1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 AlignmentSource *alignSource) { 133 // Ask the ABI to compute the actual address. 134 llvm::Value *ptr = 135 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 136 memberPtr, memberPtrType); 137 138 QualType memberType = memberPtrType->getPointeeType(); 139 CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource); 140 memberAlign = 141 CGM.getDynamicOffsetAlignment(base.getAlignment(), 142 memberPtrType->getClass()->getAsCXXRecordDecl(), 143 memberAlign); 144 return Address(ptr, memberAlign); 145 } 146 147 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 148 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 149 CastExpr::path_const_iterator End) { 150 CharUnits Offset = CharUnits::Zero(); 151 152 const ASTContext &Context = getContext(); 153 const CXXRecordDecl *RD = DerivedClass; 154 155 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 156 const CXXBaseSpecifier *Base = *I; 157 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 158 159 // Get the layout. 160 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 161 162 const CXXRecordDecl *BaseDecl = 163 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 164 165 // Add the offset. 166 Offset += Layout.getBaseClassOffset(BaseDecl); 167 168 RD = BaseDecl; 169 } 170 171 return Offset; 172 } 173 174 llvm::Constant * 175 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 176 CastExpr::path_const_iterator PathBegin, 177 CastExpr::path_const_iterator PathEnd) { 178 assert(PathBegin != PathEnd && "Base path should not be empty!"); 179 180 CharUnits Offset = 181 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 182 if (Offset.isZero()) 183 return nullptr; 184 185 llvm::Type *PtrDiffTy = 186 Types.ConvertType(getContext().getPointerDiffType()); 187 188 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 189 } 190 191 /// Gets the address of a direct base class within a complete object. 192 /// This should only be used for (1) non-virtual bases or (2) virtual bases 193 /// when the type is known to be complete (e.g. in complete destructors). 194 /// 195 /// The object pointed to by 'This' is assumed to be non-null. 196 Address 197 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 198 const CXXRecordDecl *Derived, 199 const CXXRecordDecl *Base, 200 bool BaseIsVirtual) { 201 // 'this' must be a pointer (in some address space) to Derived. 202 assert(This.getElementType() == ConvertType(Derived)); 203 204 // Compute the offset of the virtual base. 205 CharUnits Offset; 206 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 207 if (BaseIsVirtual) 208 Offset = Layout.getVBaseClassOffset(Base); 209 else 210 Offset = Layout.getBaseClassOffset(Base); 211 212 // Shift and cast down to the base type. 213 // TODO: for complete types, this should be possible with a GEP. 214 Address V = This; 215 if (!Offset.isZero()) { 216 V = Builder.CreateElementBitCast(V, Int8Ty); 217 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 218 } 219 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 220 221 return V; 222 } 223 224 static Address 225 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 226 CharUnits nonVirtualOffset, 227 llvm::Value *virtualOffset, 228 const CXXRecordDecl *derivedClass, 229 const CXXRecordDecl *nearestVBase) { 230 // Assert that we have something to do. 231 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 232 233 // Compute the offset from the static and dynamic components. 234 llvm::Value *baseOffset; 235 if (!nonVirtualOffset.isZero()) { 236 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 237 nonVirtualOffset.getQuantity()); 238 if (virtualOffset) { 239 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 240 } 241 } else { 242 baseOffset = virtualOffset; 243 } 244 245 // Apply the base offset. 246 llvm::Value *ptr = addr.getPointer(); 247 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 248 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 249 250 // If we have a virtual component, the alignment of the result will 251 // be relative only to the known alignment of that vbase. 252 CharUnits alignment; 253 if (virtualOffset) { 254 assert(nearestVBase && "virtual offset without vbase?"); 255 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 256 derivedClass, nearestVBase); 257 } else { 258 alignment = addr.getAlignment(); 259 } 260 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 261 262 return Address(ptr, alignment); 263 } 264 265 Address CodeGenFunction::GetAddressOfBaseClass( 266 Address Value, const CXXRecordDecl *Derived, 267 CastExpr::path_const_iterator PathBegin, 268 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 269 SourceLocation Loc) { 270 assert(PathBegin != PathEnd && "Base path should not be empty!"); 271 272 CastExpr::path_const_iterator Start = PathBegin; 273 const CXXRecordDecl *VBase = nullptr; 274 275 // Sema has done some convenient canonicalization here: if the 276 // access path involved any virtual steps, the conversion path will 277 // *start* with a step down to the correct virtual base subobject, 278 // and hence will not require any further steps. 279 if ((*Start)->isVirtual()) { 280 VBase = 281 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 282 ++Start; 283 } 284 285 // Compute the static offset of the ultimate destination within its 286 // allocating subobject (the virtual base, if there is one, or else 287 // the "complete" object that we see). 288 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 289 VBase ? VBase : Derived, Start, PathEnd); 290 291 // If there's a virtual step, we can sometimes "devirtualize" it. 292 // For now, that's limited to when the derived type is final. 293 // TODO: "devirtualize" this for accesses to known-complete objects. 294 if (VBase && Derived->hasAttr<FinalAttr>()) { 295 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 296 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 297 NonVirtualOffset += vBaseOffset; 298 VBase = nullptr; // we no longer have a virtual step 299 } 300 301 // Get the base pointer type. 302 llvm::Type *BasePtrTy = 303 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 304 305 QualType DerivedTy = getContext().getRecordType(Derived); 306 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 307 308 // If the static offset is zero and we don't have a virtual step, 309 // just do a bitcast; null checks are unnecessary. 310 if (NonVirtualOffset.isZero() && !VBase) { 311 if (sanitizePerformTypeCheck()) { 312 SanitizerSet SkippedChecks; 313 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 314 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 315 DerivedTy, DerivedAlign, SkippedChecks); 316 } 317 return Builder.CreateBitCast(Value, BasePtrTy); 318 } 319 320 llvm::BasicBlock *origBB = nullptr; 321 llvm::BasicBlock *endBB = nullptr; 322 323 // Skip over the offset (and the vtable load) if we're supposed to 324 // null-check the pointer. 325 if (NullCheckValue) { 326 origBB = Builder.GetInsertBlock(); 327 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 328 endBB = createBasicBlock("cast.end"); 329 330 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 331 Builder.CreateCondBr(isNull, endBB, notNullBB); 332 EmitBlock(notNullBB); 333 } 334 335 if (sanitizePerformTypeCheck()) { 336 SanitizerSet SkippedChecks; 337 SkippedChecks.set(SanitizerKind::Null, true); 338 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 339 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 340 } 341 342 // Compute the virtual offset. 343 llvm::Value *VirtualOffset = nullptr; 344 if (VBase) { 345 VirtualOffset = 346 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 347 } 348 349 // Apply both offsets. 350 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 351 VirtualOffset, Derived, VBase); 352 353 // Cast to the destination type. 354 Value = Builder.CreateBitCast(Value, BasePtrTy); 355 356 // Build a phi if we needed a null check. 357 if (NullCheckValue) { 358 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 359 Builder.CreateBr(endBB); 360 EmitBlock(endBB); 361 362 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 363 PHI->addIncoming(Value.getPointer(), notNullBB); 364 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 365 Value = Address(PHI, Value.getAlignment()); 366 } 367 368 return Value; 369 } 370 371 Address 372 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 373 const CXXRecordDecl *Derived, 374 CastExpr::path_const_iterator PathBegin, 375 CastExpr::path_const_iterator PathEnd, 376 bool NullCheckValue) { 377 assert(PathBegin != PathEnd && "Base path should not be empty!"); 378 379 QualType DerivedTy = 380 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 381 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 382 383 llvm::Value *NonVirtualOffset = 384 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 385 386 if (!NonVirtualOffset) { 387 // No offset, we can just cast back. 388 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 389 } 390 391 llvm::BasicBlock *CastNull = nullptr; 392 llvm::BasicBlock *CastNotNull = nullptr; 393 llvm::BasicBlock *CastEnd = nullptr; 394 395 if (NullCheckValue) { 396 CastNull = createBasicBlock("cast.null"); 397 CastNotNull = createBasicBlock("cast.notnull"); 398 CastEnd = createBasicBlock("cast.end"); 399 400 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 401 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 402 EmitBlock(CastNotNull); 403 } 404 405 // Apply the offset. 406 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 407 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 408 "sub.ptr"); 409 410 // Just cast. 411 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 412 413 // Produce a PHI if we had a null-check. 414 if (NullCheckValue) { 415 Builder.CreateBr(CastEnd); 416 EmitBlock(CastNull); 417 Builder.CreateBr(CastEnd); 418 EmitBlock(CastEnd); 419 420 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 421 PHI->addIncoming(Value, CastNotNull); 422 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 423 Value = PHI; 424 } 425 426 return Address(Value, CGM.getClassPointerAlignment(Derived)); 427 } 428 429 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 430 bool ForVirtualBase, 431 bool Delegating) { 432 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 433 // This constructor/destructor does not need a VTT parameter. 434 return nullptr; 435 } 436 437 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 438 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 439 440 llvm::Value *VTT; 441 442 uint64_t SubVTTIndex; 443 444 if (Delegating) { 445 // If this is a delegating constructor call, just load the VTT. 446 return LoadCXXVTT(); 447 } else if (RD == Base) { 448 // If the record matches the base, this is the complete ctor/dtor 449 // variant calling the base variant in a class with virtual bases. 450 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 451 "doing no-op VTT offset in base dtor/ctor?"); 452 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 453 SubVTTIndex = 0; 454 } else { 455 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 456 CharUnits BaseOffset = ForVirtualBase ? 457 Layout.getVBaseClassOffset(Base) : 458 Layout.getBaseClassOffset(Base); 459 460 SubVTTIndex = 461 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 462 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 463 } 464 465 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 466 // A VTT parameter was passed to the constructor, use it. 467 VTT = LoadCXXVTT(); 468 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 469 } else { 470 // We're the complete constructor, so get the VTT by name. 471 VTT = CGM.getVTables().GetAddrOfVTT(RD); 472 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 473 } 474 475 return VTT; 476 } 477 478 namespace { 479 /// Call the destructor for a direct base class. 