1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 LValueBaseInfo *BaseInfo, 133 TBAAAccessInfo *TBAAInfo) { 134 // Ask the ABI to compute the actual address. 135 llvm::Value *ptr = 136 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 137 memberPtr, memberPtrType); 138 139 QualType memberType = memberPtrType->getPointeeType(); 140 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo, 141 TBAAInfo); 142 memberAlign = 143 CGM.getDynamicOffsetAlignment(base.getAlignment(), 144 memberPtrType->getClass()->getAsCXXRecordDecl(), 145 memberAlign); 146 return Address(ptr, memberAlign); 147 } 148 149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 150 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 151 CastExpr::path_const_iterator End) { 152 CharUnits Offset = CharUnits::Zero(); 153 154 const ASTContext &Context = getContext(); 155 const CXXRecordDecl *RD = DerivedClass; 156 157 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 158 const CXXBaseSpecifier *Base = *I; 159 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 160 161 // Get the layout. 162 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 163 164 const CXXRecordDecl *BaseDecl = 165 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 166 167 // Add the offset. 168 Offset += Layout.getBaseClassOffset(BaseDecl); 169 170 RD = BaseDecl; 171 } 172 173 return Offset; 174 } 175 176 llvm::Constant * 177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 178 CastExpr::path_const_iterator PathBegin, 179 CastExpr::path_const_iterator PathEnd) { 180 assert(PathBegin != PathEnd && "Base path should not be empty!"); 181 182 CharUnits Offset = 183 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 184 if (Offset.isZero()) 185 return nullptr; 186 187 llvm::Type *PtrDiffTy = 188 Types.ConvertType(getContext().getPointerDiffType()); 189 190 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 191 } 192 193 /// Gets the address of a direct base class within a complete object. 194 /// This should only be used for (1) non-virtual bases or (2) virtual bases 195 /// when the type is known to be complete (e.g. in complete destructors). 196 /// 197 /// The object pointed to by 'This' is assumed to be non-null. 198 Address 199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 200 const CXXRecordDecl *Derived, 201 const CXXRecordDecl *Base, 202 bool BaseIsVirtual) { 203 // 'this' must be a pointer (in some address space) to Derived. 204 assert(This.getElementType() == ConvertType(Derived)); 205 206 // Compute the offset of the virtual base. 207 CharUnits Offset; 208 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 209 if (BaseIsVirtual) 210 Offset = Layout.getVBaseClassOffset(Base); 211 else 212 Offset = Layout.getBaseClassOffset(Base); 213 214 // Shift and cast down to the base type. 215 // TODO: for complete types, this should be possible with a GEP. 216 Address V = This; 217 if (!Offset.isZero()) { 218 V = Builder.CreateElementBitCast(V, Int8Ty); 219 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 220 } 221 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 222 223 return V; 224 } 225 226 static Address 227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 228 CharUnits nonVirtualOffset, 229 llvm::Value *virtualOffset, 230 const CXXRecordDecl *derivedClass, 231 const CXXRecordDecl *nearestVBase) { 232 // Assert that we have something to do. 233 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 234 235 // Compute the offset from the static and dynamic components. 236 llvm::Value *baseOffset; 237 if (!nonVirtualOffset.isZero()) { 238 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 239 nonVirtualOffset.getQuantity()); 240 if (virtualOffset) { 241 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 242 } 243 } else { 244 baseOffset = virtualOffset; 245 } 246 247 // Apply the base offset. 248 llvm::Value *ptr = addr.getPointer(); 249 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 250 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 251 252 // If we have a virtual component, the alignment of the result will 253 // be relative only to the known alignment of that vbase. 254 CharUnits alignment; 255 if (virtualOffset) { 256 assert(nearestVBase && "virtual offset without vbase?"); 257 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 258 derivedClass, nearestVBase); 259 } else { 260 alignment = addr.getAlignment(); 261 } 262 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 263 264 return Address(ptr, alignment); 265 } 266 267 Address CodeGenFunction::GetAddressOfBaseClass( 268 Address Value, const CXXRecordDecl *Derived, 269 CastExpr::path_const_iterator PathBegin, 270 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 271 SourceLocation Loc) { 272 assert(PathBegin != PathEnd && "Base path should not be empty!"); 273 274 CastExpr::path_const_iterator Start = PathBegin; 275 const CXXRecordDecl *VBase = nullptr; 276 277 // Sema has done some convenient canonicalization here: if the 278 // access path involved any virtual steps, the conversion path will 279 // *start* with a step down to the correct virtual base subobject, 280 // and hence will not require any further steps. 281 if ((*Start)->isVirtual()) { 282 VBase = 283 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 284 ++Start; 285 } 286 287 // Compute the static offset of the ultimate destination within its 288 // allocating subobject (the virtual base, if there is one, or else 289 // the "complete" object that we see). 290 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 291 VBase ? VBase : Derived, Start, PathEnd); 292 293 // If there's a virtual step, we can sometimes "devirtualize" it. 294 // For now, that's limited to when the derived type is final. 295 // TODO: "devirtualize" this for accesses to known-complete objects. 296 if (VBase && Derived->hasAttr<FinalAttr>()) { 297 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 298 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 299 NonVirtualOffset += vBaseOffset; 300 VBase = nullptr; // we no longer have a virtual step 301 } 302 303 // Get the base pointer type. 304 llvm::Type *BasePtrTy = 305 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 306 307 QualType DerivedTy = getContext().getRecordType(Derived); 308 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 309 310 // If the static offset is zero and we don't have a virtual step, 311 // just do a bitcast; null checks are unnecessary. 312 if (NonVirtualOffset.isZero() && !VBase) { 313 if (sanitizePerformTypeCheck()) { 314 SanitizerSet SkippedChecks; 315 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 316 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 317 DerivedTy, DerivedAlign, SkippedChecks); 318 } 319 return Builder.CreateBitCast(Value, BasePtrTy); 320 } 321 322 llvm::BasicBlock *origBB = nullptr; 323 llvm::BasicBlock *endBB = nullptr; 324 325 // Skip over the offset (and the vtable load) if we're supposed to 326 // null-check the pointer. 327 if (NullCheckValue) { 328 origBB = Builder.GetInsertBlock(); 329 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 330 endBB = createBasicBlock("cast.end"); 331 332 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 333 Builder.CreateCondBr(isNull, endBB, notNullBB); 334 EmitBlock(notNullBB); 335 } 336 337 if (sanitizePerformTypeCheck()) { 338 SanitizerSet SkippedChecks; 339 SkippedChecks.set(SanitizerKind::Null, true); 340 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 341 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 342 } 343 344 // Compute the virtual offset. 345 llvm::Value *VirtualOffset = nullptr; 346 if (VBase) { 347 VirtualOffset = 348 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 349 } 350 351 // Apply both offsets. 352 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 353 VirtualOffset, Derived, VBase); 354 355 // Cast to the destination type. 356 Value = Builder.CreateBitCast(Value, BasePtrTy); 357 358 // Build a phi if we needed a null check. 359 if (NullCheckValue) { 360 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 361 Builder.CreateBr(endBB); 362 EmitBlock(endBB); 363 364 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 365 PHI->addIncoming(Value.getPointer(), notNullBB); 366 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 367 Value = Address(PHI, Value.getAlignment()); 368 } 369 370 return Value; 371 } 372 373 Address 374 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 375 const CXXRecordDecl *Derived, 376 CastExpr::path_const_iterator PathBegin, 377 CastExpr::path_const_iterator PathEnd, 378 bool NullCheckValue) { 379 assert(PathBegin != PathEnd && "Base path should not be empty!"); 380 381 QualType DerivedTy = 382 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 383 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 384 385 llvm::Value *NonVirtualOffset = 386 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 387 388 if (!NonVirtualOffset) { 389 // No offset, we can just cast back. 390 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 391 } 392 393 llvm::BasicBlock *CastNull = nullptr; 394 llvm::BasicBlock *CastNotNull = nullptr; 395 llvm::BasicBlock *CastEnd = nullptr; 396 397 if (NullCheckValue) { 398 CastNull = createBasicBlock("cast.null"); 399 CastNotNull = createBasicBlock("cast.notnull"); 400 CastEnd = createBasicBlock("cast.end"); 401 402 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 403 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 404 EmitBlock(CastNotNull); 405 } 406 407 // Apply the offset. 408 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 409 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 410 "sub.ptr"); 411 412 // Just cast. 413 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 414 415 // Produce a PHI if we had a null-check. 416 if (NullCheckValue) { 417 Builder.CreateBr(CastEnd); 418 EmitBlock(CastNull); 419 Builder.CreateBr(CastEnd); 420 EmitBlock(CastEnd); 421 422 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 423 PHI->addIncoming(Value, CastNotNull); 424 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 425 Value = PHI; 426 } 427 428 return Address(Value, CGM.getClassPointerAlignment(Derived)); 429 } 430 431 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 432 bool ForVirtualBase, 433 bool Delegating) { 434 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 435 // This constructor/destructor does not need a VTT parameter. 436 return nullptr; 437 } 438 439 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 440 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 441 442 llvm::Value *VTT; 443 444 uint64_t SubVTTIndex; 445 446 if (Delegating) { 447 // If this is a delegating constructor call, just load the VTT. 448 return LoadCXXVTT(); 449 } else if (RD == Base) { 450 // If the record matches the base, this is the complete ctor/dtor 451 // variant calling the base variant in a class with virtual bases. 452 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 453 "doing no-op VTT offset in base dtor/ctor?"); 454 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 455 SubVTTIndex = 0; 456 } else { 457 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 458 CharUnits BaseOffset = ForVirtualBase ? 459 Layout.getVBaseClassOffset(Base) : 460 Layout.getBaseClassOffset(Base); 461 462 SubVTTIndex = 463 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 464 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 465 } 466 467 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 468 // A VTT parameter was passed to the constructor, use it. 469 VTT = LoadCXXVTT(); 470 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 471 } else { 472 // We're the complete constructor, so get the VTT by name. 473 VTT = CGM.getVTables().GetAddrOfVTT(RD); 474 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 475 } 476 477 return VTT; 478 } 479 480 namespace { 481 /// Call the destructor for a direct base class. 