1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 LValueBaseInfo *BaseInfo, 133 TBAAAccessInfo *TBAAInfo) { 134 // Ask the ABI to compute the actual address. 135 llvm::Value *ptr = 136 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 137 memberPtr, memberPtrType); 138 139 QualType memberType = memberPtrType->getPointeeType(); 140 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo, 141 TBAAInfo); 142 memberAlign = 143 CGM.getDynamicOffsetAlignment(base.getAlignment(), 144 memberPtrType->getClass()->getAsCXXRecordDecl(), 145 memberAlign); 146 return Address(ptr, memberAlign); 147 } 148 149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 150 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 151 CastExpr::path_const_iterator End) { 152 CharUnits Offset = CharUnits::Zero(); 153 154 const ASTContext &Context = getContext(); 155 const CXXRecordDecl *RD = DerivedClass; 156 157 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 158 const CXXBaseSpecifier *Base = *I; 159 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 160 161 // Get the layout. 162 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 163 164 const CXXRecordDecl *BaseDecl = 165 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 166 167 // Add the offset. 168 Offset += Layout.getBaseClassOffset(BaseDecl); 169 170 RD = BaseDecl; 171 } 172 173 return Offset; 174 } 175 176 llvm::Constant * 177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 178 CastExpr::path_const_iterator PathBegin, 179 CastExpr::path_const_iterator PathEnd) { 180 assert(PathBegin != PathEnd && "Base path should not be empty!"); 181 182 CharUnits Offset = 183 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 184 if (Offset.isZero()) 185 return nullptr; 186 187 llvm::Type *PtrDiffTy = 188 Types.ConvertType(getContext().getPointerDiffType()); 189 190 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 191 } 192 193 /// Gets the address of a direct base class within a complete object. 194 /// This should only be used for (1) non-virtual bases or (2) virtual bases 195 /// when the type is known to be complete (e.g. in complete destructors). 196 /// 197 /// The object pointed to by 'This' is assumed to be non-null. 198 Address 199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 200 const CXXRecordDecl *Derived, 201 const CXXRecordDecl *Base, 202 bool BaseIsVirtual) { 203 // 'this' must be a pointer (in some address space) to Derived. 204 assert(This.getElementType() == ConvertType(Derived)); 205 206 // Compute the offset of the virtual base. 207 CharUnits Offset; 208 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 209 if (BaseIsVirtual) 210 Offset = Layout.getVBaseClassOffset(Base); 211 else 212 Offset = Layout.getBaseClassOffset(Base); 213 214 // Shift and cast down to the base type. 215 // TODO: for complete types, this should be possible with a GEP. 216 Address V = This; 217 if (!Offset.isZero()) { 218 V = Builder.CreateElementBitCast(V, Int8Ty); 219 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 220 } 221 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 222 223 return V; 224 } 225 226 static Address 227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 228 CharUnits nonVirtualOffset, 229 llvm::Value *virtualOffset, 230 const CXXRecordDecl *derivedClass, 231 const CXXRecordDecl *nearestVBase) { 232 // Assert that we have something to do. 233 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 234 235 // Compute the offset from the static and dynamic components. 236 llvm::Value *baseOffset; 237 if (!nonVirtualOffset.isZero()) { 238 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 239 nonVirtualOffset.getQuantity()); 240 if (virtualOffset) { 241 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 242 } 243 } else { 244 baseOffset = virtualOffset; 245 } 246 247 // Apply the base offset. 248 llvm::Value *ptr = addr.getPointer(); 249 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 250 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 251 252 // If we have a virtual component, the alignment of the result will 253 // be relative only to the known alignment of that vbase. 254 CharUnits alignment; 255 if (virtualOffset) { 256 assert(nearestVBase && "virtual offset without vbase?"); 257 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 258 derivedClass, nearestVBase); 259 } else { 260 alignment = addr.getAlignment(); 261 } 262 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 263 264 return Address(ptr, alignment); 265 } 266 267 Address CodeGenFunction::GetAddressOfBaseClass( 268 Address Value, const CXXRecordDecl *Derived, 269 CastExpr::path_const_iterator PathBegin, 270 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 271 SourceLocation Loc) { 272 assert(PathBegin != PathEnd && "Base path should not be empty!"); 273 274 CastExpr::path_const_iterator Start = PathBegin; 275 const CXXRecordDecl *VBase = nullptr; 276 277 // Sema has done some convenient canonicalization here: if the 278 // access path involved any virtual steps, the conversion path will 279 // *start* with a step down to the correct virtual base subobject, 280 // and hence will not require any further steps. 281 if ((*Start)->isVirtual()) { 282 VBase = 283 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 284 ++Start; 285 } 286 287 // Compute the static offset of the ultimate destination within its 288 // allocating subobject (the virtual base, if there is one, or else 289 // the "complete" object that we see). 290 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 291 VBase ? VBase : Derived, Start, PathEnd); 292 293 // If there's a virtual step, we can sometimes "devirtualize" it. 294 // For now, that's limited to when the derived type is final. 295 // TODO: "devirtualize" this for accesses to known-complete objects. 296 if (VBase && Derived->hasAttr<FinalAttr>()) { 297 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 298 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 299 NonVirtualOffset += vBaseOffset; 300 VBase = nullptr; // we no longer have a virtual step 301 } 302 303 // Get the base pointer type. 304 llvm::Type *BasePtrTy = 305 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 306 307 QualType DerivedTy = getContext().getRecordType(Derived); 308 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 309 310 // If the static offset is zero and we don't have a virtual step, 311 // just do a bitcast; null checks are unnecessary. 312 if (NonVirtualOffset.isZero() && !VBase) { 313 if (sanitizePerformTypeCheck()) { 314 SanitizerSet SkippedChecks; 315 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 316 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 317 DerivedTy, DerivedAlign, SkippedChecks); 318 } 319 return Builder.CreateBitCast(Value, BasePtrTy); 320 } 321 322 llvm::BasicBlock *origBB = nullptr; 323 llvm::BasicBlock *endBB = nullptr; 324 325 // Skip over the offset (and the vtable load) if we're supposed to 326 // null-check the pointer. 327 if (NullCheckValue) { 328 origBB = Builder.GetInsertBlock(); 329 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 330 endBB = createBasicBlock("cast.end"); 331 332 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 333 Builder.CreateCondBr(isNull, endBB, notNullBB); 334 EmitBlock(notNullBB); 335 } 336 337 if (sanitizePerformTypeCheck()) { 338 SanitizerSet SkippedChecks; 339 SkippedChecks.set(SanitizerKind::Null, true); 340 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 341 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 342 } 343 344 // Compute the virtual offset. 345 llvm::Value *VirtualOffset = nullptr; 346 if (VBase) { 347 VirtualOffset = 348 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 349 } 350 351 // Apply both offsets. 352 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 353 VirtualOffset, Derived, VBase); 354 355 // Cast to the destination type. 356 Value = Builder.CreateBitCast(Value, BasePtrTy); 357 358 // Build a phi if we needed a null check. 359 if (NullCheckValue) { 360 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 361 Builder.CreateBr(endBB); 362 EmitBlock(endBB); 363 364 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 365 PHI->addIncoming(Value.getPointer(), notNullBB); 366 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 367 Value = Address(PHI, Value.getAlignment()); 368 } 369 370 return Value; 371 } 372 373 Address 374 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 375 const CXXRecordDecl *Derived, 376 CastExpr::path_const_iterator PathBegin, 377 CastExpr::path_const_iterator PathEnd, 378 bool NullCheckValue) { 379 assert(PathBegin != PathEnd && "Base path should not be empty!"); 380 381 QualType DerivedTy = 382 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 383 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 384 385 llvm::Value *NonVirtualOffset = 386 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 387 388 if (!NonVirtualOffset) { 389 // No offset, we can just cast back. 390 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 391 } 392 393 llvm::BasicBlock *CastNull = nullptr; 394 llvm::BasicBlock *CastNotNull = nullptr; 395 llvm::BasicBlock *CastEnd = nullptr; 396 397 if (NullCheckValue) { 398 CastNull = createBasicBlock("cast.null"); 399 CastNotNull = createBasicBlock("cast.notnull"); 400 CastEnd = createBasicBlock("cast.end"); 401 402 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 403 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 404 EmitBlock(CastNotNull); 405 } 406 407 // Apply the offset. 408 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 409 Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset), 410 "sub.ptr"); 411 412 // Just cast. 413 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 414 415 // Produce a PHI if we had a null-check. 416 if (NullCheckValue) { 417 Builder.CreateBr(CastEnd); 418 EmitBlock(CastNull); 419 Builder.CreateBr(CastEnd); 420 EmitBlock(CastEnd); 421 422 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 423 PHI->addIncoming(Value, CastNotNull); 424 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 425 Value = PHI; 426 } 427 428 return Address(Value, CGM.getClassPointerAlignment(Derived)); 429 } 430 431 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 432 bool ForVirtualBase, 433 bool Delegating) { 434 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 435 // This constructor/destructor does not need a VTT parameter. 436 return nullptr; 437 } 438 439 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 440 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 441 442 llvm::Value *VTT; 443 444 uint64_t SubVTTIndex; 445 446 if (Delegating) { 447 // If this is a delegating constructor call, just load the VTT. 448 return LoadCXXVTT(); 449 } else if (RD == Base) { 450 // If the record matches the base, this is the complete ctor/dtor 451 // variant calling the base variant in a class with virtual bases. 452 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 453 "doing no-op VTT offset in base dtor/ctor?"); 454 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 455 SubVTTIndex = 0; 456 } else { 457 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 458 CharUnits BaseOffset = ForVirtualBase ? 459 Layout.getVBaseClassOffset(Base) : 460 Layout.getBaseClassOffset(Base); 461 462 SubVTTIndex = 463 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 464 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 465 } 466 467 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 468 // A VTT parameter was passed to the constructor, use it. 469 VTT = LoadCXXVTT(); 470 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 471 } else { 472 // We're the complete constructor, so get the VTT by name. 473 VTT = CGM.getVTables().GetAddrOfVTT(RD); 474 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 475 } 476 477 return VTT; 478 } 479 480 namespace { 481 /// Call the destructor for a direct base class. 