1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/CodeGenOptions.h" 25 #include "clang/Basic/TargetBuiltins.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 LValueBaseInfo *BaseInfo, 133 TBAAAccessInfo *TBAAInfo) { 134 // Ask the ABI to compute the actual address. 135 llvm::Value *ptr = 136 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 137 memberPtr, memberPtrType); 138 139 QualType memberType = memberPtrType->getPointeeType(); 140 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo, 141 TBAAInfo); 142 memberAlign = 143 CGM.getDynamicOffsetAlignment(base.getAlignment(), 144 memberPtrType->getClass()->getAsCXXRecordDecl(), 145 memberAlign); 146 return Address(ptr, memberAlign); 147 } 148 149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 150 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 151 CastExpr::path_const_iterator End) { 152 CharUnits Offset = CharUnits::Zero(); 153 154 const ASTContext &Context = getContext(); 155 const CXXRecordDecl *RD = DerivedClass; 156 157 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 158 const CXXBaseSpecifier *Base = *I; 159 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 160 161 // Get the layout. 162 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 163 164 const CXXRecordDecl *BaseDecl = 165 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 166 167 // Add the offset. 168 Offset += Layout.getBaseClassOffset(BaseDecl); 169 170 RD = BaseDecl; 171 } 172 173 return Offset; 174 } 175 176 llvm::Constant * 177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 178 CastExpr::path_const_iterator PathBegin, 179 CastExpr::path_const_iterator PathEnd) { 180 assert(PathBegin != PathEnd && "Base path should not be empty!"); 181 182 CharUnits Offset = 183 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 184 if (Offset.isZero()) 185 return nullptr; 186 187 llvm::Type *PtrDiffTy = 188 Types.ConvertType(getContext().getPointerDiffType()); 189 190 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 191 } 192 193 /// Gets the address of a direct base class within a complete object. 194 /// This should only be used for (1) non-virtual bases or (2) virtual bases 195 /// when the type is known to be complete (e.g. in complete destructors). 196 /// 197 /// The object pointed to by 'This' is assumed to be non-null. 198 Address 199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 200 const CXXRecordDecl *Derived, 201 const CXXRecordDecl *Base, 202 bool BaseIsVirtual) { 203 // 'this' must be a pointer (in some address space) to Derived. 204 assert(This.getElementType() == ConvertType(Derived)); 205 206 // Compute the offset of the virtual base. 207 CharUnits Offset; 208 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 209 if (BaseIsVirtual) 210 Offset = Layout.getVBaseClassOffset(Base); 211 else 212 Offset = Layout.getBaseClassOffset(Base); 213 214 // Shift and cast down to the base type. 215 // TODO: for complete types, this should be possible with a GEP. 216 Address V = This; 217 if (!Offset.isZero()) { 218 V = Builder.CreateElementBitCast(V, Int8Ty); 219 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 220 } 221 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 222 223 return V; 224 } 225 226 static Address 227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 228 CharUnits nonVirtualOffset, 229 llvm::Value *virtualOffset, 230 const CXXRecordDecl *derivedClass, 231 const CXXRecordDecl *nearestVBase) { 232 // Assert that we have something to do. 233 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 234 235 // Compute the offset from the static and dynamic components. 236 llvm::Value *baseOffset; 237 if (!nonVirtualOffset.isZero()) { 238 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 239 nonVirtualOffset.getQuantity()); 240 if (virtualOffset) { 241 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 242 } 243 } else { 244 baseOffset = virtualOffset; 245 } 246 247 // Apply the base offset. 248 llvm::Value *ptr = addr.getPointer(); 249 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 250 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 251 252 // If we have a virtual component, the alignment of the result will 253 // be relative only to the known alignment of that vbase. 254 CharUnits alignment; 255 if (virtualOffset) { 256 assert(nearestVBase && "virtual offset without vbase?"); 257 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 258 derivedClass, nearestVBase); 259 } else { 260 alignment = addr.getAlignment(); 261 } 262 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 263 264 return Address(ptr, alignment); 265 } 266 267 Address CodeGenFunction::GetAddressOfBaseClass( 268 Address Value, const CXXRecordDecl *Derived, 269 CastExpr::path_const_iterator PathBegin, 270 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 271 SourceLocation Loc) { 272 assert(PathBegin != PathEnd && "Base path should not be empty!"); 273 274 CastExpr::path_const_iterator Start = PathBegin; 275 const CXXRecordDecl *VBase = nullptr; 276 277 // Sema has done some convenient canonicalization here: if the 278 // access path involved any virtual steps, the conversion path will 279 // *start* with a step down to the correct virtual base subobject, 280 // and hence will not require any further steps. 281 if ((*Start)->isVirtual()) { 282 VBase = 283 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 284 ++Start; 285 } 286 287 // Compute the static offset of the ultimate destination within its 288 // allocating subobject (the virtual base, if there is one, or else 289 // the "complete" object that we see). 290 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 291 VBase ? VBase : Derived, Start, PathEnd); 292 293 // If there's a virtual step, we can sometimes "devirtualize" it. 294 // For now, that's limited to when the derived type is final. 295 // TODO: "devirtualize" this for accesses to known-complete objects. 296 if (VBase && Derived->hasAttr<FinalAttr>()) { 297 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 298 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 299 NonVirtualOffset += vBaseOffset; 300 VBase = nullptr; // we no longer have a virtual step 301 } 302 303 // Get the base pointer type. 304 llvm::Type *BasePtrTy = 305 ConvertType((PathEnd[-1])->getType()) 306 ->getPointerTo(Value.getType()->getPointerAddressSpace()); 307 308 QualType DerivedTy = getContext().getRecordType(Derived); 309 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 310 311 // If the static offset is zero and we don't have a virtual step, 312 // just do a bitcast; null checks are unnecessary. 313 if (NonVirtualOffset.isZero() && !VBase) { 314 if (sanitizePerformTypeCheck()) { 315 SanitizerSet SkippedChecks; 316 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 317 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 318 DerivedTy, DerivedAlign, SkippedChecks); 319 } 320 return Builder.CreateBitCast(Value, BasePtrTy); 321 } 322 323 llvm::BasicBlock *origBB = nullptr; 324 llvm::BasicBlock *endBB = nullptr; 325 326 // Skip over the offset (and the vtable load) if we're supposed to 327 // null-check the pointer. 328 if (NullCheckValue) { 329 origBB = Builder.GetInsertBlock(); 330 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 331 endBB = createBasicBlock("cast.end"); 332 333 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 334 Builder.CreateCondBr(isNull, endBB, notNullBB); 335 EmitBlock(notNullBB); 336 } 337 338 if (sanitizePerformTypeCheck()) { 339 SanitizerSet SkippedChecks; 340 SkippedChecks.set(SanitizerKind::Null, true); 341 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 342 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 343 } 344 345 // Compute the virtual offset. 346 llvm::Value *VirtualOffset = nullptr; 347 if (VBase) { 348 VirtualOffset = 349 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 350 } 351 352 // Apply both offsets. 353 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 354 VirtualOffset, Derived, VBase); 355 356 // Cast to the destination type. 357 Value = Builder.CreateBitCast(Value, BasePtrTy); 358 359 // Build a phi if we needed a null check. 360 if (NullCheckValue) { 361 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 362 Builder.CreateBr(endBB); 363 EmitBlock(endBB); 364 365 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 366 PHI->addIncoming(Value.getPointer(), notNullBB); 367 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 368 Value = Address(PHI, Value.getAlignment()); 369 } 370 371 return Value; 372 } 373 374 Address 375 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 376 const CXXRecordDecl *Derived, 377 CastExpr::path_const_iterator PathBegin, 378 CastExpr::path_const_iterator PathEnd, 379 bool NullCheckValue) { 380 assert(PathBegin != PathEnd && "Base path should not be empty!"); 381 382 QualType DerivedTy = 383 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 384 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 385 386 llvm::Value *NonVirtualOffset = 387 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 388 389 if (!NonVirtualOffset) { 390 // No offset, we can just cast back. 391 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 392 } 393 394 llvm::BasicBlock *CastNull = nullptr; 395 llvm::BasicBlock *CastNotNull = nullptr; 396 llvm::BasicBlock *CastEnd = nullptr; 397 398 if (NullCheckValue) { 399 CastNull = createBasicBlock("cast.null"); 400 CastNotNull = createBasicBlock("cast.notnull"); 401 CastEnd = createBasicBlock("cast.end"); 402 403 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 404 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 405 EmitBlock(CastNotNull); 406 } 407 408 // Apply the offset. 409 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 410 Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset), 411 "sub.ptr"); 412 413 // Just cast. 414 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 415 416 // Produce a PHI if we had a null-check. 417 if (NullCheckValue) { 418 Builder.CreateBr(CastEnd); 419 EmitBlock(CastNull); 420 Builder.CreateBr(CastEnd); 421 EmitBlock(CastEnd); 422 423 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 424 PHI->addIncoming(Value, CastNotNull); 425 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 426 Value = PHI; 427 } 428 429 return Address(Value, CGM.getClassPointerAlignment(Derived)); 430 } 431 432 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 433 bool ForVirtualBase, 434 bool Delegating) { 435 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 436 // This constructor/destructor does not need a VTT parameter. 437 return nullptr; 438 } 439 440 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 441 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 442 443 llvm::Value *VTT; 444 445 uint64_t SubVTTIndex; 446 447 if (Delegating) { 448 // If this is a delegating constructor call, just load the VTT. 449 return LoadCXXVTT(); 450 } else if (RD == Base) { 451 // If the record matches the base, this is the complete ctor/dtor 452 // variant calling the base variant in a class with virtual bases. 453 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 454 "doing no-op VTT offset in base dtor/ctor?"); 455 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 456 SubVTTIndex = 0; 457 } else { 458 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 459 CharUnits BaseOffset = ForVirtualBase ? 460 Layout.getVBaseClassOffset(Base) : 461 Layout.getBaseClassOffset(Base); 462 463 SubVTTIndex = 464 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 465 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 466 } 467 468 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 469 // A VTT parameter was passed to the constructor, use it. 470 VTT = LoadCXXVTT(); 471 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 472 } else { 473 // We're the complete constructor, so get the VTT by name. 474 VTT = CGM.getVTables().GetAddrOfVTT(RD); 475 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 476 } 477 478 return VTT; 479 } 480 481 namespace { 482 /// Call the destructor for a direct base class. 