482 struct CallBaseDtor final : EHScopeStack::Cleanup { 483 const CXXRecordDecl *BaseClass; 484 bool BaseIsVirtual; 485 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 486 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 487 488 void Emit(CodeGenFunction &CGF, Flags flags) override { 489 const CXXRecordDecl *DerivedClass = 490 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 491 492 const CXXDestructorDecl *D = BaseClass->getDestructor(); 493 Address Addr = 494 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 495 DerivedClass, BaseClass, 496 BaseIsVirtual); 497 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 498 /*Delegating=*/false, Addr); 499 } 500 }; 501 502 /// A visitor which checks whether an initializer uses 'this' in a 503 /// way which requires the vtable to be properly set. 504 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 505 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 506 507 bool UsesThis; 508 509 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 510 511 // Black-list all explicit and implicit references to 'this'. 512 // 513 // Do we need to worry about external references to 'this' derived 514 // from arbitrary code? If so, then anything which runs arbitrary 515 // external code might potentially access the vtable. 516 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 517 }; 518 } // end anonymous namespace 519 520 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 521 DynamicThisUseChecker Checker(C); 522 Checker.Visit(Init); 523 return Checker.UsesThis; 524 } 525 526 static void EmitBaseInitializer(CodeGenFunction &CGF, 527 const CXXRecordDecl *ClassDecl, 528 CXXCtorInitializer *BaseInit, 529 CXXCtorType CtorType) { 530 assert(BaseInit->isBaseInitializer() && 531 "Must have base initializer!"); 532 533 Address ThisPtr = CGF.LoadCXXThisAddress(); 534 535 const Type *BaseType = BaseInit->getBaseClass(); 536 CXXRecordDecl *BaseClassDecl = 537 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 538 539 bool isBaseVirtual = BaseInit->isBaseVirtual(); 540 541 // The base constructor doesn't construct virtual bases. 542 if (CtorType == Ctor_Base && isBaseVirtual) 543 return; 544 545 // If the initializer for the base (other than the constructor 546 // itself) accesses 'this' in any way, we need to initialize the 547 // vtables. 548 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 549 CGF.InitializeVTablePointers(ClassDecl); 550 551 // We can pretend to be a complete class because it only matters for 552 // virtual bases, and we only do virtual bases for complete ctors. 553 Address V = 554 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 555 BaseClassDecl, 556 isBaseVirtual); 557 AggValueSlot AggSlot = 558 AggValueSlot::forAddr(V, Qualifiers(), 559 AggValueSlot::IsDestructed, 560 AggValueSlot::DoesNotNeedGCBarriers, 561 AggValueSlot::IsNotAliased); 562 563 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 564 565 if (CGF.CGM.getLangOpts().Exceptions && 566 !BaseClassDecl->hasTrivialDestructor()) 567 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 568 isBaseVirtual); 569 } 570 571 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 572 auto *CD = dyn_cast<CXXConstructorDecl>(D); 573 if (!(CD && CD->isCopyOrMoveConstructor()) && 574 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 575 return false; 576 577 // We can emit a memcpy for a trivial copy or move constructor/assignment. 578 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 579 return true; 580 581 // We *must* emit a memcpy for a defaulted union copy or move op. 582 if (D->getParent()->isUnion() && D->isDefaulted()) 583 return true; 584 585 return false; 586 } 587 588 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 589 CXXCtorInitializer *MemberInit, 590 LValue &LHS) { 591 FieldDecl *Field = MemberInit->getAnyMember(); 592 if (MemberInit->isIndirectMemberInitializer()) { 593 // If we are initializing an anonymous union field, drill down to the field. 594 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 595 for (const auto *I : IndirectField->chain()) 596 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 597 } else { 598 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 599 } 600 } 601 602 static void EmitMemberInitializer(CodeGenFunction &CGF, 603 const CXXRecordDecl *ClassDecl, 604 CXXCtorInitializer *MemberInit, 605 const CXXConstructorDecl *Constructor, 606 FunctionArgList &Args) { 607 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 608 assert(MemberInit->isAnyMemberInitializer() && 609 "Must have member initializer!"); 610 assert(MemberInit->getInit() && "Must have initializer!"); 611 612 // non-static data member initializers. 613 FieldDecl *Field = MemberInit->getAnyMember(); 614 QualType FieldType = Field->getType(); 615 616 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 617 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 618 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 619 620 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 621 622 // Special case: if we are in a copy or move constructor, and we are copying 623 // an array of PODs or classes with trivial copy constructors, ignore the 624 // AST and perform the copy we know is equivalent. 625 // FIXME: This is hacky at best... if we had a bit more explicit information 626 // in the AST, we could generalize it more easily. 627 const ConstantArrayType *Array 628 = CGF.getContext().getAsConstantArrayType(FieldType); 629 if (Array && Constructor->isDefaulted() && 630 Constructor->isCopyOrMoveConstructor()) { 631 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 632 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 633 if (BaseElementTy.isPODType(CGF.getContext()) || 634 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 635 unsigned SrcArgIndex = 636 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 637 llvm::Value *SrcPtr 638 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 639 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 640 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 641 642 // Copy the aggregate. 643 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 644 LHS.isVolatileQualified()); 645 // Ensure that we destroy the objects if an exception is thrown later in 646 // the constructor. 647 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 648 if (CGF.needsEHCleanup(dtorKind)) 649 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 650 return; 651 } 652 } 653 654 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 655 } 656 657 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 658 Expr *Init) { 659 QualType FieldType = Field->getType(); 660 switch (getEvaluationKind(FieldType)) { 661 case TEK_Scalar: 662 if (LHS.isSimple()) { 663 EmitExprAsInit(Init, Field, LHS, false); 664 } else { 665 RValue RHS = RValue::get(EmitScalarExpr(Init)); 666 EmitStoreThroughLValue(RHS, LHS); 667 } 668 break; 669 case TEK_Complex: 670 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 671 break; 672 case TEK_Aggregate: { 673 AggValueSlot Slot = 674 AggValueSlot::forLValue(LHS, 675 AggValueSlot::IsDestructed, 676 AggValueSlot::DoesNotNeedGCBarriers, 677 AggValueSlot::IsNotAliased); 678 EmitAggExpr(Init, Slot); 679 break; 680 } 681 } 682 683 // Ensure that we destroy this object if an exception is thrown 684 // later in the constructor. 685 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 686 if (needsEHCleanup(dtorKind)) 687 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 688 } 689 690 /// Checks whether the given constructor is a valid subject for the 691 /// complete-to-base constructor delegation optimization, i.e. 692 /// emitting the complete constructor as a simple call to the base 693 /// constructor. 694 bool CodeGenFunction::IsConstructorDelegationValid( 695 const CXXConstructorDecl *Ctor) { 696 697 // Currently we disable the optimization for classes with virtual 698 // bases because (1) the addresses of parameter variables need to be 699 // consistent across all initializers but (2) the delegate function 700 // call necessarily creates a second copy of the parameter variable. 701 // 702 // The limiting example (purely theoretical AFAIK): 703 // struct A { A(int &c) { c++; } }; 704 // struct B : virtual A { 705 // B(int count) : A(count) { printf("%d\n", count); } 706 // }; 707 // ...although even this example could in principle be emitted as a 708 // delegation since the address of the parameter doesn't escape. 709 if (Ctor->getParent()->getNumVBases()) { 710 // TODO: white-list trivial vbase initializers. This case wouldn't 711 // be subject to the restrictions below. 712 713 // TODO: white-list cases where: 714 // - there are no non-reference parameters to the constructor 715 // - the initializers don't access any non-reference parameters 716 // - the initializers don't take the address of non-reference 717 // parameters 718 // - etc. 719 // If we ever add any of the above cases, remember that: 720 // - function-try-blocks will always blacklist this optimization 721 // - we need to perform the constructor prologue and cleanup in 722 // EmitConstructorBody. 723 724 return false; 725 } 726 727 // We also disable the optimization for variadic functions because 728 // it's impossible to "re-pass" varargs. 729 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 730 return false; 731 732 // FIXME: Decide if we can do a delegation of a delegating constructor. 733 if (Ctor->isDelegatingConstructor()) 734 return false; 735 736 return true; 737 } 738 739 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 740 // to poison the extra field paddings inserted under 741 // -fsanitize-address-field-padding=1|2. 742 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 743 ASTContext &Context = getContext(); 744 const CXXRecordDecl *ClassDecl = 745 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 746 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 747 if (!ClassDecl->mayInsertExtraPadding()) return; 748 749 struct SizeAndOffset { 750 uint64_t Size; 751 uint64_t Offset; 752 }; 753 754 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 755 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 756 757 // Populate sizes and offsets of fields. 758 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 759 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 760 SSV[i].Offset = 761 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 762 763 size_t NumFields = 0; 764 for (const auto *Field : ClassDecl->fields()) { 765 const FieldDecl *D = Field; 766 std::pair<CharUnits, CharUnits> FieldInfo = 767 Context.getTypeInfoInChars(D->getType()); 768 CharUnits FieldSize = FieldInfo.first; 769 assert(NumFields < SSV.size()); 770 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 771 NumFields++; 772 } 773 assert(NumFields == SSV.size()); 774 if (SSV.size() <= 1) return; 775 776 // We will insert calls to __asan_* run-time functions. 777 // LLVM AddressSanitizer pass may decide to inline them later. 778 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 779 llvm::FunctionType *FTy = 780 llvm::FunctionType::get(CGM.VoidTy, Args, false); 781 llvm::Constant *F = CGM.CreateRuntimeFunction( 782 FTy, Prologue ? "__asan_poison_intra_object_redzone" 783 : "__asan_unpoison_intra_object_redzone"); 784 785 llvm::Value *ThisPtr = LoadCXXThis(); 786 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 787 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 788 // For each field check if it has sufficient padding, 789 // if so (un)poison it with a call. 790 for (size_t i = 0; i < SSV.size(); i++) { 791 uint64_t AsanAlignment = 8; 792 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 793 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 794 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 795 if (PoisonSize < AsanAlignment || !SSV[i].Size || 796 (NextField % AsanAlignment) != 0) 797 continue; 798 Builder.CreateCall( 799 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 800 Builder.getIntN(PtrSize, PoisonSize)}); 801 } 802 } 803 804 /// EmitConstructorBody - Emits the body of the current constructor. 805 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 806 EmitAsanPrologueOrEpilogue(true); 807 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 808 CXXCtorType CtorType = CurGD.getCtorType(); 809 810 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 811 CtorType == Ctor_Complete) && 812 "can only generate complete ctor for this ABI"); 813 814 // Before we go any further, try the complete->base constructor 815 // delegation optimization. 