480 struct CallBaseDtor final : EHScopeStack::Cleanup { 481 const CXXRecordDecl *BaseClass; 482 bool BaseIsVirtual; 483 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 484 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 485 486 void Emit(CodeGenFunction &CGF, Flags flags) override { 487 const CXXRecordDecl *DerivedClass = 488 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 489 490 const CXXDestructorDecl *D = BaseClass->getDestructor(); 491 Address Addr = 492 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 493 DerivedClass, BaseClass, 494 BaseIsVirtual); 495 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 496 /*Delegating=*/false, Addr); 497 } 498 }; 499 500 /// A visitor which checks whether an initializer uses 'this' in a 501 /// way which requires the vtable to be properly set. 502 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 503 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 504 505 bool UsesThis; 506 507 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 508 509 // Black-list all explicit and implicit references to 'this'. 510 // 511 // Do we need to worry about external references to 'this' derived 512 // from arbitrary code? If so, then anything which runs arbitrary 513 // external code might potentially access the vtable. 514 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 515 }; 516 } // end anonymous namespace 517 518 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 519 DynamicThisUseChecker Checker(C); 520 Checker.Visit(Init); 521 return Checker.UsesThis; 522 } 523 524 static void EmitBaseInitializer(CodeGenFunction &CGF, 525 const CXXRecordDecl *ClassDecl, 526 CXXCtorInitializer *BaseInit, 527 CXXCtorType CtorType) { 528 assert(BaseInit->isBaseInitializer() && 529 "Must have base initializer!"); 530 531 Address ThisPtr = CGF.LoadCXXThisAddress(); 532 533 const Type *BaseType = BaseInit->getBaseClass(); 534 CXXRecordDecl *BaseClassDecl = 535 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 536 537 bool isBaseVirtual = BaseInit->isBaseVirtual(); 538 539 // The base constructor doesn't construct virtual bases. 540 if (CtorType == Ctor_Base && isBaseVirtual) 541 return; 542 543 // If the initializer for the base (other than the constructor 544 // itself) accesses 'this' in any way, we need to initialize the 545 // vtables. 546 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 547 CGF.InitializeVTablePointers(ClassDecl); 548 549 // We can pretend to be a complete class because it only matters for 550 // virtual bases, and we only do virtual bases for complete ctors. 551 Address V = 552 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 553 BaseClassDecl, 554 isBaseVirtual); 555 AggValueSlot AggSlot = 556 AggValueSlot::forAddr(V, Qualifiers(), 557 AggValueSlot::IsDestructed, 558 AggValueSlot::DoesNotNeedGCBarriers, 559 AggValueSlot::IsNotAliased); 560 561 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 562 563 if (CGF.CGM.getLangOpts().Exceptions && 564 !BaseClassDecl->hasTrivialDestructor()) 565 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 566 isBaseVirtual); 567 } 568 569 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 570 auto *CD = dyn_cast<CXXConstructorDecl>(D); 571 if (!(CD && CD->isCopyOrMoveConstructor()) && 572 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 573 return false; 574 575 // We can emit a memcpy for a trivial copy or move constructor/assignment. 576 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 577 return true; 578 579 // We *must* emit a memcpy for a defaulted union copy or move op. 580 if (D->getParent()->isUnion() && D->isDefaulted()) 581 return true; 582 583 return false; 584 } 585 586 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 587 CXXCtorInitializer *MemberInit, 588 LValue &LHS) { 589 FieldDecl *Field = MemberInit->getAnyMember(); 590 if (MemberInit->isIndirectMemberInitializer()) { 591 // If we are initializing an anonymous union field, drill down to the field. 592 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 593 for (const auto *I : IndirectField->chain()) 594 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 595 } else { 596 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 597 } 598 } 599 600 static void EmitMemberInitializer(CodeGenFunction &CGF, 601 const CXXRecordDecl *ClassDecl, 602 CXXCtorInitializer *MemberInit, 603 const CXXConstructorDecl *Constructor, 604 FunctionArgList &Args) { 605 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 606 assert(MemberInit->isAnyMemberInitializer() && 607 "Must have member initializer!"); 608 assert(MemberInit->getInit() && "Must have initializer!"); 609 610 // non-static data member initializers. 611 FieldDecl *Field = MemberInit->getAnyMember(); 612 QualType FieldType = Field->getType(); 613 614 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 615 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 616 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 617 618 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 619 620 // Special case: if we are in a copy or move constructor, and we are copying 621 // an array of PODs or classes with trivial copy constructors, ignore the 622 // AST and perform the copy we know is equivalent. 623 // FIXME: This is hacky at best... if we had a bit more explicit information 624 // in the AST, we could generalize it more easily. 625 const ConstantArrayType *Array 626 = CGF.getContext().getAsConstantArrayType(FieldType); 627 if (Array && Constructor->isDefaulted() && 628 Constructor->isCopyOrMoveConstructor()) { 629 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 630 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 631 if (BaseElementTy.isPODType(CGF.getContext()) || 632 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 633 unsigned SrcArgIndex = 634 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 635 llvm::Value *SrcPtr 636 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 637 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 638 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 639 640 // Copy the aggregate. 641 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 642 LHS.isVolatileQualified()); 643 // Ensure that we destroy the objects if an exception is thrown later in 644 // the constructor. 645 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 646 if (CGF.needsEHCleanup(dtorKind)) 647 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 648 return; 649 } 650 } 651 652 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 653 } 654 655 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 656 Expr *Init) { 657 QualType FieldType = Field->getType(); 658 switch (getEvaluationKind(FieldType)) { 659 case TEK_Scalar: 660 if (LHS.isSimple()) { 661 EmitExprAsInit(Init, Field, LHS, false); 662 } else { 663 RValue RHS = RValue::get(EmitScalarExpr(Init)); 664 EmitStoreThroughLValue(RHS, LHS); 665 } 666 break; 667 case TEK_Complex: 668 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 669 break; 670 case TEK_Aggregate: { 671 AggValueSlot Slot = 672 AggValueSlot::forLValue(LHS, 673 AggValueSlot::IsDestructed, 674 AggValueSlot::DoesNotNeedGCBarriers, 675 AggValueSlot::IsNotAliased); 676 EmitAggExpr(Init, Slot); 677 break; 678 } 679 } 680 681 // Ensure that we destroy this object if an exception is thrown 682 // later in the constructor. 683 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 684 if (needsEHCleanup(dtorKind)) 685 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 686 } 687 688 /// Checks whether the given constructor is a valid subject for the 689 /// complete-to-base constructor delegation optimization, i.e. 690 /// emitting the complete constructor as a simple call to the base 691 /// constructor. 692 bool CodeGenFunction::IsConstructorDelegationValid( 693 const CXXConstructorDecl *Ctor) { 694 695 // Currently we disable the optimization for classes with virtual 696 // bases because (1) the addresses of parameter variables need to be 697 // consistent across all initializers but (2) the delegate function 698 // call necessarily creates a second copy of the parameter variable. 699 // 700 // The limiting example (purely theoretical AFAIK): 701 // struct A { A(int &c) { c++; } }; 702 // struct B : virtual A { 703 // B(int count) : A(count) { printf("%d\n", count); } 704 // }; 705 // ...although even this example could in principle be emitted as a 706 // delegation since the address of the parameter doesn't escape. 707 if (Ctor->getParent()->getNumVBases()) { 708 // TODO: white-list trivial vbase initializers. This case wouldn't 709 // be subject to the restrictions below. 710 711 // TODO: white-list cases where: 712 // - there are no non-reference parameters to the constructor 713 // - the initializers don't access any non-reference parameters 714 // - the initializers don't take the address of non-reference 715 // parameters 716 // - etc. 717 // If we ever add any of the above cases, remember that: 718 // - function-try-blocks will always blacklist this optimization 719 // - we need to perform the constructor prologue and cleanup in 720 // EmitConstructorBody. 721 722 return false; 723 } 724 725 // We also disable the optimization for variadic functions because 726 // it's impossible to "re-pass" varargs. 727 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 728 return false; 729 730 // FIXME: Decide if we can do a delegation of a delegating constructor. 731 if (Ctor->isDelegatingConstructor()) 732 return false; 733 734 return true; 735 } 736 737 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 738 // to poison the extra field paddings inserted under 739 // -fsanitize-address-field-padding=1|2. 740 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 741 ASTContext &Context = getContext(); 742 const CXXRecordDecl *ClassDecl = 743 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 744 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 745 if (!ClassDecl->mayInsertExtraPadding()) return; 746 747 struct SizeAndOffset { 748 uint64_t Size; 749 uint64_t Offset; 750 }; 751 752 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 753 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 754 755 // Populate sizes and offsets of fields. 756 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 757 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 758 SSV[i].Offset = 759 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 760 761 size_t NumFields = 0; 762 for (const auto *Field : ClassDecl->fields()) { 763 const FieldDecl *D = Field; 764 std::pair<CharUnits, CharUnits> FieldInfo = 765 Context.getTypeInfoInChars(D->getType()); 766 CharUnits FieldSize = FieldInfo.first; 767 assert(NumFields < SSV.size()); 768 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 769 NumFields++; 770 } 771 assert(NumFields == SSV.size()); 772 if (SSV.size() <= 1) return; 773 774 // We will insert calls to __asan_* run-time functions. 775 // LLVM AddressSanitizer pass may decide to inline them later. 776 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 777 llvm::FunctionType *FTy = 778 llvm::FunctionType::get(CGM.VoidTy, Args, false); 779 llvm::Constant *F = CGM.CreateRuntimeFunction( 780 FTy, Prologue ? "__asan_poison_intra_object_redzone" 781 : "__asan_unpoison_intra_object_redzone"); 782 783 llvm::Value *ThisPtr = LoadCXXThis(); 784 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 785 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 786 // For each field check if it has sufficient padding, 787 // if so (un)poison it with a call. 788 for (size_t i = 0; i < SSV.size(); i++) { 789 uint64_t AsanAlignment = 8; 790 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 791 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 792 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 793 if (PoisonSize < AsanAlignment || !SSV[i].Size || 794 (NextField % AsanAlignment) != 0) 795 continue; 796 Builder.CreateCall( 797 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 798 Builder.getIntN(PtrSize, PoisonSize)}); 799 } 800 } 801 802 /// EmitConstructorBody - Emits the body of the current constructor. 803 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 804 EmitAsanPrologueOrEpilogue(true); 805 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 806 CXXCtorType CtorType = CurGD.getCtorType(); 807 808 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 809 CtorType == Ctor_Complete) && 810 "can only generate complete ctor for this ABI"); 811 812 // Before we go any further, try the complete->base constructor 813 // delegation optimization. 814 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 815 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 816 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 817 return; 818 } 819 820 const FunctionDecl *Definition = nullptr; 821 Stmt *Body = Ctor->getBody(Definition); 822 assert(Definition == Ctor && "emitting wrong constructor body"); 823 824 // Enter the function-try-block before the constructor prologue if 825 // applicable. 