary
364     // external code might potentially access the vtable.
365     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
366   };
367 }
368 
369 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
370   DynamicThisUseChecker Checker(C);
371   Checker.Visit(const_cast<Expr*>(Init));
372   return Checker.UsesThis;
373 }
374 
375 static void EmitBaseInitializer(CodeGenFunction &CGF,
376                                 const CXXRecordDecl *ClassDecl,
377                                 CXXCtorInitializer *BaseInit,
378                                 CXXCtorType CtorType) {
379   assert(BaseInit->isBaseInitializer() &&
380          "Must have base initializer!");
381 
382   llvm::Value *ThisPtr = CGF.LoadCXXThis();
383 
384   const Type *BaseType = BaseInit->getBaseClass();
385   CXXRecordDecl *BaseClassDecl =
386     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
387 
388   bool isBaseVirtual = BaseInit->isBaseVirtual();
389 
390   // The base constructor doesn't construct virtual bases.
391   if (CtorType == Ctor_Base && isBaseVirtual)
392     return;
393 
394   // If the initializer for the base (other than the constructor
395   // itself) accesses 'this' in any way, we need to initialize the
396   // vtables.
397   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
398     CGF.InitializeVTablePointers(ClassDecl);
399 
400   // We can pretend to be a complete class because it only matters for
401   // virtual bases, and we only do virtual bases for complete ctors.
402   llvm::Value *V =
403     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
404                                               BaseClassDecl,
405                                               isBaseVirtual);
406   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
407   AggValueSlot AggSlot =
408     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
409                           AggValueSlot::IsDestructed,
410                           AggValueSlot::DoesNotNeedGCBarriers,
411                           AggValueSlot::IsNotAliased);
412 
413   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
414 
415   if (CGF.CGM.getLangOpts().Exceptions &&
416       !BaseClassDecl->hasTrivialDestructor())
417     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
418                                           isBaseVirtual);
419 }
420 
421 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
422                                      LValue LHS,
423                                      Expr *Init,
424                                      llvm::Value *ArrayIndexVar,
425                                      QualType T,
426                                      ArrayRef<VarDecl *> ArrayIndexes,
427                                      unsigned Index) {
428   if (Index == ArrayIndexes.size()) {
429     LValue LV = LHS;
430     { // Scope for Cleanups.
431       CodeGenFunction::RunCleanupsScope Cleanups(CGF);
432 
433       if (ArrayIndexVar) {
434         // If we have an array index variable, load it and use it as an offset.
435         // Then, increment the value.
436         llvm::Value *Dest = LHS.getAddress();
437         llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
438         Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
439         llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
440         Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
441         CGF.Builder.CreateStore(Next, ArrayIndexVar);
442 
443         // Update the LValue.
444         LV.setAddress(Dest);
445         CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
446         LV.setAlignment(std::min(Align, LV.getAlignment()));
447       }
448 
449       if (!CGF.hasAggregateLLVMType(T)) {
450         CGF.EmitScalarInit(Init, /*decl*/ 0, LV, false);
451       } else if (T->isAnyComplexType()) {
452         CGF.EmitComplexExprIntoAddr(Init, LV.getAddress(),
453                                     LV.isVolatileQualified());
454       } else {
455         AggValueSlot Slot =
456           AggValueSlot::forLValue(LV,
457                                   AggValueSlot::IsDestructed,
458                                   AggValueSlot::DoesNotNeedGCBarriers,
459                                   AggValueSlot::IsNotAliased);
460 
461         CGF.EmitAggExpr(Init, Slot);
462       }
463     }
464 
465     // Now, outside of the initializer cleanup scope, destroy the backing array
466     // for a std::initializer_list member.
467     CGF.MaybeEmitStdInitializerListCleanup(LV.getAddress(), Init);
468 
469     return;
470   }
471 
472   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
473   assert(Array && "Array initialization without the array type?");
474   llvm::Value *IndexVar
475     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
476   assert(IndexVar && "Array index variable not loaded");
477 
478   // Initialize this index variable to zero.
479   llvm::Value* Zero
480     = llvm::Constant::getNullValue(
481                               CGF.ConvertType(CGF.getContext().getSizeType()));
482   CGF.Builder.CreateStore(Zero, IndexVar);
483 
484   // Start the loop with a block that tests the condition.
485   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
486   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
487 
488   CGF.EmitBlock(CondBlock);
489 
490   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
491   // Generate: if (loop-index < number-of-elements) fall to the loop body,
492   // otherwise, go to the block after the for-loop.
493   uint64_t NumElements = Array->getSize().getZExtValue();
494   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
495   llvm::Value *NumElementsPtr =
496     llvm::ConstantInt::get(Counter->getType(), NumElements);
497   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
498                                                   "isless");
499 
500   // If the condition is true, execute the body.
501   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
502 
503   CGF.EmitBlock(ForBody);
504   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
505 
506   {
507     CodeGenFunction::RunCleanupsScope Cleanups(CGF);
508 
509     // Inside the loop body recurse to emit the inner loop or, eventually, the
510     // constructor call.
511     EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
512                              Array->getElementType(), ArrayIndexes, Index + 1);
513   }
514 
515   CGF.EmitBlock(ContinueBlock);
516 
517   // Emit the increment of the loop counter.
518   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
519   Counter = CGF.Builder.CreateLoad(IndexVar);
520   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
521   CGF.Builder.CreateStore(NextVal, IndexVar);
522 
523   // Finally, branch back up to the condition for the next iteration.
524   CGF.EmitBranch(CondBlock);
525 
526   // Emit the fall-through block.
527   CGF.EmitBlock(AfterFor, true);
528 }
529 
530 namespace {
531   struct CallMemberDtor : EHScopeStack::Cleanup {
532     llvm::Value *V;
533     CXXDestructorDecl *Dtor;
534 
535     CallMemberDtor(llvm::Value *V, CXXDestructorDecl *Dtor)
536       : V(V), Dtor(Dtor) {}
537 
538     void Emit(CodeGenFunction &CGF, Flags flags) {
539       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
540                                 V);
541     }
542   };
543 }
544 
545 static void EmitMemberInitializer(CodeGenFunction &CGF,
546                                   const CXXRecordDecl *ClassDecl,
547                                   CXXCtorInitializer *MemberInit,
548                                   const CXXConstructorDecl *Constructor,
549                                   FunctionArgList &Args) {
550   assert(MemberInit->isAnyMemberInitializer() &&
551          "Must have member initializer!");
552   assert(MemberInit->getInit() && "Must have initializer!");
553 
554   // non-static data member initializers.
