1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/CodeGenOptions.h" 25 #include "clang/Basic/TargetBuiltins.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 LValueBaseInfo *BaseInfo, 133 TBAAAccessInfo *TBAAInfo) { 134 // Ask the ABI to compute the actual address. 135 llvm::Value *ptr = 136 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 137 memberPtr, memberPtrType); 138 139 QualType memberType = memberPtrType->getPointeeType(); 140 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo, 141 TBAAInfo); 142 memberAlign = 143 CGM.getDynamicOffsetAlignment(base.getAlignment(), 144 memberPtrType->getClass()->getAsCXXRecordDecl(), 145 memberAlign); 146 return Address(ptr, memberAlign); 147 } 148 149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 150 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 151 CastExpr::path_const_iterator End) { 152 CharUnits Offset = CharUnits::Zero(); 153 154 const ASTContext &Context = getContext(); 155 const CXXRecordDecl *RD = DerivedClass; 156 157 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 158 const CXXBaseSpecifier *Base = *I; 159 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 160 161 // Get the layout. 162 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 163 164 const auto *BaseDecl = 165 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); 166 167 // Add the offset. 168 Offset += Layout.getBaseClassOffset(BaseDecl); 169 170 RD = BaseDecl; 171 } 172 173 return Offset; 174 } 175 176 llvm::Constant * 177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 178 CastExpr::path_const_iterator PathBegin, 179 CastExpr::path_const_iterator PathEnd) { 180 assert(PathBegin != PathEnd && "Base path should not be empty!"); 181 182 CharUnits Offset = 183 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 184 if (Offset.isZero()) 185 return nullptr; 186 187 llvm::Type *PtrDiffTy = 188 Types.ConvertType(getContext().getPointerDiffType()); 189 190 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 191 } 192 193 /// Gets the address of a direct base class within a complete object. 194 /// This should only be used for (1) non-virtual bases or (2) virtual bases 195 /// when the type is known to be complete (e.g. in complete destructors). 196 /// 197 /// The object pointed to by 'This' is assumed to be non-null. 198 Address 199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 200 const CXXRecordDecl *Derived, 201 const CXXRecordDecl *Base, 202 bool BaseIsVirtual) { 203 // 'this' must be a pointer (in some address space) to Derived. 204 assert(This.getElementType() == ConvertType(Derived)); 205 206 // Compute the offset of the virtual base. 207 CharUnits Offset; 208 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 209 if (BaseIsVirtual) 210 Offset = Layout.getVBaseClassOffset(Base); 211 else 212 Offset = Layout.getBaseClassOffset(Base); 213 214 // Shift and cast down to the base type. 215 // TODO: for complete types, this should be possible with a GEP. 216 Address V = This; 217 if (!Offset.isZero()) { 218 V = Builder.CreateElementBitCast(V, Int8Ty); 219 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 220 } 221 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 222 223 return V; 224 } 225 226 static Address 227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 228 CharUnits nonVirtualOffset, 229 llvm::Value *virtualOffset, 230 const CXXRecordDecl *derivedClass, 231 const CXXRecordDecl *nearestVBase) { 232 // Assert that we have something to do. 233 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 234 235 // Compute the offset from the static and dynamic components. 236 llvm::Value *baseOffset; 237 if (!nonVirtualOffset.isZero()) { 238 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 239 nonVirtualOffset.getQuantity()); 240 if (virtualOffset) { 241 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 242 } 243 } else { 244 baseOffset = virtualOffset; 245 } 246 247 // Apply the base offset. 248 llvm::Value *ptr = addr.getPointer(); 249 unsigned AddrSpace = ptr->getType()->getPointerAddressSpace(); 250 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace)); 251 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 252 253 // If we have a virtual component, the alignment of the result will 254 // be relative only to the known alignment of that vbase. 255 CharUnits alignment; 256 if (virtualOffset) { 257 assert(nearestVBase && "virtual offset without vbase?"); 258 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 259 derivedClass, nearestVBase); 260 } else { 261 alignment = addr.getAlignment(); 262 } 263 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 264 265 return Address(ptr, alignment); 266 } 267 268 Address CodeGenFunction::GetAddressOfBaseClass( 269 Address Value, const CXXRecordDecl *Derived, 270 CastExpr::path_const_iterator PathBegin, 271 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 272 SourceLocation Loc) { 273 assert(PathBegin != PathEnd && "Base path should not be empty!"); 274 275 CastExpr::path_const_iterator Start = PathBegin; 276 const CXXRecordDecl *VBase = nullptr; 277 278 // Sema has done some convenient canonicalization here: if the 279 // access path involved any virtual steps, the conversion path will 280 // *start* with a step down to the correct virtual base subobject, 281 // and hence will not require any further steps. 282 if ((*Start)->isVirtual()) { 283 VBase = cast<CXXRecordDecl>( 284 (*Start)->getType()->castAs<RecordType>()->getDecl()); 285 ++Start; 286 } 287 288 // Compute the static offset of the ultimate destination within its 289 // allocating subobject (the virtual base, if there is one, or else 290 // the "complete" object that we see). 291 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 292 VBase ? VBase : Derived, Start, PathEnd); 293 294 // If there's a virtual step, we can sometimes "devirtualize" it. 295 // For now, that's limited to when the derived type is final. 296 // TODO: "devirtualize" this for accesses to known-complete objects. 297 if (VBase && Derived->hasAttr<FinalAttr>()) { 298 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 299 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 300 NonVirtualOffset += vBaseOffset; 301 VBase = nullptr; // we no longer have a virtual step 302 } 303 304 // Get the base pointer type. 305 llvm::Type *BasePtrTy = 306 ConvertType((PathEnd[-1])->getType()) 307 ->getPointerTo(Value.getType()->getPointerAddressSpace()); 308 309 QualType DerivedTy = getContext().getRecordType(Derived); 310 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 311 312 // If the static offset is zero and we don't have a virtual step, 313 // just do a bitcast; null checks are unnecessary. 314 if (NonVirtualOffset.isZero() && !VBase) { 315 if (sanitizePerformTypeCheck()) { 316 SanitizerSet SkippedChecks; 317 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 318 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 319 DerivedTy, DerivedAlign, SkippedChecks); 320 } 321 return Builder.CreateBitCast(Value, BasePtrTy); 322 } 323 324 llvm::BasicBlock *origBB = nullptr; 325 llvm::BasicBlock *endBB = nullptr; 326 327 // Skip over the offset (and the vtable load) if we're supposed to 328 // null-check the pointer. 329 if (NullCheckValue) { 330 origBB = Builder.GetInsertBlock(); 331 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 332 endBB = createBasicBlock("cast.end"); 333 334 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 335 Builder.CreateCondBr(isNull, endBB, notNullBB); 336 EmitBlock(notNullBB); 337 } 338 339 if (sanitizePerformTypeCheck()) { 340 SanitizerSet SkippedChecks; 341 SkippedChecks.set(SanitizerKind::Null, true); 342 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 343 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 344 } 345 346 // Compute the virtual offset. 347 llvm::Value *VirtualOffset = nullptr; 348 if (VBase) { 349 VirtualOffset = 350 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 351 } 352 353 // Apply both offsets. 354 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 355 VirtualOffset, Derived, VBase); 356 357 // Cast to the destination type. 358 Value = Builder.CreateBitCast(Value, BasePtrTy); 359 360 // Build a phi if we needed a null check. 361 if (NullCheckValue) { 362 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 363 Builder.CreateBr(endBB); 364 EmitBlock(endBB); 365 366 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 367 PHI->addIncoming(Value.getPointer(), notNullBB); 368 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 369 Value = Address(PHI, Value.getAlignment()); 370 } 371 372 return Value; 373 } 374 375 Address 376 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 377 const CXXRecordDecl *Derived, 378 CastExpr::path_const_iterator PathBegin, 379 CastExpr::path_const_iterator PathEnd, 380 bool NullCheckValue) { 381 assert(PathBegin != PathEnd && "Base path should not be empty!"); 382 383 QualType DerivedTy = 384 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 385 unsigned AddrSpace = 386 BaseAddr.getPointer()->getType()->getPointerAddressSpace(); 387 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(AddrSpace); 388 389 llvm::Value *NonVirtualOffset = 390 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 391 392 if (!NonVirtualOffset) { 393 // No offset, we can just cast back. 394 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 395 } 396 397 llvm::BasicBlock *CastNull = nullptr; 398 llvm::BasicBlock *CastNotNull = nullptr; 399 llvm::BasicBlock *CastEnd = nullptr; 400 401 if (NullCheckValue) { 402 CastNull = createBasicBlock("cast.null"); 403 CastNotNull = createBasicBlock("cast.notnull"); 404 CastEnd = createBasicBlock("cast.end"); 405 406 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 407 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 408 EmitBlock(CastNotNull); 409 } 410 411 // Apply the offset. 412 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 413 Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset), 414 "sub.ptr"); 415 416 // Just cast. 417 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 418 419 // Produce a PHI if we had a null-check. 420 if (NullCheckValue) { 421 Builder.CreateBr(CastEnd); 422 EmitBlock(CastNull); 423 Builder.CreateBr(CastEnd); 424 EmitBlock(CastEnd); 425 426 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 427 PHI->addIncoming(Value, CastNotNull); 428 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 429 Value = PHI; 430 } 431 432 return Address(Value, CGM.getClassPointerAlignment(Derived)); 433 } 434 435 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 436 bool ForVirtualBase, 437 bool Delegating) { 438 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 439 // This constructor/destructor does not need a VTT parameter. 440 return nullptr; 441 } 442 443 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 444 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 445 446 llvm::Value *VTT; 447 448 uint64_t SubVTTIndex; 449 450 if (Delegating) { 451 // If this is a delegating constructor call, just load the VTT. 452 return LoadCXXVTT(); 453 } else if (RD == Base) { 454 // If the record matches the base, this is the complete ctor/dtor 455 // variant calling the base variant in a class with virtual bases. 456 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 457 "doing no-op VTT offset in base dtor/ctor?"); 458 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 459 SubVTTIndex = 0; 460 } else { 461 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 462 CharUnits BaseOffset = ForVirtualBase ? 463 Layout.getVBaseClassOffset(Base) : 464 Layout.getBaseClassOffset(Base); 465 466 SubVTTIndex = 467 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 468 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 469 } 470 471 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 472 // A VTT parameter was passed to the constructor, use it. 473 VTT = LoadCXXVTT(); 474 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 475 } else { 476 // We're the complete constructor, so get the VTT by name. 477 VTT = CGM.getVTables().GetAddrOfVTT(RD); 478 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 479 } 480 481 return VTT; 482 } 483 484 namespace { 485 /// Call the destructor for a direct base class. 