826 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 827 if (IsTryBody) 828 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 829 830 incrementProfileCounter(Body); 831 832 RunCleanupsScope RunCleanups(*this); 833 834 // TODO: in restricted cases, we can emit the vbase initializers of 835 // a complete ctor and then delegate to the base ctor. 836 837 // Emit the constructor prologue, i.e. the base and member 838 // initializers. 839 EmitCtorPrologue(Ctor, CtorType, Args); 840 841 // Emit the body of the statement. 842 if (IsTryBody) 843 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 844 else if (Body) 845 EmitStmt(Body); 846 847 // Emit any cleanup blocks associated with the member or base 848 // initializers, which includes (along the exceptional path) the 849 // destructors for those members and bases that were fully 850 // constructed. 851 RunCleanups.ForceCleanup(); 852 853 if (IsTryBody) 854 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 855 } 856 857 namespace { 858 /// RAII object to indicate that codegen is copying the value representation 859 /// instead of the object representation. Useful when copying a struct or 860 /// class which has uninitialized members and we're only performing 861 /// lvalue-to-rvalue conversion on the object but not its members. 862 class CopyingValueRepresentation { 863 public: 864 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 865 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 866 CGF.SanOpts.set(SanitizerKind::Bool, false); 867 CGF.SanOpts.set(SanitizerKind::Enum, false); 868 } 869 ~CopyingValueRepresentation() { 870 CGF.SanOpts = OldSanOpts; 871 } 872 private: 873 CodeGenFunction &CGF; 874 SanitizerSet OldSanOpts; 875 }; 876 } // end anonymous namespace 877 878 namespace { 879 class FieldMemcpyizer { 880 public: 881 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 882 const VarDecl *SrcRec) 883 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 884 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 885 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 886 LastFieldOffset(0), LastAddedFieldIndex(0) {} 887 888 bool isMemcpyableField(FieldDecl *F) const { 889 // Never memcpy fields when we are adding poisoned paddings. 890 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 891 return false; 892 Qualifiers Qual = F->getType().getQualifiers(); 893 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 894 return false; 895 return true; 896 } 897 898 void addMemcpyableField(FieldDecl *F) { 899 if (!FirstField) 900 addInitialField(F); 901 else 902 addNextField(F); 903 } 904 905 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 906 unsigned LastFieldSize = 907 LastField->isBitField() ? 908 LastField->getBitWidthValue(CGF.getContext()) : 909 CGF.getContext().getTypeSize(LastField->getType()); 910 uint64_t MemcpySizeBits = 911 LastFieldOffset + LastFieldSize - FirstByteOffset + 912 CGF.getContext().getCharWidth() - 1; 913 CharUnits MemcpySize = 914 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 915 return MemcpySize; 916 } 917 918 void emitMemcpy() { 919 // Give the subclass a chance to bail out if it feels the memcpy isn't 920 // worth it (e.g. Hasn't aggregated enough data). 921 if (!FirstField) { 922 return; 923 } 924 925 uint64_t FirstByteOffset; 926 if (FirstField->isBitField()) { 927 const CGRecordLayout &RL = 928 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 929 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 930 // FirstFieldOffset is not appropriate for bitfields, 931 // we need to use the storage offset instead. 932 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 933 } else { 934 FirstByteOffset = FirstFieldOffset; 935 } 936 937 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 938 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 939 Address ThisPtr = CGF.LoadCXXThisAddress(); 940 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 941 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 942 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 943 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 944 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 945 946 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 947 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 948 MemcpySize); 949 reset(); 950 } 951 952 void reset() { 953 FirstField = nullptr; 954 } 955 956 protected: 957 CodeGenFunction &CGF; 958 const CXXRecordDecl *ClassDecl; 959 960 private: 961 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 962 llvm::PointerType *DPT = DestPtr.getType(); 963 llvm::Type *DBP = 964 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 965 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 966 967 llvm::PointerType *SPT = SrcPtr.getType(); 968 llvm::Type *SBP = 969 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 970 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 971 972 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 973 } 974 975 void addInitialField(FieldDecl *F) { 976 FirstField = F; 977 LastField = F; 978 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 979 LastFieldOffset = FirstFieldOffset; 980 LastAddedFieldIndex = F->getFieldIndex(); 981 } 982 983 void addNextField(FieldDecl *F) { 984 // For the most part, the following invariant will hold: 985 // F->getFieldIndex() == LastAddedFieldIndex + 1 986 // The one exception is that Sema won't add a copy-initializer for an 987 // unnamed bitfield, which will show up here as a gap in the sequence. 988 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 989 "Cannot aggregate fields out of order."); 990 LastAddedFieldIndex = F->getFieldIndex(); 991 992 // The 'first' and 'last' fields are chosen by offset, rather than field 993 // index. This allows the code to support bitfields, as well as regular 994 // fields. 995 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 996 if (FOffset < FirstFieldOffset) { 997 FirstField = F; 998 FirstFieldOffset = FOffset; 999 } else if (FOffset > LastFieldOffset) { 1000 LastField = F; 1001 LastFieldOffset = FOffset; 1002 } 1003 } 1004 1005 const VarDecl *SrcRec; 1006 const ASTRecordLayout &RecLayout; 1007 FieldDecl *FirstField; 1008 FieldDecl *LastField; 1009 uint64_t FirstFieldOffset, LastFieldOffset; 1010 unsigned LastAddedFieldIndex; 1011 }; 1012 1013 class ConstructorMemcpyizer : public FieldMemcpyizer { 1014 private: 1015 /// Get source argument for copy constructor. Returns null if not a copy 1016 /// constructor. 1017 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1018 const CXXConstructorDecl *CD, 1019 FunctionArgList &Args) { 1020 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1021 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1022 return nullptr; 1023 } 1024 1025 // Returns true if a CXXCtorInitializer represents a member initialization 1026 // that can be rolled into a memcpy. 1027 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1028 if (!MemcpyableCtor) 1029 return false; 1030 FieldDecl *Field = MemberInit->getMember(); 1031 assert(Field && "No field for member init."); 1032 QualType FieldType = Field->getType(); 1033 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1034 1035 // Bail out on non-memcpyable, not-trivially-copyable members. 1036 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1037 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1038 FieldType->isReferenceType())) 1039 return false; 1040 1041 // Bail out on volatile fields. 1042 if (!isMemcpyableField(Field)) 1043 return false; 1044 1045 // Otherwise we're good. 1046 return true; 1047 } 1048 1049 public: 1050 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1051 FunctionArgList &Args) 1052 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1053 ConstructorDecl(CD), 1054 MemcpyableCtor(CD->isDefaulted() && 1055 CD->isCopyOrMoveConstructor() && 1056 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1057 Args(Args) { } 1058 1059 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1060 if (isMemberInitMemcpyable(MemberInit)) { 1061 AggregatedInits.push_back(MemberInit); 1062 addMemcpyableField(MemberInit->getMember()); 1063 } else { 1064 emitAggregatedInits(); 1065 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1066 ConstructorDecl, Args); 1067 } 1068 } 1069 1070 void emitAggregatedInits() { 1071 if (AggregatedInits.size() <= 1) { 1072 // This memcpy is too small to be worthwhile. Fall back on default 1073 // codegen. 1074 if (!AggregatedInits.empty()) { 1075 CopyingValueRepresentation CVR(CGF); 1076 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1077 AggregatedInits[0], ConstructorDecl, Args); 1078 AggregatedInits.clear(); 1079 } 1080 reset(); 1081 return; 1082 } 1083 1084 pushEHDestructors(); 1085 emitMemcpy(); 1086 AggregatedInits.clear(); 1087 } 1088 1089 void pushEHDestructors() { 1090 Address ThisPtr = CGF.LoadCXXThisAddress(); 1091 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1092 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1093 1094 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1095 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1096 QualType FieldType = MemberInit->getAnyMember()->getType(); 1097 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1098 if (!CGF.needsEHCleanup(dtorKind)) 1099 continue; 1100 LValue FieldLHS = LHS; 1101 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1102 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1103 } 1104 } 1105 1106 void finish() { 1107 emitAggregatedInits(); 1108 } 1109 1110 private: 1111 const CXXConstructorDecl *ConstructorDecl; 1112 bool MemcpyableCtor; 1113 FunctionArgList &Args; 1114 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1115 }; 1116 1117 class AssignmentMemcpyizer : public FieldMemcpyizer { 1118 private: 1119 // Returns the memcpyable field copied by the given statement, if one 1120 // exists. Otherwise returns null. 1121 FieldDecl *getMemcpyableField(Stmt *S) { 1122 if (!AssignmentsMemcpyable) 1123 return nullptr; 1124 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1125 // Recognise trivial assignments. 1126 if (BO->getOpcode() != BO_Assign) 1127 return nullptr; 1128 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1129 if (!ME) 1130 return nullptr; 1131 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1132 if (!Field || !isMemcpyableField(Field)) 1133 return nullptr; 1134 Stmt *RHS = BO->getRHS(); 1135 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1136 RHS = EC->getSubExpr(); 1137 if (!RHS) 1138 return nullptr; 1139 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1140 if (ME2->getMemberDecl() == Field) 1141 return Field; 1142 } 1143 return nullptr; 1144 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1145 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1146 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1147 return nullptr; 1148 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1149 if (!IOA) 1150 return nullptr; 1151 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1152 if (!Field || !isMemcpyableField(Field)) 1153 return nullptr; 1154 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1155 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1156 return nullptr; 1157 return Field; 1158 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1159 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1160 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1161 return nullptr; 1162 Expr *DstPtr = CE->getArg(0); 1163 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1164 DstPtr = DC->getSubExpr(); 1165 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1166 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1167 return nullptr; 1168 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1169 if (!ME) 1170 return nullptr; 1171 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1172 if (!Field || !isMemcpyableField(Field)) 1173 return nullptr; 1174 Expr *SrcPtr = CE->getArg(1); 1175 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1176 SrcPtr = SC->getSubExpr(); 1177 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1178 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1179 return nullptr; 1180 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1181 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1182 return nullptr; 1183 return Field; 1184 } 1185 1186 return nullptr; 1187 } 1188 1189 bool AssignmentsMemcpyable; 1190 SmallVector<Stmt*, 16> AggregatedStmts; 1191 1192 public: 1193 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1194 FunctionArgList &Args) 1195 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1196 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1197 assert(Args.size() == 2); 1198 } 1199 1200 void emitAssignment(Stmt *S) { 1201 FieldDecl *F = getMemcpyableField(S); 1202 if (F) { 1203 addMemcpyableField(F); 1204 AggregatedStmts.push_back(S); 1205 } else { 1206 emitAggregatedStmts(); 1207 CGF.EmitStmt(S); 1208 } 1209 } 1210 1211 void emitAggregatedStmts() { 1212 if (AggregatedStmts.size() <= 1) { 1213 if (!AggregatedStmts.empty()) { 1214 CopyingValueRepresentation CVR(CGF); 1215 CGF.EmitStmt(AggregatedStmts[0]); 1216 } 1217 reset(); 1218 } 1219 1220 emitMemcpy(); 1221 AggregatedStmts.clear(); 1222 } 1223 1224 void finish() { 1225 emitAggregatedStmts(); 1226 } 1227 }; 1228 } // end anonymous namespace 1229 1230 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1231 const Type *BaseType = BaseInit->getBaseClass(); 1232 const auto *BaseClassDecl = 1233 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1234 return BaseClassDecl->isDynamicClass(); 1235 } 1236 1237 /// EmitCtorPrologue - This routine generates necessary code to initialize 1238 /// base classes and non-static data members belonging to this constructor. 