1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/EvaluatedExprVisitor.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/AST/StmtCXX.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 static CharUnits 27 ComputeNonVirtualBaseClassOffset(ASTContext &Context, 28 const CXXRecordDecl *DerivedClass, 29 CastExpr::path_const_iterator Start, 30 CastExpr::path_const_iterator End) { 31 CharUnits Offset = CharUnits::Zero(); 32 33 const CXXRecordDecl *RD = DerivedClass; 34 35 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 36 const CXXBaseSpecifier *Base = *I; 37 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 38 39 // Get the layout. 40 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 41 42 const CXXRecordDecl *BaseDecl = 43 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 44 45 // Add the offset. 46 Offset += Layout.getBaseClassOffset(BaseDecl); 47 48 RD = BaseDecl; 49 } 50 51 return Offset; 52 } 53 54 llvm::Constant * 55 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 56 CastExpr::path_const_iterator PathBegin, 57 CastExpr::path_const_iterator PathEnd) { 58 assert(PathBegin != PathEnd && "Base path should not be empty!"); 59 60 CharUnits Offset = 61 ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl, 62 PathBegin, PathEnd); 63 if (Offset.isZero()) 64 return 0; 65 66 llvm::Type *PtrDiffTy = 67 Types.ConvertType(getContext().getPointerDiffType()); 68 69 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 70 } 71 72 /// Gets the address of a direct base class within a complete object. 73 /// This should only be used for (1) non-virtual bases or (2) virtual bases 74 /// when the type is known to be complete (e.g. in complete destructors). 75 /// 76 /// The object pointed to by 'This' is assumed to be non-null. 77 llvm::Value * 78 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This, 79 const CXXRecordDecl *Derived, 80 const CXXRecordDecl *Base, 81 bool BaseIsVirtual) { 82 // 'this' must be a pointer (in some address space) to Derived. 83 assert(This->getType()->isPointerTy() && 84 cast<llvm::PointerType>(This->getType())->getElementType() 85 == ConvertType(Derived)); 86 87 // Compute the offset of the virtual base. 88 CharUnits Offset; 89 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 90 if (BaseIsVirtual) 91 Offset = Layout.getVBaseClassOffset(Base); 92 else 93 Offset = Layout.getBaseClassOffset(Base); 94 95 // Shift and cast down to the base type. 96 // TODO: for complete types, this should be possible with a GEP. 97 llvm::Value *V = This; 98 if (Offset.isPositive()) { 99 V = Builder.CreateBitCast(V, Int8PtrTy); 100 V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity()); 101 } 102 V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo()); 103 104 return V; 105 } 106 107 static llvm::Value * 108 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ThisPtr, 109 CharUnits NonVirtual, llvm::Value *Virtual) { 110 llvm::Type *PtrDiffTy = 111 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 112 113 llvm::Value *NonVirtualOffset = 0; 114 if (!NonVirtual.isZero()) 115 NonVirtualOffset = llvm::ConstantInt::get(PtrDiffTy, 116 NonVirtual.getQuantity()); 117 118 llvm::Value *BaseOffset; 119 if (Virtual) { 120 if (NonVirtualOffset) 121 BaseOffset = CGF.Builder.CreateAdd(Virtual, NonVirtualOffset); 122 else 123 BaseOffset = Virtual; 124 } else 125 BaseOffset = NonVirtualOffset; 126 127 // Apply the base offset. 128 ThisPtr = CGF.Builder.CreateBitCast(ThisPtr, CGF.Int8PtrTy); 129 ThisPtr = CGF.Builder.CreateGEP(ThisPtr, BaseOffset, "add.ptr"); 130 131 return ThisPtr; 132 } 133 134 llvm::Value * 135 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value, 136 const CXXRecordDecl *Derived, 137 CastExpr::path_const_iterator PathBegin, 138 CastExpr::path_const_iterator PathEnd, 139 bool NullCheckValue) { 140 assert(PathBegin != PathEnd && "Base path should not be empty!"); 141 142 CastExpr::path_const_iterator Start = PathBegin; 143 const CXXRecordDecl *VBase = 0; 144 145 // Get the virtual base. 146 if ((*Start)->isVirtual()) { 147 VBase = 148 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 149 ++Start; 150 } 151 152 CharUnits NonVirtualOffset = 153 ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived, 154 Start, PathEnd); 155 156 // Get the base pointer type. 157 llvm::Type *BasePtrTy = 158 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 159 160 if (NonVirtualOffset.isZero() && !VBase) { 161 // Just cast back. 162 return Builder.CreateBitCast(Value, BasePtrTy); 163 } 164 165 llvm::BasicBlock *CastNull = 0; 166 llvm::BasicBlock *CastNotNull = 0; 167 llvm::BasicBlock *CastEnd = 0; 168 169 if (NullCheckValue) { 170 CastNull = createBasicBlock("cast.null"); 171 CastNotNull = createBasicBlock("cast.notnull"); 172 CastEnd = createBasicBlock("cast.end"); 173 174 llvm::Value *IsNull = Builder.CreateIsNull(Value); 175 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 176 EmitBlock(CastNotNull); 177 } 178 179 llvm::Value *VirtualOffset = 0; 180 181 if (VBase) { 182 if (Derived->hasAttr<FinalAttr>()) { 183 VirtualOffset = 0; 184 185 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 186 187 CharUnits VBaseOffset = Layout.getVBaseClassOffset(VBase); 188 NonVirtualOffset += VBaseOffset; 189 } else 190 VirtualOffset = GetVirtualBaseClassOffset(Value, Derived, VBase); 191 } 192 193 // Apply the offsets. 194 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, 195 NonVirtualOffset, 196 VirtualOffset); 197 198 // Cast back. 199 Value = Builder.CreateBitCast(Value, BasePtrTy); 200 201 if (NullCheckValue) { 202 Builder.CreateBr(CastEnd); 203 EmitBlock(CastNull); 204 Builder.CreateBr(CastEnd); 205 EmitBlock(CastEnd); 206 207 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 208 PHI->addIncoming(Value, CastNotNull); 209 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), 210 CastNull); 211 Value = PHI; 212 } 213 214 return Value; 215 } 216 217 llvm::Value * 218 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value, 219 const CXXRecordDecl *Derived, 220 CastExpr::path_const_iterator PathBegin, 221 CastExpr::path_const_iterator PathEnd, 222 bool NullCheckValue) { 223 assert(PathBegin != PathEnd && "Base path should not be empty!"); 224 225 QualType DerivedTy = 226 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 227 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 228 229 llvm::Value *NonVirtualOffset = 230 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 231 232 if (!NonVirtualOffset) { 233 // No offset, we can just cast back. 234 return Builder.CreateBitCast(Value, DerivedPtrTy); 235 } 236 237 llvm::BasicBlock *CastNull = 0; 238 llvm::BasicBlock *CastNotNull = 0; 239 llvm::BasicBlock *CastEnd = 0; 240 241 if (NullCheckValue) { 242 CastNull = createBasicBlock("cast.null"); 243 CastNotNull = createBasicBlock("cast.notnull"); 244 CastEnd = createBasicBlock("cast.end"); 245 246 llvm::Value *IsNull = Builder.CreateIsNull(Value); 247 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 248 EmitBlock(CastNotNull); 249 } 250 251 // Apply the offset. 252 Value = Builder.CreateBitCast(Value, Int8PtrTy); 253 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 254 "sub.ptr"); 255 256 // Just cast. 257 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 258 259 if (NullCheckValue) { 260 Builder.CreateBr(CastEnd); 261 EmitBlock(CastNull); 262 Builder.CreateBr(CastEnd); 263 EmitBlock(CastEnd); 264 265 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 266 PHI->addIncoming(Value, CastNotNull); 267 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), 268 CastNull); 269 Value = PHI; 270 } 271 272 return Value; 273 } 274 275 /// GetVTTParameter - Return the VTT parameter that should be passed to a 276 /// base constructor/destructor with virtual bases. 