486 struct CallBaseDtor final : EHScopeStack::Cleanup { 487 const CXXRecordDecl *BaseClass; 488 bool BaseIsVirtual; 489 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 490 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 491 492 void Emit(CodeGenFunction &CGF, Flags flags) override { 493 const CXXRecordDecl *DerivedClass = 494 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 495 496 const CXXDestructorDecl *D = BaseClass->getDestructor(); 497 // We are already inside a destructor, so presumably the object being 498 // destroyed should have the expected type. 499 QualType ThisTy = D->getThisObjectType(); 500 Address Addr = 501 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 502 DerivedClass, BaseClass, 503 BaseIsVirtual); 504 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 505 /*Delegating=*/false, Addr, ThisTy); 506 } 507 }; 508 509 /// A visitor which checks whether an initializer uses 'this' in a 510 /// way which requires the vtable to be properly set. 511 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 512 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 513 514 bool UsesThis; 515 516 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 517 518 // Black-list all explicit and implicit references to 'this'. 519 // 520 // Do we need to worry about external references to 'this' derived 521 // from arbitrary code? If so, then anything which runs arbitrary 522 // external code might potentially access the vtable. 523 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 524 }; 525 } // end anonymous namespace 526 527 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 528 DynamicThisUseChecker Checker(C); 529 Checker.Visit(Init); 530 return Checker.UsesThis; 531 } 532 533 static void EmitBaseInitializer(CodeGenFunction &CGF, 534 const CXXRecordDecl *ClassDecl, 535 CXXCtorInitializer *BaseInit) { 536 assert(BaseInit->isBaseInitializer() && 537 "Must have base initializer!"); 538 539 Address ThisPtr = CGF.LoadCXXThisAddress(); 540 541 const Type *BaseType = BaseInit->getBaseClass(); 542 const auto *BaseClassDecl = 543 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 544 545 bool isBaseVirtual = BaseInit->isBaseVirtual(); 546 547 // If the initializer for the base (other than the constructor 548 // itself) accesses 'this' in any way, we need to initialize the 549 // vtables. 550 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 551 CGF.InitializeVTablePointers(ClassDecl); 552 553 // We can pretend to be a complete class because it only matters for 554 // virtual bases, and we only do virtual bases for complete ctors. 555 Address V = 556 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 557 BaseClassDecl, 558 isBaseVirtual); 559 AggValueSlot AggSlot = 560 AggValueSlot::forAddr( 561 V, Qualifiers(), 562 AggValueSlot::IsDestructed, 563 AggValueSlot::DoesNotNeedGCBarriers, 564 AggValueSlot::IsNotAliased, 565 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 566 567 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 568 569 if (CGF.CGM.getLangOpts().Exceptions && 570 !BaseClassDecl->hasTrivialDestructor()) 571 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 572 isBaseVirtual); 573 } 574 575 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 576 auto *CD = dyn_cast<CXXConstructorDecl>(D); 577 if (!(CD && CD->isCopyOrMoveConstructor()) && 578 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 579 return false; 580 581 // We can emit a memcpy for a trivial copy or move constructor/assignment. 582 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 583 return true; 584 585 // We *must* emit a memcpy for a defaulted union copy or move op. 586 if (D->getParent()->isUnion() && D->isDefaulted()) 587 return true; 588 589 return false; 590 } 591 592 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 593 CXXCtorInitializer *MemberInit, 594 LValue &LHS) { 595 FieldDecl *Field = MemberInit->getAnyMember(); 596 if (MemberInit->isIndirectMemberInitializer()) { 597 // If we are initializing an anonymous union field, drill down to the field. 598 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 599 for (const auto *I : IndirectField->chain()) 600 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 601 } else { 602 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 603 } 604 } 605 606 static void EmitMemberInitializer(CodeGenFunction &CGF, 607 const CXXRecordDecl *ClassDecl, 608 CXXCtorInitializer *MemberInit, 609 const CXXConstructorDecl *Constructor, 610 FunctionArgList &Args) { 611 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 612 assert(MemberInit->isAnyMemberInitializer() && 613 "Must have member initializer!"); 614 assert(MemberInit->getInit() && "Must have initializer!"); 615 616 // non-static data member initializers. 617 FieldDecl *Field = MemberInit->getAnyMember(); 618 QualType FieldType = Field->getType(); 619 620 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 621 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 622 LValue LHS; 623 624 // If a base constructor is being emitted, create an LValue that has the 625 // non-virtual alignment. 626 if (CGF.CurGD.getCtorType() == Ctor_Base) 627 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 628 else 629 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 630 631 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 632 633 // Special case: if we are in a copy or move constructor, and we are copying 634 // an array of PODs or classes with trivial copy constructors, ignore the 635 // AST and perform the copy we know is equivalent. 636 // FIXME: This is hacky at best... if we had a bit more explicit information 637 // in the AST, we could generalize it more easily. 638 const ConstantArrayType *Array 639 = CGF.getContext().getAsConstantArrayType(FieldType); 640 if (Array && Constructor->isDefaulted() && 641 Constructor->isCopyOrMoveConstructor()) { 642 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 643 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 644 if (BaseElementTy.isPODType(CGF.getContext()) || 645 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 646 unsigned SrcArgIndex = 647 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 648 llvm::Value *SrcPtr 649 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 650 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 651 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 652 653 // Copy the aggregate. 654 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 655 LHS.isVolatileQualified()); 656 // Ensure that we destroy the objects if an exception is thrown later in 657 // the constructor. 658 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 659 if (CGF.needsEHCleanup(dtorKind)) 660 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 661 return; 662 } 663 } 664 665 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 666 } 667 668 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 669 Expr *Init) { 670 QualType FieldType = Field->getType(); 671 switch (getEvaluationKind(FieldType)) { 672 case TEK_Scalar: 673 if (LHS.isSimple()) { 674 EmitExprAsInit(Init, Field, LHS, false); 675 } else { 676 RValue RHS = RValue::get(EmitScalarExpr(Init)); 677 EmitStoreThroughLValue(RHS, LHS); 678 } 679 break; 680 case TEK_Complex: 681 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 682 break; 683 case TEK_Aggregate: { 684 AggValueSlot Slot = 685 AggValueSlot::forLValue( 686 LHS, 687 AggValueSlot::IsDestructed, 688 AggValueSlot::DoesNotNeedGCBarriers, 689 AggValueSlot::IsNotAliased, 690 getOverlapForFieldInit(Field), 691 AggValueSlot::IsNotZeroed, 692 // Checks are made by the code that calls constructor. 693 AggValueSlot::IsSanitizerChecked); 694 EmitAggExpr(Init, Slot); 695 break; 696 } 697 } 698 699 // Ensure that we destroy this object if an exception is thrown 700 // later in the constructor. 701 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 702 if (needsEHCleanup(dtorKind)) 703 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 704 } 705 706 /// Checks whether the given constructor is a valid subject for the 707 /// complete-to-base constructor delegation optimization, i.e. 708 /// emitting the complete constructor as a simple call to the base 709 /// constructor. 710 bool CodeGenFunction::IsConstructorDelegationValid( 711 const CXXConstructorDecl *Ctor) { 712 713 // Currently we disable the optimization for classes with virtual 714 // bases because (1) the addresses of parameter variables need to be 715 // consistent across all initializers but (2) the delegate function 716 // call necessarily creates a second copy of the parameter variable. 717 // 718 // The limiting example (purely theoretical AFAIK): 719 // struct A { A(int &c) { c++; } }; 720 // struct B : virtual A { 721 // B(int count) : A(count) { printf("%d\n", count); } 722 // }; 723 // ...although even this example could in principle be emitted as a 724 // delegation since the address of the parameter doesn't escape. 725 if (Ctor->getParent()->getNumVBases()) { 726 // TODO: white-list trivial vbase initializers. This case wouldn't 727 // be subject to the restrictions below. 728 729 // TODO: white-list cases where: 730 // - there are no non-reference parameters to the constructor 731 // - the initializers don't access any non-reference parameters 732 // - the initializers don't take the address of non-reference 733 // parameters 734 // - etc. 735 // If we ever add any of the above cases, remember that: 736 // - function-try-blocks will always blacklist this optimization 737 // - we need to perform the constructor prologue and cleanup in 738 // EmitConstructorBody. 739 740 return false; 741 } 742 743 // We also disable the optimization for variadic functions because 744 // it's impossible to "re-pass" varargs. 745 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) 746 return false; 747 748 // FIXME: Decide if we can do a delegation of a delegating constructor. 749 if (Ctor->isDelegatingConstructor()) 750 return false; 751 752 return true; 753 } 754 755 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 756 // to poison the extra field paddings inserted under 757 // -fsanitize-address-field-padding=1|2. 758 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 759 ASTContext &Context = getContext(); 760 const CXXRecordDecl *ClassDecl = 761 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 762 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 763 if (!ClassDecl->mayInsertExtraPadding()) return; 764 765 struct SizeAndOffset { 766 uint64_t Size; 767 uint64_t Offset; 768 }; 769 770 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 771 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 772 773 // Populate sizes and offsets of fields. 774 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 775 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 776 SSV[i].Offset = 777 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 778 779 size_t NumFields = 0; 780 for (const auto *Field : ClassDecl->fields()) { 781 const FieldDecl *D = Field; 782 std::pair<CharUnits, CharUnits> FieldInfo = 783 Context.getTypeInfoInChars(D->getType()); 784 CharUnits FieldSize = FieldInfo.first; 785 assert(NumFields < SSV.size()); 786 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 787 NumFields++; 788 } 789 assert(NumFields == SSV.size()); 790 if (SSV.size() <= 1) return; 791 792 // We will insert calls to __asan_* run-time functions. 793 // LLVM AddressSanitizer pass may decide to inline them later. 794 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 795 llvm::FunctionType *FTy = 796 llvm::FunctionType::get(CGM.VoidTy, Args, false); 797 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 798 FTy, Prologue ? "__asan_poison_intra_object_redzone" 799 : "__asan_unpoison_intra_object_redzone"); 800 801 llvm::Value *ThisPtr = LoadCXXThis(); 802 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 803 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 804 // For each field check if it has sufficient padding, 805 // if so (un)poison it with a call. 806 for (size_t i = 0; i < SSV.size(); i++) { 807 uint64_t AsanAlignment = 8; 808 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 809 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 810 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 811 if (PoisonSize < AsanAlignment || !SSV[i].Size || 812 (NextField % AsanAlignment) != 0) 813 continue; 814 Builder.CreateCall( 815 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 816 Builder.getIntN(PtrSize, PoisonSize)}); 817 } 818 } 819 820 /// EmitConstructorBody - Emits the body of the current constructor. 821 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 822 EmitAsanPrologueOrEpilogue(true); 823 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 824 CXXCtorType CtorType = CurGD.getCtorType(); 825 826 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 827 CtorType == Ctor_Complete) && 828 "can only generate complete ctor for this ABI"); 829 830 // Before we go any further, try the complete->base constructor 831 // delegation optimization. 