1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/Transforms/Utils/SanitizerStats.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 /// Return the best known alignment for an unknown pointer to a
35 /// particular class.
36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
37   if (!RD->isCompleteDefinition())
38     return CharUnits::One(); // Hopefully won't be used anywhere.
39 
40   auto &layout = getContext().getASTRecordLayout(RD);
41 
42   // If the class is final, then we know that the pointer points to an
43   // object of that type and can use the full alignment.
44   if (RD->hasAttr<FinalAttr>()) {
45     return layout.getAlignment();
46 
47   // Otherwise, we have to assume it could be a subclass.
48   } else {
49     return layout.getNonVirtualAlignment();
50   }
51 }
52 
53 /// Return the best known alignment for a pointer to a virtual base,
54 /// given the alignment of a pointer to the derived class.
55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
56                                            const CXXRecordDecl *derivedClass,
57                                            const CXXRecordDecl *vbaseClass) {
58   // The basic idea here is that an underaligned derived pointer might
59   // indicate an underaligned base pointer.
60 
61   assert(vbaseClass->isCompleteDefinition());
62   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
63   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
64 
65   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
66                                    expectedVBaseAlign);
67 }
68 
69 CharUnits
70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
71                                          const CXXRecordDecl *baseDecl,
72                                          CharUnits expectedTargetAlign) {
73   // If the base is an incomplete type (which is, alas, possible with
74   // member pointers), be pessimistic.
75   if (!baseDecl->isCompleteDefinition())
76     return std::min(actualBaseAlign, expectedTargetAlign);
77 
78   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
79   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
80 
81   // If the class is properly aligned, assume the target offset is, too.
82   //
83   // This actually isn't necessarily the right thing to do --- if the
84   // class is a complete object, but it's only properly aligned for a
85   // base subobject, then the alignments of things relative to it are
86   // probably off as well.  (Note that this requires the alignment of
87   // the target to be greater than the NV alignment of the derived
88   // class.)
89   //
90   // However, our approach to this kind of under-alignment can only
91   // ever be best effort; after all, we're never going to propagate
92   // alignments through variables or parameters.  Note, in particular,
93   // that constructing a polymorphic type in an address that's less
94   // than pointer-aligned will generally trap in the constructor,
95   // unless we someday add some sort of attribute to change the
96   // assumed alignment of 'this'.  So our goal here is pretty much
97   // just to allow the user to explicitly say that a pointer is
98   // under-aligned and then safely access its fields and vtables.
99   if (actualBaseAlign >= expectedBaseAlign) {
100     return expectedTargetAlign;
101   }
102 
103   // Otherwise, we might be offset by an arbitrary multiple of the
104   // actual alignment.  The correct adjustment is to take the min of
105   // the two alignments.
106   return std::min(actualBaseAlign, expectedTargetAlign);
107 }
108 
109 Address CodeGenFunction::LoadCXXThisAddress() {
110   assert(CurFuncDecl && "loading 'this' without a func declaration?");
111   assert(isa<CXXMethodDecl>(CurFuncDecl));
112 
113   // Lazily compute CXXThisAlignment.
114   if (CXXThisAlignment.isZero()) {
115     // Just use the best known alignment for the parent.
116     // TODO: if we're currently emitting a complete-object ctor/dtor,
117     // we can always use the complete-object alignment.
118     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
119     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
120   }
121 
122   return Address(LoadCXXThis(), CXXThisAlignment);
123 }
124 
125 /// Emit the address of a field using a member data pointer.
126 ///
127 /// \param E Only used for emergency diagnostics
128 Address
129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
130                                                  llvm::Value *memberPtr,
131                                       const MemberPointerType *memberPtrType,
132                                                  LValueBaseInfo *BaseInfo,
133                                                  TBAAAccessInfo *TBAAInfo) {
134   // Ask the ABI to compute the actual address.
135   llvm::Value *ptr =
136     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
137                                                  memberPtr, memberPtrType);
138 
139   QualType memberType = memberPtrType->getPointeeType();
140   CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo,
141                                                   TBAAInfo);
142   memberAlign =
143     CGM.getDynamicOffsetAlignment(base.getAlignment(),
144                             memberPtrType->getClass()->getAsCXXRecordDecl(),
145                                   memberAlign);
146   return Address(ptr, memberAlign);
147 }
148 
149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
150     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
151     CastExpr::path_const_iterator End) {
152   CharUnits Offset = CharUnits::Zero();
153 
154   const ASTContext &Context = getContext();
155   const CXXRecordDecl *RD = DerivedClass;
156 
157   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
158     const CXXBaseSpecifier *Base = *I;
159     assert(!Base->isVirtual() && "Should not see virtual bases here!");
160 
161     // Get the layout.
162     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
163 
164     const CXXRecordDecl *BaseDecl =
165       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
166 
167     // Add the offset.
168     Offset += Layout.getBaseClassOffset(BaseDecl);
169 
170     RD = BaseDecl;
171   }
172 
173   return Offset;
174 }
175 
176 llvm::Constant *
177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
178                                    CastExpr::path_const_iterator PathBegin,
179                                    CastExpr::path_const_iterator PathEnd) {
180   assert(PathBegin != PathEnd && "Base path should not be empty!");
181 
182   CharUnits Offset =
183       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
184   if (Offset.isZero())
185     return nullptr;
186 
187   llvm::Type *PtrDiffTy =
188   Types.ConvertType(getContext().getPointerDiffType());
189 
190   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
191 }
192 
193 /// Gets the address of a direct base class within a complete object.
194 /// This should only be used for (1) non-virtual bases or (2) virtual bases
195 /// when the type is known to be complete (e.g. in complete destructors).
196 ///
197 /// The object pointed to by 'This' is assumed to be non-null.
198 Address
199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
200                                                    const CXXRecordDecl *Derived,
201                                                    const CXXRecordDecl *Base,
202                                                    bool BaseIsVirtual) {
203   // 'this' must be a pointer (in some address space) to Derived.
204   assert(This.getElementType() == ConvertType(Derived));
205 
206   // Compute the offset of the virtual base.
207   CharUnits Offset;
208   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
209   if (BaseIsVirtual)
210     Offset = Layout.getVBaseClassOffset(Base);
211   else
212     Offset = Layout.getBaseClassOffset(Base);
213 
214   // Shift and cast down to the base type.
215   // TODO: for complete types, this should be possible with a GEP.
216   Address V = This;
217   if (!Offset.isZero()) {
218     V = Builder.CreateElementBitCast(V, Int8Ty);
219     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
220   }
221   V = Builder.CreateElementBitCast(V, ConvertType(Base));
222 
223   return V;
224 }
225 
226 static Address
227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
228                                 CharUnits nonVirtualOffset,
229                                 llvm::Value *virtualOffset,
230                                 const CXXRecordDecl *derivedClass,
231                                 const CXXRecordDecl *nearestVBase) {
232   // Assert that we have something to do.
233   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
234 
235   // Compute the offset from the static and dynamic components.
236   llvm::Value *baseOffset;
237   if (!nonVirtualOffset.isZero()) {
238     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
239                                         nonVirtualOffset.getQuantity());
240     if (virtualOffset) {
241       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
242     }
243   } else {
244     baseOffset = virtualOffset;
245   }
246 
247   // Apply the base offset.
248   llvm::Value *ptr = addr.getPointer();
249   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
250   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
251 
252   // If we have a virtual component, the alignment of the result will
253   // be relative only to the known alignment of that vbase.
254   CharUnits alignment;
255   if (virtualOffset) {
256     assert(nearestVBase && "virtual offset without vbase?");
257     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
258                                           derivedClass, nearestVBase);
259   } else {
260     alignment = addr.getAlignment();
261   }
262   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
263 
264   return Address(ptr, alignment);
265 }
266 
267 Address CodeGenFunction::GetAddressOfBaseClass(
268     Address Value, const CXXRecordDecl *Derived,
269     CastExpr::path_const_iterator PathBegin,
270     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
271     SourceLocation Loc) {
272   assert(PathBegin != PathEnd && "Base path should not be empty!");
273 
274   CastExpr::path_const_iterator Start = PathBegin;
275   const CXXRecordDecl *VBase = nullptr;
276 
277   // Sema has done some convenient canonicalization here: if the
278   // access path involved any virtual steps, the conversion path will
279   // *start* with a step down to the correct virtual base subobject,
280   // and hence will not require any further steps.
281   if ((*Start)->isVirtual()) {
282     VBase =
283       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
284     ++Start;
285   }
286 
287   // Compute the static offset of the ultimate destination within its
288   // allocating subobject (the virtual base, if there is one, or else
289   // the "complete" object that we see).
290   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
291       VBase ? VBase : Derived, Start, PathEnd);
292 
293   // If there's a virtual step, we can sometimes "devirtualize" it.
294   // For now, that's limited to when the derived type is final.
295   // TODO: "devirtualize" this for accesses to known-complete objects.
296   if (VBase && Derived->hasAttr<FinalAttr>()) {
297     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
298     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
299     NonVirtualOffset += vBaseOffset;
300     VBase = nullptr; // we no longer have a virtual step
301   }
302 
303   // Get the base pointer type.
304   llvm::Type *BasePtrTy =
305     ConvertType((PathEnd[-1])->getType())->getPointerTo();
306 
307   QualType DerivedTy = getContext().getRecordType(Derived);
308   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
309 
310   // If the static offset is zero and we don't have a virtual step,
311   // just do a bitcast; null checks are unnecessary.
312   if (NonVirtualOffset.isZero() && !VBase) {
313     if (sanitizePerformTypeCheck()) {
314       SanitizerSet SkippedChecks;
315       SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
316       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
317                     DerivedTy, DerivedAlign, SkippedChecks);
318     }
319     return Builder.CreateBitCast(Value, BasePtrTy);
320   }
321 
322   llvm::BasicBlock *origBB = nullptr;
323   llvm::BasicBlock *endBB = nullptr;
324 
325   // Skip over the offset (and the vtable load) if we're supposed to
326   // null-check the pointer.
327   if (NullCheckValue) {
328     origBB = Builder.GetInsertBlock();
329     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
330     endBB = createBasicBlock("cast.end");
331 
332     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
333     Builder.CreateCondBr(isNull, endBB, notNullBB);
334     EmitBlock(notNullBB);
335   }
336 
337   if (sanitizePerformTypeCheck()) {
338     SanitizerSet SkippedChecks;
339     SkippedChecks.set(SanitizerKind::Null, true);
340     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
341                   Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
342   }
343 
344   // Compute the virtual offset.
345   llvm::Value *VirtualOffset = nullptr;
346   if (VBase) {
347     VirtualOffset =
348       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
349   }
350 
351   // Apply both offsets.
352   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
353                                           VirtualOffset, Derived, VBase);
354 
355   // Cast to the destination type.
356   Value = Builder.CreateBitCast(Value, BasePtrTy);
357 
358   // Build a phi if we needed a null check.