1239 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1240 CXXCtorType CtorType, 1241 FunctionArgList &Args) { 1242 if (CD->isDelegatingConstructor()) 1243 return EmitDelegatingCXXConstructorCall(CD, Args); 1244 1245 const CXXRecordDecl *ClassDecl = CD->getParent(); 1246 1247 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1248 E = CD->init_end(); 1249 1250 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1251 if (ClassDecl->getNumVBases() && 1252 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1253 // The ABIs that don't have constructor variants need to put a branch 1254 // before the virtual base initialization code. 1255 BaseCtorContinueBB = 1256 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1257 assert(BaseCtorContinueBB); 1258 } 1259 1260 llvm::Value *const OldThis = CXXThisValue; 1261 // Virtual base initializers first. 1262 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1263 if (CGM.getCodeGenOpts().StrictVTablePointers && 1264 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1265 isInitializerOfDynamicClass(*B)) 1266 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1267 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1268 } 1269 1270 if (BaseCtorContinueBB) { 1271 // Complete object handler should continue to the remaining initializers. 1272 Builder.CreateBr(BaseCtorContinueBB); 1273 EmitBlock(BaseCtorContinueBB); 1274 } 1275 1276 // Then, non-virtual base initializers. 1277 for (; B != E && (*B)->isBaseInitializer(); B++) { 1278 assert(!(*B)->isBaseVirtual()); 1279 1280 if (CGM.getCodeGenOpts().StrictVTablePointers && 1281 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1282 isInitializerOfDynamicClass(*B)) 1283 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1284 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1285 } 1286 1287 CXXThisValue = OldThis; 1288 1289 InitializeVTablePointers(ClassDecl); 1290 1291 // And finally, initialize class members. 1292 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1293 ConstructorMemcpyizer CM(*this, CD, Args); 1294 for (; B != E; B++) { 1295 CXXCtorInitializer *Member = (*B); 1296 assert(!Member->isBaseInitializer()); 1297 assert(Member->isAnyMemberInitializer() && 1298 "Delegating initializer on non-delegating constructor"); 1299 CM.addMemberInitializer(Member); 1300 } 1301 CM.finish(); 1302 } 1303 1304 static bool 1305 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1306 1307 static bool 1308 HasTrivialDestructorBody(ASTContext &Context, 1309 const CXXRecordDecl *BaseClassDecl, 1310 const CXXRecordDecl *MostDerivedClassDecl) 1311 { 1312 // If the destructor is trivial we don't have to check anything else. 1313 if (BaseClassDecl->hasTrivialDestructor()) 1314 return true; 1315 1316 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1317 return false; 1318 1319 // Check fields. 1320 for (const auto *Field : BaseClassDecl->fields()) 1321 if (!FieldHasTrivialDestructorBody(Context, Field)) 1322 return false; 1323 1324 // Check non-virtual bases. 1325 for (const auto &I : BaseClassDecl->bases()) { 1326 if (I.isVirtual()) 1327 continue; 1328 1329 const CXXRecordDecl *NonVirtualBase = 1330 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1331 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1332 MostDerivedClassDecl)) 1333 return false; 1334 } 1335 1336 if (BaseClassDecl == MostDerivedClassDecl) { 1337 // Check virtual bases. 1338 for (const auto &I : BaseClassDecl->vbases()) { 1339 const CXXRecordDecl *VirtualBase = 1340 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1341 if (!HasTrivialDestructorBody(Context, VirtualBase, 1342 MostDerivedClassDecl)) 1343 return false; 1344 } 1345 } 1346 1347 return true; 1348 } 1349 1350 static bool 1351 FieldHasTrivialDestructorBody(ASTContext &Context, 1352 const FieldDecl *Field) 1353 { 1354 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1355 1356 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1357 if (!RT) 1358 return true; 1359 1360 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1361 1362 // The destructor for an implicit anonymous union member is never invoked. 1363 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1364 return false; 1365 1366 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1367 } 1368 1369 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1370 /// any vtable pointers before calling this destructor. 1371 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1372 const CXXDestructorDecl *Dtor) { 1373 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1374 if (!ClassDecl->isDynamicClass()) 1375 return true; 1376 1377 if (!Dtor->hasTrivialBody()) 1378 return false; 1379 1380 // Check the fields. 1381 for (const auto *Field : ClassDecl->fields()) 1382 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1383 return false; 1384 1385 return true; 1386 } 1387 1388 /// EmitDestructorBody - Emits the body of the current destructor. 1389 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1390 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1391 CXXDtorType DtorType = CurGD.getDtorType(); 1392 1393 // For an abstract class, non-base destructors are never used (and can't 1394 // be emitted in general, because vbase dtors may not have been validated 1395 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1396 // in fact emit references to them from other compilations, so emit them 1397 // as functions containing a trap instruction. 1398 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1399 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1400 TrapCall->setDoesNotReturn(); 1401 TrapCall->setDoesNotThrow(); 1402 Builder.CreateUnreachable(); 1403 Builder.ClearInsertionPoint(); 1404 return; 1405 } 1406 1407 Stmt *Body = Dtor->getBody(); 1408 if (Body) 1409 incrementProfileCounter(Body); 1410 1411 // The call to operator delete in a deleting destructor happens 1412 // outside of the function-try-block, which means it's always 1413 // possible to delegate the destructor body to the complete 1414 // destructor. Do so. 1415 if (DtorType == Dtor_Deleting) { 1416 EnterDtorCleanups(Dtor, Dtor_Deleting); 1417 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1418 /*Delegating=*/false, LoadCXXThisAddress()); 1419 PopCleanupBlock(); 1420 return; 1421 } 1422 1423 // If the body is a function-try-block, enter the try before 1424 // anything else. 1425 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1426 if (isTryBody) 1427 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1428 EmitAsanPrologueOrEpilogue(false); 1429 1430 // Enter the epilogue cleanups. 1431 RunCleanupsScope DtorEpilogue(*this); 1432 1433 // If this is the complete variant, just invoke the base variant; 1434 // the epilogue will destruct the virtual bases. But we can't do 1435 // this optimization if the body is a function-try-block, because 1436 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1437 // always delegate because we might not have a definition in this TU. 1438 switch (DtorType) { 1439 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1440 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1441 1442 case Dtor_Complete: 1443 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1444 "can't emit a dtor without a body for non-Microsoft ABIs"); 1445 1446 // Enter the cleanup scopes for virtual bases. 1447 EnterDtorCleanups(Dtor, Dtor_Complete); 1448 1449 if (!isTryBody) { 1450 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1451 /*Delegating=*/false, LoadCXXThisAddress()); 1452 break; 1453 } 1454 1455 // Fallthrough: act like we're in the base variant. 1456 LLVM_FALLTHROUGH; 1457 1458 case Dtor_Base: 1459 assert(Body); 1460 1461 // Enter the cleanup scopes for fields and non-virtual bases. 1462 EnterDtorCleanups(Dtor, Dtor_Base); 1463 1464 // Initialize the vtable pointers before entering the body. 1465 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1466 // Insert the llvm.invariant.group.barrier intrinsic before initializing 1467 // the vptrs to cancel any previous assumptions we might have made. 1468 if (CGM.getCodeGenOpts().StrictVTablePointers && 1469 CGM.getCodeGenOpts().OptimizationLevel > 0) 1470 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1471 InitializeVTablePointers(Dtor->getParent()); 1472 } 1473 1474 if (isTryBody) 1475 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1476 else if (Body) 1477 EmitStmt(Body); 1478 else { 1479 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1480 // nothing to do besides what's in the epilogue 1481 } 1482 // -fapple-kext must inline any call to this dtor into 1483 // the caller's body. 1484 if (getLangOpts().AppleKext) 1485 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1486 1487 break; 1488 } 1489 1490 // Jump out through the epilogue cleanups. 1491 DtorEpilogue.ForceCleanup(); 1492 1493 // Exit the try if applicable. 1494 if (isTryBody) 1495 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1496 } 1497 1498 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1499 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1500 const Stmt *RootS = AssignOp->getBody(); 1501 assert(isa<CompoundStmt>(RootS) && 1502 "Body of an implicit assignment operator should be compound stmt."); 1503 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1504 1505 LexicalScope Scope(*this, RootCS->getSourceRange()); 1506 1507 incrementProfileCounter(RootCS); 1508 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1509 for (auto *I : RootCS->body()) 1510 AM.emitAssignment(I); 1511 AM.finish(); 1512 } 1513 1514 namespace { 1515 /// Call the operator delete associated with the current destructor. 1516 struct CallDtorDelete final : EHScopeStack::Cleanup { 1517 CallDtorDelete() {} 1518 1519 void Emit(CodeGenFunction &CGF, Flags flags) override { 1520 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1521 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1522 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1523 CGF.getContext().getTagDeclType(ClassDecl)); 1524 } 1525 }; 1526 1527 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1528 llvm::Value *ShouldDeleteCondition; 1529 1530 public: 1531 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1532 : ShouldDeleteCondition(ShouldDeleteCondition) { 1533 assert(ShouldDeleteCondition != nullptr); 1534 } 1535 1536 void Emit(CodeGenFunction &CGF, Flags flags) override { 1537 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1538 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1539 llvm::Value *ShouldCallDelete 1540 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1541 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1542 1543 CGF.EmitBlock(callDeleteBB); 1544 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1545 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1546 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1547 CGF.getContext().getTagDeclType(ClassDecl)); 1548 CGF.Builder.CreateBr(continueBB); 1549 1550 CGF.EmitBlock(continueBB); 1551 } 1552 }; 1553 1554 class DestroyField final : public EHScopeStack::Cleanup { 1555 const FieldDecl *field; 1556 CodeGenFunction::Destroyer *destroyer; 1557 bool useEHCleanupForArray; 1558 1559 public: 1560 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1561 bool useEHCleanupForArray) 1562 : field(field), destroyer(destroyer), 1563 useEHCleanupForArray(useEHCleanupForArray) {} 1564 1565 void Emit(CodeGenFunction &CGF, Flags flags) override { 1566 // Find the address of the field. 