555   FieldDecl *Field = MemberInit->getAnyMember();
556   QualType FieldType = Field->getType();
557 
558   llvm::Value *ThisPtr = CGF.LoadCXXThis();
559   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
560   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
561 
562   if (MemberInit->isIndirectMemberInitializer()) {
563     // If we are initializing an anonymous union field, drill down to
564     // the field.
565     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
566     IndirectFieldDecl::chain_iterator I = IndirectField->chain_begin(),
567       IEnd = IndirectField->chain_end();
568     for ( ; I != IEnd; ++I)
569       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(*I));
570     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
571   } else {
572     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
573   }
574 
575   // Special case: if we are in a copy or move constructor, and we are copying
576   // an array of PODs or classes with trivial copy constructors, ignore the
577   // AST and perform the copy we know is equivalent.
578   // FIXME: This is hacky at best... if we had a bit more explicit information
579   // in the AST, we could generalize it more easily.
580   const ConstantArrayType *Array
581     = CGF.getContext().getAsConstantArrayType(FieldType);
582   if (Array && Constructor->isImplicitlyDefined() &&
583       Constructor->isCopyOrMoveConstructor()) {
584     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
585     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
586     if (BaseElementTy.isPODType(CGF.getContext()) ||
587         (CE && CE->getConstructor()->isTrivial())) {
588       // Find the source pointer. We know it's the last argument because
589       // we know we're in an implicit copy constructor.
590       unsigned SrcArgIndex = Args.size() - 1;
591       llvm::Value *SrcPtr
592         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
593       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
594       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
595 
596       // Copy the aggregate.
597       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
598                             LHS.isVolatileQualified());
599       return;
600     }
601   }
602 
603   ArrayRef<VarDecl *> ArrayIndexes;
604   if (MemberInit->getNumArrayIndices())
605     ArrayIndexes = MemberInit->getArrayIndexes();
606   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
607 }
608 
609 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
610                                               LValue LHS, Expr *Init,
611                                              ArrayRef<VarDecl *> ArrayIndexes) {
612   QualType FieldType = Field->getType();
613   if (!hasAggregateLLVMType(FieldType)) {
614     if (LHS.isSimple()) {
615       EmitExprAsInit(Init, Field, LHS, false);
616     } else {
617       RValue RHS = RValue::get(EmitScalarExpr(Init));
618       EmitStoreThroughLValue(RHS, LHS);
619     }
620   } else if (FieldType->isAnyComplexType()) {
621     EmitComplexExprIntoAddr(Init, LHS.getAddress(), LHS.isVolatileQualified());
622   } else {
623     llvm::Value *ArrayIndexVar = 0;
624     if (ArrayIndexes.size()) {
625       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
626 
627       // The LHS is a pointer to the first object we'll be constructing, as
628       // a flat array.
629       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
630       llvm::Type *BasePtr = ConvertType(BaseElementTy);
631       BasePtr = llvm::PointerType::getUnqual(BasePtr);
632       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
633                                                        BasePtr);
634       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
635 
636       // Create an array index that will be used to walk over all of the
637       // objects we're constructing.
638       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
639       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
640       Builder.CreateStore(Zero, ArrayIndexVar);
641 
642 
643       // Emit the block variables for the array indices, if any.
644       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
645         EmitAutoVarDecl(*ArrayIndexes[I]);
646     }
647 
648     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
649                              ArrayIndexes, 0);
650 
651     if (!CGM.getLangOpts().Exceptions)
652       return;
653 
654     // FIXME: If we have an array of classes w/ non-trivial destructors,
655     // we need to destroy in reverse order of construction along the exception
656     // path.
657     const RecordType *RT = FieldType->getAs<RecordType>();
658     if (!RT)
659       return;
660 
661     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
662     if (!RD->hasTrivialDestructor())
663       EHStack.pushCleanup<CallMemberDtor>(EHCleanup, LHS.getAddress(),
664                                           RD->getDestructor());
665   }
666 }
667 
668 /// Checks whether the given constructor is a valid subject for the
669 /// complete-to-base constructor delegation optimization, i.e.
670 /// emitting the complete constructor as a simple call to the base
671 /// constructor.
672 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
673 
674   // Currently we disable the optimization for classes with virtual
675   // bases because (1) the addresses of parameter variables need to be
676   // consistent across all initializers but (2) the delegate function
677   // call necessarily creates a second copy of the parameter variable.
678   //
679   // The limiting example (purely theoretical AFAIK):
680   //   struct A { A(int &c) { c++; } };
681   //   struct B : virtual A {
682   //     B(int count) : A(count) { printf("%d\n", count); }
683   //   };
684   // ...although even this example could in principle be emitted as a
685   // delegation since the address of the parameter doesn't escape.
686   if (Ctor->getParent()->getNumVBases()) {
687     // TODO: white-list trivial vbase initializers.  This case wouldn't
688     // be subject to the restrictions below.
689 
690     // TODO: white-list cases where:
691     //  - there are no non-reference parameters to the constructor
692     //  - the initializers don't access any non-reference parameters
693     //  - the initializers don't take the address of non-reference
694     //    parameters
695     //  - etc.
696     // If we ever add any of the above cases, remember that:
697     //  - function-try-blocks will always blacklist this optimization
698     //  - we need to perform the constructor prologue and cleanup in
699     //    EmitConstructorBody.
700 
701     return false;
702   }
703 
704   // We also disable the optimization for variadic functions because
705   // it's impossible to "re-pass" varargs.
706   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
707     return false;
708 
709   // FIXME: Decide if we can do a delegation of a delegating constructor.
710   if (Ctor->isDelegatingConstructor())
711     return false;
712 
713   return true;
714 }
715 
716 /// EmitConstructorBody - Emits the body of the current constructor.
717 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
718   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
719   CXXCtorType CtorType = CurGD.getCtorType();
720 
721   // Before we go any further, try the complete->base constructor
722   // delegation optimization.