482 struct CallBaseDtor final : EHScopeStack::Cleanup { 483 const CXXRecordDecl *BaseClass; 484 bool BaseIsVirtual; 485 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 486 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 487 488 void Emit(CodeGenFunction &CGF, Flags flags) override { 489 const CXXRecordDecl *DerivedClass = 490 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 491 492 const CXXDestructorDecl *D = BaseClass->getDestructor(); 493 Address Addr = 494 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 495 DerivedClass, BaseClass, 496 BaseIsVirtual); 497 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 498 /*Delegating=*/false, Addr); 499 } 500 }; 501 502 /// A visitor which checks whether an initializer uses 'this' in a 503 /// way which requires the vtable to be properly set. 504 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 505 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 506 507 bool UsesThis; 508 509 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 510 511 // Black-list all explicit and implicit references to 'this'. 512 // 513 // Do we need to worry about external references to 'this' derived 514 // from arbitrary code? If so, then anything which runs arbitrary 515 // external code might potentially access the vtable. 516 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 517 }; 518 } // end anonymous namespace 519 520 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 521 DynamicThisUseChecker Checker(C); 522 Checker.Visit(Init); 523 return Checker.UsesThis; 524 } 525 526 static void EmitBaseInitializer(CodeGenFunction &CGF, 527 const CXXRecordDecl *ClassDecl, 528 CXXCtorInitializer *BaseInit, 529 CXXCtorType CtorType) { 530 assert(BaseInit->isBaseInitializer() && 531 "Must have base initializer!"); 532 533 Address ThisPtr = CGF.LoadCXXThisAddress(); 534 535 const Type *BaseType = BaseInit->getBaseClass(); 536 CXXRecordDecl *BaseClassDecl = 537 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 538 539 bool isBaseVirtual = BaseInit->isBaseVirtual(); 540 541 // The base constructor doesn't construct virtual bases. 542 if (CtorType == Ctor_Base && isBaseVirtual) 543 return; 544 545 // If the initializer for the base (other than the constructor 546 // itself) accesses 'this' in any way, we need to initialize the 547 // vtables. 548 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 549 CGF.InitializeVTablePointers(ClassDecl); 550 551 // We can pretend to be a complete class because it only matters for 552 // virtual bases, and we only do virtual bases for complete ctors. 553 Address V = 554 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 555 BaseClassDecl, 556 isBaseVirtual); 557 AggValueSlot AggSlot = 558 AggValueSlot::forAddr( 559 V, Qualifiers(), 560 AggValueSlot::IsDestructed, 561 AggValueSlot::DoesNotNeedGCBarriers, 562 AggValueSlot::IsNotAliased, 563 CGF.overlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 564 565 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 566 567 if (CGF.CGM.getLangOpts().Exceptions && 568 !BaseClassDecl->hasTrivialDestructor()) 569 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 570 isBaseVirtual); 571 } 572 573 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 574 auto *CD = dyn_cast<CXXConstructorDecl>(D); 575 if (!(CD && CD->isCopyOrMoveConstructor()) && 576 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 577 return false; 578 579 // We can emit a memcpy for a trivial copy or move constructor/assignment. 580 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 581 return true; 582 583 // We *must* emit a memcpy for a defaulted union copy or move op. 584 if (D->getParent()->isUnion() && D->isDefaulted()) 585 return true; 586 587 return false; 588 } 589 590 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 591 CXXCtorInitializer *MemberInit, 592 LValue &LHS) { 593 FieldDecl *Field = MemberInit->getAnyMember(); 594 if (MemberInit->isIndirectMemberInitializer()) { 595 // If we are initializing an anonymous union field, drill down to the field. 596 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 597 for (const auto *I : IndirectField->chain()) 598 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 599 } else { 600 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 601 } 602 } 603 604 static void EmitMemberInitializer(CodeGenFunction &CGF, 605 const CXXRecordDecl *ClassDecl, 606 CXXCtorInitializer *MemberInit, 607 const CXXConstructorDecl *Constructor, 608 FunctionArgList &Args) { 609 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 610 assert(MemberInit->isAnyMemberInitializer() && 611 "Must have member initializer!"); 612 assert(MemberInit->getInit() && "Must have initializer!"); 613 614 // non-static data member initializers. 615 FieldDecl *Field = MemberInit->getAnyMember(); 616 QualType FieldType = Field->getType(); 617 618 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 619 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 620 LValue LHS; 621 622 // If a base constructor is being emitted, create an LValue that has the 623 // non-virtual alignment. 624 if (CGF.CurGD.getCtorType() == Ctor_Base) 625 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 626 else 627 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 628 629 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 630 631 // Special case: if we are in a copy or move constructor, and we are copying 632 // an array of PODs or classes with trivial copy constructors, ignore the 633 // AST and perform the copy we know is equivalent. 634 // FIXME: This is hacky at best... if we had a bit more explicit information 635 // in the AST, we could generalize it more easily. 636 const ConstantArrayType *Array 637 = CGF.getContext().getAsConstantArrayType(FieldType); 638 if (Array && Constructor->isDefaulted() && 639 Constructor->isCopyOrMoveConstructor()) { 640 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 641 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 642 if (BaseElementTy.isPODType(CGF.getContext()) || 643 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 644 unsigned SrcArgIndex = 645 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 646 llvm::Value *SrcPtr 647 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 648 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 649 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 650 651 // Copy the aggregate. 652 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.overlapForFieldInit(Field), 653 LHS.isVolatileQualified()); 654 // Ensure that we destroy the objects if an exception is thrown later in 655 // the constructor. 656 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 657 if (CGF.needsEHCleanup(dtorKind)) 658 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 659 return; 660 } 661 } 662 663 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 664 } 665 666 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 667 Expr *Init) { 668 QualType FieldType = Field->getType(); 669 switch (getEvaluationKind(FieldType)) { 670 case TEK_Scalar: 671 if (LHS.isSimple()) { 672 EmitExprAsInit(Init, Field, LHS, false); 673 } else { 674 RValue RHS = RValue::get(EmitScalarExpr(Init)); 675 EmitStoreThroughLValue(RHS, LHS); 676 } 677 break; 678 case TEK_Complex: 679 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 680 break; 681 case TEK_Aggregate: { 682 AggValueSlot Slot = 683 AggValueSlot::forLValue( 684 LHS, 685 AggValueSlot::IsDestructed, 686 AggValueSlot::DoesNotNeedGCBarriers, 687 AggValueSlot::IsNotAliased, 688 overlapForFieldInit(Field)); 689 EmitAggExpr(Init, Slot); 690 break; 691 } 692 } 693 694 // Ensure that we destroy this object if an exception is thrown 695 // later in the constructor. 696 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 697 if (needsEHCleanup(dtorKind)) 698 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 699 } 700 701 /// Checks whether the given constructor is a valid subject for the 702 /// complete-to-base constructor delegation optimization, i.e. 703 /// emitting the complete constructor as a simple call to the base 704 /// constructor. 705 bool CodeGenFunction::IsConstructorDelegationValid( 706 const CXXConstructorDecl *Ctor) { 707 708 // Currently we disable the optimization for classes with virtual 709 // bases because (1) the addresses of parameter variables need to be 710 // consistent across all initializers but (2) the delegate function 711 // call necessarily creates a second copy of the parameter variable. 712 // 713 // The limiting example (purely theoretical AFAIK): 714 // struct A { A(int &c) { c++; } }; 715 // struct B : virtual A { 716 // B(int count) : A(count) { printf("%d\n", count); } 717 // }; 718 // ...although even this example could in principle be emitted as a 719 // delegation since the address of the parameter doesn't escape. 720 if (Ctor->getParent()->getNumVBases()) { 721 // TODO: white-list trivial vbase initializers. This case wouldn't 722 // be subject to the restrictions below. 723 724 // TODO: white-list cases where: 725 // - there are no non-reference parameters to the constructor 726 // - the initializers don't access any non-reference parameters 727 // - the initializers don't take the address of non-reference 728 // parameters 729 // - etc. 730 // If we ever add any of the above cases, remember that: 731 // - function-try-blocks will always blacklist this optimization 732 // - we need to perform the constructor prologue and cleanup in 733 // EmitConstructorBody. 734 735 return false; 736 } 737 738 // We also disable the optimization for variadic functions because 739 // it's impossible to "re-pass" varargs. 740 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 741 return false; 742 743 // FIXME: Decide if we can do a delegation of a delegating constructor. 744 if (Ctor->isDelegatingConstructor()) 745 return false; 746 747 return true; 748 } 749 750 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 751 // to poison the extra field paddings inserted under 752 // -fsanitize-address-field-padding=1|2. 753 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 754 ASTContext &Context = getContext(); 755 const CXXRecordDecl *ClassDecl = 756 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 757 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 758 if (!ClassDecl->mayInsertExtraPadding()) return; 759 760 struct SizeAndOffset { 761 uint64_t Size; 762 uint64_t Offset; 763 }; 764 765 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 766 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 767 768 // Populate sizes and offsets of fields. 769 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 770 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 771 SSV[i].Offset = 772 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 773 774 size_t NumFields = 0; 775 for (const auto *Field : ClassDecl->fields()) { 776 const FieldDecl *D = Field; 777 std::pair<CharUnits, CharUnits> FieldInfo = 778 Context.getTypeInfoInChars(D->getType()); 779 CharUnits FieldSize = FieldInfo.first; 780 assert(NumFields < SSV.size()); 781 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 782 NumFields++; 783 } 784 assert(NumFields == SSV.size()); 785 if (SSV.size() <= 1) return; 786 787 // We will insert calls to __asan_* run-time functions. 788 // LLVM AddressSanitizer pass may decide to inline them later. 789 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 790 llvm::FunctionType *FTy = 791 llvm::FunctionType::get(CGM.VoidTy, Args, false); 792 llvm::Constant *F = CGM.CreateRuntimeFunction( 793 FTy, Prologue ? "__asan_poison_intra_object_redzone" 794 : "__asan_unpoison_intra_object_redzone"); 795 796 llvm::Value *ThisPtr = LoadCXXThis(); 797 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 798 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 799 // For each field check if it has sufficient padding, 800 // if so (un)poison it with a call. 801 for (size_t i = 0; i < SSV.size(); i++) { 802 uint64_t AsanAlignment = 8; 803 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 804 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 805 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 806 if (PoisonSize < AsanAlignment || !SSV[i].Size || 807 (NextField % AsanAlignment) != 0) 808 continue; 809 Builder.CreateCall( 810 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 811 Builder.getIntN(PtrSize, PoisonSize)}); 812 } 813 } 814 815 /// EmitConstructorBody - Emits the body of the current constructor. 