1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 LValueBaseInfo *BaseInfo, 133 TBAAAccessInfo *TBAAInfo) { 134 // Ask the ABI to compute the actual address. 135 llvm::Value *ptr = 136 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 137 memberPtr, memberPtrType); 138 139 QualType memberType = memberPtrType->getPointeeType(); 140 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo, 141 TBAAInfo); 142 memberAlign = 143 CGM.getDynamicOffsetAlignment(base.getAlignment(), 144 memberPtrType->getClass()->getAsCXXRecordDecl(), 145 memberAlign); 146 return Address(ptr, memberAlign); 147 } 148 149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 150 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 151 CastExpr::path_const_iterator End) { 152 CharUnits Offset = CharUnits::Zero(); 153 154 const ASTContext &Context = getContext(); 155 const CXXRecordDecl *RD = DerivedClass; 156 157 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 158 const CXXBaseSpecifier *Base = *I; 159 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 160 161 // Get the layout. 162 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 163 164 const CXXRecordDecl *BaseDecl = 165 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 166 167 // Add the offset. 168 Offset += Layout.getBaseClassOffset(BaseDecl); 169 170 RD = BaseDecl; 171 } 172 173 return Offset; 174 } 175 176 llvm::Constant * 177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 178 CastExpr::path_const_iterator PathBegin, 179 CastExpr::path_const_iterator PathEnd) { 180 assert(PathBegin != PathEnd && "Base path should not be empty!"); 181 182 CharUnits Offset = 183 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 184 if (Offset.isZero()) 185 return nullptr; 186 187 llvm::Type *PtrDiffTy = 188 Types.ConvertType(getContext().getPointerDiffType()); 189 190 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 191 } 192 193 /// Gets the address of a direct base class within a complete object. 194 /// This should only be used for (1) non-virtual bases or (2) virtual bases 195 /// when the type is known to be complete (e.g. in complete destructors). 196 /// 197 /// The object pointed to by 'This' is assumed to be non-null. 198 Address 199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 200 const CXXRecordDecl *Derived, 201 const CXXRecordDecl *Base, 202 bool BaseIsVirtual) { 203 // 'this' must be a pointer (in some address space) to Derived. 204 assert(This.getElementType() == ConvertType(Derived)); 205 206 // Compute the offset of the virtual base. 207 CharUnits Offset; 208 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 209 if (BaseIsVirtual) 210 Offset = Layout.getVBaseClassOffset(Base); 211 else 212 Offset = Layout.getBaseClassOffset(Base); 213 214 // Shift and cast down to the base type. 215 // TODO: for complete types, this should be possible with a GEP. 216 Address V = This; 217 if (!Offset.isZero()) { 218 V = Builder.CreateElementBitCast(V, Int8Ty); 219 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 220 } 221 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 222 223 return V; 224 } 225 226 static Address 227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 228 CharUnits nonVirtualOffset, 229 llvm::Value *virtualOffset, 230 const CXXRecordDecl *derivedClass, 231 const CXXRecordDecl *nearestVBase) { 232 // Assert that we have something to do. 233 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 234 235 // Compute the offset from the static and dynamic components. 236 llvm::Value *baseOffset; 237 if (!nonVirtualOffset.isZero()) { 238 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 239 nonVirtualOffset.getQuantity()); 240 if (virtualOffset) { 241 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 242 } 243 } else { 244 baseOffset = virtualOffset; 245 } 246 247 // Apply the base offset. 248 llvm::Value *ptr = addr.getPointer(); 249 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 250 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 251 252 // If we have a virtual component, the alignment of the result will 253 // be relative only to the known alignment of that vbase. 254 CharUnits alignment; 255 if (virtualOffset) { 256 assert(nearestVBase && "virtual offset without vbase?"); 257 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 258 derivedClass, nearestVBase); 259 } else { 260 alignment = addr.getAlignment(); 261 } 262 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 263 264 return Address(ptr, alignment); 265 } 266 267 Address CodeGenFunction::GetAddressOfBaseClass( 268 Address Value, const CXXRecordDecl *Derived, 269 CastExpr::path_const_iterator PathBegin, 270 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 271 SourceLocation Loc) { 272 assert(PathBegin != PathEnd && "Base path should not be empty!"); 273 274 CastExpr::path_const_iterator Start = PathBegin; 275 const CXXRecordDecl *VBase = nullptr; 276 277 // Sema has done some convenient canonicalization here: if the 278 // access path involved any virtual steps, the conversion path will 279 // *start* with a step down to the correct virtual base subobject, 280 // and hence will not require any further steps. 281 if ((*Start)->isVirtual()) { 282 VBase = 283 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 284 ++Start; 285 } 286 287 // Compute the static offset of the ultimate destination within its 288 // allocating subobject (the virtual base, if there is one, or else 289 // the "complete" object that we see). 290 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 291 VBase ? VBase : Derived, Start, PathEnd); 292 293 // If there's a virtual step, we can sometimes "devirtualize" it. 294 // For now, that's limited to when the derived type is final. 295 // TODO: "devirtualize" this for accesses to known-complete objects. 296 if (VBase && Derived->hasAttr<FinalAttr>()) { 297 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 298 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 299 NonVirtualOffset += vBaseOffset; 300 VBase = nullptr; // we no longer have a virtual step 301 } 302 303 // Get the base pointer type. 304 llvm::Type *BasePtrTy = 305 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 306 307 QualType DerivedTy = getContext().getRecordType(Derived); 308 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 309 310 // If the static offset is zero and we don't have a virtual step, 311 // just do a bitcast; null checks are unnecessary. 312 if (NonVirtualOffset.isZero() && !VBase) { 313 if (sanitizePerformTypeCheck()) { 314 SanitizerSet SkippedChecks; 315 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 316 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 317 DerivedTy, DerivedAlign, SkippedChecks); 318 } 319 return Builder.CreateBitCast(Value, BasePtrTy); 320 } 321 322 llvm::BasicBlock *origBB = nullptr; 323 llvm::BasicBlock *endBB = nullptr; 324 325 // Skip over the offset (and the vtable load) if we're supposed to 326 // null-check the pointer. 327 if (NullCheckValue) { 328 origBB = Builder.GetInsertBlock(); 329 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 330 endBB = createBasicBlock("cast.end"); 331 332 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 333 Builder.CreateCondBr(isNull, endBB, notNullBB); 334 EmitBlock(notNullBB); 335 } 336 337 if (sanitizePerformTypeCheck()) { 338 SanitizerSet SkippedChecks; 339 SkippedChecks.set(SanitizerKind::Null, true); 340 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 341 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 342 } 343 344 // Compute the virtual offset. 345 llvm::Value *VirtualOffset = nullptr; 346 if (VBase) { 347 VirtualOffset = 348 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 349 } 350 351 // Apply both offsets. 352 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 353 VirtualOffset, Derived, VBase); 354 355 // Cast to the destination type. 356 Value = Builder.CreateBitCast(Value, BasePtrTy); 357 358 // Build a phi if we needed a null check. 359 if (NullCheckValue) { 360 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 361 Builder.CreateBr(endBB); 362 EmitBlock(endBB); 363 364 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 365 PHI->addIncoming(Value.getPointer(), notNullBB); 366 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 367 Value = Address(PHI, Value.getAlignment()); 368 } 369 370 return Value; 371 } 372 373 Address 374 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 375 const CXXRecordDecl *Derived, 376 CastExpr::path_const_iterator PathBegin, 377 CastExpr::path_const_iterator PathEnd, 378 bool NullCheckValue) { 379 assert(PathBegin != PathEnd && "Base path should not be empty!"); 380 381 QualType DerivedTy = 382 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 383 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 384 385 llvm::Value *NonVirtualOffset = 386 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 387 388 if (!NonVirtualOffset) { 389 // No offset, we can just cast back. 390 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 391 } 392 393 llvm::BasicBlock *CastNull = nullptr; 394 llvm::BasicBlock *CastNotNull = nullptr; 395 llvm::BasicBlock *CastEnd = nullptr; 396 397 if (NullCheckValue) { 398 CastNull = createBasicBlock("cast.null"); 399 CastNotNull = createBasicBlock("cast.notnull"); 400 CastEnd = createBasicBlock("cast.end"); 401 402 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 403 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 404 EmitBlock(CastNotNull); 405 } 406 407 // Apply the offset. 408 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 409 Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset), 410 "sub.ptr"); 411 412 // Just cast. 413 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 414 415 // Produce a PHI if we had a null-check. 416 if (NullCheckValue) { 417 Builder.CreateBr(CastEnd); 418 EmitBlock(CastNull); 419 Builder.CreateBr(CastEnd); 420 EmitBlock(CastEnd); 421 422 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 423 PHI->addIncoming(Value, CastNotNull); 424 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 425 Value = PHI; 426 } 427 428 return Address(Value, CGM.getClassPointerAlignment(Derived)); 429 } 430 431 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 432 bool ForVirtualBase, 433 bool Delegating) { 434 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 435 // This constructor/destructor does not need a VTT parameter. 436 return nullptr; 437 } 438 439 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 440 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 441 442 llvm::Value *VTT; 443 444 uint64_t SubVTTIndex; 445 446 if (Delegating) { 447 // If this is a delegating constructor call, just load the VTT. 448 return LoadCXXVTT(); 449 } else if (RD == Base) { 450 // If the record matches the base, this is the complete ctor/dtor 451 // variant calling the base variant in a class with virtual bases. 452 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 453 "doing no-op VTT offset in base dtor/ctor?"); 454 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 455 SubVTTIndex = 0; 456 } else { 457 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 458 CharUnits BaseOffset = ForVirtualBase ? 459 Layout.getVBaseClassOffset(Base) : 460 Layout.getBaseClassOffset(Base); 461 462 SubVTTIndex = 463 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 464 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 465 } 466 467 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 468 // A VTT parameter was passed to the constructor, use it. 469 VTT = LoadCXXVTT(); 470 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 471 } else { 472 // We're the complete constructor, so get the VTT by name. 473 VTT = CGM.getVTables().GetAddrOfVTT(RD); 474 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 475 } 476 477 return VTT; 478 } 479 480 namespace { 481 /// Call the destructor for a direct base class. 