277 static llvm::Value *GetVTTParameter(CodeGenFunction &CGF, GlobalDecl GD, 278 bool ForVirtualBase) { 279 if (!CodeGenVTables::needsVTTParameter(GD)) { 280 // This constructor/destructor does not need a VTT parameter. 281 return 0; 282 } 283 284 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CGF.CurFuncDecl)->getParent(); 285 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 286 287 llvm::Value *VTT; 288 289 uint64_t SubVTTIndex; 290 291 // If the record matches the base, this is the complete ctor/dtor 292 // variant calling the base variant in a class with virtual bases. 293 if (RD == Base) { 294 assert(!CodeGenVTables::needsVTTParameter(CGF.CurGD) && 295 "doing no-op VTT offset in base dtor/ctor?"); 296 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 297 SubVTTIndex = 0; 298 } else { 299 const ASTRecordLayout &Layout = 300 CGF.getContext().getASTRecordLayout(RD); 301 CharUnits BaseOffset = ForVirtualBase ? 302 Layout.getVBaseClassOffset(Base) : 303 Layout.getBaseClassOffset(Base); 304 305 SubVTTIndex = 306 CGF.CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 307 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 308 } 309 310 if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) { 311 // A VTT parameter was passed to the constructor, use it. 312 VTT = CGF.LoadCXXVTT(); 313 VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 314 } else { 315 // We're the complete constructor, so get the VTT by name. 316 VTT = CGF.CGM.getVTables().GetAddrOfVTT(RD); 317 VTT = CGF.Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 318 } 319 320 return VTT; 321 } 322 323 namespace { 324 /// Call the destructor for a direct base class. 325 struct CallBaseDtor : EHScopeStack::Cleanup { 326 const CXXRecordDecl *BaseClass; 327 bool BaseIsVirtual; 328 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 329 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 330 331 void Emit(CodeGenFunction &CGF, Flags flags) { 332 const CXXRecordDecl *DerivedClass = 333 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 334 335 const CXXDestructorDecl *D = BaseClass->getDestructor(); 336 llvm::Value *Addr = 337 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(), 338 DerivedClass, BaseClass, 339 BaseIsVirtual); 340 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, Addr); 341 } 342 }; 343 344 /// A visitor which checks whether an initializer uses 'this' in a 345 /// way which requires the vtable to be properly set. 346 struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> { 347 typedef EvaluatedExprVisitor<DynamicThisUseChecker> super; 348 349 bool UsesThis; 350 351 DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {} 352 353 // Black-list all explicit and implicit references to 'this'. 354 // 355 // Do we need to worry about external references to 'this' derived 356 // from arbitrary code? If so, then anything which runs arbitrary 357 // external code might potentially access the vtable. 358 void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; } 359 }; 360 } 361 362 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 363 DynamicThisUseChecker Checker(C); 364 Checker.Visit(const_cast<Expr*>(Init)); 365 return Checker.UsesThis; 366 } 367 368 static void EmitBaseInitializer(CodeGenFunction &CGF, 369 const CXXRecordDecl *ClassDecl, 370 CXXCtorInitializer *BaseInit, 371 CXXCtorType CtorType) { 372 assert(BaseInit->isBaseInitializer() && 373 "Must have base initializer!"); 374 375 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 376 377 const Type *BaseType = BaseInit->getBaseClass(); 378 CXXRecordDecl *BaseClassDecl = 379 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 380 381 bool isBaseVirtual = BaseInit->isBaseVirtual(); 382 383 // The base constructor doesn't construct virtual bases. 384 if (CtorType == Ctor_Base && isBaseVirtual) 385 return; 386 387 // If the initializer for the base (other than the constructor 388 // itself) accesses 'this' in any way, we need to initialize the 389 // vtables. 390 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 391 CGF.InitializeVTablePointers(ClassDecl); 392 393 // We can pretend to be a complete class because it only matters for 394 // virtual bases, and we only do virtual bases for complete ctors. 395 llvm::Value *V = 396 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 397 BaseClassDecl, 398 isBaseVirtual); 399 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType); 400 AggValueSlot AggSlot = 401 AggValueSlot::forAddr(V, Alignment, Qualifiers(), 402 AggValueSlot::IsDestructed, 403 AggValueSlot::DoesNotNeedGCBarriers, 404 AggValueSlot::IsNotAliased); 405 406 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 407 408 if (CGF.CGM.getLangOptions().Exceptions && 409 !BaseClassDecl->hasTrivialDestructor()) 410 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 411 isBaseVirtual); 412 } 413 414 static void EmitAggMemberInitializer(CodeGenFunction &CGF, 415 LValue LHS, 416 Expr *Init, 417 llvm::Value *ArrayIndexVar, 418 QualType T, 419 ArrayRef<VarDecl *> ArrayIndexes, 420 unsigned Index) { 421 if (Index == ArrayIndexes.size()) { 422 LValue LV = LHS; 423 { // Scope for Cleanups. 424 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 425 426 if (ArrayIndexVar) { 427 // If we have an array index variable, load it and use it as an offset. 428 // Then, increment the value. 429 llvm::Value *Dest = LHS.getAddress(); 430 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar); 431 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress"); 432 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1); 433 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc"); 434 CGF.Builder.CreateStore(Next, ArrayIndexVar); 435 436 // Update the LValue. 437 LV.setAddress(Dest); 438 CharUnits Align = CGF.getContext().getTypeAlignInChars(T); 439 LV.setAlignment(std::min(Align, LV.getAlignment())); 440 } 441 442 if (!CGF.hasAggregateLLVMType(T)) { 443 CGF.EmitScalarInit(Init, /*decl*/ 0, LV, false); 444 } else if (T->isAnyComplexType()) { 445 CGF.EmitComplexExprIntoAddr(Init, LV.getAddress(), 446 LV.isVolatileQualified()); 447 } else { 448 AggValueSlot Slot = 449 AggValueSlot::forLValue(LV, 450 AggValueSlot::IsDestructed, 451 AggValueSlot::DoesNotNeedGCBarriers, 452 AggValueSlot::IsNotAliased); 453 454 CGF.EmitAggExpr(Init, Slot); 455 } 456 } 457 458 // Now, outside of the initializer cleanup scope, destroy the backing array 459 // for a std::initializer_list member. 460 CGF.MaybeEmitStdInitializerListCleanup(LV.getAddress(), Init); 461 462 return; 463 } 464 465 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T); 466 assert(Array && "Array initialization without the array type?"); 467 llvm::Value *IndexVar 468 = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]); 469 assert(IndexVar && "Array index variable not loaded"); 470 471 // Initialize this index variable to zero. 472 llvm::Value* Zero 473 = llvm::Constant::getNullValue( 474 CGF.ConvertType(CGF.getContext().getSizeType())); 475 CGF.Builder.CreateStore(Zero, IndexVar); 476 477 // Start the loop with a block that tests the condition. 478 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond"); 479 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end"); 480 481 CGF.EmitBlock(CondBlock); 482 483 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body"); 484 // Generate: if (loop-index < number-of-elements) fall to the loop body, 485 // otherwise, go to the block after the for-loop. 486 uint64_t NumElements = Array->getSize().getZExtValue(); 487 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar); 488 llvm::Value *NumElementsPtr = 489 llvm::ConstantInt::get(Counter->getType(), NumElements); 490 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr, 491 "isless"); 492 493 // If the condition is true, execute the body. 494 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor); 495 496 CGF.EmitBlock(ForBody); 497 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc"); 498 499 { 500 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 501 502 // Inside the loop body recurse to emit the inner loop or, eventually, the 503 // constructor call. 504 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar, 505 Array->getElementType(), ArrayIndexes, Index + 1); 506 } 507 508 CGF.EmitBlock(ContinueBlock); 509 510 // Emit the increment of the loop counter. 