816 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 817 EmitAsanPrologueOrEpilogue(true); 818 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 819 CXXCtorType CtorType = CurGD.getCtorType(); 820 821 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 822 CtorType == Ctor_Complete) && 823 "can only generate complete ctor for this ABI"); 824 825 // Before we go any further, try the complete->base constructor 826 // delegation optimization. 827 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 828 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 829 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 830 return; 831 } 832 833 const FunctionDecl *Definition = nullptr; 834 Stmt *Body = Ctor->getBody(Definition); 835 assert(Definition == Ctor && "emitting wrong constructor body"); 836 837 // Enter the function-try-block before the constructor prologue if 838 // applicable. 839 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 840 if (IsTryBody) 841 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 842 843 incrementProfileCounter(Body); 844 845 RunCleanupsScope RunCleanups(*this); 846 847 // TODO: in restricted cases, we can emit the vbase initializers of 848 // a complete ctor and then delegate to the base ctor. 849 850 // Emit the constructor prologue, i.e. the base and member 851 // initializers. 852 EmitCtorPrologue(Ctor, CtorType, Args); 853 854 // Emit the body of the statement. 855 if (IsTryBody) 856 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 857 else if (Body) 858 EmitStmt(Body); 859 860 // Emit any cleanup blocks associated with the member or base 861 // initializers, which includes (along the exceptional path) the 862 // destructors for those members and bases that were fully 863 // constructed. 864 RunCleanups.ForceCleanup(); 865 866 if (IsTryBody) 867 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 868 } 869 870 namespace { 871 /// RAII object to indicate that codegen is copying the value representation 872 /// instead of the object representation. Useful when copying a struct or 873 /// class which has uninitialized members and we're only performing 874 /// lvalue-to-rvalue conversion on the object but not its members. 875 class CopyingValueRepresentation { 876 public: 877 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 878 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 879 CGF.SanOpts.set(SanitizerKind::Bool, false); 880 CGF.SanOpts.set(SanitizerKind::Enum, false); 881 } 882 ~CopyingValueRepresentation() { 883 CGF.SanOpts = OldSanOpts; 884 } 885 private: 886 CodeGenFunction &CGF; 887 SanitizerSet OldSanOpts; 888 }; 889 } // end anonymous namespace 890 891 namespace { 892 class FieldMemcpyizer { 893 public: 894 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 895 const VarDecl *SrcRec) 896 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 897 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 898 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 899 LastFieldOffset(0), LastAddedFieldIndex(0) {} 900 901 bool isMemcpyableField(FieldDecl *F) const { 902 // Never memcpy fields when we are adding poisoned paddings. 903 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 904 return false; 905 Qualifiers Qual = F->getType().getQualifiers(); 906 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 907 return false; 908 return true; 909 } 910 911 void addMemcpyableField(FieldDecl *F) { 912 if (!FirstField) 913 addInitialField(F); 914 else 915 addNextField(F); 916 } 917 918 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 919 ASTContext &Ctx = CGF.getContext(); 920 unsigned LastFieldSize = 921 LastField->isBitField() 922 ? LastField->getBitWidthValue(Ctx) 923 : Ctx.toBits( 924 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first); 925 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 926 FirstByteOffset + Ctx.getCharWidth() - 1; 927 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 928 return MemcpySize; 929 } 930 931 void emitMemcpy() { 932 // Give the subclass a chance to bail out if it feels the memcpy isn't 933 // worth it (e.g. Hasn't aggregated enough data). 934 if (!FirstField) { 935 return; 936 } 937 938 uint64_t FirstByteOffset; 939 if (FirstField->isBitField()) { 940 const CGRecordLayout &RL = 941 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 942 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 943 // FirstFieldOffset is not appropriate for bitfields, 944 // we need to use the storage offset instead. 945 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 946 } else { 947 FirstByteOffset = FirstFieldOffset; 948 } 949 950 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 951 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 952 Address ThisPtr = CGF.LoadCXXThisAddress(); 953 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 954 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 955 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 956 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 957 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 958 959 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 960 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 961 MemcpySize); 962 reset(); 963 } 964 965 void reset() { 966 FirstField = nullptr; 967 } 968 969 protected: 970 CodeGenFunction &CGF; 971 const CXXRecordDecl *ClassDecl; 972 973 private: 974 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 975 llvm::PointerType *DPT = DestPtr.getType(); 976 llvm::Type *DBP = 977 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 978 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 979 980 llvm::PointerType *SPT = SrcPtr.getType(); 981 llvm::Type *SBP = 982 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 983 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 984 985 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 986 } 987 988 void addInitialField(FieldDecl *F) { 989 FirstField = F; 990 LastField = F; 991 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 992 LastFieldOffset = FirstFieldOffset; 993 LastAddedFieldIndex = F->getFieldIndex(); 994 } 995 996 void addNextField(FieldDecl *F) { 997 // For the most part, the following invariant will hold: 998 // F->getFieldIndex() == LastAddedFieldIndex + 1 999 // The one exception is that Sema won't add a copy-initializer for an 1000 // unnamed bitfield, which will show up here as a gap in the sequence. 1001 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1002 "Cannot aggregate fields out of order."); 1003 LastAddedFieldIndex = F->getFieldIndex(); 1004 1005 // The 'first' and 'last' fields are chosen by offset, rather than field 1006 // index. This allows the code to support bitfields, as well as regular 1007 // fields. 1008 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1009 if (FOffset < FirstFieldOffset) { 1010 FirstField = F; 1011 FirstFieldOffset = FOffset; 1012 } else if (FOffset > LastFieldOffset) { 1013 LastField = F; 1014 LastFieldOffset = FOffset; 1015 } 1016 } 1017 1018 const VarDecl *SrcRec; 1019 const ASTRecordLayout &RecLayout; 1020 FieldDecl *FirstField; 1021 FieldDecl *LastField; 1022 uint64_t FirstFieldOffset, LastFieldOffset; 1023 unsigned LastAddedFieldIndex; 1024 }; 1025 1026 class ConstructorMemcpyizer : public FieldMemcpyizer { 1027 private: 1028 /// Get source argument for copy constructor. Returns null if not a copy 1029 /// constructor. 1030 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1031 const CXXConstructorDecl *CD, 1032 FunctionArgList &Args) { 1033 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1034 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1035 return nullptr; 1036 } 1037 1038 // Returns true if a CXXCtorInitializer represents a member initialization 1039 // that can be rolled into a memcpy. 1040 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1041 if (!MemcpyableCtor) 1042 return false; 1043 FieldDecl *Field = MemberInit->getMember(); 1044 assert(Field && "No field for member init."); 1045 QualType FieldType = Field->getType(); 1046 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1047 1048 // Bail out on non-memcpyable, not-trivially-copyable members. 1049 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1050 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1051 FieldType->isReferenceType())) 1052 return false; 1053 1054 // Bail out on volatile fields. 1055 if (!isMemcpyableField(Field)) 1056 return false; 1057 1058 // Otherwise we're good. 1059 return true; 1060 } 1061 1062 public: 1063 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1064 FunctionArgList &Args) 1065 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1066 ConstructorDecl(CD), 1067 MemcpyableCtor(CD->isDefaulted() && 1068 CD->isCopyOrMoveConstructor() && 1069 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1070 Args(Args) { } 1071 1072 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1073 if (isMemberInitMemcpyable(MemberInit)) { 1074 AggregatedInits.push_back(MemberInit); 1075 addMemcpyableField(MemberInit->getMember()); 1076 } else { 1077 emitAggregatedInits(); 1078 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1079 ConstructorDecl, Args); 1080 } 1081 } 1082 1083 void emitAggregatedInits() { 1084 if (AggregatedInits.size() <= 1) { 1085 // This memcpy is too small to be worthwhile. Fall back on default 1086 // codegen. 1087 if (!AggregatedInits.empty()) { 1088 CopyingValueRepresentation CVR(CGF); 1089 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1090 AggregatedInits[0], ConstructorDecl, Args); 1091 AggregatedInits.clear(); 1092 } 1093 reset(); 1094 return; 1095 } 1096 1097 pushEHDestructors(); 1098 emitMemcpy(); 1099 AggregatedInits.clear(); 1100 } 1101 1102 void pushEHDestructors() { 1103 Address ThisPtr = CGF.LoadCXXThisAddress(); 1104 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1105 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1106 1107 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1108 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1109 QualType FieldType = MemberInit->getAnyMember()->getType(); 1110 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1111 if (!CGF.needsEHCleanup(dtorKind)) 1112 continue; 1113 LValue FieldLHS = LHS; 1114 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1115 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1116 } 1117 } 1118 1119 void finish() { 1120 emitAggregatedInits(); 1121 } 1122 1123 private: 1124 const CXXConstructorDecl *ConstructorDecl; 1125 bool MemcpyableCtor; 1126 FunctionArgList &Args; 1127 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1128 }; 1129 1130 class AssignmentMemcpyizer : public FieldMemcpyizer { 1131 private: 1132 // Returns the memcpyable field copied by the given statement, if one 1133 // exists. Otherwise returns null. 1134 FieldDecl *getMemcpyableField(Stmt *S) { 1135 if (!AssignmentsMemcpyable) 1136 return nullptr; 1137 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1138 // Recognise trivial assignments. 