1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 33 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 34 CastExpr::path_const_iterator End) { 35 CharUnits Offset = CharUnits::Zero(); 36 37 const ASTContext &Context = getContext(); 38 const CXXRecordDecl *RD = DerivedClass; 39 40 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 41 const CXXBaseSpecifier *Base = *I; 42 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 43 44 // Get the layout. 45 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 46 47 const CXXRecordDecl *BaseDecl = 48 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 49 50 // Add the offset. 51 Offset += Layout.getBaseClassOffset(BaseDecl); 52 53 RD = BaseDecl; 54 } 55 56 return Offset; 57 } 58 59 llvm::Constant * 60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 61 CastExpr::path_const_iterator PathBegin, 62 CastExpr::path_const_iterator PathEnd) { 63 assert(PathBegin != PathEnd && "Base path should not be empty!"); 64 65 CharUnits Offset = 66 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 67 if (Offset.isZero()) 68 return nullptr; 69 70 llvm::Type *PtrDiffTy = 71 Types.ConvertType(getContext().getPointerDiffType()); 72 73 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 74 } 75 76 /// Gets the address of a direct base class within a complete object. 77 /// This should only be used for (1) non-virtual bases or (2) virtual bases 78 /// when the type is known to be complete (e.g. in complete destructors). 79 /// 80 /// The object pointed to by 'This' is assumed to be non-null. 81 llvm::Value * 82 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This, 83 const CXXRecordDecl *Derived, 84 const CXXRecordDecl *Base, 85 bool BaseIsVirtual) { 86 // 'this' must be a pointer (in some address space) to Derived. 87 assert(This->getType()->isPointerTy() && 88 cast<llvm::PointerType>(This->getType())->getElementType() 89 == ConvertType(Derived)); 90 91 // Compute the offset of the virtual base. 92 CharUnits Offset; 93 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 94 if (BaseIsVirtual) 95 Offset = Layout.getVBaseClassOffset(Base); 96 else 97 Offset = Layout.getBaseClassOffset(Base); 98 99 // Shift and cast down to the base type. 100 // TODO: for complete types, this should be possible with a GEP. 101 llvm::Value *V = This; 102 if (Offset.isPositive()) { 103 V = Builder.CreateBitCast(V, Int8PtrTy); 104 V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity()); 105 } 106 V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo()); 107 108 return V; 109 } 110 111 static llvm::Value * 112 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr, 113 CharUnits nonVirtualOffset, 114 llvm::Value *virtualOffset) { 115 // Assert that we have something to do. 116 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 117 118 // Compute the offset from the static and dynamic components. 119 llvm::Value *baseOffset; 120 if (!nonVirtualOffset.isZero()) { 121 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 122 nonVirtualOffset.getQuantity()); 123 if (virtualOffset) { 124 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 125 } 126 } else { 127 baseOffset = virtualOffset; 128 } 129 130 // Apply the base offset. 131 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 132 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 133 return ptr; 134 } 135 136 llvm::Value *CodeGenFunction::GetAddressOfBaseClass( 137 llvm::Value *Value, const CXXRecordDecl *Derived, 138 CastExpr::path_const_iterator PathBegin, 139 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 140 SourceLocation Loc) { 141 assert(PathBegin != PathEnd && "Base path should not be empty!"); 142 143 CastExpr::path_const_iterator Start = PathBegin; 144 const CXXRecordDecl *VBase = nullptr; 145 146 // Sema has done some convenient canonicalization here: if the 147 // access path involved any virtual steps, the conversion path will 148 // *start* with a step down to the correct virtual base subobject, 149 // and hence will not require any further steps. 150 if ((*Start)->isVirtual()) { 151 VBase = 152 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 153 ++Start; 154 } 155 156 // Compute the static offset of the ultimate destination within its 157 // allocating subobject (the virtual base, if there is one, or else 158 // the "complete" object that we see). 159 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 160 VBase ? VBase : Derived, Start, PathEnd); 161 162 // If there's a virtual step, we can sometimes "devirtualize" it. 163 // For now, that's limited to when the derived type is final. 164 // TODO: "devirtualize" this for accesses to known-complete objects. 165 if (VBase && Derived->hasAttr<FinalAttr>()) { 166 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 167 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 168 NonVirtualOffset += vBaseOffset; 169 VBase = nullptr; // we no longer have a virtual step 170 } 171 172 // Get the base pointer type. 173 llvm::Type *BasePtrTy = 174 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 175 176 QualType DerivedTy = getContext().getRecordType(Derived); 177 CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy); 178 179 // If the static offset is zero and we don't have a virtual step, 180 // just do a bitcast; null checks are unnecessary. 181 if (NonVirtualOffset.isZero() && !VBase) { 182 if (sanitizePerformTypeCheck()) { 183 EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign, 184 !NullCheckValue); 185 } 186 return Builder.CreateBitCast(Value, BasePtrTy); 187 } 188 189 llvm::BasicBlock *origBB = nullptr; 190 llvm::BasicBlock *endBB = nullptr; 191 192 // Skip over the offset (and the vtable load) if we're supposed to 193 // null-check the pointer. 194 if (NullCheckValue) { 195 origBB = Builder.GetInsertBlock(); 196 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 197 endBB = createBasicBlock("cast.end"); 198 199 llvm::Value *isNull = Builder.CreateIsNull(Value); 200 Builder.CreateCondBr(isNull, endBB, notNullBB); 201 EmitBlock(notNullBB); 202 } 203 204 if (sanitizePerformTypeCheck()) { 205 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value, 206 DerivedTy, DerivedAlign, true); 207 } 208 209 // Compute the virtual offset. 210 llvm::Value *VirtualOffset = nullptr; 211 if (VBase) { 212 VirtualOffset = 213 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 214 } 215 216 // Apply both offsets. 217 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, 218 NonVirtualOffset, 219 VirtualOffset); 220 221 // Cast to the destination type. 222 Value = Builder.CreateBitCast(Value, BasePtrTy); 223 224 // Build a phi if we needed a null check. 225 if (NullCheckValue) { 226 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 227 Builder.CreateBr(endBB); 228 EmitBlock(endBB); 229 230 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 231 PHI->addIncoming(Value, notNullBB); 232 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 233 Value = PHI; 234 } 235 236 return Value; 237 } 238 239 llvm::Value * 240 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value, 241 const CXXRecordDecl *Derived, 242 CastExpr::path_const_iterator PathBegin, 243 CastExpr::path_const_iterator PathEnd, 244 bool NullCheckValue) { 245 assert(PathBegin != PathEnd && "Base path should not be empty!"); 246 247 QualType DerivedTy = 248 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 249 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 250 251 llvm::Value *NonVirtualOffset = 252 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 253 254 if (!NonVirtualOffset) { 255 // No offset, we can just cast back. 256 return Builder.CreateBitCast(Value, DerivedPtrTy); 257 } 258 259 llvm::BasicBlock *CastNull = nullptr; 260 llvm::BasicBlock *CastNotNull = nullptr; 261 llvm::BasicBlock *CastEnd = nullptr; 262 263 if (NullCheckValue) { 264 CastNull = createBasicBlock("cast.null"); 265 CastNotNull = createBasicBlock("cast.notnull"); 266 CastEnd = createBasicBlock("cast.end"); 267 268 llvm::Value *IsNull = Builder.CreateIsNull(Value); 269 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 270 EmitBlock(CastNotNull); 271 } 272 273 // Apply the offset. 274 Value = Builder.CreateBitCast(Value, Int8PtrTy); 275 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 276 "sub.ptr"); 277 278 // Just cast. 279 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 280 281 if (NullCheckValue) { 282 Builder.CreateBr(CastEnd); 283 EmitBlock(CastNull); 284 Builder.CreateBr(CastEnd); 285 EmitBlock(CastEnd); 286 287 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 288 PHI->addIncoming(Value, CastNotNull); 289 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), 290 CastNull); 291 Value = PHI; 292 } 293 294 return Value; 295 } 296 297 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 298 bool ForVirtualBase, 299 bool Delegating) { 300 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 301 // This constructor/destructor does not need a VTT parameter. 302 return nullptr; 303 } 304 305 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 306 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 307 308 llvm::Value *VTT; 309 310 uint64_t SubVTTIndex; 311 312 if (Delegating) { 313 // If this is a delegating constructor call, just load the VTT. 314 return LoadCXXVTT(); 315 } else if (RD == Base) { 316 // If the record matches the base, this is the complete ctor/dtor 317 // variant calling the base variant in a class with virtual bases. 318 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 319 "doing no-op VTT offset in base dtor/ctor?"); 320 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 321 SubVTTIndex = 0; 322 } else { 323 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 324 CharUnits BaseOffset = ForVirtualBase ? 325 Layout.getVBaseClassOffset(Base) : 326 Layout.getBaseClassOffset(Base); 327 328 SubVTTIndex = 329 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 330 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 331 } 332 333 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 334 // A VTT parameter was passed to the constructor, use it. 335 VTT = LoadCXXVTT(); 336 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 337 } else { 338 // We're the complete constructor, so get the VTT by name. 339 VTT = CGM.getVTables().GetAddrOfVTT(RD); 340 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 341 } 342 343 return VTT; 344 } 345 346 namespace { 347 /// Call the destructor for a direct base class. 