1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 static CharUnits 32 ComputeNonVirtualBaseClassOffset(ASTContext &Context, 33 const CXXRecordDecl *DerivedClass, 34 CastExpr::path_const_iterator Start, 35 CastExpr::path_const_iterator End) { 36 CharUnits Offset = CharUnits::Zero(); 37 38 const CXXRecordDecl *RD = DerivedClass; 39 40 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 41 const CXXBaseSpecifier *Base = *I; 42 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 43 44 // Get the layout. 45 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 46 47 const CXXRecordDecl *BaseDecl = 48 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 49 50 // Add the offset. 51 Offset += Layout.getBaseClassOffset(BaseDecl); 52 53 RD = BaseDecl; 54 } 55 56 return Offset; 57 } 58 59 llvm::Constant * 60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 61 CastExpr::path_const_iterator PathBegin, 62 CastExpr::path_const_iterator PathEnd) { 63 assert(PathBegin != PathEnd && "Base path should not be empty!"); 64 65 CharUnits Offset = 66 ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl, 67 PathBegin, PathEnd); 68 if (Offset.isZero()) 69 return nullptr; 70 71 llvm::Type *PtrDiffTy = 72 Types.ConvertType(getContext().getPointerDiffType()); 73 74 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 75 } 76 77 /// Gets the address of a direct base class within a complete object. 78 /// This should only be used for (1) non-virtual bases or (2) virtual bases 79 /// when the type is known to be complete (e.g. in complete destructors). 80 /// 81 /// The object pointed to by 'This' is assumed to be non-null. 82 llvm::Value * 83 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This, 84 const CXXRecordDecl *Derived, 85 const CXXRecordDecl *Base, 86 bool BaseIsVirtual) { 87 // 'this' must be a pointer (in some address space) to Derived. 88 assert(This->getType()->isPointerTy() && 89 cast<llvm::PointerType>(This->getType())->getElementType() 90 == ConvertType(Derived)); 91 92 // Compute the offset of the virtual base. 93 CharUnits Offset; 94 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 95 if (BaseIsVirtual) 96 Offset = Layout.getVBaseClassOffset(Base); 97 else 98 Offset = Layout.getBaseClassOffset(Base); 99 100 // Shift and cast down to the base type. 101 // TODO: for complete types, this should be possible with a GEP. 102 llvm::Value *V = This; 103 if (Offset.isPositive()) { 104 V = Builder.CreateBitCast(V, Int8PtrTy); 105 V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity()); 106 } 107 V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo()); 108 109 return V; 110 } 111 112 static llvm::Value * 113 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr, 114 CharUnits nonVirtualOffset, 115 llvm::Value *virtualOffset) { 116 // Assert that we have something to do. 117 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 118 119 // Compute the offset from the static and dynamic components. 120 llvm::Value *baseOffset; 121 if (!nonVirtualOffset.isZero()) { 122 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 123 nonVirtualOffset.getQuantity()); 124 if (virtualOffset) { 125 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 126 } 127 } else { 128 baseOffset = virtualOffset; 129 } 130 131 // Apply the base offset. 132 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 133 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 134 return ptr; 135 } 136 137 llvm::Value *CodeGenFunction::GetAddressOfBaseClass( 138 llvm::Value *Value, const CXXRecordDecl *Derived, 139 CastExpr::path_const_iterator PathBegin, 140 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 141 SourceLocation Loc) { 142 assert(PathBegin != PathEnd && "Base path should not be empty!"); 143 144 CastExpr::path_const_iterator Start = PathBegin; 145 const CXXRecordDecl *VBase = nullptr; 146 147 // Sema has done some convenient canonicalization here: if the 148 // access path involved any virtual steps, the conversion path will 149 // *start* with a step down to the correct virtual base subobject, 150 // and hence will not require any further steps. 151 if ((*Start)->isVirtual()) { 152 VBase = 153 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 154 ++Start; 155 } 156 157 // Compute the static offset of the ultimate destination within its 158 // allocating subobject (the virtual base, if there is one, or else 159 // the "complete" object that we see). 160 CharUnits NonVirtualOffset = 161 ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived, 162 Start, PathEnd); 163 164 // If there's a virtual step, we can sometimes "devirtualize" it. 165 // For now, that's limited to when the derived type is final. 166 // TODO: "devirtualize" this for accesses to known-complete objects. 167 if (VBase && Derived->hasAttr<FinalAttr>()) { 168 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 169 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 170 NonVirtualOffset += vBaseOffset; 171 VBase = nullptr; // we no longer have a virtual step 172 } 173 174 // Get the base pointer type. 175 llvm::Type *BasePtrTy = 176 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 177 178 QualType DerivedTy = getContext().getRecordType(Derived); 179 CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy); 180 181 // If the static offset is zero and we don't have a virtual step, 182 // just do a bitcast; null checks are unnecessary. 183 if (NonVirtualOffset.isZero() && !VBase) { 184 if (sanitizePerformTypeCheck()) { 185 EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign, 186 !NullCheckValue); 187 } 188 return Builder.CreateBitCast(Value, BasePtrTy); 189 } 190 191 llvm::BasicBlock *origBB = nullptr; 192 llvm::BasicBlock *endBB = nullptr; 193 194 // Skip over the offset (and the vtable load) if we're supposed to 195 // null-check the pointer. 196 if (NullCheckValue) { 197 origBB = Builder.GetInsertBlock(); 198 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 199 endBB = createBasicBlock("cast.end"); 200 201 llvm::Value *isNull = Builder.CreateIsNull(Value); 202 Builder.CreateCondBr(isNull, endBB, notNullBB); 203 EmitBlock(notNullBB); 204 } 205 206 if (sanitizePerformTypeCheck()) { 207 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value, 208 DerivedTy, DerivedAlign, true); 209 } 210 211 // Compute the virtual offset. 212 llvm::Value *VirtualOffset = nullptr; 213 if (VBase) { 214 VirtualOffset = 215 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 216 } 217 218 // Apply both offsets. 219 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, 220 NonVirtualOffset, 221 VirtualOffset); 222 223 // Cast to the destination type. 224 Value = Builder.CreateBitCast(Value, BasePtrTy); 225 226 // Build a phi if we needed a null check. 227 if (NullCheckValue) { 228 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 229 Builder.CreateBr(endBB); 230 EmitBlock(endBB); 231 232 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 233 PHI->addIncoming(Value, notNullBB); 234 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 235 Value = PHI; 236 } 237 238 return Value; 239 } 240 241 llvm::Value * 242 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value, 243 const CXXRecordDecl *Derived, 244 CastExpr::path_const_iterator PathBegin, 245 CastExpr::path_const_iterator PathEnd, 246 bool NullCheckValue) { 247 assert(PathBegin != PathEnd && "Base path should not be empty!"); 248 249 QualType DerivedTy = 250 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 251 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 252 253 llvm::Value *NonVirtualOffset = 254 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 255 256 if (!NonVirtualOffset) { 257 // No offset, we can just cast back. 258 return Builder.CreateBitCast(Value, DerivedPtrTy); 259 } 260 261 llvm::BasicBlock *CastNull = nullptr; 262 llvm::BasicBlock *CastNotNull = nullptr; 263 llvm::BasicBlock *CastEnd = nullptr; 264 265 if (NullCheckValue) { 266 CastNull = createBasicBlock("cast.null"); 267 CastNotNull = createBasicBlock("cast.notnull"); 268 CastEnd = createBasicBlock("cast.end"); 269 270 llvm::Value *IsNull = Builder.CreateIsNull(Value); 271 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 272 EmitBlock(CastNotNull); 273 } 274 275 // Apply the offset. 276 Value = Builder.CreateBitCast(Value, Int8PtrTy); 277 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 278 "sub.ptr"); 279 280 // Just cast. 281 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 282 283 if (NullCheckValue) { 284 Builder.CreateBr(CastEnd); 285 EmitBlock(CastNull); 286 Builder.CreateBr(CastEnd); 287 EmitBlock(CastEnd); 288 289 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 290 PHI->addIncoming(Value, CastNotNull); 291 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), 292 CastNull); 293 Value = PHI; 294 } 295 296 return Value; 297 } 298 299 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 300 bool ForVirtualBase, 301 bool Delegating) { 302 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 303 // This constructor/destructor does not need a VTT parameter. 304 return nullptr; 305 } 306 307 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 308 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 309 310 llvm::Value *VTT; 311 312 uint64_t SubVTTIndex; 313 314 if (Delegating) { 315 // If this is a delegating constructor call, just load the VTT. 316 return LoadCXXVTT(); 317 } else if (RD == Base) { 318 // If the record matches the base, this is the complete ctor/dtor 319 // variant calling the base variant in a class with virtual bases. 320 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 321 "doing no-op VTT offset in base dtor/ctor?"); 322 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 323 SubVTTIndex = 0; 324 } else { 325 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 326 CharUnits BaseOffset = ForVirtualBase ? 