1567 Address thisValue = CGF.LoadCXXThisAddress(); 1568 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1569 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1570 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1571 assert(LV.isSimple()); 1572 1573 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1574 flags.isForNormalCleanup() && useEHCleanupForArray); 1575 } 1576 }; 1577 1578 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1579 CharUnits::QuantityType PoisonSize) { 1580 // Pass in void pointer and size of region as arguments to runtime 1581 // function 1582 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1583 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1584 1585 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1586 1587 llvm::FunctionType *FnType = 1588 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1589 llvm::Value *Fn = 1590 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1591 CGF.EmitNounwindRuntimeCall(Fn, Args); 1592 } 1593 1594 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1595 const CXXDestructorDecl *Dtor; 1596 1597 public: 1598 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1599 1600 // Generate function call for handling object poisoning. 1601 // Disables tail call elimination, to prevent the current stack frame 1602 // from disappearing from the stack trace. 1603 void Emit(CodeGenFunction &CGF, Flags flags) override { 1604 const ASTRecordLayout &Layout = 1605 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1606 1607 // Nothing to poison. 1608 if (Layout.getFieldCount() == 0) 1609 return; 1610 1611 // Prevent the current stack frame from disappearing from the stack trace. 1612 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1613 1614 // Construct pointer to region to begin poisoning, and calculate poison 1615 // size, so that only members declared in this class are poisoned. 1616 ASTContext &Context = CGF.getContext(); 1617 unsigned fieldIndex = 0; 1618 int startIndex = -1; 1619 // RecordDecl::field_iterator Field; 1620 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1621 // Poison field if it is trivial 1622 if (FieldHasTrivialDestructorBody(Context, Field)) { 1623 // Start sanitizing at this field 1624 if (startIndex < 0) 1625 startIndex = fieldIndex; 1626 1627 // Currently on the last field, and it must be poisoned with the 1628 // current block. 1629 if (fieldIndex == Layout.getFieldCount() - 1) { 1630 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1631 } 1632 } else if (startIndex >= 0) { 1633 // No longer within a block of memory to poison, so poison the block 1634 PoisonMembers(CGF, startIndex, fieldIndex); 1635 // Re-set the start index 1636 startIndex = -1; 1637 } 1638 fieldIndex += 1; 1639 } 1640 } 1641 1642 private: 1643 /// \param layoutStartOffset index of the ASTRecordLayout field to 1644 /// start poisoning (inclusive) 1645 /// \param layoutEndOffset index of the ASTRecordLayout field to 1646 /// end poisoning (exclusive) 1647 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1648 unsigned layoutEndOffset) { 1649 ASTContext &Context = CGF.getContext(); 1650 const ASTRecordLayout &Layout = 1651 Context.getASTRecordLayout(Dtor->getParent()); 1652 1653 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1654 CGF.SizeTy, 1655 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1656 .getQuantity()); 1657 1658 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1659 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1660 OffsetSizePtr); 1661 1662 CharUnits::QuantityType PoisonSize; 1663 if (layoutEndOffset >= Layout.getFieldCount()) { 1664 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1665 Context.toCharUnitsFromBits( 1666 Layout.getFieldOffset(layoutStartOffset)) 1667 .getQuantity(); 1668 } else { 1669 PoisonSize = Context.toCharUnitsFromBits( 1670 Layout.getFieldOffset(layoutEndOffset) - 1671 Layout.getFieldOffset(layoutStartOffset)) 1672 .getQuantity(); 1673 } 1674 1675 if (PoisonSize == 0) 1676 return; 1677 1678 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1679 } 1680 }; 1681 1682 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1683 const CXXDestructorDecl *Dtor; 1684 1685 public: 1686 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1687 1688 // Generate function call for handling vtable pointer poisoning. 1689 void Emit(CodeGenFunction &CGF, Flags flags) override { 1690 assert(Dtor->getParent()->isDynamicClass()); 1691 (void)Dtor; 1692 ASTContext &Context = CGF.getContext(); 1693 // Poison vtable and vtable ptr if they exist for this class. 1694 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1695 1696 CharUnits::QuantityType PoisonSize = 1697 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1698 // Pass in void pointer and size of region as arguments to runtime 1699 // function 1700 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1701 } 1702 }; 1703 } // end anonymous namespace 1704 1705 /// \brief Emit all code that comes at the end of class's 1706 /// destructor. This is to call destructors on members and base classes 1707 /// in reverse order of their construction. 1708 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1709 CXXDtorType DtorType) { 1710 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1711 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1712 1713 // The deleting-destructor phase just needs to call the appropriate 1714 // operator delete that Sema picked up. 1715 if (DtorType == Dtor_Deleting) { 1716 assert(DD->getOperatorDelete() && 1717 "operator delete missing - EnterDtorCleanups"); 1718 if (CXXStructorImplicitParamValue) { 1719 // If there is an implicit param to the deleting dtor, it's a boolean 1720 // telling whether we should call delete at the end of the dtor. 1721 EHStack.pushCleanup<CallDtorDeleteConditional>( 1722 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1723 } else { 1724 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1725 } 1726 return; 1727 } 1728 1729 const CXXRecordDecl *ClassDecl = DD->getParent(); 1730 1731 // Unions have no bases and do not call field destructors. 1732 if (ClassDecl->isUnion()) 1733 return; 1734 1735 // The complete-destructor phase just destructs all the virtual bases. 1736 if (DtorType == Dtor_Complete) { 1737 // Poison the vtable pointer such that access after the base 1738 // and member destructors are invoked is invalid. 1739 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1740 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1741 ClassDecl->isPolymorphic()) 1742 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1743 1744 // We push them in the forward order so that they'll be popped in 1745 // the reverse order. 1746 for (const auto &Base : ClassDecl->vbases()) { 1747 CXXRecordDecl *BaseClassDecl 1748 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1749 1750 // Ignore trivial destructors. 1751 if (BaseClassDecl->hasTrivialDestructor()) 1752 continue; 1753 1754 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1755 BaseClassDecl, 1756 /*BaseIsVirtual*/ true); 1757 } 1758 1759 return; 1760 } 1761 1762 assert(DtorType == Dtor_Base); 1763 // Poison the vtable pointer if it has no virtual bases, but inherits 1764 // virtual functions. 1765 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1766 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1767 ClassDecl->isPolymorphic()) 1768 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1769 1770 // Destroy non-virtual bases. 1771 for (const auto &Base : ClassDecl->bases()) { 1772 // Ignore virtual bases. 1773 if (Base.isVirtual()) 1774 continue; 1775 1776 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1777 1778 // Ignore trivial destructors. 1779 if (BaseClassDecl->hasTrivialDestructor()) 1780 continue; 1781 1782 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1783 BaseClassDecl, 1784 /*BaseIsVirtual*/ false); 1785 } 1786 1787 // Poison fields such that access after their destructors are 1788 // invoked, and before the base class destructor runs, is invalid. 1789 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1790 SanOpts.has(SanitizerKind::Memory)) 1791 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1792 1793 // Destroy direct fields. 1794 for (const auto *Field : ClassDecl->fields()) { 1795 QualType type = Field->getType(); 1796 QualType::DestructionKind dtorKind = type.isDestructedType(); 1797 if (!dtorKind) continue; 1798 1799 // Anonymous union members do not have their destructors called. 1800 const RecordType *RT = type->getAsUnionType(); 1801 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1802 1803 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1804 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1805 getDestroyer(dtorKind), 1806 cleanupKind & EHCleanup); 1807 } 1808 } 1809 1810 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1811 /// constructor for each of several members of an array. 1812 /// 1813 /// \param ctor the constructor to call for each element 1814 /// \param arrayType the type of the array to initialize 1815 /// \param arrayBegin an arrayType* 1816 /// \param zeroInitialize true if each element should be 1817 /// zero-initialized before it is constructed 1818 void CodeGenFunction::EmitCXXAggrConstructorCall( 1819 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1820 Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1821 QualType elementType; 1822 llvm::Value *numElements = 1823 emitArrayLength(arrayType, elementType, arrayBegin); 1824 1825 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1826 } 1827 1828 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1829 /// constructor for each of several members of an array. 1830 /// 1831 /// \param ctor the constructor to call for each element 1832 /// \param numElements the number of elements in the array; 1833 /// may be zero 1834 /// \param arrayBase a T*, where T is the type constructed by ctor 1835 /// \param zeroInitialize true if each element should be 1836 /// zero-initialized before it is constructed 1837 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1838 llvm::Value *numElements, 1839 Address arrayBase, 1840 const CXXConstructExpr *E, 1841 bool zeroInitialize) { 1842 // It's legal for numElements to be zero. This can happen both 1843 // dynamically, because x can be zero in 'new A[x]', and statically, 1844 // because of GCC extensions that permit zero-length arrays. There 1845 // are probably legitimate places where we could assume that this 1846 // doesn't happen, but it's not clear that it's worth it. 1847 llvm::BranchInst *zeroCheckBranch = nullptr; 1848 1849 // Optimize for a constant count. 1850 llvm::ConstantInt *constantCount 1851 = dyn_cast<llvm::ConstantInt>(numElements); 1852 if (constantCount) { 1853 // Just skip out if the constant count is zero. 1854 if (constantCount->isZero()) return; 1855 1856 // Otherwise, emit the check. 1857 } else { 1858 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1859 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1860 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1861 EmitBlock(loopBB); 1862 } 1863 1864 // Find the end of the array. 1865 llvm::Value *arrayBegin = arrayBase.getPointer(); 1866 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1867 "arrayctor.end"); 1868 1869 // Enter the loop, setting up a phi for the current location to initialize. 1870 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1871 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1872 EmitBlock(loopBB); 1873 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1874 "arrayctor.cur"); 1875 cur->addIncoming(arrayBegin, entryBB); 1876 1877 // Inside the loop body, emit the constructor call on the array element. 