1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/EvaluatedExprVisitor.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
26 static CharUnits
27 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
28                                  const CXXRecordDecl *DerivedClass,
29                                  CastExpr::path_const_iterator Start,
30                                  CastExpr::path_const_iterator End) {
31   CharUnits Offset = CharUnits::Zero();
32 
33   const CXXRecordDecl *RD = DerivedClass;
34 
35   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
36     const CXXBaseSpecifier *Base = *I;
37     assert(!Base->isVirtual() && "Should not see virtual bases here!");
38 
39     // Get the layout.
40     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
41 
42     const CXXRecordDecl *BaseDecl =
43       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
44 
45     // Add the offset.
46     Offset += Layout.getBaseClassOffset(BaseDecl);
47 
48     RD = BaseDecl;
49   }
50 
51   return Offset;
52 }
53 
54 llvm::Constant *
55 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
56                                    CastExpr::path_const_iterator PathBegin,
57                                    CastExpr::path_const_iterator PathEnd) {
58   assert(PathBegin != PathEnd && "Base path should not be empty!");
59 
60   CharUnits Offset =
61     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
62                                      PathBegin, PathEnd);
63   if (Offset.isZero())
64     return 0;
65 
66   llvm::Type *PtrDiffTy =
67   Types.ConvertType(getContext().getPointerDiffType());
68 
69   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
70 }
71 
72 /// Gets the address of a direct base class within a complete object.
73 /// This should only be used for (1) non-virtual bases or (2) virtual bases
74 /// when the type is known to be complete (e.g. in complete destructors).
75 ///
76 /// The object pointed to by 'This' is assumed to be non-null.
77 llvm::Value *
78 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
79                                                    const CXXRecordDecl *Derived,
80                                                    const CXXRecordDecl *Base,
81                                                    bool BaseIsVirtual) {
82   // 'this' must be a pointer (in some address space) to Derived.
83   assert(This->getType()->isPointerTy() &&
84          cast<llvm::PointerType>(This->getType())->getElementType()
85            == ConvertType(Derived));
86 
87   // Compute the offset of the virtual base.
88   CharUnits Offset;
89   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
90   if (BaseIsVirtual)
91     Offset = Layout.getVBaseClassOffset(Base);
92   else
93     Offset = Layout.getBaseClassOffset(Base);
94 
95   // Shift and cast down to the base type.
96   // TODO: for complete types, this should be possible with a GEP.
97   llvm::Value *V = This;
98   if (Offset.isPositive()) {
99     V = Builder.CreateBitCast(V, Int8PtrTy);
100     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
101   }
102   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
103 
104   return V;
105 }
106 
107 static llvm::Value *
108 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ThisPtr,
109                                 CharUnits NonVirtual, llvm::Value *Virtual) {
110   llvm::Type *PtrDiffTy =
111     CGF.ConvertType(CGF.getContext().getPointerDiffType());
112 
113   llvm::Value *NonVirtualOffset = 0;
114   if (!NonVirtual.isZero())
115     NonVirtualOffset = llvm::ConstantInt::get(PtrDiffTy,
116                                               NonVirtual.getQuantity());
117 
118   llvm::Value *BaseOffset;
119   if (Virtual) {
120     if (NonVirtualOffset)
121       BaseOffset = CGF.Builder.CreateAdd(Virtual, NonVirtualOffset);
122     else
123       BaseOffset = Virtual;
124   } else
125     BaseOffset = NonVirtualOffset;
126 
127   // Apply the base offset.
128   ThisPtr = CGF.Builder.CreateBitCast(ThisPtr, CGF.Int8PtrTy);
129   ThisPtr = CGF.Builder.CreateGEP(ThisPtr, BaseOffset, "add.ptr");
130 
131   return ThisPtr;
132 }
133 
134 llvm::Value *
135 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
136                                        const CXXRecordDecl *Derived,
137                                        CastExpr::path_const_iterator PathBegin,
138                                        CastExpr::path_const_iterator PathEnd,
139                                        bool NullCheckValue) {
140   assert(PathBegin != PathEnd && "Base path should not be empty!");
141 
142   CastExpr::path_const_iterator Start = PathBegin;
143   const CXXRecordDecl *VBase = 0;
144 
145   // Get the virtual base.
146   if ((*Start)->isVirtual()) {
147     VBase =
148       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
149     ++Start;
150   }
151 
152   CharUnits NonVirtualOffset =
153     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
154                                      Start, PathEnd);
155 
156   // Get the base pointer type.
157   llvm::Type *BasePtrTy =
158     ConvertType((PathEnd[-1])->getType())->getPointerTo();
159 
160   if (NonVirtualOffset.isZero() && !VBase) {
161     // Just cast back.
162     return Builder.CreateBitCast(Value, BasePtrTy);
163   }
164 
165   llvm::BasicBlock *CastNull = 0;
166   llvm::BasicBlock *CastNotNull = 0;
167   llvm::BasicBlock *CastEnd = 0;
168 
169   if (NullCheckValue) {
170     CastNull = createBasicBlock("cast.null");
171     CastNotNull = createBasicBlock("cast.notnull");
172     CastEnd = createBasicBlock("cast.end");
173 
174     llvm::Value *IsNull = Builder.CreateIsNull(Value);
175     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
176     EmitBlock(CastNotNull);
177   }
178 
179   llvm::Value *VirtualOffset = 0;
180 
181   if (VBase) {
182     if (Derived->hasAttr<FinalAttr>()) {
183       VirtualOffset = 0;
184 
185       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
186 
187       CharUnits VBaseOffset = Layout.getVBaseClassOffset(VBase);
188       NonVirtualOffset += VBaseOffset;
189     } else
190       VirtualOffset = GetVirtualBaseClassOffset(Value, Derived, VBase);
191   }
192 
193   // Apply the offsets.
194   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
195                                           NonVirtualOffset,
196                                           VirtualOffset);
197 
198   // Cast back.
199   Value = Builder.CreateBitCast(Value, BasePtrTy);
200 
201   if (NullCheckValue) {
202     Builder.CreateBr(CastEnd);
203     EmitBlock(CastNull);
204     Builder.CreateBr(CastEnd);
205     EmitBlock(CastEnd);
206 
207     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
208     PHI->addIncoming(Value, CastNotNull);
209     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
210                      CastNull);
211     Value = PHI;
212   }
213 
214   return Value;
215 }
216 
217 llvm::Value *
218 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
219                                           const CXXRecordDecl *Derived,
220                                         CastExpr::path_const_iterator PathBegin,
221                                           CastExpr::path_const_iterator PathEnd,
222                                           bool NullCheckValue) {
223   assert(PathBegin != PathEnd && "Base path should not be empty!");
224 
225   QualType DerivedTy =
226     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
227   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
228 
229   llvm::Value *NonVirtualOffset =
230     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
231 
232   if (!NonVirtualOffset) {
233     // No offset, we can just cast back.
234     return Builder.CreateBitCast(Value, DerivedPtrTy);
235   }
236 
237   llvm::BasicBlock *CastNull = 0;
238   llvm::BasicBlock *CastNotNull = 0;
239   llvm::BasicBlock *CastEnd = 0;
240 
241   if (NullCheckValue) {
242     CastNull = createBasicBlock("cast.null");
243     CastNotNull = createBasicBlock("cast.notnull");
244     CastEnd = createBasicBlock("cast.end");
245 
246     llvm::Value *IsNull = Builder.CreateIsNull(Value);
247     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
248     EmitBlock(CastNotNull);
249   }
250 
251   // Apply the offset.
252   Value = Builder.CreateBitCast(Value, Int8PtrTy);
253   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
254                             "sub.ptr");
255 
256   // Just cast.
