1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/Transforms/Utils/SanitizerStats.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 /// Return the best known alignment for an unknown pointer to a
35 /// particular class.
36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
37   if (!RD->isCompleteDefinition())
38     return CharUnits::One(); // Hopefully won't be used anywhere.
39 
40   auto &layout = getContext().getASTRecordLayout(RD);
41 
42   // If the class is final, then we know that the pointer points to an
43   // object of that type and can use the full alignment.
44   if (RD->hasAttr<FinalAttr>()) {
45     return layout.getAlignment();
46 
47   // Otherwise, we have to assume it could be a subclass.
48   } else {
49     return layout.getNonVirtualAlignment();
50   }
51 }
52 
53 /// Return the best known alignment for a pointer to a virtual base,
54 /// given the alignment of a pointer to the derived class.
55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
56                                            const CXXRecordDecl *derivedClass,
57                                            const CXXRecordDecl *vbaseClass) {
58   // The basic idea here is that an underaligned derived pointer might
59   // indicate an underaligned base pointer.
60 
61   assert(vbaseClass->isCompleteDefinition());
62   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
63   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
64 
65   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
66                                    expectedVBaseAlign);
67 }
68 
69 CharUnits
70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
71                                          const CXXRecordDecl *baseDecl,
72                                          CharUnits expectedTargetAlign) {
73   // If the base is an incomplete type (which is, alas, possible with
74   // member pointers), be pessimistic.
75   if (!baseDecl->isCompleteDefinition())
76     return std::min(actualBaseAlign, expectedTargetAlign);
77 
78   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
79   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
80 
81   // If the class is properly aligned, assume the target offset is, too.
82   //
83   // This actually isn't necessarily the right thing to do --- if the
84   // class is a complete object, but it's only properly aligned for a
85   // base subobject, then the alignments of things relative to it are
86   // probably off as well.  (Note that this requires the alignment of
87   // the target to be greater than the NV alignment of the derived
88   // class.)
89   //
90   // However, our approach to this kind of under-alignment can only
91   // ever be best effort; after all, we're never going to propagate
92   // alignments through variables or parameters.  Note, in particular,
93   // that constructing a polymorphic type in an address that's less
94   // than pointer-aligned will generally trap in the constructor,
95   // unless we someday add some sort of attribute to change the
96   // assumed alignment of 'this'.  So our goal here is pretty much
97   // just to allow the user to explicitly say that a pointer is
98   // under-aligned and then safely access its fields and vtables.
99   if (actualBaseAlign >= expectedBaseAlign) {
100     return expectedTargetAlign;
101   }
102 
103   // Otherwise, we might be offset by an arbitrary multiple of the
104   // actual alignment.  The correct adjustment is to take the min of
105   // the two alignments.
106   return std::min(actualBaseAlign, expectedTargetAlign);
107 }
108 
109 Address CodeGenFunction::LoadCXXThisAddress() {
110   assert(CurFuncDecl && "loading 'this' without a func declaration?");
111   assert(isa<CXXMethodDecl>(CurFuncDecl));
112 
113   // Lazily compute CXXThisAlignment.
114   if (CXXThisAlignment.isZero()) {
115     // Just use the best known alignment for the parent.
116     // TODO: if we're currently emitting a complete-object ctor/dtor,
117     // we can always use the complete-object alignment.
118     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
119     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
120   }
121 
122   return Address(LoadCXXThis(), CXXThisAlignment);
123 }
124 
125 /// Emit the address of a field using a member data pointer.
126 ///
127 /// \param E Only used for emergency diagnostics
128 Address
129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
130                                                  llvm::Value *memberPtr,
131                                       const MemberPointerType *memberPtrType,
132                                                  LValueBaseInfo *BaseInfo,
133                                                  TBAAAccessInfo *TBAAInfo) {
134   // Ask the ABI to compute the actual address.