483 struct CallBaseDtor final : EHScopeStack::Cleanup { 484 const CXXRecordDecl *BaseClass; 485 bool BaseIsVirtual; 486 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 487 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 488 489 void Emit(CodeGenFunction &CGF, Flags flags) override { 490 const CXXRecordDecl *DerivedClass = 491 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 492 493 const CXXDestructorDecl *D = BaseClass->getDestructor(); 494 Address Addr = 495 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 496 DerivedClass, BaseClass, 497 BaseIsVirtual); 498 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 499 /*Delegating=*/false, Addr); 500 } 501 }; 502 503 /// A visitor which checks whether an initializer uses 'this' in a 504 /// way which requires the vtable to be properly set. 505 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 506 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 507 508 bool UsesThis; 509 510 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 511 512 // Black-list all explicit and implicit references to 'this'. 513 // 514 // Do we need to worry about external references to 'this' derived 515 // from arbitrary code? If so, then anything which runs arbitrary 516 // external code might potentially access the vtable. 517 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 518 }; 519 } // end anonymous namespace 520 521 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 522 DynamicThisUseChecker Checker(C); 523 Checker.Visit(Init); 524 return Checker.UsesThis; 525 } 526 527 static void EmitBaseInitializer(CodeGenFunction &CGF, 528 const CXXRecordDecl *ClassDecl, 529 CXXCtorInitializer *BaseInit) { 530 assert(BaseInit->isBaseInitializer() && 531 "Must have base initializer!"); 532 533 Address ThisPtr = CGF.LoadCXXThisAddress(); 534 535 const Type *BaseType = BaseInit->getBaseClass(); 536 CXXRecordDecl *BaseClassDecl = 537 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 538 539 bool isBaseVirtual = BaseInit->isBaseVirtual(); 540 541 // If the initializer for the base (other than the constructor 542 // itself) accesses 'this' in any way, we need to initialize the 543 // vtables. 544 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 545 CGF.InitializeVTablePointers(ClassDecl); 546 547 // We can pretend to be a complete class because it only matters for 548 // virtual bases, and we only do virtual bases for complete ctors. 549 Address V = 550 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 551 BaseClassDecl, 552 isBaseVirtual); 553 AggValueSlot AggSlot = 554 AggValueSlot::forAddr( 555 V, Qualifiers(), 556 AggValueSlot::IsDestructed, 557 AggValueSlot::DoesNotNeedGCBarriers, 558 AggValueSlot::IsNotAliased, 559 CGF.overlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 560 561 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 562 563 if (CGF.CGM.getLangOpts().Exceptions && 564 !BaseClassDecl->hasTrivialDestructor()) 565 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 566 isBaseVirtual); 567 } 568 569 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 570 auto *CD = dyn_cast<CXXConstructorDecl>(D); 571 if (!(CD && CD->isCopyOrMoveConstructor()) && 572 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 573 return false; 574 575 // We can emit a memcpy for a trivial copy or move constructor/assignment. 576 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 577 return true; 578 579 // We *must* emit a memcpy for a defaulted union copy or move op. 580 if (D->getParent()->isUnion() && D->isDefaulted()) 581 return true; 582 583 return false; 584 } 585 586 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 587 CXXCtorInitializer *MemberInit, 588 LValue &LHS) { 589 FieldDecl *Field = MemberInit->getAnyMember(); 590 if (MemberInit->isIndirectMemberInitializer()) { 591 // If we are initializing an anonymous union field, drill down to the field. 592 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 593 for (const auto *I : IndirectField->chain()) 594 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 595 } else { 596 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 597 } 598 } 599 600 static void EmitMemberInitializer(CodeGenFunction &CGF, 601 const CXXRecordDecl *ClassDecl, 602 CXXCtorInitializer *MemberInit, 603 const CXXConstructorDecl *Constructor, 604 FunctionArgList &Args) { 605 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 606 assert(MemberInit->isAnyMemberInitializer() && 607 "Must have member initializer!"); 608 assert(MemberInit->getInit() && "Must have initializer!"); 609 610 // non-static data member initializers. 611 FieldDecl *Field = MemberInit->getAnyMember(); 612 QualType FieldType = Field->getType(); 613 614 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 615 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 616 LValue LHS; 617 618 // If a base constructor is being emitted, create an LValue that has the 619 // non-virtual alignment. 620 if (CGF.CurGD.getCtorType() == Ctor_Base) 621 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 622 else 623 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 624 625 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 626 627 // Special case: if we are in a copy or move constructor, and we are copying 628 // an array of PODs or classes with trivial copy constructors, ignore the 629 // AST and perform the copy we know is equivalent. 630 // FIXME: This is hacky at best... if we had a bit more explicit information 631 // in the AST, we could generalize it more easily. 632 const ConstantArrayType *Array 633 = CGF.getContext().getAsConstantArrayType(FieldType); 634 if (Array && Constructor->isDefaulted() && 635 Constructor->isCopyOrMoveConstructor()) { 636 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 637 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 638 if (BaseElementTy.isPODType(CGF.getContext()) || 639 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 640 unsigned SrcArgIndex = 641 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 642 llvm::Value *SrcPtr 643 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 644 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 645 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 646 647 // Copy the aggregate. 648 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.overlapForFieldInit(Field), 649 LHS.isVolatileQualified()); 650 // Ensure that we destroy the objects if an exception is thrown later in 651 // the constructor. 652 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 653 if (CGF.needsEHCleanup(dtorKind)) 654 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 655 return; 656 } 657 } 658 659 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 660 } 661 662 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 663 Expr *Init) { 664 QualType FieldType = Field->getType(); 665 switch (getEvaluationKind(FieldType)) { 666 case TEK_Scalar: 667 if (LHS.isSimple()) { 668 EmitExprAsInit(Init, Field, LHS, false); 669 } else { 670 RValue RHS = RValue::get(EmitScalarExpr(Init)); 671 EmitStoreThroughLValue(RHS, LHS); 672 } 673 break; 674 case TEK_Complex: 675 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 676 break; 677 case TEK_Aggregate: { 678 AggValueSlot Slot = 679 AggValueSlot::forLValue( 680 LHS, 681 AggValueSlot::IsDestructed, 682 AggValueSlot::DoesNotNeedGCBarriers, 683 AggValueSlot::IsNotAliased, 684 overlapForFieldInit(Field), 685 AggValueSlot::IsNotZeroed, 686 // Checks are made by the code that calls constructor. 687 AggValueSlot::IsSanitizerChecked); 688 EmitAggExpr(Init, Slot); 689 break; 690 } 691 } 692 693 // Ensure that we destroy this object if an exception is thrown 694 // later in the constructor. 695 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 696 if (needsEHCleanup(dtorKind)) 697 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 698 } 699 700 /// Checks whether the given constructor is a valid subject for the 701 /// complete-to-base constructor delegation optimization, i.e. 702 /// emitting the complete constructor as a simple call to the base 703 /// constructor. 704 bool CodeGenFunction::IsConstructorDelegationValid( 705 const CXXConstructorDecl *Ctor) { 706 707 // Currently we disable the optimization for classes with virtual 708 // bases because (1) the addresses of parameter variables need to be 709 // consistent across all initializers but (2) the delegate function 710 // call necessarily creates a second copy of the parameter variable. 711 // 712 // The limiting example (purely theoretical AFAIK): 713 // struct A { A(int &c) { c++; } }; 714 // struct B : virtual A { 715 // B(int count) : A(count) { printf("%d\n", count); } 716 // }; 717 // ...although even this example could in principle be emitted as a 718 // delegation since the address of the parameter doesn't escape. 719 if (Ctor->getParent()->getNumVBases()) { 720 // TODO: white-list trivial vbase initializers. This case wouldn't 721 // be subject to the restrictions below. 722 723 // TODO: white-list cases where: 724 // - there are no non-reference parameters to the constructor 725 // - the initializers don't access any non-reference parameters 726 // - the initializers don't take the address of non-reference 727 // parameters 728 // - etc. 729 // If we ever add any of the above cases, remember that: 730 // - function-try-blocks will always blacklist this optimization 731 // - we need to perform the constructor prologue and cleanup in 732 // EmitConstructorBody. 733 734 return false; 735 } 736 737 // We also disable the optimization for variadic functions because 738 // it's impossible to "re-pass" varargs. 739 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 740 return false; 741 742 // FIXME: Decide if we can do a delegation of a delegating constructor. 743 if (Ctor->isDelegatingConstructor()) 744 return false; 745 746 return true; 747 } 748 749 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 750 // to poison the extra field paddings inserted under 751 // -fsanitize-address-field-padding=1|2. 752 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 753 ASTContext &Context = getContext(); 754 const CXXRecordDecl *ClassDecl = 755 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 756 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 757 if (!ClassDecl->mayInsertExtraPadding()) return; 758 759 struct SizeAndOffset { 760 uint64_t Size; 761 uint64_t Offset; 762 }; 763 764 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 765 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 766 767 // Populate sizes and offsets of fields. 768 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 769 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 770 SSV[i].Offset = 771 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 772 773 size_t NumFields = 0; 774 for (const auto *Field : ClassDecl->fields()) { 775 const FieldDecl *D = Field; 776 std::pair<CharUnits, CharUnits> FieldInfo = 777 Context.getTypeInfoInChars(D->getType()); 778 CharUnits FieldSize = FieldInfo.first; 779 assert(NumFields < SSV.size()); 780 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 781 NumFields++; 782 } 783 assert(NumFields == SSV.size()); 784 if (SSV.size() <= 1) return; 785 786 // We will insert calls to __asan_* run-time functions. 787 // LLVM AddressSanitizer pass may decide to inline them later. 788 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 789 llvm::FunctionType *FTy = 790 llvm::FunctionType::get(CGM.VoidTy, Args, false); 791 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 792 FTy, Prologue ? "__asan_poison_intra_object_redzone" 793 : "__asan_unpoison_intra_object_redzone"); 794 795 llvm::Value *ThisPtr = LoadCXXThis(); 796 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 797 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 798 // For each field check if it has sufficient padding, 799 // if so (un)poison it with a call. 800 for (size_t i = 0; i < SSV.size(); i++) { 801 uint64_t AsanAlignment = 8; 802 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 803 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 804 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 805 if (PoisonSize < AsanAlignment || !SSV[i].Size || 806 (NextField % AsanAlignment) != 0) 807 continue; 808 Builder.CreateCall( 809 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 810 Builder.getIntN(PtrSize, PoisonSize)}); 811 } 812 } 813 814 /// EmitConstructorBody - Emits the body of the current constructor. 815 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 816 EmitAsanPrologueOrEpilogue(true); 817 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 818 CXXCtorType CtorType = CurGD.getCtorType(); 819 820 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 821 CtorType == Ctor_Complete) && 822 "can only generate complete ctor for this ABI"); 823 824 // Before we go any further, try the complete->base constructor 825 // delegation optimization. 