816 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 817 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 818 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 819 return; 820 } 821 822 const FunctionDecl *Definition = nullptr; 823 Stmt *Body = Ctor->getBody(Definition); 824 assert(Definition == Ctor && "emitting wrong constructor body"); 825 826 // Enter the function-try-block before the constructor prologue if 827 // applicable. 828 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 829 if (IsTryBody) 830 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 831 832 incrementProfileCounter(Body); 833 834 RunCleanupsScope RunCleanups(*this); 835 836 // TODO: in restricted cases, we can emit the vbase initializers of 837 // a complete ctor and then delegate to the base ctor. 838 839 // Emit the constructor prologue, i.e. the base and member 840 // initializers. 841 EmitCtorPrologue(Ctor, CtorType, Args); 842 843 // Emit the body of the statement. 844 if (IsTryBody) 845 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 846 else if (Body) 847 EmitStmt(Body); 848 849 // Emit any cleanup blocks associated with the member or base 850 // initializers, which includes (along the exceptional path) the 851 // destructors for those members and bases that were fully 852 // constructed. 853 RunCleanups.ForceCleanup(); 854 855 if (IsTryBody) 856 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 857 } 858 859 namespace { 860 /// RAII object to indicate that codegen is copying the value representation 861 /// instead of the object representation. Useful when copying a struct or 862 /// class which has uninitialized members and we're only performing 863 /// lvalue-to-rvalue conversion on the object but not its members. 864 class CopyingValueRepresentation { 865 public: 866 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 867 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 868 CGF.SanOpts.set(SanitizerKind::Bool, false); 869 CGF.SanOpts.set(SanitizerKind::Enum, false); 870 } 871 ~CopyingValueRepresentation() { 872 CGF.SanOpts = OldSanOpts; 873 } 874 private: 875 CodeGenFunction &CGF; 876 SanitizerSet OldSanOpts; 877 }; 878 } // end anonymous namespace 879 880 namespace { 881 class FieldMemcpyizer { 882 public: 883 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 884 const VarDecl *SrcRec) 885 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 886 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 887 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 888 LastFieldOffset(0), LastAddedFieldIndex(0) {} 889 890 bool isMemcpyableField(FieldDecl *F) const { 891 // Never memcpy fields when we are adding poisoned paddings. 892 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 893 return false; 894 Qualifiers Qual = F->getType().getQualifiers(); 895 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 896 return false; 897 return true; 898 } 899 900 void addMemcpyableField(FieldDecl *F) { 901 if (!FirstField) 902 addInitialField(F); 903 else 904 addNextField(F); 905 } 906 907 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 908 unsigned LastFieldSize = 909 LastField->isBitField() ? 910 LastField->getBitWidthValue(CGF.getContext()) : 911 CGF.getContext().getTypeSize(LastField->getType()); 912 uint64_t MemcpySizeBits = 913 LastFieldOffset + LastFieldSize - FirstByteOffset + 914 CGF.getContext().getCharWidth() - 1; 915 CharUnits MemcpySize = 916 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 917 return MemcpySize; 918 } 919 920 void emitMemcpy() { 921 // Give the subclass a chance to bail out if it feels the memcpy isn't 922 // worth it (e.g. Hasn't aggregated enough data). 923 if (!FirstField) { 924 return; 925 } 926 927 uint64_t FirstByteOffset; 928 if (FirstField->isBitField()) { 929 const CGRecordLayout &RL = 930 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 931 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 932 // FirstFieldOffset is not appropriate for bitfields, 933 // we need to use the storage offset instead. 934 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 935 } else { 936 FirstByteOffset = FirstFieldOffset; 937 } 938 939 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 940 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 941 Address ThisPtr = CGF.LoadCXXThisAddress(); 942 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 943 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 944 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 945 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 946 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 947 948 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 949 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 950 MemcpySize); 951 reset(); 952 } 953 954 void reset() { 955 FirstField = nullptr; 956 } 957 958 protected: 959 CodeGenFunction &CGF; 960 const CXXRecordDecl *ClassDecl; 961 962 private: 963 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 964 llvm::PointerType *DPT = DestPtr.getType(); 965 llvm::Type *DBP = 966 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 967 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 968 969 llvm::PointerType *SPT = SrcPtr.getType(); 970 llvm::Type *SBP = 971 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 972 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 973 974 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 975 } 976 977 void addInitialField(FieldDecl *F) { 978 FirstField = F; 979 LastField = F; 980 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 981 LastFieldOffset = FirstFieldOffset; 982 LastAddedFieldIndex = F->getFieldIndex(); 983 } 984 985 void addNextField(FieldDecl *F) { 986 // For the most part, the following invariant will hold: 987 // F->getFieldIndex() == LastAddedFieldIndex + 1 988 // The one exception is that Sema won't add a copy-initializer for an 989 // unnamed bitfield, which will show up here as a gap in the sequence. 990 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 991 "Cannot aggregate fields out of order."); 992 LastAddedFieldIndex = F->getFieldIndex(); 993 994 // The 'first' and 'last' fields are chosen by offset, rather than field 995 // index. This allows the code to support bitfields, as well as regular 996 // fields. 997 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 998 if (FOffset < FirstFieldOffset) { 999 FirstField = F; 1000 FirstFieldOffset = FOffset; 1001 } else if (FOffset > LastFieldOffset) { 1002 LastField = F; 1003 LastFieldOffset = FOffset; 1004 } 1005 } 1006 1007 const VarDecl *SrcRec; 1008 const ASTRecordLayout &RecLayout; 1009 FieldDecl *FirstField; 1010 FieldDecl *LastField; 1011 uint64_t FirstFieldOffset, LastFieldOffset; 1012 unsigned LastAddedFieldIndex; 1013 }; 1014 1015 class ConstructorMemcpyizer : public FieldMemcpyizer { 1016 private: 1017 /// Get source argument for copy constructor. Returns null if not a copy 1018 /// constructor. 1019 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1020 const CXXConstructorDecl *CD, 1021 FunctionArgList &Args) { 1022 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1023 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1024 return nullptr; 1025 } 1026 1027 // Returns true if a CXXCtorInitializer represents a member initialization 1028 // that can be rolled into a memcpy. 1029 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1030 if (!MemcpyableCtor) 1031 return false; 1032 FieldDecl *Field = MemberInit->getMember(); 1033 assert(Field && "No field for member init."); 1034 QualType FieldType = Field->getType(); 1035 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1036 1037 // Bail out on non-memcpyable, not-trivially-copyable members. 1038 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1039 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1040 FieldType->isReferenceType())) 1041 return false; 1042 1043 // Bail out on volatile fields. 1044 if (!isMemcpyableField(Field)) 1045 return false; 1046 1047 // Otherwise we're good. 1048 return true; 1049 } 1050 1051 public: 1052 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1053 FunctionArgList &Args) 1054 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1055 ConstructorDecl(CD), 1056 MemcpyableCtor(CD->isDefaulted() && 1057 CD->isCopyOrMoveConstructor() && 1058 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1059 Args(Args) { } 1060 1061 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1062 if (isMemberInitMemcpyable(MemberInit)) { 1063 AggregatedInits.push_back(MemberInit); 1064 addMemcpyableField(MemberInit->getMember()); 1065 } else { 1066 emitAggregatedInits(); 1067 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1068 ConstructorDecl, Args); 1069 } 1070 } 1071 1072 void emitAggregatedInits() { 1073 if (AggregatedInits.size() <= 1) { 1074 // This memcpy is too small to be worthwhile. Fall back on default 1075 // codegen. 1076 if (!AggregatedInits.empty()) { 1077 CopyingValueRepresentation CVR(CGF); 1078 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1079 AggregatedInits[0], ConstructorDecl, Args); 1080 AggregatedInits.clear(); 1081 } 1082 reset(); 1083 return; 1084 } 1085 1086 pushEHDestructors(); 1087 emitMemcpy(); 1088 AggregatedInits.clear(); 1089 } 1090 1091 void pushEHDestructors() { 1092 Address ThisPtr = CGF.LoadCXXThisAddress(); 1093 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1094 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1095 1096 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1097 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1098 QualType FieldType = MemberInit->getAnyMember()->getType(); 1099 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1100 if (!CGF.needsEHCleanup(dtorKind)) 1101 continue; 1102 LValue FieldLHS = LHS; 1103 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1104 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1105 } 1106 } 1107 1108 void finish() { 1109 emitAggregatedInits(); 1110 } 1111 1112 private: 1113 const CXXConstructorDecl *ConstructorDecl; 1114 bool MemcpyableCtor; 1115 FunctionArgList &Args; 1116 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1117 }; 1118 1119 class AssignmentMemcpyizer : public FieldMemcpyizer { 1120 private: 1121 // Returns the memcpyable field copied by the given statement, if one 1122 // exists. Otherwise returns null. 1123 FieldDecl *getMemcpyableField(Stmt *S) { 1124 if (!AssignmentsMemcpyable) 1125 return nullptr; 1126 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1127 // Recognise trivial assignments. 