482 struct CallBaseDtor final : EHScopeStack::Cleanup { 483 const CXXRecordDecl *BaseClass; 484 bool BaseIsVirtual; 485 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 486 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 487 488 void Emit(CodeGenFunction &CGF, Flags flags) override { 489 const CXXRecordDecl *DerivedClass = 490 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 491 492 const CXXDestructorDecl *D = BaseClass->getDestructor(); 493 Address Addr = 494 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 495 DerivedClass, BaseClass, 496 BaseIsVirtual); 497 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 498 /*Delegating=*/false, Addr); 499 } 500 }; 501 502 /// A visitor which checks whether an initializer uses 'this' in a 503 /// way which requires the vtable to be properly set. 504 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 505 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 506 507 bool UsesThis; 508 509 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 510 511 // Black-list all explicit and implicit references to 'this'. 512 // 513 // Do we need to worry about external references to 'this' derived 514 // from arbitrary code? If so, then anything which runs arbitrary 515 // external code might potentially access the vtable. 516 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 517 }; 518 } // end anonymous namespace 519 520 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 521 DynamicThisUseChecker Checker(C); 522 Checker.Visit(Init); 523 return Checker.UsesThis; 524 } 525 526 static void EmitBaseInitializer(CodeGenFunction &CGF, 527 const CXXRecordDecl *ClassDecl, 528 CXXCtorInitializer *BaseInit, 529 CXXCtorType CtorType) { 530 assert(BaseInit->isBaseInitializer() && 531 "Must have base initializer!"); 532 533 Address ThisPtr = CGF.LoadCXXThisAddress(); 534 535 const Type *BaseType = BaseInit->getBaseClass(); 536 CXXRecordDecl *BaseClassDecl = 537 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 538 539 bool isBaseVirtual = BaseInit->isBaseVirtual(); 540 541 // The base constructor doesn't construct virtual bases. 542 if (CtorType == Ctor_Base && isBaseVirtual) 543 return; 544 545 // If the initializer for the base (other than the constructor 546 // itself) accesses 'this' in any way, we need to initialize the 547 // vtables. 548 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 549 CGF.InitializeVTablePointers(ClassDecl); 550 551 // We can pretend to be a complete class because it only matters for 552 // virtual bases, and we only do virtual bases for complete ctors. 553 Address V = 554 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 555 BaseClassDecl, 556 isBaseVirtual); 557 AggValueSlot AggSlot = 558 AggValueSlot::forAddr(V, Qualifiers(), 559 AggValueSlot::IsDestructed, 560 AggValueSlot::DoesNotNeedGCBarriers, 561 AggValueSlot::IsNotAliased); 562 563 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 564 565 if (CGF.CGM.getLangOpts().Exceptions && 566 !BaseClassDecl->hasTrivialDestructor()) 567 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 568 isBaseVirtual); 569 } 570 571 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 572 auto *CD = dyn_cast<CXXConstructorDecl>(D); 573 if (!(CD && CD->isCopyOrMoveConstructor()) && 574 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 575 return false; 576 577 // We can emit a memcpy for a trivial copy or move constructor/assignment. 578 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 579 return true; 580 581 // We *must* emit a memcpy for a defaulted union copy or move op. 582 if (D->getParent()->isUnion() && D->isDefaulted()) 583 return true; 584 585 return false; 586 } 587 588 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 589 CXXCtorInitializer *MemberInit, 590 LValue &LHS) { 591 FieldDecl *Field = MemberInit->getAnyMember(); 592 if (MemberInit->isIndirectMemberInitializer()) { 593 // If we are initializing an anonymous union field, drill down to the field. 594 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 595 for (const auto *I : IndirectField->chain()) 596 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 597 } else { 598 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 599 } 600 } 601 602 static void EmitMemberInitializer(CodeGenFunction &CGF, 603 const CXXRecordDecl *ClassDecl, 604 CXXCtorInitializer *MemberInit, 605 const CXXConstructorDecl *Constructor, 606 FunctionArgList &Args) { 607 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 608 assert(MemberInit->isAnyMemberInitializer() && 609 "Must have member initializer!"); 610 assert(MemberInit->getInit() && "Must have initializer!"); 611 612 // non-static data member initializers. 613 FieldDecl *Field = MemberInit->getAnyMember(); 614 QualType FieldType = Field->getType(); 615 616 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 617 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 618 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 619 620 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 621 622 // Special case: if we are in a copy or move constructor, and we are copying 623 // an array of PODs or classes with trivial copy constructors, ignore the 624 // AST and perform the copy we know is equivalent. 625 // FIXME: This is hacky at best... if we had a bit more explicit information 626 // in the AST, we could generalize it more easily. 627 const ConstantArrayType *Array 628 = CGF.getContext().getAsConstantArrayType(FieldType); 629 if (Array && Constructor->isDefaulted() && 630 Constructor->isCopyOrMoveConstructor()) { 631 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 632 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 633 if (BaseElementTy.isPODType(CGF.getContext()) || 634 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 635 unsigned SrcArgIndex = 636 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 637 llvm::Value *SrcPtr 638 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 639 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 640 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 641 642 // Copy the aggregate. 643 CGF.EmitAggregateCopy(LHS, Src, FieldType, LHS.isVolatileQualified()); 644 // Ensure that we destroy the objects if an exception is thrown later in 645 // the constructor. 646 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 647 if (CGF.needsEHCleanup(dtorKind)) 648 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 649 return; 650 } 651 } 652 653 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 654 } 655 656 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 657 Expr *Init) { 658 QualType FieldType = Field->getType(); 659 switch (getEvaluationKind(FieldType)) { 660 case TEK_Scalar: 661 if (LHS.isSimple()) { 662 EmitExprAsInit(Init, Field, LHS, false); 663 } else { 664 RValue RHS = RValue::get(EmitScalarExpr(Init)); 665 EmitStoreThroughLValue(RHS, LHS); 666 } 667 break; 668 case TEK_Complex: 669 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 670 break; 671 case TEK_Aggregate: { 672 AggValueSlot Slot = 673 AggValueSlot::forLValue(LHS, 674 AggValueSlot::IsDestructed, 675 AggValueSlot::DoesNotNeedGCBarriers, 676 AggValueSlot::IsNotAliased); 677 EmitAggExpr(Init, Slot); 678 break; 679 } 680 } 681 682 // Ensure that we destroy this object if an exception is thrown 683 // later in the constructor. 684 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 685 if (needsEHCleanup(dtorKind)) 686 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 687 } 688 689 /// Checks whether the given constructor is a valid subject for the 690 /// complete-to-base constructor delegation optimization, i.e. 691 /// emitting the complete constructor as a simple call to the base 692 /// constructor. 693 bool CodeGenFunction::IsConstructorDelegationValid( 694 const CXXConstructorDecl *Ctor) { 695 696 // Currently we disable the optimization for classes with virtual 697 // bases because (1) the addresses of parameter variables need to be 698 // consistent across all initializers but (2) the delegate function 699 // call necessarily creates a second copy of the parameter variable. 700 // 701 // The limiting example (purely theoretical AFAIK): 702 // struct A { A(int &c) { c++; } }; 703 // struct B : virtual A { 704 // B(int count) : A(count) { printf("%d\n", count); } 705 // }; 706 // ...although even this example could in principle be emitted as a 707 // delegation since the address of the parameter doesn't escape. 708 if (Ctor->getParent()->getNumVBases()) { 709 // TODO: white-list trivial vbase initializers. This case wouldn't 710 // be subject to the restrictions below. 711 712 // TODO: white-list cases where: 713 // - there are no non-reference parameters to the constructor 714 // - the initializers don't access any non-reference parameters 715 // - the initializers don't take the address of non-reference 716 // parameters 717 // - etc. 718 // If we ever add any of the above cases, remember that: 719 // - function-try-blocks will always blacklist this optimization 720 // - we need to perform the constructor prologue and cleanup in 721 // EmitConstructorBody. 722 723 return false; 724 } 725 726 // We also disable the optimization for variadic functions because 727 // it's impossible to "re-pass" varargs. 728 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 729 return false; 730 731 // FIXME: Decide if we can do a delegation of a delegating constructor. 732 if (Ctor->isDelegatingConstructor()) 733 return false; 734 735 return true; 736 } 737 738 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 739 // to poison the extra field paddings inserted under 740 // -fsanitize-address-field-padding=1|2. 741 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 742 ASTContext &Context = getContext(); 743 const CXXRecordDecl *ClassDecl = 744 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 745 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 746 if (!ClassDecl->mayInsertExtraPadding()) return; 747 748 struct SizeAndOffset { 749 uint64_t Size; 750 uint64_t Offset; 751 }; 752 753 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 754 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 755 756 // Populate sizes and offsets of fields. 757 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 758 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 759 SSV[i].Offset = 760 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 761 762 size_t NumFields = 0; 763 for (const auto *Field : ClassDecl->fields()) { 764 const FieldDecl *D = Field; 765 std::pair<CharUnits, CharUnits> FieldInfo = 766 Context.getTypeInfoInChars(D->getType()); 767 CharUnits FieldSize = FieldInfo.first; 768 assert(NumFields < SSV.size()); 769 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 770 NumFields++; 771 } 772 assert(NumFields == SSV.size()); 773 if (SSV.size() <= 1) return; 774 775 // We will insert calls to __asan_* run-time functions. 776 // LLVM AddressSanitizer pass may decide to inline them later. 777 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 778 llvm::FunctionType *FTy = 779 llvm::FunctionType::get(CGM.VoidTy, Args, false); 780 llvm::Constant *F = CGM.CreateRuntimeFunction( 781 FTy, Prologue ? "__asan_poison_intra_object_redzone" 782 : "__asan_unpoison_intra_object_redzone"); 783 784 llvm::Value *ThisPtr = LoadCXXThis(); 785 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 786 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 787 // For each field check if it has sufficient padding, 788 // if so (un)poison it with a call. 789 for (size_t i = 0; i < SSV.size(); i++) { 790 uint64_t AsanAlignment = 8; 791 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 792 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 793 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 794 if (PoisonSize < AsanAlignment || !SSV[i].Size || 795 (NextField % AsanAlignment) != 0) 796 continue; 797 Builder.CreateCall( 798 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 799 Builder.getIntN(PtrSize, PoisonSize)}); 800 } 801 } 802 803 /// EmitConstructorBody - Emits the body of the current constructor. 804 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 805 EmitAsanPrologueOrEpilogue(true); 806 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 807 CXXCtorType CtorType = CurGD.getCtorType(); 808 809 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 810 CtorType == Ctor_Complete) && 811 "can only generate complete ctor for this ABI"); 812 813 // Before we go any further, try the complete->base constructor 814 // delegation optimization. 