826 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 827 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 828 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 829 return; 830 } 831 832 const FunctionDecl *Definition = nullptr; 833 Stmt *Body = Ctor->getBody(Definition); 834 assert(Definition == Ctor && "emitting wrong constructor body"); 835 836 // Enter the function-try-block before the constructor prologue if 837 // applicable. 838 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 839 if (IsTryBody) 840 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 841 842 incrementProfileCounter(Body); 843 844 RunCleanupsScope RunCleanups(*this); 845 846 // TODO: in restricted cases, we can emit the vbase initializers of 847 // a complete ctor and then delegate to the base ctor. 848 849 // Emit the constructor prologue, i.e. the base and member 850 // initializers. 851 EmitCtorPrologue(Ctor, CtorType, Args); 852 853 // Emit the body of the statement. 854 if (IsTryBody) 855 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 856 else if (Body) 857 EmitStmt(Body); 858 859 // Emit any cleanup blocks associated with the member or base 860 // initializers, which includes (along the exceptional path) the 861 // destructors for those members and bases that were fully 862 // constructed. 863 RunCleanups.ForceCleanup(); 864 865 if (IsTryBody) 866 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 867 } 868 869 namespace { 870 /// RAII object to indicate that codegen is copying the value representation 871 /// instead of the object representation. Useful when copying a struct or 872 /// class which has uninitialized members and we're only performing 873 /// lvalue-to-rvalue conversion on the object but not its members. 874 class CopyingValueRepresentation { 875 public: 876 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 877 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 878 CGF.SanOpts.set(SanitizerKind::Bool, false); 879 CGF.SanOpts.set(SanitizerKind::Enum, false); 880 } 881 ~CopyingValueRepresentation() { 882 CGF.SanOpts = OldSanOpts; 883 } 884 private: 885 CodeGenFunction &CGF; 886 SanitizerSet OldSanOpts; 887 }; 888 } // end anonymous namespace 889 890 namespace { 891 class FieldMemcpyizer { 892 public: 893 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 894 const VarDecl *SrcRec) 895 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 896 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 897 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 898 LastFieldOffset(0), LastAddedFieldIndex(0) {} 899 900 bool isMemcpyableField(FieldDecl *F) const { 901 // Never memcpy fields when we are adding poisoned paddings. 902 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 903 return false; 904 Qualifiers Qual = F->getType().getQualifiers(); 905 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 906 return false; 907 return true; 908 } 909 910 void addMemcpyableField(FieldDecl *F) { 911 if (!FirstField) 912 addInitialField(F); 913 else 914 addNextField(F); 915 } 916 917 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 918 ASTContext &Ctx = CGF.getContext(); 919 unsigned LastFieldSize = 920 LastField->isBitField() 921 ? LastField->getBitWidthValue(Ctx) 922 : Ctx.toBits( 923 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first); 924 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 925 FirstByteOffset + Ctx.getCharWidth() - 1; 926 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 927 return MemcpySize; 928 } 929 930 void emitMemcpy() { 931 // Give the subclass a chance to bail out if it feels the memcpy isn't 932 // worth it (e.g. Hasn't aggregated enough data). 933 if (!FirstField) { 934 return; 935 } 936 937 uint64_t FirstByteOffset; 938 if (FirstField->isBitField()) { 939 const CGRecordLayout &RL = 940 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 941 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 942 // FirstFieldOffset is not appropriate for bitfields, 943 // we need to use the storage offset instead. 944 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 945 } else { 946 FirstByteOffset = FirstFieldOffset; 947 } 948 949 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 950 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 951 Address ThisPtr = CGF.LoadCXXThisAddress(); 952 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 953 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 954 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 955 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 956 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 957 958 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 959 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 960 MemcpySize); 961 reset(); 962 } 963 964 void reset() { 965 FirstField = nullptr; 966 } 967 968 protected: 969 CodeGenFunction &CGF; 970 const CXXRecordDecl *ClassDecl; 971 972 private: 973 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 974 llvm::PointerType *DPT = DestPtr.getType(); 975 llvm::Type *DBP = 976 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 977 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 978 979 llvm::PointerType *SPT = SrcPtr.getType(); 980 llvm::Type *SBP = 981 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 982 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 983 984 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 985 } 986 987 void addInitialField(FieldDecl *F) { 988 FirstField = F; 989 LastField = F; 990 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 991 LastFieldOffset = FirstFieldOffset; 992 LastAddedFieldIndex = F->getFieldIndex(); 993 } 994 995 void addNextField(FieldDecl *F) { 996 // For the most part, the following invariant will hold: 997 // F->getFieldIndex() == LastAddedFieldIndex + 1 998 // The one exception is that Sema won't add a copy-initializer for an 999 // unnamed bitfield, which will show up here as a gap in the sequence. 1000 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1001 "Cannot aggregate fields out of order."); 1002 LastAddedFieldIndex = F->getFieldIndex(); 1003 1004 // The 'first' and 'last' fields are chosen by offset, rather than field 1005 // index. This allows the code to support bitfields, as well as regular 1006 // fields. 1007 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1008 if (FOffset < FirstFieldOffset) { 1009 FirstField = F; 1010 FirstFieldOffset = FOffset; 1011 } else if (FOffset > LastFieldOffset) { 1012 LastField = F; 1013 LastFieldOffset = FOffset; 1014 } 1015 } 1016 1017 const VarDecl *SrcRec; 1018 const ASTRecordLayout &RecLayout; 1019 FieldDecl *FirstField; 1020 FieldDecl *LastField; 1021 uint64_t FirstFieldOffset, LastFieldOffset; 1022 unsigned LastAddedFieldIndex; 1023 }; 1024 1025 class ConstructorMemcpyizer : public FieldMemcpyizer { 1026 private: 1027 /// Get source argument for copy constructor. Returns null if not a copy 1028 /// constructor. 1029 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1030 const CXXConstructorDecl *CD, 1031 FunctionArgList &Args) { 1032 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1033 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1034 return nullptr; 1035 } 1036 1037 // Returns true if a CXXCtorInitializer represents a member initialization 1038 // that can be rolled into a memcpy. 1039 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1040 if (!MemcpyableCtor) 1041 return false; 1042 FieldDecl *Field = MemberInit->getMember(); 1043 assert(Field && "No field for member init."); 1044 QualType FieldType = Field->getType(); 1045 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1046 1047 // Bail out on non-memcpyable, not-trivially-copyable members. 1048 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1049 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1050 FieldType->isReferenceType())) 1051 return false; 1052 1053 // Bail out on volatile fields. 1054 if (!isMemcpyableField(Field)) 1055 return false; 1056 1057 // Otherwise we're good. 1058 return true; 1059 } 1060 1061 public: 1062 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1063 FunctionArgList &Args) 1064 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1065 ConstructorDecl(CD), 1066 MemcpyableCtor(CD->isDefaulted() && 1067 CD->isCopyOrMoveConstructor() && 1068 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1069 Args(Args) { } 1070 1071 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1072 if (isMemberInitMemcpyable(MemberInit)) { 1073 AggregatedInits.push_back(MemberInit); 1074 addMemcpyableField(MemberInit->getMember()); 1075 } else { 1076 emitAggregatedInits(); 1077 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1078 ConstructorDecl, Args); 1079 } 1080 } 1081 1082 void emitAggregatedInits() { 1083 if (AggregatedInits.size() <= 1) { 1084 // This memcpy is too small to be worthwhile. Fall back on default 1085 // codegen. 1086 if (!AggregatedInits.empty()) { 1087 CopyingValueRepresentation CVR(CGF); 1088 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1089 AggregatedInits[0], ConstructorDecl, Args); 1090 AggregatedInits.clear(); 1091 } 1092 reset(); 1093 return; 1094 } 1095 1096 pushEHDestructors(); 1097 emitMemcpy(); 1098 AggregatedInits.clear(); 1099 } 1100 1101 void pushEHDestructors() { 1102 Address ThisPtr = CGF.LoadCXXThisAddress(); 1103 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1104 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1105 1106 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1107 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1108 QualType FieldType = MemberInit->getAnyMember()->getType(); 1109 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1110 if (!CGF.needsEHCleanup(dtorKind)) 1111 continue; 1112 LValue FieldLHS = LHS; 1113 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1114 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1115 } 1116 } 1117 1118 void finish() { 1119 emitAggregatedInits(); 1120 } 1121 1122 private: 1123 const CXXConstructorDecl *ConstructorDecl; 1124 bool MemcpyableCtor; 1125 FunctionArgList &Args; 1126 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1127 }; 1128 1129 class AssignmentMemcpyizer : public FieldMemcpyizer { 1130 private: 1131 // Returns the memcpyable field copied by the given statement, if one 1132 // exists. Otherwise returns null. 1133 FieldDecl *getMemcpyableField(Stmt *S) { 1134 if (!AssignmentsMemcpyable) 1135 return nullptr; 1136 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1137 // Recognise trivial assignments. 