1128 if (BO->getOpcode() != BO_Assign) 1129 return nullptr; 1130 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1131 if (!ME) 1132 return nullptr; 1133 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1134 if (!Field || !isMemcpyableField(Field)) 1135 return nullptr; 1136 Stmt *RHS = BO->getRHS(); 1137 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1138 RHS = EC->getSubExpr(); 1139 if (!RHS) 1140 return nullptr; 1141 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1142 if (ME2->getMemberDecl() == Field) 1143 return Field; 1144 } 1145 return nullptr; 1146 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1147 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1148 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1149 return nullptr; 1150 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1151 if (!IOA) 1152 return nullptr; 1153 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1154 if (!Field || !isMemcpyableField(Field)) 1155 return nullptr; 1156 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1157 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1158 return nullptr; 1159 return Field; 1160 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1161 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1162 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1163 return nullptr; 1164 Expr *DstPtr = CE->getArg(0); 1165 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1166 DstPtr = DC->getSubExpr(); 1167 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1168 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1169 return nullptr; 1170 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1171 if (!ME) 1172 return nullptr; 1173 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1174 if (!Field || !isMemcpyableField(Field)) 1175 return nullptr; 1176 Expr *SrcPtr = CE->getArg(1); 1177 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1178 SrcPtr = SC->getSubExpr(); 1179 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1180 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1181 return nullptr; 1182 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1183 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1184 return nullptr; 1185 return Field; 1186 } 1187 1188 return nullptr; 1189 } 1190 1191 bool AssignmentsMemcpyable; 1192 SmallVector<Stmt*, 16> AggregatedStmts; 1193 1194 public: 1195 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1196 FunctionArgList &Args) 1197 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1198 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1199 assert(Args.size() == 2); 1200 } 1201 1202 void emitAssignment(Stmt *S) { 1203 FieldDecl *F = getMemcpyableField(S); 1204 if (F) { 1205 addMemcpyableField(F); 1206 AggregatedStmts.push_back(S); 1207 } else { 1208 emitAggregatedStmts(); 1209 CGF.EmitStmt(S); 1210 } 1211 } 1212 1213 void emitAggregatedStmts() { 1214 if (AggregatedStmts.size() <= 1) { 1215 if (!AggregatedStmts.empty()) { 1216 CopyingValueRepresentation CVR(CGF); 1217 CGF.EmitStmt(AggregatedStmts[0]); 1218 } 1219 reset(); 1220 } 1221 1222 emitMemcpy(); 1223 AggregatedStmts.clear(); 1224 } 1225 1226 void finish() { 1227 emitAggregatedStmts(); 1228 } 1229 }; 1230 } // end anonymous namespace 1231 1232 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1233 const Type *BaseType = BaseInit->getBaseClass(); 1234 const auto *BaseClassDecl = 1235 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1236 return BaseClassDecl->isDynamicClass(); 1237 } 1238 1239 /// EmitCtorPrologue - This routine generates necessary code to initialize 1240 /// base classes and non-static data members belonging to this constructor. 1241 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1242 CXXCtorType CtorType, 1243 FunctionArgList &Args) { 1244 if (CD->isDelegatingConstructor()) 1245 return EmitDelegatingCXXConstructorCall(CD, Args); 1246 1247 const CXXRecordDecl *ClassDecl = CD->getParent(); 1248 1249 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1250 E = CD->init_end(); 1251 1252 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1253 if (ClassDecl->getNumVBases() && 1254 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1255 // The ABIs that don't have constructor variants need to put a branch 1256 // before the virtual base initialization code. 1257 BaseCtorContinueBB = 1258 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1259 assert(BaseCtorContinueBB); 1260 } 1261 1262 llvm::Value *const OldThis = CXXThisValue; 1263 // Virtual base initializers first. 1264 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1265 if (CGM.getCodeGenOpts().StrictVTablePointers && 1266 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1267 isInitializerOfDynamicClass(*B)) 1268 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1269 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1270 } 1271 1272 if (BaseCtorContinueBB) { 1273 // Complete object handler should continue to the remaining initializers. 1274 Builder.CreateBr(BaseCtorContinueBB); 1275 EmitBlock(BaseCtorContinueBB); 1276 } 1277 1278 // Then, non-virtual base initializers. 1279 for (; B != E && (*B)->isBaseInitializer(); B++) { 1280 assert(!(*B)->isBaseVirtual()); 1281 1282 if (CGM.getCodeGenOpts().StrictVTablePointers && 1283 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1284 isInitializerOfDynamicClass(*B)) 1285 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1286 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1287 } 1288 1289 CXXThisValue = OldThis; 1290 1291 InitializeVTablePointers(ClassDecl); 1292 1293 // And finally, initialize class members. 1294 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1295 ConstructorMemcpyizer CM(*this, CD, Args); 1296 for (; B != E; B++) { 1297 CXXCtorInitializer *Member = (*B); 1298 assert(!Member->isBaseInitializer()); 1299 assert(Member->isAnyMemberInitializer() && 1300 "Delegating initializer on non-delegating constructor"); 1301 CM.addMemberInitializer(Member); 1302 } 1303 CM.finish(); 1304 } 1305 1306 static bool 1307 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1308 1309 static bool 1310 HasTrivialDestructorBody(ASTContext &Context, 1311 const CXXRecordDecl *BaseClassDecl, 1312 const CXXRecordDecl *MostDerivedClassDecl) 1313 { 1314 // If the destructor is trivial we don't have to check anything else. 1315 if (BaseClassDecl->hasTrivialDestructor()) 1316 return true; 1317 1318 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1319 return false; 1320 1321 // Check fields. 1322 for (const auto *Field : BaseClassDecl->fields()) 1323 if (!FieldHasTrivialDestructorBody(Context, Field)) 1324 return false; 1325 1326 // Check non-virtual bases. 1327 for (const auto &I : BaseClassDecl->bases()) { 1328 if (I.isVirtual()) 1329 continue; 1330 1331 const CXXRecordDecl *NonVirtualBase = 1332 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1333 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1334 MostDerivedClassDecl)) 1335 return false; 1336 } 1337 1338 if (BaseClassDecl == MostDerivedClassDecl) { 1339 // Check virtual bases. 1340 for (const auto &I : BaseClassDecl->vbases()) { 1341 const CXXRecordDecl *VirtualBase = 1342 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1343 if (!HasTrivialDestructorBody(Context, VirtualBase, 1344 MostDerivedClassDecl)) 1345 return false; 1346 } 1347 } 1348 1349 return true; 1350 } 1351 1352 static bool 1353 FieldHasTrivialDestructorBody(ASTContext &Context, 1354 const FieldDecl *Field) 1355 { 1356 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1357 1358 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1359 if (!RT) 1360 return true; 1361 1362 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1363 1364 // The destructor for an implicit anonymous union member is never invoked. 1365 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1366 return false; 1367 1368 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1369 } 1370 1371 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1372 /// any vtable pointers before calling this destructor. 1373 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1374 const CXXDestructorDecl *Dtor) { 1375 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1376 if (!ClassDecl->isDynamicClass()) 1377 return true; 1378 1379 if (!Dtor->hasTrivialBody()) 1380 return false; 1381 1382 // Check the fields. 1383 for (const auto *Field : ClassDecl->fields()) 1384 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1385 return false; 1386 1387 return true; 1388 } 1389 1390 /// EmitDestructorBody - Emits the body of the current destructor. 1391 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1392 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1393 CXXDtorType DtorType = CurGD.getDtorType(); 1394 1395 // For an abstract class, non-base destructors are never used (and can't 1396 // be emitted in general, because vbase dtors may not have been validated 1397 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1398 // in fact emit references to them from other compilations, so emit them 1399 // as functions containing a trap instruction. 1400 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1401 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1402 TrapCall->setDoesNotReturn(); 1403 TrapCall->setDoesNotThrow(); 1404 Builder.CreateUnreachable(); 1405 Builder.ClearInsertionPoint(); 1406 return; 1407 } 1408 1409 Stmt *Body = Dtor->getBody(); 1410 if (Body) 1411 incrementProfileCounter(Body); 1412 1413 // The call to operator delete in a deleting destructor happens 1414 // outside of the function-try-block, which means it's always 1415 // possible to delegate the destructor body to the complete 1416 // destructor. Do so. 1417 if (DtorType == Dtor_Deleting) { 1418 RunCleanupsScope DtorEpilogue(*this); 1419 EnterDtorCleanups(Dtor, Dtor_Deleting); 1420 if (HaveInsertPoint()) 1421 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1422 /*Delegating=*/false, LoadCXXThisAddress()); 1423 return; 1424 } 1425 1426 // If the body is a function-try-block, enter the try before 1427 // anything else. 1428 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1429 if (isTryBody) 1430 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1431 EmitAsanPrologueOrEpilogue(false); 1432 1433 // Enter the epilogue cleanups. 1434 RunCleanupsScope DtorEpilogue(*this); 1435 1436 // If this is the complete variant, just invoke the base variant; 1437 // the epilogue will destruct the virtual bases. But we can't do 1438 // this optimization if the body is a function-try-block, because 1439 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1440 // always delegate because we might not have a definition in this TU. 1441 switch (DtorType) { 1442 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1443 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1444 1445 case Dtor_Complete: 1446 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1447 "can't emit a dtor without a body for non-Microsoft ABIs"); 1448 1449 // Enter the cleanup scopes for virtual bases. 1450 EnterDtorCleanups(Dtor, Dtor_Complete); 1451 1452 if (!isTryBody) { 1453 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1454 /*Delegating=*/false, LoadCXXThisAddress()); 1455 break; 1456 } 1457 1458 // Fallthrough: act like we're in the base variant. 1459 LLVM_FALLTHROUGH; 1460 1461 case Dtor_Base: 1462 assert(Body); 1463 1464 // Enter the cleanup scopes for fields and non-virtual bases. 1465 EnterDtorCleanups(Dtor, Dtor_Base); 1466 1467 // Initialize the vtable pointers before entering the body. 1468 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1469 // Insert the llvm.invariant.group.barrier intrinsic before initializing 1470 // the vptrs to cancel any previous assumptions we might have made. 1471 if (CGM.getCodeGenOpts().StrictVTablePointers && 1472 CGM.getCodeGenOpts().OptimizationLevel > 0) 1473 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1474 InitializeVTablePointers(Dtor->getParent()); 1475 } 1476 1477 if (isTryBody) 1478 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1479 else if (Body) 1480 EmitStmt(Body); 1481 else { 1482 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1483 // nothing to do besides what's in the epilogue 1484 } 1485 // -fapple-kext must inline any call to this dtor into 1486 // the caller's body. 1487 if (getLangOpts().AppleKext) 1488 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1489 1490 break; 1491 } 1492 1493 // Jump out through the epilogue cleanups. 1494 DtorEpilogue.ForceCleanup(); 1495 1496 // Exit the try if applicable. 1497 if (isTryBody) 1498 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1499 } 1500 1501 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1502 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1503 const Stmt *RootS = AssignOp->getBody(); 1504 assert(isa<CompoundStmt>(RootS) && 1505 "Body of an implicit assignment operator should be compound stmt."); 1506 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1507 1508 LexicalScope Scope(*this, RootCS->getSourceRange()); 1509 1510 incrementProfileCounter(RootCS); 1511 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1512 for (auto *I : RootCS->body()) 1513 AM.emitAssignment(I); 1514 AM.finish(); 1515 } 1516 1517 namespace { 1518 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1519 const CXXDestructorDecl *DD) { 1520 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1521 return CGF.EmitScalarExpr(ThisArg); 1522 return CGF.LoadCXXThis(); 1523 } 1524 1525 /// Call the operator delete associated with the current destructor. 