1878 1879 // The alignment of the base, adjusted by the size of a single element, 1880 // provides a conservative estimate of the alignment of every element. 1881 // (This assumes we never start tracking offsetted alignments.) 1882 // 1883 // Note that these are complete objects and so we don't need to 1884 // use the non-virtual size or alignment. 1885 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1886 CharUnits eltAlignment = 1887 arrayBase.getAlignment() 1888 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1889 Address curAddr = Address(cur, eltAlignment); 1890 1891 // Zero initialize the storage, if requested. 1892 if (zeroInitialize) 1893 EmitNullInitialization(curAddr, type); 1894 1895 // C++ [class.temporary]p4: 1896 // There are two contexts in which temporaries are destroyed at a different 1897 // point than the end of the full-expression. The first context is when a 1898 // default constructor is called to initialize an element of an array. 1899 // If the constructor has one or more default arguments, the destruction of 1900 // every temporary created in a default argument expression is sequenced 1901 // before the construction of the next array element, if any. 1902 1903 { 1904 RunCleanupsScope Scope(*this); 1905 1906 // Evaluate the constructor and its arguments in a regular 1907 // partial-destroy cleanup. 1908 if (getLangOpts().Exceptions && 1909 !ctor->getParent()->hasTrivialDestructor()) { 1910 Destroyer *destroyer = destroyCXXObject; 1911 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1912 *destroyer); 1913 } 1914 1915 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1916 /*Delegating=*/false, curAddr, E); 1917 } 1918 1919 // Go to the next element. 1920 llvm::Value *next = 1921 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1922 "arrayctor.next"); 1923 cur->addIncoming(next, Builder.GetInsertBlock()); 1924 1925 // Check whether that's the end of the loop. 1926 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1927 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1928 Builder.CreateCondBr(done, contBB, loopBB); 1929 1930 // Patch the earlier check to skip over the loop. 1931 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1932 1933 EmitBlock(contBB); 1934 } 1935 1936 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1937 Address addr, 1938 QualType type) { 1939 const RecordType *rtype = type->castAs<RecordType>(); 1940 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1941 const CXXDestructorDecl *dtor = record->getDestructor(); 1942 assert(!dtor->isTrivial()); 1943 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1944 /*Delegating=*/false, addr); 1945 } 1946 1947 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1948 CXXCtorType Type, 1949 bool ForVirtualBase, 1950 bool Delegating, Address This, 1951 const CXXConstructExpr *E) { 1952 CallArgList Args; 1953 1954 // Push the this ptr. 1955 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 1956 1957 // If this is a trivial constructor, emit a memcpy now before we lose 1958 // the alignment information on the argument. 1959 // FIXME: It would be better to preserve alignment information into CallArg. 1960 if (isMemcpyEquivalentSpecialMember(D)) { 1961 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1962 1963 const Expr *Arg = E->getArg(0); 1964 QualType SrcTy = Arg->getType(); 1965 Address Src = EmitLValue(Arg).getAddress(); 1966 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 1967 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 1968 return; 1969 } 1970 1971 // Add the rest of the user-supplied arguments. 1972 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1973 EvaluationOrder Order = E->isListInitialization() 1974 ? EvaluationOrder::ForceLeftToRight 1975 : EvaluationOrder::Default; 1976 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 1977 /*ParamsToSkip*/ 0, Order); 1978 1979 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args); 1980 } 1981 1982 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 1983 const CXXConstructorDecl *Ctor, 1984 CXXCtorType Type, CallArgList &Args) { 1985 // We can't forward a variadic call. 1986 if (Ctor->isVariadic()) 1987 return false; 1988 1989 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1990 // If the parameters are callee-cleanup, it's not safe to forward. 1991 for (auto *P : Ctor->parameters()) 1992 if (P->getType().isDestructedType()) 1993 return false; 1994 1995 // Likewise if they're inalloca. 1996 const CGFunctionInfo &Info = 1997 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 1998 if (Info.usesInAlloca()) 1999 return false; 2000 } 2001 2002 // Anything else should be OK. 2003 return true; 2004 } 2005 2006 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2007 CXXCtorType Type, 2008 bool ForVirtualBase, 2009 bool Delegating, 2010 Address This, 2011 CallArgList &Args) { 2012 const CXXRecordDecl *ClassDecl = D->getParent(); 2013 2014 // C++11 [class.mfct.non-static]p2: 2015 // If a non-static member function of a class X is called for an object that 2016 // is not of type X, or of a type derived from X, the behavior is undefined. 2017 // FIXME: Provide a source location here. 2018 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), 2019 This.getPointer(), getContext().getRecordType(ClassDecl)); 2020 2021 if (D->isTrivial() && D->isDefaultConstructor()) { 2022 assert(Args.size() == 1 && "trivial default ctor with args"); 2023 return; 2024 } 2025 2026 // If this is a trivial constructor, just emit what's needed. If this is a 2027 // union copy constructor, we must emit a memcpy, because the AST does not 2028 // model that copy. 2029 if (isMemcpyEquivalentSpecialMember(D)) { 2030 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2031 2032 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2033 Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy)); 2034 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2035 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 2036 return; 2037 } 2038 2039 bool PassPrototypeArgs = true; 2040 // Check whether we can actually emit the constructor before trying to do so. 2041 if (auto Inherited = D->getInheritedConstructor()) { 2042 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2043 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2044 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2045 Delegating, Args); 2046 return; 2047 } 2048 } 2049 2050 // Insert any ABI-specific implicit constructor arguments. 2051 CGCXXABI::AddedStructorArgs ExtraArgs = 2052 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2053 Delegating, Args); 2054 2055 // Emit the call. 2056 llvm::Constant *CalleePtr = 2057 CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 2058 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2059 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2060 CGCallee Callee = CGCallee::forDirect(CalleePtr, D); 2061 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2062 2063 // Generate vtable assumptions if we're constructing a complete object 2064 // with a vtable. We don't do this for base subobjects for two reasons: 2065 // first, it's incorrect for classes with virtual bases, and second, we're 2066 // about to overwrite the vptrs anyway. 2067 // We also have to make sure if we can refer to vtable: 2068 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2069 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2070 // sure that definition of vtable is not hidden, 2071 // then we are always safe to refer to it. 2072 // FIXME: It looks like InstCombine is very inefficient on dealing with 2073 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2074 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2075 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2076 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2077 CGM.getCodeGenOpts().StrictVTablePointers) 2078 EmitVTableAssumptionLoads(ClassDecl, This); 2079 } 2080 2081 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2082 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2083 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2084 CallArgList Args; 2085 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()), 2086 /*NeedsCopy=*/false); 2087 2088 // Forward the parameters. 2089 if (InheritedFromVBase && 2090 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2091 // Nothing to do; this construction is not responsible for constructing 2092 // the base class containing the inherited constructor. 2093 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2094 // have constructor variants? 2095 Args.push_back(ThisArg); 2096 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2097 // The inheriting constructor was inlined; just inject its arguments. 2098 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2099 "wrong number of parameters for inherited constructor call"); 2100 Args = CXXInheritedCtorInitExprArgs; 2101 Args[0] = ThisArg; 2102 } else { 2103 // The inheriting constructor was not inlined. Emit delegating arguments. 2104 Args.push_back(ThisArg); 2105 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2106 assert(OuterCtor->getNumParams() == D->getNumParams()); 2107 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2108 2109 for (const auto *Param : OuterCtor->parameters()) { 2110 assert(getContext().hasSameUnqualifiedType( 2111 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2112 Param->getType())); 2113 EmitDelegateCallArg(Args, Param, E->getLocation()); 2114 2115 // Forward __attribute__(pass_object_size). 2116 if (Param->hasAttr<PassObjectSizeAttr>()) { 2117 auto *POSParam = SizeArguments[Param]; 2118 assert(POSParam && "missing pass_object_size value for forwarding"); 2119 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2120 } 2121 } 2122 } 2123 2124 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2125 This, Args); 2126 } 2127 2128 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2129 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2130 bool Delegating, CallArgList &Args) { 2131 GlobalDecl GD(Ctor, CtorType); 2132 InlinedInheritingConstructorScope Scope(*this, GD); 2133 ApplyInlineDebugLocation DebugScope(*this, GD); 2134 2135 // Save the arguments to be passed to the inherited constructor. 2136 CXXInheritedCtorInitExprArgs = Args; 2137 2138 FunctionArgList Params; 2139 QualType RetType = BuildFunctionArgList(CurGD, Params); 2140 FnRetTy = RetType; 2141 2142 // Insert any ABI-specific implicit constructor arguments. 2143 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2144 ForVirtualBase, Delegating, Args); 2145 2146 // Emit a simplified prolog. We only need to emit the implicit params. 2147 assert(Args.size() >= Params.size() && "too few arguments for call"); 2148 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2149 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2150 const RValue &RV = Args[I].RV; 2151 assert(!RV.isComplex() && "complex indirect params not supported"); 2152 ParamValue Val = RV.isScalar() 2153 ? ParamValue::forDirect(RV.getScalarVal()) 2154 : ParamValue::forIndirect(RV.getAggregateAddress()); 2155 EmitParmDecl(*Params[I], Val, I + 1); 2156 } 2157 } 2158 2159 // Create a return value slot if the ABI implementation wants one. 2160 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2161 // value instead. 2162 if (!RetType->isVoidType()) 2163 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2164 2165 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2166 CXXThisValue = CXXABIThisValue; 2167 2168 // Directly emit the constructor initializers. 2169 EmitCtorPrologue(Ctor, CtorType, Params); 2170 } 2171 2172 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2173 llvm::Value *VTableGlobal = 2174 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2175 if (!VTableGlobal) 2176 return; 2177 2178 // We can just use the base offset in the complete class. 