815 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 816 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 817 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 818 return; 819 } 820 821 const FunctionDecl *Definition = nullptr; 822 Stmt *Body = Ctor->getBody(Definition); 823 assert(Definition == Ctor && "emitting wrong constructor body"); 824 825 // Enter the function-try-block before the constructor prologue if 826 // applicable. 827 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 828 if (IsTryBody) 829 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 830 831 incrementProfileCounter(Body); 832 833 RunCleanupsScope RunCleanups(*this); 834 835 // TODO: in restricted cases, we can emit the vbase initializers of 836 // a complete ctor and then delegate to the base ctor. 837 838 // Emit the constructor prologue, i.e. the base and member 839 // initializers. 840 EmitCtorPrologue(Ctor, CtorType, Args); 841 842 // Emit the body of the statement. 843 if (IsTryBody) 844 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 845 else if (Body) 846 EmitStmt(Body); 847 848 // Emit any cleanup blocks associated with the member or base 849 // initializers, which includes (along the exceptional path) the 850 // destructors for those members and bases that were fully 851 // constructed. 852 RunCleanups.ForceCleanup(); 853 854 if (IsTryBody) 855 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 856 } 857 858 namespace { 859 /// RAII object to indicate that codegen is copying the value representation 860 /// instead of the object representation. Useful when copying a struct or 861 /// class which has uninitialized members and we're only performing 862 /// lvalue-to-rvalue conversion on the object but not its members. 863 class CopyingValueRepresentation { 864 public: 865 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 866 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 867 CGF.SanOpts.set(SanitizerKind::Bool, false); 868 CGF.SanOpts.set(SanitizerKind::Enum, false); 869 } 870 ~CopyingValueRepresentation() { 871 CGF.SanOpts = OldSanOpts; 872 } 873 private: 874 CodeGenFunction &CGF; 875 SanitizerSet OldSanOpts; 876 }; 877 } // end anonymous namespace 878 879 namespace { 880 class FieldMemcpyizer { 881 public: 882 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 883 const VarDecl *SrcRec) 884 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 885 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 886 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 887 LastFieldOffset(0), LastAddedFieldIndex(0) {} 888 889 bool isMemcpyableField(FieldDecl *F) const { 890 // Never memcpy fields when we are adding poisoned paddings. 891 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 892 return false; 893 Qualifiers Qual = F->getType().getQualifiers(); 894 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 895 return false; 896 return true; 897 } 898 899 void addMemcpyableField(FieldDecl *F) { 900 if (!FirstField) 901 addInitialField(F); 902 else 903 addNextField(F); 904 } 905 906 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 907 unsigned LastFieldSize = 908 LastField->isBitField() ? 909 LastField->getBitWidthValue(CGF.getContext()) : 910 CGF.getContext().getTypeSize(LastField->getType()); 911 uint64_t MemcpySizeBits = 912 LastFieldOffset + LastFieldSize - FirstByteOffset + 913 CGF.getContext().getCharWidth() - 1; 914 CharUnits MemcpySize = 915 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 916 return MemcpySize; 917 } 918 919 void emitMemcpy() { 920 // Give the subclass a chance to bail out if it feels the memcpy isn't 921 // worth it (e.g. Hasn't aggregated enough data). 922 if (!FirstField) { 923 return; 924 } 925 926 uint64_t FirstByteOffset; 927 if (FirstField->isBitField()) { 928 const CGRecordLayout &RL = 929 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 930 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 931 // FirstFieldOffset is not appropriate for bitfields, 932 // we need to use the storage offset instead. 933 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 934 } else { 935 FirstByteOffset = FirstFieldOffset; 936 } 937 938 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 939 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 940 Address ThisPtr = CGF.LoadCXXThisAddress(); 941 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 942 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 943 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 944 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 945 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 946 947 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 948 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 949 MemcpySize); 950 reset(); 951 } 952 953 void reset() { 954 FirstField = nullptr; 955 } 956 957 protected: 958 CodeGenFunction &CGF; 959 const CXXRecordDecl *ClassDecl; 960 961 private: 962 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 963 llvm::PointerType *DPT = DestPtr.getType(); 964 llvm::Type *DBP = 965 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 966 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 967 968 llvm::PointerType *SPT = SrcPtr.getType(); 969 llvm::Type *SBP = 970 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 971 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 972 973 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 974 } 975 976 void addInitialField(FieldDecl *F) { 977 FirstField = F; 978 LastField = F; 979 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 980 LastFieldOffset = FirstFieldOffset; 981 LastAddedFieldIndex = F->getFieldIndex(); 982 } 983 984 void addNextField(FieldDecl *F) { 985 // For the most part, the following invariant will hold: 986 // F->getFieldIndex() == LastAddedFieldIndex + 1 987 // The one exception is that Sema won't add a copy-initializer for an 988 // unnamed bitfield, which will show up here as a gap in the sequence. 989 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 990 "Cannot aggregate fields out of order."); 991 LastAddedFieldIndex = F->getFieldIndex(); 992 993 // The 'first' and 'last' fields are chosen by offset, rather than field 994 // index. This allows the code to support bitfields, as well as regular 995 // fields. 996 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 997 if (FOffset < FirstFieldOffset) { 998 FirstField = F; 999 FirstFieldOffset = FOffset; 1000 } else if (FOffset > LastFieldOffset) { 1001 LastField = F; 1002 LastFieldOffset = FOffset; 1003 } 1004 } 1005 1006 const VarDecl *SrcRec; 1007 const ASTRecordLayout &RecLayout; 1008 FieldDecl *FirstField; 1009 FieldDecl *LastField; 1010 uint64_t FirstFieldOffset, LastFieldOffset; 1011 unsigned LastAddedFieldIndex; 1012 }; 1013 1014 class ConstructorMemcpyizer : public FieldMemcpyizer { 1015 private: 1016 /// Get source argument for copy constructor. Returns null if not a copy 1017 /// constructor. 1018 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1019 const CXXConstructorDecl *CD, 1020 FunctionArgList &Args) { 1021 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1022 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1023 return nullptr; 1024 } 1025 1026 // Returns true if a CXXCtorInitializer represents a member initialization 1027 // that can be rolled into a memcpy. 1028 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1029 if (!MemcpyableCtor) 1030 return false; 1031 FieldDecl *Field = MemberInit->getMember(); 1032 assert(Field && "No field for member init."); 1033 QualType FieldType = Field->getType(); 1034 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1035 1036 // Bail out on non-memcpyable, not-trivially-copyable members. 1037 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1038 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1039 FieldType->isReferenceType())) 1040 return false; 1041 1042 // Bail out on volatile fields. 1043 if (!isMemcpyableField(Field)) 1044 return false; 1045 1046 // Otherwise we're good. 1047 return true; 1048 } 1049 1050 public: 1051 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1052 FunctionArgList &Args) 1053 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1054 ConstructorDecl(CD), 1055 MemcpyableCtor(CD->isDefaulted() && 1056 CD->isCopyOrMoveConstructor() && 1057 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1058 Args(Args) { } 1059 1060 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1061 if (isMemberInitMemcpyable(MemberInit)) { 1062 AggregatedInits.push_back(MemberInit); 1063 addMemcpyableField(MemberInit->getMember()); 1064 } else { 1065 emitAggregatedInits(); 1066 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1067 ConstructorDecl, Args); 1068 } 1069 } 1070 1071 void emitAggregatedInits() { 1072 if (AggregatedInits.size() <= 1) { 1073 // This memcpy is too small to be worthwhile. Fall back on default 1074 // codegen. 1075 if (!AggregatedInits.empty()) { 1076 CopyingValueRepresentation CVR(CGF); 1077 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1078 AggregatedInits[0], ConstructorDecl, Args); 1079 AggregatedInits.clear(); 1080 } 1081 reset(); 1082 return; 1083 } 1084 1085 pushEHDestructors(); 1086 emitMemcpy(); 1087 AggregatedInits.clear(); 1088 } 1089 1090 void pushEHDestructors() { 1091 Address ThisPtr = CGF.LoadCXXThisAddress(); 1092 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1093 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1094 1095 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1096 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1097 QualType FieldType = MemberInit->getAnyMember()->getType(); 1098 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1099 if (!CGF.needsEHCleanup(dtorKind)) 1100 continue; 1101 LValue FieldLHS = LHS; 1102 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1103 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1104 } 1105 } 1106 1107 void finish() { 1108 emitAggregatedInits(); 1109 } 1110 1111 private: 1112 const CXXConstructorDecl *ConstructorDecl; 1113 bool MemcpyableCtor; 1114 FunctionArgList &Args; 1115 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1116 }; 1117 1118 class AssignmentMemcpyizer : public FieldMemcpyizer { 1119 private: 1120 // Returns the memcpyable field copied by the given statement, if one 1121 // exists. Otherwise returns null. 1122 FieldDecl *getMemcpyableField(Stmt *S) { 1123 if (!AssignmentsMemcpyable) 1124 return nullptr; 1125 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1126 // Recognise trivial assignments. 