359   if (NullCheckValue) {
360     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
361     Builder.CreateBr(endBB);
362     EmitBlock(endBB);
363 
364     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
365     PHI->addIncoming(Value.getPointer(), notNullBB);
366     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
367     Value = Address(PHI, Value.getAlignment());
368   }
369 
370   return Value;
371 }
372 
373 Address
374 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
375                                           const CXXRecordDecl *Derived,
376                                         CastExpr::path_const_iterator PathBegin,
377                                           CastExpr::path_const_iterator PathEnd,
378                                           bool NullCheckValue) {
379   assert(PathBegin != PathEnd && "Base path should not be empty!");
380 
381   QualType DerivedTy =
382     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
383   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
384 
385   llvm::Value *NonVirtualOffset =
386     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
387 
388   if (!NonVirtualOffset) {
389     // No offset, we can just cast back.
390     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
391   }
392 
393   llvm::BasicBlock *CastNull = nullptr;
394   llvm::BasicBlock *CastNotNull = nullptr;
395   llvm::BasicBlock *CastEnd = nullptr;
396 
397   if (NullCheckValue) {
398     CastNull = createBasicBlock("cast.null");
399     CastNotNull = createBasicBlock("cast.notnull");
400     CastEnd = createBasicBlock("cast.end");
401 
402     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
403     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
404     EmitBlock(CastNotNull);
405   }
406 
407   // Apply the offset.
408   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
409   Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset),
410                                     "sub.ptr");
411 
412   // Just cast.
413   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
414 
415   // Produce a PHI if we had a null-check.
416   if (NullCheckValue) {
417     Builder.CreateBr(CastEnd);
418     EmitBlock(CastNull);
419     Builder.CreateBr(CastEnd);
420     EmitBlock(CastEnd);
421 
422     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
423     PHI->addIncoming(Value, CastNotNull);
424     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
425     Value = PHI;
426   }
427 
428   return Address(Value, CGM.getClassPointerAlignment(Derived));
429 }
430 
431 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
432                                               bool ForVirtualBase,
433                                               bool Delegating) {
434   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
435     // This constructor/destructor does not need a VTT parameter.
436     return nullptr;
437   }
438 
439   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
440   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
441 
442   llvm::Value *VTT;
443 
444   uint64_t SubVTTIndex;
445 
446   if (Delegating) {
447     // If this is a delegating constructor call, just load the VTT.
448     return LoadCXXVTT();
449   } else if (RD == Base) {
450     // If the record matches the base, this is the complete ctor/dtor
451     // variant calling the base variant in a class with virtual bases.
452     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
453            "doing no-op VTT offset in base dtor/ctor?");
454     assert(!ForVirtualBase && "Can't have same class as virtual base!");
455     SubVTTIndex = 0;
456   } else {
457     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
458     CharUnits BaseOffset = ForVirtualBase ?
459       Layout.getVBaseClassOffset(Base) :
460       Layout.getBaseClassOffset(Base);
461 
462     SubVTTIndex =
463       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
464     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
465   }
466 
467   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
468     // A VTT parameter was passed to the constructor, use it.
469     VTT = LoadCXXVTT();
470     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
471   } else {
472     // We're the complete constructor, so get the VTT by name.
473     VTT = CGM.getVTables().GetAddrOfVTT(RD);
474     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
475   }
476 
477   return VTT;
478 }
479 
480 namespace {
481   /// Call the destructor for a direct base class.
482   struct CallBaseDtor final : EHScopeStack::Cleanup {
483     const CXXRecordDecl *BaseClass;
484     bool BaseIsVirtual;
485     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
486       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
487 
488     void Emit(CodeGenFunction &CGF, Flags flags) override {
489       const CXXRecordDecl *DerivedClass =
490         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
491 
492       const CXXDestructorDecl *D = BaseClass->getDestructor();
493       Address Addr =
494         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
495                                                   DerivedClass, BaseClass,
496                                                   BaseIsVirtual);
497       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
498                                 /*Delegating=*/false, Addr);
499     }
500   };
501 
502   /// A visitor which checks whether an initializer uses 'this' in a
503   /// way which requires the vtable to be properly set.
504   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
505     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
506 
507     bool UsesThis;
508 
509     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
510 
511     // Black-list all explicit and implicit references to 'this'.
512     //
513     // Do we need to worry about external references to 'this' derived
514     // from arbitrary code?  If so, then anything which runs arbitrary
515     // external code might potentially access the vtable.
516     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
517   };
518 } // end anonymous namespace
519 
520 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
521   DynamicThisUseChecker Checker(C);
522   Checker.Visit(Init);
523   return Checker.UsesThis;
524 }
525 
526 static void EmitBaseInitializer(CodeGenFunction &CGF,
527                                 const CXXRecordDecl *ClassDecl,
528                                 CXXCtorInitializer *BaseInit,
529                                 CXXCtorType CtorType) {
530   assert(BaseInit->isBaseInitializer() &&
531          "Must have base initializer!");
532 
533   Address ThisPtr = CGF.LoadCXXThisAddress();
534 
535   const Type *BaseType = BaseInit->getBaseClass();
536   CXXRecordDecl *BaseClassDecl =
537     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
538 
539   bool isBaseVirtual = BaseInit->isBaseVirtual();
540 
541   // The base constructor doesn't construct virtual bases.
542   if (CtorType == Ctor_Base && isBaseVirtual)
543     return;
544 
545   // If the initializer for the base (other than the constructor
546   // itself) accesses 'this' in any way, we need to initialize the
547   // vtables.
548   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
549     CGF.InitializeVTablePointers(ClassDecl);
550 
551   // We can pretend to be a complete class because it only matters for
552   // virtual bases, and we only do virtual bases for complete ctors.
553   Address V =
554     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
555                                               BaseClassDecl,
556                                               isBaseVirtual);
557   AggValueSlot AggSlot =
558       AggValueSlot::forAddr(
559           V, Qualifiers(),
560           AggValueSlot::IsDestructed,
561           AggValueSlot::DoesNotNeedGCBarriers,
562           AggValueSlot::IsNotAliased,
563           CGF.overlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
564 
565   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
566 
567   if (CGF.CGM.getLangOpts().Exceptions &&
568       !BaseClassDecl->hasTrivialDestructor())
569     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
570                                           isBaseVirtual);
571 }
572 
573 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
574   auto *CD = dyn_cast<CXXConstructorDecl>(D);
575   if (!(CD && CD->isCopyOrMoveConstructor()) &&
576       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
577     return false;
578 
579   // We can emit a memcpy for a trivial copy or move constructor/assignment.
580   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
581     return true;
582 
583   // We *must* emit a memcpy for a defaulted union copy or move op.
584   if (D->getParent()->isUnion() && D->isDefaulted())
585     return true;
586 
587   return false;
588 }
589 
590 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
591                                                 CXXCtorInitializer *MemberInit,
592                                                 LValue &LHS) {
593   FieldDecl *Field = MemberInit->getAnyMember();
594   if (MemberInit->isIndirectMemberInitializer()) {
595     // If we are initializing an anonymous union field, drill down to the field.
596     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
597     for (const auto *I : IndirectField->chain())
598       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
599   } else {
600     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
601   }
602 }
603 
604 static void EmitMemberInitializer(CodeGenFunction &CGF,
605                                   const CXXRecordDecl *ClassDecl,
606                                   CXXCtorInitializer *MemberInit,
607                                   const CXXConstructorDecl *Constructor,
608                                   FunctionArgList &Args) {
609   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
610   assert(MemberInit->isAnyMemberInitializer() &&
611          "Must have member initializer!");
612   assert(MemberInit->getInit() && "Must have initializer!");
613 
614   // non-static data member initializers.
615   FieldDecl *Field = MemberInit->getAnyMember();
616   QualType FieldType = Field->getType();
617 
618   llvm::Value *ThisPtr = CGF.LoadCXXThis();
619   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
620   LValue LHS;
621 
622   // If a base constructor is being emitted, create an LValue that has the
623   // non-virtual alignment.
624   if (CGF.CurGD.getCtorType() == Ctor_Base)
625     LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
626   else
627     LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
628 
629   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
630 
631   // Special case: if we are in a copy or move constructor, and we are copying
632   // an array of PODs or classes with trivial copy constructors, ignore the
633   // AST and perform the copy we know is equivalent.
634   // FIXME: This is hacky at best... if we had a bit more explicit information
635   // in the AST, we could generalize it more easily.
636   const ConstantArrayType *Array
637     = CGF.getContext().getAsConstantArrayType(FieldType);
638   if (Array && Constructor->isDefaulted() &&
639       Constructor->isCopyOrMoveConstructor()) {
640     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
641     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
642     if (BaseElementTy.isPODType(CGF.getContext()) ||
643         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
644       unsigned SrcArgIndex =
645           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
646       llvm::Value *SrcPtr
647         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
648       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
649       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
650 
651       // Copy the aggregate.
652       CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.overlapForFieldInit(Field),
653                             LHS.isVolatileQualified());
654       // Ensure that we destroy the objects if an exception is thrown later in
655       // the constructor.
656       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
657       if (CGF.needsEHCleanup(dtorKind))
658         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
659       return;
660     }
661   }
662 
663   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
664 }
665 
666 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
667                                               Expr *Init) {
668   QualType FieldType = Field->getType();
669   switch (getEvaluationKind(FieldType)) {
670   case TEK_Scalar:
671     if (LHS.isSimple()) {
672       EmitExprAsInit(Init, Field, LHS, false);
673     } else {
674       RValue RHS = RValue::get(EmitScalarExpr(Init));
675       EmitStoreThroughLValue(RHS, LHS);
676     }
677     break;
678   case TEK_Complex:
679     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
680     break;
681   case TEK_Aggregate: {
682     AggValueSlot Slot =
683         AggValueSlot::forLValue(
684             LHS,
685             AggValueSlot::IsDestructed,
686             AggValueSlot::DoesNotNeedGCBarriers,
687             AggValueSlot::IsNotAliased,
688             overlapForFieldInit(Field));
689     EmitAggExpr(Init, Slot);
690     break;
691   }
692   }
693 
694   // Ensure that we destroy this object if an exception is thrown
695   // later in the constructor.
696   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
697   if (needsEHCleanup(dtorKind))
698     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
699 }
700 
701 /// Checks whether the given constructor is a valid subject for the
702 /// complete-to-base constructor delegation optimization, i.e.
703 /// emitting the complete constructor as a simple call to the base
704 /// constructor.
705 bool CodeGenFunction::IsConstructorDelegationValid(
706     const CXXConstructorDecl *Ctor) {
707 
708   // Currently we disable the optimization for classes with virtual
709   // bases because (1) the addresses of parameter variables need to be
710   // consistent across all initializers but (2) the delegate function
711   // call necessarily creates a second copy of the parameter variable.
712   //
713   // The limiting example (purely theoretical AFAIK):
714   //   struct A { A(int &c) { c++; } };
715   //   struct B : virtual A {
716   //     B(int count) : A(count) { printf("%d\n", count); }
717   //   };
718   // ...although even this example could in principle be emitted as a
719   // delegation since the address of the parameter doesn't escape.
720   if (Ctor->getParent()->getNumVBases()) {
721     // TODO: white-list trivial vbase initializers.  This case wouldn't
722     // be subject to the restrictions below.