1138 if (BO->getOpcode() != BO_Assign) 1139 return nullptr; 1140 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1141 if (!ME) 1142 return nullptr; 1143 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1144 if (!Field || !isMemcpyableField(Field)) 1145 return nullptr; 1146 Stmt *RHS = BO->getRHS(); 1147 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1148 RHS = EC->getSubExpr(); 1149 if (!RHS) 1150 return nullptr; 1151 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1152 if (ME2->getMemberDecl() == Field) 1153 return Field; 1154 } 1155 return nullptr; 1156 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1157 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1158 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1159 return nullptr; 1160 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1161 if (!IOA) 1162 return nullptr; 1163 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1164 if (!Field || !isMemcpyableField(Field)) 1165 return nullptr; 1166 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1167 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1168 return nullptr; 1169 return Field; 1170 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1171 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1172 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1173 return nullptr; 1174 Expr *DstPtr = CE->getArg(0); 1175 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1176 DstPtr = DC->getSubExpr(); 1177 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1178 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1179 return nullptr; 1180 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1181 if (!ME) 1182 return nullptr; 1183 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1184 if (!Field || !isMemcpyableField(Field)) 1185 return nullptr; 1186 Expr *SrcPtr = CE->getArg(1); 1187 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1188 SrcPtr = SC->getSubExpr(); 1189 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1190 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1191 return nullptr; 1192 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1193 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1194 return nullptr; 1195 return Field; 1196 } 1197 1198 return nullptr; 1199 } 1200 1201 bool AssignmentsMemcpyable; 1202 SmallVector<Stmt*, 16> AggregatedStmts; 1203 1204 public: 1205 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1206 FunctionArgList &Args) 1207 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1208 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1209 assert(Args.size() == 2); 1210 } 1211 1212 void emitAssignment(Stmt *S) { 1213 FieldDecl *F = getMemcpyableField(S); 1214 if (F) { 1215 addMemcpyableField(F); 1216 AggregatedStmts.push_back(S); 1217 } else { 1218 emitAggregatedStmts(); 1219 CGF.EmitStmt(S); 1220 } 1221 } 1222 1223 void emitAggregatedStmts() { 1224 if (AggregatedStmts.size() <= 1) { 1225 if (!AggregatedStmts.empty()) { 1226 CopyingValueRepresentation CVR(CGF); 1227 CGF.EmitStmt(AggregatedStmts[0]); 1228 } 1229 reset(); 1230 } 1231 1232 emitMemcpy(); 1233 AggregatedStmts.clear(); 1234 } 1235 1236 void finish() { 1237 emitAggregatedStmts(); 1238 } 1239 }; 1240 } // end anonymous namespace 1241 1242 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1243 const Type *BaseType = BaseInit->getBaseClass(); 1244 const auto *BaseClassDecl = 1245 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1246 return BaseClassDecl->isDynamicClass(); 1247 } 1248 1249 /// EmitCtorPrologue - This routine generates necessary code to initialize 1250 /// base classes and non-static data members belonging to this constructor. 1251 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1252 CXXCtorType CtorType, 1253 FunctionArgList &Args) { 1254 if (CD->isDelegatingConstructor()) 1255 return EmitDelegatingCXXConstructorCall(CD, Args); 1256 1257 const CXXRecordDecl *ClassDecl = CD->getParent(); 1258 1259 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1260 E = CD->init_end(); 1261 1262 // Virtual base initializers first, if any. They aren't needed if: 1263 // - This is a base ctor variant 1264 // - There are no vbases 1265 // - The class is abstract, so a complete object of it cannot be constructed 1266 // 1267 // The check for an abstract class is necessary because sema may not have 1268 // marked virtual base destructors referenced. 1269 bool ConstructVBases = CtorType != Ctor_Base && 1270 ClassDecl->getNumVBases() != 0 && 1271 !ClassDecl->isAbstract(); 1272 1273 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1274 // constructor of a class with virtual bases takes an additional parameter to 1275 // conditionally construct the virtual bases. Emit that check here. 1276 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1277 if (ConstructVBases && 1278 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1279 BaseCtorContinueBB = 1280 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1281 assert(BaseCtorContinueBB); 1282 } 1283 1284 llvm::Value *const OldThis = CXXThisValue; 1285 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1286 if (!ConstructVBases) 1287 continue; 1288 if (CGM.getCodeGenOpts().StrictVTablePointers && 1289 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1290 isInitializerOfDynamicClass(*B)) 1291 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1292 EmitBaseInitializer(*this, ClassDecl, *B); 1293 } 1294 1295 if (BaseCtorContinueBB) { 1296 // Complete object handler should continue to the remaining initializers. 1297 Builder.CreateBr(BaseCtorContinueBB); 1298 EmitBlock(BaseCtorContinueBB); 1299 } 1300 1301 // Then, non-virtual base initializers. 1302 for (; B != E && (*B)->isBaseInitializer(); B++) { 1303 assert(!(*B)->isBaseVirtual()); 1304 1305 if (CGM.getCodeGenOpts().StrictVTablePointers && 1306 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1307 isInitializerOfDynamicClass(*B)) 1308 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1309 EmitBaseInitializer(*this, ClassDecl, *B); 1310 } 1311 1312 CXXThisValue = OldThis; 1313 1314 InitializeVTablePointers(ClassDecl); 1315 1316 // And finally, initialize class members. 1317 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1318 ConstructorMemcpyizer CM(*this, CD, Args); 1319 for (; B != E; B++) { 1320 CXXCtorInitializer *Member = (*B); 1321 assert(!Member->isBaseInitializer()); 1322 assert(Member->isAnyMemberInitializer() && 1323 "Delegating initializer on non-delegating constructor"); 1324 CM.addMemberInitializer(Member); 1325 } 1326 CM.finish(); 1327 } 1328 1329 static bool 1330 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1331 1332 static bool 1333 HasTrivialDestructorBody(ASTContext &Context, 1334 const CXXRecordDecl *BaseClassDecl, 1335 const CXXRecordDecl *MostDerivedClassDecl) 1336 { 1337 // If the destructor is trivial we don't have to check anything else. 1338 if (BaseClassDecl->hasTrivialDestructor()) 1339 return true; 1340 1341 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1342 return false; 1343 1344 // Check fields. 1345 for (const auto *Field : BaseClassDecl->fields()) 1346 if (!FieldHasTrivialDestructorBody(Context, Field)) 1347 return false; 1348 1349 // Check non-virtual bases. 1350 for (const auto &I : BaseClassDecl->bases()) { 1351 if (I.isVirtual()) 1352 continue; 1353 1354 const CXXRecordDecl *NonVirtualBase = 1355 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1356 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1357 MostDerivedClassDecl)) 1358 return false; 1359 } 1360 1361 if (BaseClassDecl == MostDerivedClassDecl) { 1362 // Check virtual bases. 1363 for (const auto &I : BaseClassDecl->vbases()) { 1364 const CXXRecordDecl *VirtualBase = 1365 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1366 if (!HasTrivialDestructorBody(Context, VirtualBase, 1367 MostDerivedClassDecl)) 1368 return false; 1369 } 1370 } 1371 1372 return true; 1373 } 1374 1375 static bool 1376 FieldHasTrivialDestructorBody(ASTContext &Context, 1377 const FieldDecl *Field) 1378 { 1379 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1380 1381 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1382 if (!RT) 1383 return true; 1384 1385 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1386 1387 // The destructor for an implicit anonymous union member is never invoked. 1388 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1389 return false; 1390 1391 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1392 } 1393 1394 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1395 /// any vtable pointers before calling this destructor. 1396 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1397 const CXXDestructorDecl *Dtor) { 1398 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1399 if (!ClassDecl->isDynamicClass()) 1400 return true; 1401 1402 if (!Dtor->hasTrivialBody()) 1403 return false; 1404 1405 // Check the fields. 1406 for (const auto *Field : ClassDecl->fields()) 1407 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1408 return false; 1409 1410 return true; 1411 } 1412 1413 /// EmitDestructorBody - Emits the body of the current destructor. 1414 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1415 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1416 CXXDtorType DtorType = CurGD.getDtorType(); 1417 1418 // For an abstract class, non-base destructors are never used (and can't 1419 // be emitted in general, because vbase dtors may not have been validated 1420 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1421 // in fact emit references to them from other compilations, so emit them 1422 // as functions containing a trap instruction. 1423 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1424 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1425 TrapCall->setDoesNotReturn(); 1426 TrapCall->setDoesNotThrow(); 1427 Builder.CreateUnreachable(); 1428 Builder.ClearInsertionPoint(); 1429 return; 1430 } 1431 1432 Stmt *Body = Dtor->getBody(); 1433 if (Body) 1434 incrementProfileCounter(Body); 1435 1436 // The call to operator delete in a deleting destructor happens 1437 // outside of the function-try-block, which means it's always 1438 // possible to delegate the destructor body to the complete 1439 // destructor. Do so. 1440 if (DtorType == Dtor_Deleting) { 1441 RunCleanupsScope DtorEpilogue(*this); 1442 EnterDtorCleanups(Dtor, Dtor_Deleting); 1443 if (HaveInsertPoint()) 1444 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1445 /*Delegating=*/false, LoadCXXThisAddress()); 1446 return; 1447 } 1448 1449 // If the body is a function-try-block, enter the try before 1450 // anything else. 1451 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1452 if (isTryBody) 1453 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1454 EmitAsanPrologueOrEpilogue(false); 1455 1456 // Enter the epilogue cleanups. 1457 RunCleanupsScope DtorEpilogue(*this); 1458 1459 // If this is the complete variant, just invoke the base variant; 1460 // the epilogue will destruct the virtual bases. But we can't do 1461 // this optimization if the body is a function-try-block, because 1462 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1463 // always delegate because we might not have a definition in this TU. 1464 switch (DtorType) { 1465 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1466 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1467 1468 case Dtor_Complete: 1469 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1470 "can't emit a dtor without a body for non-Microsoft ABIs"); 1471 1472 // Enter the cleanup scopes for virtual bases. 1473 EnterDtorCleanups(Dtor, Dtor_Complete); 1474 1475 if (!isTryBody) { 1476 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1477 /*Delegating=*/false, LoadCXXThisAddress()); 1478 break; 1479 } 1480 1481 // Fallthrough: act like we're in the base variant. 1482 LLVM_FALLTHROUGH; 1483 1484 case Dtor_Base: 1485 assert(Body); 1486 1487 // Enter the cleanup scopes for fields and non-virtual bases. 1488 EnterDtorCleanups(Dtor, Dtor_Base); 1489 1490 // Initialize the vtable pointers before entering the body. 1491 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1492 // Insert the llvm.launder.invariant.group intrinsic before initializing 1493 // the vptrs to cancel any previous assumptions we might have made. 1494 if (CGM.getCodeGenOpts().StrictVTablePointers && 1495 CGM.getCodeGenOpts().OptimizationLevel > 0) 1496 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1497 InitializeVTablePointers(Dtor->getParent()); 1498 } 1499 1500 if (isTryBody) 1501 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1502 else if (Body) 1503 EmitStmt(Body); 1504 else { 1505 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1506 // nothing to do besides what's in the epilogue 1507 } 1508 // -fapple-kext must inline any call to this dtor into 1509 // the caller's body. 1510 if (getLangOpts().AppleKext) 1511 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1512 1513 break; 1514 } 1515 1516 // Jump out through the epilogue cleanups. 1517 DtorEpilogue.ForceCleanup(); 1518 1519 // Exit the try if applicable. 1520 if (isTryBody) 1521 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1522 } 1523 1524 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1525 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1526 const Stmt *RootS = AssignOp->getBody(); 1527 assert(isa<CompoundStmt>(RootS) && 1528 "Body of an implicit assignment operator should be compound stmt."); 1529 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1530 1531 LexicalScope Scope(*this, RootCS->getSourceRange()); 1532 1533 incrementProfileCounter(RootCS); 1534 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1535 for (auto *I : RootCS->body()) 1536 AM.emitAssignment(I); 1537 AM.finish(); 1538 } 1539 1540 namespace { 1541 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1542 const CXXDestructorDecl *DD) { 1543 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1544 return CGF.EmitScalarExpr(ThisArg); 1545 return CGF.LoadCXXThis(); 1546 } 1547 1548 /// Call the operator delete associated with the current destructor. 