327 Layout.getVBaseClassOffset(Base) : 328 Layout.getBaseClassOffset(Base); 329 330 SubVTTIndex = 331 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 332 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 333 } 334 335 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 336 // A VTT parameter was passed to the constructor, use it. 337 VTT = LoadCXXVTT(); 338 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 339 } else { 340 // We're the complete constructor, so get the VTT by name. 341 VTT = CGM.getVTables().GetAddrOfVTT(RD); 342 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 343 } 344 345 return VTT; 346 } 347 348 namespace { 349 /// Call the destructor for a direct base class. 350 struct CallBaseDtor : EHScopeStack::Cleanup { 351 const CXXRecordDecl *BaseClass; 352 bool BaseIsVirtual; 353 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 354 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 355 356 void Emit(CodeGenFunction &CGF, Flags flags) override { 357 const CXXRecordDecl *DerivedClass = 358 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 359 360 const CXXDestructorDecl *D = BaseClass->getDestructor(); 361 llvm::Value *Addr = 362 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(), 363 DerivedClass, BaseClass, 364 BaseIsVirtual); 365 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 366 /*Delegating=*/false, Addr); 367 } 368 }; 369 370 /// A visitor which checks whether an initializer uses 'this' in a 371 /// way which requires the vtable to be properly set. 372 struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> { 373 typedef EvaluatedExprVisitor<DynamicThisUseChecker> super; 374 375 bool UsesThis; 376 377 DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {} 378 379 // Black-list all explicit and implicit references to 'this'. 380 // 381 // Do we need to worry about external references to 'this' derived 382 // from arbitrary code? If so, then anything which runs arbitrary 383 // external code might potentially access the vtable. 384 void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; } 385 }; 386 } 387 388 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 389 DynamicThisUseChecker Checker(C); 390 Checker.Visit(const_cast<Expr*>(Init)); 391 return Checker.UsesThis; 392 } 393 394 static void EmitBaseInitializer(CodeGenFunction &CGF, 395 const CXXRecordDecl *ClassDecl, 396 CXXCtorInitializer *BaseInit, 397 CXXCtorType CtorType) { 398 assert(BaseInit->isBaseInitializer() && 399 "Must have base initializer!"); 400 401 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 402 403 const Type *BaseType = BaseInit->getBaseClass(); 404 CXXRecordDecl *BaseClassDecl = 405 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 406 407 bool isBaseVirtual = BaseInit->isBaseVirtual(); 408 409 // The base constructor doesn't construct virtual bases. 410 if (CtorType == Ctor_Base && isBaseVirtual) 411 return; 412 413 // If the initializer for the base (other than the constructor 414 // itself) accesses 'this' in any way, we need to initialize the 415 // vtables. 416 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 417 CGF.InitializeVTablePointers(ClassDecl); 418 419 // We can pretend to be a complete class because it only matters for 420 // virtual bases, and we only do virtual bases for complete ctors. 421 llvm::Value *V = 422 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 423 BaseClassDecl, 424 isBaseVirtual); 425 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType); 426 AggValueSlot AggSlot = 427 AggValueSlot::forAddr(V, Alignment, Qualifiers(), 428 AggValueSlot::IsDestructed, 429 AggValueSlot::DoesNotNeedGCBarriers, 430 AggValueSlot::IsNotAliased); 431 432 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 433 434 if (CGF.CGM.getLangOpts().Exceptions && 435 !BaseClassDecl->hasTrivialDestructor()) 436 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 437 isBaseVirtual); 438 } 439 440 static void EmitAggMemberInitializer(CodeGenFunction &CGF, 441 LValue LHS, 442 Expr *Init, 443 llvm::Value *ArrayIndexVar, 444 QualType T, 445 ArrayRef<VarDecl *> ArrayIndexes, 446 unsigned Index) { 447 if (Index == ArrayIndexes.size()) { 448 LValue LV = LHS; 449 450 if (ArrayIndexVar) { 451 // If we have an array index variable, load it and use it as an offset. 452 // Then, increment the value. 453 llvm::Value *Dest = LHS.getAddress(); 454 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar); 455 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress"); 456 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1); 457 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc"); 458 CGF.Builder.CreateStore(Next, ArrayIndexVar); 459 460 // Update the LValue. 461 LV.setAddress(Dest); 462 CharUnits Align = CGF.getContext().getTypeAlignInChars(T); 463 LV.setAlignment(std::min(Align, LV.getAlignment())); 464 } 465 466 switch (CGF.getEvaluationKind(T)) { 467 case TEK_Scalar: 468 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false); 469 break; 470 case TEK_Complex: 471 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true); 472 break; 473 case TEK_Aggregate: { 474 AggValueSlot Slot = 475 AggValueSlot::forLValue(LV, 476 AggValueSlot::IsDestructed, 477 AggValueSlot::DoesNotNeedGCBarriers, 478 AggValueSlot::IsNotAliased); 479 480 CGF.EmitAggExpr(Init, Slot); 481 break; 482 } 483 } 484 485 return; 486 } 487 488 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T); 489 assert(Array && "Array initialization without the array type?"); 490 llvm::Value *IndexVar 491 = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]); 492 assert(IndexVar && "Array index variable not loaded"); 493 494 // Initialize this index variable to zero. 495 llvm::Value* Zero 496 = llvm::Constant::getNullValue( 497 CGF.ConvertType(CGF.getContext().getSizeType())); 498 CGF.Builder.CreateStore(Zero, IndexVar); 499 500 // Start the loop with a block that tests the condition. 501 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond"); 502 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end"); 503 504 CGF.EmitBlock(CondBlock); 505 506 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body"); 507 // Generate: if (loop-index < number-of-elements) fall to the loop body, 508 // otherwise, go to the block after the for-loop. 509 uint64_t NumElements = Array->getSize().getZExtValue(); 510 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar); 511 llvm::Value *NumElementsPtr = 512 llvm::ConstantInt::get(Counter->getType(), NumElements); 513 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr, 514 "isless"); 515 516 // If the condition is true, execute the body. 517 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor); 518 519 CGF.EmitBlock(ForBody); 520 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc"); 521 522 // Inside the loop body recurse to emit the inner loop or, eventually, the 523 // constructor call. 524 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar, 525 Array->getElementType(), ArrayIndexes, Index + 1); 526 527 CGF.EmitBlock(ContinueBlock); 528 529 // Emit the increment of the loop counter. 530 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1); 531 Counter = CGF.Builder.CreateLoad(IndexVar); 532 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc"); 533 CGF.Builder.CreateStore(NextVal, IndexVar); 534 535 // Finally, branch back up to the condition for the next iteration. 536 CGF.EmitBranch(CondBlock); 537 538 // Emit the fall-through block. 539 CGF.EmitBlock(AfterFor, true); 540 } 541 542 static void EmitMemberInitializer(CodeGenFunction &CGF, 543 const CXXRecordDecl *ClassDecl, 544 CXXCtorInitializer *MemberInit, 545 const CXXConstructorDecl *Constructor, 546 FunctionArgList &Args) { 547 ApplyDebugLocation Loc(CGF, MemberInit->getMemberLocation()); 548 assert(MemberInit->isAnyMemberInitializer() && 549 "Must have member initializer!"); 550 assert(MemberInit->getInit() && "Must have initializer!"); 551 552 // non-static data member initializers. 553 FieldDecl *Field = MemberInit->getAnyMember(); 554 QualType FieldType = Field->getType(); 555 556 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 557 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 558 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 559 560 if (MemberInit->isIndirectMemberInitializer()) { 561 // If we are initializing an anonymous union field, drill down to 562 // the field. 563 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 564 for (const auto *I : IndirectField->chain()) 565 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 566 FieldType = MemberInit->getIndirectMember()->getAnonField()->getType(); 567 } else { 568 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 569 } 570 571 // Special case: if we are in a copy or move constructor, and we are copying 572 // an array of PODs or classes with trivial copy constructors, ignore the 573 // AST and perform the copy we know is equivalent. 574 // FIXME: This is hacky at best... if we had a bit more explicit information 575 // in the AST, we could generalize it more easily. 576 const ConstantArrayType *Array 577 = CGF.getContext().getAsConstantArrayType(FieldType); 578 if (Array && Constructor->isDefaulted() && 579 Constructor->isCopyOrMoveConstructor()) { 580 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 581 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 582 if (BaseElementTy.isPODType(CGF.getContext()) || 583 (CE && CE->getConstructor()->isTrivial())) { 584 unsigned SrcArgIndex = 585 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 586 llvm::Value *SrcPtr 587 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 588 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 589 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 590 591 // Copy the aggregate. 