1139 if (BO->getOpcode() != BO_Assign) 1140 return nullptr; 1141 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1142 if (!ME) 1143 return nullptr; 1144 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1145 if (!Field || !isMemcpyableField(Field)) 1146 return nullptr; 1147 Stmt *RHS = BO->getRHS(); 1148 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1149 RHS = EC->getSubExpr(); 1150 if (!RHS) 1151 return nullptr; 1152 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1153 if (ME2->getMemberDecl() == Field) 1154 return Field; 1155 } 1156 return nullptr; 1157 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1158 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1159 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1160 return nullptr; 1161 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1162 if (!IOA) 1163 return nullptr; 1164 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1165 if (!Field || !isMemcpyableField(Field)) 1166 return nullptr; 1167 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1168 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1169 return nullptr; 1170 return Field; 1171 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1172 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1173 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1174 return nullptr; 1175 Expr *DstPtr = CE->getArg(0); 1176 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1177 DstPtr = DC->getSubExpr(); 1178 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1179 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1180 return nullptr; 1181 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1182 if (!ME) 1183 return nullptr; 1184 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1185 if (!Field || !isMemcpyableField(Field)) 1186 return nullptr; 1187 Expr *SrcPtr = CE->getArg(1); 1188 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1189 SrcPtr = SC->getSubExpr(); 1190 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1191 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1192 return nullptr; 1193 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1194 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1195 return nullptr; 1196 return Field; 1197 } 1198 1199 return nullptr; 1200 } 1201 1202 bool AssignmentsMemcpyable; 1203 SmallVector<Stmt*, 16> AggregatedStmts; 1204 1205 public: 1206 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1207 FunctionArgList &Args) 1208 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1209 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1210 assert(Args.size() == 2); 1211 } 1212 1213 void emitAssignment(Stmt *S) { 1214 FieldDecl *F = getMemcpyableField(S); 1215 if (F) { 1216 addMemcpyableField(F); 1217 AggregatedStmts.push_back(S); 1218 } else { 1219 emitAggregatedStmts(); 1220 CGF.EmitStmt(S); 1221 } 1222 } 1223 1224 void emitAggregatedStmts() { 1225 if (AggregatedStmts.size() <= 1) { 1226 if (!AggregatedStmts.empty()) { 1227 CopyingValueRepresentation CVR(CGF); 1228 CGF.EmitStmt(AggregatedStmts[0]); 1229 } 1230 reset(); 1231 } 1232 1233 emitMemcpy(); 1234 AggregatedStmts.clear(); 1235 } 1236 1237 void finish() { 1238 emitAggregatedStmts(); 1239 } 1240 }; 1241 } // end anonymous namespace 1242 1243 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1244 const Type *BaseType = BaseInit->getBaseClass(); 1245 const auto *BaseClassDecl = 1246 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1247 return BaseClassDecl->isDynamicClass(); 1248 } 1249 1250 /// EmitCtorPrologue - This routine generates necessary code to initialize 1251 /// base classes and non-static data members belonging to this constructor. 1252 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1253 CXXCtorType CtorType, 1254 FunctionArgList &Args) { 1255 if (CD->isDelegatingConstructor()) 1256 return EmitDelegatingCXXConstructorCall(CD, Args); 1257 1258 const CXXRecordDecl *ClassDecl = CD->getParent(); 1259 1260 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1261 E = CD->init_end(); 1262 1263 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1264 if (ClassDecl->getNumVBases() && 1265 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1266 // The ABIs that don't have constructor variants need to put a branch 1267 // before the virtual base initialization code. 1268 BaseCtorContinueBB = 1269 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1270 assert(BaseCtorContinueBB); 1271 } 1272 1273 llvm::Value *const OldThis = CXXThisValue; 1274 // Virtual base initializers first. 1275 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1276 if (CGM.getCodeGenOpts().StrictVTablePointers && 1277 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1278 isInitializerOfDynamicClass(*B)) 1279 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1280 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1281 } 1282 1283 if (BaseCtorContinueBB) { 1284 // Complete object handler should continue to the remaining initializers. 1285 Builder.CreateBr(BaseCtorContinueBB); 1286 EmitBlock(BaseCtorContinueBB); 1287 } 1288 1289 // Then, non-virtual base initializers. 1290 for (; B != E && (*B)->isBaseInitializer(); B++) { 1291 assert(!(*B)->isBaseVirtual()); 1292 1293 if (CGM.getCodeGenOpts().StrictVTablePointers && 1294 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1295 isInitializerOfDynamicClass(*B)) 1296 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1297 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1298 } 1299 1300 CXXThisValue = OldThis; 1301 1302 InitializeVTablePointers(ClassDecl); 1303 1304 // And finally, initialize class members. 1305 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1306 ConstructorMemcpyizer CM(*this, CD, Args); 1307 for (; B != E; B++) { 1308 CXXCtorInitializer *Member = (*B); 1309 assert(!Member->isBaseInitializer()); 1310 assert(Member->isAnyMemberInitializer() && 1311 "Delegating initializer on non-delegating constructor"); 1312 CM.addMemberInitializer(Member); 1313 } 1314 CM.finish(); 1315 } 1316 1317 static bool 1318 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1319 1320 static bool 1321 HasTrivialDestructorBody(ASTContext &Context, 1322 const CXXRecordDecl *BaseClassDecl, 1323 const CXXRecordDecl *MostDerivedClassDecl) 1324 { 1325 // If the destructor is trivial we don't have to check anything else. 1326 if (BaseClassDecl->hasTrivialDestructor()) 1327 return true; 1328 1329 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1330 return false; 1331 1332 // Check fields. 1333 for (const auto *Field : BaseClassDecl->fields()) 1334 if (!FieldHasTrivialDestructorBody(Context, Field)) 1335 return false; 1336 1337 // Check non-virtual bases. 1338 for (const auto &I : BaseClassDecl->bases()) { 1339 if (I.isVirtual()) 1340 continue; 1341 1342 const CXXRecordDecl *NonVirtualBase = 1343 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1344 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1345 MostDerivedClassDecl)) 1346 return false; 1347 } 1348 1349 if (BaseClassDecl == MostDerivedClassDecl) { 1350 // Check virtual bases. 1351 for (const auto &I : BaseClassDecl->vbases()) { 1352 const CXXRecordDecl *VirtualBase = 1353 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1354 if (!HasTrivialDestructorBody(Context, VirtualBase, 1355 MostDerivedClassDecl)) 1356 return false; 1357 } 1358 } 1359 1360 return true; 1361 } 1362 1363 static bool 1364 FieldHasTrivialDestructorBody(ASTContext &Context, 1365 const FieldDecl *Field) 1366 { 1367 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1368 1369 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1370 if (!RT) 1371 return true; 1372 1373 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1374 1375 // The destructor for an implicit anonymous union member is never invoked. 1376 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1377 return false; 1378 1379 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1380 } 1381 1382 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1383 /// any vtable pointers before calling this destructor. 1384 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1385 const CXXDestructorDecl *Dtor) { 1386 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1387 if (!ClassDecl->isDynamicClass()) 1388 return true; 1389 1390 if (!Dtor->hasTrivialBody()) 1391 return false; 1392 1393 // Check the fields. 1394 for (const auto *Field : ClassDecl->fields()) 1395 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1396 return false; 1397 1398 return true; 1399 } 1400 1401 /// EmitDestructorBody - Emits the body of the current destructor. 1402 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1403 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1404 CXXDtorType DtorType = CurGD.getDtorType(); 1405 1406 // For an abstract class, non-base destructors are never used (and can't 1407 // be emitted in general, because vbase dtors may not have been validated 1408 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1409 // in fact emit references to them from other compilations, so emit them 1410 // as functions containing a trap instruction. 1411 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1412 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1413 TrapCall->setDoesNotReturn(); 1414 TrapCall->setDoesNotThrow(); 1415 Builder.CreateUnreachable(); 1416 Builder.ClearInsertionPoint(); 1417 return; 1418 } 1419 1420 Stmt *Body = Dtor->getBody(); 1421 if (Body) 1422 incrementProfileCounter(Body); 1423 1424 // The call to operator delete in a deleting destructor happens 1425 // outside of the function-try-block, which means it's always 1426 // possible to delegate the destructor body to the complete 1427 // destructor. Do so. 1428 if (DtorType == Dtor_Deleting) { 1429 RunCleanupsScope DtorEpilogue(*this); 1430 EnterDtorCleanups(Dtor, Dtor_Deleting); 1431 if (HaveInsertPoint()) 1432 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1433 /*Delegating=*/false, LoadCXXThisAddress()); 1434 return; 1435 } 1436 1437 // If the body is a function-try-block, enter the try before 1438 // anything else. 1439 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1440 if (isTryBody) 1441 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1442 EmitAsanPrologueOrEpilogue(false); 1443 1444 // Enter the epilogue cleanups. 1445 RunCleanupsScope DtorEpilogue(*this); 1446 1447 // If this is the complete variant, just invoke the base variant; 1448 // the epilogue will destruct the virtual bases. But we can't do 1449 // this optimization if the body is a function-try-block, because 1450 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1451 // always delegate because we might not have a definition in this TU. 1452 switch (DtorType) { 1453 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1454 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1455 1456 case Dtor_Complete: 1457 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1458 "can't emit a dtor without a body for non-Microsoft ABIs"); 1459 1460 // Enter the cleanup scopes for virtual bases. 1461 EnterDtorCleanups(Dtor, Dtor_Complete); 1462 1463 if (!isTryBody) { 1464 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1465 /*Delegating=*/false, LoadCXXThisAddress()); 1466 break; 1467 } 1468 1469 // Fallthrough: act like we're in the base variant. 1470 LLVM_FALLTHROUGH; 1471 1472 case Dtor_Base: 1473 assert(Body); 1474 1475 // Enter the cleanup scopes for fields and non-virtual bases. 1476 EnterDtorCleanups(Dtor, Dtor_Base); 1477 1478 // Initialize the vtable pointers before entering the body. 1479 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1480 // Insert the llvm.invariant.group.barrier intrinsic before initializing 1481 // the vptrs to cancel any previous assumptions we might have made. 1482 if (CGM.getCodeGenOpts().StrictVTablePointers && 1483 CGM.getCodeGenOpts().OptimizationLevel > 0) 1484 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1485 InitializeVTablePointers(Dtor->getParent()); 1486 } 1487 1488 if (isTryBody) 1489 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1490 else if (Body) 1491 EmitStmt(Body); 1492 else { 1493 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1494 // nothing to do besides what's in the epilogue 1495 } 1496 // -fapple-kext must inline any call to this dtor into 1497 // the caller's body. 1498 if (getLangOpts().AppleKext) 1499 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1500 1501 break; 1502 } 1503 1504 // Jump out through the epilogue cleanups. 1505 DtorEpilogue.ForceCleanup(); 1506 1507 // Exit the try if applicable. 1508 if (isTryBody) 1509 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1510 } 1511 1512 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1513 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1514 const Stmt *RootS = AssignOp->getBody(); 1515 assert(isa<CompoundStmt>(RootS) && 1516 "Body of an implicit assignment operator should be compound stmt."); 1517 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1518 1519 LexicalScope Scope(*this, RootCS->getSourceRange()); 1520 1521 incrementProfileCounter(RootCS); 1522 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1523 for (auto *I : RootCS->body()) 1524 AM.emitAssignment(I); 1525 AM.finish(); 1526 } 1527 1528 namespace { 1529 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1530 const CXXDestructorDecl *DD) { 1531 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1532 return CGF.EmitScalarExpr(ThisArg); 1533 return CGF.LoadCXXThis(); 1534 } 1535 1536 /// Call the operator delete associated with the current destructor. 