723 
724     // TODO: white-list cases where:
725     //  - there are no non-reference parameters to the constructor
726     //  - the initializers don't access any non-reference parameters
727     //  - the initializers don't take the address of non-reference
728     //    parameters
729     //  - etc.
730     // If we ever add any of the above cases, remember that:
731     //  - function-try-blocks will always blacklist this optimization
732     //  - we need to perform the constructor prologue and cleanup in
733     //    EmitConstructorBody.
734 
735     return false;
736   }
737 
738   // We also disable the optimization for variadic functions because
739   // it's impossible to "re-pass" varargs.
740   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
741     return false;
742 
743   // FIXME: Decide if we can do a delegation of a delegating constructor.
744   if (Ctor->isDelegatingConstructor())
745     return false;
746 
747   return true;
748 }
749 
750 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
751 // to poison the extra field paddings inserted under
752 // -fsanitize-address-field-padding=1|2.
753 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
754   ASTContext &Context = getContext();
755   const CXXRecordDecl *ClassDecl =
756       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
757                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
758   if (!ClassDecl->mayInsertExtraPadding()) return;
759 
760   struct SizeAndOffset {
761     uint64_t Size;
762     uint64_t Offset;
763   };
764 
765   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
766   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
767 
768   // Populate sizes and offsets of fields.
769   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
770   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
771     SSV[i].Offset =
772         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
773 
774   size_t NumFields = 0;
775   for (const auto *Field : ClassDecl->fields()) {
776     const FieldDecl *D = Field;
777     std::pair<CharUnits, CharUnits> FieldInfo =
778         Context.getTypeInfoInChars(D->getType());
779     CharUnits FieldSize = FieldInfo.first;
780     assert(NumFields < SSV.size());
781     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
782     NumFields++;
783   }
784   assert(NumFields == SSV.size());
785   if (SSV.size() <= 1) return;
786 
787   // We will insert calls to __asan_* run-time functions.
788   // LLVM AddressSanitizer pass may decide to inline them later.
789   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
790   llvm::FunctionType *FTy =
791       llvm::FunctionType::get(CGM.VoidTy, Args, false);
792   llvm::Constant *F = CGM.CreateRuntimeFunction(
793       FTy, Prologue ? "__asan_poison_intra_object_redzone"
794                     : "__asan_unpoison_intra_object_redzone");
795 
796   llvm::Value *ThisPtr = LoadCXXThis();
797   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
798   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
799   // For each field check if it has sufficient padding,
800   // if so (un)poison it with a call.
801   for (size_t i = 0; i < SSV.size(); i++) {
802     uint64_t AsanAlignment = 8;
803     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
804     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
805     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
806     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
807         (NextField % AsanAlignment) != 0)
808       continue;
809     Builder.CreateCall(
810         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
811             Builder.getIntN(PtrSize, PoisonSize)});
812   }
813 }
814 
815 /// EmitConstructorBody - Emits the body of the current constructor.
816 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
817   EmitAsanPrologueOrEpilogue(true);
818   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
819   CXXCtorType CtorType = CurGD.getCtorType();
820 
821   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
822           CtorType == Ctor_Complete) &&
823          "can only generate complete ctor for this ABI");
824 
825   // Before we go any further, try the complete->base constructor
826   // delegation optimization.
827   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
828       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
829     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
830     return;
831   }
832 
833   const FunctionDecl *Definition = nullptr;
834   Stmt *Body = Ctor->getBody(Definition);
835   assert(Definition == Ctor && "emitting wrong constructor body");
836 
837   // Enter the function-try-block before the constructor prologue if
838   // applicable.
839   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
840   if (IsTryBody)
841     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
842 
843   incrementProfileCounter(Body);
844 
845   RunCleanupsScope RunCleanups(*this);
846 
847   // TODO: in restricted cases, we can emit the vbase initializers of
848   // a complete ctor and then delegate to the base ctor.
849 
850   // Emit the constructor prologue, i.e. the base and member
851   // initializers.
852   EmitCtorPrologue(Ctor, CtorType, Args);
853 
854   // Emit the body of the statement.
855   if (IsTryBody)
856     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
857   else if (Body)
858     EmitStmt(Body);
859 
860   // Emit any cleanup blocks associated with the member or base
861   // initializers, which includes (along the exceptional path) the
862   // destructors for those members and bases that were fully
863   // constructed.
864   RunCleanups.ForceCleanup();
865 
866   if (IsTryBody)
867     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
868 }
869 
870 namespace {
871   /// RAII object to indicate that codegen is copying the value representation
872   /// instead of the object representation. Useful when copying a struct or
873   /// class which has uninitialized members and we're only performing
874   /// lvalue-to-rvalue conversion on the object but not its members.
875   class CopyingValueRepresentation {
876   public:
877     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
878         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
879       CGF.SanOpts.set(SanitizerKind::Bool, false);
880       CGF.SanOpts.set(SanitizerKind::Enum, false);
881     }
882     ~CopyingValueRepresentation() {
883       CGF.SanOpts = OldSanOpts;
884     }
885   private:
886     CodeGenFunction &CGF;
887     SanitizerSet OldSanOpts;
888   };
889 } // end anonymous namespace
890 
891 namespace {
892   class FieldMemcpyizer {
893   public:
894     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
895                     const VarDecl *SrcRec)
896       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
897         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
898         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
899         LastFieldOffset(0), LastAddedFieldIndex(0) {}
900 
901     bool isMemcpyableField(FieldDecl *F) const {
902       // Never memcpy fields when we are adding poisoned paddings.
903       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
904         return false;
905       Qualifiers Qual = F->getType().getQualifiers();
906       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
907         return false;
908       return true;
909     }
910 
911     void addMemcpyableField(FieldDecl *F) {
912       if (!FirstField)
913         addInitialField(F);
914       else
915         addNextField(F);
916     }
917 
918     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
919       ASTContext &Ctx = CGF.getContext();
920       unsigned LastFieldSize =
921           LastField->isBitField()
922               ? LastField->getBitWidthValue(Ctx)
923               : Ctx.toBits(
924                     Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first);
925       uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
926                                 FirstByteOffset + Ctx.getCharWidth() - 1;
927       CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
928       return MemcpySize;
929     }
930 
931     void emitMemcpy() {
932       // Give the subclass a chance to bail out if it feels the memcpy isn't
933       // worth it (e.g. Hasn't aggregated enough data).
934       if (!FirstField) {
935         return;
936       }
937 
938       uint64_t FirstByteOffset;
939       if (FirstField->isBitField()) {
940         const CGRecordLayout &RL =
941           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
942         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
943         // FirstFieldOffset is not appropriate for bitfields,
944         // we need to use the storage offset instead.
945         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
946       } else {
947         FirstByteOffset = FirstFieldOffset;
948       }
949 
950       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
951       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
952       Address ThisPtr = CGF.LoadCXXThisAddress();
953       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
954       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
955       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
956       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
957       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
958 
959       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
960                    Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
961                    MemcpySize);
962       reset();
963     }
964 
965     void reset() {
966       FirstField = nullptr;
967     }
968 
969   protected:
970     CodeGenFunction &CGF;
971     const CXXRecordDecl *ClassDecl;
972 
973   private:
974     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
975       llvm::PointerType *DPT = DestPtr.getType();
976       llvm::Type *DBP =
977         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
978       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
979 
980       llvm::PointerType *SPT = SrcPtr.getType();
981       llvm::Type *SBP =
982         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
983       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
984 
985       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
986     }
987 
988     void addInitialField(FieldDecl *F) {
989       FirstField = F;
990       LastField = F;
991       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
992       LastFieldOffset = FirstFieldOffset;
993       LastAddedFieldIndex = F->getFieldIndex();
994     }
995 
996     void addNextField(FieldDecl *F) {
997       // For the most part, the following invariant will hold:
998       //   F->getFieldIndex() == LastAddedFieldIndex + 1
999       // The one exception is that Sema won't add a copy-initializer for an
1000       // unnamed bitfield, which will show up here as a gap in the sequence.
1001       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1002              "Cannot aggregate fields out of order.");
1003       LastAddedFieldIndex = F->getFieldIndex();
1004 
1005       // The 'first' and 'last' fields are chosen by offset, rather than field
1006       // index. This allows the code to support bitfields, as well as regular
1007       // fields.
1008       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1009       if (FOffset < FirstFieldOffset) {
1010         FirstField = F;
1011         FirstFieldOffset = FOffset;
1012       } else if (FOffset > LastFieldOffset) {
1013         LastField = F;
1014         LastFieldOffset = FOffset;
1015       }
1016     }
1017 
1018     const VarDecl *SrcRec;
1019     const ASTRecordLayout &RecLayout;
1020     FieldDecl *FirstField;
1021     FieldDecl *LastField;
1022     uint64_t FirstFieldOffset, LastFieldOffset;
1023     unsigned LastAddedFieldIndex;
1024   };
1025 
1026   class ConstructorMemcpyizer : public FieldMemcpyizer {
1027   private:
1028     /// Get source argument for copy constructor. Returns null if not a copy
1029     /// constructor.
1030     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1031                                                const CXXConstructorDecl *CD,
1032                                                FunctionArgList &Args) {
1033       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1034         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1035       return nullptr;
1036     }
1037 
1038     // Returns true if a CXXCtorInitializer represents a member initialization
1039     // that can be rolled into a memcpy.
1040     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1041       if (!MemcpyableCtor)
1042         return false;
1043       FieldDecl *Field = MemberInit->getMember();
1044       assert(Field && "No field for member init.");
1045       QualType FieldType = Field->getType();
1046       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1047 
1048       // Bail out on non-memcpyable, not-trivially-copyable members.
1049       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1050           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1051             FieldType->isReferenceType()))
1052         return false;
1053 
1054       // Bail out on volatile fields.
1055       if (!isMemcpyableField(Field))
1056         return false;
1057 
1058       // Otherwise we're good.
1059       return true;
1060     }
1061 
1062   public:
1063     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1064                           FunctionArgList &Args)
1065       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1066         ConstructorDecl(CD),
1067         MemcpyableCtor(CD->isDefaulted() &&
1068                        CD->isCopyOrMoveConstructor() &&
1069                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1070         Args(Args) { }
1071 
1072     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1073       if (isMemberInitMemcpyable(MemberInit)) {
1074         AggregatedInits.push_back(MemberInit);
1075         addMemcpyableField(MemberInit->getMember());
1076       } else {
1077         emitAggregatedInits();
1078         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1079                               ConstructorDecl, Args);
1080       }
1081     }
1082 
1083     void emitAggregatedInits() {
1084       if (AggregatedInits.size() <= 1) {
1085         // This memcpy is too small to be worthwhile. Fall back on default
1086         // codegen.