832 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 833 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 834 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 835 return; 836 } 837 838 const FunctionDecl *Definition = nullptr; 839 Stmt *Body = Ctor->getBody(Definition); 840 assert(Definition == Ctor && "emitting wrong constructor body"); 841 842 // Enter the function-try-block before the constructor prologue if 843 // applicable. 844 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 845 if (IsTryBody) 846 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 847 848 incrementProfileCounter(Body); 849 850 RunCleanupsScope RunCleanups(*this); 851 852 // TODO: in restricted cases, we can emit the vbase initializers of 853 // a complete ctor and then delegate to the base ctor. 854 855 // Emit the constructor prologue, i.e. the base and member 856 // initializers. 857 EmitCtorPrologue(Ctor, CtorType, Args); 858 859 // Emit the body of the statement. 860 if (IsTryBody) 861 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 862 else if (Body) 863 EmitStmt(Body); 864 865 // Emit any cleanup blocks associated with the member or base 866 // initializers, which includes (along the exceptional path) the 867 // destructors for those members and bases that were fully 868 // constructed. 869 RunCleanups.ForceCleanup(); 870 871 if (IsTryBody) 872 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 873 } 874 875 namespace { 876 /// RAII object to indicate that codegen is copying the value representation 877 /// instead of the object representation. Useful when copying a struct or 878 /// class which has uninitialized members and we're only performing 879 /// lvalue-to-rvalue conversion on the object but not its members. 880 class CopyingValueRepresentation { 881 public: 882 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 883 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 884 CGF.SanOpts.set(SanitizerKind::Bool, false); 885 CGF.SanOpts.set(SanitizerKind::Enum, false); 886 } 887 ~CopyingValueRepresentation() { 888 CGF.SanOpts = OldSanOpts; 889 } 890 private: 891 CodeGenFunction &CGF; 892 SanitizerSet OldSanOpts; 893 }; 894 } // end anonymous namespace 895 896 namespace { 897 class FieldMemcpyizer { 898 public: 899 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 900 const VarDecl *SrcRec) 901 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 902 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 903 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 904 LastFieldOffset(0), LastAddedFieldIndex(0) {} 905 906 bool isMemcpyableField(FieldDecl *F) const { 907 // Never memcpy fields when we are adding poisoned paddings. 908 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 909 return false; 910 Qualifiers Qual = F->getType().getQualifiers(); 911 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 912 return false; 913 return true; 914 } 915 916 void addMemcpyableField(FieldDecl *F) { 917 if (F->isZeroSize(CGF.getContext())) 918 return; 919 if (!FirstField) 920 addInitialField(F); 921 else 922 addNextField(F); 923 } 924 925 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 926 ASTContext &Ctx = CGF.getContext(); 927 unsigned LastFieldSize = 928 LastField->isBitField() 929 ? LastField->getBitWidthValue(Ctx) 930 : Ctx.toBits( 931 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first); 932 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 933 FirstByteOffset + Ctx.getCharWidth() - 1; 934 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 935 return MemcpySize; 936 } 937 938 void emitMemcpy() { 939 // Give the subclass a chance to bail out if it feels the memcpy isn't 940 // worth it (e.g. Hasn't aggregated enough data). 941 if (!FirstField) { 942 return; 943 } 944 945 uint64_t FirstByteOffset; 946 if (FirstField->isBitField()) { 947 const CGRecordLayout &RL = 948 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 949 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 950 // FirstFieldOffset is not appropriate for bitfields, 951 // we need to use the storage offset instead. 952 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 953 } else { 954 FirstByteOffset = FirstFieldOffset; 955 } 956 957 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 958 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 959 Address ThisPtr = CGF.LoadCXXThisAddress(); 960 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 961 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 962 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 963 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 964 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 965 966 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 967 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 968 MemcpySize); 969 reset(); 970 } 971 972 void reset() { 973 FirstField = nullptr; 974 } 975 976 protected: 977 CodeGenFunction &CGF; 978 const CXXRecordDecl *ClassDecl; 979 980 private: 981 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 982 llvm::PointerType *DPT = DestPtr.getType(); 983 llvm::Type *DBP = 984 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 985 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 986 987 llvm::PointerType *SPT = SrcPtr.getType(); 988 llvm::Type *SBP = 989 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 990 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 991 992 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 993 } 994 995 void addInitialField(FieldDecl *F) { 996 FirstField = F; 997 LastField = F; 998 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 999 LastFieldOffset = FirstFieldOffset; 1000 LastAddedFieldIndex = F->getFieldIndex(); 1001 } 1002 1003 void addNextField(FieldDecl *F) { 1004 // For the most part, the following invariant will hold: 1005 // F->getFieldIndex() == LastAddedFieldIndex + 1 1006 // The one exception is that Sema won't add a copy-initializer for an 1007 // unnamed bitfield, which will show up here as a gap in the sequence. 1008 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1009 "Cannot aggregate fields out of order."); 1010 LastAddedFieldIndex = F->getFieldIndex(); 1011 1012 // The 'first' and 'last' fields are chosen by offset, rather than field 1013 // index. This allows the code to support bitfields, as well as regular 1014 // fields. 1015 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1016 if (FOffset < FirstFieldOffset) { 1017 FirstField = F; 1018 FirstFieldOffset = FOffset; 1019 } else if (FOffset >= LastFieldOffset) { 1020 LastField = F; 1021 LastFieldOffset = FOffset; 1022 } 1023 } 1024 1025 const VarDecl *SrcRec; 1026 const ASTRecordLayout &RecLayout; 1027 FieldDecl *FirstField; 1028 FieldDecl *LastField; 1029 uint64_t FirstFieldOffset, LastFieldOffset; 1030 unsigned LastAddedFieldIndex; 1031 }; 1032 1033 class ConstructorMemcpyizer : public FieldMemcpyizer { 1034 private: 1035 /// Get source argument for copy constructor. Returns null if not a copy 1036 /// constructor. 1037 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1038 const CXXConstructorDecl *CD, 1039 FunctionArgList &Args) { 1040 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1041 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1042 return nullptr; 1043 } 1044 1045 // Returns true if a CXXCtorInitializer represents a member initialization 1046 // that can be rolled into a memcpy. 1047 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1048 if (!MemcpyableCtor) 1049 return false; 1050 FieldDecl *Field = MemberInit->getMember(); 1051 assert(Field && "No field for member init."); 1052 QualType FieldType = Field->getType(); 1053 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1054 1055 // Bail out on non-memcpyable, not-trivially-copyable members. 1056 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1057 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1058 FieldType->isReferenceType())) 1059 return false; 1060 1061 // Bail out on volatile fields. 1062 if (!isMemcpyableField(Field)) 1063 return false; 1064 1065 // Otherwise we're good. 1066 return true; 1067 } 1068 1069 public: 1070 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1071 FunctionArgList &Args) 1072 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1073 ConstructorDecl(CD), 1074 MemcpyableCtor(CD->isDefaulted() && 1075 CD->isCopyOrMoveConstructor() && 1076 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1077 Args(Args) { } 1078 1079 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1080 if (isMemberInitMemcpyable(MemberInit)) { 1081 AggregatedInits.push_back(MemberInit); 1082 addMemcpyableField(MemberInit->getMember()); 1083 } else { 1084 emitAggregatedInits(); 1085 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1086 ConstructorDecl, Args); 1087 } 1088 } 1089 1090 void emitAggregatedInits() { 1091 if (AggregatedInits.size() <= 1) { 1092 // This memcpy is too small to be worthwhile. Fall back on default 1093 // codegen. 1094 if (!AggregatedInits.empty()) { 1095 CopyingValueRepresentation CVR(CGF); 1096 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1097 AggregatedInits[0], ConstructorDecl, Args); 1098 AggregatedInits.clear(); 1099 } 1100 reset(); 1101 return; 1102 } 1103 1104 pushEHDestructors(); 1105 emitMemcpy(); 1106 AggregatedInits.clear(); 1107 } 1108 1109 void pushEHDestructors() { 1110 Address ThisPtr = CGF.LoadCXXThisAddress(); 1111 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1112 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1113 1114 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1115 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1116 QualType FieldType = MemberInit->getAnyMember()->getType(); 1117 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1118 if (!CGF.needsEHCleanup(dtorKind)) 1119 continue; 1120 LValue FieldLHS = LHS; 1121 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1122 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1123 } 1124 } 1125 1126 void finish() { 1127 emitAggregatedInits(); 1128 } 1129 1130 private: 1131 const CXXConstructorDecl *ConstructorDecl; 1132 bool MemcpyableCtor; 1133 FunctionArgList &Args; 1134 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1135 }; 1136 1137 class AssignmentMemcpyizer : public FieldMemcpyizer { 1138 private: 1139 // Returns the memcpyable field copied by the given statement, if one 1140 // exists. Otherwise returns null. 1141 FieldDecl *getMemcpyableField(Stmt *S) { 1142 if (!AssignmentsMemcpyable) 1143 return nullptr; 1144 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1145 // Recognise trivial assignments. 1146 if (BO->getOpcode() != BO_Assign) 1147 return nullptr; 1148 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1149 if (!ME) 1150 return nullptr; 1151 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1152 if (!Field || !isMemcpyableField(Field)) 1153 return nullptr; 1154 Stmt *RHS = BO->getRHS(); 1155 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1156 RHS = EC->getSubExpr(); 1157 if (!RHS) 1158 return nullptr; 1159 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1160 if (ME2->getMemberDecl() == Field) 1161 return Field; 1162 } 1163 return nullptr; 1164 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1165 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1166 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1167 return nullptr; 1168 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1169 if (!IOA) 1170 return nullptr; 1171 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1172 if (!Field || !isMemcpyableField(Field)) 1173 return nullptr; 1174 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1175 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1176 return nullptr; 1177 return Field; 1178 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1179 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1180 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1181 return nullptr; 1182 Expr *DstPtr = CE->getArg(0); 1183 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1184 DstPtr = DC->getSubExpr(); 1185 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1186 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1187 return nullptr; 1188 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1189 if (!ME) 1190 return nullptr; 1191 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1192 if (!Field || !isMemcpyableField(Field)) 1193 return nullptr; 1194 Expr *SrcPtr = CE->getArg(1); 1195 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1196 SrcPtr = SC->getSubExpr(); 1197 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1198 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1199 return nullptr; 1200 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1201 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1202 return nullptr; 1203 return Field; 1204 } 1205 1206 return nullptr; 1207 } 1208 1209 bool AssignmentsMemcpyable; 1210 SmallVector<Stmt*, 16> AggregatedStmts; 1211 1212 public: 1213 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1214 FunctionArgList &Args) 1215 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1216 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1217 assert(Args.size() == 2); 1218 } 1219 1220 void emitAssignment(Stmt *S) { 1221 FieldDecl *F = getMemcpyableField(S); 1222 if (F) { 1223 addMemcpyableField(F); 1224 AggregatedStmts.push_back(S); 1225 } else { 1226 emitAggregatedStmts(); 1227 CGF.EmitStmt(S); 1228 } 1229 } 1230 1231 void emitAggregatedStmts() { 1232 if (AggregatedStmts.size() <= 1) { 1233 if (!AggregatedStmts.empty()) { 1234 CopyingValueRepresentation CVR(CGF); 1235 CGF.EmitStmt(AggregatedStmts[0]); 1236 } 1237 reset(); 1238 } 1239 1240 emitMemcpy(); 1241 AggregatedStmts.clear(); 1242 } 1243 1244 void finish() { 1245 emitAggregatedStmts(); 1246 } 1247 }; 1248 } // end anonymous namespace 1249 1250 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1251 const Type *BaseType = BaseInit->getBaseClass(); 1252 const auto *BaseClassDecl = 1253 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 1254 return BaseClassDecl->isDynamicClass(); 1255 } 1256 1257 /// EmitCtorPrologue - This routine generates necessary code to initialize 1258 /// base classes and non-static data members belonging to this constructor. 