135   llvm::Value *ptr =
136     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
137                                                  memberPtr, memberPtrType);
138 
139   QualType memberType = memberPtrType->getPointeeType();
140   CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo,
141                                                   TBAAInfo);
142   memberAlign =
143     CGM.getDynamicOffsetAlignment(base.getAlignment(),
144                             memberPtrType->getClass()->getAsCXXRecordDecl(),
145                                   memberAlign);
146   return Address(ptr, memberAlign);
147 }
148 
149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
150     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
151     CastExpr::path_const_iterator End) {
152   CharUnits Offset = CharUnits::Zero();
153 
154   const ASTContext &Context = getContext();
155   const CXXRecordDecl *RD = DerivedClass;
156 
157   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
158     const CXXBaseSpecifier *Base = *I;
159     assert(!Base->isVirtual() && "Should not see virtual bases here!");
160 
161     // Get the layout.
162     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
163 
164     const CXXRecordDecl *BaseDecl =
165       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
166 
167     // Add the offset.
168     Offset += Layout.getBaseClassOffset(BaseDecl);
169 
170     RD = BaseDecl;
171   }
172 
173   return Offset;
174 }
175 
176 llvm::Constant *
177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
178                                    CastExpr::path_const_iterator PathBegin,
179                                    CastExpr::path_const_iterator PathEnd) {
180   assert(PathBegin != PathEnd && "Base path should not be empty!");
181 
182   CharUnits Offset =
183       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
184   if (Offset.isZero())
185     return nullptr;
186 
187   llvm::Type *PtrDiffTy =
188   Types.ConvertType(getContext().getPointerDiffType());
189 
190   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
191 }
192 
193 /// Gets the address of a direct base class within a complete object.
194 /// This should only be used for (1) non-virtual bases or (2) virtual bases
195 /// when the type is known to be complete (e.g. in complete destructors).
196 ///
197 /// The object pointed to by 'This' is assumed to be non-null.
198 Address
199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
200                                                    const CXXRecordDecl *Derived,
201                                                    const CXXRecordDecl *Base,
202                                                    bool BaseIsVirtual) {
203   // 'this' must be a pointer (in some address space) to Derived.
204   assert(This.getElementType() == ConvertType(Derived));
205 
206   // Compute the offset of the virtual base.
207   CharUnits Offset;
208   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
209   if (BaseIsVirtual)
210     Offset = Layout.getVBaseClassOffset(Base);
211   else
212     Offset = Layout.getBaseClassOffset(Base);
213 
214   // Shift and cast down to the base type.
215   // TODO: for complete types, this should be possible with a GEP.
216   Address V = This;
217   if (!Offset.isZero()) {
218     V = Builder.CreateElementBitCast(V, Int8Ty);
219     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
220   }
221   V = Builder.CreateElementBitCast(V, ConvertType(Base));
222 
223   return V;
224 }
225 
226 static Address
227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
228                                 CharUnits nonVirtualOffset,
229                                 llvm::Value *virtualOffset,
230                                 const CXXRecordDecl *derivedClass,
231                                 const CXXRecordDecl *nearestVBase) {
232   // Assert that we have something to do.
233   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
234 
235   // Compute the offset from the static and dynamic components.
236   llvm::Value *baseOffset;
237   if (!nonVirtualOffset.isZero()) {
238     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
239                                         nonVirtualOffset.getQuantity());
240     if (virtualOffset) {
241       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
242     }
243   } else {
244     baseOffset = virtualOffset;
245   }
246 
247   // Apply the base offset.
248   llvm::Value *ptr = addr.getPointer();
249   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
250   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
251 
252   // If we have a virtual component, the alignment of the result will
253   // be relative only to the known alignment of that vbase.