2179 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2180 2181 if (!NonVirtualOffset.isZero()) 2182 This = 2183 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2184 Vptr.VTableClass, Vptr.NearestVBase); 2185 2186 llvm::Value *VPtrValue = 2187 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2188 llvm::Value *Cmp = 2189 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2190 Builder.CreateAssumption(Cmp); 2191 } 2192 2193 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2194 Address This) { 2195 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2196 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2197 EmitVTableAssumptionLoad(Vptr, This); 2198 } 2199 2200 void 2201 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2202 Address This, Address Src, 2203 const CXXConstructExpr *E) { 2204 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2205 2206 CallArgList Args; 2207 2208 // Push the this ptr. 2209 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2210 2211 // Push the src ptr. 2212 QualType QT = *(FPT->param_type_begin()); 2213 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2214 Src = Builder.CreateBitCast(Src, t); 2215 Args.add(RValue::get(Src.getPointer()), QT); 2216 2217 // Skip over first argument (Src). 2218 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2219 /*ParamsToSkip*/ 1); 2220 2221 EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args); 2222 } 2223 2224 void 2225 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2226 CXXCtorType CtorType, 2227 const FunctionArgList &Args, 2228 SourceLocation Loc) { 2229 CallArgList DelegateArgs; 2230 2231 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2232 assert(I != E && "no parameters to constructor"); 2233 2234 // this 2235 Address This = LoadCXXThisAddress(); 2236 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2237 ++I; 2238 2239 // FIXME: The location of the VTT parameter in the parameter list is 2240 // specific to the Itanium ABI and shouldn't be hardcoded here. 2241 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2242 assert(I != E && "cannot skip vtt parameter, already done with args"); 2243 assert((*I)->getType()->isPointerType() && 2244 "skipping parameter not of vtt type"); 2245 ++I; 2246 } 2247 2248 // Explicit arguments. 2249 for (; I != E; ++I) { 2250 const VarDecl *param = *I; 2251 // FIXME: per-argument source location 2252 EmitDelegateCallArg(DelegateArgs, param, Loc); 2253 } 2254 2255 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2256 /*Delegating=*/true, This, DelegateArgs); 2257 } 2258 2259 namespace { 2260 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2261 const CXXDestructorDecl *Dtor; 2262 Address Addr; 2263 CXXDtorType Type; 2264 2265 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2266 CXXDtorType Type) 2267 : Dtor(D), Addr(Addr), Type(Type) {} 2268 2269 void Emit(CodeGenFunction &CGF, Flags flags) override { 2270 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2271 /*Delegating=*/true, Addr); 2272 } 2273 }; 2274 } // end anonymous namespace 2275 2276 void 2277 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2278 const FunctionArgList &Args) { 2279 assert(Ctor->isDelegatingConstructor()); 2280 2281 Address ThisPtr = LoadCXXThisAddress(); 2282 2283 AggValueSlot AggSlot = 2284 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2285 AggValueSlot::IsDestructed, 2286 AggValueSlot::DoesNotNeedGCBarriers, 2287 AggValueSlot::IsNotAliased); 2288 2289 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2290 2291 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2292 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2293 CXXDtorType Type = 2294 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2295 2296 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2297 ClassDecl->getDestructor(), 2298 ThisPtr, Type); 2299 } 2300 } 2301 2302 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2303 CXXDtorType Type, 2304 bool ForVirtualBase, 2305 bool Delegating, 2306 Address This) { 2307 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2308 Delegating, This); 2309 } 2310 2311 namespace { 2312 struct CallLocalDtor final : EHScopeStack::Cleanup { 2313 const CXXDestructorDecl *Dtor; 2314 Address Addr; 2315 2316 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2317 : Dtor(D), Addr(Addr) {} 2318 2319 void Emit(CodeGenFunction &CGF, Flags flags) override { 2320 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2321 /*ForVirtualBase=*/false, 2322 /*Delegating=*/false, Addr); 2323 } 2324 }; 2325 } // end anonymous namespace 2326 2327 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2328 Address Addr) { 2329 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2330 } 2331 2332 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2333 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2334 if (!ClassDecl) return; 2335 if (ClassDecl->hasTrivialDestructor()) return; 2336 2337 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2338 assert(D && D->isUsed() && "destructor not marked as used!"); 2339 PushDestructorCleanup(D, Addr); 2340 } 2341 2342 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2343 // Compute the address point. 2344 llvm::Value *VTableAddressPoint = 2345 CGM.getCXXABI().getVTableAddressPointInStructor( 2346 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2347 2348 if (!VTableAddressPoint) 2349 return; 2350 2351 // Compute where to store the address point. 2352 llvm::Value *VirtualOffset = nullptr; 2353 CharUnits NonVirtualOffset = CharUnits::Zero(); 2354 2355 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2356 // We need to use the virtual base offset offset because the virtual base 2357 // might have a different offset in the most derived class. 2358 2359 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2360 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2361 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2362 } else { 2363 // We can just use the base offset in the complete class. 2364 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2365 } 2366 2367 // Apply the offsets. 2368 Address VTableField = LoadCXXThisAddress(); 2369 2370 if (!NonVirtualOffset.isZero() || VirtualOffset) 2371 VTableField = ApplyNonVirtualAndVirtualOffset( 2372 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2373 Vptr.NearestVBase); 2374 2375 // Finally, store the address point. Use the same LLVM types as the field to 2376 // support optimization. 2377 llvm::Type *VTablePtrTy = 2378 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2379 ->getPointerTo() 2380 ->getPointerTo(); 2381 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2382 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2383 2384 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2385 CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr()); 2386 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2387 CGM.getCodeGenOpts().StrictVTablePointers) 2388 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2389 } 2390 2391 CodeGenFunction::VPtrsVector 2392 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2393 CodeGenFunction::VPtrsVector VPtrsResult; 2394 VisitedVirtualBasesSetTy VBases; 2395 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2396 /*NearestVBase=*/nullptr, 2397 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2398 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2399 VPtrsResult); 2400 return VPtrsResult; 2401 } 2402 2403 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2404 const CXXRecordDecl *NearestVBase, 2405 CharUnits OffsetFromNearestVBase, 2406 bool BaseIsNonVirtualPrimaryBase, 2407 const CXXRecordDecl *VTableClass, 2408 VisitedVirtualBasesSetTy &VBases, 2409 VPtrsVector &Vptrs) { 2410 // If this base is a non-virtual primary base the address point has already 2411 // been set. 2412 if (!BaseIsNonVirtualPrimaryBase) { 2413 // Initialize the vtable pointer for this base. 2414 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2415 Vptrs.push_back(Vptr); 2416 } 2417 2418 const CXXRecordDecl *RD = Base.getBase(); 2419 2420 // Traverse bases. 2421 for (const auto &I : RD->bases()) { 2422 CXXRecordDecl *BaseDecl 2423 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2424 2425 // Ignore classes without a vtable. 2426 if (!BaseDecl->isDynamicClass()) 2427 continue; 2428 2429 CharUnits BaseOffset; 2430 CharUnits BaseOffsetFromNearestVBase; 2431 bool BaseDeclIsNonVirtualPrimaryBase; 2432 2433 if (I.isVirtual()) { 2434 // Check if we've visited this virtual base before. 2435 if (!VBases.insert(BaseDecl).second) 2436 continue; 2437 2438 const ASTRecordLayout &Layout = 2439 getContext().getASTRecordLayout(VTableClass); 2440 2441 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2442 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2443 BaseDeclIsNonVirtualPrimaryBase = false; 2444 } else { 2445 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2446 2447 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2448 BaseOffsetFromNearestVBase = 2449 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2450 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2451 } 2452 2453 getVTablePointers( 2454 BaseSubobject(BaseDecl, BaseOffset), 2455 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2456 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2457 } 2458 } 2459 2460 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2461 // Ignore classes without a vtable. 2462 if (!RD->isDynamicClass()) 2463 return; 2464 2465 // Initialize the vtable pointers for this class and all of its bases. 2466 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2467 for (const VPtr &Vptr : getVTablePointers(RD)) 2468 InitializeVTablePointer(Vptr); 2469 2470 if (RD->getNumVBases()) 2471 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2472 } 2473 2474 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2475 llvm::Type *VTableTy, 2476 const CXXRecordDecl *RD) { 2477 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2478 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2479 CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr()); 2480 2481 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2482 CGM.getCodeGenOpts().StrictVTablePointers) 2483 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2484 2485 return VTable; 2486 } 2487 2488 // If a class has a single non-virtual base and does not introduce or override 2489 // virtual member functions or fields, it will have the same layout as its base. 2490 // This function returns the least derived such class. 2491 // 2492 // Casting an instance of a base class to such a derived class is technically 2493 // undefined behavior, but it is a relatively common hack for introducing member 2494 // functions on class instances with specific properties (e.g. llvm::Operator) 2495 // that works under most compilers and should not have security implications, so 2496 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2497 static const CXXRecordDecl * 2498 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2499 if (!RD->field_empty()) 2500 return RD; 2501 2502 if (RD->getNumVBases() != 0) 2503 return RD; 2504 2505 if (RD->getNumBases() != 1) 2506 return RD; 2507 2508 for (const CXXMethodDecl *MD : RD->methods()) { 2509 if (MD->isVirtual()) { 2510 // Virtual member functions are only ok if they are implicit destructors 2511 // because the implicit destructor will have the same semantics as the 2512 // base class's destructor if no fields are added. 