1526 struct CallDtorDelete final : EHScopeStack::Cleanup { 1527 CallDtorDelete() {} 1528 1529 void Emit(CodeGenFunction &CGF, Flags flags) override { 1530 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1531 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1532 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1533 LoadThisForDtorDelete(CGF, Dtor), 1534 CGF.getContext().getTagDeclType(ClassDecl)); 1535 } 1536 }; 1537 1538 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1539 llvm::Value *ShouldDeleteCondition, 1540 bool ReturnAfterDelete) { 1541 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1542 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1543 llvm::Value *ShouldCallDelete 1544 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1545 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1546 1547 CGF.EmitBlock(callDeleteBB); 1548 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1549 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1550 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1551 LoadThisForDtorDelete(CGF, Dtor), 1552 CGF.getContext().getTagDeclType(ClassDecl)); 1553 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1554 ReturnAfterDelete && 1555 "unexpected value for ReturnAfterDelete"); 1556 if (ReturnAfterDelete) 1557 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1558 else 1559 CGF.Builder.CreateBr(continueBB); 1560 1561 CGF.EmitBlock(continueBB); 1562 } 1563 1564 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1565 llvm::Value *ShouldDeleteCondition; 1566 1567 public: 1568 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1569 : ShouldDeleteCondition(ShouldDeleteCondition) { 1570 assert(ShouldDeleteCondition != nullptr); 1571 } 1572 1573 void Emit(CodeGenFunction &CGF, Flags flags) override { 1574 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1575 /*ReturnAfterDelete*/false); 1576 } 1577 }; 1578 1579 class DestroyField final : public EHScopeStack::Cleanup { 1580 const FieldDecl *field; 1581 CodeGenFunction::Destroyer *destroyer; 1582 bool useEHCleanupForArray; 1583 1584 public: 1585 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1586 bool useEHCleanupForArray) 1587 : field(field), destroyer(destroyer), 1588 useEHCleanupForArray(useEHCleanupForArray) {} 1589 1590 void Emit(CodeGenFunction &CGF, Flags flags) override { 1591 // Find the address of the field. 1592 Address thisValue = CGF.LoadCXXThisAddress(); 1593 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1594 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1595 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1596 assert(LV.isSimple()); 1597 1598 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1599 flags.isForNormalCleanup() && useEHCleanupForArray); 1600 } 1601 }; 1602 1603 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1604 CharUnits::QuantityType PoisonSize) { 1605 CodeGenFunction::SanitizerScope SanScope(&CGF); 1606 // Pass in void pointer and size of region as arguments to runtime 1607 // function 1608 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1609 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1610 1611 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1612 1613 llvm::FunctionType *FnType = 1614 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1615 llvm::Value *Fn = 1616 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1617 CGF.EmitNounwindRuntimeCall(Fn, Args); 1618 } 1619 1620 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1621 const CXXDestructorDecl *Dtor; 1622 1623 public: 1624 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1625 1626 // Generate function call for handling object poisoning. 1627 // Disables tail call elimination, to prevent the current stack frame 1628 // from disappearing from the stack trace. 1629 void Emit(CodeGenFunction &CGF, Flags flags) override { 1630 const ASTRecordLayout &Layout = 1631 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1632 1633 // Nothing to poison. 1634 if (Layout.getFieldCount() == 0) 1635 return; 1636 1637 // Prevent the current stack frame from disappearing from the stack trace. 1638 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1639 1640 // Construct pointer to region to begin poisoning, and calculate poison 1641 // size, so that only members declared in this class are poisoned. 1642 ASTContext &Context = CGF.getContext(); 1643 unsigned fieldIndex = 0; 1644 int startIndex = -1; 1645 // RecordDecl::field_iterator Field; 1646 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1647 // Poison field if it is trivial 1648 if (FieldHasTrivialDestructorBody(Context, Field)) { 1649 // Start sanitizing at this field 1650 if (startIndex < 0) 1651 startIndex = fieldIndex; 1652 1653 // Currently on the last field, and it must be poisoned with the 1654 // current block. 1655 if (fieldIndex == Layout.getFieldCount() - 1) { 1656 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1657 } 1658 } else if (startIndex >= 0) { 1659 // No longer within a block of memory to poison, so poison the block 1660 PoisonMembers(CGF, startIndex, fieldIndex); 1661 // Re-set the start index 1662 startIndex = -1; 1663 } 1664 fieldIndex += 1; 1665 } 1666 } 1667 1668 private: 1669 /// \param layoutStartOffset index of the ASTRecordLayout field to 1670 /// start poisoning (inclusive) 1671 /// \param layoutEndOffset index of the ASTRecordLayout field to 1672 /// end poisoning (exclusive) 1673 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1674 unsigned layoutEndOffset) { 1675 ASTContext &Context = CGF.getContext(); 1676 const ASTRecordLayout &Layout = 1677 Context.getASTRecordLayout(Dtor->getParent()); 1678 1679 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1680 CGF.SizeTy, 1681 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1682 .getQuantity()); 1683 1684 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1685 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1686 OffsetSizePtr); 1687 1688 CharUnits::QuantityType PoisonSize; 1689 if (layoutEndOffset >= Layout.getFieldCount()) { 1690 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1691 Context.toCharUnitsFromBits( 1692 Layout.getFieldOffset(layoutStartOffset)) 1693 .getQuantity(); 1694 } else { 1695 PoisonSize = Context.toCharUnitsFromBits( 1696 Layout.getFieldOffset(layoutEndOffset) - 1697 Layout.getFieldOffset(layoutStartOffset)) 1698 .getQuantity(); 1699 } 1700 1701 if (PoisonSize == 0) 1702 return; 1703 1704 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1705 } 1706 }; 1707 1708 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1709 const CXXDestructorDecl *Dtor; 1710 1711 public: 1712 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1713 1714 // Generate function call for handling vtable pointer poisoning. 1715 void Emit(CodeGenFunction &CGF, Flags flags) override { 1716 assert(Dtor->getParent()->isDynamicClass()); 1717 (void)Dtor; 1718 ASTContext &Context = CGF.getContext(); 1719 // Poison vtable and vtable ptr if they exist for this class. 1720 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1721 1722 CharUnits::QuantityType PoisonSize = 1723 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1724 // Pass in void pointer and size of region as arguments to runtime 1725 // function 1726 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1727 } 1728 }; 1729 } // end anonymous namespace 1730 1731 /// \brief Emit all code that comes at the end of class's 1732 /// destructor. This is to call destructors on members and base classes 1733 /// in reverse order of their construction. 1734 /// 1735 /// For a deleting destructor, this also handles the case where a destroying 1736 /// operator delete completely overrides the definition. 1737 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1738 CXXDtorType DtorType) { 1739 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1740 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1741 1742 // The deleting-destructor phase just needs to call the appropriate 1743 // operator delete that Sema picked up. 1744 if (DtorType == Dtor_Deleting) { 1745 assert(DD->getOperatorDelete() && 1746 "operator delete missing - EnterDtorCleanups"); 1747 if (CXXStructorImplicitParamValue) { 1748 // If there is an implicit param to the deleting dtor, it's a boolean 1749 // telling whether this is a deleting destructor. 1750 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1751 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1752 /*ReturnAfterDelete*/true); 1753 else 1754 EHStack.pushCleanup<CallDtorDeleteConditional>( 1755 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1756 } else { 1757 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1758 const CXXRecordDecl *ClassDecl = DD->getParent(); 1759 EmitDeleteCall(DD->getOperatorDelete(), 1760 LoadThisForDtorDelete(*this, DD), 1761 getContext().getTagDeclType(ClassDecl)); 1762 EmitBranchThroughCleanup(ReturnBlock); 1763 } else { 1764 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1765 } 1766 } 1767 return; 1768 } 1769 1770 const CXXRecordDecl *ClassDecl = DD->getParent(); 1771 1772 // Unions have no bases and do not call field destructors. 1773 if (ClassDecl->isUnion()) 1774 return; 1775 1776 // The complete-destructor phase just destructs all the virtual bases. 1777 if (DtorType == Dtor_Complete) { 1778 // Poison the vtable pointer such that access after the base 1779 // and member destructors are invoked is invalid. 1780 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1781 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1782 ClassDecl->isPolymorphic()) 1783 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1784 1785 // We push them in the forward order so that they'll be popped in 1786 // the reverse order. 1787 for (const auto &Base : ClassDecl->vbases()) { 1788 CXXRecordDecl *BaseClassDecl 1789 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1790 1791 // Ignore trivial destructors. 1792 if (BaseClassDecl->hasTrivialDestructor()) 1793 continue; 1794 1795 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1796 BaseClassDecl, 1797 /*BaseIsVirtual*/ true); 1798 } 1799 1800 return; 1801 } 1802 1803 assert(DtorType == Dtor_Base); 1804 // Poison the vtable pointer if it has no virtual bases, but inherits 1805 // virtual functions. 1806 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1807 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1808 ClassDecl->isPolymorphic()) 1809 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1810 1811 // Destroy non-virtual bases. 1812 for (const auto &Base : ClassDecl->bases()) { 1813 // Ignore virtual bases. 1814 if (Base.isVirtual()) 1815 continue; 1816 1817 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1818 1819 // Ignore trivial destructors. 1820 if (BaseClassDecl->hasTrivialDestructor()) 1821 continue; 1822 1823 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1824 BaseClassDecl, 1825 /*BaseIsVirtual*/ false); 1826 } 1827 1828 // Poison fields such that access after their destructors are 1829 // invoked, and before the base class destructor runs, is invalid. 1830 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1831 SanOpts.has(SanitizerKind::Memory)) 1832 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1833 1834 // Destroy direct fields. 1835 for (const auto *Field : ClassDecl->fields()) { 1836 QualType type = Field->getType(); 1837 QualType::DestructionKind dtorKind = type.isDestructedType(); 1838 if (!dtorKind) continue; 1839 1840 // Anonymous union members do not have their destructors called. 1841 const RecordType *RT = type->getAsUnionType(); 1842 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1843 1844 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1845 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1846 getDestroyer(dtorKind), 1847 cleanupKind & EHCleanup); 1848 } 1849 } 1850 1851 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1852 /// constructor for each of several members of an array. 