723   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
724       CGM.getContext().getTargetInfo().getCXXABI().hasConstructorVariants()) {
725     if (CGDebugInfo *DI = getDebugInfo())
726       DI->EmitLocation(Builder, Ctor->getLocEnd());
727     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args);
728     return;
729   }
730 
731   Stmt *Body = Ctor->getBody();
732 
733   // Enter the function-try-block before the constructor prologue if
734   // applicable.
735   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
736   if (IsTryBody)
737     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
738 
739   EHScopeStack::stable_iterator CleanupDepth = EHStack.stable_begin();
740 
741   // TODO: in restricted cases, we can emit the vbase initializers of
742   // a complete ctor and then delegate to the base ctor.
743 
744   // Emit the constructor prologue, i.e. the base and member
745   // initializers.
746   EmitCtorPrologue(Ctor, CtorType, Args);
747 
748   // Emit the body of the statement.
749   if (IsTryBody)
750     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
751   else if (Body)
752     EmitStmt(Body);
753 
754   // Emit any cleanup blocks associated with the member or base
755   // initializers, which includes (along the exceptional path) the
756   // destructors for those members and bases that were fully
757   // constructed.
758   PopCleanupBlocks(CleanupDepth);
759 
760   if (IsTryBody)
761     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
762 }
763 
764 /// EmitCtorPrologue - This routine generates necessary code to initialize
765 /// base classes and non-static data members belonging to this constructor.
766 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
767                                        CXXCtorType CtorType,
768                                        FunctionArgList &Args) {
769   if (CD->isDelegatingConstructor())
770     return EmitDelegatingCXXConstructorCall(CD, Args);
771 
772   const CXXRecordDecl *ClassDecl = CD->getParent();
773 
774   SmallVector<CXXCtorInitializer *, 8> MemberInitializers;
775 
776   for (CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
777        E = CD->init_end();
778        B != E; ++B) {
779     CXXCtorInitializer *Member = (*B);
780 
781     if (Member->isBaseInitializer()) {
782       EmitBaseInitializer(*this, ClassDecl, Member, CtorType);
783     } else {
784       assert(Member->isAnyMemberInitializer() &&
785             "Delegating initializer on non-delegating constructor");
786       MemberInitializers.push_back(Member);
787     }
788   }
789 
790   InitializeVTablePointers(ClassDecl);
791 
792   for (unsigned I = 0, E = MemberInitializers.size(); I != E; ++I)
793     EmitMemberInitializer(*this, ClassDecl, MemberInitializers[I], CD, Args);
794 }
795 
796 static bool
797 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
798 
799 static bool
800 HasTrivialDestructorBody(ASTContext &Context,
801                          const CXXRecordDecl *BaseClassDecl,
802                          const CXXRecordDecl *MostDerivedClassDecl)
803 {
804   // If the destructor is trivial we don't have to check anything else.
805   if (BaseClassDecl->hasTrivialDestructor())
806     return true;
807 
808   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
809     return false;
810 
811   // Check fields.
812   for (CXXRecordDecl::field_iterator I = BaseClassDecl->field_begin(),
813        E = BaseClassDecl->field_end(); I != E; ++I) {
814     const FieldDecl *Field = *I;
815 
816     if (!FieldHasTrivialDestructorBody(Context, Field))
817       return false;
818   }
819 
820   // Check non-virtual bases.
821   for (CXXRecordDecl::base_class_const_iterator I =
822        BaseClassDecl->bases_begin(), E = BaseClassDecl->bases_end();
823        I != E; ++I) {
824     if (I->isVirtual())
825       continue;
826 
827     const CXXRecordDecl *NonVirtualBase =
828       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
829     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
830                                   MostDerivedClassDecl))
831       return false;
832   }
833 
834   if (BaseClassDecl == MostDerivedClassDecl) {
835     // Check virtual bases.
836     for (CXXRecordDecl::base_class_const_iterator I =
837          BaseClassDecl->vbases_begin(), E = BaseClassDecl->vbases_end();
838          I != E; ++I) {
839       const CXXRecordDecl *VirtualBase =
840         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
841       if (!HasTrivialDestructorBody(Context, VirtualBase,
842                                     MostDerivedClassDecl))
843         return false;
844     }
845   }
846 
847   return true;
848 }
849 
850 static bool
851 FieldHasTrivialDestructorBody(ASTContext &Context,
852                               const FieldDecl *Field)
853 {
854   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
855 
856   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
857   if (!RT)
858     return true;
859 
860   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
861   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
862 }
863 
864 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
865 /// any vtable pointers before calling this destructor.
866 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
867                                                const CXXDestructorDecl *Dtor) {
868   if (!Dtor->hasTrivialBody())
869     return false;
870 
871   // Check the fields.
872   const CXXRecordDecl *ClassDecl = Dtor->getParent();
873   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
874        E = ClassDecl->field_end(); I != E; ++I) {
875     const FieldDecl *Field = *I;
876 
877     if (!FieldHasTrivialDestructorBody(Context, Field))
878       return false;
879   }
880 
881   return true;
882 }
883 
884 /// EmitDestructorBody - Emits the body of the current destructor.
885 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
886   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
887   CXXDtorType DtorType = CurGD.getDtorType();
888 
889   // The call to operator delete in a deleting destructor happens
890   // outside of the function-try-block, which means it's always
891   // possible to delegate the destructor body to the complete
892   // destructor.  Do so.
893   if (DtorType == Dtor_Deleting) {
894     EnterDtorCleanups(Dtor, Dtor_Deleting);
895     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
896                           LoadCXXThis());
897     PopCleanupBlock();
898     return;
899   }
900 
901   Stmt *Body = Dtor->getBody();
902 
903   // If the body is a function-try-block, enter the try before
904   // anything else.
905   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
906   if (isTryBody)
907     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
908 
909   // Enter the epilogue cleanups.
910   RunCleanupsScope DtorEpilogue(*this);
911 
912   // If this is the complete variant, just invoke the base variant;
913   // the epilogue will destruct the virtual bases.  But we can't do
914   // this optimization if the body is a function-try-block, because
915   // we'd introduce *two* handler blocks.
916   switch (DtorType) {
917   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
918 
919   case Dtor_Complete:
920     // Enter the cleanup scopes for virtual bases.
921     EnterDtorCleanups(Dtor, Dtor_Complete);
922 
923     if (!isTryBody &&
924         CGM.getContext().getTargetInfo().getCXXABI().hasDestructorVariants()) {
925       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
926                             LoadCXXThis());
927       break;
928     }
929     // Fallthrough: act like we're in the base variant.