257   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
258 
259   if (NullCheckValue) {
260     Builder.CreateBr(CastEnd);
261     EmitBlock(CastNull);
262     Builder.CreateBr(CastEnd);
263     EmitBlock(CastEnd);
264 
265     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
266     PHI->addIncoming(Value, CastNotNull);
267     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
268                      CastNull);
269     Value = PHI;
270   }
271 
272   return Value;
273 }
274 
275 /// GetVTTParameter - Return the VTT parameter that should be passed to a
276 /// base constructor/destructor with virtual bases.
277 static llvm::Value *GetVTTParameter(CodeGenFunction &CGF, GlobalDecl GD,
278                                     bool ForVirtualBase) {
279   if (!CodeGenVTables::needsVTTParameter(GD)) {
280     // This constructor/destructor does not need a VTT parameter.
281     return 0;
282   }
283 
284   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CGF.CurFuncDecl)->getParent();
285   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
286 
287   llvm::Value *VTT;
288 
289   uint64_t SubVTTIndex;
290 
291   // If the record matches the base, this is the complete ctor/dtor
292   // variant calling the base variant in a class with virtual bases.
293   if (RD == Base) {
294     assert(!CodeGenVTables::needsVTTParameter(CGF.CurGD) &&
295            "doing no-op VTT offset in base dtor/ctor?");
296     assert(!ForVirtualBase && "Can't have same class as virtual base!");
297     SubVTTIndex = 0;
298   } else {
299     const ASTRecordLayout &Layout =
300       CGF.getContext().getASTRecordLayout(RD);
301     CharUnits BaseOffset = ForVirtualBase ?
302       Layout.getVBaseClassOffset(Base) :
303       Layout.getBaseClassOffset(Base);
304 
305     SubVTTIndex =
306       CGF.CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
307     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
308   }
309 
310   if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
311     // A VTT parameter was passed to the constructor, use it.
312     VTT = CGF.LoadCXXVTT();
313     VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
314   } else {
315     // We're the complete constructor, so get the VTT by name.
316     VTT = CGF.CGM.getVTables().GetAddrOfVTT(RD);
317     VTT = CGF.Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
318   }
319 
320   return VTT;
321 }
322 
323 namespace {
324   /// Call the destructor for a direct base class.
325   struct CallBaseDtor : EHScopeStack::Cleanup {
326     const CXXRecordDecl *BaseClass;
327     bool BaseIsVirtual;
328     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
329       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
330 
331     void Emit(CodeGenFunction &CGF, Flags flags) {
332       const CXXRecordDecl *DerivedClass =
333         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
334 
335       const CXXDestructorDecl *D = BaseClass->getDestructor();
336       llvm::Value *Addr =
337         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
338                                                   DerivedClass, BaseClass,
339                                                   BaseIsVirtual);
340       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, Addr);
341     }
342   };
343 
344   /// A visitor which checks whether an initializer uses 'this' in a
345   /// way which requires the vtable to be properly set.
346   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
347     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
348 
349     bool UsesThis;
350 
351     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
352 
353     // Black-list all explicit and implicit references to 'this'.
354     //
355     // Do we need to worry about external references to 'this' derived
356     // from arbitrary code?  If so, then anything which runs arbitrary
357     // external code might potentially access the vtable.
358     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
359   };
360 }
361 
362 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
363   DynamicThisUseChecker Checker(C);
364   Checker.Visit(const_cast<Expr*>(Init));
365   return Checker.UsesThis;
366 }
367 
368 static void EmitBaseInitializer(CodeGenFunction &CGF,
369                                 const CXXRecordDecl *ClassDecl,
370                                 CXXCtorInitializer *BaseInit,
371                                 CXXCtorType CtorType) {
372   assert(BaseInit->isBaseInitializer() &&
373          "Must have base initializer!");
374 
375   llvm::Value *ThisPtr = CGF.LoadCXXThis();
376 
377   const Type *BaseType = BaseInit->getBaseClass();
378   CXXRecordDecl *BaseClassDecl =
379     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
380 
381   bool isBaseVirtual = BaseInit->isBaseVirtual();
382 
383   // The base constructor doesn't construct virtual bases.
384   if (CtorType == Ctor_Base && isBaseVirtual)
385     return;
386 
387   // If the initializer for the base (other than the constructor
388   // itself) accesses 'this' in any way, we need to initialize the
389   // vtables.
390   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
391     CGF.InitializeVTablePointers(ClassDecl);
392 
393   // We can pretend to be a complete class because it only matters for
394   // virtual bases, and we only do virtual bases for complete ctors.
395   llvm::Value *V =
396     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
397                                               BaseClassDecl,
398                                               isBaseVirtual);
399   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
400   AggValueSlot AggSlot =
401     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
402                           AggValueSlot::IsDestructed,
403                           AggValueSlot::DoesNotNeedGCBarriers,
404                           AggValueSlot::IsNotAliased);
405 
406   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
407 
408   if (CGF.CGM.getLangOptions().Exceptions &&
409       !BaseClassDecl->hasTrivialDestructor())
410     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
411                                           isBaseVirtual);
412 }
413 
414 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
415                                      LValue LHS,
416                                      Expr *Init,
417                                      llvm::Value *ArrayIndexVar,
418                                      QualType T,
419                                      ArrayRef<VarDecl *> ArrayIndexes,
420                                      unsigned Index) {
421   if (Index == ArrayIndexes.size()) {
422     LValue LV = LHS;
423     { // Scope for Cleanups.
424       CodeGenFunction::RunCleanupsScope Cleanups(CGF);
425 
426       if (ArrayIndexVar) {
427         // If we have an array index variable, load it and use it as an offset.
428         // Then, increment the value.
429         llvm::Value *Dest = LHS.getAddress();
430         llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
431         Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
432         llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
433         Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
434         CGF.Builder.CreateStore(Next, ArrayIndexVar);
435 
436         // Update the LValue.
437         LV.setAddress(Dest);
438         CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
439         LV.setAlignment(std::min(Align, LV.getAlignment()));
440       }
441 
442       if (!CGF.hasAggregateLLVMType(T)) {
443         CGF.EmitScalarInit(Init, /*decl*/ 0, LV, false);
444       } else if (T->isAnyComplexType()) {
445         CGF.EmitComplexExprIntoAddr(Init, LV.getAddress(),
446                                     LV.isVolatileQualified());
447       } else {
448         AggValueSlot Slot =
449           AggValueSlot::forLValue(LV,
450                                   AggValueSlot::IsDestructed,
451                                   AggValueSlot::DoesNotNeedGCBarriers,
452                                   AggValueSlot::IsNotAliased);
453 
454         CGF.EmitAggExpr(Init, Slot);
455       }
456     }
457 
458     // Now, outside of the initializer cleanup scope, destroy the backing array
459     // for a std::initializer_list member.
460     CGF.MaybeEmitStdInitializerListCleanup(LV.getAddress(), Init);
461 
462     return;
463   }
464 
465   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
466   assert(Array && "Array initialization without the array type?");
467   llvm::Value *IndexVar
468     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
469   assert(IndexVar && "Array index variable not loaded");
470 
471   // Initialize this index variable to zero.
472   llvm::Value* Zero
473     = llvm::Constant::getNullValue(
474                               CGF.ConvertType(CGF.getContext().getSizeType()));
475   CGF.Builder.CreateStore(Zero, IndexVar);
476 
477   // Start the loop with a block that tests the condition.
478   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
479   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
480 
481   CGF.EmitBlock(CondBlock);
482 
483   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
484   // Generate: if (loop-index < number-of-elements) fall to the loop body,
485   // otherwise, go to the block after the for-loop.