1537 struct CallDtorDelete final : EHScopeStack::Cleanup { 1538 CallDtorDelete() {} 1539 1540 void Emit(CodeGenFunction &CGF, Flags flags) override { 1541 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1542 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1543 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1544 LoadThisForDtorDelete(CGF, Dtor), 1545 CGF.getContext().getTagDeclType(ClassDecl)); 1546 } 1547 }; 1548 1549 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1550 llvm::Value *ShouldDeleteCondition, 1551 bool ReturnAfterDelete) { 1552 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1553 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1554 llvm::Value *ShouldCallDelete 1555 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1556 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1557 1558 CGF.EmitBlock(callDeleteBB); 1559 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1560 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1561 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1562 LoadThisForDtorDelete(CGF, Dtor), 1563 CGF.getContext().getTagDeclType(ClassDecl)); 1564 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1565 ReturnAfterDelete && 1566 "unexpected value for ReturnAfterDelete"); 1567 if (ReturnAfterDelete) 1568 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1569 else 1570 CGF.Builder.CreateBr(continueBB); 1571 1572 CGF.EmitBlock(continueBB); 1573 } 1574 1575 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1576 llvm::Value *ShouldDeleteCondition; 1577 1578 public: 1579 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1580 : ShouldDeleteCondition(ShouldDeleteCondition) { 1581 assert(ShouldDeleteCondition != nullptr); 1582 } 1583 1584 void Emit(CodeGenFunction &CGF, Flags flags) override { 1585 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1586 /*ReturnAfterDelete*/false); 1587 } 1588 }; 1589 1590 class DestroyField final : public EHScopeStack::Cleanup { 1591 const FieldDecl *field; 1592 CodeGenFunction::Destroyer *destroyer; 1593 bool useEHCleanupForArray; 1594 1595 public: 1596 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1597 bool useEHCleanupForArray) 1598 : field(field), destroyer(destroyer), 1599 useEHCleanupForArray(useEHCleanupForArray) {} 1600 1601 void Emit(CodeGenFunction &CGF, Flags flags) override { 1602 // Find the address of the field. 1603 Address thisValue = CGF.LoadCXXThisAddress(); 1604 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1605 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1606 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1607 assert(LV.isSimple()); 1608 1609 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1610 flags.isForNormalCleanup() && useEHCleanupForArray); 1611 } 1612 }; 1613 1614 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1615 CharUnits::QuantityType PoisonSize) { 1616 CodeGenFunction::SanitizerScope SanScope(&CGF); 1617 // Pass in void pointer and size of region as arguments to runtime 1618 // function 1619 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1620 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1621 1622 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1623 1624 llvm::FunctionType *FnType = 1625 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1626 llvm::Value *Fn = 1627 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1628 CGF.EmitNounwindRuntimeCall(Fn, Args); 1629 } 1630 1631 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1632 const CXXDestructorDecl *Dtor; 1633 1634 public: 1635 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1636 1637 // Generate function call for handling object poisoning. 1638 // Disables tail call elimination, to prevent the current stack frame 1639 // from disappearing from the stack trace. 1640 void Emit(CodeGenFunction &CGF, Flags flags) override { 1641 const ASTRecordLayout &Layout = 1642 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1643 1644 // Nothing to poison. 1645 if (Layout.getFieldCount() == 0) 1646 return; 1647 1648 // Prevent the current stack frame from disappearing from the stack trace. 1649 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1650 1651 // Construct pointer to region to begin poisoning, and calculate poison 1652 // size, so that only members declared in this class are poisoned. 1653 ASTContext &Context = CGF.getContext(); 1654 unsigned fieldIndex = 0; 1655 int startIndex = -1; 1656 // RecordDecl::field_iterator Field; 1657 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1658 // Poison field if it is trivial 1659 if (FieldHasTrivialDestructorBody(Context, Field)) { 1660 // Start sanitizing at this field 1661 if (startIndex < 0) 1662 startIndex = fieldIndex; 1663 1664 // Currently on the last field, and it must be poisoned with the 1665 // current block. 1666 if (fieldIndex == Layout.getFieldCount() - 1) { 1667 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1668 } 1669 } else if (startIndex >= 0) { 1670 // No longer within a block of memory to poison, so poison the block 1671 PoisonMembers(CGF, startIndex, fieldIndex); 1672 // Re-set the start index 1673 startIndex = -1; 1674 } 1675 fieldIndex += 1; 1676 } 1677 } 1678 1679 private: 1680 /// \param layoutStartOffset index of the ASTRecordLayout field to 1681 /// start poisoning (inclusive) 1682 /// \param layoutEndOffset index of the ASTRecordLayout field to 1683 /// end poisoning (exclusive) 1684 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1685 unsigned layoutEndOffset) { 1686 ASTContext &Context = CGF.getContext(); 1687 const ASTRecordLayout &Layout = 1688 Context.getASTRecordLayout(Dtor->getParent()); 1689 1690 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1691 CGF.SizeTy, 1692 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1693 .getQuantity()); 1694 1695 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1696 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1697 OffsetSizePtr); 1698 1699 CharUnits::QuantityType PoisonSize; 1700 if (layoutEndOffset >= Layout.getFieldCount()) { 1701 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1702 Context.toCharUnitsFromBits( 1703 Layout.getFieldOffset(layoutStartOffset)) 1704 .getQuantity(); 1705 } else { 1706 PoisonSize = Context.toCharUnitsFromBits( 1707 Layout.getFieldOffset(layoutEndOffset) - 1708 Layout.getFieldOffset(layoutStartOffset)) 1709 .getQuantity(); 1710 } 1711 1712 if (PoisonSize == 0) 1713 return; 1714 1715 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1716 } 1717 }; 1718 1719 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1720 const CXXDestructorDecl *Dtor; 1721 1722 public: 1723 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1724 1725 // Generate function call for handling vtable pointer poisoning. 1726 void Emit(CodeGenFunction &CGF, Flags flags) override { 1727 assert(Dtor->getParent()->isDynamicClass()); 1728 (void)Dtor; 1729 ASTContext &Context = CGF.getContext(); 1730 // Poison vtable and vtable ptr if they exist for this class. 1731 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1732 1733 CharUnits::QuantityType PoisonSize = 1734 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1735 // Pass in void pointer and size of region as arguments to runtime 1736 // function 1737 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1738 } 1739 }; 1740 } // end anonymous namespace 1741 1742 /// \brief Emit all code that comes at the end of class's 1743 /// destructor. This is to call destructors on members and base classes 1744 /// in reverse order of their construction. 1745 /// 1746 /// For a deleting destructor, this also handles the case where a destroying 1747 /// operator delete completely overrides the definition. 1748 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1749 CXXDtorType DtorType) { 1750 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1751 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1752 1753 // The deleting-destructor phase just needs to call the appropriate 1754 // operator delete that Sema picked up. 1755 if (DtorType == Dtor_Deleting) { 1756 assert(DD->getOperatorDelete() && 1757 "operator delete missing - EnterDtorCleanups"); 1758 if (CXXStructorImplicitParamValue) { 1759 // If there is an implicit param to the deleting dtor, it's a boolean 1760 // telling whether this is a deleting destructor. 1761 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1762 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1763 /*ReturnAfterDelete*/true); 1764 else 1765 EHStack.pushCleanup<CallDtorDeleteConditional>( 1766 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1767 } else { 1768 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1769 const CXXRecordDecl *ClassDecl = DD->getParent(); 1770 EmitDeleteCall(DD->getOperatorDelete(), 1771 LoadThisForDtorDelete(*this, DD), 1772 getContext().getTagDeclType(ClassDecl)); 1773 EmitBranchThroughCleanup(ReturnBlock); 1774 } else { 1775 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1776 } 1777 } 1778 return; 1779 } 1780 1781 const CXXRecordDecl *ClassDecl = DD->getParent(); 1782 1783 // Unions have no bases and do not call field destructors. 1784 if (ClassDecl->isUnion()) 1785 return; 1786 1787 // The complete-destructor phase just destructs all the virtual bases. 1788 if (DtorType == Dtor_Complete) { 1789 // Poison the vtable pointer such that access after the base 1790 // and member destructors are invoked is invalid. 1791 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1792 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1793 ClassDecl->isPolymorphic()) 1794 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1795 1796 // We push them in the forward order so that they'll be popped in 1797 // the reverse order. 1798 for (const auto &Base : ClassDecl->vbases()) { 1799 CXXRecordDecl *BaseClassDecl 1800 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1801 1802 // Ignore trivial destructors. 1803 if (BaseClassDecl->hasTrivialDestructor()) 1804 continue; 1805 1806 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1807 BaseClassDecl, 1808 /*BaseIsVirtual*/ true); 1809 } 1810 1811 return; 1812 } 1813 1814 assert(DtorType == Dtor_Base); 1815 // Poison the vtable pointer if it has no virtual bases, but inherits 1816 // virtual functions. 1817 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1818 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1819 ClassDecl->isPolymorphic()) 1820 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1821 1822 // Destroy non-virtual bases. 1823 for (const auto &Base : ClassDecl->bases()) { 1824 // Ignore virtual bases. 1825 if (Base.isVirtual()) 1826 continue; 1827 1828 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1829 1830 // Ignore trivial destructors. 1831 if (BaseClassDecl->hasTrivialDestructor()) 1832 continue; 1833 1834 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1835 BaseClassDecl, 1836 /*BaseIsVirtual*/ false); 1837 } 1838 1839 // Poison fields such that access after their destructors are 1840 // invoked, and before the base class destructor runs, is invalid. 1841 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1842 SanOpts.has(SanitizerKind::Memory)) 1843 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1844 1845 // Destroy direct fields. 1846 for (const auto *Field : ClassDecl->fields()) { 1847 QualType type = Field->getType(); 1848 QualType::DestructionKind dtorKind = type.isDestructedType(); 1849 if (!dtorKind) continue; 1850 1851 // Anonymous union members do not have their destructors called. 1852 const RecordType *RT = type->getAsUnionType(); 1853 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1854 1855 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1856 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1857 getDestroyer(dtorKind), 1858 cleanupKind & EHCleanup); 1859 } 1860 } 1861 1862 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1863 /// constructor for each of several members of an array. 