1087         if (!AggregatedInits.empty()) {
1088           CopyingValueRepresentation CVR(CGF);
1089           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1090                                 AggregatedInits[0], ConstructorDecl, Args);
1091           AggregatedInits.clear();
1092         }
1093         reset();
1094         return;
1095       }
1096 
1097       pushEHDestructors();
1098       emitMemcpy();
1099       AggregatedInits.clear();
1100     }
1101 
1102     void pushEHDestructors() {
1103       Address ThisPtr = CGF.LoadCXXThisAddress();
1104       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1105       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1106 
1107       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1108         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1109         QualType FieldType = MemberInit->getAnyMember()->getType();
1110         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1111         if (!CGF.needsEHCleanup(dtorKind))
1112           continue;
1113         LValue FieldLHS = LHS;
1114         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1115         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1116       }
1117     }
1118 
1119     void finish() {
1120       emitAggregatedInits();
1121     }
1122 
1123   private:
1124     const CXXConstructorDecl *ConstructorDecl;
1125     bool MemcpyableCtor;
1126     FunctionArgList &Args;
1127     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1128   };
1129 
1130   class AssignmentMemcpyizer : public FieldMemcpyizer {
1131   private:
1132     // Returns the memcpyable field copied by the given statement, if one
1133     // exists. Otherwise returns null.
1134     FieldDecl *getMemcpyableField(Stmt *S) {
1135       if (!AssignmentsMemcpyable)
1136         return nullptr;
1137       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1138         // Recognise trivial assignments.
1139         if (BO->getOpcode() != BO_Assign)
1140           return nullptr;
1141         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1142         if (!ME)
1143           return nullptr;
1144         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1145         if (!Field || !isMemcpyableField(Field))
1146           return nullptr;
1147         Stmt *RHS = BO->getRHS();
1148         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1149           RHS = EC->getSubExpr();
1150         if (!RHS)
1151           return nullptr;
1152         if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1153           if (ME2->getMemberDecl() == Field)
1154             return Field;
1155         }
1156         return nullptr;
1157       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1158         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1159         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1160           return nullptr;
1161         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1162         if (!IOA)
1163           return nullptr;
1164         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1165         if (!Field || !isMemcpyableField(Field))
1166           return nullptr;
1167         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1168         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1169           return nullptr;
1170         return Field;
1171       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1172         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1173         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1174           return nullptr;
1175         Expr *DstPtr = CE->getArg(0);
1176         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1177           DstPtr = DC->getSubExpr();
1178         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1179         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1180           return nullptr;
1181         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1182         if (!ME)
1183           return nullptr;
1184         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1185         if (!Field || !isMemcpyableField(Field))
1186           return nullptr;
1187         Expr *SrcPtr = CE->getArg(1);
1188         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1189           SrcPtr = SC->getSubExpr();
1190         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1191         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1192           return nullptr;
1193         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1194         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1195           return nullptr;
1196         return Field;
1197       }
1198 
1199       return nullptr;
1200     }
1201 
1202     bool AssignmentsMemcpyable;
1203     SmallVector<Stmt*, 16> AggregatedStmts;
1204 
1205   public:
1206     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1207                          FunctionArgList &Args)
1208       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1209         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1210       assert(Args.size() == 2);
1211     }
1212 
1213     void emitAssignment(Stmt *S) {
1214       FieldDecl *F = getMemcpyableField(S);
1215       if (F) {
1216         addMemcpyableField(F);
1217         AggregatedStmts.push_back(S);
1218       } else {
1219         emitAggregatedStmts();
1220         CGF.EmitStmt(S);
1221       }
1222     }
1223 
1224     void emitAggregatedStmts() {
1225       if (AggregatedStmts.size() <= 1) {
1226         if (!AggregatedStmts.empty()) {
1227           CopyingValueRepresentation CVR(CGF);
1228           CGF.EmitStmt(AggregatedStmts[0]);
1229         }
1230         reset();
1231       }
1232 
1233       emitMemcpy();
1234       AggregatedStmts.clear();
1235     }
1236 
1237     void finish() {
1238       emitAggregatedStmts();
1239     }
1240   };
1241 } // end anonymous namespace
1242 
1243 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1244   const Type *BaseType = BaseInit->getBaseClass();
1245   const auto *BaseClassDecl =
1246           cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
1247   return BaseClassDecl->isDynamicClass();
1248 }
1249 
1250 /// EmitCtorPrologue - This routine generates necessary code to initialize
1251 /// base classes and non-static data members belonging to this constructor.
1252 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1253                                        CXXCtorType CtorType,
1254                                        FunctionArgList &Args) {
1255   if (CD->isDelegatingConstructor())
1256     return EmitDelegatingCXXConstructorCall(CD, Args);
1257 
1258   const CXXRecordDecl *ClassDecl = CD->getParent();
1259 
1260   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1261                                           E = CD->init_end();
1262 
1263   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1264   if (ClassDecl->getNumVBases() &&
1265       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1266     // The ABIs that don't have constructor variants need to put a branch
1267     // before the virtual base initialization code.
1268     BaseCtorContinueBB =
1269       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1270     assert(BaseCtorContinueBB);
1271   }
1272 
1273   llvm::Value *const OldThis = CXXThisValue;
1274   // Virtual base initializers first.
1275   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1276     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1277         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1278         isInitializerOfDynamicClass(*B))
1279       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1280     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1281   }
1282 
1283   if (BaseCtorContinueBB) {
1284     // Complete object handler should continue to the remaining initializers.
1285     Builder.CreateBr(BaseCtorContinueBB);
1286     EmitBlock(BaseCtorContinueBB);
1287   }
1288 
1289   // Then, non-virtual base initializers.
1290   for (; B != E && (*B)->isBaseInitializer(); B++) {
1291     assert(!(*B)->isBaseVirtual());
1292 
1293     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1294         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1295         isInitializerOfDynamicClass(*B))
1296       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1297     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1298   }
1299 
1300   CXXThisValue = OldThis;
1301 
1302   InitializeVTablePointers(ClassDecl);
1303 
1304   // And finally, initialize class members.
1305   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1306   ConstructorMemcpyizer CM(*this, CD, Args);
1307   for (; B != E; B++) {
1308     CXXCtorInitializer *Member = (*B);
1309     assert(!Member->isBaseInitializer());
1310     assert(Member->isAnyMemberInitializer() &&
1311            "Delegating initializer on non-delegating constructor");
1312     CM.addMemberInitializer(Member);
1313   }
1314   CM.finish();
1315 }
1316 
1317 static bool
1318 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1319 
1320 static bool
1321 HasTrivialDestructorBody(ASTContext &Context,
1322                          const CXXRecordDecl *BaseClassDecl,
1323                          const CXXRecordDecl *MostDerivedClassDecl)
1324 {
1325   // If the destructor is trivial we don't have to check anything else.
1326   if (BaseClassDecl->hasTrivialDestructor())
1327     return true;
1328 
1329   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1330     return false;
1331 
1332   // Check fields.
1333   for (const auto *Field : BaseClassDecl->fields())
1334     if (!FieldHasTrivialDestructorBody(Context, Field))
1335       return false;
1336 
1337   // Check non-virtual bases.
1338   for (const auto &I : BaseClassDecl->bases()) {
1339     if (I.isVirtual())
1340       continue;
1341 
1342     const CXXRecordDecl *NonVirtualBase =
1343       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1344     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1345                                   MostDerivedClassDecl))
1346       return false;
1347   }
1348 
1349   if (BaseClassDecl == MostDerivedClassDecl) {
1350     // Check virtual bases.
1351     for (const auto &I : BaseClassDecl->vbases()) {
1352       const CXXRecordDecl *VirtualBase =
1353         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1354       if (!HasTrivialDestructorBody(Context, VirtualBase,
1355                                     MostDerivedClassDecl))
1356         return false;
1357     }
1358   }
1359 
1360   return true;
1361 }
1362 
1363 static bool
1364 FieldHasTrivialDestructorBody(ASTContext &Context,
1365                                           const FieldDecl *Field)
1366 {
1367   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1368 
1369   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1370   if (!RT)
1371     return true;
1372 
1373   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1374 
1375   // The destructor for an implicit anonymous union member is never invoked.
1376   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1377     return false;
1378 
1379   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1380 }
1381 
1382 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1383 /// any vtable pointers before calling this destructor.
1384 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1385                                                const CXXDestructorDecl *Dtor) {
1386   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1387   if (!ClassDecl->isDynamicClass())
1388     return true;
1389 
1390   if (!Dtor->hasTrivialBody())
1391     return false;
1392 
1393   // Check the fields.
1394   for (const auto *Field : ClassDecl->fields())
1395     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1396       return false;
1397 
1398   return true;
1399 }
1400 
1401 /// EmitDestructorBody - Emits the body of the current destructor.
1402 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1403   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1404   CXXDtorType DtorType = CurGD.getDtorType();
1405 
1406   // For an abstract class, non-base destructors are never used (and can't
1407   // be emitted in general, because vbase dtors may not have been validated
1408   // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1409   // in fact emit references to them from other compilations, so emit them
1410   // as functions containing a trap instruction.
1411   if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1412     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1413     TrapCall->setDoesNotReturn();
1414     TrapCall->setDoesNotThrow();
1415     Builder.CreateUnreachable();
1416     Builder.ClearInsertionPoint();
1417     return;
1418   }
1419 
1420   Stmt *Body = Dtor->getBody();
1421   if (Body)
1422     incrementProfileCounter(Body);
1423 
1424   // The call to operator delete in a deleting destructor happens
1425   // outside of the function-try-block, which means it's always
1426   // possible to delegate the destructor body to the complete
1427   // destructor.  Do so.
1428   if (DtorType == Dtor_Deleting) {
1429     RunCleanupsScope DtorEpilogue(*this);
1430     EnterDtorCleanups(Dtor, Dtor_Deleting);
1431     if (HaveInsertPoint())
1432       EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1433                             /*Delegating=*/false, LoadCXXThisAddress());
1434     return;
1435   }
1436 
1437   // If the body is a function-try-block, enter the try before
1438   // anything else.
1439   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1440   if (isTryBody)
1441     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1442   EmitAsanPrologueOrEpilogue(false);
1443 
1444   // Enter the epilogue cleanups.
1445   RunCleanupsScope DtorEpilogue(*this);
1446 
1447   // If this is the complete variant, just invoke the base variant;
1448   // the epilogue will destruct the virtual bases.  But we can't do
1449   // this optimization if the body is a function-try-block, because
1450   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1451   // always delegate because we might not have a definition in this TU.
1452   switch (DtorType) {
1453   case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1454   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1455 
1456   case Dtor_Complete:
1457     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1458            "can't emit a dtor without a body for non-Microsoft ABIs");
1459 
1460     // Enter the cleanup scopes for virtual bases.
1461     EnterDtorCleanups(Dtor, Dtor_Complete);
1462 
1463     if (!isTryBody) {
1464       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1465                             /*Delegating=*/false, LoadCXXThisAddress());
1466       break;
1467     }
1468 
1469     // Fallthrough: act like we're in the base variant.
1470     LLVM_FALLTHROUGH;
1471 
1472   case Dtor_Base:
1473     assert(Body);
1474 
1475     // Enter the cleanup scopes for fields and non-virtual bases.
1476     EnterDtorCleanups(Dtor, Dtor_Base);
1477 
1478     // Initialize the vtable pointers before entering the body.