1549 struct CallDtorDelete final : EHScopeStack::Cleanup { 1550 CallDtorDelete() {} 1551 1552 void Emit(CodeGenFunction &CGF, Flags flags) override { 1553 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1554 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1555 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1556 LoadThisForDtorDelete(CGF, Dtor), 1557 CGF.getContext().getTagDeclType(ClassDecl)); 1558 } 1559 }; 1560 1561 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1562 llvm::Value *ShouldDeleteCondition, 1563 bool ReturnAfterDelete) { 1564 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1565 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1566 llvm::Value *ShouldCallDelete 1567 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1568 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1569 1570 CGF.EmitBlock(callDeleteBB); 1571 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1572 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1573 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1574 LoadThisForDtorDelete(CGF, Dtor), 1575 CGF.getContext().getTagDeclType(ClassDecl)); 1576 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1577 ReturnAfterDelete && 1578 "unexpected value for ReturnAfterDelete"); 1579 if (ReturnAfterDelete) 1580 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1581 else 1582 CGF.Builder.CreateBr(continueBB); 1583 1584 CGF.EmitBlock(continueBB); 1585 } 1586 1587 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1588 llvm::Value *ShouldDeleteCondition; 1589 1590 public: 1591 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1592 : ShouldDeleteCondition(ShouldDeleteCondition) { 1593 assert(ShouldDeleteCondition != nullptr); 1594 } 1595 1596 void Emit(CodeGenFunction &CGF, Flags flags) override { 1597 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1598 /*ReturnAfterDelete*/false); 1599 } 1600 }; 1601 1602 class DestroyField final : public EHScopeStack::Cleanup { 1603 const FieldDecl *field; 1604 CodeGenFunction::Destroyer *destroyer; 1605 bool useEHCleanupForArray; 1606 1607 public: 1608 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1609 bool useEHCleanupForArray) 1610 : field(field), destroyer(destroyer), 1611 useEHCleanupForArray(useEHCleanupForArray) {} 1612 1613 void Emit(CodeGenFunction &CGF, Flags flags) override { 1614 // Find the address of the field. 1615 Address thisValue = CGF.LoadCXXThisAddress(); 1616 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1617 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1618 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1619 assert(LV.isSimple()); 1620 1621 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1622 flags.isForNormalCleanup() && useEHCleanupForArray); 1623 } 1624 }; 1625 1626 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1627 CharUnits::QuantityType PoisonSize) { 1628 CodeGenFunction::SanitizerScope SanScope(&CGF); 1629 // Pass in void pointer and size of region as arguments to runtime 1630 // function 1631 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1632 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1633 1634 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1635 1636 llvm::FunctionType *FnType = 1637 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1638 llvm::FunctionCallee Fn = 1639 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1640 CGF.EmitNounwindRuntimeCall(Fn, Args); 1641 } 1642 1643 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1644 const CXXDestructorDecl *Dtor; 1645 1646 public: 1647 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1648 1649 // Generate function call for handling object poisoning. 1650 // Disables tail call elimination, to prevent the current stack frame 1651 // from disappearing from the stack trace. 1652 void Emit(CodeGenFunction &CGF, Flags flags) override { 1653 const ASTRecordLayout &Layout = 1654 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1655 1656 // Nothing to poison. 1657 if (Layout.getFieldCount() == 0) 1658 return; 1659 1660 // Prevent the current stack frame from disappearing from the stack trace. 1661 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1662 1663 // Construct pointer to region to begin poisoning, and calculate poison 1664 // size, so that only members declared in this class are poisoned. 1665 ASTContext &Context = CGF.getContext(); 1666 unsigned fieldIndex = 0; 1667 int startIndex = -1; 1668 // RecordDecl::field_iterator Field; 1669 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1670 // Poison field if it is trivial 1671 if (FieldHasTrivialDestructorBody(Context, Field)) { 1672 // Start sanitizing at this field 1673 if (startIndex < 0) 1674 startIndex = fieldIndex; 1675 1676 // Currently on the last field, and it must be poisoned with the 1677 // current block. 1678 if (fieldIndex == Layout.getFieldCount() - 1) { 1679 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1680 } 1681 } else if (startIndex >= 0) { 1682 // No longer within a block of memory to poison, so poison the block 1683 PoisonMembers(CGF, startIndex, fieldIndex); 1684 // Re-set the start index 1685 startIndex = -1; 1686 } 1687 fieldIndex += 1; 1688 } 1689 } 1690 1691 private: 1692 /// \param layoutStartOffset index of the ASTRecordLayout field to 1693 /// start poisoning (inclusive) 1694 /// \param layoutEndOffset index of the ASTRecordLayout field to 1695 /// end poisoning (exclusive) 1696 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1697 unsigned layoutEndOffset) { 1698 ASTContext &Context = CGF.getContext(); 1699 const ASTRecordLayout &Layout = 1700 Context.getASTRecordLayout(Dtor->getParent()); 1701 1702 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1703 CGF.SizeTy, 1704 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1705 .getQuantity()); 1706 1707 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1708 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1709 OffsetSizePtr); 1710 1711 CharUnits::QuantityType PoisonSize; 1712 if (layoutEndOffset >= Layout.getFieldCount()) { 1713 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1714 Context.toCharUnitsFromBits( 1715 Layout.getFieldOffset(layoutStartOffset)) 1716 .getQuantity(); 1717 } else { 1718 PoisonSize = Context.toCharUnitsFromBits( 1719 Layout.getFieldOffset(layoutEndOffset) - 1720 Layout.getFieldOffset(layoutStartOffset)) 1721 .getQuantity(); 1722 } 1723 1724 if (PoisonSize == 0) 1725 return; 1726 1727 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1728 } 1729 }; 1730 1731 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1732 const CXXDestructorDecl *Dtor; 1733 1734 public: 1735 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1736 1737 // Generate function call for handling vtable pointer poisoning. 1738 void Emit(CodeGenFunction &CGF, Flags flags) override { 1739 assert(Dtor->getParent()->isDynamicClass()); 1740 (void)Dtor; 1741 ASTContext &Context = CGF.getContext(); 1742 // Poison vtable and vtable ptr if they exist for this class. 1743 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1744 1745 CharUnits::QuantityType PoisonSize = 1746 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1747 // Pass in void pointer and size of region as arguments to runtime 1748 // function 1749 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1750 } 1751 }; 1752 } // end anonymous namespace 1753 1754 /// Emit all code that comes at the end of class's 1755 /// destructor. This is to call destructors on members and base classes 1756 /// in reverse order of their construction. 1757 /// 1758 /// For a deleting destructor, this also handles the case where a destroying 1759 /// operator delete completely overrides the definition. 1760 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1761 CXXDtorType DtorType) { 1762 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1763 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1764 1765 // The deleting-destructor phase just needs to call the appropriate 1766 // operator delete that Sema picked up. 1767 if (DtorType == Dtor_Deleting) { 1768 assert(DD->getOperatorDelete() && 1769 "operator delete missing - EnterDtorCleanups"); 1770 if (CXXStructorImplicitParamValue) { 1771 // If there is an implicit param to the deleting dtor, it's a boolean 1772 // telling whether this is a deleting destructor. 1773 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1774 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1775 /*ReturnAfterDelete*/true); 1776 else 1777 EHStack.pushCleanup<CallDtorDeleteConditional>( 1778 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1779 } else { 1780 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1781 const CXXRecordDecl *ClassDecl = DD->getParent(); 1782 EmitDeleteCall(DD->getOperatorDelete(), 1783 LoadThisForDtorDelete(*this, DD), 1784 getContext().getTagDeclType(ClassDecl)); 1785 EmitBranchThroughCleanup(ReturnBlock); 1786 } else { 1787 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1788 } 1789 } 1790 return; 1791 } 1792 1793 const CXXRecordDecl *ClassDecl = DD->getParent(); 1794 1795 // Unions have no bases and do not call field destructors. 1796 if (ClassDecl->isUnion()) 1797 return; 1798 1799 // The complete-destructor phase just destructs all the virtual bases. 1800 if (DtorType == Dtor_Complete) { 1801 // Poison the vtable pointer such that access after the base 1802 // and member destructors are invoked is invalid. 1803 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1804 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1805 ClassDecl->isPolymorphic()) 1806 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1807 1808 // We push them in the forward order so that they'll be popped in 1809 // the reverse order. 1810 for (const auto &Base : ClassDecl->vbases()) { 1811 CXXRecordDecl *BaseClassDecl 1812 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1813 1814 // Ignore trivial destructors. 1815 if (BaseClassDecl->hasTrivialDestructor()) 1816 continue; 1817 1818 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1819 BaseClassDecl, 1820 /*BaseIsVirtual*/ true); 1821 } 1822 1823 return; 1824 } 1825 1826 assert(DtorType == Dtor_Base); 1827 // Poison the vtable pointer if it has no virtual bases, but inherits 1828 // virtual functions. 1829 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1830 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1831 ClassDecl->isPolymorphic()) 1832 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1833 1834 // Destroy non-virtual bases. 1835 for (const auto &Base : ClassDecl->bases()) { 1836 // Ignore virtual bases. 1837 if (Base.isVirtual()) 1838 continue; 1839 1840 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1841 1842 // Ignore trivial destructors. 1843 if (BaseClassDecl->hasTrivialDestructor()) 1844 continue; 1845 1846 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1847 BaseClassDecl, 1848 /*BaseIsVirtual*/ false); 1849 } 1850 1851 // Poison fields such that access after their destructors are 1852 // invoked, and before the base class destructor runs, is invalid. 1853 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1854 SanOpts.has(SanitizerKind::Memory)) 1855 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1856 1857 // Destroy direct fields. 1858 for (const auto *Field : ClassDecl->fields()) { 1859 QualType type = Field->getType(); 1860 QualType::DestructionKind dtorKind = type.isDestructedType(); 1861 if (!dtorKind) continue; 1862 1863 // Anonymous union members do not have their destructors called. 1864 const RecordType *RT = type->getAsUnionType(); 1865 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1866 1867 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1868 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1869 getDestroyer(dtorKind), 1870 cleanupKind & EHCleanup); 1871 } 1872 } 1873 1874 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1875 /// constructor for each of several members of an array. 1876 /// 1877 /// \param ctor the constructor to call for each element 1878 /// \param arrayType the type of the array to initialize 1879 /// \param arrayBegin an arrayType* 1880 /// \param zeroInitialize true if each element should be 1881 /// zero-initialized before it is constructed 1882 void CodeGenFunction::EmitCXXAggrConstructorCall( 1883 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1884 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1885 bool zeroInitialize) { 1886 QualType elementType; 1887 llvm::Value *numElements = 1888 emitArrayLength(arrayType, elementType, arrayBegin); 1889 1890 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1891 NewPointerIsChecked, zeroInitialize); 1892 } 1893 1894 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1895 /// constructor for each of several members of an array. 