592 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 593 LHS.isVolatileQualified()); 594 return; 595 } 596 } 597 598 ArrayRef<VarDecl *> ArrayIndexes; 599 if (MemberInit->getNumArrayIndices()) 600 ArrayIndexes = MemberInit->getArrayIndexes(); 601 ApplyDebugLocation DL(CGF, MemberInit->getMemberLocation()); 602 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes); 603 } 604 605 void CodeGenFunction::EmitInitializerForField( 606 FieldDecl *Field, LValue LHS, Expr *Init, 607 ArrayRef<VarDecl *> ArrayIndexes) { 608 QualType FieldType = Field->getType(); 609 switch (getEvaluationKind(FieldType)) { 610 case TEK_Scalar: 611 if (LHS.isSimple()) { 612 EmitExprAsInit(Init, Field, LHS, false); 613 } else { 614 RValue RHS = RValue::get(EmitScalarExpr(Init)); 615 EmitStoreThroughLValue(RHS, LHS); 616 } 617 break; 618 case TEK_Complex: 619 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 620 break; 621 case TEK_Aggregate: { 622 llvm::Value *ArrayIndexVar = nullptr; 623 if (ArrayIndexes.size()) { 624 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 625 626 // The LHS is a pointer to the first object we'll be constructing, as 627 // a flat array. 628 QualType BaseElementTy = getContext().getBaseElementType(FieldType); 629 llvm::Type *BasePtr = ConvertType(BaseElementTy); 630 BasePtr = llvm::PointerType::getUnqual(BasePtr); 631 llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), 632 BasePtr); 633 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy); 634 635 // Create an array index that will be used to walk over all of the 636 // objects we're constructing. 637 ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index"); 638 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy); 639 Builder.CreateStore(Zero, ArrayIndexVar); 640 641 642 // Emit the block variables for the array indices, if any. 643 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I) 644 EmitAutoVarDecl(*ArrayIndexes[I]); 645 } 646 647 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType, 648 ArrayIndexes, 0); 649 } 650 } 651 652 // Ensure that we destroy this object if an exception is thrown 653 // later in the constructor. 654 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 655 if (needsEHCleanup(dtorKind)) 656 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 657 } 658 659 /// Checks whether the given constructor is a valid subject for the 660 /// complete-to-base constructor delegation optimization, i.e. 661 /// emitting the complete constructor as a simple call to the base 662 /// constructor. 663 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) { 664 665 // Currently we disable the optimization for classes with virtual 666 // bases because (1) the addresses of parameter variables need to be 667 // consistent across all initializers but (2) the delegate function 668 // call necessarily creates a second copy of the parameter variable. 669 // 670 // The limiting example (purely theoretical AFAIK): 671 // struct A { A(int &c) { c++; } }; 672 // struct B : virtual A { 673 // B(int count) : A(count) { printf("%d\n", count); } 674 // }; 675 // ...although even this example could in principle be emitted as a 676 // delegation since the address of the parameter doesn't escape. 677 if (Ctor->getParent()->getNumVBases()) { 678 // TODO: white-list trivial vbase initializers. This case wouldn't 679 // be subject to the restrictions below. 680 681 // TODO: white-list cases where: 682 // - there are no non-reference parameters to the constructor 683 // - the initializers don't access any non-reference parameters 684 // - the initializers don't take the address of non-reference 685 // parameters 686 // - etc. 687 // If we ever add any of the above cases, remember that: 688 // - function-try-blocks will always blacklist this optimization 689 // - we need to perform the constructor prologue and cleanup in 690 // EmitConstructorBody. 691 692 return false; 693 } 694 695 // We also disable the optimization for variadic functions because 696 // it's impossible to "re-pass" varargs. 697 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 698 return false; 699 700 // FIXME: Decide if we can do a delegation of a delegating constructor. 701 if (Ctor->isDelegatingConstructor()) 702 return false; 703 704 return true; 705 } 706 707 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 708 // to poison the extra field paddings inserted under 709 // -fsanitize-address-field-padding=1|2. 710 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 711 ASTContext &Context = getContext(); 712 const CXXRecordDecl *ClassDecl = 713 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 714 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 715 if (!ClassDecl->mayInsertExtraPadding()) return; 716 717 struct SizeAndOffset { 718 uint64_t Size; 719 uint64_t Offset; 720 }; 721 722 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 723 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 724 725 // Populate sizes and offsets of fields. 726 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 727 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 728 SSV[i].Offset = 729 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 730 731 size_t NumFields = 0; 732 for (const auto *Field : ClassDecl->fields()) { 733 const FieldDecl *D = Field; 734 std::pair<CharUnits, CharUnits> FieldInfo = 735 Context.getTypeInfoInChars(D->getType()); 736 CharUnits FieldSize = FieldInfo.first; 737 assert(NumFields < SSV.size()); 738 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 739 NumFields++; 740 } 741 assert(NumFields == SSV.size()); 742 if (SSV.size() <= 1) return; 743 744 // We will insert calls to __asan_* run-time functions. 745 // LLVM AddressSanitizer pass may decide to inline them later. 746 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 747 llvm::FunctionType *FTy = 748 llvm::FunctionType::get(CGM.VoidTy, Args, false); 749 llvm::Constant *F = CGM.CreateRuntimeFunction( 750 FTy, Prologue ? "__asan_poison_intra_object_redzone" 751 : "__asan_unpoison_intra_object_redzone"); 752 753 llvm::Value *ThisPtr = LoadCXXThis(); 754 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 755 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 756 // For each field check if it has sufficient padding, 757 // if so (un)poison it with a call. 758 for (size_t i = 0; i < SSV.size(); i++) { 759 uint64_t AsanAlignment = 8; 760 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 761 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 762 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 763 if (PoisonSize < AsanAlignment || !SSV[i].Size || 764 (NextField % AsanAlignment) != 0) 765 continue; 766 Builder.CreateCall2( 767 F, Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 768 Builder.getIntN(PtrSize, PoisonSize)); 769 } 770 } 771 772 /// EmitConstructorBody - Emits the body of the current constructor. 773 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 774 EmitAsanPrologueOrEpilogue(true); 775 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 776 CXXCtorType CtorType = CurGD.getCtorType(); 777 778 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 779 CtorType == Ctor_Complete) && 780 "can only generate complete ctor for this ABI"); 781 782 // Before we go any further, try the complete->base constructor 783 // delegation optimization. 784 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 785 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 786 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 787 return; 788 } 789 790 const FunctionDecl *Definition = 0; 791 Stmt *Body = Ctor->getBody(Definition); 792 assert(Definition == Ctor && "emitting wrong constructor body"); 793 794 // Enter the function-try-block before the constructor prologue if 795 // applicable. 796 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 797 if (IsTryBody) 798 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 799 800 RegionCounter Cnt = getPGORegionCounter(Body); 801 Cnt.beginRegion(Builder); 802 803 RunCleanupsScope RunCleanups(*this); 804 805 // TODO: in restricted cases, we can emit the vbase initializers of 806 // a complete ctor and then delegate to the base ctor. 807 808 // Emit the constructor prologue, i.e. the base and member 809 // initializers. 810 EmitCtorPrologue(Ctor, CtorType, Args); 811 812 // Emit the body of the statement. 813 if (IsTryBody) 814 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 815 else if (Body) 816 EmitStmt(Body); 817 818 // Emit any cleanup blocks associated with the member or base 819 // initializers, which includes (along the exceptional path) the 820 // destructors for those members and bases that were fully 821 // constructed. 822 RunCleanups.ForceCleanup(); 823 824 if (IsTryBody) 825 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 826 } 827 828 namespace { 829 /// RAII object to indicate that codegen is copying the value representation 830 /// instead of the object representation. Useful when copying a struct or 831 /// class which has uninitialized members and we're only performing 832 /// lvalue-to-rvalue conversion on the object but not its members. 833 class CopyingValueRepresentation { 834 public: 835 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 836 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 837 CGF.SanOpts.set(SanitizerKind::Bool, false); 838 CGF.SanOpts.set(SanitizerKind::Enum, false); 839 } 840 ~CopyingValueRepresentation() { 841 CGF.SanOpts = OldSanOpts; 842 } 843 private: 844 CodeGenFunction &CGF; 845 SanitizerSet OldSanOpts; 846 }; 847 } 848 849 namespace { 850 class FieldMemcpyizer { 851 public: 852 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 853 const VarDecl *SrcRec) 854 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 855 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 856 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 857 LastFieldOffset(0), LastAddedFieldIndex(0) {} 858 859 bool isMemcpyableField(FieldDecl *F) const { 860 // Never memcpy fields when we are adding poisoned paddings. 