1479     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1480       // Insert the llvm.invariant.group.barrier intrinsic before initializing
1481       // the vptrs to cancel any previous assumptions we might have made.
1482       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1483           CGM.getCodeGenOpts().OptimizationLevel > 0)
1484         CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1485       InitializeVTablePointers(Dtor->getParent());
1486     }
1487 
1488     if (isTryBody)
1489       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1490     else if (Body)
1491       EmitStmt(Body);
1492     else {
1493       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1494       // nothing to do besides what's in the epilogue
1495     }
1496     // -fapple-kext must inline any call to this dtor into
1497     // the caller's body.
1498     if (getLangOpts().AppleKext)
1499       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1500 
1501     break;
1502   }
1503 
1504   // Jump out through the epilogue cleanups.
1505   DtorEpilogue.ForceCleanup();
1506 
1507   // Exit the try if applicable.
1508   if (isTryBody)
1509     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1510 }
1511 
1512 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1513   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1514   const Stmt *RootS = AssignOp->getBody();
1515   assert(isa<CompoundStmt>(RootS) &&
1516          "Body of an implicit assignment operator should be compound stmt.");
1517   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1518 
1519   LexicalScope Scope(*this, RootCS->getSourceRange());
1520 
1521   incrementProfileCounter(RootCS);
1522   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1523   for (auto *I : RootCS->body())
1524     AM.emitAssignment(I);
1525   AM.finish();
1526 }
1527 
1528 namespace {
1529   llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1530                                      const CXXDestructorDecl *DD) {
1531     if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1532       return CGF.EmitScalarExpr(ThisArg);
1533     return CGF.LoadCXXThis();
1534   }
1535 
1536   /// Call the operator delete associated with the current destructor.
1537   struct CallDtorDelete final : EHScopeStack::Cleanup {
1538     CallDtorDelete() {}
1539 
1540     void Emit(CodeGenFunction &CGF, Flags flags) override {
1541       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1542       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1543       CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1544                          LoadThisForDtorDelete(CGF, Dtor),
1545                          CGF.getContext().getTagDeclType(ClassDecl));
1546     }
1547   };
1548 
1549   void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1550                                      llvm::Value *ShouldDeleteCondition,
1551                                      bool ReturnAfterDelete) {
1552     llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1553     llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1554     llvm::Value *ShouldCallDelete
1555       = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1556     CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1557 
1558     CGF.EmitBlock(callDeleteBB);
1559     const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1560     const CXXRecordDecl *ClassDecl = Dtor->getParent();
1561     CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1562                        LoadThisForDtorDelete(CGF, Dtor),
1563                        CGF.getContext().getTagDeclType(ClassDecl));
1564     assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1565                ReturnAfterDelete &&
1566            "unexpected value for ReturnAfterDelete");
1567     if (ReturnAfterDelete)
1568       CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1569     else
1570       CGF.Builder.CreateBr(continueBB);
1571 
1572     CGF.EmitBlock(continueBB);
1573   }
1574 
1575   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1576     llvm::Value *ShouldDeleteCondition;
1577 
1578   public:
1579     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1580         : ShouldDeleteCondition(ShouldDeleteCondition) {
1581       assert(ShouldDeleteCondition != nullptr);
1582     }
1583 
1584     void Emit(CodeGenFunction &CGF, Flags flags) override {
1585       EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1586                                     /*ReturnAfterDelete*/false);
1587     }
1588   };
1589 
1590   class DestroyField  final : public EHScopeStack::Cleanup {
1591     const FieldDecl *field;
1592     CodeGenFunction::Destroyer *destroyer;
1593     bool useEHCleanupForArray;
1594 
1595   public:
1596     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1597                  bool useEHCleanupForArray)
1598         : field(field), destroyer(destroyer),
1599           useEHCleanupForArray(useEHCleanupForArray) {}
1600 
1601     void Emit(CodeGenFunction &CGF, Flags flags) override {
1602       // Find the address of the field.
1603       Address thisValue = CGF.LoadCXXThisAddress();
1604       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1605       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1606       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1607       assert(LV.isSimple());
1608 
1609       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1610                       flags.isForNormalCleanup() && useEHCleanupForArray);
1611     }
1612   };
1613 
1614  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1615              CharUnits::QuantityType PoisonSize) {
1616    CodeGenFunction::SanitizerScope SanScope(&CGF);
1617    // Pass in void pointer and size of region as arguments to runtime
1618    // function
1619    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1620                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1621 
1622    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1623 
1624    llvm::FunctionType *FnType =
1625        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1626    llvm::Value *Fn =
1627        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1628    CGF.EmitNounwindRuntimeCall(Fn, Args);
1629  }
1630 
1631   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1632     const CXXDestructorDecl *Dtor;
1633 
1634   public:
1635     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1636 
1637     // Generate function call for handling object poisoning.
1638     // Disables tail call elimination, to prevent the current stack frame
1639     // from disappearing from the stack trace.
1640     void Emit(CodeGenFunction &CGF, Flags flags) override {
1641       const ASTRecordLayout &Layout =
1642           CGF.getContext().getASTRecordLayout(Dtor->getParent());
1643 
1644       // Nothing to poison.
1645       if (Layout.getFieldCount() == 0)
1646         return;
1647 
1648       // Prevent the current stack frame from disappearing from the stack trace.
1649       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1650 
1651       // Construct pointer to region to begin poisoning, and calculate poison
1652       // size, so that only members declared in this class are poisoned.
1653       ASTContext &Context = CGF.getContext();
1654       unsigned fieldIndex = 0;
1655       int startIndex = -1;
1656       // RecordDecl::field_iterator Field;
1657       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1658         // Poison field if it is trivial
1659         if (FieldHasTrivialDestructorBody(Context, Field)) {
1660           // Start sanitizing at this field
1661           if (startIndex < 0)
1662             startIndex = fieldIndex;
1663 
1664           // Currently on the last field, and it must be poisoned with the
1665           // current block.
1666           if (fieldIndex == Layout.getFieldCount() - 1) {
1667             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1668           }
1669         } else if (startIndex >= 0) {
1670           // No longer within a block of memory to poison, so poison the block
1671           PoisonMembers(CGF, startIndex, fieldIndex);
1672           // Re-set the start index
1673           startIndex = -1;
1674         }
1675         fieldIndex += 1;
1676       }
1677     }
1678 
1679   private:
1680     /// \param layoutStartOffset index of the ASTRecordLayout field to
1681     ///     start poisoning (inclusive)
1682     /// \param layoutEndOffset index of the ASTRecordLayout field to
1683     ///     end poisoning (exclusive)
1684     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1685                      unsigned layoutEndOffset) {
1686       ASTContext &Context = CGF.getContext();
1687       const ASTRecordLayout &Layout =
1688           Context.getASTRecordLayout(Dtor->getParent());
1689 
1690       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1691           CGF.SizeTy,
1692           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1693               .getQuantity());
1694 
1695       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1696           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1697           OffsetSizePtr);
1698 
1699       CharUnits::QuantityType PoisonSize;
1700       if (layoutEndOffset >= Layout.getFieldCount()) {
1701         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1702                      Context.toCharUnitsFromBits(
1703                                 Layout.getFieldOffset(layoutStartOffset))
1704                          .getQuantity();
1705       } else {
1706         PoisonSize = Context.toCharUnitsFromBits(
1707                                 Layout.getFieldOffset(layoutEndOffset) -
1708                                 Layout.getFieldOffset(layoutStartOffset))
1709                          .getQuantity();
1710       }
1711 
1712       if (PoisonSize == 0)
1713         return;
1714 
1715       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1716     }
1717   };
1718 
1719  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1720     const CXXDestructorDecl *Dtor;
1721 
1722   public:
1723     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1724 
1725     // Generate function call for handling vtable pointer poisoning.
1726     void Emit(CodeGenFunction &CGF, Flags flags) override {
1727       assert(Dtor->getParent()->isDynamicClass());
1728       (void)Dtor;
1729       ASTContext &Context = CGF.getContext();
1730       // Poison vtable and vtable ptr if they exist for this class.
1731       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1732 
1733       CharUnits::QuantityType PoisonSize =
1734           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1735       // Pass in void pointer and size of region as arguments to runtime
1736       // function
1737       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1738     }
1739  };
1740 } // end anonymous namespace
1741 
1742 /// \brief Emit all code that comes at the end of class's
1743 /// destructor. This is to call destructors on members and base classes
1744 /// in reverse order of their construction.
1745 ///
1746 /// For a deleting destructor, this also handles the case where a destroying
1747 /// operator delete completely overrides the definition.
1748 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1749                                         CXXDtorType DtorType) {
1750   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1751          "Should not emit dtor epilogue for non-exported trivial dtor!");
1752 
1753   // The deleting-destructor phase just needs to call the appropriate
1754   // operator delete that Sema picked up.
1755   if (DtorType == Dtor_Deleting) {
1756     assert(DD->getOperatorDelete() &&
1757            "operator delete missing - EnterDtorCleanups");
1758     if (CXXStructorImplicitParamValue) {
1759       // If there is an implicit param to the deleting dtor, it's a boolean
1760       // telling whether this is a deleting destructor.
1761       if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1762         EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1763                                       /*ReturnAfterDelete*/true);
1764       else
1765         EHStack.pushCleanup<CallDtorDeleteConditional>(
1766             NormalAndEHCleanup, CXXStructorImplicitParamValue);
1767     } else {
1768       if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1769         const CXXRecordDecl *ClassDecl = DD->getParent();
1770         EmitDeleteCall(DD->getOperatorDelete(),
1771                        LoadThisForDtorDelete(*this, DD),
1772                        getContext().getTagDeclType(ClassDecl));
1773         EmitBranchThroughCleanup(ReturnBlock);
1774       } else {
1775         EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1776       }
1777     }
1778     return;
1779   }
1780 
1781   const CXXRecordDecl *ClassDecl = DD->getParent();
1782 
1783   // Unions have no bases and do not call field destructors.
1784   if (ClassDecl->isUnion())
1785     return;
1786 
1787   // The complete-destructor phase just destructs all the virtual bases.
1788   if (DtorType == Dtor_Complete) {
1789     // Poison the vtable pointer such that access after the base
1790     // and member destructors are invoked is invalid.
1791     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1792         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1793         ClassDecl->isPolymorphic())
1794       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1795 
1796     // We push them in the forward order so that they'll be popped in
1797     // the reverse order.
1798     for (const auto &Base : ClassDecl->vbases()) {
1799       CXXRecordDecl *BaseClassDecl
1800         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1801 
1802       // Ignore trivial destructors.
1803       if (BaseClassDecl->hasTrivialDestructor())
1804         continue;
1805 
1806       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1807                                         BaseClassDecl,
1808                                         /*BaseIsVirtual*/ true);
1809     }
1810 
1811     return;
1812   }
1813 
1814   assert(DtorType == Dtor_Base);
1815   // Poison the vtable pointer if it has no virtual bases, but inherits
1816   // virtual functions.
1817   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1818       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1819       ClassDecl->isPolymorphic())
1820     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1821 
1822   // Destroy non-virtual bases.