254   CharUnits alignment;
255   if (virtualOffset) {
256     assert(nearestVBase && "virtual offset without vbase?");
257     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
258                                           derivedClass, nearestVBase);
259   } else {
260     alignment = addr.getAlignment();
261   }
262   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
263 
264   return Address(ptr, alignment);
265 }
266 
267 Address CodeGenFunction::GetAddressOfBaseClass(
268     Address Value, const CXXRecordDecl *Derived,
269     CastExpr::path_const_iterator PathBegin,
270     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
271     SourceLocation Loc) {
272   assert(PathBegin != PathEnd && "Base path should not be empty!");
273 
274   CastExpr::path_const_iterator Start = PathBegin;
275   const CXXRecordDecl *VBase = nullptr;
276 
277   // Sema has done some convenient canonicalization here: if the
278   // access path involved any virtual steps, the conversion path will
279   // *start* with a step down to the correct virtual base subobject,
280   // and hence will not require any further steps.
281   if ((*Start)->isVirtual()) {
282     VBase =
283       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
284     ++Start;
285   }
286 
287   // Compute the static offset of the ultimate destination within its
288   // allocating subobject (the virtual base, if there is one, or else
289   // the "complete" object that we see).
290   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
291       VBase ? VBase : Derived, Start, PathEnd);
292 
293   // If there's a virtual step, we can sometimes "devirtualize" it.
294   // For now, that's limited to when the derived type is final.
295   // TODO: "devirtualize" this for accesses to known-complete objects.
296   if (VBase && Derived->hasAttr<FinalAttr>()) {
297     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
298     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
299     NonVirtualOffset += vBaseOffset;
300     VBase = nullptr; // we no longer have a virtual step
301   }
302 
303   // Get the base pointer type.
304   llvm::Type *BasePtrTy =
305     ConvertType((PathEnd[-1])->getType())->getPointerTo();
306 
307   QualType DerivedTy = getContext().getRecordType(Derived);
308   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
309 
310   // If the static offset is zero and we don't have a virtual step,
311   // just do a bitcast; null checks are unnecessary.
312   if (NonVirtualOffset.isZero() && !VBase) {
313     if (sanitizePerformTypeCheck()) {
314       SanitizerSet SkippedChecks;
315       SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
316       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
317                     DerivedTy, DerivedAlign, SkippedChecks);
318     }
319     return Builder.CreateBitCast(Value, BasePtrTy);
320   }
321 
322   llvm::BasicBlock *origBB = nullptr;
323   llvm::BasicBlock *endBB = nullptr;
324 
325   // Skip over the offset (and the vtable load) if we're supposed to
326   // null-check the pointer.
327   if (NullCheckValue) {
328     origBB = Builder.GetInsertBlock();
329     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
330     endBB = createBasicBlock("cast.end");
331 
332     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
333     Builder.CreateCondBr(isNull, endBB, notNullBB);
334     EmitBlock(notNullBB);
335   }
336 
337   if (sanitizePerformTypeCheck()) {
338     SanitizerSet SkippedChecks;
339     SkippedChecks.set(SanitizerKind::Null, true);
340     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
341                   Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
342   }
343 
344   // Compute the virtual offset.
345   llvm::Value *VirtualOffset = nullptr;
346   if (VBase) {
347     VirtualOffset =
348       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
349   }
350 
351   // Apply both offsets.
352   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
353                                           VirtualOffset, Derived, VBase);
354 
355   // Cast to the destination type.
356   Value = Builder.CreateBitCast(Value, BasePtrTy);
357 
358   // Build a phi if we needed a null check.
359   if (NullCheckValue) {
360     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
361     Builder.CreateBr(endBB);
362     EmitBlock(endBB);
363 
364     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
365     PHI->addIncoming(Value.getPointer(), notNullBB);
366     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
367     Value = Address(PHI, Value.getAlignment());
368   }
369 
370   return Value;
371 }
372 
373 Address
374 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
375                                           const CXXRecordDecl *Derived,
376                                         CastExpr::path_const_iterator PathBegin,
377                                           CastExpr::path_const_iterator PathEnd,
378                                           bool NullCheckValue) {
379   assert(PathBegin != PathEnd && "Base path should not be empty!");
380 
381   QualType DerivedTy =
382     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
383   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
384 
385   llvm::Value *NonVirtualOffset =
386     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
387 
388   if (!NonVirtualOffset) {
389     // No offset, we can just cast back.