861 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 862 return false; 863 Qualifiers Qual = F->getType().getQualifiers(); 864 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 865 return false; 866 return true; 867 } 868 869 void addMemcpyableField(FieldDecl *F) { 870 if (!FirstField) 871 addInitialField(F); 872 else 873 addNextField(F); 874 } 875 876 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 877 unsigned LastFieldSize = 878 LastField->isBitField() ? 879 LastField->getBitWidthValue(CGF.getContext()) : 880 CGF.getContext().getTypeSize(LastField->getType()); 881 uint64_t MemcpySizeBits = 882 LastFieldOffset + LastFieldSize - FirstByteOffset + 883 CGF.getContext().getCharWidth() - 1; 884 CharUnits MemcpySize = 885 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 886 return MemcpySize; 887 } 888 889 void emitMemcpy() { 890 // Give the subclass a chance to bail out if it feels the memcpy isn't 891 // worth it (e.g. Hasn't aggregated enough data). 892 if (!FirstField) { 893 return; 894 } 895 896 CharUnits Alignment; 897 898 uint64_t FirstByteOffset; 899 if (FirstField->isBitField()) { 900 const CGRecordLayout &RL = 901 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 902 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 903 Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment); 904 // FirstFieldOffset is not appropriate for bitfields, 905 // it won't tell us what the storage offset should be and thus might not 906 // be properly aligned. 907 // 908 // Instead calculate the storage offset using the offset of the field in 909 // the struct type. 910 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 911 FirstByteOffset = 912 DL.getStructLayout(RL.getLLVMType()) 913 ->getElementOffsetInBits(RL.getLLVMFieldNo(FirstField)); 914 } else { 915 Alignment = CGF.getContext().getDeclAlign(FirstField); 916 FirstByteOffset = FirstFieldOffset; 917 } 918 919 assert((CGF.getContext().toCharUnitsFromBits(FirstByteOffset) % 920 Alignment) == 0 && "Bad field alignment."); 921 922 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 923 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 924 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 925 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 926 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 927 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 928 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 929 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 930 931 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(), 932 Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(), 933 MemcpySize, Alignment); 934 reset(); 935 } 936 937 void reset() { 938 FirstField = nullptr; 939 } 940 941 protected: 942 CodeGenFunction &CGF; 943 const CXXRecordDecl *ClassDecl; 944 945 private: 946 947 void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr, 948 CharUnits Size, CharUnits Alignment) { 949 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 950 llvm::Type *DBP = 951 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 952 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 953 954 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 955 llvm::Type *SBP = 956 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 957 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 958 959 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(), 960 Alignment.getQuantity()); 961 } 962 963 void addInitialField(FieldDecl *F) { 964 FirstField = F; 965 LastField = F; 966 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 967 LastFieldOffset = FirstFieldOffset; 968 LastAddedFieldIndex = F->getFieldIndex(); 969 return; 970 } 971 972 void addNextField(FieldDecl *F) { 973 // For the most part, the following invariant will hold: 974 // F->getFieldIndex() == LastAddedFieldIndex + 1 975 // The one exception is that Sema won't add a copy-initializer for an 976 // unnamed bitfield, which will show up here as a gap in the sequence. 977 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 978 "Cannot aggregate fields out of order."); 979 LastAddedFieldIndex = F->getFieldIndex(); 980 981 // The 'first' and 'last' fields are chosen by offset, rather than field 982 // index. This allows the code to support bitfields, as well as regular 983 // fields. 984 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 985 if (FOffset < FirstFieldOffset) { 986 FirstField = F; 987 FirstFieldOffset = FOffset; 988 } else if (FOffset > LastFieldOffset) { 989 LastField = F; 990 LastFieldOffset = FOffset; 991 } 992 } 993 994 const VarDecl *SrcRec; 995 const ASTRecordLayout &RecLayout; 996 FieldDecl *FirstField; 997 FieldDecl *LastField; 998 uint64_t FirstFieldOffset, LastFieldOffset; 999 unsigned LastAddedFieldIndex; 1000 }; 1001 1002 class ConstructorMemcpyizer : public FieldMemcpyizer { 1003 private: 1004 1005 /// Get source argument for copy constructor. Returns null if not a copy 1006 /// constructor. 1007 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1008 const CXXConstructorDecl *CD, 1009 FunctionArgList &Args) { 1010 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1011 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1012 return nullptr; 1013 } 1014 1015 // Returns true if a CXXCtorInitializer represents a member initialization 1016 // that can be rolled into a memcpy. 1017 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1018 if (!MemcpyableCtor) 1019 return false; 1020 FieldDecl *Field = MemberInit->getMember(); 1021 assert(Field && "No field for member init."); 1022 QualType FieldType = Field->getType(); 1023 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1024 1025 // Bail out on non-POD, not-trivially-constructable members. 1026 if (!(CE && CE->getConstructor()->isTrivial()) && 1027 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1028 FieldType->isReferenceType())) 1029 return false; 1030 1031 // Bail out on volatile fields. 1032 if (!isMemcpyableField(Field)) 1033 return false; 1034 1035 // Otherwise we're good. 1036 return true; 1037 } 1038 1039 public: 1040 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1041 FunctionArgList &Args) 1042 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1043 ConstructorDecl(CD), 1044 MemcpyableCtor(CD->isDefaulted() && 1045 CD->isCopyOrMoveConstructor() && 1046 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1047 Args(Args) { } 1048 1049 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1050 if (isMemberInitMemcpyable(MemberInit)) { 1051 AggregatedInits.push_back(MemberInit); 1052 addMemcpyableField(MemberInit->getMember()); 1053 } else { 1054 emitAggregatedInits(); 1055 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1056 ConstructorDecl, Args); 1057 } 1058 } 1059 1060 void emitAggregatedInits() { 1061 if (AggregatedInits.size() <= 1) { 1062 // This memcpy is too small to be worthwhile. Fall back on default 1063 // codegen. 1064 if (!AggregatedInits.empty()) { 1065 CopyingValueRepresentation CVR(CGF); 1066 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1067 AggregatedInits[0], ConstructorDecl, Args); 1068 } 1069 reset(); 1070 return; 1071 } 1072 1073 pushEHDestructors(); 1074 emitMemcpy(); 1075 AggregatedInits.clear(); 1076 } 1077 1078 void pushEHDestructors() { 1079 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 1080 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1081 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 1082 1083 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1084 QualType FieldType = AggregatedInits[i]->getMember()->getType(); 1085 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1086 if (CGF.needsEHCleanup(dtorKind)) 1087 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 1088 } 1089 } 1090 1091 void finish() { 1092 emitAggregatedInits(); 1093 } 1094 1095 private: 1096 const CXXConstructorDecl *ConstructorDecl; 1097 bool MemcpyableCtor; 1098 FunctionArgList &Args; 1099 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1100 }; 1101 1102 class AssignmentMemcpyizer : public FieldMemcpyizer { 1103 private: 1104 1105 // Returns the memcpyable field copied by the given statement, if one 1106 // exists. Otherwise returns null. 1107 FieldDecl *getMemcpyableField(Stmt *S) { 1108 if (!AssignmentsMemcpyable) 1109 return nullptr; 1110 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1111 // Recognise trivial assignments. 1112 if (BO->getOpcode() != BO_Assign) 1113 return nullptr; 1114 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1115 if (!ME) 1116 return nullptr; 1117 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1118 if (!Field || !isMemcpyableField(Field)) 1119 return nullptr; 1120 Stmt *RHS = BO->getRHS(); 1121 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1122 RHS = EC->getSubExpr(); 1123 if (!RHS) 1124 return nullptr; 1125 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS); 1126 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field) 1127 return nullptr; 1128 return Field; 1129 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1130 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1131 if (!