348 struct CallBaseDtor : EHScopeStack::Cleanup { 349 const CXXRecordDecl *BaseClass; 350 bool BaseIsVirtual; 351 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 352 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 353 354 void Emit(CodeGenFunction &CGF, Flags flags) override { 355 const CXXRecordDecl *DerivedClass = 356 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 357 358 const CXXDestructorDecl *D = BaseClass->getDestructor(); 359 llvm::Value *Addr = 360 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(), 361 DerivedClass, BaseClass, 362 BaseIsVirtual); 363 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 364 /*Delegating=*/false, Addr); 365 } 366 }; 367 368 /// A visitor which checks whether an initializer uses 'this' in a 369 /// way which requires the vtable to be properly set. 370 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 371 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 372 373 bool UsesThis; 374 375 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 376 377 // Black-list all explicit and implicit references to 'this'. 378 // 379 // Do we need to worry about external references to 'this' derived 380 // from arbitrary code? If so, then anything which runs arbitrary 381 // external code might potentially access the vtable. 382 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 383 }; 384 } 385 386 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 387 DynamicThisUseChecker Checker(C); 388 Checker.Visit(Init); 389 return Checker.UsesThis; 390 } 391 392 static void EmitBaseInitializer(CodeGenFunction &CGF, 393 const CXXRecordDecl *ClassDecl, 394 CXXCtorInitializer *BaseInit, 395 CXXCtorType CtorType) { 396 assert(BaseInit->isBaseInitializer() && 397 "Must have base initializer!"); 398 399 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 400 401 const Type *BaseType = BaseInit->getBaseClass(); 402 CXXRecordDecl *BaseClassDecl = 403 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 404 405 bool isBaseVirtual = BaseInit->isBaseVirtual(); 406 407 // The base constructor doesn't construct virtual bases. 408 if (CtorType == Ctor_Base && isBaseVirtual) 409 return; 410 411 // If the initializer for the base (other than the constructor 412 // itself) accesses 'this' in any way, we need to initialize the 413 // vtables. 414 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 415 CGF.InitializeVTablePointers(ClassDecl); 416 417 // We can pretend to be a complete class because it only matters for 418 // virtual bases, and we only do virtual bases for complete ctors. 419 llvm::Value *V = 420 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 421 BaseClassDecl, 422 isBaseVirtual); 423 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType); 424 AggValueSlot AggSlot = 425 AggValueSlot::forAddr(V, Alignment, Qualifiers(), 426 AggValueSlot::IsDestructed, 427 AggValueSlot::DoesNotNeedGCBarriers, 428 AggValueSlot::IsNotAliased); 429 430 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 431 432 if (CGF.CGM.getLangOpts().Exceptions && 433 !BaseClassDecl->hasTrivialDestructor()) 434 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 435 isBaseVirtual); 436 } 437 438 static void EmitAggMemberInitializer(CodeGenFunction &CGF, 439 LValue LHS, 440 Expr *Init, 441 llvm::Value *ArrayIndexVar, 442 QualType T, 443 ArrayRef<VarDecl *> ArrayIndexes, 444 unsigned Index) { 445 if (Index == ArrayIndexes.size()) { 446 LValue LV = LHS; 447 448 if (ArrayIndexVar) { 449 // If we have an array index variable, load it and use it as an offset. 450 // Then, increment the value. 451 llvm::Value *Dest = LHS.getAddress(); 452 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar); 453 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress"); 454 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1); 455 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc"); 456 CGF.Builder.CreateStore(Next, ArrayIndexVar); 457 458 // Update the LValue. 459 LV.setAddress(Dest); 460 CharUnits Align = CGF.getContext().getTypeAlignInChars(T); 461 LV.setAlignment(std::min(Align, LV.getAlignment())); 462 } 463 464 switch (CGF.getEvaluationKind(T)) { 465 case TEK_Scalar: 466 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false); 467 break; 468 case TEK_Complex: 469 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true); 470 break; 471 case TEK_Aggregate: { 472 AggValueSlot Slot = 473 AggValueSlot::forLValue(LV, 474 AggValueSlot::IsDestructed, 475 AggValueSlot::DoesNotNeedGCBarriers, 476 AggValueSlot::IsNotAliased); 477 478 CGF.EmitAggExpr(Init, Slot); 479 break; 480 } 481 } 482 483 return; 484 } 485 486 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T); 487 assert(Array && "Array initialization without the array type?"); 488 llvm::Value *IndexVar 489 = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]); 490 assert(IndexVar && "Array index variable not loaded"); 491 492 // Initialize this index variable to zero. 493 llvm::Value* Zero 494 = llvm::Constant::getNullValue( 495 CGF.ConvertType(CGF.getContext().getSizeType())); 496 CGF.Builder.CreateStore(Zero, IndexVar); 497 498 // Start the loop with a block that tests the condition. 499 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond"); 500 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end"); 501 502 CGF.EmitBlock(CondBlock); 503 504 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body"); 505 // Generate: if (loop-index < number-of-elements) fall to the loop body, 506 // otherwise, go to the block after the for-loop. 507 uint64_t NumElements = Array->getSize().getZExtValue(); 508 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar); 509 llvm::Value *NumElementsPtr = 510 llvm::ConstantInt::get(Counter->getType(), NumElements); 511 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr, 512 "isless"); 513 514 // If the condition is true, execute the body. 515 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor); 516 517 CGF.EmitBlock(ForBody); 518 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc"); 519 520 // Inside the loop body recurse to emit the inner loop or, eventually, the 521 // constructor call. 522 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar, 523 Array->getElementType(), ArrayIndexes, Index + 1); 524 525 CGF.EmitBlock(ContinueBlock); 526 527 // Emit the increment of the loop counter. 528 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1); 529 Counter = CGF.Builder.CreateLoad(IndexVar); 530 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc"); 531 CGF.Builder.CreateStore(NextVal, IndexVar); 532 533 // Finally, branch back up to the condition for the next iteration. 534 CGF.EmitBranch(CondBlock); 535 536 // Emit the fall-through block. 537 CGF.EmitBlock(AfterFor, true); 538 } 539 540 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 541 auto *CD = dyn_cast<CXXConstructorDecl>(D); 542 if (!(CD && CD->isCopyOrMoveConstructor()) && 543 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 544 return false; 545 546 // We can emit a memcpy for a trivial copy or move constructor/assignment. 547 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 548 return true; 549 550 // We *must* emit a memcpy for a defaulted union copy or move op. 551 if (D->getParent()->isUnion() && D->isDefaulted()) 552 return true; 553 554 return false; 555 } 556 557 static void EmitMemberInitializer(CodeGenFunction &CGF, 558 const CXXRecordDecl *ClassDecl, 559 CXXCtorInitializer *MemberInit, 560 const CXXConstructorDecl *Constructor, 561 FunctionArgList &Args) { 562 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 563 assert(MemberInit->isAnyMemberInitializer() && 564 "Must have member initializer!"); 565 assert(MemberInit->getInit() && "Must have initializer!"); 566 567 // non-static data member initializers. 568 FieldDecl *Field = MemberInit->getAnyMember(); 569 QualType FieldType = Field->getType(); 570 571 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 572 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 573 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 574 575 if (MemberInit->isIndirectMemberInitializer()) { 576 // If we are initializing an anonymous union field, drill down to 577 // the field. 578 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 579 for (const auto *I : IndirectField->chain()) 580 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 581 FieldType = MemberInit->getIndirectMember()->getAnonField()->getType(); 582 } else { 583 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 584 } 585 586 // Special case: if we are in a copy or move constructor, and we are copying 587 // an array of PODs or classes with trivial copy constructors, ignore the 588 // AST and perform the copy we know is equivalent. 589 // FIXME: This is hacky at best... if we had a bit more explicit information 590 // in the AST, we could generalize it more easily. 591 const ConstantArrayType *Array 592 = CGF.getContext().getAsConstantArrayType(FieldType); 593 if (Array && Constructor->isDefaulted() && 594 Constructor->isCopyOrMoveConstructor()) { 595 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 596 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 597 if (BaseElementTy.isPODType(CGF.getContext()) || 598 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 599 unsigned SrcArgIndex = 600 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 601 llvm::Value *SrcPtr 602 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 603 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 604 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 605 606 // Copy the aggregate. 607 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 608 LHS.isVolatileQualified()); 609 return; 610 } 611 } 612 613 ArrayRef<VarDecl *> ArrayIndexes; 614 if (MemberInit->getNumArrayIndices()) 615 ArrayIndexes = MemberInit->getArrayIndexes(); 616 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes); 617 } 618 619 void CodeGenFunction::EmitInitializerForField( 620 FieldDecl *Field, LValue LHS, Expr *Init, 621 ArrayRef<VarDecl *> ArrayIndexes) { 622 QualType FieldType = Field->getType(); 623 switch (getEvaluationKind(FieldType)) { 624 case TEK_Scalar: 625 if (LHS.isSimple()) { 626 EmitExprAsInit(Init, Field, LHS, false); 627 } else { 628 RValue RHS = RValue::get(EmitScalarExpr(Init)); 629 EmitStoreThroughLValue(RHS, LHS); 630 } 631 break; 632 case TEK_Complex: 633 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 634 break; 635 case TEK_Aggregate: { 636 llvm::Value *ArrayIndexVar = nullptr; 637 if (ArrayIndexes.size()) { 638 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 639 640 // The LHS is a pointer to the first object we'll be constructing, as 641 // a flat array. 