930 
931   case Dtor_Base:
932     // Enter the cleanup scopes for fields and non-virtual bases.
933     EnterDtorCleanups(Dtor, Dtor_Base);
934 
935     // Initialize the vtable pointers before entering the body.
936     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
937         InitializeVTablePointers(Dtor->getParent());
938 
939     if (isTryBody)
940       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
941     else if (Body)
942       EmitStmt(Body);
943     else {
944       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
945       // nothing to do besides what's in the epilogue
946     }
947     // -fapple-kext must inline any call to this dtor into
948     // the caller's body.
949     if (getLangOpts().AppleKext)
950       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
951     break;
952   }
953 
954   // Jump out through the epilogue cleanups.
955   DtorEpilogue.ForceCleanup();
956 
957   // Exit the try if applicable.
958   if (isTryBody)
959     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
960 }
961 
962 namespace {
963   /// Call the operator delete associated with the current destructor.
964   struct CallDtorDelete : EHScopeStack::Cleanup {
965     CallDtorDelete() {}
966 
967     void Emit(CodeGenFunction &CGF, Flags flags) {
968       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
969       const CXXRecordDecl *ClassDecl = Dtor->getParent();
970       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
971                          CGF.getContext().getTagDeclType(ClassDecl));
972     }
973   };
974 
975   class DestroyField  : public EHScopeStack::Cleanup {
976     const FieldDecl *field;
977     CodeGenFunction::Destroyer *destroyer;
978     bool useEHCleanupForArray;
979 
980   public:
981     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
982                  bool useEHCleanupForArray)
983       : field(field), destroyer(destroyer),
984         useEHCleanupForArray(useEHCleanupForArray) {}
985 
986     void Emit(CodeGenFunction &CGF, Flags flags) {
987       // Find the address of the field.
988       llvm::Value *thisValue = CGF.LoadCXXThis();
989       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
990       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
991       LValue LV = CGF.EmitLValueForField(ThisLV, field);
992       assert(LV.isSimple());
993 
994       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
995                       flags.isForNormalCleanup() && useEHCleanupForArray);
996     }
997   };
998 }
999 
1000 /// EmitDtorEpilogue - Emit all code that comes at the end of class's
1001 /// destructor. This is to call destructors on members and base classes
1002 /// in reverse order of their construction.
1003 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1004                                         CXXDtorType DtorType) {
1005   assert(!DD->isTrivial() &&
1006          "Should not emit dtor epilogue for trivial dtor!");
1007 
1008   // The deleting-destructor phase just needs to call the appropriate
1009   // operator delete that Sema picked up.
1010   if (DtorType == Dtor_Deleting) {
1011     assert(DD->getOperatorDelete() &&
1012            "operator delete missing - EmitDtorEpilogue");
1013     EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1014     return;
1015   }
1016 
1017   const CXXRecordDecl *ClassDecl = DD->getParent();
1018 
1019   // Unions have no bases and do not call field destructors.
1020   if (ClassDecl->isUnion())
1021     return;
1022 
1023   // The complete-destructor phase just destructs all the virtual bases.
1024   if (DtorType == Dtor_Complete) {
1025 
1026     // We push them in the forward order so that they'll be popped in
1027     // the reverse order.
1028     for (CXXRecordDecl::base_class_const_iterator I =
1029            ClassDecl->vbases_begin(), E = ClassDecl->vbases_end();
1030               I != E; ++I) {
1031       const CXXBaseSpecifier &Base = *I;
1032       CXXRecordDecl *BaseClassDecl
1033         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1034 
1035       // Ignore trivial destructors.
1036       if (BaseClassDecl->hasTrivialDestructor())
1037         continue;
1038 
1039       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1040                                         BaseClassDecl,
1041                                         /*BaseIsVirtual*/ true);
1042     }
1043 
1044     return;
1045   }
1046 
1047   assert(DtorType == Dtor_Base);
1048 
1049   // Destroy non-virtual bases.
1050   for (CXXRecordDecl::base_class_const_iterator I =
1051         ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) {
1052     const CXXBaseSpecifier &Base = *I;
1053 
1054     // Ignore virtual bases.
1055     if (Base.isVirtual())
1056       continue;
1057 
1058     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1059 
1060     // Ignore trivial destructors.
1061     if (BaseClassDecl->hasTrivialDestructor())
1062       continue;
1063 
1064     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1065                                       BaseClassDecl,
1066                                       /*BaseIsVirtual*/ false);
1067   }
1068 
1069   // Destroy direct fields.
1070   SmallVector<const FieldDecl *, 16> FieldDecls;
1071   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1072        E = ClassDecl->field_end(); I != E; ++I) {
1073     const FieldDecl *field = *I;
1074     QualType type = field->getType();
1075     QualType::DestructionKind dtorKind = type.isDestructedType();
1076     if (!dtorKind) continue;
1077 
1078     // Anonymous union members do not have their destructors called.
1079     const RecordType *RT = type->getAsUnionType();
1080     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1081 
1082     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1083     EHStack.pushCleanup<DestroyField>(cleanupKind, field,
1084                                       getDestroyer(dtorKind),
1085                                       cleanupKind & EHCleanup);
1086   }
1087 }
1088 
1089 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1090 /// constructor for each of several members of an array.
1091 ///
1092 /// \param ctor the constructor to call for each element
1093 /// \param arrayType the type of the array to initialize
1094 /// \param arrayBegin an arrayType*
1095 /// \param zeroInitialize true if each element should be
1096 ///   zero-initialized before it is constructed
1097 void
1098 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1099                                             const ConstantArrayType *arrayType,
1100                                             llvm::Value *arrayBegin,
1101                                           CallExpr::const_arg_iterator argBegin,
1102                                             CallExpr::const_arg_iterator argEnd,
1103                                             bool zeroInitialize) {
1104   QualType elementType;
1105   llvm::Value *numElements =
1106     emitArrayLength(arrayType, elementType, arrayBegin);
1107 
1108   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin,
1109                              argBegin, argEnd, zeroInitialize);
1110 }
1111 
1112 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1113 /// constructor for each of several members of an array.