2513 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2514 continue; 2515 return RD; 2516 } 2517 } 2518 2519 return LeastDerivedClassWithSameLayout( 2520 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2521 } 2522 2523 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2524 llvm::Value *VTable, 2525 SourceLocation Loc) { 2526 if (CGM.getCodeGenOpts().WholeProgramVTables && 2527 CGM.HasHiddenLTOVisibility(RD)) { 2528 llvm::Metadata *MD = 2529 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2530 llvm::Value *TypeId = 2531 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2532 2533 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2534 llvm::Value *TypeTest = 2535 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2536 {CastedVTable, TypeId}); 2537 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2538 } 2539 2540 if (SanOpts.has(SanitizerKind::CFIVCall)) 2541 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2542 } 2543 2544 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2545 llvm::Value *VTable, 2546 CFITypeCheckKind TCK, 2547 SourceLocation Loc) { 2548 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2549 RD = LeastDerivedClassWithSameLayout(RD); 2550 2551 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2552 } 2553 2554 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2555 llvm::Value *Derived, 2556 bool MayBeNull, 2557 CFITypeCheckKind TCK, 2558 SourceLocation Loc) { 2559 if (!getLangOpts().CPlusPlus) 2560 return; 2561 2562 auto *ClassTy = T->getAs<RecordType>(); 2563 if (!ClassTy) 2564 return; 2565 2566 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2567 2568 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2569 return; 2570 2571 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2572 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2573 2574 llvm::BasicBlock *ContBlock = nullptr; 2575 2576 if (MayBeNull) { 2577 llvm::Value *DerivedNotNull = 2578 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2579 2580 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2581 ContBlock = createBasicBlock("cast.cont"); 2582 2583 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2584 2585 EmitBlock(CheckBlock); 2586 } 2587 2588 llvm::Value *VTable = 2589 GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl); 2590 2591 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2592 2593 if (MayBeNull) { 2594 Builder.CreateBr(ContBlock); 2595 EmitBlock(ContBlock); 2596 } 2597 } 2598 2599 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2600 llvm::Value *VTable, 2601 CFITypeCheckKind TCK, 2602 SourceLocation Loc) { 2603 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2604 !CGM.HasHiddenLTOVisibility(RD)) 2605 return; 2606 2607 std::string TypeName = RD->getQualifiedNameAsString(); 2608 if (getContext().getSanitizerBlacklist().isBlacklistedType(TypeName)) 2609 return; 2610 2611 SanitizerScope SanScope(this); 2612 llvm::SanitizerStatKind SSK; 2613 switch (TCK) { 2614 case CFITCK_VCall: 2615 SSK = llvm::SanStat_CFI_VCall; 2616 break; 2617 case CFITCK_NVCall: 2618 SSK = llvm::SanStat_CFI_NVCall; 2619 break; 2620 case CFITCK_DerivedCast: 2621 SSK = llvm::SanStat_CFI_DerivedCast; 2622 break; 2623 case CFITCK_UnrelatedCast: 2624 SSK = llvm::SanStat_CFI_UnrelatedCast; 2625 break; 2626 case CFITCK_ICall: 2627 llvm_unreachable("not expecting CFITCK_ICall"); 2628 } 2629 EmitSanitizerStatReport(SSK); 2630 2631 llvm::Metadata *MD = 2632 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2633 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2634 2635 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2636 llvm::Value *TypeTest = Builder.CreateCall( 2637 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2638 2639 SanitizerMask M; 2640 switch (TCK) { 2641 case CFITCK_VCall: 2642 M = SanitizerKind::CFIVCall; 2643 break; 2644 case CFITCK_NVCall: 2645 M = SanitizerKind::CFINVCall; 2646 break; 2647 case CFITCK_DerivedCast: 2648 M = SanitizerKind::CFIDerivedCast; 2649 break; 2650 case CFITCK_UnrelatedCast: 2651 M = SanitizerKind::CFIUnrelatedCast; 2652 break; 2653 case CFITCK_ICall: 2654 llvm_unreachable("not expecting CFITCK_ICall"); 2655 } 2656 2657 llvm::Constant *StaticData[] = { 2658 llvm::ConstantInt::get(Int8Ty, TCK), 2659 EmitCheckSourceLocation(Loc), 2660 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2661 }; 2662 2663 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2664 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2665 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2666 return; 2667 } 2668 2669 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2670 EmitTrapCheck(TypeTest); 2671 return; 2672 } 2673 2674 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2675 CGM.getLLVMContext(), 2676 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2677 llvm::Value *ValidVtable = Builder.CreateCall( 2678 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2679 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2680 StaticData, {CastedVTable, ValidVtable}); 2681 } 2682 2683 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2684 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2685 !SanOpts.has(SanitizerKind::CFIVCall) || 2686 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2687 !CGM.HasHiddenLTOVisibility(RD)) 2688 return false; 2689 2690 std::string TypeName = RD->getQualifiedNameAsString(); 2691 return !getContext().getSanitizerBlacklist().isBlacklistedType(TypeName); 2692 } 2693 2694 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2695 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2696 SanitizerScope SanScope(this); 2697 2698 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2699 2700 llvm::Metadata *MD = 2701 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2702 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2703 2704 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2705 llvm::Value *CheckedLoad = Builder.CreateCall( 2706 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2707 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2708 TypeId}); 2709 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2710 2711 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2712 SanitizerHandler::CFICheckFail, nullptr, nullptr); 2713 2714 return Builder.CreateBitCast( 2715 Builder.CreateExtractValue(CheckedLoad, 0), 2716 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2717 } 2718 2719 bool 2720 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base, 2721 const CXXMethodDecl *MD) { 2722 // When building with -fapple-kext, all calls must go through the vtable since 2723 // the kernel linker can do runtime patching of vtables. 2724 if (getLangOpts().AppleKext) 2725 return false; 2726 2727 // If the member function is marked 'final', we know that it can't be 2728 // overridden and can therefore devirtualize it unless it's pure virtual. 2729 if (MD->hasAttr<FinalAttr>()) 2730 return !MD->isPure(); 2731 2732 // If the base expression (after skipping derived-to-base conversions) is a 2733 // class prvalue, then we can devirtualize. 2734 Base = Base->getBestDynamicClassTypeExpr(); 2735 if (Base->isRValue() && Base->getType()->isRecordType()) 2736 return true; 2737 2738 // If we don't even know what we would call, we can't devirtualize. 2739 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 2740 if (!BestDynamicDecl) 2741 return false; 2742 2743 // There may be a method corresponding to MD in a derived class. 2744 const CXXMethodDecl *DevirtualizedMethod = 2745 MD->getCorrespondingMethodInClass(BestDynamicDecl); 2746 2747 // If that method is pure virtual, we can't devirtualize. If this code is 2748 // reached, the result would be UB, not a direct call to the derived class 2749 // function, and we can't assume the derived class function is defined. 2750 if (DevirtualizedMethod->isPure()) 2751 return false; 2752 2753 // If that method is marked final, we can devirtualize it. 2754 if (DevirtualizedMethod->hasAttr<FinalAttr>()) 2755 return true; 2756 2757 // Similarly, if the class itself is marked 'final' it can't be overridden 2758 // and we can therefore devirtualize the member function call. 2759 if (BestDynamicDecl->hasAttr<FinalAttr>()) 2760 return true; 2761 2762 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 2763 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 2764 // This is a record decl. We know the type and can devirtualize it. 2765 return VD->getType()->isRecordType(); 2766 } 2767 2768 return false; 2769 } 2770 2771 // We can devirtualize calls on an object accessed by a class member access 2772 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2773 // a derived class object constructed in the same location. 2774 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 2775 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 2776 return VD->getType()->isRecordType(); 2777 2778 // Likewise for calls on an object accessed by a (non-reference) pointer to 2779 // member access. 2780 if (auto *BO = dyn_cast<BinaryOperator>(Base)) { 2781 if (BO->isPtrMemOp()) { 2782 auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); 2783 if (MPT->getPointeeType()->isRecordType()) 2784 return true; 2785 } 2786 } 2787 2788 // We can't devirtualize the call. 2789 return false; 2790 } 2791 2792 void CodeGenFunction::EmitForwardingCallToLambda( 2793 const CXXMethodDecl *callOperator, 2794 CallArgList &callArgs) { 2795 // Get the address of the call operator. 2796 const CGFunctionInfo &calleeFnInfo = 2797 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2798 llvm::Constant *calleePtr = 2799 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2800 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2801 2802 // Prepare the return slot. 2803 const FunctionProtoType *FPT = 2804 callOperator->getType()->castAs<FunctionProtoType>(); 2805 QualType resultType = FPT->getReturnType(); 2806 ReturnValueSlot returnSlot; 2807 if (!resultType->isVoidType() && 2808 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2809 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2810 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2811 2812 // We don't need to separately arrange the call arguments because 2813 // the call can't be variadic anyway --- it's impossible to forward 2814 // variadic arguments. 2815 2816 // Now emit our call. 2817 auto callee = CGCallee::forDirect(calleePtr, callOperator); 2818 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2819 2820 // If necessary, copy the returned value into the slot. 2821 if (!resultType->isVoidType() && returnSlot.isNull()) 2822 EmitReturnOfRValue(RV, resultType); 2823 else 2824 EmitBranchThroughCleanup(ReturnBlock); 2825 } 2826 2827 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2828 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2829 const VarDecl *variable = BD->capture_begin()->getVariable(); 2830 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2831 2832 // Start building arguments for forwarding call 2833 CallArgList CallArgs; 2834 2835 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2836 Address ThisPtr = GetAddrOfBlockDecl(variable, false); 2837 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2838 2839 // Add the rest of the parameters. 2840 for (auto param : BD->parameters()) 2841 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2842 2843 assert(!Lambda->isGenericLambda() && 2844 "generic lambda interconversion to block not implemented"); 2845 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs); 2846 } 2847 2848 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 2849 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) { 2850 // FIXME: Making this work correctly is nasty because it requires either 2851 // cloning the body of the call operator or making the call operator forward. 2852 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2853 return; 2854 } 2855 2856 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody()); 2857 } 2858 2859 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2860 const CXXRecordDecl *Lambda = MD->getParent(); 2861 2862 // Start building arguments for forwarding call 2863 CallArgList CallArgs; 2864 2865 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2866 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2867 CallArgs.add(RValue::get(ThisPtr), ThisType); 2868 2869 // Add the rest of the parameters. 2870 for (auto Param : MD->parameters()) 2871 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2872 2873 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2874 // For a generic lambda, find the corresponding call operator specialization 2875 // to which the call to the static-invoker shall be forwarded. 2876 if (Lambda->isGenericLambda()) { 2877 assert(MD->isFunctionTemplateSpecialization()); 2878 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2879 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2880 void *InsertPos = nullptr; 2881 FunctionDecl *CorrespondingCallOpSpecialization = 2882 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2883 assert(CorrespondingCallOpSpecialization); 2884 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2885 } 2886 EmitForwardingCallToLambda(CallOp, CallArgs); 2887 } 2888 2889 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 2890 if (MD->isVariadic()) { 2891 // FIXME: Making this work correctly is nasty because it requires either 2892 // cloning the body of the call operator or making the call operator forward. 2893 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2894 return; 2895 } 2896 2897 EmitLambdaDelegatingInvokeBody(MD); 2898 } 2899