486   uint64_t NumElements = Array->getSize().getZExtValue();
487   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
488   llvm::Value *NumElementsPtr =
489     llvm::ConstantInt::get(Counter->getType(), NumElements);
490   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
491                                                   "isless");
492 
493   // If the condition is true, execute the body.
494   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
495 
496   CGF.EmitBlock(ForBody);
497   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
498 
499   {
500     CodeGenFunction::RunCleanupsScope Cleanups(CGF);
501 
502     // Inside the loop body recurse to emit the inner loop or, eventually, the
503     // constructor call.
504     EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
505                              Array->getElementType(), ArrayIndexes, Index + 1);
506   }
507 
508   CGF.EmitBlock(ContinueBlock);
509 
510   // Emit the increment of the loop counter.
511   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
512   Counter = CGF.Builder.CreateLoad(IndexVar);
513   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
514   CGF.Builder.CreateStore(NextVal, IndexVar);
515 
516   // Finally, branch back up to the condition for the next iteration.
517   CGF.EmitBranch(CondBlock);
518 
519   // Emit the fall-through block.
520   CGF.EmitBlock(AfterFor, true);
521 }
522 
523 namespace {
524   struct CallMemberDtor : EHScopeStack::Cleanup {
525     llvm::Value *V;
526     CXXDestructorDecl *Dtor;
527 
528     CallMemberDtor(llvm::Value *V, CXXDestructorDecl *Dtor)
529       : V(V), Dtor(Dtor) {}
530 
531     void Emit(CodeGenFunction &CGF, Flags flags) {
532       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
533                                 V);
534     }
535   };
536 }
537 
538 static bool hasTrivialCopyOrMoveConstructor(const CXXRecordDecl *Record,
539                                             bool Moving) {
540   return Moving ? Record->hasTrivialMoveConstructor() :
541                   Record->hasTrivialCopyConstructor();
542 }
543 
544 static void EmitMemberInitializer(CodeGenFunction &CGF,
545                                   const CXXRecordDecl *ClassDecl,
546                                   CXXCtorInitializer *MemberInit,
547                                   const CXXConstructorDecl *Constructor,
548                                   FunctionArgList &Args) {
549   assert(MemberInit->isAnyMemberInitializer() &&
550          "Must have member initializer!");
551   assert(MemberInit->getInit() && "Must have initializer!");
552 
553   // non-static data member initializers.
554   FieldDecl *Field = MemberInit->getAnyMember();
555   QualType FieldType = Field->getType();
556 
557   llvm::Value *ThisPtr = CGF.LoadCXXThis();
558   LValue LHS;
559 
560   // If we are initializing an anonymous union field, drill down to the field.
561   if (MemberInit->isIndirectMemberInitializer()) {
562     LHS = CGF.EmitLValueForAnonRecordField(ThisPtr,
563                                            MemberInit->getIndirectMember(), 0);
564     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
565   } else {
566     LHS = CGF.EmitLValueForFieldInitialization(ThisPtr, Field, 0);
567   }
568 
569   // Special case: if we are in a copy or move constructor, and we are copying
570   // an array of PODs or classes with trivial copy constructors, ignore the
571   // AST and perform the copy we know is equivalent.
572   // FIXME: This is hacky at best... if we had a bit more explicit information
573   // in the AST, we could generalize it more easily.
574   const ConstantArrayType *Array
575     = CGF.getContext().getAsConstantArrayType(FieldType);
576   if (Array && Constructor->isImplicitlyDefined() &&
577       Constructor->isCopyOrMoveConstructor()) {
578     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
579     const CXXRecordDecl *Record = BaseElementTy->getAsCXXRecordDecl();
580     if (BaseElementTy.isPODType(CGF.getContext()) ||
581         (Record && hasTrivialCopyOrMoveConstructor(Record,
582                        Constructor->isMoveConstructor()))) {
583       // Find the source pointer. We knows it's the last argument because
584       // we know we're in a copy constructor.
585       unsigned SrcArgIndex = Args.size() - 1;
586       llvm::Value *SrcPtr
587         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
588       LValue Src = CGF.EmitLValueForFieldInitialization(SrcPtr, Field, 0);
589 
590       // Copy the aggregate.
591       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
592                             LHS.isVolatileQualified());
593       return;
594     }
595   }
596 
597   ArrayRef<VarDecl *> ArrayIndexes;
598   if (MemberInit->getNumArrayIndices())
599     ArrayIndexes = MemberInit->getArrayIndexes();
600   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
601 }
602 
603 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
604                                               LValue LHS, Expr *Init,
605                                              ArrayRef<VarDecl *> ArrayIndexes) {
606   QualType FieldType = Field->getType();
607   if (!hasAggregateLLVMType(FieldType)) {
608     if (LHS.isSimple()) {
609       EmitExprAsInit(Init, Field, LHS, false);
610     } else {
611       RValue RHS = RValue::get(EmitScalarExpr(Init));
612       EmitStoreThroughLValue(RHS, LHS);
613     }
614   } else if (FieldType->isAnyComplexType()) {
615     EmitComplexExprIntoAddr(Init, LHS.getAddress(), LHS.isVolatileQualified());
616   } else {
617     llvm::Value *ArrayIndexVar = 0;
618     if (ArrayIndexes.size()) {
619       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
620 
621       // The LHS is a pointer to the first object we'll be constructing, as
622       // a flat array.
623       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
624       llvm::Type *BasePtr = ConvertType(BaseElementTy);
625       BasePtr = llvm::PointerType::getUnqual(BasePtr);
626       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
627                                                        BasePtr);
628       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
629 
630       // Create an array index that will be used to walk over all of the
631       // objects we're constructing.
632       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
633       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
634       Builder.CreateStore(Zero, ArrayIndexVar);
635 
636 
637       // Emit the block variables for the array indices, if any.
638       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
639         EmitAutoVarDecl(*ArrayIndexes[I]);
640     }
641 
642     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
643                              ArrayIndexes, 0);
644 
645     if (!CGM.getLangOptions().Exceptions)
646       return;
647 
648     // FIXME: If we have an array of classes w/ non-trivial destructors,
649     // we need to destroy in reverse order of construction along the exception
650     // path.
651     const RecordType *RT = FieldType->getAs<RecordType>();
652     if (!RT)
653       return;
654 
655     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
656     if (!RD->hasTrivialDestructor())
657       EHStack.pushCleanup<CallMemberDtor>(EHCleanup, LHS.getAddress(),
658                                           RD->getDestructor());
659   }
660 }
661 
662 /// Checks whether the given constructor is a valid subject for the
663 /// complete-to-base constructor delegation optimization, i.e.
664 /// emitting the complete constructor as a simple call to the base
665 /// constructor.
666 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
667 
668   // Currently we disable the optimization for classes with virtual
669   // bases because (1) the addresses of parameter variables need to be
670   // consistent across all initializers but (2) the delegate function
671   // call necessarily creates a second copy of the parameter variable.
672   //
673   // The limiting example (purely theoretical AFAIK):
674   //   struct A { A(int &c) { c++; } };
675   //   struct B : virtual A {
676   //     B(int count) : A(count) { printf("%d\n", count); }
677   //   };
678   // ...although even this example could in principle be emitted as a
679   // delegation since the address of the parameter doesn't escape.
680   if (Ctor->getParent()->getNumVBases()) {
681     // TODO: white-list trivial vbase initializers.  This case wouldn't
682     // be subject to the restrictions below.
683 
684     // TODO: white-list cases where:
685     //  - there are no non-reference parameters to the constructor
686     //  - the initializers don't access any non-reference parameters
687     //  - the initializers don't take the address of non-reference
688     //    parameters
689     //  - etc.
690     // If we ever add any of the above cases, remember that:
691     //  - function-try-blocks will always blacklist this optimization
692     //  - we need to perform the constructor prologue and cleanup in
693     //    EmitConstructorBody.