1127 if (BO->getOpcode() != BO_Assign) 1128 return nullptr; 1129 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1130 if (!ME) 1131 return nullptr; 1132 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1133 if (!Field || !isMemcpyableField(Field)) 1134 return nullptr; 1135 Stmt *RHS = BO->getRHS(); 1136 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1137 RHS = EC->getSubExpr(); 1138 if (!RHS) 1139 return nullptr; 1140 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1141 if (ME2->getMemberDecl() == Field) 1142 return Field; 1143 } 1144 return nullptr; 1145 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1146 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1147 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1148 return nullptr; 1149 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1150 if (!IOA) 1151 return nullptr; 1152 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1153 if (!Field || !isMemcpyableField(Field)) 1154 return nullptr; 1155 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1156 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1157 return nullptr; 1158 return Field; 1159 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1160 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1161 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1162 return nullptr; 1163 Expr *DstPtr = CE->getArg(0); 1164 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1165 DstPtr = DC->getSubExpr(); 1166 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1167 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1168 return nullptr; 1169 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1170 if (!ME) 1171 return nullptr; 1172 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1173 if (!Field || !isMemcpyableField(Field)) 1174 return nullptr; 1175 Expr *SrcPtr = CE->getArg(1); 1176 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1177 SrcPtr = SC->getSubExpr(); 1178 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1179 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1180 return nullptr; 1181 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1182 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1183 return nullptr; 1184 return Field; 1185 } 1186 1187 return nullptr; 1188 } 1189 1190 bool AssignmentsMemcpyable; 1191 SmallVector<Stmt*, 16> AggregatedStmts; 1192 1193 public: 1194 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1195 FunctionArgList &Args) 1196 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1197 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1198 assert(Args.size() == 2); 1199 } 1200 1201 void emitAssignment(Stmt *S) { 1202 FieldDecl *F = getMemcpyableField(S); 1203 if (F) { 1204 addMemcpyableField(F); 1205 AggregatedStmts.push_back(S); 1206 } else { 1207 emitAggregatedStmts(); 1208 CGF.EmitStmt(S); 1209 } 1210 } 1211 1212 void emitAggregatedStmts() { 1213 if (AggregatedStmts.size() <= 1) { 1214 if (!AggregatedStmts.empty()) { 1215 CopyingValueRepresentation CVR(CGF); 1216 CGF.EmitStmt(AggregatedStmts[0]); 1217 } 1218 reset(); 1219 } 1220 1221 emitMemcpy(); 1222 AggregatedStmts.clear(); 1223 } 1224 1225 void finish() { 1226 emitAggregatedStmts(); 1227 } 1228 }; 1229 } // end anonymous namespace 1230 1231 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1232 const Type *BaseType = BaseInit->getBaseClass(); 1233 const auto *BaseClassDecl = 1234 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1235 return BaseClassDecl->isDynamicClass(); 1236 } 1237 1238 /// EmitCtorPrologue - This routine generates necessary code to initialize 1239 /// base classes and non-static data members belonging to this constructor. 1240 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1241 CXXCtorType CtorType, 1242 FunctionArgList &Args) { 1243 if (CD->isDelegatingConstructor()) 1244 return EmitDelegatingCXXConstructorCall(CD, Args); 1245 1246 const CXXRecordDecl *ClassDecl = CD->getParent(); 1247 1248 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1249 E = CD->init_end(); 1250 1251 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1252 if (ClassDecl->getNumVBases() && 1253 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1254 // The ABIs that don't have constructor variants need to put a branch 1255 // before the virtual base initialization code. 1256 BaseCtorContinueBB = 1257 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1258 assert(BaseCtorContinueBB); 1259 } 1260 1261 llvm::Value *const OldThis = CXXThisValue; 1262 // Virtual base initializers first. 1263 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1264 if (CGM.getCodeGenOpts().StrictVTablePointers && 1265 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1266 isInitializerOfDynamicClass(*B)) 1267 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1268 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1269 } 1270 1271 if (BaseCtorContinueBB) { 1272 // Complete object handler should continue to the remaining initializers. 1273 Builder.CreateBr(BaseCtorContinueBB); 1274 EmitBlock(BaseCtorContinueBB); 1275 } 1276 1277 // Then, non-virtual base initializers. 1278 for (; B != E && (*B)->isBaseInitializer(); B++) { 1279 assert(!(*B)->isBaseVirtual()); 1280 1281 if (CGM.getCodeGenOpts().StrictVTablePointers && 1282 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1283 isInitializerOfDynamicClass(*B)) 1284 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1285 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1286 } 1287 1288 CXXThisValue = OldThis; 1289 1290 InitializeVTablePointers(ClassDecl); 1291 1292 // And finally, initialize class members. 1293 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1294 ConstructorMemcpyizer CM(*this, CD, Args); 1295 for (; B != E; B++) { 1296 CXXCtorInitializer *Member = (*B); 1297 assert(!Member->isBaseInitializer()); 1298 assert(Member->isAnyMemberInitializer() && 1299 "Delegating initializer on non-delegating constructor"); 1300 CM.addMemberInitializer(Member); 1301 } 1302 CM.finish(); 1303 } 1304 1305 static bool 1306 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1307 1308 static bool 1309 HasTrivialDestructorBody(ASTContext &Context, 1310 const CXXRecordDecl *BaseClassDecl, 1311 const CXXRecordDecl *MostDerivedClassDecl) 1312 { 1313 // If the destructor is trivial we don't have to check anything else. 1314 if (BaseClassDecl->hasTrivialDestructor()) 1315 return true; 1316 1317 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1318 return false; 1319 1320 // Check fields. 1321 for (const auto *Field : BaseClassDecl->fields()) 1322 if (!FieldHasTrivialDestructorBody(Context, Field)) 1323 return false; 1324 1325 // Check non-virtual bases. 1326 for (const auto &I : BaseClassDecl->bases()) { 1327 if (I.isVirtual()) 1328 continue; 1329 1330 const CXXRecordDecl *NonVirtualBase = 1331 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1332 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1333 MostDerivedClassDecl)) 1334 return false; 1335 } 1336 1337 if (BaseClassDecl == MostDerivedClassDecl) { 1338 // Check virtual bases. 1339 for (const auto &I : BaseClassDecl->vbases()) { 1340 const CXXRecordDecl *VirtualBase = 1341 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1342 if (!HasTrivialDestructorBody(Context, VirtualBase, 1343 MostDerivedClassDecl)) 1344 return false; 1345 } 1346 } 1347 1348 return true; 1349 } 1350 1351 static bool 1352 FieldHasTrivialDestructorBody(ASTContext &Context, 1353 const FieldDecl *Field) 1354 { 1355 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1356 1357 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1358 if (!RT) 1359 return true; 1360 1361 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1362 1363 // The destructor for an implicit anonymous union member is never invoked. 1364 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1365 return false; 1366 1367 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1368 } 1369 1370 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1371 /// any vtable pointers before calling this destructor. 1372 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1373 const CXXDestructorDecl *Dtor) { 1374 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1375 if (!ClassDecl->isDynamicClass()) 1376 return true; 1377 1378 if (!Dtor->hasTrivialBody()) 1379 return false; 1380 1381 // Check the fields. 1382 for (const auto *Field : ClassDecl->fields()) 1383 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1384 return false; 1385 1386 return true; 1387 } 1388 1389 /// EmitDestructorBody - Emits the body of the current destructor. 1390 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1391 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1392 CXXDtorType DtorType = CurGD.getDtorType(); 1393 1394 // For an abstract class, non-base destructors are never used (and can't 1395 // be emitted in general, because vbase dtors may not have been validated 1396 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1397 // in fact emit references to them from other compilations, so emit them 1398 // as functions containing a trap instruction. 1399 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1400 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1401 TrapCall->setDoesNotReturn(); 1402 TrapCall->setDoesNotThrow(); 1403 Builder.CreateUnreachable(); 1404 Builder.ClearInsertionPoint(); 1405 return; 1406 } 1407 1408 Stmt *Body = Dtor->getBody(); 1409 if (Body) 1410 incrementProfileCounter(Body); 1411 1412 // The call to operator delete in a deleting destructor happens 1413 // outside of the function-try-block, which means it's always 1414 // possible to delegate the destructor body to the complete 1415 // destructor. Do so. 1416 if (DtorType == Dtor_Deleting) { 1417 RunCleanupsScope DtorEpilogue(*this); 1418 EnterDtorCleanups(Dtor, Dtor_Deleting); 1419 if (HaveInsertPoint()) 1420 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1421 /*Delegating=*/false, LoadCXXThisAddress()); 1422 return; 1423 } 1424 1425 // If the body is a function-try-block, enter the try before 1426 // anything else. 1427 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1428 if (isTryBody) 1429 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1430 EmitAsanPrologueOrEpilogue(false); 1431 1432 // Enter the epilogue cleanups. 1433 RunCleanupsScope DtorEpilogue(*this); 1434 1435 // If this is the complete variant, just invoke the base variant; 1436 // the epilogue will destruct the virtual bases. But we can't do 1437 // this optimization if the body is a function-try-block, because 1438 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1439 // always delegate because we might not have a definition in this TU. 1440 switch (DtorType) { 1441 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1442 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1443 1444 case Dtor_Complete: 1445 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1446 "can't emit a dtor without a body for non-Microsoft ABIs"); 1447 1448 // Enter the cleanup scopes for virtual bases. 1449 EnterDtorCleanups(Dtor, Dtor_Complete); 1450 1451 if (!isTryBody) { 1452 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1453 /*Delegating=*/false, LoadCXXThisAddress()); 1454 break; 1455 } 1456 1457 // Fallthrough: act like we're in the base variant. 1458 LLVM_FALLTHROUGH; 1459 1460 case Dtor_Base: 1461 assert(Body); 1462 1463 // Enter the cleanup scopes for fields and non-virtual bases. 1464 EnterDtorCleanups(Dtor, Dtor_Base); 1465 1466 // Initialize the vtable pointers before entering the body. 1467 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1468 // Insert the llvm.invariant.group.barrier intrinsic before initializing 1469 // the vptrs to cancel any previous assumptions we might have made. 1470 if (CGM.getCodeGenOpts().StrictVTablePointers && 1471 CGM.getCodeGenOpts().OptimizationLevel > 0) 1472 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1473 InitializeVTablePointers(Dtor->getParent()); 1474 } 1475 1476 if (isTryBody) 1477 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1478 else if (Body) 1479 EmitStmt(Body); 1480 else { 1481 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1482 // nothing to do besides what's in the epilogue 1483 } 1484 // -fapple-kext must inline any call to this dtor into 1485 // the caller's body. 1486 if (getLangOpts().AppleKext) 1487 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1488 1489 break; 1490 } 1491 1492 // Jump out through the epilogue cleanups. 1493 DtorEpilogue.ForceCleanup(); 1494 1495 // Exit the try if applicable. 1496 if (isTryBody) 1497 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1498 } 1499 1500 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1501 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1502 const Stmt *RootS = AssignOp->getBody(); 1503 assert(isa<CompoundStmt>(RootS) && 1504 "Body of an implicit assignment operator should be compound stmt."); 1505 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1506 1507 LexicalScope Scope(*this, RootCS->getSourceRange()); 1508 1509 incrementProfileCounter(RootCS); 1510 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1511 for (auto *I : RootCS->body()) 1512 AM.emitAssignment(I); 1513 AM.finish(); 1514 } 1515 1516 namespace { 1517 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1518 const CXXDestructorDecl *DD) { 1519 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1520 return CGF.EmitScalarExpr(ThisArg); 1521 return CGF.LoadCXXThis(); 1522 } 1523 1524 /// Call the operator delete associated with the current destructor. 