1896 /// 1897 /// \param ctor the constructor to call for each element 1898 /// \param numElements the number of elements in the array; 1899 /// may be zero 1900 /// \param arrayBase a T*, where T is the type constructed by ctor 1901 /// \param zeroInitialize true if each element should be 1902 /// zero-initialized before it is constructed 1903 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1904 llvm::Value *numElements, 1905 Address arrayBase, 1906 const CXXConstructExpr *E, 1907 bool NewPointerIsChecked, 1908 bool zeroInitialize) { 1909 // It's legal for numElements to be zero. This can happen both 1910 // dynamically, because x can be zero in 'new A[x]', and statically, 1911 // because of GCC extensions that permit zero-length arrays. There 1912 // are probably legitimate places where we could assume that this 1913 // doesn't happen, but it's not clear that it's worth it. 1914 llvm::BranchInst *zeroCheckBranch = nullptr; 1915 1916 // Optimize for a constant count. 1917 llvm::ConstantInt *constantCount 1918 = dyn_cast<llvm::ConstantInt>(numElements); 1919 if (constantCount) { 1920 // Just skip out if the constant count is zero. 1921 if (constantCount->isZero()) return; 1922 1923 // Otherwise, emit the check. 1924 } else { 1925 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1926 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1927 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1928 EmitBlock(loopBB); 1929 } 1930 1931 // Find the end of the array. 1932 llvm::Value *arrayBegin = arrayBase.getPointer(); 1933 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1934 "arrayctor.end"); 1935 1936 // Enter the loop, setting up a phi for the current location to initialize. 1937 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1938 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1939 EmitBlock(loopBB); 1940 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1941 "arrayctor.cur"); 1942 cur->addIncoming(arrayBegin, entryBB); 1943 1944 // Inside the loop body, emit the constructor call on the array element. 1945 1946 // The alignment of the base, adjusted by the size of a single element, 1947 // provides a conservative estimate of the alignment of every element. 1948 // (This assumes we never start tracking offsetted alignments.) 1949 // 1950 // Note that these are complete objects and so we don't need to 1951 // use the non-virtual size or alignment. 1952 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1953 CharUnits eltAlignment = 1954 arrayBase.getAlignment() 1955 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1956 Address curAddr = Address(cur, eltAlignment); 1957 1958 // Zero initialize the storage, if requested. 1959 if (zeroInitialize) 1960 EmitNullInitialization(curAddr, type); 1961 1962 // C++ [class.temporary]p4: 1963 // There are two contexts in which temporaries are destroyed at a different 1964 // point than the end of the full-expression. The first context is when a 1965 // default constructor is called to initialize an element of an array. 1966 // If the constructor has one or more default arguments, the destruction of 1967 // every temporary created in a default argument expression is sequenced 1968 // before the construction of the next array element, if any. 1969 1970 { 1971 RunCleanupsScope Scope(*this); 1972 1973 // Evaluate the constructor and its arguments in a regular 1974 // partial-destroy cleanup. 1975 if (getLangOpts().Exceptions && 1976 !ctor->getParent()->hasTrivialDestructor()) { 1977 Destroyer *destroyer = destroyCXXObject; 1978 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1979 *destroyer); 1980 } 1981 1982 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1983 /*Delegating=*/false, curAddr, E, 1984 AggValueSlot::DoesNotOverlap, NewPointerIsChecked); 1985 } 1986 1987 // Go to the next element. 1988 llvm::Value *next = 1989 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1990 "arrayctor.next"); 1991 cur->addIncoming(next, Builder.GetInsertBlock()); 1992 1993 // Check whether that's the end of the loop. 1994 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1995 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1996 Builder.CreateCondBr(done, contBB, loopBB); 1997 1998 // Patch the earlier check to skip over the loop. 1999 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2000 2001 EmitBlock(contBB); 2002 } 2003 2004 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2005 Address addr, 2006 QualType type) { 2007 const RecordType *rtype = type->castAs<RecordType>(); 2008 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2009 const CXXDestructorDecl *dtor = record->getDestructor(); 2010 assert(!dtor->isTrivial()); 2011 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2012 /*Delegating=*/false, addr); 2013 } 2014 2015 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2016 CXXCtorType Type, 2017 bool ForVirtualBase, 2018 bool Delegating, Address This, 2019 const CXXConstructExpr *E, 2020 AggValueSlot::Overlap_t Overlap, 2021 bool NewPointerIsChecked) { 2022 CallArgList Args; 2023 2024 LangAS SlotAS = E->getType().getAddressSpace(); 2025 QualType ThisType = D->getThisType(); 2026 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); 2027 llvm::Value *ThisPtr = This.getPointer(); 2028 if (SlotAS != ThisAS) { 2029 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2030 llvm::Type *NewType = 2031 ThisPtr->getType()->getPointerElementType()->getPointerTo(TargetThisAS); 2032 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2033 ThisAS, SlotAS, NewType); 2034 } 2035 // Push the this ptr. 2036 Args.add(RValue::get(ThisPtr), D->getThisType()); 2037 2038 // If this is a trivial constructor, emit a memcpy now before we lose 2039 // the alignment information on the argument. 2040 // FIXME: It would be better to preserve alignment information into CallArg. 2041 if (isMemcpyEquivalentSpecialMember(D)) { 2042 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2043 2044 const Expr *Arg = E->getArg(0); 2045 LValue Src = EmitLValue(Arg); 2046 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2047 LValue Dest = MakeAddrLValue(This, DestTy); 2048 EmitAggregateCopyCtor(Dest, Src, Overlap); 2049 return; 2050 } 2051 2052 // Add the rest of the user-supplied arguments. 2053 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2054 EvaluationOrder Order = E->isListInitialization() 2055 ? EvaluationOrder::ForceLeftToRight 2056 : EvaluationOrder::Default; 2057 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2058 /*ParamsToSkip*/ 0, Order); 2059 2060 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2061 Overlap, E->getExprLoc(), NewPointerIsChecked); 2062 } 2063 2064 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2065 const CXXConstructorDecl *Ctor, 2066 CXXCtorType Type, CallArgList &Args) { 2067 // We can't forward a variadic call. 2068 if (Ctor->isVariadic()) 2069 return false; 2070 2071 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2072 // If the parameters are callee-cleanup, it's not safe to forward. 2073 for (auto *P : Ctor->parameters()) 2074 if (P->getType().isDestructedType()) 2075 return false; 2076 2077 // Likewise if they're inalloca. 2078 const CGFunctionInfo &Info = 2079 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2080 if (Info.usesInAlloca()) 2081 return false; 2082 } 2083 2084 // Anything else should be OK. 2085 return true; 2086 } 2087 2088 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2089 CXXCtorType Type, 2090 bool ForVirtualBase, 2091 bool Delegating, 2092 Address This, 2093 CallArgList &Args, 2094 AggValueSlot::Overlap_t Overlap, 2095 SourceLocation Loc, 2096 bool NewPointerIsChecked) { 2097 const CXXRecordDecl *ClassDecl = D->getParent(); 2098 2099 if (!NewPointerIsChecked) 2100 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2101 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2102 2103 if (D->isTrivial() && D->isDefaultConstructor()) { 2104 assert(Args.size() == 1 && "trivial default ctor with args"); 2105 return; 2106 } 2107 2108 // If this is a trivial constructor, just emit what's needed. If this is a 2109 // union copy constructor, we must emit a memcpy, because the AST does not 2110 // model that copy. 2111 if (isMemcpyEquivalentSpecialMember(D)) { 2112 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2113 2114 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2115 Address Src(Args[1].getRValue(*this).getScalarVal(), 2116 getNaturalTypeAlignment(SrcTy)); 2117 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2118 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2119 LValue DestLVal = MakeAddrLValue(This, DestTy); 2120 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2121 return; 2122 } 2123 2124 bool PassPrototypeArgs = true; 2125 // Check whether we can actually emit the constructor before trying to do so. 2126 if (auto Inherited = D->getInheritedConstructor()) { 2127 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2128 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2129 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2130 Delegating, Args); 2131 return; 2132 } 2133 } 2134 2135 // Insert any ABI-specific implicit constructor arguments. 2136 CGCXXABI::AddedStructorArgs ExtraArgs = 2137 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2138 Delegating, Args); 2139 2140 // Emit the call. 2141 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2142 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2143 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2144 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2145 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2146 2147 // Generate vtable assumptions if we're constructing a complete object 2148 // with a vtable. We don't do this for base subobjects for two reasons: 2149 // first, it's incorrect for classes with virtual bases, and second, we're 2150 // about to overwrite the vptrs anyway. 2151 // We also have to make sure if we can refer to vtable: 2152 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2153 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2154 // sure that definition of vtable is not hidden, 2155 // then we are always safe to refer to it. 2156 // FIXME: It looks like InstCombine is very inefficient on dealing with 2157 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2158 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2159 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2160 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2161 CGM.getCodeGenOpts().StrictVTablePointers) 2162 EmitVTableAssumptionLoads(ClassDecl, This); 2163 } 2164 2165 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2166 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2167 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2168 CallArgList Args; 2169 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2170 2171 // Forward the parameters. 2172 if (InheritedFromVBase && 2173 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2174 // Nothing to do; this construction is not responsible for constructing 2175 // the base class containing the inherited constructor. 2176 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2177 // have constructor variants? 2178 Args.push_back(ThisArg); 2179 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2180 // The inheriting constructor was inlined; just inject its arguments. 2181 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2182 "wrong number of parameters for inherited constructor call"); 2183 Args = CXXInheritedCtorInitExprArgs; 2184 Args[0] = ThisArg; 2185 } else { 2186 // The inheriting constructor was not inlined. Emit delegating arguments. 2187 Args.push_back(ThisArg); 2188 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2189 assert(OuterCtor->getNumParams() == D->getNumParams()); 2190 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2191 2192 for (const auto *Param : OuterCtor->parameters()) { 2193 assert(getContext().hasSameUnqualifiedType( 2194 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2195 Param->getType())); 2196 EmitDelegateCallArg(Args, Param, E->getLocation()); 2197 2198 // Forward __attribute__(pass_object_size). 