1114 ///
1115 /// \param ctor the constructor to call for each element
1116 /// \param numElements the number of elements in the array;
1117 ///   may be zero
1118 /// \param arrayBegin a T*, where T is the type constructed by ctor
1119 /// \param zeroInitialize true if each element should be
1120 ///   zero-initialized before it is constructed
1121 void
1122 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1123                                             llvm::Value *numElements,
1124                                             llvm::Value *arrayBegin,
1125                                          CallExpr::const_arg_iterator argBegin,
1126                                            CallExpr::const_arg_iterator argEnd,
1127                                             bool zeroInitialize) {
1128 
1129   // It's legal for numElements to be zero.  This can happen both
1130   // dynamically, because x can be zero in 'new A[x]', and statically,
1131   // because of GCC extensions that permit zero-length arrays.  There
1132   // are probably legitimate places where we could assume that this
1133   // doesn't happen, but it's not clear that it's worth it.
1134   llvm::BranchInst *zeroCheckBranch = 0;
1135 
1136   // Optimize for a constant count.
1137   llvm::ConstantInt *constantCount
1138     = dyn_cast<llvm::ConstantInt>(numElements);
1139   if (constantCount) {
1140     // Just skip out if the constant count is zero.
1141     if (constantCount->isZero()) return;
1142 
1143   // Otherwise, emit the check.
1144   } else {
1145     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1146     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1147     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1148     EmitBlock(loopBB);
1149   }
1150 
1151   // Find the end of the array.
1152   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1153                                                     "arrayctor.end");
1154 
1155   // Enter the loop, setting up a phi for the current location to initialize.
1156   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1157   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1158   EmitBlock(loopBB);
1159   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1160                                          "arrayctor.cur");
1161   cur->addIncoming(arrayBegin, entryBB);
1162 
1163   // Inside the loop body, emit the constructor call on the array element.
1164 
1165   QualType type = getContext().getTypeDeclType(ctor->getParent());
1166 
1167   // Zero initialize the storage, if requested.
1168   if (zeroInitialize)
1169     EmitNullInitialization(cur, type);
1170 
1171   // C++ [class.temporary]p4:
1172   // There are two contexts in which temporaries are destroyed at a different
1173   // point than the end of the full-expression. The first context is when a
1174   // default constructor is called to initialize an element of an array.
1175   // If the constructor has one or more default arguments, the destruction of
1176   // every temporary created in a default argument expression is sequenced
1177   // before the construction of the next array element, if any.
1178 
1179   {
1180     RunCleanupsScope Scope(*this);
1181 
1182     // Evaluate the constructor and its arguments in a regular
1183     // partial-destroy cleanup.
1184     if (getLangOpts().Exceptions &&
1185         !ctor->getParent()->hasTrivialDestructor()) {
1186       Destroyer *destroyer = destroyCXXObject;
1187       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1188     }
1189 
1190     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false,
1191                            cur, argBegin, argEnd);
1192   }
1193 
1194   // Go to the next element.
1195   llvm::Value *next =
1196     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1197                               "arrayctor.next");
1198   cur->addIncoming(next, Builder.GetInsertBlock());
1199 
1200   // Check whether that's the end of the loop.
1201   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1202   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1203   Builder.CreateCondBr(done, contBB, loopBB);
1204 
1205   // Patch the earlier check to skip over the loop.
1206   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1207 
1208   EmitBlock(contBB);
1209 }
1210 
1211 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1212                                        llvm::Value *addr,
1213                                        QualType type) {
1214   const RecordType *rtype = type->castAs<RecordType>();
1215   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1216   const CXXDestructorDecl *dtor = record->getDestructor();
1217   assert(!dtor->isTrivial());
1218   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1219                             addr);
1220 }
1221 
1222 void
1223 CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1224                                         CXXCtorType Type, bool ForVirtualBase,
1225                                         llvm::Value *This,
1226                                         CallExpr::const_arg_iterator ArgBeg,
1227                                         CallExpr::const_arg_iterator ArgEnd) {
1228 
1229   CGDebugInfo *DI = getDebugInfo();
1230   if (DI &&
1231       CGM.getCodeGenOpts().getDebugInfo() == CodeGenOptions::LimitedDebugInfo) {
1232     // If debug info for this class has not been emitted then this is the
1233     // right time to do so.
1234     const CXXRecordDecl *Parent = D->getParent();
1235     DI->getOrCreateRecordType(CGM.getContext().getTypeDeclType(Parent),
1236                               Parent->getLocation());
1237   }
1238 
1239   if (D->isTrivial()) {
1240     if (ArgBeg == ArgEnd) {
1241       // Trivial default constructor, no codegen required.
1242       assert(D->isDefaultConstructor() &&
1243              "trivial 0-arg ctor not a default ctor");
1244       return;
1245     }
1246 
1247     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1248     assert(D->isCopyOrMoveConstructor() &&
1249            "trivial 1-arg ctor not a copy/move ctor");
1250 
1251     const Expr *E = (*ArgBeg);
1252     QualType Ty = E->getType();
1253     llvm::Value *Src = EmitLValue(E).getAddress();
1254     EmitAggregateCopy(This, Src, Ty);
1255     return;
1256   }
1257 
1258   llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(D, Type), ForVirtualBase);
1259   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
1260 
1261   // FIXME: Provide a source location here.
1262   EmitCXXMemberCall(D, SourceLocation(), Callee, ReturnValueSlot(), This,
1263                     VTT, ArgBeg, ArgEnd);
1264 }
1265 
1266 void
1267 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1268                                         llvm::Value *This, llvm::Value *Src,
1269                                         CallExpr::const_arg_iterator ArgBeg,
1270                                         CallExpr::const_arg_iterator ArgEnd) {
1271   if (D->isTrivial()) {
1272     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1273     assert(D->isCopyOrMoveConstructor() &&
1274            "trivial 1-arg ctor not a copy/move ctor");
1275     EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
1276     return;
1277   }
1278   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D,
1279                                                     clang::Ctor_Complete);
1280   assert(D->isInstance() &&
1281          "Trying to emit a member call expr on a static method!");
1282 
1283   const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>();
1284 
1285   CallArgList Args;
1286 
1287   // Push the this ptr.
1288   Args.add(RValue::get(This), D->getThisType(getContext()));
1289 
1290 
1291   // Push the src ptr.