390     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
391   }
392 
393   llvm::BasicBlock *CastNull = nullptr;
394   llvm::BasicBlock *CastNotNull = nullptr;
395   llvm::BasicBlock *CastEnd = nullptr;
396 
397   if (NullCheckValue) {
398     CastNull = createBasicBlock("cast.null");
399     CastNotNull = createBasicBlock("cast.notnull");
400     CastEnd = createBasicBlock("cast.end");
401 
402     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
403     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
404     EmitBlock(CastNotNull);
405   }
406 
407   // Apply the offset.
408   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
409   Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset),
410                                     "sub.ptr");
411 
412   // Just cast.
413   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
414 
415   // Produce a PHI if we had a null-check.
416   if (NullCheckValue) {
417     Builder.CreateBr(CastEnd);
418     EmitBlock(CastNull);
419     Builder.CreateBr(CastEnd);
420     EmitBlock(CastEnd);
421 
422     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
423     PHI->addIncoming(Value, CastNotNull);
424     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
425     Value = PHI;
426   }
427 
428   return Address(Value, CGM.getClassPointerAlignment(Derived));
429 }
430 
431 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
432                                               bool ForVirtualBase,
433                                               bool Delegating) {
434   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
435     // This constructor/destructor does not need a VTT parameter.
436     return nullptr;
437   }
438 
439   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
440   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
441 
442   llvm::Value *VTT;
443 
444   uint64_t SubVTTIndex;
445 
446   if (Delegating) {
447     // If this is a delegating constructor call, just load the VTT.
448     return LoadCXXVTT();
449   } else if (RD == Base) {
450     // If the record matches the base, this is the complete ctor/dtor
451     // variant calling the base variant in a class with virtual bases.
452     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
453            "doing no-op VTT offset in base dtor/ctor?");
454     assert(!ForVirtualBase && "Can't have same class as virtual base!");
455     SubVTTIndex = 0;
456   } else {
457     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
458     CharUnits BaseOffset = ForVirtualBase ?
459       Layout.getVBaseClassOffset(Base) :
460       Layout.getBaseClassOffset(Base);
461 
462     SubVTTIndex =
463       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
464     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
465   }
466 
467   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
468     // A VTT parameter was passed to the constructor, use it.
469     VTT = LoadCXXVTT();
470     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
471   } else {
472     // We're the complete constructor, so get the VTT by name.
473     VTT = CGM.getVTables().GetAddrOfVTT(RD);
474     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
475   }
476 
477   return VTT;
478 }
479 
480 namespace {
481   /// Call the destructor for a direct base class.
482   struct CallBaseDtor final : EHScopeStack::Cleanup {
483     const CXXRecordDecl *BaseClass;
484     bool BaseIsVirtual;
485     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
486       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
487 
488     void Emit(CodeGenFunction &CGF, Flags flags) override {
489       const CXXRecordDecl *DerivedClass =
490         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
491 
492       const CXXDestructorDecl *D = BaseClass->getDestructor();
493       Address Addr =
494         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
495                                                   DerivedClass, BaseClass,
496                                                   BaseIsVirtual);
497       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
498                                 /*Delegating=*/false, Addr);
499     }
500   };
501 
502   /// A visitor which checks whether an initializer uses 'this' in a
503   /// way which requires the vtable to be properly set.
504   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
505     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
506 
507     bool UsesThis;
508 
509     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
510 
511     // Black-list all explicit and implicit references to 'this'.
512     //
513     // Do we need to worry about external references to 'this' derived
514     // from arbitrary code?  If so, then anything which runs arbitrary
515     // external code might potentially access the vtable.