2199 if (Param->hasAttr<PassObjectSizeAttr>()) { 2200 auto *POSParam = SizeArguments[Param]; 2201 assert(POSParam && "missing pass_object_size value for forwarding"); 2202 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2203 } 2204 } 2205 } 2206 2207 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2208 This, Args, AggValueSlot::MayOverlap, 2209 E->getLocation(), /*NewPointerIsChecked*/true); 2210 } 2211 2212 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2213 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2214 bool Delegating, CallArgList &Args) { 2215 GlobalDecl GD(Ctor, CtorType); 2216 InlinedInheritingConstructorScope Scope(*this, GD); 2217 ApplyInlineDebugLocation DebugScope(*this, GD); 2218 RunCleanupsScope RunCleanups(*this); 2219 2220 // Save the arguments to be passed to the inherited constructor. 2221 CXXInheritedCtorInitExprArgs = Args; 2222 2223 FunctionArgList Params; 2224 QualType RetType = BuildFunctionArgList(CurGD, Params); 2225 FnRetTy = RetType; 2226 2227 // Insert any ABI-specific implicit constructor arguments. 2228 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2229 ForVirtualBase, Delegating, Args); 2230 2231 // Emit a simplified prolog. We only need to emit the implicit params. 2232 assert(Args.size() >= Params.size() && "too few arguments for call"); 2233 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2234 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2235 const RValue &RV = Args[I].getRValue(*this); 2236 assert(!RV.isComplex() && "complex indirect params not supported"); 2237 ParamValue Val = RV.isScalar() 2238 ? ParamValue::forDirect(RV.getScalarVal()) 2239 : ParamValue::forIndirect(RV.getAggregateAddress()); 2240 EmitParmDecl(*Params[I], Val, I + 1); 2241 } 2242 } 2243 2244 // Create a return value slot if the ABI implementation wants one. 2245 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2246 // value instead. 2247 if (!RetType->isVoidType()) 2248 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2249 2250 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2251 CXXThisValue = CXXABIThisValue; 2252 2253 // Directly emit the constructor initializers. 2254 EmitCtorPrologue(Ctor, CtorType, Params); 2255 } 2256 2257 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2258 llvm::Value *VTableGlobal = 2259 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2260 if (!VTableGlobal) 2261 return; 2262 2263 // We can just use the base offset in the complete class. 2264 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2265 2266 if (!NonVirtualOffset.isZero()) 2267 This = 2268 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2269 Vptr.VTableClass, Vptr.NearestVBase); 2270 2271 llvm::Value *VPtrValue = 2272 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2273 llvm::Value *Cmp = 2274 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2275 Builder.CreateAssumption(Cmp); 2276 } 2277 2278 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2279 Address This) { 2280 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2281 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2282 EmitVTableAssumptionLoad(Vptr, This); 2283 } 2284 2285 void 2286 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2287 Address This, Address Src, 2288 const CXXConstructExpr *E) { 2289 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2290 2291 CallArgList Args; 2292 2293 // Push the this ptr. 2294 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2295 2296 // Push the src ptr. 2297 QualType QT = *(FPT->param_type_begin()); 2298 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2299 Src = Builder.CreateBitCast(Src, t); 2300 Args.add(RValue::get(Src.getPointer()), QT); 2301 2302 // Skip over first argument (Src). 2303 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2304 /*ParamsToSkip*/ 1); 2305 2306 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2307 /*Delegating*/false, This, Args, 2308 AggValueSlot::MayOverlap, E->getExprLoc(), 2309 /*NewPointerIsChecked*/false); 2310 } 2311 2312 void 2313 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2314 CXXCtorType CtorType, 2315 const FunctionArgList &Args, 2316 SourceLocation Loc) { 2317 CallArgList DelegateArgs; 2318 2319 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2320 assert(I != E && "no parameters to constructor"); 2321 2322 // this 2323 Address This = LoadCXXThisAddress(); 2324 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2325 ++I; 2326 2327 // FIXME: The location of the VTT parameter in the parameter list is 2328 // specific to the Itanium ABI and shouldn't be hardcoded here. 2329 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2330 assert(I != E && "cannot skip vtt parameter, already done with args"); 2331 assert((*I)->getType()->isPointerType() && 2332 "skipping parameter not of vtt type"); 2333 ++I; 2334 } 2335 2336 // Explicit arguments. 2337 for (; I != E; ++I) { 2338 const VarDecl *param = *I; 2339 // FIXME: per-argument source location 2340 EmitDelegateCallArg(DelegateArgs, param, Loc); 2341 } 2342 2343 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2344 /*Delegating=*/true, This, DelegateArgs, 2345 AggValueSlot::MayOverlap, Loc, 2346 /*NewPointerIsChecked=*/true); 2347 } 2348 2349 namespace { 2350 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2351 const CXXDestructorDecl *Dtor; 2352 Address Addr; 2353 CXXDtorType Type; 2354 2355 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2356 CXXDtorType Type) 2357 : Dtor(D), Addr(Addr), Type(Type) {} 2358 2359 void Emit(CodeGenFunction &CGF, Flags flags) override { 2360 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2361 /*Delegating=*/true, Addr); 2362 } 2363 }; 2364 } // end anonymous namespace 2365 2366 void 2367 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2368 const FunctionArgList &Args) { 2369 assert(Ctor->isDelegatingConstructor()); 2370 2371 Address ThisPtr = LoadCXXThisAddress(); 2372 2373 AggValueSlot AggSlot = 2374 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2375 AggValueSlot::IsDestructed, 2376 AggValueSlot::DoesNotNeedGCBarriers, 2377 AggValueSlot::IsNotAliased, 2378 AggValueSlot::MayOverlap, 2379 AggValueSlot::IsNotZeroed, 2380 // Checks are made by the code that calls constructor. 2381 AggValueSlot::IsSanitizerChecked); 2382 2383 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2384 2385 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2386 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2387 CXXDtorType Type = 2388 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2389 2390 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2391 ClassDecl->getDestructor(), 2392 ThisPtr, Type); 2393 } 2394 } 2395 2396 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2397 CXXDtorType Type, 2398 bool ForVirtualBase, 2399 bool Delegating, 2400 Address This) { 2401 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2402 Delegating, This); 2403 } 2404 2405 namespace { 2406 struct CallLocalDtor final : EHScopeStack::Cleanup { 2407 const CXXDestructorDecl *Dtor; 2408 Address Addr; 2409 2410 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2411 : Dtor(D), Addr(Addr) {} 2412 2413 void Emit(CodeGenFunction &CGF, Flags flags) override { 2414 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2415 /*ForVirtualBase=*/false, 2416 /*Delegating=*/false, Addr); 2417 } 2418 }; 2419 } // end anonymous namespace 2420 2421 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2422 Address Addr) { 2423 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2424 } 2425 2426 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2427 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2428 if (!ClassDecl) return; 2429 if (ClassDecl->hasTrivialDestructor()) return; 2430 2431 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2432 assert(D && D->isUsed() && "destructor not marked as used!"); 2433 PushDestructorCleanup(D, Addr); 2434 } 2435 2436 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2437 // Compute the address point. 2438 llvm::Value *VTableAddressPoint = 2439 CGM.getCXXABI().getVTableAddressPointInStructor( 2440 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2441 2442 if (!VTableAddressPoint) 2443 return; 2444 2445 // Compute where to store the address point. 2446 llvm::Value *VirtualOffset = nullptr; 2447 CharUnits NonVirtualOffset = CharUnits::Zero(); 2448 2449 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2450 // We need to use the virtual base offset offset because the virtual base 2451 // might have a different offset in the most derived class. 2452 2453 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2454 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2455 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2456 } else { 2457 // We can just use the base offset in the complete class. 2458 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2459 } 2460 2461 // Apply the offsets. 2462 Address VTableField = LoadCXXThisAddress(); 2463 2464 if (!NonVirtualOffset.isZero() || VirtualOffset) 2465 VTableField = ApplyNonVirtualAndVirtualOffset( 2466 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2467 Vptr.NearestVBase); 2468 2469 // Finally, store the address point. Use the same LLVM types as the field to 2470 // support optimization. 2471 llvm::Type *VTablePtrTy = 2472 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2473 ->getPointerTo() 2474 ->getPointerTo(); 2475 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2476 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2477 2478 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2479 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2480 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2481 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2482 CGM.getCodeGenOpts().StrictVTablePointers) 2483 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2484 } 2485 2486 CodeGenFunction::VPtrsVector 2487 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2488 CodeGenFunction::VPtrsVector VPtrsResult; 2489 VisitedVirtualBasesSetTy VBases; 2490 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2491 /*NearestVBase=*/nullptr, 2492 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2493 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2494 VPtrsResult); 2495 return VPtrsResult; 2496 } 2497 2498 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2499 const CXXRecordDecl *NearestVBase, 2500 CharUnits OffsetFromNearestVBase, 2501 bool BaseIsNonVirtualPrimaryBase, 2502 const CXXRecordDecl *VTableClass, 2503 VisitedVirtualBasesSetTy &VBases, 2504 VPtrsVector &Vptrs) { 2505 // If this base is a non-virtual primary base the address point has already 2506 // been set. 2507 if (!BaseIsNonVirtualPrimaryBase) { 2508 // Initialize the vtable pointer for this base. 2509 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2510 Vptrs.push_back(Vptr); 2511 } 2512 2513 const CXXRecordDecl *RD = Base.getBase(); 2514 2515 // Traverse bases. 2516 for (const auto &I : RD->bases()) { 2517 CXXRecordDecl *BaseDecl 2518 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2519 2520 // Ignore classes without a vtable. 2521 if (!BaseDecl->isDynamicClass()) 2522 continue; 2523 2524 CharUnits BaseOffset; 2525 CharUnits BaseOffsetFromNearestVBase; 2526 bool BaseDeclIsNonVirtualPrimaryBase; 2527 2528 if (I.isVirtual()) { 2529 // Check if we've visited this virtual base before. 2530 if (!VBases.insert(BaseDecl).second) 2531 continue; 2532 2533 const ASTRecordLayout &Layout = 2534 getContext().getASTRecordLayout(VTableClass); 2535 2536 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2537 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2538 BaseDeclIsNonVirtualPrimaryBase = false; 2539 } else { 2540 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2541 2542 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2543 BaseOffsetFromNearestVBase = 2544 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2545 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2546 } 2547 2548 getVTablePointers( 2549 BaseSubobject(BaseDecl, BaseOffset), 2550 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2551 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2552 } 2553 } 2554 2555 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2556 // Ignore classes without a vtable. 2557 if (!RD->isDynamicClass()) 2558 return; 2559 2560 // Initialize the vtable pointers for this class and all of its bases. 