(MD && (MD->isCopyAssignmentOperator() || 1132 MD->isMoveAssignmentOperator()) && 1133 MD->isTrivial())) 1134 return nullptr; 1135 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1136 if (!IOA) 1137 return nullptr; 1138 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1139 if (!Field || !isMemcpyableField(Field)) 1140 return nullptr; 1141 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1142 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1143 return nullptr; 1144 return Field; 1145 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1146 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1147 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1148 return nullptr; 1149 Expr *DstPtr = CE->getArg(0); 1150 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1151 DstPtr = DC->getSubExpr(); 1152 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1153 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1154 return nullptr; 1155 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1156 if (!ME) 1157 return nullptr; 1158 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1159 if (!Field || !isMemcpyableField(Field)) 1160 return nullptr; 1161 Expr *SrcPtr = CE->getArg(1); 1162 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1163 SrcPtr = SC->getSubExpr(); 1164 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1165 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1166 return nullptr; 1167 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1168 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1169 return nullptr; 1170 return Field; 1171 } 1172 1173 return nullptr; 1174 } 1175 1176 bool AssignmentsMemcpyable; 1177 SmallVector<Stmt*, 16> AggregatedStmts; 1178 1179 public: 1180 1181 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1182 FunctionArgList &Args) 1183 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1184 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1185 assert(Args.size() == 2); 1186 } 1187 1188 void emitAssignment(Stmt *S) { 1189 FieldDecl *F = getMemcpyableField(S); 1190 if (F) { 1191 addMemcpyableField(F); 1192 AggregatedStmts.push_back(S); 1193 } else { 1194 emitAggregatedStmts(); 1195 CGF.EmitStmt(S); 1196 } 1197 } 1198 1199 void emitAggregatedStmts() { 1200 if (AggregatedStmts.size() <= 1) { 1201 if (!AggregatedStmts.empty()) { 1202 CopyingValueRepresentation CVR(CGF); 1203 CGF.EmitStmt(AggregatedStmts[0]); 1204 } 1205 reset(); 1206 } 1207 1208 emitMemcpy(); 1209 AggregatedStmts.clear(); 1210 } 1211 1212 void finish() { 1213 emitAggregatedStmts(); 1214 } 1215 }; 1216 1217 } 1218 1219 /// EmitCtorPrologue - This routine generates necessary code to initialize 1220 /// base classes and non-static data members belonging to this constructor. 1221 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1222 CXXCtorType CtorType, 1223 FunctionArgList &Args) { 1224 if (CD->isDelegatingConstructor()) 1225 return EmitDelegatingCXXConstructorCall(CD, Args); 1226 1227 const CXXRecordDecl *ClassDecl = CD->getParent(); 1228 1229 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1230 E = CD->init_end(); 1231 1232 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1233 if (ClassDecl->getNumVBases() && 1234 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1235 // The ABIs that don't have constructor variants need to put a branch 1236 // before the virtual base initialization code. 1237 BaseCtorContinueBB = 1238 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1239 assert(BaseCtorContinueBB); 1240 } 1241 1242 // Virtual base initializers first. 1243 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1244 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1245 } 1246 1247 if (BaseCtorContinueBB) { 1248 // Complete object handler should continue to the remaining initializers. 1249 Builder.CreateBr(BaseCtorContinueBB); 1250 EmitBlock(BaseCtorContinueBB); 1251 } 1252 1253 // Then, non-virtual base initializers. 1254 for (; B != E && (*B)->isBaseInitializer(); B++) { 1255 assert(!(*B)->isBaseVirtual()); 1256 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1257 } 1258 1259 InitializeVTablePointers(ClassDecl); 1260 1261 // And finally, initialize class members. 1262 FieldConstructionScope FCS(*this, CXXThisValue); 1263 ConstructorMemcpyizer CM(*this, CD, Args); 1264 for (; B != E; B++) { 1265 CXXCtorInitializer *Member = (*B); 1266 assert(!Member->isBaseInitializer()); 1267 assert(Member->isAnyMemberInitializer() && 1268 "Delegating initializer on non-delegating constructor"); 1269 CM.addMemberInitializer(Member); 1270 } 1271 CM.finish(); 1272 } 1273 1274 static bool 1275 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1276 1277 static bool 1278 HasTrivialDestructorBody(ASTContext &Context, 1279 const CXXRecordDecl *BaseClassDecl, 1280 const CXXRecordDecl *MostDerivedClassDecl) 1281 { 1282 // If the destructor is trivial we don't have to check anything else. 1283 if (BaseClassDecl->hasTrivialDestructor()) 1284 return true; 1285 1286 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1287 return false; 1288 1289 // Check fields. 1290 for (const auto *Field : BaseClassDecl->fields()) 1291 if (!FieldHasTrivialDestructorBody(Context, Field)) 1292 return false; 1293 1294 // Check non-virtual bases. 1295 for (const auto &I : BaseClassDecl->bases()) { 1296 if (I.isVirtual()) 1297 continue; 1298 1299 const CXXRecordDecl *NonVirtualBase = 1300 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1301 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1302 MostDerivedClassDecl)) 1303 return false; 1304 } 1305 1306 if (BaseClassDecl == MostDerivedClassDecl) { 1307 // Check virtual bases. 1308 for (const auto &I : BaseClassDecl->vbases()) { 1309 const CXXRecordDecl *VirtualBase = 1310 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1311 if (!HasTrivialDestructorBody(Context, VirtualBase, 1312 MostDerivedClassDecl)) 1313 return false; 1314 } 1315 } 1316 1317 return true; 1318 } 1319 1320 static bool 1321 FieldHasTrivialDestructorBody(ASTContext &Context, 1322 const FieldDecl *Field) 1323 { 1324 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1325 1326 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1327 if (!RT) 1328 return true; 1329 1330 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1331 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1332 } 1333 1334 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1335 /// any vtable pointers before calling this destructor. 1336 static bool CanSkipVTablePointerInitialization(ASTContext &Context, 1337 const CXXDestructorDecl *Dtor) { 1338 if (!Dtor->hasTrivialBody()) 1339 return false; 1340 1341 // Check the fields. 1342 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1343 for (const auto *Field : ClassDecl->fields()) 1344 if (!FieldHasTrivialDestructorBody(Context, Field)) 1345 return false; 1346 1347 return true; 1348 } 1349 1350 /// EmitDestructorBody - Emits the body of the current destructor. 1351 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1352 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1353 CXXDtorType DtorType = CurGD.getDtorType(); 1354 1355 // The call to operator delete in a deleting destructor happens 1356 // outside of the function-try-block, which means it's always 1357 // possible to delegate the destructor body to the complete 1358 // destructor. Do so. 1359 if (DtorType == Dtor_Deleting) { 1360 EnterDtorCleanups(Dtor, Dtor_Deleting); 1361 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1362 /*Delegating=*/false, LoadCXXThis()); 1363 PopCleanupBlock(); 1364 return; 1365 } 1366 1367 Stmt *Body = Dtor->getBody(); 1368 1369 // If the body is a function-try-block, enter the try before 1370 // anything else. 1371 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1372 if (isTryBody) 1373 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1374 EmitAsanPrologueOrEpilogue(false); 1375 1376 // Enter the epilogue cleanups. 1377 RunCleanupsScope DtorEpilogue(*this); 1378 1379 // If this is the complete variant, just invoke the base variant; 1380 // the epilogue will destruct the virtual bases. But we can't do 1381 // this optimization if the body is a function-try-block, because 1382 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1383 // always delegate because we might not have a definition in this TU. 1384 switch (DtorType) { 1385 case Dtor_Comdat: 1386 llvm_unreachable("not expecting a COMDAT"); 1387 1388 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1389 1390 case Dtor_Complete: 1391 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1392 "can't emit a dtor without a body for non-Microsoft ABIs"); 1393 1394 // Enter the cleanup scopes for virtual bases. 1395 EnterDtorCleanups(Dtor, Dtor_Complete); 1396 1397 if (!isTryBody) { 1398 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1399 /*Delegating=*/false, LoadCXXThis()); 1400 break; 1401 } 1402 // Fallthrough: act like we're in the base variant. 1403 1404 case Dtor_Base: 1405 assert(Body); 1406 1407 RegionCounter Cnt = getPGORegionCounter(Body); 1408 Cnt.beginRegion(Builder); 1409 1410 // Enter the cleanup scopes for fields and non-virtual bases. 1411 EnterDtorCleanups(Dtor, Dtor_Base); 1412 1413 // Initialize the vtable pointers before entering the body. 1414 if (!CanSkipVTablePointerInitialization(getContext(), Dtor)) 1415 InitializeVTablePointers(Dtor->getParent()); 1416 1417 if (isTryBody) 1418 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1419 else if (Body) 1420 EmitStmt(Body); 1421 else { 1422 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1423 // nothing to do besides what's in the epilogue 1424 } 1425 // -fapple-kext must inline any call to this dtor into 1426 // the caller's body. 1427 if (getLangOpts().AppleKext) 1428 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1429 break; 1430 } 1431 1432 // Jump out through the epilogue cleanups. 1433 DtorEpilogue.ForceCleanup(); 1434 1435 // Exit the try if applicable. 1436 if (isTryBody) 1437 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1438 } 1439 1440 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1441 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1442 const Stmt *RootS = AssignOp->getBody(); 1443 assert(isa<CompoundStmt>(RootS) && 1444 "Body of an implicit assignment operator should be compound stmt."); 1445 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1446 1447 LexicalScope Scope(*this, RootCS->getSourceRange()); 1448 1449 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1450 for (auto *I : RootCS->body()) 1451 AM.emitAssignment(I); 1452 AM.finish(); 1453 } 1454 1455 namespace { 1456 /// Call the operator delete associated with the current destructor. 