642 QualType BaseElementTy = getContext().getBaseElementType(FieldType); 643 llvm::Type *BasePtr = ConvertType(BaseElementTy); 644 BasePtr = llvm::PointerType::getUnqual(BasePtr); 645 llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), 646 BasePtr); 647 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy); 648 649 // Create an array index that will be used to walk over all of the 650 // objects we're constructing. 651 ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index"); 652 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy); 653 Builder.CreateStore(Zero, ArrayIndexVar); 654 655 656 // Emit the block variables for the array indices, if any. 657 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I) 658 EmitAutoVarDecl(*ArrayIndexes[I]); 659 } 660 661 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType, 662 ArrayIndexes, 0); 663 } 664 } 665 666 // Ensure that we destroy this object if an exception is thrown 667 // later in the constructor. 668 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 669 if (needsEHCleanup(dtorKind)) 670 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 671 } 672 673 /// Checks whether the given constructor is a valid subject for the 674 /// complete-to-base constructor delegation optimization, i.e. 675 /// emitting the complete constructor as a simple call to the base 676 /// constructor. 677 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) { 678 679 // Currently we disable the optimization for classes with virtual 680 // bases because (1) the addresses of parameter variables need to be 681 // consistent across all initializers but (2) the delegate function 682 // call necessarily creates a second copy of the parameter variable. 683 // 684 // The limiting example (purely theoretical AFAIK): 685 // struct A { A(int &c) { c++; } }; 686 // struct B : virtual A { 687 // B(int count) : A(count) { printf("%d\n", count); } 688 // }; 689 // ...although even this example could in principle be emitted as a 690 // delegation since the address of the parameter doesn't escape. 691 if (Ctor->getParent()->getNumVBases()) { 692 // TODO: white-list trivial vbase initializers. This case wouldn't 693 // be subject to the restrictions below. 694 695 // TODO: white-list cases where: 696 // - there are no non-reference parameters to the constructor 697 // - the initializers don't access any non-reference parameters 698 // - the initializers don't take the address of non-reference 699 // parameters 700 // - etc. 701 // If we ever add any of the above cases, remember that: 702 // - function-try-blocks will always blacklist this optimization 703 // - we need to perform the constructor prologue and cleanup in 704 // EmitConstructorBody. 705 706 return false; 707 } 708 709 // We also disable the optimization for variadic functions because 710 // it's impossible to "re-pass" varargs. 711 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 712 return false; 713 714 // FIXME: Decide if we can do a delegation of a delegating constructor. 715 if (Ctor->isDelegatingConstructor()) 716 return false; 717 718 return true; 719 } 720 721 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 722 // to poison the extra field paddings inserted under 723 // -fsanitize-address-field-padding=1|2. 724 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 725 ASTContext &Context = getContext(); 726 const CXXRecordDecl *ClassDecl = 727 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 728 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 729 if (!ClassDecl->mayInsertExtraPadding()) return; 730 731 struct SizeAndOffset { 732 uint64_t Size; 733 uint64_t Offset; 734 }; 735 736 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 737 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 738 739 // Populate sizes and offsets of fields. 740 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 741 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 742 SSV[i].Offset = 743 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 744 745 size_t NumFields = 0; 746 for (const auto *Field : ClassDecl->fields()) { 747 const FieldDecl *D = Field; 748 std::pair<CharUnits, CharUnits> FieldInfo = 749 Context.getTypeInfoInChars(D->getType()); 750 CharUnits FieldSize = FieldInfo.first; 751 assert(NumFields < SSV.size()); 752 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 753 NumFields++; 754 } 755 assert(NumFields == SSV.size()); 756 if (SSV.size() <= 1) return; 757 758 // We will insert calls to __asan_* run-time functions. 759 // LLVM AddressSanitizer pass may decide to inline them later. 760 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 761 llvm::FunctionType *FTy = 762 llvm::FunctionType::get(CGM.VoidTy, Args, false); 763 llvm::Constant *F = CGM.CreateRuntimeFunction( 764 FTy, Prologue ? "__asan_poison_intra_object_redzone" 765 : "__asan_unpoison_intra_object_redzone"); 766 767 llvm::Value *ThisPtr = LoadCXXThis(); 768 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 769 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 770 // For each field check if it has sufficient padding, 771 // if so (un)poison it with a call. 772 for (size_t i = 0; i < SSV.size(); i++) { 773 uint64_t AsanAlignment = 8; 774 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 775 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 776 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 777 if (PoisonSize < AsanAlignment || !SSV[i].Size || 778 (NextField % AsanAlignment) != 0) 779 continue; 780 Builder.CreateCall( 781 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 782 Builder.getIntN(PtrSize, PoisonSize)}); 783 } 784 } 785 786 /// EmitConstructorBody - Emits the body of the current constructor. 787 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 788 EmitAsanPrologueOrEpilogue(true); 789 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 790 CXXCtorType CtorType = CurGD.getCtorType(); 791 792 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 793 CtorType == Ctor_Complete) && 794 "can only generate complete ctor for this ABI"); 795 796 // Before we go any further, try the complete->base constructor 797 // delegation optimization. 798 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 799 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 800 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 801 return; 802 } 803 804 const FunctionDecl *Definition = 0; 805 Stmt *Body = Ctor->getBody(Definition); 806 assert(Definition == Ctor && "emitting wrong constructor body"); 807 808 // Enter the function-try-block before the constructor prologue if 809 // applicable. 810 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 811 if (IsTryBody) 812 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 813 814 incrementProfileCounter(Body); 815 816 RunCleanupsScope RunCleanups(*this); 817 818 // TODO: in restricted cases, we can emit the vbase initializers of 819 // a complete ctor and then delegate to the base ctor. 820 821 // Emit the constructor prologue, i.e. the base and member 822 // initializers. 823 EmitCtorPrologue(Ctor, CtorType, Args); 824 825 // Emit the body of the statement. 826 if (IsTryBody) 827 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 828 else if (Body) 829 EmitStmt(Body); 830 831 // Emit any cleanup blocks associated with the member or base 832 // initializers, which includes (along the exceptional path) the 833 // destructors for those members and bases that were fully 834 // constructed. 835 RunCleanups.ForceCleanup(); 836 837 if (IsTryBody) 838 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 839 } 840 841 namespace { 842 /// RAII object to indicate that codegen is copying the value representation 843 /// instead of the object representation. Useful when copying a struct or 844 /// class which has uninitialized members and we're only performing 845 /// lvalue-to-rvalue conversion on the object but not its members. 846 class CopyingValueRepresentation { 847 public: 848 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 849 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 850 CGF.SanOpts.set(SanitizerKind::Bool, false); 851 CGF.SanOpts.set(SanitizerKind::Enum, false); 852 } 853 ~CopyingValueRepresentation() { 854 CGF.SanOpts = OldSanOpts; 855 } 856 private: 857 CodeGenFunction &CGF; 858 SanitizerSet OldSanOpts; 859 }; 860 } 861 862 namespace { 863 class FieldMemcpyizer { 864 public: 865 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 866 const VarDecl *SrcRec) 867 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 868 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 869 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 870 LastFieldOffset(0), LastAddedFieldIndex(0) {} 871 872 bool isMemcpyableField(FieldDecl *F) const { 873 // Never memcpy fields when we are adding poisoned paddings. 874 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 875 return false; 876 Qualifiers Qual = F->getType().getQualifiers(); 877 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 878 return false; 879 return true; 880 } 881 882 void addMemcpyableField(FieldDecl *F) { 883 if (!FirstField) 884 addInitialField(F); 885 else 886 addNextField(F); 887 } 888 889 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 890 unsigned LastFieldSize = 891 LastField->isBitField() ? 892 LastField->getBitWidthValue(CGF.getContext()) : 893 CGF.getContext().getTypeSize(LastField->getType()); 894 uint64_t MemcpySizeBits = 895 LastFieldOffset + LastFieldSize - FirstByteOffset + 896 CGF.getContext().getCharWidth() - 1; 897 CharUnits MemcpySize = 898 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 899 return MemcpySize; 900 } 901 902 void emitMemcpy() { 903 // Give the subclass a chance to bail out if it feels the memcpy isn't 904 // worth it (e.g. Hasn't aggregated enough data). 905 if (!FirstField) { 906 return; 907 } 908 909 CharUnits Alignment; 910 911 uint64_t FirstByteOffset; 912 if (FirstField->isBitField()) { 913 const CGRecordLayout &RL = 914 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 915 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 916 Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment); 917 // FirstFieldOffset is not appropriate for bitfields, 918 // it won't tell us what the storage offset should be and thus might not 919 // be properly aligned. 