511 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1); 512 Counter = CGF.Builder.CreateLoad(IndexVar); 513 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc"); 514 CGF.Builder.CreateStore(NextVal, IndexVar); 515 516 // Finally, branch back up to the condition for the next iteration. 517 CGF.EmitBranch(CondBlock); 518 519 // Emit the fall-through block. 520 CGF.EmitBlock(AfterFor, true); 521 } 522 523 namespace { 524 struct CallMemberDtor : EHScopeStack::Cleanup { 525 llvm::Value *V; 526 CXXDestructorDecl *Dtor; 527 528 CallMemberDtor(llvm::Value *V, CXXDestructorDecl *Dtor) 529 : V(V), Dtor(Dtor) {} 530 531 void Emit(CodeGenFunction &CGF, Flags flags) { 532 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 533 V); 534 } 535 }; 536 } 537 538 static bool hasTrivialCopyOrMoveConstructor(const CXXRecordDecl *Record, 539 bool Moving) { 540 return Moving ? Record->hasTrivialMoveConstructor() : 541 Record->hasTrivialCopyConstructor(); 542 } 543 544 static void EmitMemberInitializer(CodeGenFunction &CGF, 545 const CXXRecordDecl *ClassDecl, 546 CXXCtorInitializer *MemberInit, 547 const CXXConstructorDecl *Constructor, 548 FunctionArgList &Args) { 549 assert(MemberInit->isAnyMemberInitializer() && 550 "Must have member initializer!"); 551 assert(MemberInit->getInit() && "Must have initializer!"); 552 553 // non-static data member initializers. 554 FieldDecl *Field = MemberInit->getAnyMember(); 555 QualType FieldType = Field->getType(); 556 557 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 558 LValue LHS; 559 560 // If we are initializing an anonymous union field, drill down to the field. 561 if (MemberInit->isIndirectMemberInitializer()) { 562 LHS = CGF.EmitLValueForAnonRecordField(ThisPtr, 563 MemberInit->getIndirectMember(), 0); 564 FieldType = MemberInit->getIndirectMember()->getAnonField()->getType(); 565 } else { 566 LHS = CGF.EmitLValueForFieldInitialization(ThisPtr, Field, 0); 567 } 568 569 // Special case: if we are in a copy or move constructor, and we are copying 570 // an array of PODs or classes with trivial copy constructors, ignore the 571 // AST and perform the copy we know is equivalent. 572 // FIXME: This is hacky at best... if we had a bit more explicit information 573 // in the AST, we could generalize it more easily. 574 const ConstantArrayType *Array 575 = CGF.getContext().getAsConstantArrayType(FieldType); 576 if (Array && Constructor->isImplicitlyDefined() && 577 Constructor->isCopyOrMoveConstructor()) { 578 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 579 const CXXRecordDecl *Record = BaseElementTy->getAsCXXRecordDecl(); 580 if (BaseElementTy.isPODType(CGF.getContext()) || 581 (Record && hasTrivialCopyOrMoveConstructor(Record, 582 Constructor->isMoveConstructor()))) { 583 // Find the source pointer. We knows it's the last argument because 584 // we know we're in a copy constructor. 585 unsigned SrcArgIndex = Args.size() - 1; 586 llvm::Value *SrcPtr 587 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 588 LValue Src = CGF.EmitLValueForFieldInitialization(SrcPtr, Field, 0); 589 590 // Copy the aggregate. 591 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 592 LHS.isVolatileQualified()); 593 return; 594 } 595 } 596 597 ArrayRef<VarDecl *> ArrayIndexes; 598 if (MemberInit->getNumArrayIndices()) 599 ArrayIndexes = MemberInit->getArrayIndexes(); 600 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes); 601 } 602 603 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, 604 LValue LHS, Expr *Init, 605 ArrayRef<VarDecl *> ArrayIndexes) { 606 QualType FieldType = Field->getType(); 607 if (!hasAggregateLLVMType(FieldType)) { 608 if (LHS.isSimple()) { 609 EmitExprAsInit(Init, Field, LHS, false); 610 } else { 611 RValue RHS = RValue::get(EmitScalarExpr(Init)); 612 EmitStoreThroughLValue(RHS, LHS); 613 } 614 } else if (FieldType->isAnyComplexType()) { 615 EmitComplexExprIntoAddr(Init, LHS.getAddress(), LHS.isVolatileQualified()); 616 } else { 617 llvm::Value *ArrayIndexVar = 0; 618 if (ArrayIndexes.size()) { 619 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 620 621 // The LHS is a pointer to the first object we'll be constructing, as 622 // a flat array. 623 QualType BaseElementTy = getContext().getBaseElementType(FieldType); 624 llvm::Type *BasePtr = ConvertType(BaseElementTy); 625 BasePtr = llvm::PointerType::getUnqual(BasePtr); 626 llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), 627 BasePtr); 628 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy); 629 630 // Create an array index that will be used to walk over all of the 631 // objects we're constructing. 632 ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index"); 633 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy); 634 Builder.CreateStore(Zero, ArrayIndexVar); 635 636 637 // Emit the block variables for the array indices, if any. 638 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I) 639 EmitAutoVarDecl(*ArrayIndexes[I]); 640 } 641 642 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType, 643 ArrayIndexes, 0); 644 645 if (!CGM.getLangOptions().Exceptions) 646 return; 647 648 // FIXME: If we have an array of classes w/ non-trivial destructors, 649 // we need to destroy in reverse order of construction along the exception 650 // path. 651 const RecordType *RT = FieldType->getAs<RecordType>(); 652 if (!RT) 653 return; 654 655 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 656 if (!RD->hasTrivialDestructor()) 657 EHStack.pushCleanup<CallMemberDtor>(EHCleanup, LHS.getAddress(), 658 RD->getDestructor()); 659 } 660 } 661 662 /// Checks whether the given constructor is a valid subject for the 663 /// complete-to-base constructor delegation optimization, i.e. 664 /// emitting the complete constructor as a simple call to the base 665 /// constructor. 666 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) { 667 668 // Currently we disable the optimization for classes with virtual 669 // bases because (1) the addresses of parameter variables need to be 670 // consistent across all initializers but (2) the delegate function 671 // call necessarily creates a second copy of the parameter variable. 672 // 673 // The limiting example (purely theoretical AFAIK): 674 // struct A { A(int &c) { c++; } }; 675 // struct B : virtual A { 676 // B(int count) : A(count) { printf("%d\n", count); } 677 // }; 678 // ...although even this example could in principle be emitted as a 679 // delegation since the address of the parameter doesn't escape. 680 if (Ctor->getParent()->getNumVBases()) { 681 // TODO: white-list trivial vbase initializers. This case wouldn't 682 // be subject to the restrictions below. 683 684 // TODO: white-list cases where: 685 // - there are no non-reference parameters to the constructor 686 // - the initializers don't access any non-reference parameters 687 // - the initializers don't take the address of non-reference 688 // parameters 689 // - etc. 690 // If we ever add any of the above cases, remember that: 691 // - function-try-blocks will always blacklist this optimization 692 // - we need to perform the constructor prologue and cleanup in 693 // EmitConstructorBody. 694 695 return false; 696 } 697 698 // We also disable the optimization for variadic functions because 699 // it's impossible to "re-pass" varargs. 