1525 struct CallDtorDelete final : EHScopeStack::Cleanup { 1526 CallDtorDelete() {} 1527 1528 void Emit(CodeGenFunction &CGF, Flags flags) override { 1529 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1530 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1531 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1532 LoadThisForDtorDelete(CGF, Dtor), 1533 CGF.getContext().getTagDeclType(ClassDecl)); 1534 } 1535 }; 1536 1537 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1538 llvm::Value *ShouldDeleteCondition, 1539 bool ReturnAfterDelete) { 1540 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1541 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1542 llvm::Value *ShouldCallDelete 1543 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1544 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1545 1546 CGF.EmitBlock(callDeleteBB); 1547 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1548 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1549 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1550 LoadThisForDtorDelete(CGF, Dtor), 1551 CGF.getContext().getTagDeclType(ClassDecl)); 1552 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1553 ReturnAfterDelete && 1554 "unexpected value for ReturnAfterDelete"); 1555 if (ReturnAfterDelete) 1556 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1557 else 1558 CGF.Builder.CreateBr(continueBB); 1559 1560 CGF.EmitBlock(continueBB); 1561 } 1562 1563 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1564 llvm::Value *ShouldDeleteCondition; 1565 1566 public: 1567 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1568 : ShouldDeleteCondition(ShouldDeleteCondition) { 1569 assert(ShouldDeleteCondition != nullptr); 1570 } 1571 1572 void Emit(CodeGenFunction &CGF, Flags flags) override { 1573 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1574 /*ReturnAfterDelete*/false); 1575 } 1576 }; 1577 1578 class DestroyField final : public EHScopeStack::Cleanup { 1579 const FieldDecl *field; 1580 CodeGenFunction::Destroyer *destroyer; 1581 bool useEHCleanupForArray; 1582 1583 public: 1584 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1585 bool useEHCleanupForArray) 1586 : field(field), destroyer(destroyer), 1587 useEHCleanupForArray(useEHCleanupForArray) {} 1588 1589 void Emit(CodeGenFunction &CGF, Flags flags) override { 1590 // Find the address of the field. 1591 Address thisValue = CGF.LoadCXXThisAddress(); 1592 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1593 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1594 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1595 assert(LV.isSimple()); 1596 1597 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1598 flags.isForNormalCleanup() && useEHCleanupForArray); 1599 } 1600 }; 1601 1602 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1603 CharUnits::QuantityType PoisonSize) { 1604 CodeGenFunction::SanitizerScope SanScope(&CGF); 1605 // Pass in void pointer and size of region as arguments to runtime 1606 // function 1607 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1608 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1609 1610 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1611 1612 llvm::FunctionType *FnType = 1613 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1614 llvm::Value *Fn = 1615 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1616 CGF.EmitNounwindRuntimeCall(Fn, Args); 1617 } 1618 1619 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1620 const CXXDestructorDecl *Dtor; 1621 1622 public: 1623 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1624 1625 // Generate function call for handling object poisoning. 1626 // Disables tail call elimination, to prevent the current stack frame 1627 // from disappearing from the stack trace. 1628 void Emit(CodeGenFunction &CGF, Flags flags) override { 1629 const ASTRecordLayout &Layout = 1630 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1631 1632 // Nothing to poison. 1633 if (Layout.getFieldCount() == 0) 1634 return; 1635 1636 // Prevent the current stack frame from disappearing from the stack trace. 1637 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1638 1639 // Construct pointer to region to begin poisoning, and calculate poison 1640 // size, so that only members declared in this class are poisoned. 1641 ASTContext &Context = CGF.getContext(); 1642 unsigned fieldIndex = 0; 1643 int startIndex = -1; 1644 // RecordDecl::field_iterator Field; 1645 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1646 // Poison field if it is trivial 1647 if (FieldHasTrivialDestructorBody(Context, Field)) { 1648 // Start sanitizing at this field 1649 if (startIndex < 0) 1650 startIndex = fieldIndex; 1651 1652 // Currently on the last field, and it must be poisoned with the 1653 // current block. 1654 if (fieldIndex == Layout.getFieldCount() - 1) { 1655 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1656 } 1657 } else if (startIndex >= 0) { 1658 // No longer within a block of memory to poison, so poison the block 1659 PoisonMembers(CGF, startIndex, fieldIndex); 1660 // Re-set the start index 1661 startIndex = -1; 1662 } 1663 fieldIndex += 1; 1664 } 1665 } 1666 1667 private: 1668 /// \param layoutStartOffset index of the ASTRecordLayout field to 1669 /// start poisoning (inclusive) 1670 /// \param layoutEndOffset index of the ASTRecordLayout field to 1671 /// end poisoning (exclusive) 1672 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1673 unsigned layoutEndOffset) { 1674 ASTContext &Context = CGF.getContext(); 1675 const ASTRecordLayout &Layout = 1676 Context.getASTRecordLayout(Dtor->getParent()); 1677 1678 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1679 CGF.SizeTy, 1680 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1681 .getQuantity()); 1682 1683 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1684 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1685 OffsetSizePtr); 1686 1687 CharUnits::QuantityType PoisonSize; 1688 if (layoutEndOffset >= Layout.getFieldCount()) { 1689 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1690 Context.toCharUnitsFromBits( 1691 Layout.getFieldOffset(layoutStartOffset)) 1692 .getQuantity(); 1693 } else { 1694 PoisonSize = Context.toCharUnitsFromBits( 1695 Layout.getFieldOffset(layoutEndOffset) - 1696 Layout.getFieldOffset(layoutStartOffset)) 1697 .getQuantity(); 1698 } 1699 1700 if (PoisonSize == 0) 1701 return; 1702 1703 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1704 } 1705 }; 1706 1707 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1708 const CXXDestructorDecl *Dtor; 1709 1710 public: 1711 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1712 1713 // Generate function call for handling vtable pointer poisoning. 1714 void Emit(CodeGenFunction &CGF, Flags flags) override { 1715 assert(Dtor->getParent()->isDynamicClass()); 1716 (void)Dtor; 1717 ASTContext &Context = CGF.getContext(); 1718 // Poison vtable and vtable ptr if they exist for this class. 1719 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1720 1721 CharUnits::QuantityType PoisonSize = 1722 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1723 // Pass in void pointer and size of region as arguments to runtime 1724 // function 1725 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1726 } 1727 }; 1728 } // end anonymous namespace 1729 1730 /// \brief Emit all code that comes at the end of class's 1731 /// destructor. This is to call destructors on members and base classes 1732 /// in reverse order of their construction. 1733 /// 1734 /// For a deleting destructor, this also handles the case where a destroying 1735 /// operator delete completely overrides the definition. 1736 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1737 CXXDtorType DtorType) { 1738 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1739 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1740 1741 // The deleting-destructor phase just needs to call the appropriate 1742 // operator delete that Sema picked up. 1743 if (DtorType == Dtor_Deleting) { 1744 assert(DD->getOperatorDelete() && 1745 "operator delete missing - EnterDtorCleanups"); 1746 if (CXXStructorImplicitParamValue) { 1747 // If there is an implicit param to the deleting dtor, it's a boolean 1748 // telling whether this is a deleting destructor. 1749 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1750 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1751 /*ReturnAfterDelete*/true); 1752 else 1753 EHStack.pushCleanup<CallDtorDeleteConditional>( 1754 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1755 } else { 1756 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1757 const CXXRecordDecl *ClassDecl = DD->getParent(); 1758 EmitDeleteCall(DD->getOperatorDelete(), 1759 LoadThisForDtorDelete(*this, DD), 1760 getContext().getTagDeclType(ClassDecl)); 1761 EmitBranchThroughCleanup(ReturnBlock); 1762 } else { 1763 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1764 } 1765 } 1766 return; 1767 } 1768 1769 const CXXRecordDecl *ClassDecl = DD->getParent(); 1770 1771 // Unions have no bases and do not call field destructors. 1772 if (ClassDecl->isUnion()) 1773 return; 1774 1775 // The complete-destructor phase just destructs all the virtual bases. 1776 if (DtorType == Dtor_Complete) { 1777 // Poison the vtable pointer such that access after the base 1778 // and member destructors are invoked is invalid. 1779 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1780 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1781 ClassDecl->isPolymorphic()) 1782 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1783 1784 // We push them in the forward order so that they'll be popped in 1785 // the reverse order. 1786 for (const auto &Base : ClassDecl->vbases()) { 1787 CXXRecordDecl *BaseClassDecl 1788 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1789 1790 // Ignore trivial destructors. 1791 if (BaseClassDecl->hasTrivialDestructor()) 1792 continue; 1793 1794 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1795 BaseClassDecl, 1796 /*BaseIsVirtual*/ true); 1797 } 1798 1799 return; 1800 } 1801 1802 assert(DtorType == Dtor_Base); 1803 // Poison the vtable pointer if it has no virtual bases, but inherits 1804 // virtual functions. 1805 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1806 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1807 ClassDecl->isPolymorphic()) 1808 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1809 1810 // Destroy non-virtual bases. 1811 for (const auto &Base : ClassDecl->bases()) { 1812 // Ignore virtual bases. 1813 if (Base.isVirtual()) 1814 continue; 1815 1816 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1817 1818 // Ignore trivial destructors. 1819 if (BaseClassDecl->hasTrivialDestructor()) 1820 continue; 1821 1822 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1823 BaseClassDecl, 1824 /*BaseIsVirtual*/ false); 1825 } 1826 1827 // Poison fields such that access after their destructors are 1828 // invoked, and before the base class destructor runs, is invalid. 1829 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1830 SanOpts.has(SanitizerKind::Memory)) 1831 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1832 1833 // Destroy direct fields. 1834 for (const auto *Field : ClassDecl->fields()) { 1835 QualType type = Field->getType(); 1836 QualType::DestructionKind dtorKind = type.isDestructedType(); 1837 if (!dtorKind) continue; 1838 1839 // Anonymous union members do not have their destructors called. 1840 const RecordType *RT = type->getAsUnionType(); 1841 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1842 1843 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1844 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1845 getDestroyer(dtorKind), 1846 cleanupKind & EHCleanup); 1847 } 1848 } 1849 1850 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1851 /// constructor for each of several members of an array. 