1259 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1260 CXXCtorType CtorType, 1261 FunctionArgList &Args) { 1262 if (CD->isDelegatingConstructor()) 1263 return EmitDelegatingCXXConstructorCall(CD, Args); 1264 1265 const CXXRecordDecl *ClassDecl = CD->getParent(); 1266 1267 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1268 E = CD->init_end(); 1269 1270 // Virtual base initializers first, if any. They aren't needed if: 1271 // - This is a base ctor variant 1272 // - There are no vbases 1273 // - The class is abstract, so a complete object of it cannot be constructed 1274 // 1275 // The check for an abstract class is necessary because sema may not have 1276 // marked virtual base destructors referenced. 1277 bool ConstructVBases = CtorType != Ctor_Base && 1278 ClassDecl->getNumVBases() != 0 && 1279 !ClassDecl->isAbstract(); 1280 1281 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1282 // constructor of a class with virtual bases takes an additional parameter to 1283 // conditionally construct the virtual bases. Emit that check here. 1284 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1285 if (ConstructVBases && 1286 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1287 BaseCtorContinueBB = 1288 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1289 assert(BaseCtorContinueBB); 1290 } 1291 1292 llvm::Value *const OldThis = CXXThisValue; 1293 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1294 if (!ConstructVBases) 1295 continue; 1296 if (CGM.getCodeGenOpts().StrictVTablePointers && 1297 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1298 isInitializerOfDynamicClass(*B)) 1299 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1300 EmitBaseInitializer(*this, ClassDecl, *B); 1301 } 1302 1303 if (BaseCtorContinueBB) { 1304 // Complete object handler should continue to the remaining initializers. 1305 Builder.CreateBr(BaseCtorContinueBB); 1306 EmitBlock(BaseCtorContinueBB); 1307 } 1308 1309 // Then, non-virtual base initializers. 1310 for (; B != E && (*B)->isBaseInitializer(); B++) { 1311 assert(!(*B)->isBaseVirtual()); 1312 1313 if (CGM.getCodeGenOpts().StrictVTablePointers && 1314 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1315 isInitializerOfDynamicClass(*B)) 1316 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1317 EmitBaseInitializer(*this, ClassDecl, *B); 1318 } 1319 1320 CXXThisValue = OldThis; 1321 1322 InitializeVTablePointers(ClassDecl); 1323 1324 // And finally, initialize class members. 1325 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1326 ConstructorMemcpyizer CM(*this, CD, Args); 1327 for (; B != E; B++) { 1328 CXXCtorInitializer *Member = (*B); 1329 assert(!Member->isBaseInitializer()); 1330 assert(Member->isAnyMemberInitializer() && 1331 "Delegating initializer on non-delegating constructor"); 1332 CM.addMemberInitializer(Member); 1333 } 1334 CM.finish(); 1335 } 1336 1337 static bool 1338 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1339 1340 static bool 1341 HasTrivialDestructorBody(ASTContext &Context, 1342 const CXXRecordDecl *BaseClassDecl, 1343 const CXXRecordDecl *MostDerivedClassDecl) 1344 { 1345 // If the destructor is trivial we don't have to check anything else. 1346 if (BaseClassDecl->hasTrivialDestructor()) 1347 return true; 1348 1349 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1350 return false; 1351 1352 // Check fields. 1353 for (const auto *Field : BaseClassDecl->fields()) 1354 if (!FieldHasTrivialDestructorBody(Context, Field)) 1355 return false; 1356 1357 // Check non-virtual bases. 1358 for (const auto &I : BaseClassDecl->bases()) { 1359 if (I.isVirtual()) 1360 continue; 1361 1362 const CXXRecordDecl *NonVirtualBase = 1363 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1364 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1365 MostDerivedClassDecl)) 1366 return false; 1367 } 1368 1369 if (BaseClassDecl == MostDerivedClassDecl) { 1370 // Check virtual bases. 1371 for (const auto &I : BaseClassDecl->vbases()) { 1372 const CXXRecordDecl *VirtualBase = 1373 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1374 if (!HasTrivialDestructorBody(Context, VirtualBase, 1375 MostDerivedClassDecl)) 1376 return false; 1377 } 1378 } 1379 1380 return true; 1381 } 1382 1383 static bool 1384 FieldHasTrivialDestructorBody(ASTContext &Context, 1385 const FieldDecl *Field) 1386 { 1387 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1388 1389 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1390 if (!RT) 1391 return true; 1392 1393 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1394 1395 // The destructor for an implicit anonymous union member is never invoked. 1396 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1397 return false; 1398 1399 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1400 } 1401 1402 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1403 /// any vtable pointers before calling this destructor. 1404 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1405 const CXXDestructorDecl *Dtor) { 1406 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1407 if (!ClassDecl->isDynamicClass()) 1408 return true; 1409 1410 if (!Dtor->hasTrivialBody()) 1411 return false; 1412 1413 // Check the fields. 1414 for (const auto *Field : ClassDecl->fields()) 1415 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1416 return false; 1417 1418 return true; 1419 } 1420 1421 /// EmitDestructorBody - Emits the body of the current destructor. 1422 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1423 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1424 CXXDtorType DtorType = CurGD.getDtorType(); 1425 1426 // For an abstract class, non-base destructors are never used (and can't 1427 // be emitted in general, because vbase dtors may not have been validated 1428 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1429 // in fact emit references to them from other compilations, so emit them 1430 // as functions containing a trap instruction. 1431 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1432 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1433 TrapCall->setDoesNotReturn(); 1434 TrapCall->setDoesNotThrow(); 1435 Builder.CreateUnreachable(); 1436 Builder.ClearInsertionPoint(); 1437 return; 1438 } 1439 1440 Stmt *Body = Dtor->getBody(); 1441 if (Body) 1442 incrementProfileCounter(Body); 1443 1444 // The call to operator delete in a deleting destructor happens 1445 // outside of the function-try-block, which means it's always 1446 // possible to delegate the destructor body to the complete 1447 // destructor. Do so. 1448 if (DtorType == Dtor_Deleting) { 1449 RunCleanupsScope DtorEpilogue(*this); 1450 EnterDtorCleanups(Dtor, Dtor_Deleting); 1451 if (HaveInsertPoint()) { 1452 QualType ThisTy = Dtor->getThisObjectType(); 1453 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1454 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1455 } 1456 return; 1457 } 1458 1459 // If the body is a function-try-block, enter the try before 1460 // anything else. 1461 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1462 if (isTryBody) 1463 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1464 EmitAsanPrologueOrEpilogue(false); 1465 1466 // Enter the epilogue cleanups. 1467 RunCleanupsScope DtorEpilogue(*this); 1468 1469 // If this is the complete variant, just invoke the base variant; 1470 // the epilogue will destruct the virtual bases. But we can't do 1471 // this optimization if the body is a function-try-block, because 1472 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1473 // always delegate because we might not have a definition in this TU. 1474 switch (DtorType) { 1475 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1476 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1477 1478 case Dtor_Complete: 1479 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1480 "can't emit a dtor without a body for non-Microsoft ABIs"); 1481 1482 // Enter the cleanup scopes for virtual bases. 1483 EnterDtorCleanups(Dtor, Dtor_Complete); 1484 1485 if (!isTryBody) { 1486 QualType ThisTy = Dtor->getThisObjectType(); 1487 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1488 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1489 break; 1490 } 1491 1492 // Fallthrough: act like we're in the base variant. 1493 LLVM_FALLTHROUGH; 1494 1495 case Dtor_Base: 1496 assert(Body); 1497 1498 // Enter the cleanup scopes for fields and non-virtual bases. 1499 EnterDtorCleanups(Dtor, Dtor_Base); 1500 1501 // Initialize the vtable pointers before entering the body. 1502 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1503 // Insert the llvm.launder.invariant.group intrinsic before initializing 1504 // the vptrs to cancel any previous assumptions we might have made. 1505 if (CGM.getCodeGenOpts().StrictVTablePointers && 1506 CGM.getCodeGenOpts().OptimizationLevel > 0) 1507 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1508 InitializeVTablePointers(Dtor->getParent()); 1509 } 1510 1511 if (isTryBody) 1512 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1513 else if (Body) 1514 EmitStmt(Body); 1515 else { 1516 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1517 // nothing to do besides what's in the epilogue 1518 } 1519 // -fapple-kext must inline any call to this dtor into 1520 // the caller's body. 1521 if (getLangOpts().AppleKext) 1522 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1523 1524 break; 1525 } 1526 1527 // Jump out through the epilogue cleanups. 1528 DtorEpilogue.ForceCleanup(); 1529 1530 // Exit the try if applicable. 1531 if (isTryBody) 1532 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1533 } 1534 1535 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1536 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1537 const Stmt *RootS = AssignOp->getBody(); 1538 assert(isa<CompoundStmt>(RootS) && 1539 "Body of an implicit assignment operator should be compound stmt."); 1540 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1541 1542 LexicalScope Scope(*this, RootCS->getSourceRange()); 1543 1544 incrementProfileCounter(RootCS); 1545 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1546 for (auto *I : RootCS->body()) 1547 AM.emitAssignment(I); 1548 AM.finish(); 1549 } 1550 1551 namespace { 1552 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1553 const CXXDestructorDecl *DD) { 1554 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1555 return CGF.EmitScalarExpr(ThisArg); 1556 return CGF.LoadCXXThis(); 1557 } 1558 1559 /// Call the operator delete associated with the current destructor. 