700 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 701 return false; 702 703 // FIXME: Decide if we can do a delegation of a delegating constructor. 704 if (Ctor->isDelegatingConstructor()) 705 return false; 706 707 return true; 708 } 709 710 /// EmitConstructorBody - Emits the body of the current constructor. 711 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 712 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 713 CXXCtorType CtorType = CurGD.getCtorType(); 714 715 // Before we go any further, try the complete->base constructor 716 // delegation optimization. 717 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor)) { 718 if (CGDebugInfo *DI = getDebugInfo()) 719 DI->EmitLocation(Builder, Ctor->getLocEnd()); 720 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args); 721 return; 722 } 723 724 Stmt *Body = Ctor->getBody(); 725 726 // Enter the function-try-block before the constructor prologue if 727 // applicable. 728 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 729 if (IsTryBody) 730 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 731 732 EHScopeStack::stable_iterator CleanupDepth = EHStack.stable_begin(); 733 734 // Emit the constructor prologue, i.e. the base and member 735 // initializers. 736 EmitCtorPrologue(Ctor, CtorType, Args); 737 738 // Emit the body of the statement. 739 if (IsTryBody) 740 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 741 else if (Body) 742 EmitStmt(Body); 743 744 // Emit any cleanup blocks associated with the member or base 745 // initializers, which includes (along the exceptional path) the 746 // destructors for those members and bases that were fully 747 // constructed. 748 PopCleanupBlocks(CleanupDepth); 749 750 if (IsTryBody) 751 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 752 } 753 754 /// EmitCtorPrologue - This routine generates necessary code to initialize 755 /// base classes and non-static data members belonging to this constructor. 756 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 757 CXXCtorType CtorType, 758 FunctionArgList &Args) { 759 if (CD->isDelegatingConstructor()) 760 return EmitDelegatingCXXConstructorCall(CD, Args); 761 762 const CXXRecordDecl *ClassDecl = CD->getParent(); 763 764 SmallVector<CXXCtorInitializer *, 8> MemberInitializers; 765 766 for (CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 767 E = CD->init_end(); 768 B != E; ++B) { 769 CXXCtorInitializer *Member = (*B); 770 771 if (Member->isBaseInitializer()) { 772 EmitBaseInitializer(*this, ClassDecl, Member, CtorType); 773 } else { 774 assert(Member->isAnyMemberInitializer() && 775 "Delegating initializer on non-delegating constructor"); 776 MemberInitializers.push_back(Member); 777 } 778 } 779 780 InitializeVTablePointers(ClassDecl); 781 782 for (unsigned I = 0, E = MemberInitializers.size(); I != E; ++I) 783 EmitMemberInitializer(*this, ClassDecl, MemberInitializers[I], CD, Args); 784 } 785 786 static bool 787 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 788 789 static bool 790 HasTrivialDestructorBody(ASTContext &Context, 791 const CXXRecordDecl *BaseClassDecl, 792 const CXXRecordDecl *MostDerivedClassDecl) 793 { 794 // If the destructor is trivial we don't have to check anything else. 795 if (BaseClassDecl->hasTrivialDestructor()) 796 return true; 797 798 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 799 return false; 800 801 // Check fields. 802 for (CXXRecordDecl::field_iterator I = BaseClassDecl->field_begin(), 803 E = BaseClassDecl->field_end(); I != E; ++I) { 804 const FieldDecl *Field = *I; 805 806 if (!FieldHasTrivialDestructorBody(Context, Field)) 807 return false; 808 } 809 810 // Check non-virtual bases. 811 for (CXXRecordDecl::base_class_const_iterator I = 812 BaseClassDecl->bases_begin(), E = BaseClassDecl->bases_end(); 813 I != E; ++I) { 814 if (I->isVirtual()) 815 continue; 816 817 const CXXRecordDecl *NonVirtualBase = 818 cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl()); 819 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 820 MostDerivedClassDecl)) 821 return false; 822 } 823 824 if (BaseClassDecl == MostDerivedClassDecl) { 825 // Check virtual bases. 826 for (CXXRecordDecl::base_class_const_iterator I = 827 BaseClassDecl->vbases_begin(), E = BaseClassDecl->vbases_end(); 828 I != E; ++I) { 829 const CXXRecordDecl *VirtualBase = 830 cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl()); 831 if (!HasTrivialDestructorBody(Context, VirtualBase, 832 MostDerivedClassDecl)) 833 return false; 834 } 835 } 836 837 return true; 838 } 839 840 static bool 841 FieldHasTrivialDestructorBody(ASTContext &Context, 842 const FieldDecl *Field) 843 { 844 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 845 846 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 847 if (!RT) 848 return true; 849 850 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 851 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 852 } 853 854 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 855 /// any vtable pointers before calling this destructor. 856 static bool CanSkipVTablePointerInitialization(ASTContext &Context, 857 const CXXDestructorDecl *Dtor) { 858 if (!Dtor->hasTrivialBody()) 859 return false; 860 861 // Check the fields. 862 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 863 for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(), 864 E = ClassDecl->field_end(); I != E; ++I) { 865 const FieldDecl *Field = *I; 866 867 if (!FieldHasTrivialDestructorBody(Context, Field)) 868 return false; 869 } 870 871 return true; 872 } 873 874 /// EmitDestructorBody - Emits the body of the current destructor. 875 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 876 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 877 CXXDtorType DtorType = CurGD.getDtorType(); 878 879 // The call to operator delete in a deleting destructor happens 880 // outside of the function-try-block, which means it's always 881 // possible to delegate the destructor body to the complete 882 // destructor. Do so. 883 if (DtorType == Dtor_Deleting) { 884 EnterDtorCleanups(Dtor, Dtor_Deleting); 885 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 886 LoadCXXThis()); 887 PopCleanupBlock(); 888 return; 889 } 890 891 Stmt *Body = Dtor->getBody(); 892 893 // If the body is a function-try-block, enter the try before 894 // anything else. 895 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 896 if (isTryBody) 897 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 898 899 // Enter the epilogue cleanups. 900 RunCleanupsScope DtorEpilogue(*this); 901 902 // If this is the complete variant, just invoke the base variant; 903 // the epilogue will destruct the virtual bases. But we can't do 904 // this optimization if the body is a function-try-block, because 905 // we'd introduce *two* handler blocks. 906 switch (DtorType) { 907 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 908 909 case Dtor_Complete: 910 // Enter the cleanup scopes for virtual bases. 911 EnterDtorCleanups(Dtor, Dtor_Complete); 912 913 if (!isTryBody) { 914 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 915 LoadCXXThis()); 916 break; 917 } 918 // Fallthrough: act like we're in the base variant. 919 920 case Dtor_Base: 921 // Enter the cleanup scopes for fields and non-virtual bases. 922 EnterDtorCleanups(Dtor, Dtor_Base); 923 924 // Initialize the vtable pointers before entering the body. 925 if (!CanSkipVTablePointerInitialization(getContext(), Dtor)) 926 InitializeVTablePointers(Dtor->getParent()); 927 928 if (isTryBody) 929 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 930 else if (Body) 931 EmitStmt(Body); 932 else { 933 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 934 // nothing to do besides what's in the epilogue 935 } 936 // -fapple-kext must inline any call to this dtor into 937 // the caller's body. 938 if (getContext().getLangOptions().AppleKext) 939 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 940 break; 941 } 942 943 // Jump out through the epilogue cleanups. 