1823   for (const auto &Base : ClassDecl->bases()) {
1824     // Ignore virtual bases.
1825     if (Base.isVirtual())
1826       continue;
1827 
1828     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1829 
1830     // Ignore trivial destructors.
1831     if (BaseClassDecl->hasTrivialDestructor())
1832       continue;
1833 
1834     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1835                                       BaseClassDecl,
1836                                       /*BaseIsVirtual*/ false);
1837   }
1838 
1839   // Poison fields such that access after their destructors are
1840   // invoked, and before the base class destructor runs, is invalid.
1841   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1842       SanOpts.has(SanitizerKind::Memory))
1843     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1844 
1845   // Destroy direct fields.
1846   for (const auto *Field : ClassDecl->fields()) {
1847     QualType type = Field->getType();
1848     QualType::DestructionKind dtorKind = type.isDestructedType();
1849     if (!dtorKind) continue;
1850 
1851     // Anonymous union members do not have their destructors called.
1852     const RecordType *RT = type->getAsUnionType();
1853     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1854 
1855     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1856     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1857                                       getDestroyer(dtorKind),
1858                                       cleanupKind & EHCleanup);
1859   }
1860 }
1861 
1862 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1863 /// constructor for each of several members of an array.
1864 ///
1865 /// \param ctor the constructor to call for each element
1866 /// \param arrayType the type of the array to initialize
1867 /// \param arrayBegin an arrayType*
1868 /// \param zeroInitialize true if each element should be
1869 ///   zero-initialized before it is constructed
1870 void CodeGenFunction::EmitCXXAggrConstructorCall(
1871     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1872     Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1873   QualType elementType;
1874   llvm::Value *numElements =
1875     emitArrayLength(arrayType, elementType, arrayBegin);
1876 
1877   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1878 }
1879 
1880 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1881 /// constructor for each of several members of an array.
1882 ///
1883 /// \param ctor the constructor to call for each element
1884 /// \param numElements the number of elements in the array;
1885 ///   may be zero
1886 /// \param arrayBase a T*, where T is the type constructed by ctor
1887 /// \param zeroInitialize true if each element should be
1888 ///   zero-initialized before it is constructed
1889 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1890                                                  llvm::Value *numElements,
1891                                                  Address arrayBase,
1892                                                  const CXXConstructExpr *E,
1893                                                  bool zeroInitialize) {
1894   // It's legal for numElements to be zero.  This can happen both
1895   // dynamically, because x can be zero in 'new A[x]', and statically,
1896   // because of GCC extensions that permit zero-length arrays.  There
1897   // are probably legitimate places where we could assume that this
1898   // doesn't happen, but it's not clear that it's worth it.
1899   llvm::BranchInst *zeroCheckBranch = nullptr;
1900 
1901   // Optimize for a constant count.
1902   llvm::ConstantInt *constantCount
1903     = dyn_cast<llvm::ConstantInt>(numElements);
1904   if (constantCount) {
1905     // Just skip out if the constant count is zero.
1906     if (constantCount->isZero()) return;
1907 
1908   // Otherwise, emit the check.
1909   } else {
1910     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1911     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1912     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1913     EmitBlock(loopBB);
1914   }
1915 
1916   // Find the end of the array.
1917   llvm::Value *arrayBegin = arrayBase.getPointer();
1918   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1919                                                     "arrayctor.end");
1920 
1921   // Enter the loop, setting up a phi for the current location to initialize.
1922   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1923   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1924   EmitBlock(loopBB);
1925   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1926                                          "arrayctor.cur");
1927   cur->addIncoming(arrayBegin, entryBB);
1928 
1929   // Inside the loop body, emit the constructor call on the array element.
1930 
1931   // The alignment of the base, adjusted by the size of a single element,
1932   // provides a conservative estimate of the alignment of every element.
1933   // (This assumes we never start tracking offsetted alignments.)
1934   //
1935   // Note that these are complete objects and so we don't need to
1936   // use the non-virtual size or alignment.
1937   QualType type = getContext().getTypeDeclType(ctor->getParent());
1938   CharUnits eltAlignment =
1939     arrayBase.getAlignment()
1940              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1941   Address curAddr = Address(cur, eltAlignment);
1942 
1943   // Zero initialize the storage, if requested.
1944   if (zeroInitialize)
1945     EmitNullInitialization(curAddr, type);
1946 
1947   // C++ [class.temporary]p4:
1948   // There are two contexts in which temporaries are destroyed at a different
1949   // point than the end of the full-expression. The first context is when a
1950   // default constructor is called to initialize an element of an array.
1951   // If the constructor has one or more default arguments, the destruction of
1952   // every temporary created in a default argument expression is sequenced
1953   // before the construction of the next array element, if any.
1954 
1955   {
1956     RunCleanupsScope Scope(*this);
1957 
1958     // Evaluate the constructor and its arguments in a regular
1959     // partial-destroy cleanup.
1960     if (getLangOpts().Exceptions &&
1961         !ctor->getParent()->hasTrivialDestructor()) {
1962       Destroyer *destroyer = destroyCXXObject;
1963       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
1964                                      *destroyer);
1965     }
1966 
1967     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
1968                            /*Delegating=*/false, curAddr, E,
1969                            AggValueSlot::DoesNotOverlap);
1970   }
1971 
1972   // Go to the next element.
1973   llvm::Value *next =
1974     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1975                               "arrayctor.next");
1976   cur->addIncoming(next, Builder.GetInsertBlock());
1977 
1978   // Check whether that's the end of the loop.
1979   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1980   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1981   Builder.CreateCondBr(done, contBB, loopBB);
1982 
1983   // Patch the earlier check to skip over the loop.
1984   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1985 
1986   EmitBlock(contBB);
1987 }
1988 
1989 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1990                                        Address addr,
1991                                        QualType type) {
1992   const RecordType *rtype = type->castAs<RecordType>();
1993   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1994   const CXXDestructorDecl *dtor = record->getDestructor();
1995   assert(!dtor->isTrivial());
1996   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1997                             /*Delegating=*/false, addr);
1998 }
1999 
2000 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2001                                              CXXCtorType Type,
2002                                              bool ForVirtualBase,
2003                                              bool Delegating, Address This,
2004                                              const CXXConstructExpr *E,
2005                                              AggValueSlot::Overlap_t Overlap) {
2006   CallArgList Args;
2007 
2008   // Push the this ptr.
2009   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2010 
2011   // If this is a trivial constructor, emit a memcpy now before we lose
2012   // the alignment information on the argument.
2013   // FIXME: It would be better to preserve alignment information into CallArg.
2014   if (isMemcpyEquivalentSpecialMember(D)) {
2015     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2016 
2017     const Expr *Arg = E->getArg(0);
2018     LValue Src = EmitLValue(Arg);
2019     QualType DestTy = getContext().getTypeDeclType(D->getParent());
2020     LValue Dest = MakeAddrLValue(This, DestTy);
2021     EmitAggregateCopyCtor(Dest, Src, Overlap);
2022     return;
2023   }
2024 
2025   // Add the rest of the user-supplied arguments.
2026   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2027   EvaluationOrder Order = E->isListInitialization()
2028                               ? EvaluationOrder::ForceLeftToRight
2029                               : EvaluationOrder::Default;
2030   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2031                /*ParamsToSkip*/ 0, Order);
2032 
2033   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2034                          Overlap);
2035 }
2036 
2037 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2038                                     const CXXConstructorDecl *Ctor,
2039                                     CXXCtorType Type, CallArgList &Args) {
2040   // We can't forward a variadic call.
2041   if (Ctor->isVariadic())
2042     return false;
2043 
2044   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2045     // If the parameters are callee-cleanup, it's not safe to forward.
2046     for (auto *P : Ctor->parameters())
2047       if (P->getType().isDestructedType())
2048         return false;
2049 
2050     // Likewise if they're inalloca.
2051     const CGFunctionInfo &Info =
2052         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2053     if (Info.usesInAlloca())
2054       return false;
2055   }
2056 
2057   // Anything else should be OK.
2058   return true;
2059 }
2060 
2061 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2062                                              CXXCtorType Type,
2063                                              bool ForVirtualBase,
2064                                              bool Delegating,
2065                                              Address This,
2066                                              CallArgList &Args,
2067                                              AggValueSlot::Overlap_t Overlap) {
2068   const CXXRecordDecl *ClassDecl = D->getParent();
2069 
2070   // C++11 [class.mfct.non-static]p2:
2071   //   If a non-static member function of a class X is called for an object that
2072   //   is not of type X, or of a type derived from X, the behavior is undefined.
2073   // FIXME: Provide a source location here.
2074   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
2075                 This.getPointer(), getContext().getRecordType(ClassDecl));
2076 
2077   if (D->isTrivial() && D->isDefaultConstructor()) {
2078     assert(Args.size() == 1 && "trivial default ctor with args");
2079     return;
2080   }
2081 
2082   // If this is a trivial constructor, just emit what's needed. If this is a
2083   // union copy constructor, we must emit a memcpy, because the AST does not
2084   // model that copy.
2085   if (isMemcpyEquivalentSpecialMember(D)) {
2086     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2087 
2088     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2089     Address Src(Args[1].getRValue(*this).getScalarVal(),
2090                 getNaturalTypeAlignment(SrcTy));
2091     LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2092     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2093     LValue DestLVal = MakeAddrLValue(This, DestTy);
2094     EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2095     return;
2096   }
2097 
2098   bool PassPrototypeArgs = true;
2099   // Check whether we can actually emit the constructor before trying to do so.
2100   if (auto Inherited = D->getInheritedConstructor()) {
2101     PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2102     if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2103       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2104                                               Delegating, Args);
2105       return;
2106     }
2107   }
2108 
2109   // Insert any ABI-specific implicit constructor arguments.
2110   CGCXXABI::AddedStructorArgs ExtraArgs =
2111       CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2112                                                  Delegating, Args);
2113 
2114   // Emit the call.
2115   llvm::Constant *CalleePtr =
2116     CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
2117   const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2118       Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2119   CGCallee Callee = CGCallee::forDirect(CalleePtr, D);
2120   EmitCall(Info, Callee, ReturnValueSlot(), Args);
2121 
2122   // Generate vtable assumptions if we're constructing a complete object
2123   // with a vtable.  We don't do this for base subobjects for two reasons:
2124   // first, it's incorrect for classes with virtual bases, and second, we're
2125   // about to overwrite the vptrs anyway.
2126   // We also have to make sure if we can refer to vtable:
2127   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2128   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2129   // sure that definition of vtable is not hidden,
2130   // then we are always safe to refer to it.
2131   // FIXME: It looks like InstCombine is very inefficient on dealing with
2132   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2133   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2134       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2135       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2136       CGM.getCodeGenOpts().StrictVTablePointers)
2137     EmitVTableAssumptionLoads(ClassDecl, This);
2138 }
2139 
2140 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2141     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2142     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2143   CallArgList Args;
2144   CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()));
2145 
2146   // Forward the parameters.