1560 struct CallDtorDelete final : EHScopeStack::Cleanup { 1561 CallDtorDelete() {} 1562 1563 void Emit(CodeGenFunction &CGF, Flags flags) override { 1564 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1565 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1566 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1567 LoadThisForDtorDelete(CGF, Dtor), 1568 CGF.getContext().getTagDeclType(ClassDecl)); 1569 } 1570 }; 1571 1572 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1573 llvm::Value *ShouldDeleteCondition, 1574 bool ReturnAfterDelete) { 1575 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1576 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1577 llvm::Value *ShouldCallDelete 1578 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1579 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1580 1581 CGF.EmitBlock(callDeleteBB); 1582 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1583 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1584 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1585 LoadThisForDtorDelete(CGF, Dtor), 1586 CGF.getContext().getTagDeclType(ClassDecl)); 1587 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1588 ReturnAfterDelete && 1589 "unexpected value for ReturnAfterDelete"); 1590 if (ReturnAfterDelete) 1591 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1592 else 1593 CGF.Builder.CreateBr(continueBB); 1594 1595 CGF.EmitBlock(continueBB); 1596 } 1597 1598 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1599 llvm::Value *ShouldDeleteCondition; 1600 1601 public: 1602 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1603 : ShouldDeleteCondition(ShouldDeleteCondition) { 1604 assert(ShouldDeleteCondition != nullptr); 1605 } 1606 1607 void Emit(CodeGenFunction &CGF, Flags flags) override { 1608 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1609 /*ReturnAfterDelete*/false); 1610 } 1611 }; 1612 1613 class DestroyField final : public EHScopeStack::Cleanup { 1614 const FieldDecl *field; 1615 CodeGenFunction::Destroyer *destroyer; 1616 bool useEHCleanupForArray; 1617 1618 public: 1619 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1620 bool useEHCleanupForArray) 1621 : field(field), destroyer(destroyer), 1622 useEHCleanupForArray(useEHCleanupForArray) {} 1623 1624 void Emit(CodeGenFunction &CGF, Flags flags) override { 1625 // Find the address of the field. 1626 Address thisValue = CGF.LoadCXXThisAddress(); 1627 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1628 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1629 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1630 assert(LV.isSimple()); 1631 1632 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1633 flags.isForNormalCleanup() && useEHCleanupForArray); 1634 } 1635 }; 1636 1637 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1638 CharUnits::QuantityType PoisonSize) { 1639 CodeGenFunction::SanitizerScope SanScope(&CGF); 1640 // Pass in void pointer and size of region as arguments to runtime 1641 // function 1642 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1643 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1644 1645 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1646 1647 llvm::FunctionType *FnType = 1648 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1649 llvm::FunctionCallee Fn = 1650 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1651 CGF.EmitNounwindRuntimeCall(Fn, Args); 1652 } 1653 1654 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1655 const CXXDestructorDecl *Dtor; 1656 1657 public: 1658 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1659 1660 // Generate function call for handling object poisoning. 1661 // Disables tail call elimination, to prevent the current stack frame 1662 // from disappearing from the stack trace. 1663 void Emit(CodeGenFunction &CGF, Flags flags) override { 1664 const ASTRecordLayout &Layout = 1665 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1666 1667 // Nothing to poison. 1668 if (Layout.getFieldCount() == 0) 1669 return; 1670 1671 // Prevent the current stack frame from disappearing from the stack trace. 1672 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1673 1674 // Construct pointer to region to begin poisoning, and calculate poison 1675 // size, so that only members declared in this class are poisoned. 1676 ASTContext &Context = CGF.getContext(); 1677 unsigned fieldIndex = 0; 1678 int startIndex = -1; 1679 // RecordDecl::field_iterator Field; 1680 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1681 // Poison field if it is trivial 1682 if (FieldHasTrivialDestructorBody(Context, Field)) { 1683 // Start sanitizing at this field 1684 if (startIndex < 0) 1685 startIndex = fieldIndex; 1686 1687 // Currently on the last field, and it must be poisoned with the 1688 // current block. 1689 if (fieldIndex == Layout.getFieldCount() - 1) { 1690 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1691 } 1692 } else if (startIndex >= 0) { 1693 // No longer within a block of memory to poison, so poison the block 1694 PoisonMembers(CGF, startIndex, fieldIndex); 1695 // Re-set the start index 1696 startIndex = -1; 1697 } 1698 fieldIndex += 1; 1699 } 1700 } 1701 1702 private: 1703 /// \param layoutStartOffset index of the ASTRecordLayout field to 1704 /// start poisoning (inclusive) 1705 /// \param layoutEndOffset index of the ASTRecordLayout field to 1706 /// end poisoning (exclusive) 1707 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1708 unsigned layoutEndOffset) { 1709 ASTContext &Context = CGF.getContext(); 1710 const ASTRecordLayout &Layout = 1711 Context.getASTRecordLayout(Dtor->getParent()); 1712 1713 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1714 CGF.SizeTy, 1715 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1716 .getQuantity()); 1717 1718 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1719 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1720 OffsetSizePtr); 1721 1722 CharUnits::QuantityType PoisonSize; 1723 if (layoutEndOffset >= Layout.getFieldCount()) { 1724 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1725 Context.toCharUnitsFromBits( 1726 Layout.getFieldOffset(layoutStartOffset)) 1727 .getQuantity(); 1728 } else { 1729 PoisonSize = Context.toCharUnitsFromBits( 1730 Layout.getFieldOffset(layoutEndOffset) - 1731 Layout.getFieldOffset(layoutStartOffset)) 1732 .getQuantity(); 1733 } 1734 1735 if (PoisonSize == 0) 1736 return; 1737 1738 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1739 } 1740 }; 1741 1742 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1743 const CXXDestructorDecl *Dtor; 1744 1745 public: 1746 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1747 1748 // Generate function call for handling vtable pointer poisoning. 1749 void Emit(CodeGenFunction &CGF, Flags flags) override { 1750 assert(Dtor->getParent()->isDynamicClass()); 1751 (void)Dtor; 1752 ASTContext &Context = CGF.getContext(); 1753 // Poison vtable and vtable ptr if they exist for this class. 1754 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1755 1756 CharUnits::QuantityType PoisonSize = 1757 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1758 // Pass in void pointer and size of region as arguments to runtime 1759 // function 1760 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1761 } 1762 }; 1763 } // end anonymous namespace 1764 1765 /// Emit all code that comes at the end of class's 1766 /// destructor. This is to call destructors on members and base classes 1767 /// in reverse order of their construction. 1768 /// 1769 /// For a deleting destructor, this also handles the case where a destroying 1770 /// operator delete completely overrides the definition. 1771 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1772 CXXDtorType DtorType) { 1773 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1774 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1775 1776 // The deleting-destructor phase just needs to call the appropriate 1777 // operator delete that Sema picked up. 1778 if (DtorType == Dtor_Deleting) { 1779 assert(DD->getOperatorDelete() && 1780 "operator delete missing - EnterDtorCleanups"); 1781 if (CXXStructorImplicitParamValue) { 1782 // If there is an implicit param to the deleting dtor, it's a boolean 1783 // telling whether this is a deleting destructor. 1784 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1785 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1786 /*ReturnAfterDelete*/true); 1787 else 1788 EHStack.pushCleanup<CallDtorDeleteConditional>( 1789 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1790 } else { 1791 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1792 const CXXRecordDecl *ClassDecl = DD->getParent(); 1793 EmitDeleteCall(DD->getOperatorDelete(), 1794 LoadThisForDtorDelete(*this, DD), 1795 getContext().getTagDeclType(ClassDecl)); 1796 EmitBranchThroughCleanup(ReturnBlock); 1797 } else { 1798 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1799 } 1800 } 1801 return; 1802 } 1803 1804 const CXXRecordDecl *ClassDecl = DD->getParent(); 1805 1806 // Unions have no bases and do not call field destructors. 1807 if (ClassDecl->isUnion()) 1808 return; 1809 1810 // The complete-destructor phase just destructs all the virtual bases. 1811 if (DtorType == Dtor_Complete) { 1812 // Poison the vtable pointer such that access after the base 1813 // and member destructors are invoked is invalid. 1814 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1815 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1816 ClassDecl->isPolymorphic()) 1817 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1818 1819 // We push them in the forward order so that they'll be popped in 1820 // the reverse order. 1821 for (const auto &Base : ClassDecl->vbases()) { 1822 auto *BaseClassDecl = 1823 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); 1824 1825 // Ignore trivial destructors. 1826 if (BaseClassDecl->hasTrivialDestructor()) 1827 continue; 1828 1829 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1830 BaseClassDecl, 1831 /*BaseIsVirtual*/ true); 1832 } 1833 1834 return; 1835 } 1836 1837 assert(DtorType == Dtor_Base); 1838 // Poison the vtable pointer if it has no virtual bases, but inherits 1839 // virtual functions. 1840 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1841 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1842 ClassDecl->isPolymorphic()) 1843 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1844 1845 // Destroy non-virtual bases. 1846 for (const auto &Base : ClassDecl->bases()) { 1847 // Ignore virtual bases. 1848 if (Base.isVirtual()) 1849 continue; 1850 1851 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1852 1853 // Ignore trivial destructors. 1854 if (BaseClassDecl->hasTrivialDestructor()) 1855 continue; 1856 1857 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1858 BaseClassDecl, 1859 /*BaseIsVirtual*/ false); 1860 } 1861 1862 // Poison fields such that access after their destructors are 1863 // invoked, and before the base class destructor runs, is invalid. 1864 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1865 SanOpts.has(SanitizerKind::Memory)) 1866 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1867 1868 // Destroy direct fields. 1869 for (const auto *Field : ClassDecl->fields()) { 1870 QualType type = Field->getType(); 1871 QualType::DestructionKind dtorKind = type.isDestructedType(); 1872 if (!dtorKind) continue; 1873 1874 // Anonymous union members do not have their destructors called. 1875 const RecordType *RT = type->getAsUnionType(); 1876 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1877 1878 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1879 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1880 getDestroyer(dtorKind), 1881 cleanupKind & EHCleanup); 1882 } 1883 } 1884 1885 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1886 /// constructor for each of several members of an array. 1887 /// 1888 /// \param ctor the constructor to call for each element 1889 /// \param arrayType the type of the array to initialize 1890 /// \param arrayBegin an arrayType* 1891 /// \param zeroInitialize true if each element should be 1892 /// zero-initialized before it is constructed 1893 void CodeGenFunction::EmitCXXAggrConstructorCall( 1894 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1895 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1896 bool zeroInitialize) { 1897 QualType elementType; 1898 llvm::Value *numElements = 1899 emitArrayLength(arrayType, elementType, arrayBegin); 1900 1901 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1902 NewPointerIsChecked, zeroInitialize); 1903 } 1904 1905 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1906 /// constructor for each of several members of an array. 