944 DtorEpilogue.ForceCleanup(); 945 946 // Exit the try if applicable. 947 if (isTryBody) 948 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 949 } 950 951 namespace { 952 /// Call the operator delete associated with the current destructor. 953 struct CallDtorDelete : EHScopeStack::Cleanup { 954 CallDtorDelete() {} 955 956 void Emit(CodeGenFunction &CGF, Flags flags) { 957 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 958 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 959 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 960 CGF.getContext().getTagDeclType(ClassDecl)); 961 } 962 }; 963 964 class DestroyField : public EHScopeStack::Cleanup { 965 const FieldDecl *field; 966 CodeGenFunction::Destroyer *destroyer; 967 bool useEHCleanupForArray; 968 969 public: 970 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 971 bool useEHCleanupForArray) 972 : field(field), destroyer(destroyer), 973 useEHCleanupForArray(useEHCleanupForArray) {} 974 975 void Emit(CodeGenFunction &CGF, Flags flags) { 976 // Find the address of the field. 977 llvm::Value *thisValue = CGF.LoadCXXThis(); 978 LValue LV = CGF.EmitLValueForField(thisValue, field, /*CVRQualifiers=*/0); 979 assert(LV.isSimple()); 980 981 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 982 flags.isForNormalCleanup() && useEHCleanupForArray); 983 } 984 }; 985 } 986 987 /// EmitDtorEpilogue - Emit all code that comes at the end of class's 988 /// destructor. This is to call destructors on members and base classes 989 /// in reverse order of their construction. 990 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 991 CXXDtorType DtorType) { 992 assert(!DD->isTrivial() && 993 "Should not emit dtor epilogue for trivial dtor!"); 994 995 // The deleting-destructor phase just needs to call the appropriate 996 // operator delete that Sema picked up. 997 if (DtorType == Dtor_Deleting) { 998 assert(DD->getOperatorDelete() && 999 "operator delete missing - EmitDtorEpilogue"); 1000 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1001 return; 1002 } 1003 1004 const CXXRecordDecl *ClassDecl = DD->getParent(); 1005 1006 // Unions have no bases and do not call field destructors. 1007 if (ClassDecl->isUnion()) 1008 return; 1009 1010 // The complete-destructor phase just destructs all the virtual bases. 1011 if (DtorType == Dtor_Complete) { 1012 1013 // We push them in the forward order so that they'll be popped in 1014 // the reverse order. 1015 for (CXXRecordDecl::base_class_const_iterator I = 1016 ClassDecl->vbases_begin(), E = ClassDecl->vbases_end(); 1017 I != E; ++I) { 1018 const CXXBaseSpecifier &Base = *I; 1019 CXXRecordDecl *BaseClassDecl 1020 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1021 1022 // Ignore trivial destructors. 1023 if (BaseClassDecl->hasTrivialDestructor()) 1024 continue; 1025 1026 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1027 BaseClassDecl, 1028 /*BaseIsVirtual*/ true); 1029 } 1030 1031 return; 1032 } 1033 1034 assert(DtorType == Dtor_Base); 1035 1036 // Destroy non-virtual bases. 1037 for (CXXRecordDecl::base_class_const_iterator I = 1038 ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) { 1039 const CXXBaseSpecifier &Base = *I; 1040 1041 // Ignore virtual bases. 1042 if (Base.isVirtual()) 1043 continue; 1044 1045 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1046 1047 // Ignore trivial destructors. 1048 if (BaseClassDecl->hasTrivialDestructor()) 1049 continue; 1050 1051 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1052 BaseClassDecl, 1053 /*BaseIsVirtual*/ false); 1054 } 1055 1056 // Destroy direct fields. 1057 SmallVector<const FieldDecl *, 16> FieldDecls; 1058 for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(), 1059 E = ClassDecl->field_end(); I != E; ++I) { 1060 const FieldDecl *field = *I; 1061 QualType type = field->getType(); 1062 QualType::DestructionKind dtorKind = type.isDestructedType(); 1063 if (!dtorKind) continue; 1064 1065 // Anonymous union members do not have their destructors called. 1066 const RecordType *RT = type->getAsUnionType(); 1067 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1068 1069 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1070 EHStack.pushCleanup<DestroyField>(cleanupKind, field, 1071 getDestroyer(dtorKind), 1072 cleanupKind & EHCleanup); 1073 } 1074 } 1075 1076 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1077 /// constructor for each of several members of an array. 1078 /// 1079 /// \param ctor the constructor to call for each element 1080 /// \param argBegin,argEnd the arguments to evaluate and pass to the 1081 /// constructor 1082 /// \param arrayType the type of the array to initialize 1083 /// \param arrayBegin an arrayType* 1084 /// \param zeroInitialize true if each element should be 1085 /// zero-initialized before it is constructed 1086 void 1087 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1088 const ConstantArrayType *arrayType, 1089 llvm::Value *arrayBegin, 1090 CallExpr::const_arg_iterator argBegin, 1091 CallExpr::const_arg_iterator argEnd, 1092 bool zeroInitialize) { 1093 QualType elementType; 1094 llvm::Value *numElements = 1095 emitArrayLength(arrayType, elementType, arrayBegin); 1096 1097 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, 1098 argBegin, argEnd, zeroInitialize); 1099 } 1100 1101 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1102 /// constructor for each of several members of an array. 1103 /// 1104 /// \param ctor the constructor to call for each element 1105 /// \param numElements the number of elements in the array; 1106 /// may be zero 1107 /// \param argBegin,argEnd the arguments to evaluate and pass to the 1108 /// constructor 1109 /// \param arrayBegin a T*, where T is the type constructed by ctor 1110 /// \param zeroInitialize true if each element should be 1111 /// zero-initialized before it is constructed 1112 void 1113 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1114 llvm::Value *numElements, 1115 llvm::Value *arrayBegin, 1116 CallExpr::const_arg_iterator argBegin, 1117 CallExpr::const_arg_iterator argEnd, 1118 bool zeroInitialize) { 1119 1120 // It's legal for numElements to be zero. This can happen both 1121 // dynamically, because x can be zero in 'new A[x]', and statically, 1122 // because of GCC extensions that permit zero-length arrays. There 1123 // are probably legitimate places where we could assume that this 1124 // doesn't happen, but it's not clear that it's worth it. 1125 llvm::BranchInst *zeroCheckBranch = 0; 1126 1127 // Optimize for a constant count. 1128 llvm::ConstantInt *constantCount 1129 = dyn_cast<llvm::ConstantInt>(numElements); 1130 if (constantCount) { 1131 // Just skip out if the constant count is zero. 1132 if (constantCount->isZero()) return; 1133 1134 // Otherwise, emit the check. 1135 } else { 1136 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1137 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1138 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1139 EmitBlock(loopBB); 1140 } 1141 1142 // Find the end of the array. 1143 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1144 "arrayctor.end"); 1145 1146 // Enter the loop, setting up a phi for the current location to initialize. 1147 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1148 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1149 EmitBlock(loopBB); 1150 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1151 "arrayctor.cur"); 1152 cur->addIncoming(arrayBegin, entryBB); 1153 1154 // Inside the loop body, emit the constructor call on the array element. 