1852 /// 1853 /// \param ctor the constructor to call for each element 1854 /// \param arrayType the type of the array to initialize 1855 /// \param arrayBegin an arrayType* 1856 /// \param zeroInitialize true if each element should be 1857 /// zero-initialized before it is constructed 1858 void CodeGenFunction::EmitCXXAggrConstructorCall( 1859 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1860 Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1861 QualType elementType; 1862 llvm::Value *numElements = 1863 emitArrayLength(arrayType, elementType, arrayBegin); 1864 1865 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1866 } 1867 1868 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1869 /// constructor for each of several members of an array. 1870 /// 1871 /// \param ctor the constructor to call for each element 1872 /// \param numElements the number of elements in the array; 1873 /// may be zero 1874 /// \param arrayBase a T*, where T is the type constructed by ctor 1875 /// \param zeroInitialize true if each element should be 1876 /// zero-initialized before it is constructed 1877 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1878 llvm::Value *numElements, 1879 Address arrayBase, 1880 const CXXConstructExpr *E, 1881 bool zeroInitialize) { 1882 // It's legal for numElements to be zero. This can happen both 1883 // dynamically, because x can be zero in 'new A[x]', and statically, 1884 // because of GCC extensions that permit zero-length arrays. There 1885 // are probably legitimate places where we could assume that this 1886 // doesn't happen, but it's not clear that it's worth it. 1887 llvm::BranchInst *zeroCheckBranch = nullptr; 1888 1889 // Optimize for a constant count. 1890 llvm::ConstantInt *constantCount 1891 = dyn_cast<llvm::ConstantInt>(numElements); 1892 if (constantCount) { 1893 // Just skip out if the constant count is zero. 1894 if (constantCount->isZero()) return; 1895 1896 // Otherwise, emit the check. 1897 } else { 1898 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1899 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1900 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1901 EmitBlock(loopBB); 1902 } 1903 1904 // Find the end of the array. 1905 llvm::Value *arrayBegin = arrayBase.getPointer(); 1906 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1907 "arrayctor.end"); 1908 1909 // Enter the loop, setting up a phi for the current location to initialize. 1910 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1911 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1912 EmitBlock(loopBB); 1913 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1914 "arrayctor.cur"); 1915 cur->addIncoming(arrayBegin, entryBB); 1916 1917 // Inside the loop body, emit the constructor call on the array element. 1918 1919 // The alignment of the base, adjusted by the size of a single element, 1920 // provides a conservative estimate of the alignment of every element. 1921 // (This assumes we never start tracking offsetted alignments.) 1922 // 1923 // Note that these are complete objects and so we don't need to 1924 // use the non-virtual size or alignment. 1925 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1926 CharUnits eltAlignment = 1927 arrayBase.getAlignment() 1928 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1929 Address curAddr = Address(cur, eltAlignment); 1930 1931 // Zero initialize the storage, if requested. 1932 if (zeroInitialize) 1933 EmitNullInitialization(curAddr, type); 1934 1935 // C++ [class.temporary]p4: 1936 // There are two contexts in which temporaries are destroyed at a different 1937 // point than the end of the full-expression. The first context is when a 1938 // default constructor is called to initialize an element of an array. 1939 // If the constructor has one or more default arguments, the destruction of 1940 // every temporary created in a default argument expression is sequenced 1941 // before the construction of the next array element, if any. 1942 1943 { 1944 RunCleanupsScope Scope(*this); 1945 1946 // Evaluate the constructor and its arguments in a regular 1947 // partial-destroy cleanup. 1948 if (getLangOpts().Exceptions && 1949 !ctor->getParent()->hasTrivialDestructor()) { 1950 Destroyer *destroyer = destroyCXXObject; 1951 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1952 *destroyer); 1953 } 1954 1955 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1956 /*Delegating=*/false, curAddr, E); 1957 } 1958 1959 // Go to the next element. 1960 llvm::Value *next = 1961 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1962 "arrayctor.next"); 1963 cur->addIncoming(next, Builder.GetInsertBlock()); 1964 1965 // Check whether that's the end of the loop. 1966 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1967 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1968 Builder.CreateCondBr(done, contBB, loopBB); 1969 1970 // Patch the earlier check to skip over the loop. 1971 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1972 1973 EmitBlock(contBB); 1974 } 1975 1976 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1977 Address addr, 1978 QualType type) { 1979 const RecordType *rtype = type->castAs<RecordType>(); 1980 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1981 const CXXDestructorDecl *dtor = record->getDestructor(); 1982 assert(!dtor->isTrivial()); 1983 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1984 /*Delegating=*/false, addr); 1985 } 1986 1987 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1988 CXXCtorType Type, 1989 bool ForVirtualBase, 1990 bool Delegating, Address This, 1991 const CXXConstructExpr *E) { 1992 CallArgList Args; 1993 1994 // Push the this ptr. 1995 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 1996 1997 // If this is a trivial constructor, emit a memcpy now before we lose 1998 // the alignment information on the argument. 1999 // FIXME: It would be better to preserve alignment information into CallArg. 2000 if (isMemcpyEquivalentSpecialMember(D)) { 2001 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2002 2003 const Expr *Arg = E->getArg(0); 2004 LValue Src = EmitLValue(Arg); 2005 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2006 LValue Dest = MakeAddrLValue(This, DestTy); 2007 EmitAggregateCopyCtor(Dest, Src); 2008 return; 2009 } 2010 2011 // Add the rest of the user-supplied arguments. 2012 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2013 EvaluationOrder Order = E->isListInitialization() 2014 ? EvaluationOrder::ForceLeftToRight 2015 : EvaluationOrder::Default; 2016 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2017 /*ParamsToSkip*/ 0, Order); 2018 2019 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args); 2020 } 2021 2022 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2023 const CXXConstructorDecl *Ctor, 2024 CXXCtorType Type, CallArgList &Args) { 2025 // We can't forward a variadic call. 2026 if (Ctor->isVariadic()) 2027 return false; 2028 2029 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2030 // If the parameters are callee-cleanup, it's not safe to forward. 2031 for (auto *P : Ctor->parameters()) 2032 if (P->getType().isDestructedType()) 2033 return false; 2034 2035 // Likewise if they're inalloca. 2036 const CGFunctionInfo &Info = 2037 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2038 if (Info.usesInAlloca()) 2039 return false; 2040 } 2041 2042 // Anything else should be OK. 2043 return true; 2044 } 2045 2046 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2047 CXXCtorType Type, 2048 bool ForVirtualBase, 2049 bool Delegating, 2050 Address This, 2051 CallArgList &Args) { 2052 const CXXRecordDecl *ClassDecl = D->getParent(); 2053 2054 // C++11 [class.mfct.non-static]p2: 2055 // If a non-static member function of a class X is called for an object that 2056 // is not of type X, or of a type derived from X, the behavior is undefined. 2057 // FIXME: Provide a source location here. 2058 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), 2059 This.getPointer(), getContext().getRecordType(ClassDecl)); 2060 2061 if (D->isTrivial() && D->isDefaultConstructor()) { 2062 assert(Args.size() == 1 && "trivial default ctor with args"); 2063 return; 2064 } 2065 2066 // If this is a trivial constructor, just emit what's needed. If this is a 2067 // union copy constructor, we must emit a memcpy, because the AST does not 2068 // model that copy. 2069 if (isMemcpyEquivalentSpecialMember(D)) { 2070 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2071 2072 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2073 Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy)); 2074 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2075 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2076 LValue DestLVal = MakeAddrLValue(This, DestTy); 2077 EmitAggregateCopyCtor(DestLVal, SrcLVal); 2078 return; 2079 } 2080 2081 bool PassPrototypeArgs = true; 2082 // Check whether we can actually emit the constructor before trying to do so. 2083 if (auto Inherited = D->getInheritedConstructor()) { 2084 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2085 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2086 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2087 Delegating, Args); 2088 return; 2089 } 2090 } 2091 2092 // Insert any ABI-specific implicit constructor arguments. 2093 CGCXXABI::AddedStructorArgs ExtraArgs = 2094 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2095 Delegating, Args); 2096 2097 // Emit the call. 2098 llvm::Constant *CalleePtr = 2099 CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 2100 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2101 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2102 CGCallee Callee = CGCallee::forDirect(CalleePtr, D); 2103 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2104 2105 // Generate vtable assumptions if we're constructing a complete object 2106 // with a vtable. We don't do this for base subobjects for two reasons: 2107 // first, it's incorrect for classes with virtual bases, and second, we're 2108 // about to overwrite the vptrs anyway. 2109 // We also have to make sure if we can refer to vtable: 2110 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2111 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2112 // sure that definition of vtable is not hidden, 2113 // then we are always safe to refer to it. 2114 // FIXME: It looks like InstCombine is very inefficient on dealing with 2115 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2116 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2117 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2118 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2119 CGM.getCodeGenOpts().StrictVTablePointers) 2120 EmitVTableAssumptionLoads(ClassDecl, This); 2121 } 2122 2123 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2124 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2125 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2126 CallArgList Args; 2127 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()), 2128 /*NeedsCopy=*/false); 2129 2130 // Forward the parameters. 2131 if (InheritedFromVBase && 2132 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2133 // Nothing to do; this construction is not responsible for constructing 2134 // the base class containing the inherited constructor. 2135 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2136 // have constructor variants? 2137 Args.push_back(ThisArg); 2138 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2139 // The inheriting constructor was inlined; just inject its arguments. 2140 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2141 "wrong number of parameters for inherited constructor call"); 2142 Args = CXXInheritedCtorInitExprArgs; 2143 Args[0] = ThisArg; 2144 } else { 2145 // The inheriting constructor was not inlined. Emit delegating arguments. 2146 Args.push_back(ThisArg); 2147 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2148 assert(OuterCtor->getNumParams() == D->getNumParams()); 2149 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2150 2151 for (const auto *Param : OuterCtor->parameters()) { 2152 assert(getContext().hasSameUnqualifiedType( 2153 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2154 Param->getType())); 2155 EmitDelegateCallArg(Args, Param, E->getLocation()); 2156 2157 // Forward __attribute__(pass_object_size). 