1457 struct CallDtorDelete : EHScopeStack::Cleanup { 1458 CallDtorDelete() {} 1459 1460 void Emit(CodeGenFunction &CGF, Flags flags) override { 1461 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1462 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1463 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1464 CGF.getContext().getTagDeclType(ClassDecl)); 1465 } 1466 }; 1467 1468 struct CallDtorDeleteConditional : EHScopeStack::Cleanup { 1469 llvm::Value *ShouldDeleteCondition; 1470 public: 1471 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1472 : ShouldDeleteCondition(ShouldDeleteCondition) { 1473 assert(ShouldDeleteCondition != nullptr); 1474 } 1475 1476 void Emit(CodeGenFunction &CGF, Flags flags) override { 1477 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1478 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1479 llvm::Value *ShouldCallDelete 1480 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1481 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1482 1483 CGF.EmitBlock(callDeleteBB); 1484 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1485 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1486 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1487 CGF.getContext().getTagDeclType(ClassDecl)); 1488 CGF.Builder.CreateBr(continueBB); 1489 1490 CGF.EmitBlock(continueBB); 1491 } 1492 }; 1493 1494 class DestroyField : public EHScopeStack::Cleanup { 1495 const FieldDecl *field; 1496 CodeGenFunction::Destroyer *destroyer; 1497 bool useEHCleanupForArray; 1498 1499 public: 1500 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1501 bool useEHCleanupForArray) 1502 : field(field), destroyer(destroyer), 1503 useEHCleanupForArray(useEHCleanupForArray) {} 1504 1505 void Emit(CodeGenFunction &CGF, Flags flags) override { 1506 // Find the address of the field. 1507 llvm::Value *thisValue = CGF.LoadCXXThis(); 1508 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1509 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1510 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1511 assert(LV.isSimple()); 1512 1513 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1514 flags.isForNormalCleanup() && useEHCleanupForArray); 1515 } 1516 }; 1517 } 1518 1519 /// \brief Emit all code that comes at the end of class's 1520 /// destructor. This is to call destructors on members and base classes 1521 /// in reverse order of their construction. 1522 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1523 CXXDtorType DtorType) { 1524 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1525 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1526 1527 // The deleting-destructor phase just needs to call the appropriate 1528 // operator delete that Sema picked up. 1529 if (DtorType == Dtor_Deleting) { 1530 assert(DD->getOperatorDelete() && 1531 "operator delete missing - EnterDtorCleanups"); 1532 if (CXXStructorImplicitParamValue) { 1533 // If there is an implicit param to the deleting dtor, it's a boolean 1534 // telling whether we should call delete at the end of the dtor. 1535 EHStack.pushCleanup<CallDtorDeleteConditional>( 1536 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1537 } else { 1538 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1539 } 1540 return; 1541 } 1542 1543 const CXXRecordDecl *ClassDecl = DD->getParent(); 1544 1545 // Unions have no bases and do not call field destructors. 1546 if (ClassDecl->isUnion()) 1547 return; 1548 1549 // The complete-destructor phase just destructs all the virtual bases. 1550 if (DtorType == Dtor_Complete) { 1551 1552 // We push them in the forward order so that they'll be popped in 1553 // the reverse order. 1554 for (const auto &Base : ClassDecl->vbases()) { 1555 CXXRecordDecl *BaseClassDecl 1556 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1557 1558 // Ignore trivial destructors. 1559 if (BaseClassDecl->hasTrivialDestructor()) 1560 continue; 1561 1562 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1563 BaseClassDecl, 1564 /*BaseIsVirtual*/ true); 1565 } 1566 1567 return; 1568 } 1569 1570 assert(DtorType == Dtor_Base); 1571 1572 // Destroy non-virtual bases. 1573 for (const auto &Base : ClassDecl->bases()) { 1574 // Ignore virtual bases. 1575 if (Base.isVirtual()) 1576 continue; 1577 1578 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1579 1580 // Ignore trivial destructors. 1581 if (BaseClassDecl->hasTrivialDestructor()) 1582 continue; 1583 1584 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1585 BaseClassDecl, 1586 /*BaseIsVirtual*/ false); 1587 } 1588 1589 // Destroy direct fields. 1590 for (const auto *Field : ClassDecl->fields()) { 1591 QualType type = Field->getType(); 1592 QualType::DestructionKind dtorKind = type.isDestructedType(); 1593 if (!dtorKind) continue; 1594 1595 // Anonymous union members do not have their destructors called. 1596 const RecordType *RT = type->getAsUnionType(); 1597 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1598 1599 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1600 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1601 getDestroyer(dtorKind), 1602 cleanupKind & EHCleanup); 1603 } 1604 } 1605 1606 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1607 /// constructor for each of several members of an array. 1608 /// 1609 /// \param ctor the constructor to call for each element 1610 /// \param arrayType the type of the array to initialize 1611 /// \param arrayBegin an arrayType* 1612 /// \param zeroInitialize true if each element should be 1613 /// zero-initialized before it is constructed 1614 void CodeGenFunction::EmitCXXAggrConstructorCall( 1615 const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType, 1616 llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1617 QualType elementType; 1618 llvm::Value *numElements = 1619 emitArrayLength(arrayType, elementType, arrayBegin); 1620 1621 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1622 } 1623 1624 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1625 /// constructor for each of several members of an array. 1626 /// 1627 /// \param ctor the constructor to call for each element 1628 /// \param numElements the number of elements in the array; 1629 /// may be zero 1630 /// \param arrayBegin a T*, where T is the type constructed by ctor 1631 /// \param zeroInitialize true if each element should be 1632 /// zero-initialized before it is constructed 1633 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1634 llvm::Value *numElements, 1635 llvm::Value *arrayBegin, 1636 const CXXConstructExpr *E, 1637 bool zeroInitialize) { 1638 1639 // It's legal for numElements to be zero. This can happen both 1640 // dynamically, because x can be zero in 'new A[x]', and statically, 1641 // because of GCC extensions that permit zero-length arrays. There 1642 // are probably legitimate places where we could assume that this 1643 // doesn't happen, but it's not clear that it's worth it. 1644 llvm::BranchInst *zeroCheckBranch = nullptr; 1645 1646 // Optimize for a constant count. 1647 llvm::ConstantInt *constantCount 1648 = dyn_cast<llvm::ConstantInt>(numElements); 1649 if (constantCount) { 1650 // Just skip out if the constant count is zero. 1651 if (constantCount->isZero()) return; 1652 1653 // Otherwise, emit the check. 1654 } else { 1655 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1656 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1657 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1658 EmitBlock(loopBB); 1659 } 1660 1661 // Find the end of the array. 1662 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1663 "arrayctor.end"); 1664 1665 // Enter the loop, setting up a phi for the current location to initialize. 1666 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1667 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1668 EmitBlock(loopBB); 1669 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1670 "arrayctor.cur"); 1671 cur->addIncoming(arrayBegin, entryBB); 1672 1673 // Inside the loop body, emit the constructor call on the array element. 1674 1675 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1676 1677 // Zero initialize the storage, if requested. 1678 if (zeroInitialize) 1679 EmitNullInitialization(cur, type); 1680 1681 // C++ [class.temporary]p4: 1682 // There are two contexts in which temporaries are destroyed at a different 1683 // point than the end of the full-expression. The first context is when a 1684 // default constructor is called to initialize an element of an array. 1685 // If the constructor has one or more default arguments, the destruction of 1686 // every temporary created in a default argument expression is sequenced 1687 // before the construction of the next array element, if any. 1688 1689 { 1690 RunCleanupsScope Scope(*this); 1691 1692 // Evaluate the constructor and its arguments in a regular 1693 // partial-destroy cleanup. 1694 if (getLangOpts().Exceptions && 1695 !ctor->getParent()->hasTrivialDestructor()) { 1696 Destroyer *destroyer = destroyCXXObject; 1697 pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer); 1698 } 1699 1700 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1701 /*Delegating=*/false, cur, E); 1702 } 1703 1704 // Go to the next element. 