1155 1156 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1157 1158 // Zero initialize the storage, if requested. 1159 if (zeroInitialize) 1160 EmitNullInitialization(cur, type); 1161 1162 // C++ [class.temporary]p4: 1163 // There are two contexts in which temporaries are destroyed at a different 1164 // point than the end of the full-expression. The first context is when a 1165 // default constructor is called to initialize an element of an array. 1166 // If the constructor has one or more default arguments, the destruction of 1167 // every temporary created in a default argument expression is sequenced 1168 // before the construction of the next array element, if any. 1169 1170 { 1171 RunCleanupsScope Scope(*this); 1172 1173 // Evaluate the constructor and its arguments in a regular 1174 // partial-destroy cleanup. 1175 if (getLangOptions().Exceptions && 1176 !ctor->getParent()->hasTrivialDestructor()) { 1177 Destroyer *destroyer = destroyCXXObject; 1178 pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer); 1179 } 1180 1181 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false, 1182 cur, argBegin, argEnd); 1183 } 1184 1185 // Go to the next element. 1186 llvm::Value *next = 1187 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1188 "arrayctor.next"); 1189 cur->addIncoming(next, Builder.GetInsertBlock()); 1190 1191 // Check whether that's the end of the loop. 1192 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1193 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1194 Builder.CreateCondBr(done, contBB, loopBB); 1195 1196 // Patch the earlier check to skip over the loop. 1197 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1198 1199 EmitBlock(contBB); 1200 } 1201 1202 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1203 llvm::Value *addr, 1204 QualType type) { 1205 const RecordType *rtype = type->castAs<RecordType>(); 1206 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1207 const CXXDestructorDecl *dtor = record->getDestructor(); 1208 assert(!dtor->isTrivial()); 1209 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1210 addr); 1211 } 1212 1213 void 1214 CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1215 CXXCtorType Type, bool ForVirtualBase, 1216 llvm::Value *This, 1217 CallExpr::const_arg_iterator ArgBeg, 1218 CallExpr::const_arg_iterator ArgEnd) { 1219 1220 CGDebugInfo *DI = getDebugInfo(); 1221 if (DI && CGM.getCodeGenOpts().LimitDebugInfo) { 1222 // If debug info for this class has not been emitted then this is the 1223 // right time to do so. 1224 const CXXRecordDecl *Parent = D->getParent(); 1225 DI->getOrCreateRecordType(CGM.getContext().getTypeDeclType(Parent), 1226 Parent->getLocation()); 1227 } 1228 1229 if (D->isTrivial()) { 1230 if (ArgBeg == ArgEnd) { 1231 // Trivial default constructor, no codegen required. 1232 assert(D->isDefaultConstructor() && 1233 "trivial 0-arg ctor not a default ctor"); 1234 return; 1235 } 1236 1237 assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor"); 1238 assert(D->isCopyOrMoveConstructor() && 1239 "trivial 1-arg ctor not a copy/move ctor"); 1240 1241 const Expr *E = (*ArgBeg); 1242 QualType Ty = E->getType(); 1243 llvm::Value *Src = EmitLValue(E).getAddress(); 1244 EmitAggregateCopy(This, Src, Ty); 1245 return; 1246 } 1247 1248 llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(D, Type), ForVirtualBase); 1249 llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type); 1250 1251 EmitCXXMemberCall(D, Callee, ReturnValueSlot(), This, VTT, ArgBeg, ArgEnd); 1252 } 1253 1254 void 1255 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1256 llvm::Value *This, llvm::Value *Src, 1257 CallExpr::const_arg_iterator ArgBeg, 1258 CallExpr::const_arg_iterator ArgEnd) { 1259 if (D->isTrivial()) { 1260 assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor"); 1261 assert(D->isCopyOrMoveConstructor() && 1262 "trivial 1-arg ctor not a copy/move ctor"); 1263 EmitAggregateCopy(This, Src, (*ArgBeg)->getType()); 1264 return; 1265 } 1266 llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, 1267 clang::Ctor_Complete); 1268 assert(D->isInstance() && 1269 "Trying to emit a member call expr on a static method!"); 1270 1271 const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>(); 1272 1273 CallArgList Args; 1274 1275 // Push the this ptr. 1276 Args.add(RValue::get(This), D->getThisType(getContext())); 1277 1278 1279 // Push the src ptr. 1280 QualType QT = *(FPT->arg_type_begin()); 1281 llvm::Type *t = CGM.getTypes().ConvertType(QT); 1282 Src = Builder.CreateBitCast(Src, t); 1283 Args.add(RValue::get(Src), QT); 1284 1285 // Skip over first argument (Src). 1286 ++ArgBeg; 1287 CallExpr::const_arg_iterator Arg = ArgBeg; 1288 for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin()+1, 1289 E = FPT->arg_type_end(); I != E; ++I, ++Arg) { 1290 assert(Arg != ArgEnd && "Running over edge of argument list!"); 1291 EmitCallArg(Args, *Arg, *I); 1292 } 1293 // Either we've emitted all the call args, or we have a call to a 1294 // variadic function. 1295 assert((Arg == ArgEnd || FPT->isVariadic()) && 1296 "Extra arguments in non-variadic function!"); 1297 // If we still have any arguments, emit them using the type of the argument. 1298 for (; Arg != ArgEnd; ++Arg) { 1299 QualType ArgType = Arg->getType(); 1300 EmitCallArg(Args, *Arg, ArgType); 1301 } 1302 1303 EmitCall(CGM.getTypes().arrangeFunctionCall(Args, FPT), Callee, 1304 ReturnValueSlot(), Args, D); 1305 } 1306 1307 void 1308 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1309 CXXCtorType CtorType, 1310 const FunctionArgList &Args) { 1311 CallArgList DelegateArgs; 1312 1313 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 1314 assert(I != E && "no parameters to constructor"); 1315 1316 // this 1317 DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType()); 1318 ++I; 1319 1320 // vtt 1321 if (llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(Ctor, CtorType), 1322 /*ForVirtualBase=*/false)) { 1323 QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy); 1324 DelegateArgs.add(RValue::get(VTT), VoidPP); 1325 1326 if (CodeGenVTables::needsVTTParameter(CurGD)) { 1327 assert(I != E && "cannot skip vtt parameter, already done with args"); 1328 assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type"); 1329 ++I; 1330 } 1331 } 1332 1333 // Explicit arguments. 1334 for (; I != E; ++I) { 1335 const VarDecl *param = *I; 1336 EmitDelegateCallArg(DelegateArgs, param); 1337 } 1338 1339 EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType), 1340 CGM.GetAddrOfCXXConstructor(Ctor, CtorType), 1341 ReturnValueSlot(), DelegateArgs, Ctor); 1342 } 1343 1344 namespace { 1345 struct CallDelegatingCtorDtor : EHScopeStack::Cleanup { 1346 const CXXDestructorDecl *Dtor; 1347 llvm::Value *Addr; 1348 CXXDtorType Type; 1349 1350 CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr, 1351 CXXDtorType Type) 1352 : Dtor(D), Addr(Addr), Type(Type) {} 1353 1354 void Emit(CodeGenFunction &CGF, Flags flags) { 1355 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 1356 Addr); 1357 } 1358 }; 1359 } 1360 1361 void 1362 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1363 const FunctionArgList &Args) { 1364 assert(Ctor->isDelegatingConstructor()); 1365 1366 llvm::Value *ThisPtr = LoadCXXThis(); 1367 1368 QualType Ty = getContext().getTagDeclType(Ctor->getParent()); 1369 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1370 AggValueSlot AggSlot = 1371 AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(), 1372 AggValueSlot::IsDestructed, 1373 AggValueSlot::DoesNotNeedGCBarriers, 1374 AggValueSlot::IsNotAliased); 1375 1376 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 1377 1378 