2147   if (InheritedFromVBase &&
2148       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2149     // Nothing to do; this construction is not responsible for constructing
2150     // the base class containing the inherited constructor.
2151     // FIXME: Can we just pass undef's for the remaining arguments if we don't
2152     // have constructor variants?
2153     Args.push_back(ThisArg);
2154   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2155     // The inheriting constructor was inlined; just inject its arguments.
2156     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2157            "wrong number of parameters for inherited constructor call");
2158     Args = CXXInheritedCtorInitExprArgs;
2159     Args[0] = ThisArg;
2160   } else {
2161     // The inheriting constructor was not inlined. Emit delegating arguments.
2162     Args.push_back(ThisArg);
2163     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2164     assert(OuterCtor->getNumParams() == D->getNumParams());
2165     assert(!OuterCtor->isVariadic() && "should have been inlined");
2166 
2167     for (const auto *Param : OuterCtor->parameters()) {
2168       assert(getContext().hasSameUnqualifiedType(
2169           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2170           Param->getType()));
2171       EmitDelegateCallArg(Args, Param, E->getLocation());
2172 
2173       // Forward __attribute__(pass_object_size).
2174       if (Param->hasAttr<PassObjectSizeAttr>()) {
2175         auto *POSParam = SizeArguments[Param];
2176         assert(POSParam && "missing pass_object_size value for forwarding");
2177         EmitDelegateCallArg(Args, POSParam, E->getLocation());
2178       }
2179     }
2180   }
2181 
2182   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2183                          This, Args, AggValueSlot::MayOverlap);
2184 }
2185 
2186 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2187     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2188     bool Delegating, CallArgList &Args) {
2189   GlobalDecl GD(Ctor, CtorType);
2190   InlinedInheritingConstructorScope Scope(*this, GD);
2191   ApplyInlineDebugLocation DebugScope(*this, GD);
2192 
2193   // Save the arguments to be passed to the inherited constructor.
2194   CXXInheritedCtorInitExprArgs = Args;
2195 
2196   FunctionArgList Params;
2197   QualType RetType = BuildFunctionArgList(CurGD, Params);
2198   FnRetTy = RetType;
2199 
2200   // Insert any ABI-specific implicit constructor arguments.
2201   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2202                                              ForVirtualBase, Delegating, Args);
2203 
2204   // Emit a simplified prolog. We only need to emit the implicit params.
2205   assert(Args.size() >= Params.size() && "too few arguments for call");
2206   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2207     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2208       const RValue &RV = Args[I].getRValue(*this);
2209       assert(!RV.isComplex() && "complex indirect params not supported");
2210       ParamValue Val = RV.isScalar()
2211                            ? ParamValue::forDirect(RV.getScalarVal())
2212                            : ParamValue::forIndirect(RV.getAggregateAddress());
2213       EmitParmDecl(*Params[I], Val, I + 1);
2214     }
2215   }
2216 
2217   // Create a return value slot if the ABI implementation wants one.
2218   // FIXME: This is dumb, we should ask the ABI not to try to set the return
2219   // value instead.
2220   if (!RetType->isVoidType())
2221     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2222 
2223   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2224   CXXThisValue = CXXABIThisValue;
2225 
2226   // Directly emit the constructor initializers.
2227   EmitCtorPrologue(Ctor, CtorType, Params);
2228 }
2229 
2230 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2231   llvm::Value *VTableGlobal =
2232       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2233   if (!VTableGlobal)
2234     return;
2235 
2236   // We can just use the base offset in the complete class.
2237   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2238 
2239   if (!NonVirtualOffset.isZero())
2240     This =
2241         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2242                                         Vptr.VTableClass, Vptr.NearestVBase);
2243 
2244   llvm::Value *VPtrValue =
2245       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2246   llvm::Value *Cmp =
2247       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2248   Builder.CreateAssumption(Cmp);
2249 }
2250 
2251 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2252                                                 Address This) {
2253   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2254     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2255       EmitVTableAssumptionLoad(Vptr, This);
2256 }
2257 
2258 void
2259 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2260                                                 Address This, Address Src,
2261                                                 const CXXConstructExpr *E) {
2262   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2263 
2264   CallArgList Args;
2265 
2266   // Push the this ptr.
2267   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2268 
2269   // Push the src ptr.
2270   QualType QT = *(FPT->param_type_begin());
2271   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2272   Src = Builder.CreateBitCast(Src, t);
2273   Args.add(RValue::get(Src.getPointer()), QT);
2274 
2275   // Skip over first argument (Src).
2276   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2277                /*ParamsToSkip*/ 1);
2278 
2279   EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args,
2280                          AggValueSlot::MayOverlap);
2281 }
2282 
2283 void
2284 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2285                                                 CXXCtorType CtorType,
2286                                                 const FunctionArgList &Args,
2287                                                 SourceLocation Loc) {
2288   CallArgList DelegateArgs;
2289 
2290   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2291   assert(I != E && "no parameters to constructor");
2292 
2293   // this
2294   Address This = LoadCXXThisAddress();
2295   DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2296   ++I;
2297 
2298   // FIXME: The location of the VTT parameter in the parameter list is
2299   // specific to the Itanium ABI and shouldn't be hardcoded here.
2300   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2301     assert(I != E && "cannot skip vtt parameter, already done with args");
2302     assert((*I)->getType()->isPointerType() &&
2303            "skipping parameter not of vtt type");
2304     ++I;
2305   }
2306 
2307   // Explicit arguments.
2308   for (; I != E; ++I) {
2309     const VarDecl *param = *I;
2310     // FIXME: per-argument source location
2311     EmitDelegateCallArg(DelegateArgs, param, Loc);
2312   }
2313 
2314   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2315                          /*Delegating=*/true, This, DelegateArgs,
2316                          AggValueSlot::MayOverlap);
2317 }
2318 
2319 namespace {
2320   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2321     const CXXDestructorDecl *Dtor;
2322     Address Addr;
2323     CXXDtorType Type;
2324 
2325     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2326                            CXXDtorType Type)
2327       : Dtor(D), Addr(Addr), Type(Type) {}
2328 
2329     void Emit(CodeGenFunction &CGF, Flags flags) override {
2330       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2331                                 /*Delegating=*/true, Addr);
2332     }
2333   };
2334 } // end anonymous namespace
2335 
2336 void
2337 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2338                                                   const FunctionArgList &Args) {
2339   assert(Ctor->isDelegatingConstructor());
2340 
2341   Address ThisPtr = LoadCXXThisAddress();
2342 
2343   AggValueSlot AggSlot =
2344     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2345                           AggValueSlot::IsDestructed,
2346                           AggValueSlot::DoesNotNeedGCBarriers,
2347                           AggValueSlot::IsNotAliased,
2348                           AggValueSlot::MayOverlap);
2349 
2350   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2351 
2352   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2353   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2354     CXXDtorType Type =
2355       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2356 
2357     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2358                                                 ClassDecl->getDestructor(),
2359                                                 ThisPtr, Type);
2360   }
2361 }
2362 
2363 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2364                                             CXXDtorType Type,
2365                                             bool ForVirtualBase,
2366                                             bool Delegating,
2367                                             Address This) {
2368   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2369                                      Delegating, This);
2370 }
2371 
2372 namespace {
2373   struct CallLocalDtor final : EHScopeStack::Cleanup {
2374     const CXXDestructorDecl *Dtor;
2375     Address Addr;
2376 
2377     CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
2378       : Dtor(D), Addr(Addr) {}
2379 
2380     void Emit(CodeGenFunction &CGF, Flags flags) override {
2381       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2382                                 /*ForVirtualBase=*/false,
2383                                 /*Delegating=*/false, Addr);
2384     }
2385   };
2386 } // end anonymous namespace
2387 
2388 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2389                                             Address Addr) {
2390   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
2391 }
2392 
2393 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2394   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2395   if (!ClassDecl) return;
2396   if (ClassDecl->hasTrivialDestructor()) return;
2397 
2398   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2399   assert(D && D->isUsed() && "destructor not marked as used!");
2400   PushDestructorCleanup(D, Addr);
2401 }
2402 
2403 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2404   // Compute the address point.
2405   llvm::Value *VTableAddressPoint =
2406       CGM.getCXXABI().getVTableAddressPointInStructor(
2407           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2408 
2409   if (!VTableAddressPoint)
2410     return;
2411 
2412   // Compute where to store the address point.
2413   llvm::Value *VirtualOffset = nullptr;
2414   CharUnits NonVirtualOffset = CharUnits::Zero();
2415 
2416   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2417     // We need to use the virtual base offset offset because the virtual base
2418     // might have a different offset in the most derived class.
2419 
2420     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2421         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2422     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2423   } else {
2424     // We can just use the base offset in the complete class.
2425     NonVirtualOffset = Vptr.Base.getBaseOffset();
2426   }
2427 
2428   // Apply the offsets.
2429   Address VTableField = LoadCXXThisAddress();
2430 
2431   if (!NonVirtualOffset.isZero() || VirtualOffset)
2432     VTableField = ApplyNonVirtualAndVirtualOffset(
2433         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2434         Vptr.NearestVBase);
2435 
2436   // Finally, store the address point. Use the same LLVM types as the field to
2437   // support optimization.
2438   llvm::Type *VTablePtrTy =
2439       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2440           ->getPointerTo()
2441           ->getPointerTo();
2442   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2443   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2444 
2445   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2446   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy);
2447   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2448   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2449       CGM.getCodeGenOpts().StrictVTablePointers)
2450     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2451 }
2452 
2453 CodeGenFunction::VPtrsVector
2454 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2455   CodeGenFunction::VPtrsVector VPtrsResult;
2456   VisitedVirtualBasesSetTy VBases;
2457   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2458                     /*NearestVBase=*/nullptr,
2459                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2460                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2461                     VPtrsResult);
2462   return VPtrsResult;
2463 }
2464 
2465 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2466                                         const CXXRecordDecl *NearestVBase,
2467                                         CharUnits OffsetFromNearestVBase,
2468                                         bool BaseIsNonVirtualPrimaryBase,
2469                                         const CXXRecordDecl *VTableClass,
2470                                         VisitedVirtualBasesSetTy &VBases,
2471                                         VPtrsVector &Vptrs) {
2472   // If this base is a non-virtual primary base the address point has already
2473   // been set.
2474   if (!BaseIsNonVirtualPrimaryBase) {
2475     // Initialize the vtable pointer for this base.
2476     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2477     Vptrs.push_back(Vptr);
2478   }
2479 
2480   const CXXRecordDecl *RD = Base.getBase();
2481 
2482   // Traverse bases.
2483   for (const auto &I : RD->bases()) {
2484     CXXRecordDecl *BaseDecl
2485       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2486 
2487     // Ignore classes without a vtable.
2488     if (!BaseDecl->isDynamicClass())
2489       continue;
2490 
2491     CharUnits BaseOffset;
2492     CharUnits BaseOffsetFromNearestVBase;
2493     bool BaseDeclIsNonVirtualPrimaryBase;
2494 
2495     if (I.isVirtual()) {
2496       // Check if we've visited this virtual base before.