1907 /// 1908 /// \param ctor the constructor to call for each element 1909 /// \param numElements the number of elements in the array; 1910 /// may be zero 1911 /// \param arrayBase a T*, where T is the type constructed by ctor 1912 /// \param zeroInitialize true if each element should be 1913 /// zero-initialized before it is constructed 1914 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1915 llvm::Value *numElements, 1916 Address arrayBase, 1917 const CXXConstructExpr *E, 1918 bool NewPointerIsChecked, 1919 bool zeroInitialize) { 1920 // It's legal for numElements to be zero. This can happen both 1921 // dynamically, because x can be zero in 'new A[x]', and statically, 1922 // because of GCC extensions that permit zero-length arrays. There 1923 // are probably legitimate places where we could assume that this 1924 // doesn't happen, but it's not clear that it's worth it. 1925 llvm::BranchInst *zeroCheckBranch = nullptr; 1926 1927 // Optimize for a constant count. 1928 llvm::ConstantInt *constantCount 1929 = dyn_cast<llvm::ConstantInt>(numElements); 1930 if (constantCount) { 1931 // Just skip out if the constant count is zero. 1932 if (constantCount->isZero()) return; 1933 1934 // Otherwise, emit the check. 1935 } else { 1936 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1937 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1938 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1939 EmitBlock(loopBB); 1940 } 1941 1942 // Find the end of the array. 1943 llvm::Value *arrayBegin = arrayBase.getPointer(); 1944 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1945 "arrayctor.end"); 1946 1947 // Enter the loop, setting up a phi for the current location to initialize. 1948 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1949 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1950 EmitBlock(loopBB); 1951 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1952 "arrayctor.cur"); 1953 cur->addIncoming(arrayBegin, entryBB); 1954 1955 // Inside the loop body, emit the constructor call on the array element. 1956 1957 // The alignment of the base, adjusted by the size of a single element, 1958 // provides a conservative estimate of the alignment of every element. 1959 // (This assumes we never start tracking offsetted alignments.) 1960 // 1961 // Note that these are complete objects and so we don't need to 1962 // use the non-virtual size or alignment. 1963 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1964 CharUnits eltAlignment = 1965 arrayBase.getAlignment() 1966 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1967 Address curAddr = Address(cur, eltAlignment); 1968 1969 // Zero initialize the storage, if requested. 1970 if (zeroInitialize) 1971 EmitNullInitialization(curAddr, type); 1972 1973 // C++ [class.temporary]p4: 1974 // There are two contexts in which temporaries are destroyed at a different 1975 // point than the end of the full-expression. The first context is when a 1976 // default constructor is called to initialize an element of an array. 1977 // If the constructor has one or more default arguments, the destruction of 1978 // every temporary created in a default argument expression is sequenced 1979 // before the construction of the next array element, if any. 1980 1981 { 1982 RunCleanupsScope Scope(*this); 1983 1984 // Evaluate the constructor and its arguments in a regular 1985 // partial-destroy cleanup. 1986 if (getLangOpts().Exceptions && 1987 !ctor->getParent()->hasTrivialDestructor()) { 1988 Destroyer *destroyer = destroyCXXObject; 1989 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1990 *destroyer); 1991 } 1992 auto currAVS = AggValueSlot::forAddr( 1993 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 1994 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 1995 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 1996 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 1997 : AggValueSlot::IsNotSanitizerChecked); 1998 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1999 /*Delegating=*/false, currAVS, E); 2000 } 2001 2002 // Go to the next element. 2003 llvm::Value *next = 2004 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 2005 "arrayctor.next"); 2006 cur->addIncoming(next, Builder.GetInsertBlock()); 2007 2008 // Check whether that's the end of the loop. 2009 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2010 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2011 Builder.CreateCondBr(done, contBB, loopBB); 2012 2013 // Patch the earlier check to skip over the loop. 2014 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2015 2016 EmitBlock(contBB); 2017 } 2018 2019 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2020 Address addr, 2021 QualType type) { 2022 const RecordType *rtype = type->castAs<RecordType>(); 2023 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2024 const CXXDestructorDecl *dtor = record->getDestructor(); 2025 assert(!dtor->isTrivial()); 2026 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2027 /*Delegating=*/false, addr, type); 2028 } 2029 2030 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2031 CXXCtorType Type, 2032 bool ForVirtualBase, 2033 bool Delegating, 2034 AggValueSlot ThisAVS, 2035 const CXXConstructExpr *E) { 2036 CallArgList Args; 2037 Address This = ThisAVS.getAddress(); 2038 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2039 QualType ThisType = D->getThisType(); 2040 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); 2041 llvm::Value *ThisPtr = This.getPointer(); 2042 2043 if (SlotAS != ThisAS) { 2044 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2045 llvm::Type *NewType = 2046 ThisPtr->getType()->getPointerElementType()->getPointerTo(TargetThisAS); 2047 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2048 ThisAS, SlotAS, NewType); 2049 } 2050 2051 // Push the this ptr. 2052 Args.add(RValue::get(ThisPtr), D->getThisType()); 2053 2054 // If this is a trivial constructor, emit a memcpy now before we lose 2055 // the alignment information on the argument. 2056 // FIXME: It would be better to preserve alignment information into CallArg. 2057 if (isMemcpyEquivalentSpecialMember(D)) { 2058 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2059 2060 const Expr *Arg = E->getArg(0); 2061 LValue Src = EmitLValue(Arg); 2062 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2063 LValue Dest = MakeAddrLValue(This, DestTy); 2064 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2065 return; 2066 } 2067 2068 // Add the rest of the user-supplied arguments. 2069 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2070 EvaluationOrder Order = E->isListInitialization() 2071 ? EvaluationOrder::ForceLeftToRight 2072 : EvaluationOrder::Default; 2073 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2074 /*ParamsToSkip*/ 0, Order); 2075 2076 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2077 ThisAVS.mayOverlap(), E->getExprLoc(), 2078 ThisAVS.isSanitizerChecked()); 2079 } 2080 2081 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2082 const CXXConstructorDecl *Ctor, 2083 CXXCtorType Type, CallArgList &Args) { 2084 // We can't forward a variadic call. 2085 if (Ctor->isVariadic()) 2086 return false; 2087 2088 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2089 // If the parameters are callee-cleanup, it's not safe to forward. 2090 for (auto *P : Ctor->parameters()) 2091 if (P->needsDestruction(CGF.getContext())) 2092 return false; 2093 2094 // Likewise if they're inalloca. 2095 const CGFunctionInfo &Info = 2096 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2097 if (Info.usesInAlloca()) 2098 return false; 2099 } 2100 2101 // Anything else should be OK. 2102 return true; 2103 } 2104 2105 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2106 CXXCtorType Type, 2107 bool ForVirtualBase, 2108 bool Delegating, 2109 Address This, 2110 CallArgList &Args, 2111 AggValueSlot::Overlap_t Overlap, 2112 SourceLocation Loc, 2113 bool NewPointerIsChecked) { 2114 const CXXRecordDecl *ClassDecl = D->getParent(); 2115 2116 if (!NewPointerIsChecked) 2117 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2118 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2119 2120 if (D->isTrivial() && D->isDefaultConstructor()) { 2121 assert(Args.size() == 1 && "trivial default ctor with args"); 2122 return; 2123 } 2124 2125 // If this is a trivial constructor, just emit what's needed. If this is a 2126 // union copy constructor, we must emit a memcpy, because the AST does not 2127 // model that copy. 2128 if (isMemcpyEquivalentSpecialMember(D)) { 2129 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2130 2131 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2132 Address Src(Args[1].getRValue(*this).getScalarVal(), 2133 getNaturalTypeAlignment(SrcTy)); 2134 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2135 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2136 LValue DestLVal = MakeAddrLValue(This, DestTy); 2137 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2138 return; 2139 } 2140 2141 bool PassPrototypeArgs = true; 2142 // Check whether we can actually emit the constructor before trying to do so. 2143 if (auto Inherited = D->getInheritedConstructor()) { 2144 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2145 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2146 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2147 Delegating, Args); 2148 return; 2149 } 2150 } 2151 2152 // Insert any ABI-specific implicit constructor arguments. 2153 CGCXXABI::AddedStructorArgs ExtraArgs = 2154 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2155 Delegating, Args); 2156 2157 // Emit the call. 2158 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2159 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2160 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2161 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2162 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2163 2164 // Generate vtable assumptions if we're constructing a complete object 2165 // with a vtable. We don't do this for base subobjects for two reasons: 2166 // first, it's incorrect for classes with virtual bases, and second, we're 2167 // about to overwrite the vptrs anyway. 2168 // We also have to make sure if we can refer to vtable: 2169 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2170 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2171 // sure that definition of vtable is not hidden, 2172 // then we are always safe to refer to it. 2173 // FIXME: It looks like InstCombine is very inefficient on dealing with 2174 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2175 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2176 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2177 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2178 CGM.getCodeGenOpts().StrictVTablePointers) 2179 EmitVTableAssumptionLoads(ClassDecl, This); 2180 } 2181 2182 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2183 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2184 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2185 CallArgList Args; 2186 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2187 2188 // Forward the parameters. 2189 if (InheritedFromVBase && 2190 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2191 // Nothing to do; this construction is not responsible for constructing 2192 // the base class containing the inherited constructor. 2193 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2194 // have constructor variants? 2195 Args.push_back(ThisArg); 2196 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2197 // The inheriting constructor was inlined; just inject its arguments. 2198 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2199 "wrong number of parameters for inherited constructor call"); 2200 Args = CXXInheritedCtorInitExprArgs; 2201 Args[0] = ThisArg; 2202 } else { 2203 // The inheriting constructor was not inlined. Emit delegating arguments. 2204 Args.push_back(ThisArg); 2205 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2206 assert(OuterCtor->getNumParams() == D->getNumParams()); 2207 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2208 2209 for (const auto *Param : OuterCtor->parameters()) { 2210 assert(getContext().hasSameUnqualifiedType( 2211 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2212 Param->getType())); 2213 EmitDelegateCallArg(Args, Param, E->getLocation()); 2214 2215 // Forward __attribute__(pass_object_size). 