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 1379 if (CGM.getLangOptions().Exceptions && !ClassDecl->hasTrivialDestructor()) { 1380 CXXDtorType Type = 1381 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 1382 1383 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 1384 ClassDecl->getDestructor(), 1385 ThisPtr, Type); 1386 } 1387 } 1388 1389 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 1390 CXXDtorType Type, 1391 bool ForVirtualBase, 1392 llvm::Value *This) { 1393 llvm::Value *VTT = GetVTTParameter(*this, GlobalDecl(DD, Type), 1394 ForVirtualBase); 1395 llvm::Value *Callee = 0; 1396 if (getContext().getLangOptions().AppleKext) 1397 Callee = BuildAppleKextVirtualDestructorCall(DD, Type, 1398 DD->getParent()); 1399 1400 if (!Callee) 1401 Callee = CGM.GetAddrOfCXXDestructor(DD, Type); 1402 1403 EmitCXXMemberCall(DD, Callee, ReturnValueSlot(), This, VTT, 0, 0); 1404 } 1405 1406 namespace { 1407 struct CallLocalDtor : EHScopeStack::Cleanup { 1408 const CXXDestructorDecl *Dtor; 1409 llvm::Value *Addr; 1410 1411 CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr) 1412 : Dtor(D), Addr(Addr) {} 1413 1414 void Emit(CodeGenFunction &CGF, Flags flags) { 1415 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1416 /*ForVirtualBase=*/false, Addr); 1417 } 1418 }; 1419 } 1420 1421 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 1422 llvm::Value *Addr) { 1423 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 1424 } 1425 1426 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) { 1427 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 1428 if (!ClassDecl) return; 1429 if (ClassDecl->hasTrivialDestructor()) return; 1430 1431 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 1432 assert(D && D->isUsed() && "destructor not marked as used!"); 1433 PushDestructorCleanup(D, Addr); 1434 } 1435 1436 llvm::Value * 1437 CodeGenFunction::GetVirtualBaseClassOffset(llvm::Value *This, 1438 const CXXRecordDecl *ClassDecl, 1439 const CXXRecordDecl *BaseClassDecl) { 1440 llvm::Value *VTablePtr = GetVTablePtr(This, Int8PtrTy); 1441 CharUnits VBaseOffsetOffset = 1442 CGM.getVTableContext().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl); 1443 1444 llvm::Value *VBaseOffsetPtr = 1445 Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(), 1446 "vbase.offset.ptr"); 1447 llvm::Type *PtrDiffTy = 1448 ConvertType(getContext().getPointerDiffType()); 1449 1450 VBaseOffsetPtr = Builder.CreateBitCast(VBaseOffsetPtr, 1451 PtrDiffTy->getPointerTo()); 1452 1453 llvm::Value *VBaseOffset = Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset"); 1454 1455 return VBaseOffset; 1456 } 1457 1458 void 1459 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base, 1460 const CXXRecordDecl *NearestVBase, 1461 CharUnits OffsetFromNearestVBase, 1462 llvm::Constant *VTable, 1463 const CXXRecordDecl *VTableClass) { 1464 const CXXRecordDecl *RD = Base.getBase(); 1465 1466 // Compute the address point. 1467 llvm::Value *VTableAddressPoint; 1468 1469 // Check if we need to use a vtable from the VTT. 1470 if (CodeGenVTables::needsVTTParameter(CurGD) && 1471 (RD->getNumVBases() || NearestVBase)) { 1472 // Get the secondary vpointer index. 1473 uint64_t VirtualPointerIndex = 1474 CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base); 1475 1476 /// Load the VTT. 1477 llvm::Value *VTT = LoadCXXVTT(); 1478 if (VirtualPointerIndex) 1479 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex); 1480 1481 // And load the address point from the VTT. 1482 VTableAddressPoint = Builder.CreateLoad(VTT); 1483 } else { 1484 uint64_t AddressPoint = 1485 CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base); 1486 VTableAddressPoint = 1487 Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint); 1488 } 1489 1490 // Compute where to store the address point. 1491 llvm::Value *VirtualOffset = 0; 1492 CharUnits NonVirtualOffset = CharUnits::Zero(); 1493 1494 if (CodeGenVTables::needsVTTParameter(CurGD) && NearestVBase) { 1495 // We need to use the virtual base offset offset because the virtual base 1496 // might have a different offset in the most derived class. 1497 VirtualOffset = GetVirtualBaseClassOffset(LoadCXXThis(), VTableClass, 1498 NearestVBase); 1499 NonVirtualOffset = OffsetFromNearestVBase; 1500 } else { 1501 // We can just use the base offset in the complete class. 1502 NonVirtualOffset = Base.getBaseOffset(); 1503 } 1504 1505 // Apply the offsets. 1506 llvm::Value *VTableField = LoadCXXThis(); 1507 1508 if (!NonVirtualOffset.isZero() || VirtualOffset) 1509 VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField, 1510 NonVirtualOffset, 1511 VirtualOffset); 1512 1513 // Finally, store the address point. 1514 llvm::Type *AddressPointPtrTy = 1515 VTableAddressPoint->getType()->getPointerTo(); 1516 VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy); 1517 Builder.CreateStore(VTableAddressPoint, VTableField); 1518 } 1519 1520 void 1521 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base, 1522 const CXXRecordDecl *NearestVBase, 1523 CharUnits OffsetFromNearestVBase, 1524 bool BaseIsNonVirtualPrimaryBase, 1525 llvm::Constant *VTable, 1526 const CXXRecordDecl *VTableClass, 1527 VisitedVirtualBasesSetTy& VBases) { 1528 // If this base is a non-virtual primary base the address point has already 1529 // been set. 1530 if (!BaseIsNonVirtualPrimaryBase) { 1531 // Initialize the vtable pointer for this base. 1532 InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase, 1533 VTable, VTableClass); 1534 } 1535 1536 const CXXRecordDecl *RD = Base.getBase(); 1537 1538 // Traverse bases. 1539 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), 1540 E = RD->bases_end(); I != E; ++I) { 1541 CXXRecordDecl *BaseDecl 1542 = cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl()); 1543 1544 // Ignore classes without a vtable. 1545 if (!BaseDecl->isDynamicClass()) 1546 continue; 1547 1548 CharUnits BaseOffset; 1549 CharUnits BaseOffsetFromNearestVBase; 1550 bool BaseDeclIsNonVirtualPrimaryBase; 1551 1552 if (I->isVirtual()) { 1553 // Check if we've visited this virtual base before. 1554 if (!VBases.insert(BaseDecl)) 1555 continue; 1556 1557 const ASTRecordLayout &Layout = 1558 getContext().getASTRecordLayout(VTableClass); 1559 1560 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 1561 BaseOffsetFromNearestVBase = CharUnits::Zero(); 1562 BaseDeclIsNonVirtualPrimaryBase = false; 1563 } else { 1564 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1565 1566 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 1567 BaseOffsetFromNearestVBase = 1568 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 1569 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 1570 } 1571 1572 InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset), 1573 I->isVirtual() ? BaseDecl : NearestVBase, 1574 BaseOffsetFromNearestVBase, 1575 BaseDeclIsNonVirtualPrimaryBase, 1576 VTable, VTableClass, VBases); 1577 } 1578 } 1579 1580 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 1581 // Ignore classes without a vtable. 1582 if (!RD->isDynamicClass()) 1583 return; 1584 1585 // Get the VTable. 1586 llvm::Constant *VTable = CGM.getVTables().GetAddrOfVTable(RD); 1587 1588 // Initialize the vtable pointers for this class and all of its bases. 