694 
695     return false;
696   }
697 
698   // We also disable the optimization for variadic functions because
699   // it's impossible to "re-pass" varargs.
700   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
701     return false;
702 
703   // FIXME: Decide if we can do a delegation of a delegating constructor.
704   if (Ctor->isDelegatingConstructor())
705     return false;
706 
707   return true;
708 }
709 
710 /// EmitConstructorBody - Emits the body of the current constructor.
711 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
712   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
713   CXXCtorType CtorType = CurGD.getCtorType();
714 
715   // Before we go any further, try the complete->base constructor
716   // delegation optimization.
717   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor)) {
718     if (CGDebugInfo *DI = getDebugInfo())
719       DI->EmitLocation(Builder, Ctor->getLocEnd());
720     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args);
721     return;
722   }
723 
724   Stmt *Body = Ctor->getBody();
725 
726   // Enter the function-try-block before the constructor prologue if
727   // applicable.
728   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
729   if (IsTryBody)
730     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
731 
732   EHScopeStack::stable_iterator CleanupDepth = EHStack.stable_begin();
733 
734   // Emit the constructor prologue, i.e. the base and member
735   // initializers.
736   EmitCtorPrologue(Ctor, CtorType, Args);
737 
738   // Emit the body of the statement.
739   if (IsTryBody)
740     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
741   else if (Body)
742     EmitStmt(Body);
743 
744   // Emit any cleanup blocks associated with the member or base
745   // initializers, which includes (along the exceptional path) the
746   // destructors for those members and bases that were fully
747   // constructed.
748   PopCleanupBlocks(CleanupDepth);
749 
750   if (IsTryBody)
751     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
752 }
753 
754 /// EmitCtorPrologue - This routine generates necessary code to initialize
755 /// base classes and non-static data members belonging to this constructor.
756 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
757                                        CXXCtorType CtorType,
758                                        FunctionArgList &Args) {
759   if (CD->isDelegatingConstructor())
760     return EmitDelegatingCXXConstructorCall(CD, Args);
761 
762   const CXXRecordDecl *ClassDecl = CD->getParent();
763 
764   SmallVector<CXXCtorInitializer *, 8> MemberInitializers;
765 
766   for (CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
767        E = CD->init_end();
768        B != E; ++B) {
769     CXXCtorInitializer *Member = (*B);
770 
771     if (Member->isBaseInitializer()) {
772       EmitBaseInitializer(*this, ClassDecl, Member, CtorType);
773     } else {
774       assert(Member->isAnyMemberInitializer() &&
775             "Delegating initializer on non-delegating constructor");
776       MemberInitializers.push_back(Member);
777     }
778   }
779 
780   InitializeVTablePointers(ClassDecl);
781 
782   for (unsigned I = 0, E = MemberInitializers.size(); I != E; ++I)
783     EmitMemberInitializer(*this, ClassDecl, MemberInitializers[I], CD, Args);
784 }
785 
786 static bool
787 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
788 
789 static bool
790 HasTrivialDestructorBody(ASTContext &Context,
791                          const CXXRecordDecl *BaseClassDecl,
792                          const CXXRecordDecl *MostDerivedClassDecl)
793 {
794   // If the destructor is trivial we don't have to check anything else.
795   if (BaseClassDecl->hasTrivialDestructor())
796     return true;
797 
798   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
799     return false;
800 
801   // Check fields.
802   for (CXXRecordDecl::field_iterator I = BaseClassDecl->field_begin(),
803        E = BaseClassDecl->field_end(); I != E; ++I) {
804     const FieldDecl *Field = *I;
805 
806     if (!FieldHasTrivialDestructorBody(Context, Field))
807       return false;
808   }
809 
810   // Check non-virtual bases.
811   for (CXXRecordDecl::base_class_const_iterator I =
812        BaseClassDecl->bases_begin(), E = BaseClassDecl->bases_end();
813        I != E; ++I) {
814     if (I->isVirtual())
815       continue;
816 
817     const CXXRecordDecl *NonVirtualBase =
818       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
819     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
820                                   MostDerivedClassDecl))
821       return false;
822   }
823 
824   if (BaseClassDecl == MostDerivedClassDecl) {
825     // Check virtual bases.
826     for (CXXRecordDecl::base_class_const_iterator I =
827          BaseClassDecl->vbases_begin(), E = BaseClassDecl->vbases_end();
828          I != E; ++I) {
829       const CXXRecordDecl *VirtualBase =
830         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
831       if (!HasTrivialDestructorBody(Context, VirtualBase,
832                                     MostDerivedClassDecl))
833         return false;
834     }
835   }
836 
837   return true;
838 }
839 
840 static bool
841 FieldHasTrivialDestructorBody(ASTContext &Context,
842                               const FieldDecl *Field)
843 {
844   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
845 
846   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
847   if (!RT)
848     return true;
849 
850   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
851   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
852 }
853 
854 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
855 /// any vtable pointers before calling this destructor.
856 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
857                                                const CXXDestructorDecl *Dtor) {
858   if (!Dtor->hasTrivialBody())
859     return false;
860 
861   // Check the fields.
862   const CXXRecordDecl *ClassDecl = Dtor->getParent();
863   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
864        E = ClassDecl->field_end(); I != E; ++I) {
865     const FieldDecl *Field = *I;
866 
867     if (!FieldHasTrivialDestructorBody(Context, Field))
868       return false;
869   }
870 
871   return true;
872 }
873 
874 /// EmitDestructorBody - Emits the body of the current destructor.
875 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
876   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
877   CXXDtorType DtorType = CurGD.getDtorType();
878 
879   // The call to operator delete in a deleting destructor happens
880   // outside of the function-try-block, which means it's always
881   // possible to delegate the destructor body to the complete
882   // destructor.  Do so.
883   if (DtorType == Dtor_Deleting) {
884     EnterDtorCleanups(Dtor, Dtor_Deleting);
885     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
886                           LoadCXXThis());
887     PopCleanupBlock();
888     return;
889   }
890 
891   Stmt *Body = Dtor->getBody();
892 
893   // If the body is a function-try-block, enter the try before
894   // anything else.
895   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
896   if (isTryBody)
897     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
898 
899   // Enter the epilogue cleanups.
900   RunCleanupsScope DtorEpilogue(*this);
901 
902   // If this is the complete variant, just invoke the base variant;
903   // the epilogue will destruct the virtual bases.  But we can't do
904   // this optimization if the body is a function-try-block, because
905   // we'd introduce *two* handler blocks.
906   switch (DtorType) {
907   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
908 
909   case Dtor_Complete:
910     // Enter the cleanup scopes for virtual bases.
911     EnterDtorCleanups(Dtor, Dtor_Complete);
912 
913     if (!isTryBody) {
914       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
915                             LoadCXXThis());
916       break;
917     }
918     // Fallthrough: act like we're in the base variant.
919 
920   case Dtor_Base:
921     // Enter the cleanup scopes for fields and non-virtual bases.
922     EnterDtorCleanups(Dtor, Dtor_Base);
923 
924     // Initialize the vtable pointers before entering the body.
925     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
926         InitializeVTablePointers(Dtor->getParent());
927 
928     if (isTryBody)
929       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
930     else if (Body)
931       EmitStmt(Body);
932     else {
933       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
934       // nothing to do besides what's in the epilogue
935     }
936     // -fapple-kext must inline any call to this dtor into
937     // the caller's body.
938     if (getContext().getLangOptions().AppleKext)
939       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
940     break;
941   }
942 
943   // Jump out through the epilogue cleanups.
944   DtorEpilogue.ForceCleanup();
945 
946   // Exit the try if applicable.