1853 /// 1854 /// \param ctor the constructor to call for each element 1855 /// \param arrayType the type of the array to initialize 1856 /// \param arrayBegin an arrayType* 1857 /// \param zeroInitialize true if each element should be 1858 /// zero-initialized before it is constructed 1859 void CodeGenFunction::EmitCXXAggrConstructorCall( 1860 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1861 Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1862 QualType elementType; 1863 llvm::Value *numElements = 1864 emitArrayLength(arrayType, elementType, arrayBegin); 1865 1866 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1867 } 1868 1869 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1870 /// constructor for each of several members of an array. 1871 /// 1872 /// \param ctor the constructor to call for each element 1873 /// \param numElements the number of elements in the array; 1874 /// may be zero 1875 /// \param arrayBase a T*, where T is the type constructed by ctor 1876 /// \param zeroInitialize true if each element should be 1877 /// zero-initialized before it is constructed 1878 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1879 llvm::Value *numElements, 1880 Address arrayBase, 1881 const CXXConstructExpr *E, 1882 bool zeroInitialize) { 1883 // It's legal for numElements to be zero. This can happen both 1884 // dynamically, because x can be zero in 'new A[x]', and statically, 1885 // because of GCC extensions that permit zero-length arrays. There 1886 // are probably legitimate places where we could assume that this 1887 // doesn't happen, but it's not clear that it's worth it. 1888 llvm::BranchInst *zeroCheckBranch = nullptr; 1889 1890 // Optimize for a constant count. 1891 llvm::ConstantInt *constantCount 1892 = dyn_cast<llvm::ConstantInt>(numElements); 1893 if (constantCount) { 1894 // Just skip out if the constant count is zero. 1895 if (constantCount->isZero()) return; 1896 1897 // Otherwise, emit the check. 1898 } else { 1899 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1900 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1901 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1902 EmitBlock(loopBB); 1903 } 1904 1905 // Find the end of the array. 1906 llvm::Value *arrayBegin = arrayBase.getPointer(); 1907 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1908 "arrayctor.end"); 1909 1910 // Enter the loop, setting up a phi for the current location to initialize. 1911 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1912 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1913 EmitBlock(loopBB); 1914 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1915 "arrayctor.cur"); 1916 cur->addIncoming(arrayBegin, entryBB); 1917 1918 // Inside the loop body, emit the constructor call on the array element. 1919 1920 // The alignment of the base, adjusted by the size of a single element, 1921 // provides a conservative estimate of the alignment of every element. 1922 // (This assumes we never start tracking offsetted alignments.) 1923 // 1924 // Note that these are complete objects and so we don't need to 1925 // use the non-virtual size or alignment. 1926 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1927 CharUnits eltAlignment = 1928 arrayBase.getAlignment() 1929 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1930 Address curAddr = Address(cur, eltAlignment); 1931 1932 // Zero initialize the storage, if requested. 1933 if (zeroInitialize) 1934 EmitNullInitialization(curAddr, type); 1935 1936 // C++ [class.temporary]p4: 1937 // There are two contexts in which temporaries are destroyed at a different 1938 // point than the end of the full-expression. The first context is when a 1939 // default constructor is called to initialize an element of an array. 1940 // If the constructor has one or more default arguments, the destruction of 1941 // every temporary created in a default argument expression is sequenced 1942 // before the construction of the next array element, if any. 1943 1944 { 1945 RunCleanupsScope Scope(*this); 1946 1947 // Evaluate the constructor and its arguments in a regular 1948 // partial-destroy cleanup. 1949 if (getLangOpts().Exceptions && 1950 !ctor->getParent()->hasTrivialDestructor()) { 1951 Destroyer *destroyer = destroyCXXObject; 1952 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1953 *destroyer); 1954 } 1955 1956 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1957 /*Delegating=*/false, curAddr, E); 1958 } 1959 1960 // Go to the next element. 1961 llvm::Value *next = 1962 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1963 "arrayctor.next"); 1964 cur->addIncoming(next, Builder.GetInsertBlock()); 1965 1966 // Check whether that's the end of the loop. 1967 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1968 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1969 Builder.CreateCondBr(done, contBB, loopBB); 1970 1971 // Patch the earlier check to skip over the loop. 1972 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1973 1974 EmitBlock(contBB); 1975 } 1976 1977 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1978 Address addr, 1979 QualType type) { 1980 const RecordType *rtype = type->castAs<RecordType>(); 1981 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1982 const CXXDestructorDecl *dtor = record->getDestructor(); 1983 assert(!dtor->isTrivial()); 1984 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1985 /*Delegating=*/false, addr); 1986 } 1987 1988 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1989 CXXCtorType Type, 1990 bool ForVirtualBase, 1991 bool Delegating, Address This, 1992 const CXXConstructExpr *E) { 1993 CallArgList Args; 1994 1995 // Push the this ptr. 1996 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 1997 1998 // If this is a trivial constructor, emit a memcpy now before we lose 1999 // the alignment information on the argument. 2000 // FIXME: It would be better to preserve alignment information into CallArg. 2001 if (isMemcpyEquivalentSpecialMember(D)) { 2002 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2003 2004 const Expr *Arg = E->getArg(0); 2005 QualType SrcTy = Arg->getType(); 2006 Address Src = EmitLValue(Arg).getAddress(); 2007 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2008 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 2009 return; 2010 } 2011 2012 // Add the rest of the user-supplied arguments. 2013 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2014 EvaluationOrder Order = E->isListInitialization() 2015 ? EvaluationOrder::ForceLeftToRight 2016 : EvaluationOrder::Default; 2017 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2018 /*ParamsToSkip*/ 0, Order); 2019 2020 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args); 2021 } 2022 2023 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2024 const CXXConstructorDecl *Ctor, 2025 CXXCtorType Type, CallArgList &Args) { 2026 // We can't forward a variadic call. 2027 if (Ctor->isVariadic()) 2028 return false; 2029 2030 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2031 // If the parameters are callee-cleanup, it's not safe to forward. 2032 for (auto *P : Ctor->parameters()) 2033 if (P->getType().isDestructedType()) 2034 return false; 2035 2036 // Likewise if they're inalloca. 2037 const CGFunctionInfo &Info = 2038 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2039 if (Info.usesInAlloca()) 2040 return false; 2041 } 2042 2043 // Anything else should be OK. 2044 return true; 2045 } 2046 2047 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2048 CXXCtorType Type, 2049 bool ForVirtualBase, 2050 bool Delegating, 2051 Address This, 2052 CallArgList &Args) { 2053 const CXXRecordDecl *ClassDecl = D->getParent(); 2054 2055 // C++11 [class.mfct.non-static]p2: 2056 // If a non-static member function of a class X is called for an object that 2057 // is not of type X, or of a type derived from X, the behavior is undefined. 2058 // FIXME: Provide a source location here. 2059 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), 2060 This.getPointer(), getContext().getRecordType(ClassDecl)); 2061 2062 if (D->isTrivial() && D->isDefaultConstructor()) { 2063 assert(Args.size() == 1 && "trivial default ctor with args"); 2064 return; 2065 } 2066 2067 // If this is a trivial constructor, just emit what's needed. If this is a 2068 // union copy constructor, we must emit a memcpy, because the AST does not 2069 // model that copy. 2070 if (isMemcpyEquivalentSpecialMember(D)) { 2071 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2072 2073 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2074 Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy)); 2075 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2076 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 2077 return; 2078 } 2079 2080 bool PassPrototypeArgs = true; 2081 // Check whether we can actually emit the constructor before trying to do so. 2082 if (auto Inherited = D->getInheritedConstructor()) { 2083 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2084 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2085 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2086 Delegating, Args); 2087 return; 2088 } 2089 } 2090 2091 // Insert any ABI-specific implicit constructor arguments. 2092 CGCXXABI::AddedStructorArgs ExtraArgs = 2093 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2094 Delegating, Args); 2095 2096 // Emit the call. 2097 llvm::Constant *CalleePtr = 2098 CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 2099 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2100 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2101 CGCallee Callee = CGCallee::forDirect(CalleePtr, D); 2102 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2103 2104 // Generate vtable assumptions if we're constructing a complete object 2105 // with a vtable. We don't do this for base subobjects for two reasons: 2106 // first, it's incorrect for classes with virtual bases, and second, we're 2107 // about to overwrite the vptrs anyway. 2108 // We also have to make sure if we can refer to vtable: 2109 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2110 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2111 // sure that definition of vtable is not hidden, 2112 // then we are always safe to refer to it. 2113 // FIXME: It looks like InstCombine is very inefficient on dealing with 2114 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2115 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2116 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2117 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2118 CGM.getCodeGenOpts().StrictVTablePointers) 2119 EmitVTableAssumptionLoads(ClassDecl, This); 2120 } 2121 2122 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2123 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2124 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2125 CallArgList Args; 2126 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()), 2127 /*NeedsCopy=*/false); 2128 2129 // Forward the parameters. 2130 if (InheritedFromVBase && 2131 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2132 // Nothing to do; this construction is not responsible for constructing 2133 // the base class containing the inherited constructor. 2134 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2135 // have constructor variants? 2136 Args.push_back(ThisArg); 2137 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2138 // The inheriting constructor was inlined; just inject its arguments. 2139 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2140 "wrong number of parameters for inherited constructor call"); 2141 Args = CXXInheritedCtorInitExprArgs; 2142 Args[0] = ThisArg; 2143 } else { 2144 // The inheriting constructor was not inlined. Emit delegating arguments. 2145 Args.push_back(ThisArg); 2146 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2147 assert(OuterCtor->getNumParams() == D->getNumParams()); 2148 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2149 2150 for (const auto *Param : OuterCtor->parameters()) { 2151 assert(getContext().hasSameUnqualifiedType( 2152 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2153 Param->getType())); 2154 EmitDelegateCallArg(Args, Param, E->getLocation()); 2155 2156 // Forward __attribute__(pass_object_size). 