920 // 921 // Instead calculate the storage offset using the offset of the field in 922 // the struct type. 923 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 924 FirstByteOffset = 925 DL.getStructLayout(RL.getLLVMType()) 926 ->getElementOffsetInBits(RL.getLLVMFieldNo(FirstField)); 927 } else { 928 Alignment = CGF.getContext().getDeclAlign(FirstField); 929 FirstByteOffset = FirstFieldOffset; 930 } 931 932 assert((CGF.getContext().toCharUnitsFromBits(FirstByteOffset) % 933 Alignment) == 0 && "Bad field alignment."); 934 935 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 936 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 937 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 938 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 939 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 940 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 941 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 942 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 943 944 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(), 945 Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(), 946 MemcpySize, Alignment); 947 reset(); 948 } 949 950 void reset() { 951 FirstField = nullptr; 952 } 953 954 protected: 955 CodeGenFunction &CGF; 956 const CXXRecordDecl *ClassDecl; 957 958 private: 959 960 void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr, 961 CharUnits Size, CharUnits Alignment) { 962 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 963 llvm::Type *DBP = 964 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 965 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 966 967 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 968 llvm::Type *SBP = 969 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 970 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 971 972 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(), 973 Alignment.getQuantity()); 974 } 975 976 void addInitialField(FieldDecl *F) { 977 FirstField = F; 978 LastField = F; 979 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 980 LastFieldOffset = FirstFieldOffset; 981 LastAddedFieldIndex = F->getFieldIndex(); 982 return; 983 } 984 985 void addNextField(FieldDecl *F) { 986 // For the most part, the following invariant will hold: 987 // F->getFieldIndex() == LastAddedFieldIndex + 1 988 // The one exception is that Sema won't add a copy-initializer for an 989 // unnamed bitfield, which will show up here as a gap in the sequence. 990 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 991 "Cannot aggregate fields out of order."); 992 LastAddedFieldIndex = F->getFieldIndex(); 993 994 // The 'first' and 'last' fields are chosen by offset, rather than field 995 // index. This allows the code to support bitfields, as well as regular 996 // fields. 997 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 998 if (FOffset < FirstFieldOffset) { 999 FirstField = F; 1000 FirstFieldOffset = FOffset; 1001 } else if (FOffset > LastFieldOffset) { 1002 LastField = F; 1003 LastFieldOffset = FOffset; 1004 } 1005 } 1006 1007 const VarDecl *SrcRec; 1008 const ASTRecordLayout &RecLayout; 1009 FieldDecl *FirstField; 1010 FieldDecl *LastField; 1011 uint64_t FirstFieldOffset, LastFieldOffset; 1012 unsigned LastAddedFieldIndex; 1013 }; 1014 1015 class ConstructorMemcpyizer : public FieldMemcpyizer { 1016 private: 1017 1018 /// Get source argument for copy constructor. Returns null if not a copy 1019 /// constructor. 1020 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1021 const CXXConstructorDecl *CD, 1022 FunctionArgList &Args) { 1023 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1024 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1025 return nullptr; 1026 } 1027 1028 // Returns true if a CXXCtorInitializer represents a member initialization 1029 // that can be rolled into a memcpy. 1030 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1031 if (!MemcpyableCtor) 1032 return false; 1033 FieldDecl *Field = MemberInit->getMember(); 1034 assert(Field && "No field for member init."); 1035 QualType FieldType = Field->getType(); 1036 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1037 1038 // Bail out on non-memcpyable, not-trivially-copyable members. 1039 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1040 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1041 FieldType->isReferenceType())) 1042 return false; 1043 1044 // Bail out on volatile fields. 1045 if (!isMemcpyableField(Field)) 1046 return false; 1047 1048 // Otherwise we're good. 1049 return true; 1050 } 1051 1052 public: 1053 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1054 FunctionArgList &Args) 1055 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1056 ConstructorDecl(CD), 1057 MemcpyableCtor(CD->isDefaulted() && 1058 CD->isCopyOrMoveConstructor() && 1059 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1060 Args(Args) { } 1061 1062 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1063 if (isMemberInitMemcpyable(MemberInit)) { 1064 AggregatedInits.push_back(MemberInit); 1065 addMemcpyableField(MemberInit->getMember()); 1066 } else { 1067 emitAggregatedInits(); 1068 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1069 ConstructorDecl, Args); 1070 } 1071 } 1072 1073 void emitAggregatedInits() { 1074 if (AggregatedInits.size() <= 1) { 1075 // This memcpy is too small to be worthwhile. Fall back on default 1076 // codegen. 1077 if (!AggregatedInits.empty()) { 1078 CopyingValueRepresentation CVR(CGF); 1079 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1080 AggregatedInits[0], ConstructorDecl, Args); 1081 } 1082 reset(); 1083 return; 1084 } 1085 1086 pushEHDestructors(); 1087 emitMemcpy(); 1088 AggregatedInits.clear(); 1089 } 1090 1091 void pushEHDestructors() { 1092 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 1093 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1094 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 1095 1096 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1097 QualType FieldType = AggregatedInits[i]->getMember()->getType(); 1098 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1099 if (CGF.needsEHCleanup(dtorKind)) 1100 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 1101 } 1102 } 1103 1104 void finish() { 1105 emitAggregatedInits(); 1106 } 1107 1108 private: 1109 const CXXConstructorDecl *ConstructorDecl; 1110 bool MemcpyableCtor; 1111 FunctionArgList &Args; 1112 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1113 }; 1114 1115 class AssignmentMemcpyizer : public FieldMemcpyizer { 1116 private: 1117 1118 // Returns the memcpyable field copied by the given statement, if one 1119 // exists. Otherwise returns null. 1120 FieldDecl *getMemcpyableField(Stmt *S) { 1121 if (!AssignmentsMemcpyable) 1122 return nullptr; 1123 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1124 // Recognise trivial assignments. 1125 if (BO->getOpcode() != BO_Assign) 1126 return nullptr; 1127 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1128 if (!ME) 1129 return nullptr; 1130 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1131 if (!Field || !isMemcpyableField(Field)) 1132 return nullptr; 1133 Stmt *RHS = BO->getRHS(); 1134 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1135 RHS = EC->getSubExpr(); 1136 if (!RHS) 1137 return nullptr; 1138 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS); 1139 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field) 1140 return nullptr; 1141 return Field; 1142 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1143 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1144 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1145 return nullptr; 1146 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1147 if (!IOA) 1148 return nullptr; 1149 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1150 if (!Field || !isMemcpyableField(Field)) 1151 return nullptr; 1152 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1153 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1154 return nullptr; 1155 return Field; 1156 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1157 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1158 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1159 return nullptr; 1160 Expr *DstPtr = CE->getArg(0); 1161 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1162 DstPtr = DC->getSubExpr(); 1163 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1164 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1165 return nullptr; 1166 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1167 if (!ME) 1168 return nullptr; 1169 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1170 if (!Field || !isMemcpyableField(Field)) 1171 return nullptr; 1172 Expr *SrcPtr = CE->getArg(1); 1173 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1174 SrcPtr = SC->getSubExpr(); 1175 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1176 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1177 return nullptr; 1178 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1179 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1180 return nullptr; 1181 return Field; 1182 } 1183 1184 return nullptr; 1185 } 1186 1187 bool AssignmentsMemcpyable; 1188 SmallVector<Stmt*, 16> AggregatedStmts; 1189 1190 public: 1191 1192 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1193 FunctionArgList &Args) 1194 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1195 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1196 assert(Args.size() == 2); 1197 } 1198 1199 void emitAssignment(Stmt *S) { 1200 FieldDecl *F = getMemcpyableField(S); 1201 if (F) { 1202 addMemcpyableField(F); 1203 AggregatedStmts.push_back(S); 1204 } else { 1205 emitAggregatedStmts(); 1206 CGF.EmitStmt(S); 1207 } 1208 } 1209 1210 void emitAggregatedStmts() { 1211 if (AggregatedStmts.size() <= 1) { 1212 if (!AggregatedStmts.empty()) { 1213 CopyingValueRepresentation CVR(CGF); 1214 CGF.EmitStmt(AggregatedStmts[0]); 1215 } 1216 reset(); 1217 } 1218 1219 emitMemcpy(); 1220 AggregatedStmts.clear(); 1221 } 1222 1223 void finish() { 1224 emitAggregatedStmts(); 1225 } 1226 }; 1227 1228 } 1229 1230 /// EmitCtorPrologue - This routine generates necessary code to initialize 1231 /// base classes and non-static data members belonging to this constructor. 