947   if (isTryBody)
948     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
949 }
950 
951 namespace {
952   /// Call the operator delete associated with the current destructor.
953   struct CallDtorDelete : EHScopeStack::Cleanup {
954     CallDtorDelete() {}
955 
956     void Emit(CodeGenFunction &CGF, Flags flags) {
957       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
958       const CXXRecordDecl *ClassDecl = Dtor->getParent();
959       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
960                          CGF.getContext().getTagDeclType(ClassDecl));
961     }
962   };
963 
964   class DestroyField  : public EHScopeStack::Cleanup {
965     const FieldDecl *field;
966     CodeGenFunction::Destroyer *destroyer;
967     bool useEHCleanupForArray;
968 
969   public:
970     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
971                  bool useEHCleanupForArray)
972       : field(field), destroyer(destroyer),
973         useEHCleanupForArray(useEHCleanupForArray) {}
974 
975     void Emit(CodeGenFunction &CGF, Flags flags) {
976       // Find the address of the field.
977       llvm::Value *thisValue = CGF.LoadCXXThis();
978       LValue LV = CGF.EmitLValueForField(thisValue, field, /*CVRQualifiers=*/0);
979       assert(LV.isSimple());
980 
981       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
982                       flags.isForNormalCleanup() && useEHCleanupForArray);
983     }
984   };
985 }
986 
987 /// EmitDtorEpilogue - Emit all code that comes at the end of class's
988 /// destructor. This is to call destructors on members and base classes
989 /// in reverse order of their construction.
990 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
991                                         CXXDtorType DtorType) {
992   assert(!DD->isTrivial() &&
993          "Should not emit dtor epilogue for trivial dtor!");
994 
995   // The deleting-destructor phase just needs to call the appropriate
996   // operator delete that Sema picked up.
997   if (DtorType == Dtor_Deleting) {
998     assert(DD->getOperatorDelete() &&
999            "operator delete missing - EmitDtorEpilogue");
1000     EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1001     return;
1002   }
1003 
1004   const CXXRecordDecl *ClassDecl = DD->getParent();
1005 
1006   // Unions have no bases and do not call field destructors.
1007   if (ClassDecl->isUnion())
1008     return;
1009 
1010   // The complete-destructor phase just destructs all the virtual bases.
1011   if (DtorType == Dtor_Complete) {
1012 
1013     // We push them in the forward order so that they'll be popped in
1014     // the reverse order.
1015     for (CXXRecordDecl::base_class_const_iterator I =
1016            ClassDecl->vbases_begin(), E = ClassDecl->vbases_end();
1017               I != E; ++I) {
1018       const CXXBaseSpecifier &Base = *I;
1019       CXXRecordDecl *BaseClassDecl
1020         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1021 
1022       // Ignore trivial destructors.
1023       if (BaseClassDecl->hasTrivialDestructor())
1024         continue;
1025 
1026       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1027                                         BaseClassDecl,
1028                                         /*BaseIsVirtual*/ true);
1029     }
1030 
1031     return;
1032   }
1033 
1034   assert(DtorType == Dtor_Base);
1035 
1036   // Destroy non-virtual bases.
1037   for (CXXRecordDecl::base_class_const_iterator I =
1038         ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) {
1039     const CXXBaseSpecifier &Base = *I;
1040 
1041     // Ignore virtual bases.
1042     if (Base.isVirtual())
1043       continue;
1044 
1045     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1046 
1047     // Ignore trivial destructors.
1048     if (BaseClassDecl->hasTrivialDestructor())
1049       continue;
1050 
1051     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1052                                       BaseClassDecl,
1053                                       /*BaseIsVirtual*/ false);
1054   }
1055 
1056   // Destroy direct fields.
1057   SmallVector<const FieldDecl *, 16> FieldDecls;
1058   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1059        E = ClassDecl->field_end(); I != E; ++I) {
1060     const FieldDecl *field = *I;
1061     QualType type = field->getType();
1062     QualType::DestructionKind dtorKind = type.isDestructedType();
1063     if (!dtorKind) continue;
1064 
1065     // Anonymous union members do not have their destructors called.
1066     const RecordType *RT = type->getAsUnionType();
1067     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1068 
1069     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1070     EHStack.pushCleanup<DestroyField>(cleanupKind, field,
1071                                       getDestroyer(dtorKind),
1072                                       cleanupKind & EHCleanup);
1073   }
1074 }
1075 
1076 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1077 /// constructor for each of several members of an array.
1078 ///
1079 /// \param ctor the constructor to call for each element
1080 /// \param argBegin,argEnd the arguments to evaluate and pass to the
1081 ///   constructor
1082 /// \param arrayType the type of the array to initialize
1083 /// \param arrayBegin an arrayType*
1084 /// \param zeroInitialize true if each element should be
1085 ///   zero-initialized before it is constructed
1086 void
1087 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1088                                             const ConstantArrayType *arrayType,
1089                                             llvm::Value *arrayBegin,
1090                                           CallExpr::const_arg_iterator argBegin,
1091                                             CallExpr::const_arg_iterator argEnd,
1092                                             bool zeroInitialize) {
1093   QualType elementType;
1094   llvm::Value *numElements =
1095     emitArrayLength(arrayType, elementType, arrayBegin);
1096 
1097   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin,
1098                              argBegin, argEnd, zeroInitialize);
1099 }
1100 
1101 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1102 /// constructor for each of several members of an array.
1103 ///
1104 /// \param ctor the constructor to call for each element
1105 /// \param numElements the number of elements in the array;
1106 ///   may be zero
1107 /// \param argBegin,argEnd the arguments to evaluate and pass to the
1108 ///   constructor
1109 /// \param arrayBegin a T*, where T is the type constructed by ctor
1110 /// \param zeroInitialize true if each element should be
1111 ///   zero-initialized before it is constructed
1112 void
1113 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1114                                             llvm::Value *numElements,
1115                                             llvm::Value *arrayBegin,
1116                                          CallExpr::const_arg_iterator argBegin,
1117                                            CallExpr::const_arg_iterator argEnd,
1118                                             bool zeroInitialize) {
1119 
1120   // It's legal for numElements to be zero.  This can happen both
1121   // dynamically, because x can be zero in 'new A[x]', and statically,
1122   // because of GCC extensions that permit zero-length arrays.  There
1123   // are probably legitimate places where we could assume that this
1124   // doesn't happen, but it's not clear that it's worth it.
1125   llvm::BranchInst *zeroCheckBranch = 0;
1126 
1127   // Optimize for a constant count.
1128   llvm::ConstantInt *constantCount
1129     = dyn_cast<llvm::ConstantInt>(numElements);
1130   if (constantCount) {
1131     // Just skip out if the constant count is zero.
1132     if (constantCount->isZero()) return;
1133 
1134   // Otherwise, emit the check.
1135   } else {
1136     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1137     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1138     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1139     EmitBlock(loopBB);
1140   }
1141 
1142   // Find the end of the array.
1143   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1144                                                     "arrayctor.end");
1145 
1146   // Enter the loop, setting up a phi for the current location to initialize.
1147   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1148   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1149   EmitBlock(loopBB);
1150   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1151                                          "arrayctor.cur");
1152   cur->addIncoming(arrayBegin, entryBB);
1153 
1154   // Inside the loop body, emit the constructor call on the array element.
1155 
1156   QualType type = getContext().getTypeDeclType(ctor->getParent());
1157 
1158   // Zero initialize the storage, if requested.
1159   if (zeroInitialize)
1160     EmitNullInitialization(cur, type);
1161 
1162   // C++ [class.temporary]p4:
1163   // There are two contexts in which temporaries are destroyed at a different
1164   // point than the end of the full-expression. The first context is when a
1165   // default constructor is called to initialize an element of an array.