2216 if (Param->hasAttr<PassObjectSizeAttr>()) { 2217 auto *POSParam = SizeArguments[Param]; 2218 assert(POSParam && "missing pass_object_size value for forwarding"); 2219 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2220 } 2221 } 2222 } 2223 2224 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2225 This, Args, AggValueSlot::MayOverlap, 2226 E->getLocation(), /*NewPointerIsChecked*/true); 2227 } 2228 2229 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2230 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2231 bool Delegating, CallArgList &Args) { 2232 GlobalDecl GD(Ctor, CtorType); 2233 InlinedInheritingConstructorScope Scope(*this, GD); 2234 ApplyInlineDebugLocation DebugScope(*this, GD); 2235 RunCleanupsScope RunCleanups(*this); 2236 2237 // Save the arguments to be passed to the inherited constructor. 2238 CXXInheritedCtorInitExprArgs = Args; 2239 2240 FunctionArgList Params; 2241 QualType RetType = BuildFunctionArgList(CurGD, Params); 2242 FnRetTy = RetType; 2243 2244 // Insert any ABI-specific implicit constructor arguments. 2245 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2246 ForVirtualBase, Delegating, Args); 2247 2248 // Emit a simplified prolog. We only need to emit the implicit params. 2249 assert(Args.size() >= Params.size() && "too few arguments for call"); 2250 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2251 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2252 const RValue &RV = Args[I].getRValue(*this); 2253 assert(!RV.isComplex() && "complex indirect params not supported"); 2254 ParamValue Val = RV.isScalar() 2255 ? ParamValue::forDirect(RV.getScalarVal()) 2256 : ParamValue::forIndirect(RV.getAggregateAddress()); 2257 EmitParmDecl(*Params[I], Val, I + 1); 2258 } 2259 } 2260 2261 // Create a return value slot if the ABI implementation wants one. 2262 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2263 // value instead. 2264 if (!RetType->isVoidType()) 2265 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2266 2267 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2268 CXXThisValue = CXXABIThisValue; 2269 2270 // Directly emit the constructor initializers. 2271 EmitCtorPrologue(Ctor, CtorType, Params); 2272 } 2273 2274 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2275 llvm::Value *VTableGlobal = 2276 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2277 if (!VTableGlobal) 2278 return; 2279 2280 // We can just use the base offset in the complete class. 2281 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2282 2283 if (!NonVirtualOffset.isZero()) 2284 This = 2285 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2286 Vptr.VTableClass, Vptr.NearestVBase); 2287 2288 llvm::Value *VPtrValue = 2289 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2290 llvm::Value *Cmp = 2291 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2292 Builder.CreateAssumption(Cmp); 2293 } 2294 2295 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2296 Address This) { 2297 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2298 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2299 EmitVTableAssumptionLoad(Vptr, This); 2300 } 2301 2302 void 2303 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2304 Address This, Address Src, 2305 const CXXConstructExpr *E) { 2306 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2307 2308 CallArgList Args; 2309 2310 // Push the this ptr. 2311 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2312 2313 // Push the src ptr. 2314 QualType QT = *(FPT->param_type_begin()); 2315 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2316 Src = Builder.CreateBitCast(Src, t); 2317 Args.add(RValue::get(Src.getPointer()), QT); 2318 2319 // Skip over first argument (Src). 2320 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2321 /*ParamsToSkip*/ 1); 2322 2323 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2324 /*Delegating*/false, This, Args, 2325 AggValueSlot::MayOverlap, E->getExprLoc(), 2326 /*NewPointerIsChecked*/false); 2327 } 2328 2329 void 2330 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2331 CXXCtorType CtorType, 2332 const FunctionArgList &Args, 2333 SourceLocation Loc) { 2334 CallArgList DelegateArgs; 2335 2336 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2337 assert(I != E && "no parameters to constructor"); 2338 2339 // this 2340 Address This = LoadCXXThisAddress(); 2341 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2342 ++I; 2343 2344 // FIXME: The location of the VTT parameter in the parameter list is 2345 // specific to the Itanium ABI and shouldn't be hardcoded here. 2346 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2347 assert(I != E && "cannot skip vtt parameter, already done with args"); 2348 assert((*I)->getType()->isPointerType() && 2349 "skipping parameter not of vtt type"); 2350 ++I; 2351 } 2352 2353 // Explicit arguments. 2354 for (; I != E; ++I) { 2355 const VarDecl *param = *I; 2356 // FIXME: per-argument source location 2357 EmitDelegateCallArg(DelegateArgs, param, Loc); 2358 } 2359 2360 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2361 /*Delegating=*/true, This, DelegateArgs, 2362 AggValueSlot::MayOverlap, Loc, 2363 /*NewPointerIsChecked=*/true); 2364 } 2365 2366 namespace { 2367 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2368 const CXXDestructorDecl *Dtor; 2369 Address Addr; 2370 CXXDtorType Type; 2371 2372 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2373 CXXDtorType Type) 2374 : Dtor(D), Addr(Addr), Type(Type) {} 2375 2376 void Emit(CodeGenFunction &CGF, Flags flags) override { 2377 // We are calling the destructor from within the constructor. 2378 // Therefore, "this" should have the expected type. 2379 QualType ThisTy = Dtor->getThisObjectType(); 2380 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2381 /*Delegating=*/true, Addr, ThisTy); 2382 } 2383 }; 2384 } // end anonymous namespace 2385 2386 void 2387 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2388 const FunctionArgList &Args) { 2389 assert(Ctor->isDelegatingConstructor()); 2390 2391 Address ThisPtr = LoadCXXThisAddress(); 2392 2393 AggValueSlot AggSlot = 2394 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2395 AggValueSlot::IsDestructed, 2396 AggValueSlot::DoesNotNeedGCBarriers, 2397 AggValueSlot::IsNotAliased, 2398 AggValueSlot::MayOverlap, 2399 AggValueSlot::IsNotZeroed, 2400 // Checks are made by the code that calls constructor. 2401 AggValueSlot::IsSanitizerChecked); 2402 2403 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2404 2405 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2406 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2407 CXXDtorType Type = 2408 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2409 2410 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2411 ClassDecl->getDestructor(), 2412 ThisPtr, Type); 2413 } 2414 } 2415 2416 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2417 CXXDtorType Type, 2418 bool ForVirtualBase, 2419 bool Delegating, Address This, 2420 QualType ThisTy) { 2421 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2422 Delegating, This, ThisTy); 2423 } 2424 2425 namespace { 2426 struct CallLocalDtor final : EHScopeStack::Cleanup { 2427 const CXXDestructorDecl *Dtor; 2428 Address Addr; 2429 QualType Ty; 2430 2431 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2432 : Dtor(D), Addr(Addr), Ty(Ty) {} 2433 2434 void Emit(CodeGenFunction &CGF, Flags flags) override { 2435 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2436 /*ForVirtualBase=*/false, 2437 /*Delegating=*/false, Addr, Ty); 2438 } 2439 }; 2440 } // end anonymous namespace 2441 2442 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2443 QualType T, Address Addr) { 2444 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2445 } 2446 2447 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2448 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2449 if (!ClassDecl) return; 2450 if (ClassDecl->hasTrivialDestructor()) return; 2451 2452 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2453 assert(D && D->isUsed() && "destructor not marked as used!"); 2454 PushDestructorCleanup(D, T, Addr); 2455 } 2456 2457 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2458 // Compute the address point. 2459 llvm::Value *VTableAddressPoint = 2460 CGM.getCXXABI().getVTableAddressPointInStructor( 2461 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2462 2463 if (!VTableAddressPoint) 2464 return; 2465 2466 // Compute where to store the address point. 2467 llvm::Value *VirtualOffset = nullptr; 2468 CharUnits NonVirtualOffset = CharUnits::Zero(); 2469 2470 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2471 // We need to use the virtual base offset offset because the virtual base 2472 // might have a different offset in the most derived class. 2473 2474 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2475 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2476 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2477 } else { 2478 // We can just use the base offset in the complete class. 2479 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2480 } 2481 2482 // Apply the offsets. 2483 Address VTableField = LoadCXXThisAddress(); 2484 2485 if (!NonVirtualOffset.isZero() || VirtualOffset) 2486 VTableField = ApplyNonVirtualAndVirtualOffset( 2487 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2488 Vptr.NearestVBase); 2489 2490 // Finally, store the address point. Use the same LLVM types as the field to 2491 // support optimization. 2492 llvm::Type *VTablePtrTy = 2493 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2494 ->getPointerTo() 2495 ->getPointerTo(); 2496 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2497 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2498 2499 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2500 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2501 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2502 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2503 CGM.getCodeGenOpts().StrictVTablePointers) 2504 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2505 } 2506 2507 CodeGenFunction::VPtrsVector 2508 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2509 CodeGenFunction::VPtrsVector VPtrsResult; 2510 VisitedVirtualBasesSetTy VBases; 2511 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2512 /*NearestVBase=*/nullptr, 2513 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2514 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2515 VPtrsResult); 2516 return VPtrsResult; 2517 } 2518 2519 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2520 const CXXRecordDecl *NearestVBase, 2521 CharUnits OffsetFromNearestVBase, 2522 bool BaseIsNonVirtualPrimaryBase, 2523 const CXXRecordDecl *VTableClass, 2524 VisitedVirtualBasesSetTy &VBases, 2525 VPtrsVector &Vptrs) { 2526 // If this base is a non-virtual primary base the address point has already 2527 // been set. 2528 if (!BaseIsNonVirtualPrimaryBase) { 2529 // Initialize the vtable pointer for this base. 2530 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2531 Vptrs.push_back(Vptr); 2532 } 2533 2534 const CXXRecordDecl *RD = Base.getBase(); 2535 2536 // Traverse bases. 2537 for (const auto &I : RD->bases()) { 2538 auto *BaseDecl = 2539 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2540 2541 // Ignore classes without a vtable. 2542 if (!BaseDecl->isDynamicClass()) 2543 continue; 2544 2545 CharUnits BaseOffset; 2546 CharUnits BaseOffsetFromNearestVBase; 2547 bool BaseDeclIsNonVirtualPrimaryBase; 2548 2549 if (I.isVirtual()) { 2550 // Check if we've visited this virtual base before. 2551 if (!VBases.insert(BaseDecl).second) 2552 continue; 2553 2554 const ASTRecordLayout &Layout = 2555 getContext().getASTRecordLayout(VTableClass); 2556 2557 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2558 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2559 BaseDeclIsNonVirtualPrimaryBase = false; 2560 } else { 2561 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2562 2563 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2564 BaseOffsetFromNearestVBase = 2565 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2566 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2567 } 2568 2569 getVTablePointers( 2570 BaseSubobject(BaseDecl, BaseOffset), 2571 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2572 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2573 } 2574 } 2575 2576 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2577 // Ignore classes without a vtable. 2578 if (!RD->isDynamicClass()) 2579 return; 2580 2581 // Initialize the vtable pointers for this class and all of its bases. 