1232 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1233 CXXCtorType CtorType, 1234 FunctionArgList &Args) { 1235 if (CD->isDelegatingConstructor()) 1236 return EmitDelegatingCXXConstructorCall(CD, Args); 1237 1238 const CXXRecordDecl *ClassDecl = CD->getParent(); 1239 1240 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1241 E = CD->init_end(); 1242 1243 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1244 if (ClassDecl->getNumVBases() && 1245 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1246 // The ABIs that don't have constructor variants need to put a branch 1247 // before the virtual base initialization code. 1248 BaseCtorContinueBB = 1249 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1250 assert(BaseCtorContinueBB); 1251 } 1252 1253 // Virtual base initializers first. 1254 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1255 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1256 } 1257 1258 if (BaseCtorContinueBB) { 1259 // Complete object handler should continue to the remaining initializers. 1260 Builder.CreateBr(BaseCtorContinueBB); 1261 EmitBlock(BaseCtorContinueBB); 1262 } 1263 1264 // Then, non-virtual base initializers. 1265 for (; B != E && (*B)->isBaseInitializer(); B++) { 1266 assert(!(*B)->isBaseVirtual()); 1267 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1268 } 1269 1270 InitializeVTablePointers(ClassDecl); 1271 1272 // And finally, initialize class members. 1273 FieldConstructionScope FCS(*this, CXXThisValue); 1274 ConstructorMemcpyizer CM(*this, CD, Args); 1275 for (; B != E; B++) { 1276 CXXCtorInitializer *Member = (*B); 1277 assert(!Member->isBaseInitializer()); 1278 assert(Member->isAnyMemberInitializer() && 1279 "Delegating initializer on non-delegating constructor"); 1280 CM.addMemberInitializer(Member); 1281 } 1282 CM.finish(); 1283 } 1284 1285 static bool 1286 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1287 1288 static bool 1289 HasTrivialDestructorBody(ASTContext &Context, 1290 const CXXRecordDecl *BaseClassDecl, 1291 const CXXRecordDecl *MostDerivedClassDecl) 1292 { 1293 // If the destructor is trivial we don't have to check anything else. 1294 if (BaseClassDecl->hasTrivialDestructor()) 1295 return true; 1296 1297 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1298 return false; 1299 1300 // Check fields. 1301 for (const auto *Field : BaseClassDecl->fields()) 1302 if (!FieldHasTrivialDestructorBody(Context, Field)) 1303 return false; 1304 1305 // Check non-virtual bases. 1306 for (const auto &I : BaseClassDecl->bases()) { 1307 if (I.isVirtual()) 1308 continue; 1309 1310 const CXXRecordDecl *NonVirtualBase = 1311 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1312 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1313 MostDerivedClassDecl)) 1314 return false; 1315 } 1316 1317 if (BaseClassDecl == MostDerivedClassDecl) { 1318 // Check virtual bases. 1319 for (const auto &I : BaseClassDecl->vbases()) { 1320 const CXXRecordDecl *VirtualBase = 1321 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1322 if (!HasTrivialDestructorBody(Context, VirtualBase, 1323 MostDerivedClassDecl)) 1324 return false; 1325 } 1326 } 1327 1328 return true; 1329 } 1330 1331 static bool 1332 FieldHasTrivialDestructorBody(ASTContext &Context, 1333 const FieldDecl *Field) 1334 { 1335 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1336 1337 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1338 if (!RT) 1339 return true; 1340 1341 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1342 1343 // The destructor for an implicit anonymous union member is never invoked. 1344 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1345 return false; 1346 1347 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1348 } 1349 1350 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1351 /// any vtable pointers before calling this destructor. 1352 static bool CanSkipVTablePointerInitialization(ASTContext &Context, 1353 const CXXDestructorDecl *Dtor) { 1354 if (!Dtor->hasTrivialBody()) 1355 return false; 1356 1357 // Check the fields. 1358 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1359 for (const auto *Field : ClassDecl->fields()) 1360 if (!FieldHasTrivialDestructorBody(Context, Field)) 1361 return false; 1362 1363 return true; 1364 } 1365 1366 /// EmitDestructorBody - Emits the body of the current destructor. 1367 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1368 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1369 CXXDtorType DtorType = CurGD.getDtorType(); 1370 1371 Stmt *Body = Dtor->getBody(); 1372 if (Body) 1373 incrementProfileCounter(Body); 1374 1375 // The call to operator delete in a deleting destructor happens 1376 // outside of the function-try-block, which means it's always 1377 // possible to delegate the destructor body to the complete 1378 // destructor. Do so. 1379 if (DtorType == Dtor_Deleting) { 1380 EnterDtorCleanups(Dtor, Dtor_Deleting); 1381 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1382 /*Delegating=*/false, LoadCXXThis()); 1383 PopCleanupBlock(); 1384 return; 1385 } 1386 1387 // If the body is a function-try-block, enter the try before 1388 // anything else. 1389 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1390 if (isTryBody) 1391 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1392 EmitAsanPrologueOrEpilogue(false); 1393 1394 // Enter the epilogue cleanups. 1395 RunCleanupsScope DtorEpilogue(*this); 1396 1397 // If this is the complete variant, just invoke the base variant; 1398 // the epilogue will destruct the virtual bases. But we can't do 1399 // this optimization if the body is a function-try-block, because 1400 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1401 // always delegate because we might not have a definition in this TU. 1402 switch (DtorType) { 1403 case Dtor_Comdat: 1404 llvm_unreachable("not expecting a COMDAT"); 1405 1406 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1407 1408 case Dtor_Complete: 1409 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1410 "can't emit a dtor without a body for non-Microsoft ABIs"); 1411 1412 // Enter the cleanup scopes for virtual bases. 1413 EnterDtorCleanups(Dtor, Dtor_Complete); 1414 1415 if (!isTryBody) { 1416 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1417 /*Delegating=*/false, LoadCXXThis()); 1418 break; 1419 } 1420 // Fallthrough: act like we're in the base variant. 1421 1422 case Dtor_Base: 1423 assert(Body); 1424 1425 // Enter the cleanup scopes for fields and non-virtual bases. 1426 EnterDtorCleanups(Dtor, Dtor_Base); 1427 1428 // Initialize the vtable pointers before entering the body. 1429 if (!CanSkipVTablePointerInitialization(getContext(), Dtor)) 1430 InitializeVTablePointers(Dtor->getParent()); 1431 1432 if (isTryBody) 1433 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1434 else if (Body) 1435 EmitStmt(Body); 1436 else { 1437 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1438 // nothing to do besides what's in the epilogue 1439 } 1440 // -fapple-kext must inline any call to this dtor into 1441 // the caller's body. 1442 if (getLangOpts().AppleKext) 1443 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1444 break; 1445 } 1446 1447 // Jump out through the epilogue cleanups. 1448 DtorEpilogue.ForceCleanup(); 1449 1450 // Exit the try if applicable. 1451 if (isTryBody) 1452 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1453 } 1454 1455 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1456 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1457 const Stmt *RootS = AssignOp->getBody(); 1458 assert(isa<CompoundStmt>(RootS) && 1459 "Body of an implicit assignment operator should be compound stmt."); 1460 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1461 1462 LexicalScope Scope(*this, RootCS->getSourceRange()); 1463 1464 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1465 for (auto *I : RootCS->body()) 1466 AM.emitAssignment(I); 1467 AM.finish(); 1468 } 1469 1470 namespace { 1471 /// Call the operator delete associated with the current destructor. 1472 struct CallDtorDelete : EHScopeStack::Cleanup { 1473 CallDtorDelete() {} 1474 1475 void Emit(CodeGenFunction &CGF, Flags flags) override { 1476 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1477 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1478 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1479 CGF.getContext().getTagDeclType(ClassDecl)); 1480 } 1481 }; 1482 1483 struct CallDtorDeleteConditional : EHScopeStack::Cleanup { 1484 llvm::Value *ShouldDeleteCondition; 1485 public: 1486 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1487 : ShouldDeleteCondition(ShouldDeleteCondition) { 1488 assert(ShouldDeleteCondition != nullptr); 1489 } 1490 1491 void Emit(CodeGenFunction &CGF, Flags flags) override { 1492 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1493 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1494 llvm::Value *ShouldCallDelete 1495 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1496 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1497 1498 CGF.EmitBlock(callDeleteBB); 1499 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1500 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1501 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1502 CGF.getContext().getTagDeclType(ClassDecl)); 1503 CGF.Builder.CreateBr(continueBB); 1504 1505 CGF.EmitBlock(continueBB); 1506 } 1507 }; 1508 1509 class DestroyField : public EHScopeStack::Cleanup { 1510 const FieldDecl *field; 1511 CodeGenFunction::Destroyer *destroyer; 1512 bool useEHCleanupForArray; 1513 1514 public: 1515 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1516 bool useEHCleanupForArray) 1517 : field(field), destroyer(destroyer), 1518 useEHCleanupForArray(useEHCleanupForArray) {} 1519 1520 void Emit(CodeGenFunction &CGF, Flags flags) override { 1521 // Find the address of the field. 1522 llvm::Value *thisValue = CGF.LoadCXXThis(); 1523 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1524 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1525 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1526 assert(LV.isSimple()); 1527 1528 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1529 flags.isForNormalCleanup() && useEHCleanupForArray); 1530 } 1531 }; 1532 } 1533 1534 /// \brief Emit all code that comes at the end of class's 1535 /// destructor. This is to call destructors on members and base classes 1536 /// in reverse order of their construction. 