1166   // If the constructor has one or more default arguments, the destruction of
1167   // every temporary created in a default argument expression is sequenced
1168   // before the construction of the next array element, if any.
1169 
1170   {
1171     RunCleanupsScope Scope(*this);
1172 
1173     // Evaluate the constructor and its arguments in a regular
1174     // partial-destroy cleanup.
1175     if (getLangOptions().Exceptions &&
1176         !ctor->getParent()->hasTrivialDestructor()) {
1177       Destroyer *destroyer = destroyCXXObject;
1178       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1179     }
1180 
1181     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false,
1182                            cur, argBegin, argEnd);
1183   }
1184 
1185   // Go to the next element.
1186   llvm::Value *next =
1187     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1188                               "arrayctor.next");
1189   cur->addIncoming(next, Builder.GetInsertBlock());
1190 
1191   // Check whether that's the end of the loop.
1192   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1193   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1194   Builder.CreateCondBr(done, contBB, loopBB);
1195 
1196   // Patch the earlier check to skip over the loop.
1197   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1198 
1199   EmitBlock(contBB);
1200 }
1201 
1202 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1203                                        llvm::Value *addr,
1204                                        QualType type) {
1205   const RecordType *rtype = type->castAs<RecordType>();
1206   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1207   const CXXDestructorDecl *dtor = record->getDestructor();
1208   assert(!dtor->isTrivial());
1209   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1210                             addr);
1211 }
1212 
1213 void
1214 CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1215                                         CXXCtorType Type, bool ForVirtualBase,
1216                                         llvm::Value *This,
1217                                         CallExpr::const_arg_iterator ArgBeg,
1218                                         CallExpr::const_arg_iterator ArgEnd) {
1219 
1220   CGDebugInfo *DI = getDebugInfo();
1221   if (DI && CGM.getCodeGenOpts().LimitDebugInfo) {
1222     // If debug info for this class has not been emitted then this is the
1223     // right time to do so.
1224     const CXXRecordDecl *Parent = D->getParent();
1225     DI->getOrCreateRecordType(CGM.getContext().getTypeDeclType(Parent),
1226                               Parent->getLocation());
1227   }
1228 
1229   if (D->isTrivial()) {
1230     if (ArgBeg == ArgEnd) {
1231       // Trivial default constructor, no codegen required.
1232       assert(D->isDefaultConstructor() &&
1233              "trivial 0-arg ctor not a default ctor");
1234       return;
1235     }
1236 
1237     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1238     assert(D->isCopyOrMoveConstructor() &&
1239            "trivial 1-arg ctor not a copy/move ctor");
1240 
1241     const Expr *E = (*ArgBeg);
1242     QualType Ty = E->getType();
1243     llvm::Value *Src = EmitLValue(E).getAddress();
1244     EmitAggregateCopy(This, Src, Ty);
1245     return;
1246   }
1247 
1248   llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(D, Type), ForVirtualBase);
1249   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
1250 
1251   EmitCXXMemberCall(D, Callee, ReturnValueSlot(), This, VTT, ArgBeg, ArgEnd);
1252 }
1253 
1254 void
1255 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1256                                         llvm::Value *This, llvm::Value *Src,
1257                                         CallExpr::const_arg_iterator ArgBeg,
1258                                         CallExpr::const_arg_iterator ArgEnd) {
1259   if (D->isTrivial()) {
1260     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1261     assert(D->isCopyOrMoveConstructor() &&
1262            "trivial 1-arg ctor not a copy/move ctor");
1263     EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
1264     return;
1265   }
1266   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D,
1267                                                     clang::Ctor_Complete);
1268   assert(D->isInstance() &&
1269          "Trying to emit a member call expr on a static method!");
1270 
1271   const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>();
1272 
1273   CallArgList Args;
1274 
1275   // Push the this ptr.
1276   Args.add(RValue::get(This), D->getThisType(getContext()));
1277 
1278 
1279   // Push the src ptr.
1280   QualType QT = *(FPT->arg_type_begin());
1281   llvm::Type *t = CGM.getTypes().ConvertType(QT);
1282   Src = Builder.CreateBitCast(Src, t);
1283   Args.add(RValue::get(Src), QT);
1284 
1285   // Skip over first argument (Src).
1286   ++ArgBeg;
1287   CallExpr::const_arg_iterator Arg = ArgBeg;
1288   for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin()+1,
1289        E = FPT->arg_type_end(); I != E; ++I, ++Arg) {
1290     assert(Arg != ArgEnd && "Running over edge of argument list!");
1291     EmitCallArg(Args, *Arg, *I);
1292   }
1293   // Either we've emitted all the call args, or we have a call to a
1294   // variadic function.
1295   assert((Arg == ArgEnd || FPT->isVariadic()) &&
1296          "Extra arguments in non-variadic function!");
1297   // If we still have any arguments, emit them using the type of the argument.
1298   for (; Arg != ArgEnd; ++Arg) {
1299     QualType ArgType = Arg->getType();
1300     EmitCallArg(Args, *Arg, ArgType);
1301   }
1302 
1303   EmitCall(CGM.getTypes().arrangeFunctionCall(Args, FPT), Callee,
1304            ReturnValueSlot(), Args, D);
1305 }
1306 
1307 void
1308 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1309                                                 CXXCtorType CtorType,
1310                                                 const FunctionArgList &Args) {
1311   CallArgList DelegateArgs;
1312 
1313   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1314   assert(I != E && "no parameters to constructor");
1315 
1316   // this
1317   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1318   ++I;
1319 
1320   // vtt
1321   if (llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(Ctor, CtorType),
1322                                          /*ForVirtualBase=*/false)) {
1323     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1324     DelegateArgs.add(RValue::get(VTT), VoidPP);
1325 
1326     if (CodeGenVTables::needsVTTParameter(CurGD)) {
1327       assert(I != E && "cannot skip vtt parameter, already done with args");
1328       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1329       ++I;
1330     }
1331   }
1332 
1333   // Explicit arguments.