2582 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2583 for (const VPtr &Vptr : getVTablePointers(RD)) 2584 InitializeVTablePointer(Vptr); 2585 2586 if (RD->getNumVBases()) 2587 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2588 } 2589 2590 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2591 llvm::Type *VTableTy, 2592 const CXXRecordDecl *RD) { 2593 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2594 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2595 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2596 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2597 2598 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2599 CGM.getCodeGenOpts().StrictVTablePointers) 2600 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2601 2602 return VTable; 2603 } 2604 2605 // If a class has a single non-virtual base and does not introduce or override 2606 // virtual member functions or fields, it will have the same layout as its base. 2607 // This function returns the least derived such class. 2608 // 2609 // Casting an instance of a base class to such a derived class is technically 2610 // undefined behavior, but it is a relatively common hack for introducing member 2611 // functions on class instances with specific properties (e.g. llvm::Operator) 2612 // that works under most compilers and should not have security implications, so 2613 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2614 static const CXXRecordDecl * 2615 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2616 if (!RD->field_empty()) 2617 return RD; 2618 2619 if (RD->getNumVBases() != 0) 2620 return RD; 2621 2622 if (RD->getNumBases() != 1) 2623 return RD; 2624 2625 for (const CXXMethodDecl *MD : RD->methods()) { 2626 if (MD->isVirtual()) { 2627 // Virtual member functions are only ok if they are implicit destructors 2628 // because the implicit destructor will have the same semantics as the 2629 // base class's destructor if no fields are added. 2630 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2631 continue; 2632 return RD; 2633 } 2634 } 2635 2636 return LeastDerivedClassWithSameLayout( 2637 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2638 } 2639 2640 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2641 llvm::Value *VTable, 2642 SourceLocation Loc) { 2643 if (SanOpts.has(SanitizerKind::CFIVCall)) 2644 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2645 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2646 CGM.HasHiddenLTOVisibility(RD)) { 2647 llvm::Metadata *MD = 2648 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2649 llvm::Value *TypeId = 2650 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2651 2652 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2653 llvm::Value *TypeTest = 2654 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2655 {CastedVTable, TypeId}); 2656 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2657 } 2658 } 2659 2660 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2661 llvm::Value *VTable, 2662 CFITypeCheckKind TCK, 2663 SourceLocation Loc) { 2664 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2665 RD = LeastDerivedClassWithSameLayout(RD); 2666 2667 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2668 } 2669 2670 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2671 llvm::Value *Derived, 2672 bool MayBeNull, 2673 CFITypeCheckKind TCK, 2674 SourceLocation Loc) { 2675 if (!getLangOpts().CPlusPlus) 2676 return; 2677 2678 auto *ClassTy = T->getAs<RecordType>(); 2679 if (!ClassTy) 2680 return; 2681 2682 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2683 2684 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2685 return; 2686 2687 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2688 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2689 2690 llvm::BasicBlock *ContBlock = nullptr; 2691 2692 if (MayBeNull) { 2693 llvm::Value *DerivedNotNull = 2694 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2695 2696 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2697 ContBlock = createBasicBlock("cast.cont"); 2698 2699 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2700 2701 EmitBlock(CheckBlock); 2702 } 2703 2704 llvm::Value *VTable; 2705 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2706 *this, Address(Derived, getPointerAlign()), ClassDecl); 2707 2708 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2709 2710 if (MayBeNull) { 2711 Builder.CreateBr(ContBlock); 2712 EmitBlock(ContBlock); 2713 } 2714 } 2715 2716 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2717 llvm::Value *VTable, 2718 CFITypeCheckKind TCK, 2719 SourceLocation Loc) { 2720 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2721 !CGM.HasHiddenLTOVisibility(RD)) 2722 return; 2723 2724 SanitizerMask M; 2725 llvm::SanitizerStatKind SSK; 2726 switch (TCK) { 2727 case CFITCK_VCall: 2728 M = SanitizerKind::CFIVCall; 2729 SSK = llvm::SanStat_CFI_VCall; 2730 break; 2731 case CFITCK_NVCall: 2732 M = SanitizerKind::CFINVCall; 2733 SSK = llvm::SanStat_CFI_NVCall; 2734 break; 2735 case CFITCK_DerivedCast: 2736 M = SanitizerKind::CFIDerivedCast; 2737 SSK = llvm::SanStat_CFI_DerivedCast; 2738 break; 2739 case CFITCK_UnrelatedCast: 2740 M = SanitizerKind::CFIUnrelatedCast; 2741 SSK = llvm::SanStat_CFI_UnrelatedCast; 2742 break; 2743 case CFITCK_ICall: 2744 case CFITCK_NVMFCall: 2745 case CFITCK_VMFCall: 2746 llvm_unreachable("unexpected sanitizer kind"); 2747 } 2748 2749 std::string TypeName = RD->getQualifiedNameAsString(); 2750 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2751 return; 2752 2753 SanitizerScope SanScope(this); 2754 EmitSanitizerStatReport(SSK); 2755 2756 llvm::Metadata *MD = 2757 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2758 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2759 2760 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2761 llvm::Value *TypeTest = Builder.CreateCall( 2762 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2763 2764 llvm::Constant *StaticData[] = { 2765 llvm::ConstantInt::get(Int8Ty, TCK), 2766 EmitCheckSourceLocation(Loc), 2767 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2768 }; 2769 2770 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2771 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2772 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2773 return; 2774 } 2775 2776 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2777 EmitTrapCheck(TypeTest); 2778 return; 2779 } 2780 2781 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2782 CGM.getLLVMContext(), 2783 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2784 llvm::Value *ValidVtable = Builder.CreateCall( 2785 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2786 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2787 StaticData, {CastedVTable, ValidVtable}); 2788 } 2789 2790 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2791 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2792 !CGM.HasHiddenLTOVisibility(RD)) 2793 return false; 2794 2795 if (CGM.getCodeGenOpts().VirtualFunctionElimination) 2796 return true; 2797 2798 if (!SanOpts.has(SanitizerKind::CFIVCall) || 2799 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) 2800 return false; 2801 2802 std::string TypeName = RD->getQualifiedNameAsString(); 2803 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2804 SanitizerKind::CFIVCall, TypeName); 2805 } 2806 2807 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2808 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2809 SanitizerScope SanScope(this); 2810 2811 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2812 2813 llvm::Metadata *MD = 2814 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2815 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2816 2817 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2818 llvm::Value *CheckedLoad = Builder.CreateCall( 2819 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2820 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2821 TypeId}); 2822 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2823 2824 std::string TypeName = RD->getQualifiedNameAsString(); 2825 if (SanOpts.has(SanitizerKind::CFIVCall) && 2826 !getContext().getSanitizerBlacklist().isBlacklistedType( 2827 SanitizerKind::CFIVCall, TypeName)) { 2828 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2829 SanitizerHandler::CFICheckFail, {}, {}); 2830 } 2831 2832 return Builder.CreateBitCast( 2833 Builder.CreateExtractValue(CheckedLoad, 0), 2834 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2835 } 2836 2837 void CodeGenFunction::EmitForwardingCallToLambda( 2838 const CXXMethodDecl *callOperator, 2839 CallArgList &callArgs) { 2840 // Get the address of the call operator. 2841 const CGFunctionInfo &calleeFnInfo = 2842 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2843 llvm::Constant *calleePtr = 2844 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2845 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2846 2847 // Prepare the return slot. 2848 const FunctionProtoType *FPT = 2849 callOperator->getType()->castAs<FunctionProtoType>(); 2850 QualType resultType = FPT->getReturnType(); 2851 ReturnValueSlot returnSlot; 2852 if (!resultType->isVoidType() && 2853 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2854 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2855 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2856 2857 // We don't need to separately arrange the call arguments because 2858 // the call can't be variadic anyway --- it's impossible to forward 2859 // variadic arguments. 2860 2861 // Now emit our call. 2862 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2863 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2864 2865 // If necessary, copy the returned value into the slot. 2866 if (!resultType->isVoidType() && returnSlot.isNull()) { 2867 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2868 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2869 } 2870 EmitReturnOfRValue(RV, resultType); 2871 } else 2872 EmitBranchThroughCleanup(ReturnBlock); 2873 } 2874 2875 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2876 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2877 const VarDecl *variable = BD->capture_begin()->getVariable(); 2878 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2879 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2880 2881 if (CallOp->isVariadic()) { 2882 // FIXME: Making this work correctly is nasty because it requires either 2883 // cloning the body of the call operator or making the call operator 2884 // forward. 2885 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2886 return; 2887 } 2888 2889 // Start building arguments for forwarding call 2890 CallArgList CallArgs; 2891 2892 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2893 Address ThisPtr = GetAddrOfBlockDecl(variable); 2894 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2895 2896 // Add the rest of the parameters. 2897 for (auto param : BD->parameters()) 2898 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2899 2900 assert(!Lambda->isGenericLambda() && 2901 "generic lambda interconversion to block not implemented"); 2902 EmitForwardingCallToLambda(CallOp, CallArgs); 2903 } 2904 2905 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2906 const CXXRecordDecl *Lambda = MD->getParent(); 2907 2908 // Start building arguments for forwarding call 2909 CallArgList CallArgs; 2910 2911 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2912 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2913 CallArgs.add(RValue::get(ThisPtr), ThisType); 2914 2915 // Add the rest of the parameters. 2916 for (auto Param : MD->parameters()) 2917 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 2918 2919 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2920 // For a generic lambda, find the corresponding call operator specialization 2921 // to which the call to the static-invoker shall be forwarded. 2922 if (Lambda->isGenericLambda()) { 2923 assert(MD->isFunctionTemplateSpecialization()); 2924 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2925 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2926 void *InsertPos = nullptr; 2927 FunctionDecl *CorrespondingCallOpSpecialization = 2928 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2929 assert(CorrespondingCallOpSpecialization); 2930 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2931 } 2932 EmitForwardingCallToLambda(CallOp, CallArgs); 2933 } 2934 2935 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2936 if (MD->isVariadic()) { 2937 // FIXME: Making this work correctly is nasty because it requires either 2938 // cloning the body of the call operator or making the call operator forward. 2939 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2940 return; 2941 } 2942 2943 EmitLambdaDelegatingInvokeBody(MD); 2944 } 2945