1537 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1538 CXXDtorType DtorType) { 1539 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1540 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1541 1542 // The deleting-destructor phase just needs to call the appropriate 1543 // operator delete that Sema picked up. 1544 if (DtorType == Dtor_Deleting) { 1545 assert(DD->getOperatorDelete() && 1546 "operator delete missing - EnterDtorCleanups"); 1547 if (CXXStructorImplicitParamValue) { 1548 // If there is an implicit param to the deleting dtor, it's a boolean 1549 // telling whether we should call delete at the end of the dtor. 1550 EHStack.pushCleanup<CallDtorDeleteConditional>( 1551 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1552 } else { 1553 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1554 } 1555 return; 1556 } 1557 1558 const CXXRecordDecl *ClassDecl = DD->getParent(); 1559 1560 // Unions have no bases and do not call field destructors. 1561 if (ClassDecl->isUnion()) 1562 return; 1563 1564 // The complete-destructor phase just destructs all the virtual bases. 1565 if (DtorType == Dtor_Complete) { 1566 1567 // We push them in the forward order so that they'll be popped in 1568 // the reverse order. 1569 for (const auto &Base : ClassDecl->vbases()) { 1570 CXXRecordDecl *BaseClassDecl 1571 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1572 1573 // Ignore trivial destructors. 1574 if (BaseClassDecl->hasTrivialDestructor()) 1575 continue; 1576 1577 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1578 BaseClassDecl, 1579 /*BaseIsVirtual*/ true); 1580 } 1581 1582 return; 1583 } 1584 1585 assert(DtorType == Dtor_Base); 1586 1587 // Destroy non-virtual bases. 1588 for (const auto &Base : ClassDecl->bases()) { 1589 // Ignore virtual bases. 1590 if (Base.isVirtual()) 1591 continue; 1592 1593 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1594 1595 // Ignore trivial destructors. 1596 if (BaseClassDecl->hasTrivialDestructor()) 1597 continue; 1598 1599 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1600 BaseClassDecl, 1601 /*BaseIsVirtual*/ false); 1602 } 1603 1604 // Destroy direct fields. 1605 for (const auto *Field : ClassDecl->fields()) { 1606 QualType type = Field->getType(); 1607 QualType::DestructionKind dtorKind = type.isDestructedType(); 1608 if (!dtorKind) continue; 1609 1610 // Anonymous union members do not have their destructors called. 1611 const RecordType *RT = type->getAsUnionType(); 1612 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1613 1614 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1615 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1616 getDestroyer(dtorKind), 1617 cleanupKind & EHCleanup); 1618 } 1619 } 1620 1621 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1622 /// constructor for each of several members of an array. 1623 /// 1624 /// \param ctor the constructor to call for each element 1625 /// \param arrayType the type of the array to initialize 1626 /// \param arrayBegin an arrayType* 1627 /// \param zeroInitialize true if each element should be 1628 /// zero-initialized before it is constructed 1629 void CodeGenFunction::EmitCXXAggrConstructorCall( 1630 const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType, 1631 llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1632 QualType elementType; 1633 llvm::Value *numElements = 1634 emitArrayLength(arrayType, elementType, arrayBegin); 1635 1636 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1637 } 1638 1639 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1640 /// constructor for each of several members of an array. 1641 /// 1642 /// \param ctor the constructor to call for each element 1643 /// \param numElements the number of elements in the array; 1644 /// may be zero 1645 /// \param arrayBegin a T*, where T is the type constructed by ctor 1646 /// \param zeroInitialize true if each element should be 1647 /// zero-initialized before it is constructed 1648 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1649 llvm::Value *numElements, 1650 llvm::Value *arrayBegin, 1651 const CXXConstructExpr *E, 1652 bool zeroInitialize) { 1653 1654 // It's legal for numElements to be zero. This can happen both 1655 // dynamically, because x can be zero in 'new A[x]', and statically, 1656 // because of GCC extensions that permit zero-length arrays. There 1657 // are probably legitimate places where we could assume that this 1658 // doesn't happen, but it's not clear that it's worth it. 1659 llvm::BranchInst *zeroCheckBranch = nullptr; 1660 1661 // Optimize for a constant count. 1662 llvm::ConstantInt *constantCount 1663 = dyn_cast<llvm::ConstantInt>(numElements); 1664 if (constantCount) { 1665 // Just skip out if the constant count is zero. 1666 if (constantCount->isZero()) return; 1667 1668 // Otherwise, emit the check. 1669 } else { 1670 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1671 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1672 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1673 EmitBlock(loopBB); 1674 } 1675 1676 // Find the end of the array. 1677 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1678 "arrayctor.end"); 1679 1680 // Enter the loop, setting up a phi for the current location to initialize. 1681 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1682 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1683 EmitBlock(loopBB); 1684 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1685 "arrayctor.cur"); 1686 cur->addIncoming(arrayBegin, entryBB); 1687 1688 // Inside the loop body, emit the constructor call on the array element. 1689 1690 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1691 1692 // Zero initialize the storage, if requested. 1693 if (zeroInitialize) 1694 EmitNullInitialization(cur, type); 1695 1696 // C++ [class.temporary]p4: 1697 // There are two contexts in which temporaries are destroyed at a different 1698 // point than the end of the full-expression. The first context is when a 1699 // default constructor is called to initialize an element of an array. 1700 // If the constructor has one or more default arguments, the destruction of 1701 // every temporary created in a default argument expression is sequenced 1702 // before the construction of the next array element, if any. 1703 1704 { 1705 RunCleanupsScope Scope(*this); 1706 1707 // Evaluate the constructor and its arguments in a regular 1708 // partial-destroy cleanup. 1709 if (getLangOpts().Exceptions && 1710 !ctor->getParent()->hasTrivialDestructor()) { 1711 Destroyer *destroyer = destroyCXXObject; 1712 pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer); 1713 } 1714 1715 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1716 /*Delegating=*/false, cur, E); 1717 } 1718 1719 // Go to the next element. 1720 llvm::Value *next = 1721 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1722 "arrayctor.next"); 1723 cur->addIncoming(next, Builder.GetInsertBlock()); 1724 1725 // Check whether that's the end of the loop. 1726 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1727 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1728 Builder.CreateCondBr(done, contBB, loopBB); 1729 1730 // Patch the earlier check to skip over the loop. 1731 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1732 1733 EmitBlock(contBB); 1734 } 1735 1736 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1737 llvm::Value *addr, 1738 QualType type) { 1739 const RecordType *rtype = type->castAs<RecordType>(); 1740 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1741 const CXXDestructorDecl *dtor = record->getDestructor(); 1742 assert(!dtor->isTrivial()); 1743 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1744 /*Delegating=*/false, addr); 1745 } 1746 1747 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1748 CXXCtorType Type, 1749 bool ForVirtualBase, 1750 bool Delegating, llvm::Value *This, 1751 const CXXConstructExpr *E) { 1752 // C++11 [class.mfct.non-static]p2: 1753 // If a non-static member function of a class X is called for an object that 1754 // is not of type X, or of a type derived from X, the behavior is undefined. 1755 // FIXME: Provide a source location here. 1756 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This, 1757 getContext().getRecordType(D->getParent())); 1758 1759 if (D->isTrivial() && D->isDefaultConstructor()) { 1760 assert(E->getNumArgs() == 0 && "trivial default ctor with args"); 1761 return; 1762 } 1763 1764 // If this is a trivial constructor, just emit what's needed. If this is a 1765 // union copy constructor, we must emit a memcpy, because the AST does not 1766 // model that copy. 1767 if (isMemcpyEquivalentSpecialMember(D)) { 1768 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1769 1770 const Expr *Arg = E->getArg(0); 1771 QualType SrcTy = Arg->getType(); 1772 llvm::Value *Src = EmitLValue(Arg).getAddress(); 1773 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 1774 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 1775 return; 1776 } 1777 1778 CallArgList Args; 1779 1780 // Push the this ptr. 1781 Args.add(RValue::get(This), D->getThisType(getContext())); 1782 1783 // Add the rest of the user-supplied arguments. 1784 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1785 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor()); 1786 1787 // Insert any ABI-specific implicit constructor arguments. 1788 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs( 1789 *this, D, Type, ForVirtualBase, Delegating, Args); 1790 1791 // Emit the call. 1792 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 1793 const CGFunctionInfo &Info = 1794 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs); 1795 EmitCall(Info, Callee, ReturnValueSlot(), Args, D); 1796 } 1797 1798 void 1799 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1800 llvm::Value *This, llvm::Value *Src, 1801 const CXXConstructExpr *E) { 1802 if (isMemcpyEquivalentSpecialMember(D)) { 1803 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1804 assert(D->isCopyOrMoveConstructor() && 1805 "trivial 1-arg ctor not a copy/move ctor"); 1806 EmitAggregateCopyCtor(This, Src, 1807 getContext().getTypeDeclType(D->getParent()), 1808 E->arg_begin()->getType()); 1809 return; 1810 } 1811 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete); 1812 assert(D->isInstance() && 1813 "Trying to emit a member call expr on a static method!"); 1814 1815 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1816 1817 CallArgList Args; 1818 1819 // Push the this ptr. 1820 Args.add(RValue::get(This), D->getThisType(getContext())); 1821 1822 // Push the src ptr. 1823 QualType QT = *(FPT->param_type_begin()); 1824 llvm::Type *t = CGM.getTypes().ConvertType(QT); 1825 Src = Builder.CreateBitCast(Src, t); 1826 Args.add(RValue::get(Src), QT); 1827 1828 // Skip over first argument (Src). 