1334   for (; I != E; ++I) {
1335     const VarDecl *param = *I;
1336     EmitDelegateCallArg(DelegateArgs, param);
1337   }
1338 
1339   EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
1340            CGM.GetAddrOfCXXConstructor(Ctor, CtorType),
1341            ReturnValueSlot(), DelegateArgs, Ctor);
1342 }
1343 
1344 namespace {
1345   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1346     const CXXDestructorDecl *Dtor;
1347     llvm::Value *Addr;
1348     CXXDtorType Type;
1349 
1350     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1351                            CXXDtorType Type)
1352       : Dtor(D), Addr(Addr), Type(Type) {}
1353 
1354     void Emit(CodeGenFunction &CGF, Flags flags) {
1355       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1356                                 Addr);
1357     }
1358   };
1359 }
1360 
1361 void
1362 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1363                                                   const FunctionArgList &Args) {
1364   assert(Ctor->isDelegatingConstructor());
1365 
1366   llvm::Value *ThisPtr = LoadCXXThis();
1367 
1368   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1369   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1370   AggValueSlot AggSlot =
1371     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1372                           AggValueSlot::IsDestructed,
1373                           AggValueSlot::DoesNotNeedGCBarriers,
1374                           AggValueSlot::IsNotAliased);
1375 
1376   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1377 
1378   const CXXRecordDecl *ClassDecl = Ctor->getParent();
1379   if (CGM.getLangOptions().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1380     CXXDtorType Type =
1381       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1382 
1383     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1384                                                 ClassDecl->getDestructor(),
1385                                                 ThisPtr, Type);
1386   }
1387 }
1388 
1389 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1390                                             CXXDtorType Type,
1391                                             bool ForVirtualBase,
1392                                             llvm::Value *This) {
1393   llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(DD, Type),
1394                                      ForVirtualBase);
1395   llvm::Value *Callee = 0;
1396   if (getContext().getLangOptions().AppleKext)
1397     Callee = BuildAppleKextVirtualDestructorCall(DD, Type,
1398                                                  DD->getParent());
1399 
1400   if (!Callee)
1401     Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
1402 
1403   EmitCXXMemberCall(DD, Callee, ReturnValueSlot(), This, VTT, 0, 0);
1404 }
1405 
1406 namespace {
1407   struct CallLocalDtor : EHScopeStack::Cleanup {
1408     const CXXDestructorDecl *Dtor;
1409     llvm::Value *Addr;
1410 
1411     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1412       : Dtor(D), Addr(Addr) {}
1413 
1414     void Emit(CodeGenFunction &CGF, Flags flags) {
1415       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1416                                 /*ForVirtualBase=*/false, Addr);
1417     }
1418   };
1419 }
1420 
1421 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1422                                             llvm::Value *Addr) {
1423   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1424 }
1425 
1426 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1427   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1428   if (!ClassDecl) return;
1429   if (ClassDecl->hasTrivialDestructor()) return;
1430 
1431   const CXXDestructorDecl *D = ClassDecl->getDestructor();
1432   assert(D && D->isUsed() && "destructor not marked as used!");
1433   PushDestructorCleanup(D, Addr);
1434 }
1435 
1436 llvm::Value *
1437 CodeGenFunction::GetVirtualBaseClassOffset(llvm::Value *This,
1438                                            const CXXRecordDecl *ClassDecl,
1439                                            const CXXRecordDecl *BaseClassDecl) {
1440   llvm::Value *VTablePtr = GetVTablePtr(This, Int8PtrTy);
1441   CharUnits VBaseOffsetOffset =
1442     CGM.getVTableContext().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl);
1443 
1444   llvm::Value *VBaseOffsetPtr =
1445     Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(),
1446                                "vbase.offset.ptr");
1447   llvm::Type *PtrDiffTy =
1448     ConvertType(getContext().getPointerDiffType());
1449 
1450   VBaseOffsetPtr = Builder.CreateBitCast(VBaseOffsetPtr,
1451                                          PtrDiffTy->getPointerTo());
1452 
1453   llvm::Value *VBaseOffset = Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset");
1454 
1455   return VBaseOffset;
1456 }
1457 
1458 void
1459 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1460                                          const CXXRecordDecl *NearestVBase,
1461                                          CharUnits OffsetFromNearestVBase,
1462                                          llvm::Constant *VTable,
1463                                          const CXXRecordDecl *VTableClass) {
1464   const CXXRecordDecl *RD = Base.getBase();
1465 
1466   // Compute the address point.
1467   llvm::Value *VTableAddressPoint;
1468 
1469   // Check if we need to use a vtable from the VTT.
1470   if (CodeGenVTables::needsVTTParameter(CurGD) &&
1471       (RD->getNumVBases() || NearestVBase)) {
1472     // Get the secondary vpointer index.
1473     uint64_t VirtualPointerIndex =
1474      CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
1475 
1476     /// Load the VTT.
1477     llvm::Value *VTT = LoadCXXVTT();
1478     if (VirtualPointerIndex)
1479       VTT = Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
1480 
1481     // And load the address point from the VTT.
1482     VTableAddressPoint = Builder.CreateLoad(VTT);
1483   } else {
1484     uint64_t AddressPoint =
1485       CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
1486     VTableAddressPoint =
1487       Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
1488   }
1489 
1490   // Compute where to store the address point.
1491   llvm::Value *VirtualOffset = 0;
1492   CharUnits NonVirtualOffset = CharUnits::Zero();
1493 
1494   if (CodeGenVTables::needsVTTParameter(CurGD) && NearestVBase) {
1495     // We need to use the virtual base offset offset because the virtual base
1496     // might have a different offset in the most derived class.
1497     VirtualOffset = GetVirtualBaseClassOffset(LoadCXXThis(), VTableClass,
1498                                               NearestVBase);
1499     NonVirtualOffset = OffsetFromNearestVBase;
1500   } else {
1501     // We can just use the base offset in the complete class.
1502     NonVirtualOffset = Base.getBaseOffset();
1503   }
1504 
1505   // Apply the offsets.
1506   llvm::Value *VTableField = LoadCXXThis();
1507 
1508   if (!NonVirtualOffset.isZero() || VirtualOffset)
1509     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
1510                                                   NonVirtualOffset,
1511                                                   VirtualOffset);
1512 
1513   // Finally, store the address point.
1514   llvm::Type *AddressPointPtrTy =
1515     VTableAddressPoint->getType()->getPointerTo();
1516   VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
1517   Builder.CreateStore(VTableAddressPoint, VTableField);
1518 }
1519 
1520 void
1521 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
1522                                           const CXXRecordDecl *NearestVBase,
1523                                           CharUnits OffsetFromNearestVBase,
1524                                           bool BaseIsNonVirtualPrimaryBase,
1525                                           llvm::Constant *VTable,
1526                                           const CXXRecordDecl *VTableClass,
1527                                           VisitedVirtualBasesSetTy& VBases) {
1528   // If this base is a non-virtual primary base the address point has already
1529   // been set.
1530   if (!BaseIsNonVirtualPrimaryBase) {
1531     // Initialize the vtable pointer for this base.
1532     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
1533                             VTable, VTableClass);
1534   }
1535 
1536   const CXXRecordDecl *RD = Base.getBase();
1537 
1538   // Traverse bases.
1539   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1540        E = RD->bases_end(); I != E; ++I) {
1541     CXXRecordDecl *BaseDecl
1542       = cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1543 
1544     // Ignore classes without a vtable.
1545     if (!BaseDecl->isDynamicClass())
1546       continue;
1547 
1548     CharUnits BaseOffset;
1549     CharUnits BaseOffsetFromNearestVBase;
1550     bool BaseDeclIsNonVirtualPrimaryBase;
1551 
1552     if (I->isVirtual()) {
1553       // Check if we've visited this virtual base before.
1554       if (!VBases.insert(BaseDecl))
1555         continue;
1556 
1557       const ASTRecordLayout &Layout =
1558         getContext().getASTRecordLayout(VTableClass);
1559 
1560       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
1561       BaseOffsetFromNearestVBase = CharUnits::Zero();
1562       BaseDeclIsNonVirtualPrimaryBase = false;
1563     } else {
1564       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1565 
1566       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
1567       BaseOffsetFromNearestVBase =
1568         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
1569       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
1570     }
1571 
1572     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
1573                              I->isVirtual() ? BaseDecl : NearestVBase,
1574                              BaseOffsetFromNearestVBase,
1575                              BaseDeclIsNonVirtualPrimaryBase,
1576                              VTable, VTableClass, VBases);
1577   }
1578 }
1579 
1580 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
1581   // Ignore classes without a vtable.
1582   if (!RD->isDynamicClass())
1583     return;
1584 
1585   // Get the VTable.
1586   llvm::Constant *VTable = CGM.getVTables().GetAddrOfVTable(RD);
1587 
1588   // Initialize the vtable pointers for this class and all of its bases.