1292   QualType QT = *(FPT->arg_type_begin());
1293   llvm::Type *t = CGM.getTypes().ConvertType(QT);
1294   Src = Builder.CreateBitCast(Src, t);
1295   Args.add(RValue::get(Src), QT);
1296 
1297   // Skip over first argument (Src).
1298   ++ArgBeg;
1299   CallExpr::const_arg_iterator Arg = ArgBeg;
1300   for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin()+1,
1301        E = FPT->arg_type_end(); I != E; ++I, ++Arg) {
1302     assert(Arg != ArgEnd && "Running over edge of argument list!");
1303     EmitCallArg(Args, *Arg, *I);
1304   }
1305   // Either we've emitted all the call args, or we have a call to a
1306   // variadic function.
1307   assert((Arg == ArgEnd || FPT->isVariadic()) &&
1308          "Extra arguments in non-variadic function!");
1309   // If we still have any arguments, emit them using the type of the argument.
1310   for (; Arg != ArgEnd; ++Arg) {
1311     QualType ArgType = Arg->getType();
1312     EmitCallArg(Args, *Arg, ArgType);
1313   }
1314 
1315   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1316            Callee, ReturnValueSlot(), Args, D);
1317 }
1318 
1319 void
1320 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1321                                                 CXXCtorType CtorType,
1322                                                 const FunctionArgList &Args) {
1323   CallArgList DelegateArgs;
1324 
1325   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1326   assert(I != E && "no parameters to constructor");
1327 
1328   // this
1329   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1330   ++I;
1331 
1332   // vtt
1333   if (llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(Ctor, CtorType),
1334                                          /*ForVirtualBase=*/false)) {
1335     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1336     DelegateArgs.add(RValue::get(VTT), VoidPP);
1337 
1338     if (CodeGenVTables::needsVTTParameter(CurGD)) {
1339       assert(I != E && "cannot skip vtt parameter, already done with args");
1340       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1341       ++I;
1342     }
1343   }
1344 
1345   // Explicit arguments.
1346   for (; I != E; ++I) {
1347     const VarDecl *param = *I;
1348     EmitDelegateCallArg(DelegateArgs, param);
1349   }
1350 
1351   EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
1352            CGM.GetAddrOfCXXConstructor(Ctor, CtorType),
1353            ReturnValueSlot(), DelegateArgs, Ctor);
1354 }
1355 
1356 namespace {
1357   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1358     const CXXDestructorDecl *Dtor;
1359     llvm::Value *Addr;
1360     CXXDtorType Type;
1361 
1362     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1363                            CXXDtorType Type)
1364       : Dtor(D), Addr(Addr), Type(Type) {}
1365 
1366     void Emit(CodeGenFunction &CGF, Flags flags) {
1367       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1368                                 Addr);
1369     }
1370   };
1371 }
1372 
1373 void
1374 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1375                                                   const FunctionArgList &Args) {
1376   assert(Ctor->isDelegatingConstructor());
1377 
1378   llvm::Value *ThisPtr = LoadCXXThis();
1379 
1380   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1381   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1382   AggValueSlot AggSlot =
1383     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1384                           AggValueSlot::IsDestructed,
1385                           AggValueSlot::DoesNotNeedGCBarriers,
1386                           AggValueSlot::IsNotAliased);
1387 
1388   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1389 
1390   const CXXRecordDecl *ClassDecl = Ctor->getParent();
1391   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1392     CXXDtorType Type =
1393       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1394 
1395     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1396                                                 ClassDecl->getDestructor(),
1397                                                 ThisPtr, Type);
1398   }
1399 }
1400 
1401 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1402                                             CXXDtorType Type,
1403                                             bool ForVirtualBase,
1404                                             llvm::Value *This) {
1405   llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(DD, Type),
1406                                      ForVirtualBase);
1407   llvm::Value *Callee = 0;
1408   if (getLangOpts().AppleKext)
1409     Callee = BuildAppleKextVirtualDestructorCall(DD, Type,
1410                                                  DD->getParent());
1411 
1412   if (!Callee)
1413     Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
1414 
1415   // FIXME: Provide a source location here.
1416   EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This,
1417                     VTT, 0, 0);
1418 }
1419 
1420 namespace {
1421   struct CallLocalDtor : EHScopeStack::Cleanup {
1422     const CXXDestructorDecl *Dtor;
1423     llvm::Value *Addr;
1424 
1425     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1426       : Dtor(D), Addr(Addr) {}
1427 
1428     void Emit(CodeGenFunction &CGF, Flags flags) {
1429       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1430                                 /*ForVirtualBase=*/false, Addr);
1431     }
1432   };
1433 }
1434 
1435 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1436                                             llvm::Value *Addr) {
1437   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1438 }
1439 
1440 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1441   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1442   if (!ClassDecl) return;
1443   if (ClassDecl->hasTrivialDestructor()) return;
1444 
1445   const CXXDestructorDecl *D = ClassDecl->getDestructor();
1446   assert(D && D->isUsed() && "destructor not marked as used!");
1447   PushDestructorCleanup(D, Addr);
1448 }
1449 
1450 llvm::Value *
1451 CodeGenFunction::GetVirtualBaseClassOffset(llvm::Value *This,
1452                                            const CXXRecordDecl *ClassDecl,
1453                                            const CXXRecordDecl *BaseClassDecl) {
1454   llvm::Value *VTablePtr = GetVTablePtr(This, Int8PtrTy);
1455   CharUnits VBaseOffsetOffset =
1456     CGM.getVTableContext().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl);
1457 
1458   llvm::Value *VBaseOffsetPtr =
1459     Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(),
1460                                "vbase.offset.ptr");
1461   llvm::Type *PtrDiffTy =
1462     ConvertType(getContext().getPointerDiffType());
1463 
1464   VBaseOffsetPtr = Builder.CreateBitCast(VBaseOffsetPtr,
1465                                          PtrDiffTy->getPointerTo());
1466 
1467   llvm::Value *VBaseOffset = Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset");
1468 
1469   return VBaseOffset;
1470 }
1471 
1472 void
1473 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1474                                          const CXXRecordDecl *NearestVBase,
1475                                          CharUnits OffsetFromNearestVBase,
1476                                          llvm::Constant *VTable,
1477                                          const CXXRecordDecl *VTableClass) {
1478   const CXXRecordDecl *RD = Base.getBase();
1479 
1480   // Compute the address point.