1829 EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(), 1830 /*ParamsToSkip*/ 1); 1831 1832 EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All), 1833 Callee, ReturnValueSlot(), Args, D); 1834 } 1835 1836 void 1837 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1838 CXXCtorType CtorType, 1839 const FunctionArgList &Args, 1840 SourceLocation Loc) { 1841 CallArgList DelegateArgs; 1842 1843 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 1844 assert(I != E && "no parameters to constructor"); 1845 1846 // this 1847 DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType()); 1848 ++I; 1849 1850 // vtt 1851 if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType), 1852 /*ForVirtualBase=*/false, 1853 /*Delegating=*/true)) { 1854 QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy); 1855 DelegateArgs.add(RValue::get(VTT), VoidPP); 1856 1857 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 1858 assert(I != E && "cannot skip vtt parameter, already done with args"); 1859 assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type"); 1860 ++I; 1861 } 1862 } 1863 1864 // Explicit arguments. 1865 for (; I != E; ++I) { 1866 const VarDecl *param = *I; 1867 // FIXME: per-argument source location 1868 EmitDelegateCallArg(DelegateArgs, param, Loc); 1869 } 1870 1871 llvm::Value *Callee = 1872 CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType)); 1873 EmitCall(CGM.getTypes() 1874 .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)), 1875 Callee, ReturnValueSlot(), DelegateArgs, Ctor); 1876 } 1877 1878 namespace { 1879 struct CallDelegatingCtorDtor : EHScopeStack::Cleanup { 1880 const CXXDestructorDecl *Dtor; 1881 llvm::Value *Addr; 1882 CXXDtorType Type; 1883 1884 CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr, 1885 CXXDtorType Type) 1886 : Dtor(D), Addr(Addr), Type(Type) {} 1887 1888 void Emit(CodeGenFunction &CGF, Flags flags) override { 1889 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 1890 /*Delegating=*/true, Addr); 1891 } 1892 }; 1893 } 1894 1895 void 1896 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1897 const FunctionArgList &Args) { 1898 assert(Ctor->isDelegatingConstructor()); 1899 1900 llvm::Value *ThisPtr = LoadCXXThis(); 1901 1902 QualType Ty = getContext().getTagDeclType(Ctor->getParent()); 1903 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1904 AggValueSlot AggSlot = 1905 AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(), 1906 AggValueSlot::IsDestructed, 1907 AggValueSlot::DoesNotNeedGCBarriers, 1908 AggValueSlot::IsNotAliased); 1909 1910 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 1911 1912 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 1913 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 1914 CXXDtorType Type = 1915 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 1916 1917 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 1918 ClassDecl->getDestructor(), 1919 ThisPtr, Type); 1920 } 1921 } 1922 1923 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 1924 CXXDtorType Type, 1925 bool ForVirtualBase, 1926 bool Delegating, 1927 llvm::Value *This) { 1928 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 1929 Delegating, This); 1930 } 1931 1932 namespace { 1933 struct CallLocalDtor : EHScopeStack::Cleanup { 1934 const CXXDestructorDecl *Dtor; 1935 llvm::Value *Addr; 1936 1937 CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr) 1938 : Dtor(D), Addr(Addr) {} 1939 1940 void Emit(CodeGenFunction &CGF, Flags flags) override { 1941 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1942 /*ForVirtualBase=*/false, 1943 /*Delegating=*/false, Addr); 1944 } 1945 }; 1946 } 1947 1948 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 1949 llvm::Value *Addr) { 1950 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 1951 } 1952 1953 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) { 1954 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 1955 if (!ClassDecl) return; 1956 if (ClassDecl->hasTrivialDestructor()) return; 1957 1958 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 1959 assert(D && D->isUsed() && "destructor not marked as used!"); 1960 PushDestructorCleanup(D, Addr); 1961 } 1962 1963 void 1964 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base, 1965 const CXXRecordDecl *NearestVBase, 1966 CharUnits OffsetFromNearestVBase, 1967 const CXXRecordDecl *VTableClass) { 1968 const CXXRecordDecl *RD = Base.getBase(); 1969 1970 // Don't initialize the vtable pointer if the class is marked with the 1971 // 'novtable' attribute. 1972 if ((RD == VTableClass || RD == NearestVBase) && 1973 VTableClass->hasAttr<MSNoVTableAttr>()) 1974 return; 1975 1976 // Compute the address point. 1977 bool NeedsVirtualOffset; 1978 llvm::Value *VTableAddressPoint = 1979 CGM.getCXXABI().getVTableAddressPointInStructor( 1980 *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset); 1981 if (!VTableAddressPoint) 1982 return; 1983 1984 // Compute where to store the address point. 1985 llvm::Value *VirtualOffset = nullptr; 1986 CharUnits NonVirtualOffset = CharUnits::Zero(); 1987 1988 if (NeedsVirtualOffset) { 1989 // We need to use the virtual base offset offset because the virtual base 1990 // might have a different offset in the most derived class. 1991 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this, 1992 LoadCXXThis(), 1993 VTableClass, 1994 NearestVBase); 1995 NonVirtualOffset = OffsetFromNearestVBase; 1996 } else { 1997 // We can just use the base offset in the complete class. 1998 NonVirtualOffset = Base.getBaseOffset(); 1999 } 2000 2001 // Apply the offsets. 2002 llvm::Value *VTableField = LoadCXXThis(); 2003 2004 if (!NonVirtualOffset.isZero() || VirtualOffset) 2005 VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField, 2006 NonVirtualOffset, 2007 VirtualOffset); 2008 2009 // Finally, store the address point. Use the same LLVM types as the field to 2010 // support optimization. 2011 llvm::Type *VTablePtrTy = 2012 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2013 ->getPointerTo() 2014 ->getPointerTo(); 2015 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2016 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2017 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2018 CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr()); 2019 } 2020 2021 void 2022 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base, 2023 const CXXRecordDecl *NearestVBase, 2024 CharUnits OffsetFromNearestVBase, 2025 bool BaseIsNonVirtualPrimaryBase, 2026 const CXXRecordDecl *VTableClass, 2027 VisitedVirtualBasesSetTy& VBases) { 2028 // If this base is a non-virtual primary base the address point has already 2029 // been set. 2030 if (!BaseIsNonVirtualPrimaryBase) { 2031 // Initialize the vtable pointer for this base. 2032 InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase, 2033 VTableClass); 2034 } 2035 2036 const CXXRecordDecl *RD = Base.getBase(); 2037 2038 // Traverse bases. 2039 for (const auto &I : RD->bases()) { 2040 CXXRecordDecl *BaseDecl 2041 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2042 2043 // Ignore classes without a vtable. 2044 if (!BaseDecl->isDynamicClass()) 2045 continue; 2046 2047 CharUnits BaseOffset; 2048 CharUnits BaseOffsetFromNearestVBase; 2049 bool BaseDeclIsNonVirtualPrimaryBase; 2050 2051 if (I.isVirtual()) { 2052 // Check if we've visited this virtual base before. 2053 if (!VBases.insert(BaseDecl).second) 2054 continue; 2055 2056 const ASTRecordLayout &Layout = 2057 getContext().getASTRecordLayout(VTableClass); 2058 2059 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2060 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2061 BaseDeclIsNonVirtualPrimaryBase = false; 2062 } else { 2063 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2064 2065 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2066 BaseOffsetFromNearestVBase = 2067 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2068 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2069 } 2070 2071 InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset), 2072 I.isVirtual() ? BaseDecl : NearestVBase, 2073 BaseOffsetFromNearestVBase, 2074 BaseDeclIsNonVirtualPrimaryBase, 2075 VTableClass, VBases); 2076 } 2077 } 2078 2079 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2080 // Ignore classes without a vtable. 2081 if (!RD->isDynamicClass()) 2082 return; 2083 2084 // Initialize the vtable pointers for this class and all of its bases. 2085 VisitedVirtualBasesSetTy VBases; 2086 InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()), 2087 /*NearestVBase=*/nullptr, 2088 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2089 /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases); 2090 2091 if (RD->getNumVBases()) 2092 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2093 } 2094 2095 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This, 2096 llvm::Type *Ty) { 2097 llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo()); 2098 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2099 CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr()); 2100 return VTable; 2101 } 2102 2103 // If a class has a single non-virtual base and does not introduce or override 2104 // virtual member functions or fields, it will have the same layout as its base. 2105 // This function returns the least derived such class. 2106 // 2107 // Casting an instance of a base class to such a derived class is technically 2108 // undefined behavior, but it is a relatively common hack for introducing member 2109 // functions on class instances with specific properties (e.g. llvm::Operator) 2110 // that works under most compilers and should not have security implications, so 2111 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2112 static const CXXRecordDecl * 2113 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2114 if (!RD->field_empty()) 2115 return RD; 2116 2117 if (RD->getNumVBases() != 0) 2118 return RD; 2119 2120 if (RD->getNumBases() != 1) 2121 return RD; 2122 2123 for (const CXXMethodDecl *MD : RD->methods()) { 2124 if (MD->isVirtual()) { 2125 // Virtual member functions are only ok if they are implicit destructors 2126 // because the implicit destructor will have the same semantics as the 2127 // base class's destructor if no fields are added. 