2497       if (!VBases.insert(BaseDecl).second)
2498         continue;
2499 
2500       const ASTRecordLayout &Layout =
2501         getContext().getASTRecordLayout(VTableClass);
2502 
2503       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2504       BaseOffsetFromNearestVBase = CharUnits::Zero();
2505       BaseDeclIsNonVirtualPrimaryBase = false;
2506     } else {
2507       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2508 
2509       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2510       BaseOffsetFromNearestVBase =
2511         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2512       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2513     }
2514 
2515     getVTablePointers(
2516         BaseSubobject(BaseDecl, BaseOffset),
2517         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2518         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2519   }
2520 }
2521 
2522 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2523   // Ignore classes without a vtable.
2524   if (!RD->isDynamicClass())
2525     return;
2526 
2527   // Initialize the vtable pointers for this class and all of its bases.
2528   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2529     for (const VPtr &Vptr : getVTablePointers(RD))
2530       InitializeVTablePointer(Vptr);
2531 
2532   if (RD->getNumVBases())
2533     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2534 }
2535 
2536 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2537                                            llvm::Type *VTableTy,
2538                                            const CXXRecordDecl *RD) {
2539   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2540   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2541   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2542   CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2543 
2544   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2545       CGM.getCodeGenOpts().StrictVTablePointers)
2546     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2547 
2548   return VTable;
2549 }
2550 
2551 // If a class has a single non-virtual base and does not introduce or override
2552 // virtual member functions or fields, it will have the same layout as its base.
2553 // This function returns the least derived such class.
2554 //
2555 // Casting an instance of a base class to such a derived class is technically
2556 // undefined behavior, but it is a relatively common hack for introducing member
2557 // functions on class instances with specific properties (e.g. llvm::Operator)
2558 // that works under most compilers and should not have security implications, so
2559 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2560 static const CXXRecordDecl *
2561 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2562   if (!RD->field_empty())
2563     return RD;
2564 
2565   if (RD->getNumVBases() != 0)
2566     return RD;
2567 
2568   if (RD->getNumBases() != 1)
2569     return RD;
2570 
2571   for (const CXXMethodDecl *MD : RD->methods()) {
2572     if (MD->isVirtual()) {
2573       // Virtual member functions are only ok if they are implicit destructors
2574       // because the implicit destructor will have the same semantics as the
2575       // base class's destructor if no fields are added.
2576       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2577         continue;
2578       return RD;
2579     }
2580   }
2581 
2582   return LeastDerivedClassWithSameLayout(
2583       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2584 }
2585 
2586 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2587                                                    llvm::Value *VTable,
2588                                                    SourceLocation Loc) {
2589   if (SanOpts.has(SanitizerKind::CFIVCall))
2590     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2591   else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2592            CGM.HasHiddenLTOVisibility(RD)) {
2593     llvm::Metadata *MD =
2594         CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2595     llvm::Value *TypeId =
2596         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2597 
2598     llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2599     llvm::Value *TypeTest =
2600         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2601                            {CastedVTable, TypeId});
2602     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2603   }
2604 }
2605 
2606 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2607                                                 llvm::Value *VTable,
2608                                                 CFITypeCheckKind TCK,
2609                                                 SourceLocation Loc) {
2610   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2611     RD = LeastDerivedClassWithSameLayout(RD);
2612 
2613   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2614 }
2615 
2616 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2617                                                 llvm::Value *Derived,
2618                                                 bool MayBeNull,
2619                                                 CFITypeCheckKind TCK,
2620                                                 SourceLocation Loc) {
2621   if (!getLangOpts().CPlusPlus)
2622     return;
2623 
2624   auto *ClassTy = T->getAs<RecordType>();
2625   if (!ClassTy)
2626     return;
2627 
2628   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2629 
2630   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2631     return;
2632 
2633   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2634     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2635 
2636   llvm::BasicBlock *ContBlock = nullptr;
2637 
2638   if (MayBeNull) {
2639     llvm::Value *DerivedNotNull =
2640         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2641 
2642     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2643     ContBlock = createBasicBlock("cast.cont");
2644 
2645     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2646 
2647     EmitBlock(CheckBlock);
2648   }
2649 
2650   llvm::Value *VTable;
2651   std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr(
2652       *this, Address(Derived, getPointerAlign()), ClassDecl);
2653 
2654   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2655 
2656   if (MayBeNull) {
2657     Builder.CreateBr(ContBlock);
2658     EmitBlock(ContBlock);
2659   }
2660 }
2661 
2662 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2663                                          llvm::Value *VTable,
2664                                          CFITypeCheckKind TCK,
2665                                          SourceLocation Loc) {
2666   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2667       !CGM.HasHiddenLTOVisibility(RD))
2668     return;
2669 
2670   SanitizerMask M;
2671   llvm::SanitizerStatKind SSK;
2672   switch (TCK) {
2673   case CFITCK_VCall:
2674     M = SanitizerKind::CFIVCall;
2675     SSK = llvm::SanStat_CFI_VCall;
2676     break;
2677   case CFITCK_NVCall:
2678     M = SanitizerKind::CFINVCall;
2679     SSK = llvm::SanStat_CFI_NVCall;
2680     break;
2681   case CFITCK_DerivedCast:
2682     M = SanitizerKind::CFIDerivedCast;
2683     SSK = llvm::SanStat_CFI_DerivedCast;
2684     break;
2685   case CFITCK_UnrelatedCast:
2686     M = SanitizerKind::CFIUnrelatedCast;
2687     SSK = llvm::SanStat_CFI_UnrelatedCast;
2688     break;
2689   case CFITCK_ICall:
2690     llvm_unreachable("not expecting CFITCK_ICall");
2691   }
2692 
2693   std::string TypeName = RD->getQualifiedNameAsString();
2694   if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName))
2695     return;
2696 
2697   SanitizerScope SanScope(this);
2698   EmitSanitizerStatReport(SSK);
2699 
2700   llvm::Metadata *MD =
2701       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2702   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2703 
2704   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2705   llvm::Value *TypeTest = Builder.CreateCall(
2706       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
2707 
2708   llvm::Constant *StaticData[] = {
2709       llvm::ConstantInt::get(Int8Ty, TCK),
2710       EmitCheckSourceLocation(Loc),
2711       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2712   };
2713 
2714   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2715   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2716     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
2717     return;
2718   }
2719 
2720   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2721     EmitTrapCheck(TypeTest);
2722     return;
2723   }
2724 
2725   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2726       CGM.getLLVMContext(),
2727       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2728   llvm::Value *ValidVtable = Builder.CreateCall(
2729       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
2730   EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2731             StaticData, {CastedVTable, ValidVtable});
2732 }
2733 
2734 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2735   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2736       !SanOpts.has(SanitizerKind::CFIVCall) ||
2737       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) ||
2738       !CGM.HasHiddenLTOVisibility(RD))
2739     return false;
2740 
2741   std::string TypeName = RD->getQualifiedNameAsString();
2742   return !getContext().getSanitizerBlacklist().isBlacklistedType(
2743       SanitizerKind::CFIVCall, TypeName);
2744 }
2745 
2746 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2747     const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
2748   SanitizerScope SanScope(this);
2749 
2750   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2751 
2752   llvm::Metadata *MD =
2753       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2754   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2755 
2756   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2757   llvm::Value *CheckedLoad = Builder.CreateCall(
2758       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2759       {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
2760        TypeId});
2761   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2762 
2763   EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2764             SanitizerHandler::CFICheckFail, nullptr, nullptr);
2765 
2766   return Builder.CreateBitCast(
2767       Builder.CreateExtractValue(CheckedLoad, 0),
2768       cast<llvm::PointerType>(VTable->getType())->getElementType());
2769 }
2770 
2771 void CodeGenFunction::EmitForwardingCallToLambda(
2772                                       const CXXMethodDecl *callOperator,
2773                                       CallArgList &callArgs) {
2774   // Get the address of the call operator.
2775   const CGFunctionInfo &calleeFnInfo =
2776     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2777   llvm::Constant *calleePtr =
2778     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2779                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2780 
2781   // Prepare the return slot.
2782   const FunctionProtoType *FPT =
2783     callOperator->getType()->castAs<FunctionProtoType>();
2784   QualType resultType = FPT->getReturnType();
2785   ReturnValueSlot returnSlot;
2786   if (!resultType->isVoidType() &&
2787       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2788       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2789     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2790 
2791   // We don't need to separately arrange the call arguments because
2792   // the call can't be variadic anyway --- it's impossible to forward
2793   // variadic arguments.
2794 
2795   // Now emit our call.
2796   auto callee = CGCallee::forDirect(calleePtr, callOperator);
2797   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs);
2798 
2799   // If necessary, copy the returned value into the slot.
2800   if (!resultType->isVoidType() && returnSlot.isNull()) {
2801     if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2802       RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2803     }
2804     EmitReturnOfRValue(RV, resultType);
2805   } else
2806     EmitBranchThroughCleanup(ReturnBlock);
2807 }
2808 
2809 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2810   const BlockDecl *BD = BlockInfo->getBlockDecl();
2811   const VarDecl *variable = BD->capture_begin()->getVariable();
2812   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2813   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2814 
2815   if (CallOp->isVariadic()) {
2816     // FIXME: Making this work correctly is nasty because it requires either
2817     // cloning the body of the call operator or making the call operator
2818     // forward.
2819     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2820     return;
2821   }
2822 
2823   // Start building arguments for forwarding call
2824   CallArgList CallArgs;
2825 
2826   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2827   Address ThisPtr = GetAddrOfBlockDecl(variable, false);
2828   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2829 
2830   // Add the rest of the parameters.
2831   for (auto param : BD->parameters())
2832     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2833 
2834   assert(!Lambda->isGenericLambda() &&
2835             "generic lambda interconversion to block not implemented");
2836   EmitForwardingCallToLambda(CallOp, CallArgs);
2837 }
2838 
2839 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2840   const CXXRecordDecl *Lambda = MD->getParent();
2841 
2842   // Start building arguments for forwarding call
2843   CallArgList CallArgs;
2844 
2845   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2846   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2847   CallArgs.add(RValue::get(ThisPtr), ThisType);
2848 
2849   // Add the rest of the parameters.
2850   for (auto Param : MD->parameters())
2851     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2852 
2853   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2854   // For a generic lambda, find the corresponding call operator specialization
2855   // to which the call to the static-invoker shall be forwarded.
2856   if (Lambda->isGenericLambda()) {
2857     assert(MD->isFunctionTemplateSpecialization());
2858     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2859     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2860     void *InsertPos = nullptr;
2861     FunctionDecl *CorrespondingCallOpSpecialization =
2862         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2863     assert(CorrespondingCallOpSpecialization);
2864     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2865   }
2866   EmitForwardingCallToLambda(CallOp, CallArgs);
2867 }
2868 
2869 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
2870   if (MD->isVariadic()) {
2871     // FIXME: Making this work correctly is nasty because it requires either
2872     // cloning the body of the call operator or making the call operator forward.
2873     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2874     return;
2875   }
2876 
2877   EmitLambdaDelegatingInvokeBody(MD);
2878 }
2879