1481   llvm::Value *VTableAddressPoint;
1482 
1483   // Check if we need to use a vtable from the VTT.
1484   if (CodeGenVTables::needsVTTParameter(CurGD) &&
1485       (RD->getNumVBases() || NearestVBase)) {
1486     // Get the secondary vpointer index.
1487     uint64_t VirtualPointerIndex =
1488      CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
1489 
1490     /// Load the VTT.
1491     llvm::Value *VTT = LoadCXXVTT();
1492     if (VirtualPointerIndex)
1493       VTT = Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
1494 
1495     // And load the address point from the VTT.
1496     VTableAddressPoint = Builder.CreateLoad(VTT);
1497   } else {
1498     uint64_t AddressPoint =
1499       CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
1500     VTableAddressPoint =
1501       Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
1502   }
1503 
1504   // Compute where to store the address point.
1505   llvm::Value *VirtualOffset = 0;
1506   CharUnits NonVirtualOffset = CharUnits::Zero();
1507 
1508   if (CodeGenVTables::needsVTTParameter(CurGD) && NearestVBase) {
1509     // We need to use the virtual base offset offset because the virtual base
1510     // might have a different offset in the most derived class.
1511     VirtualOffset = GetVirtualBaseClassOffset(LoadCXXThis(), VTableClass,
1512                                               NearestVBase);
1513     NonVirtualOffset = OffsetFromNearestVBase;
1514   } else {
1515     // We can just use the base offset in the complete class.
1516     NonVirtualOffset = Base.getBaseOffset();
1517   }
1518 
1519   // Apply the offsets.
1520   llvm::Value *VTableField = LoadCXXThis();
1521 
1522   if (!NonVirtualOffset.isZero() || VirtualOffset)
1523     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
1524                                                   NonVirtualOffset,
1525                                                   VirtualOffset);
1526 
1527   // Finally, store the address point.
1528   llvm::Type *AddressPointPtrTy =
1529     VTableAddressPoint->getType()->getPointerTo();
1530   VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
1531   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
1532   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
1533 }
1534 
1535 void
1536 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
1537                                           const CXXRecordDecl *NearestVBase,
1538                                           CharUnits OffsetFromNearestVBase,
1539                                           bool BaseIsNonVirtualPrimaryBase,
1540                                           llvm::Constant *VTable,
1541                                           const CXXRecordDecl *VTableClass,
1542                                           VisitedVirtualBasesSetTy& VBases) {
1543   // If this base is a non-virtual primary base the address point has already
1544   // been set.
1545   if (!BaseIsNonVirtualPrimaryBase) {
1546     // Initialize the vtable pointer for this base.
1547     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
1548                             VTable, VTableClass);
1549   }
1550 
1551   const CXXRecordDecl *RD = Base.getBase();
1552 
1553   // Traverse bases.
1554   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1555        E = RD->bases_end(); I != E; ++I) {
1556     CXXRecordDecl *BaseDecl
1557       = cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1558 
1559     // Ignore classes without a vtable.
1560     if (!BaseDecl->isDynamicClass())
1561       continue;
1562 
1563     CharUnits BaseOffset;
1564     CharUnits BaseOffsetFromNearestVBase;
1565     bool BaseDeclIsNonVirtualPrimaryBase;
1566 
1567     if (I->isVirtual()) {
1568       // Check if we've visited this virtual base before.
1569       if (!VBases.insert(BaseDecl))
1570         continue;
1571 
1572       const ASTRecordLayout &Layout =
1573         getContext().getASTRecordLayout(VTableClass);
1574 
1575       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
1576       BaseOffsetFromNearestVBase = CharUnits::Zero();
1577       BaseDeclIsNonVirtualPrimaryBase = false;
1578     } else {
1579       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1580 
1581       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
1582       BaseOffsetFromNearestVBase =
1583         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
1584       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
1585     }
1586 
1587     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
1588                              I->isVirtual() ? BaseDecl : NearestVBase,
1589                              BaseOffsetFromNearestVBase,
1590                              BaseDeclIsNonVirtualPrimaryBase,
1591                              VTable, VTableClass, VBases);
1592   }
1593 }
1594 
1595 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
1596   // Ignore classes without a vtable.
1597   if (!RD->isDynamicClass())
1598     return;
1599 
1600   // Get the VTable.
1601   llvm::Constant *VTable = CGM.getVTables().GetAddrOfVTable(RD);
1602 
1603   // Initialize the vtable pointers for this class and all of its bases.
1604   VisitedVirtualBasesSetTy VBases;
1605   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
1606                            /*NearestVBase=*/0,
1607                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
1608                            /*BaseIsNonVirtualPrimaryBase=*/false,
1609                            VTable, RD, VBases);
1610 }
1611 
1612 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
1613                                            llvm::Type *Ty) {
1614   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
1615   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
1616   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
1617   return VTable;
1618 }
1619 
1620 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
1621   const Expr *E = Base;
1622 
1623   while (true) {
1624     E = E->IgnoreParens();
1625     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1626       if (CE->getCastKind() == CK_DerivedToBase ||
1627           CE->getCastKind() == CK_UncheckedDerivedToBase ||
1628           CE->getCastKind() == CK_NoOp) {
1629         E = CE->getSubExpr();
1630         continue;
1631       }
1632     }
1633 
1634     break;
1635   }
1636 
1637   QualType DerivedType = E->getType();
1638   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
1639     DerivedType = PTy->getPointeeType();
1640 
1641   return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
1642 }
1643 
1644 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
1645 // quite what we want.
1646 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
1647   while (true) {
1648     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
1649       E = PE->getSubExpr();
1650       continue;
1651     }
1652 
1653     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1654       if (CE->getCastKind() == CK_NoOp) {
1655         E = CE->getSubExpr();
1656         continue;
1657       }
1658     }
1659     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1660       if (UO->getOpcode() == UO_Extension) {
1661         E = UO->getSubExpr();
1662         continue;
1663       }
1664     }
1665     return E;
1666   }
1667 }
1668 
1669 /// canDevirtualizeMemberFunctionCall - Checks whether the given virtual member
1670 /// function call on the given expr can be devirtualized.