1705 llvm::Value *next = 1706 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1707 "arrayctor.next"); 1708 cur->addIncoming(next, Builder.GetInsertBlock()); 1709 1710 // Check whether that's the end of the loop. 1711 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1712 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1713 Builder.CreateCondBr(done, contBB, loopBB); 1714 1715 // Patch the earlier check to skip over the loop. 1716 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1717 1718 EmitBlock(contBB); 1719 } 1720 1721 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1722 llvm::Value *addr, 1723 QualType type) { 1724 const RecordType *rtype = type->castAs<RecordType>(); 1725 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1726 const CXXDestructorDecl *dtor = record->getDestructor(); 1727 assert(!dtor->isTrivial()); 1728 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1729 /*Delegating=*/false, addr); 1730 } 1731 1732 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1733 CXXCtorType Type, 1734 bool ForVirtualBase, 1735 bool Delegating, llvm::Value *This, 1736 const CXXConstructExpr *E) { 1737 // If this is a trivial constructor, just emit what's needed. 1738 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) { 1739 if (E->getNumArgs() == 0) { 1740 // Trivial default constructor, no codegen required. 1741 assert(D->isDefaultConstructor() && 1742 "trivial 0-arg ctor not a default ctor"); 1743 return; 1744 } 1745 1746 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1747 assert(D->isCopyOrMoveConstructor() && 1748 "trivial 1-arg ctor not a copy/move ctor"); 1749 1750 const Expr *Arg = E->getArg(0); 1751 QualType Ty = Arg->getType(); 1752 llvm::Value *Src = EmitLValue(Arg).getAddress(); 1753 EmitAggregateCopy(This, Src, Ty); 1754 return; 1755 } 1756 1757 // C++11 [class.mfct.non-static]p2: 1758 // If a non-static member function of a class X is called for an object that 1759 // is not of type X, or of a type derived from X, the behavior is undefined. 1760 // FIXME: Provide a source location here. 1761 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This, 1762 getContext().getRecordType(D->getParent())); 1763 1764 CallArgList Args; 1765 1766 // Push the this ptr. 1767 Args.add(RValue::get(This), D->getThisType(getContext())); 1768 1769 // Add the rest of the user-supplied arguments. 1770 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1771 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor()); 1772 1773 // Insert any ABI-specific implicit constructor arguments. 1774 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs( 1775 *this, D, Type, ForVirtualBase, Delegating, Args); 1776 1777 // Emit the call. 1778 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 1779 const CGFunctionInfo &Info = 1780 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs); 1781 EmitCall(Info, Callee, ReturnValueSlot(), Args, D); 1782 } 1783 1784 void 1785 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1786 llvm::Value *This, llvm::Value *Src, 1787 const CXXConstructExpr *E) { 1788 if (D->isTrivial() && 1789 !D->getParent()->mayInsertExtraPadding()) { 1790 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1791 assert(D->isCopyOrMoveConstructor() && 1792 "trivial 1-arg ctor not a copy/move ctor"); 1793 EmitAggregateCopy(This, Src, E->arg_begin()->getType()); 1794 return; 1795 } 1796 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete); 1797 assert(D->isInstance() && 1798 "Trying to emit a member call expr on a static method!"); 1799 1800 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1801 1802 CallArgList Args; 1803 1804 // Push the this ptr. 1805 Args.add(RValue::get(This), D->getThisType(getContext())); 1806 1807 // Push the src ptr. 1808 QualType QT = *(FPT->param_type_begin()); 1809 llvm::Type *t = CGM.getTypes().ConvertType(QT); 1810 Src = Builder.CreateBitCast(Src, t); 1811 Args.add(RValue::get(Src), QT); 1812 1813 // Skip over first argument (Src). 1814 EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(), 1815 /*ParamsToSkip*/ 1); 1816 1817 EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All), 1818 Callee, ReturnValueSlot(), Args, D); 1819 } 1820 1821 void 1822 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1823 CXXCtorType CtorType, 1824 const FunctionArgList &Args, 1825 SourceLocation Loc) { 1826 CallArgList DelegateArgs; 1827 1828 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 1829 assert(I != E && "no parameters to constructor"); 1830 1831 // this 1832 DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType()); 1833 ++I; 1834 1835 // vtt 1836 if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType), 1837 /*ForVirtualBase=*/false, 1838 /*Delegating=*/true)) { 1839 QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy); 1840 DelegateArgs.add(RValue::get(VTT), VoidPP); 1841 1842 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 1843 assert(I != E && "cannot skip vtt parameter, already done with args"); 1844 assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type"); 1845 ++I; 1846 } 1847 } 1848 1849 // Explicit arguments. 1850 for (; I != E; ++I) { 1851 const VarDecl *param = *I; 1852 // FIXME: per-argument source location 1853 EmitDelegateCallArg(DelegateArgs, param, Loc); 1854 } 1855 1856 llvm::Value *Callee = 1857 CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType)); 1858 EmitCall(CGM.getTypes() 1859 .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)), 1860 Callee, ReturnValueSlot(), DelegateArgs, Ctor); 1861 } 1862 1863 namespace { 1864 struct CallDelegatingCtorDtor : EHScopeStack::Cleanup { 1865 const CXXDestructorDecl *Dtor; 1866 llvm::Value *Addr; 1867 CXXDtorType Type; 1868 1869 CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr, 1870 CXXDtorType Type) 1871 : Dtor(D), Addr(Addr), Type(Type) {} 1872 1873 void Emit(CodeGenFunction &CGF, Flags flags) override { 1874 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 1875 /*Delegating=*/true, Addr); 1876 } 1877 }; 1878 } 1879 1880 void 1881 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1882 const FunctionArgList &Args) { 1883 assert(Ctor->isDelegatingConstructor()); 1884 1885 llvm::Value *ThisPtr = LoadCXXThis(); 1886 1887 QualType Ty = getContext().getTagDeclType(Ctor->getParent()); 1888 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1889 AggValueSlot AggSlot = 1890 AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(), 1891 AggValueSlot::IsDestructed, 1892 AggValueSlot::DoesNotNeedGCBarriers, 1893 AggValueSlot::IsNotAliased); 1894 1895 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 1896 1897 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 1898 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 1899 CXXDtorType Type = 1900 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 1901 1902 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 1903 ClassDecl->getDestructor(), 1904 ThisPtr, Type); 1905 } 1906 } 1907 1908 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 1909 CXXDtorType Type, 1910 bool ForVirtualBase, 1911 bool Delegating, 1912 llvm::Value *This) { 1913 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 1914 Delegating, This); 1915 } 1916 1917 namespace { 1918 struct CallLocalDtor : EHScopeStack::Cleanup { 1919 const CXXDestructorDecl *Dtor; 1920 llvm::Value *Addr; 1921 1922 CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr) 1923 : Dtor(D), Addr(Addr) {} 1924 1925 void Emit(CodeGenFunction &CGF, Flags flags) override { 1926 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1927 /*ForVirtualBase=*/false, 1928 /*Delegating=*/false, Addr); 1929 } 1930 }; 1931 } 1932 1933 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 1934 llvm::Value *Addr) { 1935 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 1936 } 1937 1938 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) { 1939 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 1940 if (!ClassDecl) return; 1941 if (ClassDecl->hasTrivialDestructor()) return; 1942 1943 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 1944 assert(D && D->isUsed() && "destructor not marked as used!"); 1945 PushDestructorCleanup(D, Addr); 1946 } 1947 1948 void 1949 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base, 1950 const CXXRecordDecl *NearestVBase, 1951 CharUnits OffsetFromNearestVBase, 1952 const CXXRecordDecl *VTableClass) { 1953 // Compute the address point. 1954 bool NeedsVirtualOffset; 1955 llvm::Value *VTableAddressPoint = 1956 CGM.getCXXABI().getVTableAddressPointInStructor( 1957 *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset); 1958 if (!VTableAddressPoint) 1959 return; 1960 1961 // Compute where to store the address point. 1962 llvm::Value *VirtualOffset = nullptr; 1963 CharUnits NonVirtualOffset = CharUnits::Zero(); 1964 1965 if (NeedsVirtualOffset) { 1966 // We need to use the virtual base offset offset because the virtual base 1967 // might have a different offset in the most derived class. 1968 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this, 1969 LoadCXXThis(), 1970 VTableClass, 1971 NearestVBase); 1972 NonVirtualOffset = OffsetFromNearestVBase; 1973 } else { 1974 // We can just use the base offset in the complete class. 1975 NonVirtualOffset = Base.getBaseOffset(); 1976 } 1977 1978 // Apply the offsets. 1979 llvm::Value *VTableField = LoadCXXThis(); 1980 1981 if (!NonVirtualOffset.isZero() || VirtualOffset) 1982 VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField, 1983 NonVirtualOffset, 1984 VirtualOffset); 1985 1986 // Finally, store the address point. Use the same LLVM types as the field to 1987 // support optimization. 1988 llvm::Type *VTablePtrTy = 1989 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 1990 ->getPointerTo() 1991 ->getPointerTo(); 1992 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 1993 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 1994 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 1995 CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr()); 1996 } 1997 1998 void 1999 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base, 2000 const CXXRecordDecl *NearestVBase, 2001 CharUnits OffsetFromNearestVBase, 2002 bool BaseIsNonVirtualPrimaryBase, 2003 const CXXRecordDecl *VTableClass, 2004 VisitedVirtualBasesSetTy& VBases) { 2005 // If this base is a non-virtual primary base the address point has already 2006 // been set. 2007 if (!BaseIsNonVirtualPrimaryBase) { 2008 // Initialize the vtable pointer for this base. 2009 InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase, 2010 VTableClass); 2011 } 2012 2013 const CXXRecordDecl *RD = Base.getBase(); 2014 2015 // Traverse bases. 