2157 if (Param->hasAttr<PassObjectSizeAttr>()) { 2158 auto *POSParam = SizeArguments[Param]; 2159 assert(POSParam && "missing pass_object_size value for forwarding"); 2160 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2161 } 2162 } 2163 } 2164 2165 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2166 This, Args); 2167 } 2168 2169 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2170 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2171 bool Delegating, CallArgList &Args) { 2172 GlobalDecl GD(Ctor, CtorType); 2173 InlinedInheritingConstructorScope Scope(*this, GD); 2174 ApplyInlineDebugLocation DebugScope(*this, GD); 2175 2176 // Save the arguments to be passed to the inherited constructor. 2177 CXXInheritedCtorInitExprArgs = Args; 2178 2179 FunctionArgList Params; 2180 QualType RetType = BuildFunctionArgList(CurGD, Params); 2181 FnRetTy = RetType; 2182 2183 // Insert any ABI-specific implicit constructor arguments. 2184 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2185 ForVirtualBase, Delegating, Args); 2186 2187 // Emit a simplified prolog. We only need to emit the implicit params. 2188 assert(Args.size() >= Params.size() && "too few arguments for call"); 2189 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2190 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2191 const RValue &RV = Args[I].RV; 2192 assert(!RV.isComplex() && "complex indirect params not supported"); 2193 ParamValue Val = RV.isScalar() 2194 ? ParamValue::forDirect(RV.getScalarVal()) 2195 : ParamValue::forIndirect(RV.getAggregateAddress()); 2196 EmitParmDecl(*Params[I], Val, I + 1); 2197 } 2198 } 2199 2200 // Create a return value slot if the ABI implementation wants one. 2201 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2202 // value instead. 2203 if (!RetType->isVoidType()) 2204 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2205 2206 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2207 CXXThisValue = CXXABIThisValue; 2208 2209 // Directly emit the constructor initializers. 2210 EmitCtorPrologue(Ctor, CtorType, Params); 2211 } 2212 2213 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2214 llvm::Value *VTableGlobal = 2215 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2216 if (!VTableGlobal) 2217 return; 2218 2219 // We can just use the base offset in the complete class. 2220 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2221 2222 if (!NonVirtualOffset.isZero()) 2223 This = 2224 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2225 Vptr.VTableClass, Vptr.NearestVBase); 2226 2227 llvm::Value *VPtrValue = 2228 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2229 llvm::Value *Cmp = 2230 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2231 Builder.CreateAssumption(Cmp); 2232 } 2233 2234 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2235 Address This) { 2236 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2237 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2238 EmitVTableAssumptionLoad(Vptr, This); 2239 } 2240 2241 void 2242 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2243 Address This, Address Src, 2244 const CXXConstructExpr *E) { 2245 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2246 2247 CallArgList Args; 2248 2249 // Push the this ptr. 2250 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2251 2252 // Push the src ptr. 2253 QualType QT = *(FPT->param_type_begin()); 2254 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2255 Src = Builder.CreateBitCast(Src, t); 2256 Args.add(RValue::get(Src.getPointer()), QT); 2257 2258 // Skip over first argument (Src). 2259 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2260 /*ParamsToSkip*/ 1); 2261 2262 EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args); 2263 } 2264 2265 void 2266 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2267 CXXCtorType CtorType, 2268 const FunctionArgList &Args, 2269 SourceLocation Loc) { 2270 CallArgList DelegateArgs; 2271 2272 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2273 assert(I != E && "no parameters to constructor"); 2274 2275 // this 2276 Address This = LoadCXXThisAddress(); 2277 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2278 ++I; 2279 2280 // FIXME: The location of the VTT parameter in the parameter list is 2281 // specific to the Itanium ABI and shouldn't be hardcoded here. 2282 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2283 assert(I != E && "cannot skip vtt parameter, already done with args"); 2284 assert((*I)->getType()->isPointerType() && 2285 "skipping parameter not of vtt type"); 2286 ++I; 2287 } 2288 2289 // Explicit arguments. 2290 for (; I != E; ++I) { 2291 const VarDecl *param = *I; 2292 // FIXME: per-argument source location 2293 EmitDelegateCallArg(DelegateArgs, param, Loc); 2294 } 2295 2296 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2297 /*Delegating=*/true, This, DelegateArgs); 2298 } 2299 2300 namespace { 2301 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2302 const CXXDestructorDecl *Dtor; 2303 Address Addr; 2304 CXXDtorType Type; 2305 2306 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2307 CXXDtorType Type) 2308 : Dtor(D), Addr(Addr), Type(Type) {} 2309 2310 void Emit(CodeGenFunction &CGF, Flags flags) override { 2311 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2312 /*Delegating=*/true, Addr); 2313 } 2314 }; 2315 } // end anonymous namespace 2316 2317 void 2318 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2319 const FunctionArgList &Args) { 2320 assert(Ctor->isDelegatingConstructor()); 2321 2322 Address ThisPtr = LoadCXXThisAddress(); 2323 2324 AggValueSlot AggSlot = 2325 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2326 AggValueSlot::IsDestructed, 2327 AggValueSlot::DoesNotNeedGCBarriers, 2328 AggValueSlot::IsNotAliased); 2329 2330 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2331 2332 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2333 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2334 CXXDtorType Type = 2335 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2336 2337 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2338 ClassDecl->getDestructor(), 2339 ThisPtr, Type); 2340 } 2341 } 2342 2343 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2344 CXXDtorType Type, 2345 bool ForVirtualBase, 2346 bool Delegating, 2347 Address This) { 2348 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2349 Delegating, This); 2350 } 2351 2352 namespace { 2353 struct CallLocalDtor final : EHScopeStack::Cleanup { 2354 const CXXDestructorDecl *Dtor; 2355 Address Addr; 2356 2357 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2358 : Dtor(D), Addr(Addr) {} 2359 2360 void Emit(CodeGenFunction &CGF, Flags flags) override { 2361 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2362 /*ForVirtualBase=*/false, 2363 /*Delegating=*/false, Addr); 2364 } 2365 }; 2366 } // end anonymous namespace 2367 2368 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2369 Address Addr) { 2370 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2371 } 2372 2373 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2374 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2375 if (!ClassDecl) return; 2376 if (ClassDecl->hasTrivialDestructor()) return; 2377 2378 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2379 assert(D && D->isUsed() && "destructor not marked as used!"); 2380 PushDestructorCleanup(D, Addr); 2381 } 2382 2383 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2384 // Compute the address point. 2385 llvm::Value *VTableAddressPoint = 2386 CGM.getCXXABI().getVTableAddressPointInStructor( 2387 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2388 2389 if (!VTableAddressPoint) 2390 return; 2391 2392 // Compute where to store the address point. 2393 llvm::Value *VirtualOffset = nullptr; 2394 CharUnits NonVirtualOffset = CharUnits::Zero(); 2395 2396 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2397 // We need to use the virtual base offset offset because the virtual base 2398 // might have a different offset in the most derived class. 2399 2400 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2401 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2402 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2403 } else { 2404 // We can just use the base offset in the complete class. 2405 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2406 } 2407 2408 // Apply the offsets. 2409 Address VTableField = LoadCXXThisAddress(); 2410 2411 if (!NonVirtualOffset.isZero() || VirtualOffset) 2412 VTableField = ApplyNonVirtualAndVirtualOffset( 2413 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2414 Vptr.NearestVBase); 2415 2416 // Finally, store the address point. Use the same LLVM types as the field to 2417 // support optimization. 2418 llvm::Type *VTablePtrTy = 2419 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2420 ->getPointerTo() 2421 ->getPointerTo(); 2422 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2423 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2424 2425 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2426 CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAVTablePtrAccessInfo()); 2427 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2428 CGM.getCodeGenOpts().StrictVTablePointers) 2429 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2430 } 2431 2432 CodeGenFunction::VPtrsVector 2433 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2434 CodeGenFunction::VPtrsVector VPtrsResult; 2435 VisitedVirtualBasesSetTy VBases; 2436 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2437 /*NearestVBase=*/nullptr, 2438 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2439 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2440 VPtrsResult); 2441 return VPtrsResult; 2442 } 2443 2444 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2445 const CXXRecordDecl *NearestVBase, 2446 CharUnits OffsetFromNearestVBase, 2447 bool BaseIsNonVirtualPrimaryBase, 2448 const CXXRecordDecl *VTableClass, 2449 VisitedVirtualBasesSetTy &VBases, 2450 VPtrsVector &Vptrs) { 2451 // If this base is a non-virtual primary base the address point has already 2452 // been set. 2453 if (!BaseIsNonVirtualPrimaryBase) { 2454 // Initialize the vtable pointer for this base. 2455 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2456 Vptrs.push_back(Vptr); 2457 } 2458 2459 const CXXRecordDecl *RD = Base.getBase(); 2460 2461 // Traverse bases. 2462 for (const auto &I : RD->bases()) { 2463 CXXRecordDecl *BaseDecl 2464 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2465 2466 // Ignore classes without a vtable. 2467 if (!BaseDecl->isDynamicClass()) 2468 continue; 2469 2470 CharUnits BaseOffset; 2471 CharUnits BaseOffsetFromNearestVBase; 2472 bool BaseDeclIsNonVirtualPrimaryBase; 2473 2474 if (I.isVirtual()) { 2475 // Check if we've visited this virtual base before. 2476 if (!VBases.insert(BaseDecl).second) 2477 continue; 2478 2479 const ASTRecordLayout &Layout = 2480 getContext().getASTRecordLayout(VTableClass); 2481 2482 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2483 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2484 BaseDeclIsNonVirtualPrimaryBase = false; 2485 } else { 2486 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2487 2488 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2489 BaseOffsetFromNearestVBase = 2490 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2491 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2492 } 2493 2494 getVTablePointers( 2495 BaseSubobject(BaseDecl, BaseOffset), 2496 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2497 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2498 } 2499 } 2500 2501 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2502 // Ignore classes without a vtable. 2503 if (!RD->isDynamicClass()) 2504 return; 2505 2506 // Initialize the vtable pointers for this class and all of its bases. 