1589   VisitedVirtualBasesSetTy VBases;
1590   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
1591                            /*NearestVBase=*/0,
1592                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
1593                            /*BaseIsNonVirtualPrimaryBase=*/false,
1594                            VTable, RD, VBases);
1595 }
1596 
1597 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
1598                                            llvm::Type *Ty) {
1599   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
1600   return Builder.CreateLoad(VTablePtrSrc, "vtable");
1601 }
1602 
1603 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
1604   const Expr *E = Base;
1605 
1606   while (true) {
1607     E = E->IgnoreParens();
1608     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1609       if (CE->getCastKind() == CK_DerivedToBase ||
1610           CE->getCastKind() == CK_UncheckedDerivedToBase ||
1611           CE->getCastKind() == CK_NoOp) {
1612         E = CE->getSubExpr();
1613         continue;
1614       }
1615     }
1616 
1617     break;
1618   }
1619 
1620   QualType DerivedType = E->getType();
1621   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
1622     DerivedType = PTy->getPointeeType();
1623 
1624   return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
1625 }
1626 
1627 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
1628 // quite what we want.
1629 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
1630   while (true) {
1631     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
1632       E = PE->getSubExpr();
1633       continue;
1634     }
1635 
1636     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1637       if (CE->getCastKind() == CK_NoOp) {
1638         E = CE->getSubExpr();
1639         continue;
1640       }
1641     }
1642     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1643       if (UO->getOpcode() == UO_Extension) {
1644         E = UO->getSubExpr();
1645         continue;
1646       }
1647     }
1648     return E;
1649   }
1650 }
1651 
1652 /// canDevirtualizeMemberFunctionCall - Checks whether the given virtual member
1653 /// function call on the given expr can be devirtualized.
1654 static bool canDevirtualizeMemberFunctionCall(const Expr *Base,
1655                                               const CXXMethodDecl *MD) {
1656   // If the most derived class is marked final, we know that no subclass can
1657   // override this member function and so we can devirtualize it. For example:
1658   //
1659   // struct A { virtual void f(); }
1660   // struct B final : A { };
1661   //
1662   // void f(B *b) {
1663   //   b->f();
1664   // }
1665   //
1666   const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
1667   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
1668     return true;
1669 
1670   // If the member function is marked 'final', we know that it can't be
1671   // overridden and can therefore devirtualize it.
1672   if (MD->hasAttr<FinalAttr>())
1673     return true;
1674 
1675   // Similarly, if the class itself is marked 'final' it can't be overridden
1676   // and we can therefore devirtualize the member function call.
1677   if (MD->getParent()->hasAttr<FinalAttr>())
1678     return true;
1679 
1680   Base = skipNoOpCastsAndParens(Base);
1681   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
1682     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
1683       // This is a record decl. We know the type and can devirtualize it.
1684       return VD->getType()->isRecordType();
1685     }
1686 
1687     return false;
1688   }
1689 
1690   // We can always devirtualize calls on temporary object expressions.
1691   if (isa<CXXConstructExpr>(Base))
1692     return true;
1693 
1694   // And calls on bound temporaries.
1695   if (isa<CXXBindTemporaryExpr>(Base))
1696     return true;
1697 
1698   // Check if this is a call expr that returns a record type.
1699   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
1700     return CE->getCallReturnType()->isRecordType();
1701 
1702   // We can't devirtualize the call.
1703   return false;
1704 }
1705 
1706 static bool UseVirtualCall(ASTContext &Context,
1707                            const CXXOperatorCallExpr *CE,
1708                            const CXXMethodDecl *MD) {
1709   if (!MD->isVirtual())
1710     return false;
1711 
1712   // When building with -fapple-kext, all calls must go through the vtable since
1713   // the kernel linker can do runtime patching of vtables.
1714   if (Context.getLangOptions().AppleKext)
1715     return true;
1716 
1717   return !canDevirtualizeMemberFunctionCall(CE->getArg(0), MD);
1718 }
1719 
1720 llvm::Value *
1721 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
1722                                              const CXXMethodDecl *MD,
1723                                              llvm::Value *This) {
1724   llvm::FunctionType *fnType =
1725     CGM.getTypes().GetFunctionType(
1726                              CGM.getTypes().arrangeCXXMethodDeclaration(MD));
1727 
1728   if (UseVirtualCall(getContext(), E, MD))
1729     return BuildVirtualCall(MD, This, fnType);
1730 
1731   return CGM.GetAddrOfFunction(MD, fnType);
1732 }
1733 
1734 void CodeGenFunction::EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1735                                                  CallArgList &CallArgs) {
1736   // Lookup the call operator
1737   DeclarationName Name
1738     = getContext().DeclarationNames.getCXXOperatorName(OO_Call);
1739   DeclContext::lookup_const_result Calls = Lambda->lookup(Name);
1740   CXXMethodDecl *CallOperator = cast<CXXMethodDecl>(*Calls.first++);
1741   const FunctionProtoType *FPT =
1742       CallOperator->getType()->getAs<FunctionProtoType>();
1743   QualType ResultType = FPT->getResultType();
1744 
1745   // Get the address of the call operator.
1746   GlobalDecl GD(CallOperator);
1747   const CGFunctionInfo &CalleeFnInfo =
1748     CGM.getTypes().arrangeFunctionCall(ResultType, CallArgs, FPT->getExtInfo(),
1749                                        RequiredArgs::forPrototypePlus(FPT, 1));
1750   llvm::Type *Ty = CGM.getTypes().GetFunctionType(CalleeFnInfo);
1751   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty);
1752 
1753   // Determine whether we have a return value slot to use.
1754   ReturnValueSlot Slot;
1755   if (!ResultType->isVoidType() &&
1756       CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
1757       hasAggregateLLVMType(CurFnInfo->getReturnType()))
1758     Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
1759 
1760   // Now emit our call.
1761   RValue RV = EmitCall(CalleeFnInfo, Callee, Slot, CallArgs, CallOperator);
1762 
1763   // Forward the returned value
1764   if (!ResultType->isVoidType() && Slot.isNull())
1765     EmitReturnOfRValue(RV, ResultType);
1766 }
1767 
1768 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
1769   const BlockDecl *BD = BlockInfo->getBlockDecl();
1770   const VarDecl *variable = BD->capture_begin()->getVariable();
1771   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
1772 
1773   // Start building arguments for forwarding call
1774   CallArgList CallArgs;
1775 
1776   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
1777   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
1778   CallArgs.add(RValue::get(ThisPtr), ThisType);
1779 
1780   // Add the rest of the parameters.
1781   for (BlockDecl::param_const_iterator I = BD->param_begin(),
1782        E = BD->param_end(); I != E; ++I) {
1783     ParmVarDecl *param = *I;
1784     EmitDelegateCallArg(CallArgs, param);
1785   }
1786 
1787   EmitForwardingCallToLambda(Lambda, CallArgs);
1788 }
1789 
1790 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
1791   if (cast<CXXMethodDecl>(CurFuncDecl)->isVariadic()) {
1792     // FIXME: Making this work correctly is nasty because it requires either
1793     // cloning the body of the call operator or making the call operator forward.
1794     CGM.ErrorUnsupported(CurFuncDecl, "lambda conversion to variadic function");
1795     return;
1796   }
1797 
1798   EmitFunctionBody(Args);
1799 }
1800 
1801 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
1802   const CXXRecordDecl *Lambda = MD->getParent();
1803 
1804   // Start building arguments for forwarding call
1805   CallArgList CallArgs;
1806 
1807   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
1808   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
1809   CallArgs.add(RValue::get(ThisPtr), ThisType);
1810 
1811   // Add the rest of the parameters.
1812   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
1813        E = MD->param_end(); I != E; ++I) {
1814     ParmVarDecl *param = *I;
1815     EmitDelegateCallArg(CallArgs, param);
1816   }
1817 
1818   EmitForwardingCallToLambda(Lambda, CallArgs);
1819 }
1820 
1821 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
1822   if (MD->isVariadic()) {
1823     // FIXME: Making this work correctly is nasty because it requires either
1824     // cloning the body of the call operator or making the call operator forward.
1825     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
1826     return;
1827   }
1828 
1829   EmitLambdaDelegatingInvokeBody(MD);
1830 }
1831