2158 if (Param->hasAttr<PassObjectSizeAttr>()) { 2159 auto *POSParam = SizeArguments[Param]; 2160 assert(POSParam && "missing pass_object_size value for forwarding"); 2161 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2162 } 2163 } 2164 } 2165 2166 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2167 This, Args); 2168 } 2169 2170 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2171 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2172 bool Delegating, CallArgList &Args) { 2173 GlobalDecl GD(Ctor, CtorType); 2174 InlinedInheritingConstructorScope Scope(*this, GD); 2175 ApplyInlineDebugLocation DebugScope(*this, GD); 2176 2177 // Save the arguments to be passed to the inherited constructor. 2178 CXXInheritedCtorInitExprArgs = Args; 2179 2180 FunctionArgList Params; 2181 QualType RetType = BuildFunctionArgList(CurGD, Params); 2182 FnRetTy = RetType; 2183 2184 // Insert any ABI-specific implicit constructor arguments. 2185 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2186 ForVirtualBase, Delegating, Args); 2187 2188 // Emit a simplified prolog. We only need to emit the implicit params. 2189 assert(Args.size() >= Params.size() && "too few arguments for call"); 2190 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2191 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2192 const RValue &RV = Args[I].RV; 2193 assert(!RV.isComplex() && "complex indirect params not supported"); 2194 ParamValue Val = RV.isScalar() 2195 ? ParamValue::forDirect(RV.getScalarVal()) 2196 : ParamValue::forIndirect(RV.getAggregateAddress()); 2197 EmitParmDecl(*Params[I], Val, I + 1); 2198 } 2199 } 2200 2201 // Create a return value slot if the ABI implementation wants one. 2202 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2203 // value instead. 2204 if (!RetType->isVoidType()) 2205 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2206 2207 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2208 CXXThisValue = CXXABIThisValue; 2209 2210 // Directly emit the constructor initializers. 2211 EmitCtorPrologue(Ctor, CtorType, Params); 2212 } 2213 2214 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2215 llvm::Value *VTableGlobal = 2216 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2217 if (!VTableGlobal) 2218 return; 2219 2220 // We can just use the base offset in the complete class. 2221 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2222 2223 if (!NonVirtualOffset.isZero()) 2224 This = 2225 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2226 Vptr.VTableClass, Vptr.NearestVBase); 2227 2228 llvm::Value *VPtrValue = 2229 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2230 llvm::Value *Cmp = 2231 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2232 Builder.CreateAssumption(Cmp); 2233 } 2234 2235 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2236 Address This) { 2237 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2238 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2239 EmitVTableAssumptionLoad(Vptr, This); 2240 } 2241 2242 void 2243 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2244 Address This, Address Src, 2245 const CXXConstructExpr *E) { 2246 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2247 2248 CallArgList Args; 2249 2250 // Push the this ptr. 2251 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2252 2253 // Push the src ptr. 2254 QualType QT = *(FPT->param_type_begin()); 2255 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2256 Src = Builder.CreateBitCast(Src, t); 2257 Args.add(RValue::get(Src.getPointer()), QT); 2258 2259 // Skip over first argument (Src). 2260 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2261 /*ParamsToSkip*/ 1); 2262 2263 EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args); 2264 } 2265 2266 void 2267 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2268 CXXCtorType CtorType, 2269 const FunctionArgList &Args, 2270 SourceLocation Loc) { 2271 CallArgList DelegateArgs; 2272 2273 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2274 assert(I != E && "no parameters to constructor"); 2275 2276 // this 2277 Address This = LoadCXXThisAddress(); 2278 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2279 ++I; 2280 2281 // FIXME: The location of the VTT parameter in the parameter list is 2282 // specific to the Itanium ABI and shouldn't be hardcoded here. 2283 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2284 assert(I != E && "cannot skip vtt parameter, already done with args"); 2285 assert((*I)->getType()->isPointerType() && 2286 "skipping parameter not of vtt type"); 2287 ++I; 2288 } 2289 2290 // Explicit arguments. 2291 for (; I != E; ++I) { 2292 const VarDecl *param = *I; 2293 // FIXME: per-argument source location 2294 EmitDelegateCallArg(DelegateArgs, param, Loc); 2295 } 2296 2297 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2298 /*Delegating=*/true, This, DelegateArgs); 2299 } 2300 2301 namespace { 2302 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2303 const CXXDestructorDecl *Dtor; 2304 Address Addr; 2305 CXXDtorType Type; 2306 2307 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2308 CXXDtorType Type) 2309 : Dtor(D), Addr(Addr), Type(Type) {} 2310 2311 void Emit(CodeGenFunction &CGF, Flags flags) override { 2312 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2313 /*Delegating=*/true, Addr); 2314 } 2315 }; 2316 } // end anonymous namespace 2317 2318 void 2319 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2320 const FunctionArgList &Args) { 2321 assert(Ctor->isDelegatingConstructor()); 2322 2323 Address ThisPtr = LoadCXXThisAddress(); 2324 2325 AggValueSlot AggSlot = 2326 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2327 AggValueSlot::IsDestructed, 2328 AggValueSlot::DoesNotNeedGCBarriers, 2329 AggValueSlot::IsNotAliased); 2330 2331 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2332 2333 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2334 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2335 CXXDtorType Type = 2336 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2337 2338 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2339 ClassDecl->getDestructor(), 2340 ThisPtr, Type); 2341 } 2342 } 2343 2344 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2345 CXXDtorType Type, 2346 bool ForVirtualBase, 2347 bool Delegating, 2348 Address This) { 2349 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2350 Delegating, This); 2351 } 2352 2353 namespace { 2354 struct CallLocalDtor final : EHScopeStack::Cleanup { 2355 const CXXDestructorDecl *Dtor; 2356 Address Addr; 2357 2358 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2359 : Dtor(D), Addr(Addr) {} 2360 2361 void Emit(CodeGenFunction &CGF, Flags flags) override { 2362 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2363 /*ForVirtualBase=*/false, 2364 /*Delegating=*/false, Addr); 2365 } 2366 }; 2367 } // end anonymous namespace 2368 2369 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2370 Address Addr) { 2371 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2372 } 2373 2374 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2375 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2376 if (!ClassDecl) return; 2377 if (ClassDecl->hasTrivialDestructor()) return; 2378 2379 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2380 assert(D && D->isUsed() && "destructor not marked as used!"); 2381 PushDestructorCleanup(D, Addr); 2382 } 2383 2384 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2385 // Compute the address point. 2386 llvm::Value *VTableAddressPoint = 2387 CGM.getCXXABI().getVTableAddressPointInStructor( 2388 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2389 2390 if (!VTableAddressPoint) 2391 return; 2392 2393 // Compute where to store the address point. 2394 llvm::Value *VirtualOffset = nullptr; 2395 CharUnits NonVirtualOffset = CharUnits::Zero(); 2396 2397 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2398 // We need to use the virtual base offset offset because the virtual base 2399 // might have a different offset in the most derived class. 2400 2401 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2402 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2403 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2404 } else { 2405 // We can just use the base offset in the complete class. 2406 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2407 } 2408 2409 // Apply the offsets. 2410 Address VTableField = LoadCXXThisAddress(); 2411 2412 if (!NonVirtualOffset.isZero() || VirtualOffset) 2413 VTableField = ApplyNonVirtualAndVirtualOffset( 2414 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2415 Vptr.NearestVBase); 2416 2417 // Finally, store the address point. Use the same LLVM types as the field to 2418 // support optimization. 2419 llvm::Type *VTablePtrTy = 2420 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2421 ->getPointerTo() 2422 ->getPointerTo(); 2423 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2424 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2425 2426 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2427 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2428 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2429 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2430 CGM.getCodeGenOpts().StrictVTablePointers) 2431 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2432 } 2433 2434 CodeGenFunction::VPtrsVector 2435 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2436 CodeGenFunction::VPtrsVector VPtrsResult; 2437 VisitedVirtualBasesSetTy VBases; 2438 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2439 /*NearestVBase=*/nullptr, 2440 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2441 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2442 VPtrsResult); 2443 return VPtrsResult; 2444 } 2445 2446 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2447 const CXXRecordDecl *NearestVBase, 2448 CharUnits OffsetFromNearestVBase, 2449 bool BaseIsNonVirtualPrimaryBase, 2450 const CXXRecordDecl *VTableClass, 2451 VisitedVirtualBasesSetTy &VBases, 2452 VPtrsVector &Vptrs) { 2453 // If this base is a non-virtual primary base the address point has already 2454 // been set. 2455 if (!BaseIsNonVirtualPrimaryBase) { 2456 // Initialize the vtable pointer for this base. 2457 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2458 Vptrs.push_back(Vptr); 2459 } 2460 2461 const CXXRecordDecl *RD = Base.getBase(); 2462 2463 // Traverse bases. 2464 for (const auto &I : RD->bases()) { 2465 CXXRecordDecl *BaseDecl 2466 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2467 2468 // Ignore classes without a vtable. 2469 if (!BaseDecl->isDynamicClass()) 2470 continue; 2471 2472 CharUnits BaseOffset; 2473 CharUnits BaseOffsetFromNearestVBase; 2474 bool BaseDeclIsNonVirtualPrimaryBase; 2475 2476 if (I.isVirtual()) { 2477 // Check if we've visited this virtual base before. 2478 if (!VBases.insert(BaseDecl).second) 2479 continue; 2480 2481 const ASTRecordLayout &Layout = 2482 getContext().getASTRecordLayout(VTableClass); 2483 2484 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2485 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2486 BaseDeclIsNonVirtualPrimaryBase = false; 2487 } else { 2488 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2489 2490 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2491 BaseOffsetFromNearestVBase = 2492 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2493 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2494 } 2495 2496 getVTablePointers( 2497 BaseSubobject(BaseDecl, BaseOffset), 2498 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2499 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2500 } 2501 } 2502 2503 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2504 // Ignore classes without a vtable. 2505 if (!RD->isDynamicClass()) 2506 return; 2507 2508 // Initialize the vtable pointers for this class and all of its bases. 