1589 VisitedVirtualBasesSetTy VBases; 1590 InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()), 1591 /*NearestVBase=*/0, 1592 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 1593 /*BaseIsNonVirtualPrimaryBase=*/false, 1594 VTable, RD, VBases); 1595 } 1596 1597 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This, 1598 llvm::Type *Ty) { 1599 llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo()); 1600 return Builder.CreateLoad(VTablePtrSrc, "vtable"); 1601 } 1602 1603 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) { 1604 const Expr *E = Base; 1605 1606 while (true) { 1607 E = E->IgnoreParens(); 1608 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1609 if (CE->getCastKind() == CK_DerivedToBase || 1610 CE->getCastKind() == CK_UncheckedDerivedToBase || 1611 CE->getCastKind() == CK_NoOp) { 1612 E = CE->getSubExpr(); 1613 continue; 1614 } 1615 } 1616 1617 break; 1618 } 1619 1620 QualType DerivedType = E->getType(); 1621 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 1622 DerivedType = PTy->getPointeeType(); 1623 1624 return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl()); 1625 } 1626 1627 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 1628 // quite what we want. 1629 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 1630 while (true) { 1631 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 1632 E = PE->getSubExpr(); 1633 continue; 1634 } 1635 1636 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1637 if (CE->getCastKind() == CK_NoOp) { 1638 E = CE->getSubExpr(); 1639 continue; 1640 } 1641 } 1642 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1643 if (UO->getOpcode() == UO_Extension) { 1644 E = UO->getSubExpr(); 1645 continue; 1646 } 1647 } 1648 return E; 1649 } 1650 } 1651 1652 /// canDevirtualizeMemberFunctionCall - Checks whether the given virtual member 1653 /// function call on the given expr can be devirtualized. 1654 static bool canDevirtualizeMemberFunctionCall(const Expr *Base, 1655 const CXXMethodDecl *MD) { 1656 // If the most derived class is marked final, we know that no subclass can 1657 // override this member function and so we can devirtualize it. For example: 1658 // 1659 // struct A { virtual void f(); } 1660 // struct B final : A { }; 1661 // 1662 // void f(B *b) { 1663 // b->f(); 1664 // } 1665 // 1666 const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base); 1667 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 1668 return true; 1669 1670 // If the member function is marked 'final', we know that it can't be 1671 // overridden and can therefore devirtualize it. 1672 if (MD->hasAttr<FinalAttr>()) 1673 return true; 1674 1675 // Similarly, if the class itself is marked 'final' it can't be overridden 1676 // and we can therefore devirtualize the member function call. 1677 if (MD->getParent()->hasAttr<FinalAttr>()) 1678 return true; 1679 1680 Base = skipNoOpCastsAndParens(Base); 1681 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 1682 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 1683 // This is a record decl. We know the type and can devirtualize it. 1684 return VD->getType()->isRecordType(); 1685 } 1686 1687 return false; 1688 } 1689 1690 // We can always devirtualize calls on temporary object expressions. 1691 if (isa<CXXConstructExpr>(Base)) 1692 return true; 1693 1694 // And calls on bound temporaries. 1695 if (isa<CXXBindTemporaryExpr>(Base)) 1696 return true; 1697 1698 // Check if this is a call expr that returns a record type. 1699 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 1700 return CE->getCallReturnType()->isRecordType(); 1701 1702 // We can't devirtualize the call. 1703 return false; 1704 } 1705 1706 static bool UseVirtualCall(ASTContext &Context, 1707 const CXXOperatorCallExpr *CE, 1708 const CXXMethodDecl *MD) { 1709 if (!MD->isVirtual()) 1710 return false; 1711 1712 // When building with -fapple-kext, all calls must go through the vtable since 1713 // the kernel linker can do runtime patching of vtables. 1714 if (Context.getLangOptions().AppleKext) 1715 return true; 1716 1717 return !canDevirtualizeMemberFunctionCall(CE->getArg(0), MD); 1718 } 1719 1720 llvm::Value * 1721 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 1722 const CXXMethodDecl *MD, 1723 llvm::Value *This) { 1724 llvm::FunctionType *fnType = 1725 CGM.getTypes().GetFunctionType( 1726 CGM.getTypes().arrangeCXXMethodDeclaration(MD)); 1727 1728 if (UseVirtualCall(getContext(), E, MD)) 1729 return BuildVirtualCall(MD, This, fnType); 1730 1731 return CGM.GetAddrOfFunction(MD, fnType); 1732 } 1733 1734 void CodeGenFunction::EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1735 CallArgList &CallArgs) { 1736 // Lookup the call operator 1737 DeclarationName Name 1738 = getContext().DeclarationNames.getCXXOperatorName(OO_Call); 1739 DeclContext::lookup_const_result Calls = Lambda->lookup(Name); 1740 CXXMethodDecl *CallOperator = cast<CXXMethodDecl>(*Calls.first++); 1741 const FunctionProtoType *FPT = 1742 CallOperator->getType()->getAs<FunctionProtoType>(); 1743 QualType ResultType = FPT->getResultType(); 1744 1745 // Get the address of the call operator. 1746 GlobalDecl GD(CallOperator); 1747 const CGFunctionInfo &CalleeFnInfo = 1748 CGM.getTypes().arrangeFunctionCall(ResultType, CallArgs, FPT->getExtInfo(), 1749 RequiredArgs::forPrototypePlus(FPT, 1)); 1750 llvm::Type *Ty = CGM.getTypes().GetFunctionType(CalleeFnInfo); 1751 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty); 1752 1753 // Determine whether we have a return value slot to use. 1754 ReturnValueSlot Slot; 1755 if (!ResultType->isVoidType() && 1756 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1757 hasAggregateLLVMType(CurFnInfo->getReturnType())) 1758 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 1759 1760 // Now emit our call. 1761 RValue RV = EmitCall(CalleeFnInfo, Callee, Slot, CallArgs, CallOperator); 1762 1763 // Forward the returned value 1764 if (!ResultType->isVoidType() && Slot.isNull()) 1765 EmitReturnOfRValue(RV, ResultType); 1766 } 1767 1768 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 1769 const BlockDecl *BD = BlockInfo->getBlockDecl(); 1770 const VarDecl *variable = BD->capture_begin()->getVariable(); 1771 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 1772 1773 // Start building arguments for forwarding call 1774 CallArgList CallArgs; 1775 1776 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 1777 llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false); 1778 CallArgs.add(RValue::get(ThisPtr), ThisType); 1779 1780 // Add the rest of the parameters. 1781 for (BlockDecl::param_const_iterator I = BD->param_begin(), 1782 E = BD->param_end(); I != E; ++I) { 1783 ParmVarDecl *param = *I; 1784 EmitDelegateCallArg(CallArgs, param); 1785 } 1786 1787 EmitForwardingCallToLambda(Lambda, CallArgs); 1788 } 1789 1790 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 1791 if (cast<CXXMethodDecl>(CurFuncDecl)->isVariadic()) { 1792 // FIXME: Making this work correctly is nasty because it requires either 1793 // cloning the body of the call operator or making the call operator forward. 1794 CGM.ErrorUnsupported(CurFuncDecl, "lambda conversion to variadic function"); 1795 return; 1796 } 1797 1798 EmitFunctionBody(Args); 1799 } 1800 1801 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 1802 const CXXRecordDecl *Lambda = MD->getParent(); 1803 1804 // Start building arguments for forwarding call 1805 CallArgList CallArgs; 1806 1807 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 1808 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 1809 CallArgs.add(RValue::get(ThisPtr), ThisType); 1810 1811 // Add the rest of the parameters. 1812 for (FunctionDecl::param_const_iterator I = MD->param_begin(), 1813 E = MD->param_end(); I != E; ++I) { 1814 ParmVarDecl *param = *I; 1815 EmitDelegateCallArg(CallArgs, param); 1816 } 1817 1818 EmitForwardingCallToLambda(Lambda, CallArgs); 1819 } 1820 1821 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 1822 if (MD->isVariadic()) { 1823 // FIXME: Making this work correctly is nasty because it requires either 1824 // cloning the body of the call operator or making the call operator forward. 1825 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 1826 return; 1827 } 1828 1829 EmitLambdaDelegatingInvokeBody(MD); 1830 } 1831