2128 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2129 continue; 2130 return RD; 2131 } 2132 } 2133 2134 return LeastDerivedClassWithSameLayout( 2135 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2136 } 2137 2138 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, 2139 llvm::Value *VTable, 2140 CFITypeCheckKind TCK, 2141 SourceLocation Loc) { 2142 const CXXRecordDecl *ClassDecl = MD->getParent(); 2143 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2144 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2145 2146 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2147 } 2148 2149 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2150 llvm::Value *Derived, 2151 bool MayBeNull, 2152 CFITypeCheckKind TCK, 2153 SourceLocation Loc) { 2154 if (!getLangOpts().CPlusPlus) 2155 return; 2156 2157 auto *ClassTy = T->getAs<RecordType>(); 2158 if (!ClassTy) 2159 return; 2160 2161 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2162 2163 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2164 return; 2165 2166 SmallString<64> MangledName; 2167 llvm::raw_svector_ostream Out(MangledName); 2168 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(T.getUnqualifiedType(), 2169 Out); 2170 2171 // Blacklist based on the mangled type. 2172 if (CGM.getContext().getSanitizerBlacklist().isBlacklistedType(Out.str())) 2173 return; 2174 2175 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2176 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2177 2178 llvm::BasicBlock *ContBlock = 0; 2179 2180 if (MayBeNull) { 2181 llvm::Value *DerivedNotNull = 2182 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2183 2184 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2185 ContBlock = createBasicBlock("cast.cont"); 2186 2187 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2188 2189 EmitBlock(CheckBlock); 2190 } 2191 2192 llvm::Value *VTable = GetVTablePtr(Derived, Int8PtrTy); 2193 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2194 2195 if (MayBeNull) { 2196 Builder.CreateBr(ContBlock); 2197 EmitBlock(ContBlock); 2198 } 2199 } 2200 2201 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2202 llvm::Value *VTable, 2203 CFITypeCheckKind TCK, 2204 SourceLocation Loc) { 2205 // FIXME: Add blacklisting scheme. 2206 if (RD->isInStdNamespace()) 2207 return; 2208 2209 SanitizerScope SanScope(this); 2210 2211 std::string OutName; 2212 llvm::raw_string_ostream Out(OutName); 2213 CGM.getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out); 2214 2215 llvm::Value *BitSetName = llvm::MetadataAsValue::get( 2216 getLLVMContext(), llvm::MDString::get(getLLVMContext(), Out.str())); 2217 2218 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2219 llvm::Value *BitSetTest = 2220 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test), 2221 {CastedVTable, BitSetName}); 2222 2223 SanitizerMask M; 2224 switch (TCK) { 2225 case CFITCK_VCall: 2226 M = SanitizerKind::CFIVCall; 2227 break; 2228 case CFITCK_NVCall: 2229 M = SanitizerKind::CFINVCall; 2230 break; 2231 case CFITCK_DerivedCast: 2232 M = SanitizerKind::CFIDerivedCast; 2233 break; 2234 case CFITCK_UnrelatedCast: 2235 M = SanitizerKind::CFIUnrelatedCast; 2236 break; 2237 } 2238 2239 llvm::Constant *StaticData[] = { 2240 EmitCheckSourceLocation(Loc), 2241 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2242 llvm::ConstantInt::get(Int8Ty, TCK), 2243 }; 2244 EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData, 2245 CastedVTable); 2246 } 2247 2248 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 2249 // quite what we want. 2250 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 2251 while (true) { 2252 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 2253 E = PE->getSubExpr(); 2254 continue; 2255 } 2256 2257 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 2258 if (CE->getCastKind() == CK_NoOp) { 2259 E = CE->getSubExpr(); 2260 continue; 2261 } 2262 } 2263 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 2264 if (UO->getOpcode() == UO_Extension) { 2265 E = UO->getSubExpr(); 2266 continue; 2267 } 2268 } 2269 return E; 2270 } 2271 } 2272 2273 bool 2274 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base, 2275 const CXXMethodDecl *MD) { 2276 // When building with -fapple-kext, all calls must go through the vtable since 2277 // the kernel linker can do runtime patching of vtables. 2278 if (getLangOpts().AppleKext) 2279 return false; 2280 2281 // If the most derived class is marked final, we know that no subclass can 2282 // override this member function and so we can devirtualize it. For example: 2283 // 2284 // struct A { virtual void f(); } 2285 // struct B final : A { }; 2286 // 2287 // void f(B *b) { 2288 // b->f(); 2289 // } 2290 // 2291 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 2292 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 2293 return true; 2294 2295 // If the member function is marked 'final', we know that it can't be 2296 // overridden and can therefore devirtualize it. 2297 if (MD->hasAttr<FinalAttr>()) 2298 return true; 2299 2300 // Similarly, if the class itself is marked 'final' it can't be overridden 2301 // and we can therefore devirtualize the member function call. 2302 if (MD->getParent()->hasAttr<FinalAttr>()) 2303 return true; 2304 2305 Base = skipNoOpCastsAndParens(Base); 2306 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 2307 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 2308 // This is a record decl. We know the type and can devirtualize it. 2309 return VD->getType()->isRecordType(); 2310 } 2311 2312 return false; 2313 } 2314 2315 // We can devirtualize calls on an object accessed by a class member access 2316 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2317 // a derived class object constructed in the same location. 2318 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 2319 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 2320 return VD->getType()->isRecordType(); 2321 2322 // We can always devirtualize calls on temporary object expressions. 2323 if (isa<CXXConstructExpr>(Base)) 2324 return true; 2325 2326 // And calls on bound temporaries. 2327 if (isa<CXXBindTemporaryExpr>(Base)) 2328 return true; 2329 2330 // Check if this is a call expr that returns a record type. 2331 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 2332 return CE->getCallReturnType(getContext())->isRecordType(); 2333 2334 // We can't devirtualize the call. 2335 return false; 2336 } 2337 2338 void CodeGenFunction::EmitForwardingCallToLambda( 2339 const CXXMethodDecl *callOperator, 2340 CallArgList &callArgs) { 2341 // Get the address of the call operator. 2342 const CGFunctionInfo &calleeFnInfo = 2343 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2344 llvm::Value *callee = 2345 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2346 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2347 2348 // Prepare the return slot. 2349 const FunctionProtoType *FPT = 2350 callOperator->getType()->castAs<FunctionProtoType>(); 2351 QualType resultType = FPT->getReturnType(); 2352 ReturnValueSlot returnSlot; 2353 if (!resultType->isVoidType() && 2354 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2355 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2356 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2357 2358 // We don't need to separately arrange the call arguments because 2359 // the call can't be variadic anyway --- it's impossible to forward 2360 // variadic arguments. 2361 2362 // Now emit our call. 2363 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, 2364 callArgs, callOperator); 2365 2366 // If necessary, copy the returned value into the slot. 2367 if (!resultType->isVoidType() && returnSlot.isNull()) 2368 EmitReturnOfRValue(RV, resultType); 2369 else 2370 EmitBranchThroughCleanup(ReturnBlock); 2371 } 2372 2373 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2374 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2375 const VarDecl *variable = BD->capture_begin()->getVariable(); 2376 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2377 2378 // Start building arguments for forwarding call 2379 CallArgList CallArgs; 2380 2381 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2382 llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false); 2383 CallArgs.add(RValue::get(ThisPtr), ThisType); 2384 2385 // Add the rest of the parameters. 2386 for (auto param : BD->params()) 2387 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2388 2389 assert(!Lambda->isGenericLambda() && 2390 "generic lambda interconversion to block not implemented"); 2391 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs); 2392 } 2393 2394 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 2395 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) { 2396 // FIXME: Making this work correctly is nasty because it requires either 2397 // cloning the body of the call operator or making the call operator forward. 2398 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2399 return; 2400 } 2401 2402 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody()); 2403 } 2404 2405 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2406 const CXXRecordDecl *Lambda = MD->getParent(); 2407 2408 // Start building arguments for forwarding call 2409 CallArgList CallArgs; 2410 2411 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2412 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2413 CallArgs.add(RValue::get(ThisPtr), ThisType); 2414 2415 // Add the rest of the parameters. 2416 for (auto Param : MD->params()) 2417 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2418 2419 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2420 // For a generic lambda, find the corresponding call operator specialization 2421 // to which the call to the static-invoker shall be forwarded. 2422 if (Lambda->isGenericLambda()) { 2423 assert(MD->isFunctionTemplateSpecialization()); 2424 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2425 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2426 void *InsertPos = nullptr; 2427 FunctionDecl *CorrespondingCallOpSpecialization = 2428 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2429 assert(CorrespondingCallOpSpecialization); 2430 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2431 } 2432 EmitForwardingCallToLambda(CallOp, CallArgs); 2433 } 2434 2435 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 2436 if (MD->isVariadic()) { 2437 // FIXME: Making this work correctly is nasty because it requires either 2438 // cloning the body of the call operator or making the call operator forward. 2439 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2440 return; 2441 } 2442 2443 EmitLambdaDelegatingInvokeBody(MD); 2444 } 2445