2509 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2510 for (const VPtr &Vptr : getVTablePointers(RD)) 2511 InitializeVTablePointer(Vptr); 2512 2513 if (RD->getNumVBases()) 2514 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2515 } 2516 2517 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2518 llvm::Type *VTableTy, 2519 const CXXRecordDecl *RD) { 2520 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2521 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2522 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2523 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2524 2525 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2526 CGM.getCodeGenOpts().StrictVTablePointers) 2527 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2528 2529 return VTable; 2530 } 2531 2532 // If a class has a single non-virtual base and does not introduce or override 2533 // virtual member functions or fields, it will have the same layout as its base. 2534 // This function returns the least derived such class. 2535 // 2536 // Casting an instance of a base class to such a derived class is technically 2537 // undefined behavior, but it is a relatively common hack for introducing member 2538 // functions on class instances with specific properties (e.g. llvm::Operator) 2539 // that works under most compilers and should not have security implications, so 2540 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2541 static const CXXRecordDecl * 2542 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2543 if (!RD->field_empty()) 2544 return RD; 2545 2546 if (RD->getNumVBases() != 0) 2547 return RD; 2548 2549 if (RD->getNumBases() != 1) 2550 return RD; 2551 2552 for (const CXXMethodDecl *MD : RD->methods()) { 2553 if (MD->isVirtual()) { 2554 // Virtual member functions are only ok if they are implicit destructors 2555 // because the implicit destructor will have the same semantics as the 2556 // base class's destructor if no fields are added. 2557 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2558 continue; 2559 return RD; 2560 } 2561 } 2562 2563 return LeastDerivedClassWithSameLayout( 2564 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2565 } 2566 2567 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2568 llvm::Value *VTable, 2569 SourceLocation Loc) { 2570 if (SanOpts.has(SanitizerKind::CFIVCall)) 2571 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2572 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2573 CGM.HasHiddenLTOVisibility(RD)) { 2574 llvm::Metadata *MD = 2575 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2576 llvm::Value *TypeId = 2577 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2578 2579 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2580 llvm::Value *TypeTest = 2581 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2582 {CastedVTable, TypeId}); 2583 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2584 } 2585 } 2586 2587 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2588 llvm::Value *VTable, 2589 CFITypeCheckKind TCK, 2590 SourceLocation Loc) { 2591 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2592 RD = LeastDerivedClassWithSameLayout(RD); 2593 2594 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2595 } 2596 2597 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2598 llvm::Value *Derived, 2599 bool MayBeNull, 2600 CFITypeCheckKind TCK, 2601 SourceLocation Loc) { 2602 if (!getLangOpts().CPlusPlus) 2603 return; 2604 2605 auto *ClassTy = T->getAs<RecordType>(); 2606 if (!ClassTy) 2607 return; 2608 2609 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2610 2611 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2612 return; 2613 2614 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2615 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2616 2617 llvm::BasicBlock *ContBlock = nullptr; 2618 2619 if (MayBeNull) { 2620 llvm::Value *DerivedNotNull = 2621 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2622 2623 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2624 ContBlock = createBasicBlock("cast.cont"); 2625 2626 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2627 2628 EmitBlock(CheckBlock); 2629 } 2630 2631 llvm::Value *VTable; 2632 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2633 *this, Address(Derived, getPointerAlign()), ClassDecl); 2634 2635 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2636 2637 if (MayBeNull) { 2638 Builder.CreateBr(ContBlock); 2639 EmitBlock(ContBlock); 2640 } 2641 } 2642 2643 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2644 llvm::Value *VTable, 2645 CFITypeCheckKind TCK, 2646 SourceLocation Loc) { 2647 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2648 !CGM.HasHiddenLTOVisibility(RD)) 2649 return; 2650 2651 SanitizerMask M; 2652 llvm::SanitizerStatKind SSK; 2653 switch (TCK) { 2654 case CFITCK_VCall: 2655 M = SanitizerKind::CFIVCall; 2656 SSK = llvm::SanStat_CFI_VCall; 2657 break; 2658 case CFITCK_NVCall: 2659 M = SanitizerKind::CFINVCall; 2660 SSK = llvm::SanStat_CFI_NVCall; 2661 break; 2662 case CFITCK_DerivedCast: 2663 M = SanitizerKind::CFIDerivedCast; 2664 SSK = llvm::SanStat_CFI_DerivedCast; 2665 break; 2666 case CFITCK_UnrelatedCast: 2667 M = SanitizerKind::CFIUnrelatedCast; 2668 SSK = llvm::SanStat_CFI_UnrelatedCast; 2669 break; 2670 case CFITCK_ICall: 2671 llvm_unreachable("not expecting CFITCK_ICall"); 2672 } 2673 2674 std::string TypeName = RD->getQualifiedNameAsString(); 2675 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2676 return; 2677 2678 SanitizerScope SanScope(this); 2679 EmitSanitizerStatReport(SSK); 2680 2681 llvm::Metadata *MD = 2682 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2683 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2684 2685 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2686 llvm::Value *TypeTest = Builder.CreateCall( 2687 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2688 2689 llvm::Constant *StaticData[] = { 2690 llvm::ConstantInt::get(Int8Ty, TCK), 2691 EmitCheckSourceLocation(Loc), 2692 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2693 }; 2694 2695 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2696 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2697 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2698 return; 2699 } 2700 2701 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2702 EmitTrapCheck(TypeTest); 2703 return; 2704 } 2705 2706 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2707 CGM.getLLVMContext(), 2708 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2709 llvm::Value *ValidVtable = Builder.CreateCall( 2710 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2711 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2712 StaticData, {CastedVTable, ValidVtable}); 2713 } 2714 2715 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2716 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2717 !SanOpts.has(SanitizerKind::CFIVCall) || 2718 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2719 !CGM.HasHiddenLTOVisibility(RD)) 2720 return false; 2721 2722 std::string TypeName = RD->getQualifiedNameAsString(); 2723 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2724 SanitizerKind::CFIVCall, TypeName); 2725 } 2726 2727 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2728 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2729 SanitizerScope SanScope(this); 2730 2731 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2732 2733 llvm::Metadata *MD = 2734 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2735 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2736 2737 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2738 llvm::Value *CheckedLoad = Builder.CreateCall( 2739 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2740 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2741 TypeId}); 2742 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2743 2744 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2745 SanitizerHandler::CFICheckFail, nullptr, nullptr); 2746 2747 return Builder.CreateBitCast( 2748 Builder.CreateExtractValue(CheckedLoad, 0), 2749 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2750 } 2751 2752 void CodeGenFunction::EmitForwardingCallToLambda( 2753 const CXXMethodDecl *callOperator, 2754 CallArgList &callArgs) { 2755 // Get the address of the call operator. 2756 const CGFunctionInfo &calleeFnInfo = 2757 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2758 llvm::Constant *calleePtr = 2759 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2760 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2761 2762 // Prepare the return slot. 2763 const FunctionProtoType *FPT = 2764 callOperator->getType()->castAs<FunctionProtoType>(); 2765 QualType resultType = FPT->getReturnType(); 2766 ReturnValueSlot returnSlot; 2767 if (!resultType->isVoidType() && 2768 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2769 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2770 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2771 2772 // We don't need to separately arrange the call arguments because 2773 // the call can't be variadic anyway --- it's impossible to forward 2774 // variadic arguments. 2775 2776 // Now emit our call. 2777 auto callee = CGCallee::forDirect(calleePtr, callOperator); 2778 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2779 2780 // If necessary, copy the returned value into the slot. 2781 if (!resultType->isVoidType() && returnSlot.isNull()) { 2782 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2783 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2784 } 2785 EmitReturnOfRValue(RV, resultType); 2786 } else 2787 EmitBranchThroughCleanup(ReturnBlock); 2788 } 2789 2790 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2791 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2792 const VarDecl *variable = BD->capture_begin()->getVariable(); 2793 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2794 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2795 2796 if (CallOp->isVariadic()) { 2797 // FIXME: Making this work correctly is nasty because it requires either 2798 // cloning the body of the call operator or making the call operator 2799 // forward. 2800 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2801 return; 2802 } 2803 2804 // Start building arguments for forwarding call 2805 CallArgList CallArgs; 2806 2807 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2808 Address ThisPtr = GetAddrOfBlockDecl(variable, false); 2809 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2810 2811 // Add the rest of the parameters. 2812 for (auto param : BD->parameters()) 2813 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2814 2815 assert(!Lambda->isGenericLambda() && 2816 "generic lambda interconversion to block not implemented"); 2817 EmitForwardingCallToLambda(CallOp, CallArgs); 2818 } 2819 2820 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2821 const CXXRecordDecl *Lambda = MD->getParent(); 2822 2823 // Start building arguments for forwarding call 2824 CallArgList CallArgs; 2825 2826 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2827 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2828 CallArgs.add(RValue::get(ThisPtr), ThisType); 2829 2830 // Add the rest of the parameters. 2831 for (auto Param : MD->parameters()) 2832 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2833 2834 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2835 // For a generic lambda, find the corresponding call operator specialization 2836 // to which the call to the static-invoker shall be forwarded. 2837 if (Lambda->isGenericLambda()) { 2838 assert(MD->isFunctionTemplateSpecialization()); 2839 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2840 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2841 void *InsertPos = nullptr; 2842 FunctionDecl *CorrespondingCallOpSpecialization = 2843 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2844 assert(CorrespondingCallOpSpecialization); 2845 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2846 } 2847 EmitForwardingCallToLambda(CallOp, CallArgs); 2848 } 2849 2850 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2851 if (MD->isVariadic()) { 2852 // FIXME: Making this work correctly is nasty because it requires either 2853 // cloning the body of the call operator or making the call operator forward. 2854 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2855 return; 2856 } 2857 2858 EmitLambdaDelegatingInvokeBody(MD); 2859 } 2860