1864 /// 1865 /// \param ctor the constructor to call for each element 1866 /// \param arrayType the type of the array to initialize 1867 /// \param arrayBegin an arrayType* 1868 /// \param zeroInitialize true if each element should be 1869 /// zero-initialized before it is constructed 1870 void CodeGenFunction::EmitCXXAggrConstructorCall( 1871 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1872 Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1873 QualType elementType; 1874 llvm::Value *numElements = 1875 emitArrayLength(arrayType, elementType, arrayBegin); 1876 1877 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1878 } 1879 1880 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1881 /// constructor for each of several members of an array. 1882 /// 1883 /// \param ctor the constructor to call for each element 1884 /// \param numElements the number of elements in the array; 1885 /// may be zero 1886 /// \param arrayBase a T*, where T is the type constructed by ctor 1887 /// \param zeroInitialize true if each element should be 1888 /// zero-initialized before it is constructed 1889 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1890 llvm::Value *numElements, 1891 Address arrayBase, 1892 const CXXConstructExpr *E, 1893 bool zeroInitialize) { 1894 // It's legal for numElements to be zero. This can happen both 1895 // dynamically, because x can be zero in 'new A[x]', and statically, 1896 // because of GCC extensions that permit zero-length arrays. There 1897 // are probably legitimate places where we could assume that this 1898 // doesn't happen, but it's not clear that it's worth it. 1899 llvm::BranchInst *zeroCheckBranch = nullptr; 1900 1901 // Optimize for a constant count. 1902 llvm::ConstantInt *constantCount 1903 = dyn_cast<llvm::ConstantInt>(numElements); 1904 if (constantCount) { 1905 // Just skip out if the constant count is zero. 1906 if (constantCount->isZero()) return; 1907 1908 // Otherwise, emit the check. 1909 } else { 1910 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1911 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1912 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1913 EmitBlock(loopBB); 1914 } 1915 1916 // Find the end of the array. 1917 llvm::Value *arrayBegin = arrayBase.getPointer(); 1918 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1919 "arrayctor.end"); 1920 1921 // Enter the loop, setting up a phi for the current location to initialize. 1922 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1923 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1924 EmitBlock(loopBB); 1925 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1926 "arrayctor.cur"); 1927 cur->addIncoming(arrayBegin, entryBB); 1928 1929 // Inside the loop body, emit the constructor call on the array element. 1930 1931 // The alignment of the base, adjusted by the size of a single element, 1932 // provides a conservative estimate of the alignment of every element. 1933 // (This assumes we never start tracking offsetted alignments.) 1934 // 1935 // Note that these are complete objects and so we don't need to 1936 // use the non-virtual size or alignment. 1937 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1938 CharUnits eltAlignment = 1939 arrayBase.getAlignment() 1940 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1941 Address curAddr = Address(cur, eltAlignment); 1942 1943 // Zero initialize the storage, if requested. 1944 if (zeroInitialize) 1945 EmitNullInitialization(curAddr, type); 1946 1947 // C++ [class.temporary]p4: 1948 // There are two contexts in which temporaries are destroyed at a different 1949 // point than the end of the full-expression. The first context is when a 1950 // default constructor is called to initialize an element of an array. 1951 // If the constructor has one or more default arguments, the destruction of 1952 // every temporary created in a default argument expression is sequenced 1953 // before the construction of the next array element, if any. 1954 1955 { 1956 RunCleanupsScope Scope(*this); 1957 1958 // Evaluate the constructor and its arguments in a regular 1959 // partial-destroy cleanup. 1960 if (getLangOpts().Exceptions && 1961 !ctor->getParent()->hasTrivialDestructor()) { 1962 Destroyer *destroyer = destroyCXXObject; 1963 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1964 *destroyer); 1965 } 1966 1967 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1968 /*Delegating=*/false, curAddr, E, 1969 AggValueSlot::DoesNotOverlap); 1970 } 1971 1972 // Go to the next element. 1973 llvm::Value *next = 1974 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1975 "arrayctor.next"); 1976 cur->addIncoming(next, Builder.GetInsertBlock()); 1977 1978 // Check whether that's the end of the loop. 1979 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1980 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1981 Builder.CreateCondBr(done, contBB, loopBB); 1982 1983 // Patch the earlier check to skip over the loop. 1984 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1985 1986 EmitBlock(contBB); 1987 } 1988 1989 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1990 Address addr, 1991 QualType type) { 1992 const RecordType *rtype = type->castAs<RecordType>(); 1993 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1994 const CXXDestructorDecl *dtor = record->getDestructor(); 1995 assert(!dtor->isTrivial()); 1996 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1997 /*Delegating=*/false, addr); 1998 } 1999 2000 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2001 CXXCtorType Type, 2002 bool ForVirtualBase, 2003 bool Delegating, Address This, 2004 const CXXConstructExpr *E, 2005 AggValueSlot::Overlap_t Overlap) { 2006 CallArgList Args; 2007 2008 // Push the this ptr. 2009 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2010 2011 // If this is a trivial constructor, emit a memcpy now before we lose 2012 // the alignment information on the argument. 2013 // FIXME: It would be better to preserve alignment information into CallArg. 2014 if (isMemcpyEquivalentSpecialMember(D)) { 2015 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2016 2017 const Expr *Arg = E->getArg(0); 2018 LValue Src = EmitLValue(Arg); 2019 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2020 LValue Dest = MakeAddrLValue(This, DestTy); 2021 EmitAggregateCopyCtor(Dest, Src, Overlap); 2022 return; 2023 } 2024 2025 // Add the rest of the user-supplied arguments. 2026 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2027 EvaluationOrder Order = E->isListInitialization() 2028 ? EvaluationOrder::ForceLeftToRight 2029 : EvaluationOrder::Default; 2030 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2031 /*ParamsToSkip*/ 0, Order); 2032 2033 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2034 Overlap); 2035 } 2036 2037 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2038 const CXXConstructorDecl *Ctor, 2039 CXXCtorType Type, CallArgList &Args) { 2040 // We can't forward a variadic call. 2041 if (Ctor->isVariadic()) 2042 return false; 2043 2044 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2045 // If the parameters are callee-cleanup, it's not safe to forward. 2046 for (auto *P : Ctor->parameters()) 2047 if (P->getType().isDestructedType()) 2048 return false; 2049 2050 // Likewise if they're inalloca. 2051 const CGFunctionInfo &Info = 2052 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2053 if (Info.usesInAlloca()) 2054 return false; 2055 } 2056 2057 // Anything else should be OK. 2058 return true; 2059 } 2060 2061 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2062 CXXCtorType Type, 2063 bool ForVirtualBase, 2064 bool Delegating, 2065 Address This, 2066 CallArgList &Args, 2067 AggValueSlot::Overlap_t Overlap) { 2068 const CXXRecordDecl *ClassDecl = D->getParent(); 2069 2070 // C++11 [class.mfct.non-static]p2: 2071 // If a non-static member function of a class X is called for an object that 2072 // is not of type X, or of a type derived from X, the behavior is undefined. 2073 // FIXME: Provide a source location here. 2074 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), 2075 This.getPointer(), getContext().getRecordType(ClassDecl)); 2076 2077 if (D->isTrivial() && D->isDefaultConstructor()) { 2078 assert(Args.size() == 1 && "trivial default ctor with args"); 2079 return; 2080 } 2081 2082 // If this is a trivial constructor, just emit what's needed. If this is a 2083 // union copy constructor, we must emit a memcpy, because the AST does not 2084 // model that copy. 2085 if (isMemcpyEquivalentSpecialMember(D)) { 2086 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2087 2088 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2089 Address Src(Args[1].getRValue(*this).getScalarVal(), 2090 getNaturalTypeAlignment(SrcTy)); 2091 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2092 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2093 LValue DestLVal = MakeAddrLValue(This, DestTy); 2094 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2095 return; 2096 } 2097 2098 bool PassPrototypeArgs = true; 2099 // Check whether we can actually emit the constructor before trying to do so. 2100 if (auto Inherited = D->getInheritedConstructor()) { 2101 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2102 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2103 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2104 Delegating, Args); 2105 return; 2106 } 2107 } 2108 2109 // Insert any ABI-specific implicit constructor arguments. 2110 CGCXXABI::AddedStructorArgs ExtraArgs = 2111 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2112 Delegating, Args); 2113 2114 // Emit the call. 2115 llvm::Constant *CalleePtr = 2116 CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 2117 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2118 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2119 CGCallee Callee = CGCallee::forDirect(CalleePtr, D); 2120 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2121 2122 // Generate vtable assumptions if we're constructing a complete object 2123 // with a vtable. We don't do this for base subobjects for two reasons: 2124 // first, it's incorrect for classes with virtual bases, and second, we're 2125 // about to overwrite the vptrs anyway. 2126 // We also have to make sure if we can refer to vtable: 2127 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2128 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2129 // sure that definition of vtable is not hidden, 2130 // then we are always safe to refer to it. 2131 // FIXME: It looks like InstCombine is very inefficient on dealing with 2132 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2133 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2134 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2135 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2136 CGM.getCodeGenOpts().StrictVTablePointers) 2137 EmitVTableAssumptionLoads(ClassDecl, This); 2138 } 2139 2140 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2141 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2142 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2143 CallArgList Args; 2144 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext())); 2145 2146 // Forward the parameters. 2147 if (InheritedFromVBase && 2148 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2149 // Nothing to do; this construction is not responsible for constructing 2150 // the base class containing the inherited constructor. 2151 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2152 // have constructor variants? 2153 Args.push_back(ThisArg); 2154 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2155 // The inheriting constructor was inlined; just inject its arguments. 2156 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2157 "wrong number of parameters for inherited constructor call"); 2158 Args = CXXInheritedCtorInitExprArgs; 2159 Args[0] = ThisArg; 2160 } else { 2161 // The inheriting constructor was not inlined. Emit delegating arguments. 2162 Args.push_back(ThisArg); 2163 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2164 assert(OuterCtor->getNumParams() == D->getNumParams()); 2165 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2166 2167 for (const auto *Param : OuterCtor->parameters()) { 2168 assert(getContext().hasSameUnqualifiedType( 2169 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2170 Param->getType())); 2171 EmitDelegateCallArg(Args, Param, E->getLocation()); 2172 2173 // Forward __attribute__(pass_object_size). 