2561 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2562 for (const VPtr &Vptr : getVTablePointers(RD)) 2563 InitializeVTablePointer(Vptr); 2564 2565 if (RD->getNumVBases()) 2566 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2567 } 2568 2569 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2570 llvm::Type *VTableTy, 2571 const CXXRecordDecl *RD) { 2572 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2573 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2574 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2575 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2576 2577 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2578 CGM.getCodeGenOpts().StrictVTablePointers) 2579 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2580 2581 return VTable; 2582 } 2583 2584 // If a class has a single non-virtual base and does not introduce or override 2585 // virtual member functions or fields, it will have the same layout as its base. 2586 // This function returns the least derived such class. 2587 // 2588 // Casting an instance of a base class to such a derived class is technically 2589 // undefined behavior, but it is a relatively common hack for introducing member 2590 // functions on class instances with specific properties (e.g. llvm::Operator) 2591 // that works under most compilers and should not have security implications, so 2592 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2593 static const CXXRecordDecl * 2594 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2595 if (!RD->field_empty()) 2596 return RD; 2597 2598 if (RD->getNumVBases() != 0) 2599 return RD; 2600 2601 if (RD->getNumBases() != 1) 2602 return RD; 2603 2604 for (const CXXMethodDecl *MD : RD->methods()) { 2605 if (MD->isVirtual()) { 2606 // Virtual member functions are only ok if they are implicit destructors 2607 // because the implicit destructor will have the same semantics as the 2608 // base class's destructor if no fields are added. 2609 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2610 continue; 2611 return RD; 2612 } 2613 } 2614 2615 return LeastDerivedClassWithSameLayout( 2616 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2617 } 2618 2619 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2620 llvm::Value *VTable, 2621 SourceLocation Loc) { 2622 if (SanOpts.has(SanitizerKind::CFIVCall)) 2623 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2624 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2625 CGM.HasHiddenLTOVisibility(RD)) { 2626 llvm::Metadata *MD = 2627 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2628 llvm::Value *TypeId = 2629 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2630 2631 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2632 llvm::Value *TypeTest = 2633 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2634 {CastedVTable, TypeId}); 2635 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2636 } 2637 } 2638 2639 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2640 llvm::Value *VTable, 2641 CFITypeCheckKind TCK, 2642 SourceLocation Loc) { 2643 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2644 RD = LeastDerivedClassWithSameLayout(RD); 2645 2646 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2647 } 2648 2649 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2650 llvm::Value *Derived, 2651 bool MayBeNull, 2652 CFITypeCheckKind TCK, 2653 SourceLocation Loc) { 2654 if (!getLangOpts().CPlusPlus) 2655 return; 2656 2657 auto *ClassTy = T->getAs<RecordType>(); 2658 if (!ClassTy) 2659 return; 2660 2661 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2662 2663 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2664 return; 2665 2666 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2667 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2668 2669 llvm::BasicBlock *ContBlock = nullptr; 2670 2671 if (MayBeNull) { 2672 llvm::Value *DerivedNotNull = 2673 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2674 2675 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2676 ContBlock = createBasicBlock("cast.cont"); 2677 2678 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2679 2680 EmitBlock(CheckBlock); 2681 } 2682 2683 llvm::Value *VTable; 2684 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2685 *this, Address(Derived, getPointerAlign()), ClassDecl); 2686 2687 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2688 2689 if (MayBeNull) { 2690 Builder.CreateBr(ContBlock); 2691 EmitBlock(ContBlock); 2692 } 2693 } 2694 2695 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2696 llvm::Value *VTable, 2697 CFITypeCheckKind TCK, 2698 SourceLocation Loc) { 2699 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2700 !CGM.HasHiddenLTOVisibility(RD)) 2701 return; 2702 2703 SanitizerMask M; 2704 llvm::SanitizerStatKind SSK; 2705 switch (TCK) { 2706 case CFITCK_VCall: 2707 M = SanitizerKind::CFIVCall; 2708 SSK = llvm::SanStat_CFI_VCall; 2709 break; 2710 case CFITCK_NVCall: 2711 M = SanitizerKind::CFINVCall; 2712 SSK = llvm::SanStat_CFI_NVCall; 2713 break; 2714 case CFITCK_DerivedCast: 2715 M = SanitizerKind::CFIDerivedCast; 2716 SSK = llvm::SanStat_CFI_DerivedCast; 2717 break; 2718 case CFITCK_UnrelatedCast: 2719 M = SanitizerKind::CFIUnrelatedCast; 2720 SSK = llvm::SanStat_CFI_UnrelatedCast; 2721 break; 2722 case CFITCK_ICall: 2723 case CFITCK_NVMFCall: 2724 case CFITCK_VMFCall: 2725 llvm_unreachable("unexpected sanitizer kind"); 2726 } 2727 2728 std::string TypeName = RD->getQualifiedNameAsString(); 2729 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2730 return; 2731 2732 SanitizerScope SanScope(this); 2733 EmitSanitizerStatReport(SSK); 2734 2735 llvm::Metadata *MD = 2736 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2737 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2738 2739 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2740 llvm::Value *TypeTest = Builder.CreateCall( 2741 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2742 2743 llvm::Constant *StaticData[] = { 2744 llvm::ConstantInt::get(Int8Ty, TCK), 2745 EmitCheckSourceLocation(Loc), 2746 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2747 }; 2748 2749 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2750 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2751 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2752 return; 2753 } 2754 2755 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2756 EmitTrapCheck(TypeTest); 2757 return; 2758 } 2759 2760 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2761 CGM.getLLVMContext(), 2762 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2763 llvm::Value *ValidVtable = Builder.CreateCall( 2764 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2765 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2766 StaticData, {CastedVTable, ValidVtable}); 2767 } 2768 2769 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2770 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2771 !SanOpts.has(SanitizerKind::CFIVCall) || 2772 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2773 !CGM.HasHiddenLTOVisibility(RD)) 2774 return false; 2775 2776 std::string TypeName = RD->getQualifiedNameAsString(); 2777 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2778 SanitizerKind::CFIVCall, TypeName); 2779 } 2780 2781 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2782 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2783 SanitizerScope SanScope(this); 2784 2785 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2786 2787 llvm::Metadata *MD = 2788 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2789 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2790 2791 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2792 llvm::Value *CheckedLoad = Builder.CreateCall( 2793 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2794 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2795 TypeId}); 2796 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2797 2798 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2799 SanitizerHandler::CFICheckFail, nullptr, nullptr); 2800 2801 return Builder.CreateBitCast( 2802 Builder.CreateExtractValue(CheckedLoad, 0), 2803 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2804 } 2805 2806 void CodeGenFunction::EmitForwardingCallToLambda( 2807 const CXXMethodDecl *callOperator, 2808 CallArgList &callArgs) { 2809 // Get the address of the call operator. 2810 const CGFunctionInfo &calleeFnInfo = 2811 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2812 llvm::Constant *calleePtr = 2813 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2814 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2815 2816 // Prepare the return slot. 2817 const FunctionProtoType *FPT = 2818 callOperator->getType()->castAs<FunctionProtoType>(); 2819 QualType resultType = FPT->getReturnType(); 2820 ReturnValueSlot returnSlot; 2821 if (!resultType->isVoidType() && 2822 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2823 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2824 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2825 2826 // We don't need to separately arrange the call arguments because 2827 // the call can't be variadic anyway --- it's impossible to forward 2828 // variadic arguments. 2829 2830 // Now emit our call. 2831 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2832 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2833 2834 // If necessary, copy the returned value into the slot. 2835 if (!resultType->isVoidType() && returnSlot.isNull()) { 2836 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2837 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2838 } 2839 EmitReturnOfRValue(RV, resultType); 2840 } else 2841 EmitBranchThroughCleanup(ReturnBlock); 2842 } 2843 2844 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2845 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2846 const VarDecl *variable = BD->capture_begin()->getVariable(); 2847 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2848 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2849 2850 if (CallOp->isVariadic()) { 2851 // FIXME: Making this work correctly is nasty because it requires either 2852 // cloning the body of the call operator or making the call operator 2853 // forward. 2854 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2855 return; 2856 } 2857 2858 // Start building arguments for forwarding call 2859 CallArgList CallArgs; 2860 2861 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2862 Address ThisPtr = GetAddrOfBlockDecl(variable); 2863 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2864 2865 // Add the rest of the parameters. 2866 for (auto param : BD->parameters()) 2867 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2868 2869 assert(!Lambda->isGenericLambda() && 2870 "generic lambda interconversion to block not implemented"); 2871 EmitForwardingCallToLambda(CallOp, CallArgs); 2872 } 2873 2874 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2875 const CXXRecordDecl *Lambda = MD->getParent(); 2876 2877 // Start building arguments for forwarding call 2878 CallArgList CallArgs; 2879 2880 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2881 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2882 CallArgs.add(RValue::get(ThisPtr), ThisType); 2883 2884 // Add the rest of the parameters. 2885 for (auto Param : MD->parameters()) 2886 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 2887 2888 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2889 // For a generic lambda, find the corresponding call operator specialization 2890 // to which the call to the static-invoker shall be forwarded. 2891 if (Lambda->isGenericLambda()) { 2892 assert(MD->isFunctionTemplateSpecialization()); 2893 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2894 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2895 void *InsertPos = nullptr; 2896 FunctionDecl *CorrespondingCallOpSpecialization = 2897 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2898 assert(CorrespondingCallOpSpecialization); 2899 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2900 } 2901 EmitForwardingCallToLambda(CallOp, CallArgs); 2902 } 2903 2904 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2905 if (MD->isVariadic()) { 2906 // FIXME: Making this work correctly is nasty because it requires either 2907 // cloning the body of the call operator or making the call operator forward. 2908 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2909 return; 2910 } 2911 2912 EmitLambdaDelegatingInvokeBody(MD); 2913 } 2914