1671 static bool canDevirtualizeMemberFunctionCall(const Expr *Base,
1672                                               const CXXMethodDecl *MD) {
1673   // If the most derived class is marked final, we know that no subclass can
1674   // override this member function and so we can devirtualize it. For example:
1675   //
1676   // struct A { virtual void f(); }
1677   // struct B final : A { };
1678   //
1679   // void f(B *b) {
1680   //   b->f();
1681   // }
1682   //
1683   const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
1684   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
1685     return true;
1686 
1687   // If the member function is marked 'final', we know that it can't be
1688   // overridden and can therefore devirtualize it.
1689   if (MD->hasAttr<FinalAttr>())
1690     return true;
1691 
1692   // Similarly, if the class itself is marked 'final' it can't be overridden
1693   // and we can therefore devirtualize the member function call.
1694   if (MD->getParent()->hasAttr<FinalAttr>())
1695     return true;
1696 
1697   Base = skipNoOpCastsAndParens(Base);
1698   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
1699     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
1700       // This is a record decl. We know the type and can devirtualize it.
1701       return VD->getType()->isRecordType();
1702     }
1703 
1704     return false;
1705   }
1706 
1707   // We can always devirtualize calls on temporary object expressions.
1708   if (isa<CXXConstructExpr>(Base))
1709     return true;
1710 
1711   // And calls on bound temporaries.
1712   if (isa<CXXBindTemporaryExpr>(Base))
1713     return true;
1714 
1715   // Check if this is a call expr that returns a record type.
1716   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
1717     return CE->getCallReturnType()->isRecordType();
1718 
1719   // We can't devirtualize the call.
1720   return false;
1721 }
1722 
1723 static bool UseVirtualCall(ASTContext &Context,
1724                            const CXXOperatorCallExpr *CE,
1725                            const CXXMethodDecl *MD) {
1726   if (!MD->isVirtual())
1727     return false;
1728 
1729   // When building with -fapple-kext, all calls must go through the vtable since
1730   // the kernel linker can do runtime patching of vtables.
1731   if (Context.getLangOpts().AppleKext)
1732     return true;
1733 
1734   return !canDevirtualizeMemberFunctionCall(CE->getArg(0), MD);
1735 }
1736 
1737 llvm::Value *
1738 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
1739                                              const CXXMethodDecl *MD,
1740                                              llvm::Value *This) {
1741   llvm::FunctionType *fnType =
1742     CGM.getTypes().GetFunctionType(
1743                              CGM.getTypes().arrangeCXXMethodDeclaration(MD));
1744 
1745   if (UseVirtualCall(getContext(), E, MD))
1746     return BuildVirtualCall(MD, This, fnType);
1747 
1748   return CGM.GetAddrOfFunction(MD, fnType);
1749 }
1750 
1751 void CodeGenFunction::EmitForwardingCallToLambda(const CXXRecordDecl *lambda,
1752                                                  CallArgList &callArgs) {
1753   // Lookup the call operator
1754   DeclarationName operatorName
1755     = getContext().DeclarationNames.getCXXOperatorName(OO_Call);
1756   CXXMethodDecl *callOperator =
1757     cast<CXXMethodDecl>(lambda->lookup(operatorName).front());
1758 
1759   // Get the address of the call operator.
1760   const CGFunctionInfo &calleeFnInfo =
1761     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
1762   llvm::Value *callee =
1763     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
1764                           CGM.getTypes().GetFunctionType(calleeFnInfo));
1765 
1766   // Prepare the return slot.
1767   const FunctionProtoType *FPT =
1768     callOperator->getType()->castAs<FunctionProtoType>();
1769   QualType resultType = FPT->getResultType();
1770   ReturnValueSlot returnSlot;
1771   if (!resultType->isVoidType() &&
1772       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
1773       hasAggregateLLVMType(calleeFnInfo.getReturnType()))
1774     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
1775 
1776   // We don't need to separately arrange the call arguments because
1777   // the call can't be variadic anyway --- it's impossible to forward
1778   // variadic arguments.
1779 
1780   // Now emit our call.
1781   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
1782                        callArgs, callOperator);
1783 
1784   // If necessary, copy the returned value into the slot.
1785   if (!resultType->isVoidType() && returnSlot.isNull())
1786     EmitReturnOfRValue(RV, resultType);
1787   else
1788     EmitBranchThroughCleanup(ReturnBlock);
1789 }
1790 
1791 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
1792   const BlockDecl *BD = BlockInfo->getBlockDecl();
1793   const VarDecl *variable = BD->capture_begin()->getVariable();
1794   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
1795 
1796   // Start building arguments for forwarding call
1797   CallArgList CallArgs;
1798 
1799   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
1800   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
1801   CallArgs.add(RValue::get(ThisPtr), ThisType);
1802 
1803   // Add the rest of the parameters.
1804   for (BlockDecl::param_const_iterator I = BD->param_begin(),
1805        E = BD->param_end(); I != E; ++I) {
1806     ParmVarDecl *param = *I;
1807     EmitDelegateCallArg(CallArgs, param);
1808   }
1809 
1810   EmitForwardingCallToLambda(Lambda, CallArgs);
1811 }
1812 
1813 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
1814   if (cast<CXXMethodDecl>(CurFuncDecl)->isVariadic()) {
1815     // FIXME: Making this work correctly is nasty because it requires either
1816     // cloning the body of the call operator or making the call operator forward.
1817     CGM.ErrorUnsupported(CurFuncDecl, "lambda conversion to variadic function");
1818     return;
1819   }
1820 
1821   EmitFunctionBody(Args);
1822 }
1823 
1824 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
1825   const CXXRecordDecl *Lambda = MD->getParent();
1826 
1827   // Start building arguments for forwarding call
1828   CallArgList CallArgs;
1829 
1830   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
1831   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
1832   CallArgs.add(RValue::get(ThisPtr), ThisType);
1833 
1834   // Add the rest of the parameters.
1835   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
1836        E = MD->param_end(); I != E; ++I) {
1837     ParmVarDecl *param = *I;
1838     EmitDelegateCallArg(CallArgs, param);
1839   }
1840 
1841   EmitForwardingCallToLambda(Lambda, CallArgs);
1842 }
1843 
1844 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
1845   if (MD->isVariadic()) {
1846     // FIXME: Making this work correctly is nasty because it requires either
1847     // cloning the body of the call operator or making the call operator forward.
1848     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
1849     return;
1850   }
1851 
1852   EmitLambdaDelegatingInvokeBody(MD);
1853 }
1854