2174 if (Param->hasAttr<PassObjectSizeAttr>()) { 2175 auto *POSParam = SizeArguments[Param]; 2176 assert(POSParam && "missing pass_object_size value for forwarding"); 2177 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2178 } 2179 } 2180 } 2181 2182 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2183 This, Args, AggValueSlot::MayOverlap); 2184 } 2185 2186 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2187 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2188 bool Delegating, CallArgList &Args) { 2189 GlobalDecl GD(Ctor, CtorType); 2190 InlinedInheritingConstructorScope Scope(*this, GD); 2191 ApplyInlineDebugLocation DebugScope(*this, GD); 2192 2193 // Save the arguments to be passed to the inherited constructor. 2194 CXXInheritedCtorInitExprArgs = Args; 2195 2196 FunctionArgList Params; 2197 QualType RetType = BuildFunctionArgList(CurGD, Params); 2198 FnRetTy = RetType; 2199 2200 // Insert any ABI-specific implicit constructor arguments. 2201 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2202 ForVirtualBase, Delegating, Args); 2203 2204 // Emit a simplified prolog. We only need to emit the implicit params. 2205 assert(Args.size() >= Params.size() && "too few arguments for call"); 2206 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2207 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2208 const RValue &RV = Args[I].getRValue(*this); 2209 assert(!RV.isComplex() && "complex indirect params not supported"); 2210 ParamValue Val = RV.isScalar() 2211 ? ParamValue::forDirect(RV.getScalarVal()) 2212 : ParamValue::forIndirect(RV.getAggregateAddress()); 2213 EmitParmDecl(*Params[I], Val, I + 1); 2214 } 2215 } 2216 2217 // Create a return value slot if the ABI implementation wants one. 2218 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2219 // value instead. 2220 if (!RetType->isVoidType()) 2221 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2222 2223 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2224 CXXThisValue = CXXABIThisValue; 2225 2226 // Directly emit the constructor initializers. 2227 EmitCtorPrologue(Ctor, CtorType, Params); 2228 } 2229 2230 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2231 llvm::Value *VTableGlobal = 2232 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2233 if (!VTableGlobal) 2234 return; 2235 2236 // We can just use the base offset in the complete class. 2237 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2238 2239 if (!NonVirtualOffset.isZero()) 2240 This = 2241 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2242 Vptr.VTableClass, Vptr.NearestVBase); 2243 2244 llvm::Value *VPtrValue = 2245 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2246 llvm::Value *Cmp = 2247 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2248 Builder.CreateAssumption(Cmp); 2249 } 2250 2251 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2252 Address This) { 2253 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2254 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2255 EmitVTableAssumptionLoad(Vptr, This); 2256 } 2257 2258 void 2259 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2260 Address This, Address Src, 2261 const CXXConstructExpr *E) { 2262 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2263 2264 CallArgList Args; 2265 2266 // Push the this ptr. 2267 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2268 2269 // Push the src ptr. 2270 QualType QT = *(FPT->param_type_begin()); 2271 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2272 Src = Builder.CreateBitCast(Src, t); 2273 Args.add(RValue::get(Src.getPointer()), QT); 2274 2275 // Skip over first argument (Src). 2276 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2277 /*ParamsToSkip*/ 1); 2278 2279 EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args, 2280 AggValueSlot::MayOverlap); 2281 } 2282 2283 void 2284 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2285 CXXCtorType CtorType, 2286 const FunctionArgList &Args, 2287 SourceLocation Loc) { 2288 CallArgList DelegateArgs; 2289 2290 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2291 assert(I != E && "no parameters to constructor"); 2292 2293 // this 2294 Address This = LoadCXXThisAddress(); 2295 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2296 ++I; 2297 2298 // FIXME: The location of the VTT parameter in the parameter list is 2299 // specific to the Itanium ABI and shouldn't be hardcoded here. 2300 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2301 assert(I != E && "cannot skip vtt parameter, already done with args"); 2302 assert((*I)->getType()->isPointerType() && 2303 "skipping parameter not of vtt type"); 2304 ++I; 2305 } 2306 2307 // Explicit arguments. 2308 for (; I != E; ++I) { 2309 const VarDecl *param = *I; 2310 // FIXME: per-argument source location 2311 EmitDelegateCallArg(DelegateArgs, param, Loc); 2312 } 2313 2314 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2315 /*Delegating=*/true, This, DelegateArgs, 2316 AggValueSlot::MayOverlap); 2317 } 2318 2319 namespace { 2320 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2321 const CXXDestructorDecl *Dtor; 2322 Address Addr; 2323 CXXDtorType Type; 2324 2325 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2326 CXXDtorType Type) 2327 : Dtor(D), Addr(Addr), Type(Type) {} 2328 2329 void Emit(CodeGenFunction &CGF, Flags flags) override { 2330 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2331 /*Delegating=*/true, Addr); 2332 } 2333 }; 2334 } // end anonymous namespace 2335 2336 void 2337 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2338 const FunctionArgList &Args) { 2339 assert(Ctor->isDelegatingConstructor()); 2340 2341 Address ThisPtr = LoadCXXThisAddress(); 2342 2343 AggValueSlot AggSlot = 2344 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2345 AggValueSlot::IsDestructed, 2346 AggValueSlot::DoesNotNeedGCBarriers, 2347 AggValueSlot::IsNotAliased, 2348 AggValueSlot::MayOverlap); 2349 2350 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2351 2352 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2353 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2354 CXXDtorType Type = 2355 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2356 2357 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2358 ClassDecl->getDestructor(), 2359 ThisPtr, Type); 2360 } 2361 } 2362 2363 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2364 CXXDtorType Type, 2365 bool ForVirtualBase, 2366 bool Delegating, 2367 Address This) { 2368 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2369 Delegating, This); 2370 } 2371 2372 namespace { 2373 struct CallLocalDtor final : EHScopeStack::Cleanup { 2374 const CXXDestructorDecl *Dtor; 2375 Address Addr; 2376 2377 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2378 : Dtor(D), Addr(Addr) {} 2379 2380 void Emit(CodeGenFunction &CGF, Flags flags) override { 2381 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2382 /*ForVirtualBase=*/false, 2383 /*Delegating=*/false, Addr); 2384 } 2385 }; 2386 } // end anonymous namespace 2387 2388 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2389 Address Addr) { 2390 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2391 } 2392 2393 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2394 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2395 if (!ClassDecl) return; 2396 if (ClassDecl->hasTrivialDestructor()) return; 2397 2398 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2399 assert(D && D->isUsed() && "destructor not marked as used!"); 2400 PushDestructorCleanup(D, Addr); 2401 } 2402 2403 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2404 // Compute the address point. 2405 llvm::Value *VTableAddressPoint = 2406 CGM.getCXXABI().getVTableAddressPointInStructor( 2407 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2408 2409 if (!VTableAddressPoint) 2410 return; 2411 2412 // Compute where to store the address point. 2413 llvm::Value *VirtualOffset = nullptr; 2414 CharUnits NonVirtualOffset = CharUnits::Zero(); 2415 2416 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2417 // We need to use the virtual base offset offset because the virtual base 2418 // might have a different offset in the most derived class. 2419 2420 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2421 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2422 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2423 } else { 2424 // We can just use the base offset in the complete class. 2425 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2426 } 2427 2428 // Apply the offsets. 2429 Address VTableField = LoadCXXThisAddress(); 2430 2431 if (!NonVirtualOffset.isZero() || VirtualOffset) 2432 VTableField = ApplyNonVirtualAndVirtualOffset( 2433 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2434 Vptr.NearestVBase); 2435 2436 // Finally, store the address point. Use the same LLVM types as the field to 2437 // support optimization. 2438 llvm::Type *VTablePtrTy = 2439 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2440 ->getPointerTo() 2441 ->getPointerTo(); 2442 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2443 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2444 2445 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2446 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2447 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2448 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2449 CGM.getCodeGenOpts().StrictVTablePointers) 2450 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2451 } 2452 2453 CodeGenFunction::VPtrsVector 2454 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2455 CodeGenFunction::VPtrsVector VPtrsResult; 2456 VisitedVirtualBasesSetTy VBases; 2457 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2458 /*NearestVBase=*/nullptr, 2459 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2460 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2461 VPtrsResult); 2462 return VPtrsResult; 2463 } 2464 2465 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2466 const CXXRecordDecl *NearestVBase, 2467 CharUnits OffsetFromNearestVBase, 2468 bool BaseIsNonVirtualPrimaryBase, 2469 const CXXRecordDecl *VTableClass, 2470 VisitedVirtualBasesSetTy &VBases, 2471 VPtrsVector &Vptrs) { 2472 // If this base is a non-virtual primary base the address point has already 2473 // been set. 2474 if (!BaseIsNonVirtualPrimaryBase) { 2475 // Initialize the vtable pointer for this base. 2476 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2477 Vptrs.push_back(Vptr); 2478 } 2479 2480 const CXXRecordDecl *RD = Base.getBase(); 2481 2482 // Traverse bases. 2483 for (const auto &I : RD->bases()) { 2484 CXXRecordDecl *BaseDecl 2485 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2486 2487 // Ignore classes without a vtable. 2488 if (!BaseDecl->isDynamicClass()) 2489 continue; 2490 2491 CharUnits BaseOffset; 2492 CharUnits BaseOffsetFromNearestVBase; 2493 bool BaseDeclIsNonVirtualPrimaryBase; 2494 2495 if (I.isVirtual()) { 2496 // Check if we've visited this virtual base before. 2497 if (!VBases.insert(BaseDecl).second) 2498 continue; 2499 2500 const ASTRecordLayout &Layout = 2501 getContext().getASTRecordLayout(VTableClass); 2502 2503 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2504 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2505 BaseDeclIsNonVirtualPrimaryBase = false; 2506 } else { 2507 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2508 2509 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2510 BaseOffsetFromNearestVBase = 2511 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2512 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2513 } 2514 2515 getVTablePointers( 2516 BaseSubobject(BaseDecl, BaseOffset), 2517 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2518 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2519 } 2520 } 2521 2522 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2523 // Ignore classes without a vtable. 2524 if (!RD->isDynamicClass()) 2525 return; 2526 2527 // Initialize the vtable pointers for this class and all of its bases. 