2507 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2508 for (const VPtr &Vptr : getVTablePointers(RD)) 2509 InitializeVTablePointer(Vptr); 2510 2511 if (RD->getNumVBases()) 2512 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2513 } 2514 2515 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2516 llvm::Type *VTableTy, 2517 const CXXRecordDecl *RD) { 2518 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2519 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2520 CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAVTablePtrAccessInfo()); 2521 2522 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2523 CGM.getCodeGenOpts().StrictVTablePointers) 2524 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2525 2526 return VTable; 2527 } 2528 2529 // If a class has a single non-virtual base and does not introduce or override 2530 // virtual member functions or fields, it will have the same layout as its base. 2531 // This function returns the least derived such class. 2532 // 2533 // Casting an instance of a base class to such a derived class is technically 2534 // undefined behavior, but it is a relatively common hack for introducing member 2535 // functions on class instances with specific properties (e.g. llvm::Operator) 2536 // that works under most compilers and should not have security implications, so 2537 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2538 static const CXXRecordDecl * 2539 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2540 if (!RD->field_empty()) 2541 return RD; 2542 2543 if (RD->getNumVBases() != 0) 2544 return RD; 2545 2546 if (RD->getNumBases() != 1) 2547 return RD; 2548 2549 for (const CXXMethodDecl *MD : RD->methods()) { 2550 if (MD->isVirtual()) { 2551 // Virtual member functions are only ok if they are implicit destructors 2552 // because the implicit destructor will have the same semantics as the 2553 // base class's destructor if no fields are added. 2554 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2555 continue; 2556 return RD; 2557 } 2558 } 2559 2560 return LeastDerivedClassWithSameLayout( 2561 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2562 } 2563 2564 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2565 llvm::Value *VTable, 2566 SourceLocation Loc) { 2567 if (SanOpts.has(SanitizerKind::CFIVCall)) 2568 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2569 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2570 CGM.HasHiddenLTOVisibility(RD)) { 2571 llvm::Metadata *MD = 2572 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2573 llvm::Value *TypeId = 2574 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2575 2576 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2577 llvm::Value *TypeTest = 2578 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2579 {CastedVTable, TypeId}); 2580 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2581 } 2582 } 2583 2584 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2585 llvm::Value *VTable, 2586 CFITypeCheckKind TCK, 2587 SourceLocation Loc) { 2588 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2589 RD = LeastDerivedClassWithSameLayout(RD); 2590 2591 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2592 } 2593 2594 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2595 llvm::Value *Derived, 2596 bool MayBeNull, 2597 CFITypeCheckKind TCK, 2598 SourceLocation Loc) { 2599 if (!getLangOpts().CPlusPlus) 2600 return; 2601 2602 auto *ClassTy = T->getAs<RecordType>(); 2603 if (!ClassTy) 2604 return; 2605 2606 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2607 2608 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2609 return; 2610 2611 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2612 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2613 2614 llvm::BasicBlock *ContBlock = nullptr; 2615 2616 if (MayBeNull) { 2617 llvm::Value *DerivedNotNull = 2618 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2619 2620 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2621 ContBlock = createBasicBlock("cast.cont"); 2622 2623 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2624 2625 EmitBlock(CheckBlock); 2626 } 2627 2628 llvm::Value *VTable = 2629 GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl); 2630 2631 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2632 2633 if (MayBeNull) { 2634 Builder.CreateBr(ContBlock); 2635 EmitBlock(ContBlock); 2636 } 2637 } 2638 2639 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2640 llvm::Value *VTable, 2641 CFITypeCheckKind TCK, 2642 SourceLocation Loc) { 2643 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2644 !CGM.HasHiddenLTOVisibility(RD)) 2645 return; 2646 2647 SanitizerMask M; 2648 llvm::SanitizerStatKind SSK; 2649 switch (TCK) { 2650 case CFITCK_VCall: 2651 M = SanitizerKind::CFIVCall; 2652 SSK = llvm::SanStat_CFI_VCall; 2653 break; 2654 case CFITCK_NVCall: 2655 M = SanitizerKind::CFINVCall; 2656 SSK = llvm::SanStat_CFI_NVCall; 2657 break; 2658 case CFITCK_DerivedCast: 2659 M = SanitizerKind::CFIDerivedCast; 2660 SSK = llvm::SanStat_CFI_DerivedCast; 2661 break; 2662 case CFITCK_UnrelatedCast: 2663 M = SanitizerKind::CFIUnrelatedCast; 2664 SSK = llvm::SanStat_CFI_UnrelatedCast; 2665 break; 2666 case CFITCK_ICall: 2667 llvm_unreachable("not expecting CFITCK_ICall"); 2668 } 2669 2670 std::string TypeName = RD->getQualifiedNameAsString(); 2671 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2672 return; 2673 2674 SanitizerScope SanScope(this); 2675 EmitSanitizerStatReport(SSK); 2676 2677 llvm::Metadata *MD = 2678 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2679 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2680 2681 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2682 llvm::Value *TypeTest = Builder.CreateCall( 2683 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2684 2685 llvm::Constant *StaticData[] = { 2686 llvm::ConstantInt::get(Int8Ty, TCK), 2687 EmitCheckSourceLocation(Loc), 2688 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2689 }; 2690 2691 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2692 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2693 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2694 return; 2695 } 2696 2697 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2698 EmitTrapCheck(TypeTest); 2699 return; 2700 } 2701 2702 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2703 CGM.getLLVMContext(), 2704 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2705 llvm::Value *ValidVtable = Builder.CreateCall( 2706 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2707 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2708 StaticData, {CastedVTable, ValidVtable}); 2709 } 2710 2711 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2712 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2713 !SanOpts.has(SanitizerKind::CFIVCall) || 2714 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2715 !CGM.HasHiddenLTOVisibility(RD)) 2716 return false; 2717 2718 std::string TypeName = RD->getQualifiedNameAsString(); 2719 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2720 SanitizerKind::CFIVCall, TypeName); 2721 } 2722 2723 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2724 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2725 SanitizerScope SanScope(this); 2726 2727 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2728 2729 llvm::Metadata *MD = 2730 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2731 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2732 2733 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2734 llvm::Value *CheckedLoad = Builder.CreateCall( 2735 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2736 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2737 TypeId}); 2738 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2739 2740 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2741 SanitizerHandler::CFICheckFail, nullptr, nullptr); 2742 2743 return Builder.CreateBitCast( 2744 Builder.CreateExtractValue(CheckedLoad, 0), 2745 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2746 } 2747 2748 void CodeGenFunction::EmitForwardingCallToLambda( 2749 const CXXMethodDecl *callOperator, 2750 CallArgList &callArgs) { 2751 // Get the address of the call operator. 2752 const CGFunctionInfo &calleeFnInfo = 2753 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2754 llvm::Constant *calleePtr = 2755 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2756 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2757 2758 // Prepare the return slot. 2759 const FunctionProtoType *FPT = 2760 callOperator->getType()->castAs<FunctionProtoType>(); 2761 QualType resultType = FPT->getReturnType(); 2762 ReturnValueSlot returnSlot; 2763 if (!resultType->isVoidType() && 2764 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2765 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2766 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2767 2768 // We don't need to separately arrange the call arguments because 2769 // the call can't be variadic anyway --- it's impossible to forward 2770 // variadic arguments. 2771 2772 // Now emit our call. 2773 auto callee = CGCallee::forDirect(calleePtr, callOperator); 2774 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2775 2776 // If necessary, copy the returned value into the slot. 2777 if (!resultType->isVoidType() && returnSlot.isNull()) 2778 EmitReturnOfRValue(RV, resultType); 2779 else 2780 EmitBranchThroughCleanup(ReturnBlock); 2781 } 2782 2783 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2784 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2785 const VarDecl *variable = BD->capture_begin()->getVariable(); 2786 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2787 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2788 2789 if (CallOp->isVariadic()) { 2790 // FIXME: Making this work correctly is nasty because it requires either 2791 // cloning the body of the call operator or making the call operator 2792 // forward. 2793 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2794 return; 2795 } 2796 2797 // Start building arguments for forwarding call 2798 CallArgList CallArgs; 2799 2800 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2801 Address ThisPtr = GetAddrOfBlockDecl(variable, false); 2802 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2803 2804 // Add the rest of the parameters. 2805 for (auto param : BD->parameters()) 2806 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2807 2808 assert(!Lambda->isGenericLambda() && 2809 "generic lambda interconversion to block not implemented"); 2810 EmitForwardingCallToLambda(CallOp, CallArgs); 2811 } 2812 2813 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2814 const CXXRecordDecl *Lambda = MD->getParent(); 2815 2816 // Start building arguments for forwarding call 2817 CallArgList CallArgs; 2818 2819 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2820 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2821 CallArgs.add(RValue::get(ThisPtr), ThisType); 2822 2823 // Add the rest of the parameters. 2824 for (auto Param : MD->parameters()) 2825 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2826 2827 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2828 // For a generic lambda, find the corresponding call operator specialization 2829 // to which the call to the static-invoker shall be forwarded. 2830 if (Lambda->isGenericLambda()) { 2831 assert(MD->isFunctionTemplateSpecialization()); 2832 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2833 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2834 void *InsertPos = nullptr; 2835 FunctionDecl *CorrespondingCallOpSpecialization = 2836 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2837 assert(CorrespondingCallOpSpecialization); 2838 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2839 } 2840 EmitForwardingCallToLambda(CallOp, CallArgs); 2841 } 2842 2843 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2844 if (MD->isVariadic()) { 2845 // FIXME: Making this work correctly is nasty because it requires either 2846 // cloning the body of the call operator or making the call operator forward. 2847 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2848 return; 2849 } 2850 2851 EmitLambdaDelegatingInvokeBody(MD); 2852 } 2853