2016 for (const auto &I : RD->bases()) { 2017 CXXRecordDecl *BaseDecl 2018 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2019 2020 // Ignore classes without a vtable. 2021 if (!BaseDecl->isDynamicClass()) 2022 continue; 2023 2024 CharUnits BaseOffset; 2025 CharUnits BaseOffsetFromNearestVBase; 2026 bool BaseDeclIsNonVirtualPrimaryBase; 2027 2028 if (I.isVirtual()) { 2029 // Check if we've visited this virtual base before. 2030 if (!VBases.insert(BaseDecl).second) 2031 continue; 2032 2033 const ASTRecordLayout &Layout = 2034 getContext().getASTRecordLayout(VTableClass); 2035 2036 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2037 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2038 BaseDeclIsNonVirtualPrimaryBase = false; 2039 } else { 2040 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2041 2042 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2043 BaseOffsetFromNearestVBase = 2044 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2045 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2046 } 2047 2048 InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset), 2049 I.isVirtual() ? BaseDecl : NearestVBase, 2050 BaseOffsetFromNearestVBase, 2051 BaseDeclIsNonVirtualPrimaryBase, 2052 VTableClass, VBases); 2053 } 2054 } 2055 2056 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2057 // Ignore classes without a vtable. 2058 if (!RD->isDynamicClass()) 2059 return; 2060 2061 // Initialize the vtable pointers for this class and all of its bases. 2062 VisitedVirtualBasesSetTy VBases; 2063 InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()), 2064 /*NearestVBase=*/nullptr, 2065 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2066 /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases); 2067 2068 if (RD->getNumVBases()) 2069 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2070 } 2071 2072 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This, 2073 llvm::Type *Ty) { 2074 llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo()); 2075 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2076 CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr()); 2077 return VTable; 2078 } 2079 2080 2081 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 2082 // quite what we want. 2083 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 2084 while (true) { 2085 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 2086 E = PE->getSubExpr(); 2087 continue; 2088 } 2089 2090 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 2091 if (CE->getCastKind() == CK_NoOp) { 2092 E = CE->getSubExpr(); 2093 continue; 2094 } 2095 } 2096 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 2097 if (UO->getOpcode() == UO_Extension) { 2098 E = UO->getSubExpr(); 2099 continue; 2100 } 2101 } 2102 return E; 2103 } 2104 } 2105 2106 bool 2107 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base, 2108 const CXXMethodDecl *MD) { 2109 // When building with -fapple-kext, all calls must go through the vtable since 2110 // the kernel linker can do runtime patching of vtables. 2111 if (getLangOpts().AppleKext) 2112 return false; 2113 2114 // If the most derived class is marked final, we know that no subclass can 2115 // override this member function and so we can devirtualize it. For example: 2116 // 2117 // struct A { virtual void f(); } 2118 // struct B final : A { }; 2119 // 2120 // void f(B *b) { 2121 // b->f(); 2122 // } 2123 // 2124 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 2125 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 2126 return true; 2127 2128 // If the member function is marked 'final', we know that it can't be 2129 // overridden and can therefore devirtualize it. 2130 if (MD->hasAttr<FinalAttr>()) 2131 return true; 2132 2133 // Similarly, if the class itself is marked 'final' it can't be overridden 2134 // and we can therefore devirtualize the member function call. 2135 if (MD->getParent()->hasAttr<FinalAttr>()) 2136 return true; 2137 2138 Base = skipNoOpCastsAndParens(Base); 2139 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 2140 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 2141 // This is a record decl. We know the type and can devirtualize it. 2142 return VD->getType()->isRecordType(); 2143 } 2144 2145 return false; 2146 } 2147 2148 // We can devirtualize calls on an object accessed by a class member access 2149 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2150 // a derived class object constructed in the same location. 2151 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 2152 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 2153 return VD->getType()->isRecordType(); 2154 2155 // We can always devirtualize calls on temporary object expressions. 2156 if (isa<CXXConstructExpr>(Base)) 2157 return true; 2158 2159 // And calls on bound temporaries. 2160 if (isa<CXXBindTemporaryExpr>(Base)) 2161 return true; 2162 2163 // Check if this is a call expr that returns a record type. 2164 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 2165 return CE->getCallReturnType()->isRecordType(); 2166 2167 // We can't devirtualize the call. 2168 return false; 2169 } 2170 2171 void CodeGenFunction::EmitForwardingCallToLambda( 2172 const CXXMethodDecl *callOperator, 2173 CallArgList &callArgs) { 2174 // Get the address of the call operator. 2175 const CGFunctionInfo &calleeFnInfo = 2176 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2177 llvm::Value *callee = 2178 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2179 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2180 2181 // Prepare the return slot. 2182 const FunctionProtoType *FPT = 2183 callOperator->getType()->castAs<FunctionProtoType>(); 2184 QualType resultType = FPT->getReturnType(); 2185 ReturnValueSlot returnSlot; 2186 if (!resultType->isVoidType() && 2187 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2188 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2189 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2190 2191 // We don't need to separately arrange the call arguments because 2192 // the call can't be variadic anyway --- it's impossible to forward 2193 // variadic arguments. 2194 2195 // Now emit our call. 2196 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, 2197 callArgs, callOperator); 2198 2199 // If necessary, copy the returned value into the slot. 2200 if (!resultType->isVoidType() && returnSlot.isNull()) 2201 EmitReturnOfRValue(RV, resultType); 2202 else 2203 EmitBranchThroughCleanup(ReturnBlock); 2204 } 2205 2206 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2207 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2208 const VarDecl *variable = BD->capture_begin()->getVariable(); 2209 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2210 2211 // Start building arguments for forwarding call 2212 CallArgList CallArgs; 2213 2214 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2215 llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false); 2216 CallArgs.add(RValue::get(ThisPtr), ThisType); 2217 2218 // Add the rest of the parameters. 2219 for (auto param : BD->params()) 2220 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2221 2222 assert(!Lambda->isGenericLambda() && 2223 "generic lambda interconversion to block not implemented"); 2224 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs); 2225 } 2226 2227 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 2228 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) { 2229 // FIXME: Making this work correctly is nasty because it requires either 2230 // cloning the body of the call operator or making the call operator forward. 2231 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2232 return; 2233 } 2234 2235 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody()); 2236 } 2237 2238 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2239 const CXXRecordDecl *Lambda = MD->getParent(); 2240 2241 // Start building arguments for forwarding call 2242 CallArgList CallArgs; 2243 2244 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2245 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2246 CallArgs.add(RValue::get(ThisPtr), ThisType); 2247 2248 // Add the rest of the parameters. 2249 for (auto Param : MD->params()) 2250 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2251 2252 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2253 // For a generic lambda, find the corresponding call operator specialization 2254 // to which the call to the static-invoker shall be forwarded. 2255 if (Lambda->isGenericLambda()) { 2256 assert(MD->isFunctionTemplateSpecialization()); 2257 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2258 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2259 void *InsertPos = nullptr; 2260 FunctionDecl *CorrespondingCallOpSpecialization = 2261 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2262 assert(CorrespondingCallOpSpecialization); 2263 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2264 } 2265 EmitForwardingCallToLambda(CallOp, CallArgs); 2266 } 2267 2268 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 2269 if (MD->isVariadic()) { 2270 // FIXME: Making this work correctly is nasty because it requires either 2271 // cloning the body of the call operator or making the call operator forward. 2272 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2273 return; 2274 } 2275 2276 EmitLambdaDelegatingInvokeBody(MD); 2277 } 2278