2528 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2529 for (const VPtr &Vptr : getVTablePointers(RD)) 2530 InitializeVTablePointer(Vptr); 2531 2532 if (RD->getNumVBases()) 2533 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2534 } 2535 2536 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2537 llvm::Type *VTableTy, 2538 const CXXRecordDecl *RD) { 2539 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2540 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2541 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2542 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2543 2544 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2545 CGM.getCodeGenOpts().StrictVTablePointers) 2546 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2547 2548 return VTable; 2549 } 2550 2551 // If a class has a single non-virtual base and does not introduce or override 2552 // virtual member functions or fields, it will have the same layout as its base. 2553 // This function returns the least derived such class. 2554 // 2555 // Casting an instance of a base class to such a derived class is technically 2556 // undefined behavior, but it is a relatively common hack for introducing member 2557 // functions on class instances with specific properties (e.g. llvm::Operator) 2558 // that works under most compilers and should not have security implications, so 2559 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2560 static const CXXRecordDecl * 2561 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2562 if (!RD->field_empty()) 2563 return RD; 2564 2565 if (RD->getNumVBases() != 0) 2566 return RD; 2567 2568 if (RD->getNumBases() != 1) 2569 return RD; 2570 2571 for (const CXXMethodDecl *MD : RD->methods()) { 2572 if (MD->isVirtual()) { 2573 // Virtual member functions are only ok if they are implicit destructors 2574 // because the implicit destructor will have the same semantics as the 2575 // base class's destructor if no fields are added. 2576 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2577 continue; 2578 return RD; 2579 } 2580 } 2581 2582 return LeastDerivedClassWithSameLayout( 2583 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2584 } 2585 2586 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2587 llvm::Value *VTable, 2588 SourceLocation Loc) { 2589 if (SanOpts.has(SanitizerKind::CFIVCall)) 2590 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2591 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2592 CGM.HasHiddenLTOVisibility(RD)) { 2593 llvm::Metadata *MD = 2594 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2595 llvm::Value *TypeId = 2596 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2597 2598 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2599 llvm::Value *TypeTest = 2600 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2601 {CastedVTable, TypeId}); 2602 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2603 } 2604 } 2605 2606 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2607 llvm::Value *VTable, 2608 CFITypeCheckKind TCK, 2609 SourceLocation Loc) { 2610 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2611 RD = LeastDerivedClassWithSameLayout(RD); 2612 2613 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2614 } 2615 2616 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2617 llvm::Value *Derived, 2618 bool MayBeNull, 2619 CFITypeCheckKind TCK, 2620 SourceLocation Loc) { 2621 if (!getLangOpts().CPlusPlus) 2622 return; 2623 2624 auto *ClassTy = T->getAs<RecordType>(); 2625 if (!ClassTy) 2626 return; 2627 2628 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2629 2630 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2631 return; 2632 2633 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2634 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2635 2636 llvm::BasicBlock *ContBlock = nullptr; 2637 2638 if (MayBeNull) { 2639 llvm::Value *DerivedNotNull = 2640 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2641 2642 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2643 ContBlock = createBasicBlock("cast.cont"); 2644 2645 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2646 2647 EmitBlock(CheckBlock); 2648 } 2649 2650 llvm::Value *VTable; 2651 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2652 *this, Address(Derived, getPointerAlign()), ClassDecl); 2653 2654 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2655 2656 if (MayBeNull) { 2657 Builder.CreateBr(ContBlock); 2658 EmitBlock(ContBlock); 2659 } 2660 } 2661 2662 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2663 llvm::Value *VTable, 2664 CFITypeCheckKind TCK, 2665 SourceLocation Loc) { 2666 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2667 !CGM.HasHiddenLTOVisibility(RD)) 2668 return; 2669 2670 SanitizerMask M; 2671 llvm::SanitizerStatKind SSK; 2672 switch (TCK) { 2673 case CFITCK_VCall: 2674 M = SanitizerKind::CFIVCall; 2675 SSK = llvm::SanStat_CFI_VCall; 2676 break; 2677 case CFITCK_NVCall: 2678 M = SanitizerKind::CFINVCall; 2679 SSK = llvm::SanStat_CFI_NVCall; 2680 break; 2681 case CFITCK_DerivedCast: 2682 M = SanitizerKind::CFIDerivedCast; 2683 SSK = llvm::SanStat_CFI_DerivedCast; 2684 break; 2685 case CFITCK_UnrelatedCast: 2686 M = SanitizerKind::CFIUnrelatedCast; 2687 SSK = llvm::SanStat_CFI_UnrelatedCast; 2688 break; 2689 case CFITCK_ICall: 2690 llvm_unreachable("not expecting CFITCK_ICall"); 2691 } 2692 2693 std::string TypeName = RD->getQualifiedNameAsString(); 2694 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2695 return; 2696 2697 SanitizerScope SanScope(this); 2698 EmitSanitizerStatReport(SSK); 2699 2700 llvm::Metadata *MD = 2701 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2702 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2703 2704 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2705 llvm::Value *TypeTest = Builder.CreateCall( 2706 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2707 2708 llvm::Constant *StaticData[] = { 2709 llvm::ConstantInt::get(Int8Ty, TCK), 2710 EmitCheckSourceLocation(Loc), 2711 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2712 }; 2713 2714 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2715 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2716 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2717 return; 2718 } 2719 2720 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2721 EmitTrapCheck(TypeTest); 2722 return; 2723 } 2724 2725 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2726 CGM.getLLVMContext(), 2727 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2728 llvm::Value *ValidVtable = Builder.CreateCall( 2729 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2730 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2731 StaticData, {CastedVTable, ValidVtable}); 2732 } 2733 2734 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2735 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2736 !SanOpts.has(SanitizerKind::CFIVCall) || 2737 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2738 !CGM.HasHiddenLTOVisibility(RD)) 2739 return false; 2740 2741 std::string TypeName = RD->getQualifiedNameAsString(); 2742 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2743 SanitizerKind::CFIVCall, TypeName); 2744 } 2745 2746 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2747 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2748 SanitizerScope SanScope(this); 2749 2750 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2751 2752 llvm::Metadata *MD = 2753 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2754 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2755 2756 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2757 llvm::Value *CheckedLoad = Builder.CreateCall( 2758 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2759 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2760 TypeId}); 2761 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2762 2763 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2764 SanitizerHandler::CFICheckFail, nullptr, nullptr); 2765 2766 return Builder.CreateBitCast( 2767 Builder.CreateExtractValue(CheckedLoad, 0), 2768 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2769 } 2770 2771 void CodeGenFunction::EmitForwardingCallToLambda( 2772 const CXXMethodDecl *callOperator, 2773 CallArgList &callArgs) { 2774 // Get the address of the call operator. 2775 const CGFunctionInfo &calleeFnInfo = 2776 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2777 llvm::Constant *calleePtr = 2778 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2779 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2780 2781 // Prepare the return slot. 2782 const FunctionProtoType *FPT = 2783 callOperator->getType()->castAs<FunctionProtoType>(); 2784 QualType resultType = FPT->getReturnType(); 2785 ReturnValueSlot returnSlot; 2786 if (!resultType->isVoidType() && 2787 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2788 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2789 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2790 2791 // We don't need to separately arrange the call arguments because 2792 // the call can't be variadic anyway --- it's impossible to forward 2793 // variadic arguments. 2794 2795 // Now emit our call. 2796 auto callee = CGCallee::forDirect(calleePtr, callOperator); 2797 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2798 2799 // If necessary, copy the returned value into the slot. 2800 if (!resultType->isVoidType() && returnSlot.isNull()) { 2801 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2802 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2803 } 2804 EmitReturnOfRValue(RV, resultType); 2805 } else 2806 EmitBranchThroughCleanup(ReturnBlock); 2807 } 2808 2809 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2810 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2811 const VarDecl *variable = BD->capture_begin()->getVariable(); 2812 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2813 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2814 2815 if (CallOp->isVariadic()) { 2816 // FIXME: Making this work correctly is nasty because it requires either 2817 // cloning the body of the call operator or making the call operator 2818 // forward. 2819 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2820 return; 2821 } 2822 2823 // Start building arguments for forwarding call 2824 CallArgList CallArgs; 2825 2826 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2827 Address ThisPtr = GetAddrOfBlockDecl(variable, false); 2828 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2829 2830 // Add the rest of the parameters. 2831 for (auto param : BD->parameters()) 2832 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2833 2834 assert(!Lambda->isGenericLambda() && 2835 "generic lambda interconversion to block not implemented"); 2836 EmitForwardingCallToLambda(CallOp, CallArgs); 2837 } 2838 2839 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2840 const CXXRecordDecl *Lambda = MD->getParent(); 2841 2842 // Start building arguments for forwarding call 2843 CallArgList CallArgs; 2844 2845 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2846 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2847 CallArgs.add(RValue::get(ThisPtr), ThisType); 2848 2849 // Add the rest of the parameters. 2850 for (auto Param : MD->parameters()) 2851 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2852 2853 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2854 // For a generic lambda, find the corresponding call operator specialization 2855 // to which the call to the static-invoker shall be forwarded. 2856 if (Lambda->isGenericLambda()) { 2857 assert(MD->isFunctionTemplateSpecialization()); 2858 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2859 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2860 void *InsertPos = nullptr; 2861 FunctionDecl *CorrespondingCallOpSpecialization = 2862 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2863 assert(CorrespondingCallOpSpecialization); 2864 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2865 } 2866 EmitForwardingCallToLambda(CallOp, CallArgs); 2867 } 2868 2869 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2870 if (MD->isVariadic()) { 2871 // FIXME: Making this work correctly is nasty because it requires either 2872 // cloning the body of the call operator or making the call operator forward. 2873 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2874 return; 2875 } 2876 2877 EmitLambdaDelegatingInvokeBody(MD); 2878 } 2879