516     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
517   };
518 } // end anonymous namespace
519 
520 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
521   DynamicThisUseChecker Checker(C);
522   Checker.Visit(Init);
523   return Checker.UsesThis;
524 }
525 
526 static void EmitBaseInitializer(CodeGenFunction &CGF,
527                                 const CXXRecordDecl *ClassDecl,
528                                 CXXCtorInitializer *BaseInit,
529                                 CXXCtorType CtorType) {
530   assert(BaseInit->isBaseInitializer() &&
531          "Must have base initializer!");
532 
533   Address ThisPtr = CGF.LoadCXXThisAddress();
534 
535   const Type *BaseType = BaseInit->getBaseClass();
536   CXXRecordDecl *BaseClassDecl =
537     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
538 
539   bool isBaseVirtual = BaseInit->isBaseVirtual();
540 
541   // The base constructor doesn't construct virtual bases.
542   if (CtorType == Ctor_Base && isBaseVirtual)
543     return;
544 
545   // If the initializer for the base (other than the constructor
546   // itself) accesses 'this' in any way, we need to initialize the
547   // vtables.
548   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
549     CGF.InitializeVTablePointers(ClassDecl);
550 
551   // We can pretend to be a complete class because it only matters for
552   // virtual bases, and we only do virtual bases for complete ctors.
553   Address V =
554     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
555                                               BaseClassDecl,
556                                               isBaseVirtual);
557   AggValueSlot AggSlot =
558     AggValueSlot::forAddr(V, Qualifiers(),
559                           AggValueSlot::IsDestructed,
560                           AggValueSlot::DoesNotNeedGCBarriers,
561                           AggValueSlot::IsNotAliased);
562 
563   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
564 
565   if (CGF.CGM.getLangOpts().Exceptions &&
566       !BaseClassDecl->hasTrivialDestructor())
567     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
568                                           isBaseVirtual);
569 }
570 
571 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
572   auto *CD = dyn_cast<CXXConstructorDecl>(D);
573   if (!(CD && CD->isCopyOrMoveConstructor()) &&
574       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
575     return false;
576 
577   // We can emit a memcpy for a trivial copy or move constructor/assignment.
578   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
579     return true;
580 
581   // We *must* emit a memcpy for a defaulted union copy or move op.
582   if (D->getParent()->isUnion() && D->isDefaulted())
583     return true;
584 
585   return false;
586 }
587 
588 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
589                                                 CXXCtorInitializer *MemberInit,
590                                                 LValue &LHS) {
591   FieldDecl *Field = MemberInit->getAnyMember();
592   if (MemberInit->isIndirectMemberInitializer()) {
593     // If we are initializing an anonymous union field, drill down to the field.
594     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
595     for (const auto *I : IndirectField->chain())
596       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
597   } else {
598     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
599   }
600 }
601 
602 static void EmitMemberInitializer(CodeGenFunction &CGF,
603                                   const CXXRecordDecl *ClassDecl,
604                                   CXXCtorInitializer *MemberInit,
605                                   const CXXConstructorDecl *Constructor,
606                                   FunctionArgList &Args) {
607   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
608   assert(MemberInit->isAnyMemberInitializer() &&
609          "Must have member initializer!");
610   assert(MemberInit->getInit() && "Must have initializer!");
611 
612   // non-static data member initializers.
613   FieldDecl *Field = MemberInit->getAnyMember();
614   QualType FieldType = Field->getType();
615 
616   llvm::Value *ThisPtr = CGF.LoadCXXThis();
617   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
618   LValue LHS;
619 
620   // If a base constructor is being emitted, create an LValue that has the
621   // non-virtual alignment.
622   if (CGF.CurGD.getCtorType() == Ctor_Base)
623     LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
624   else
625     LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
626 
627   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
628 
629   // Special case: if we are in a copy or move constructor, and we are copying
630   // an array of PODs or classes with trivial copy constructors, ignore the
631   // AST and perform the copy we know is equivalent.
632   // FIXME: This is hacky at best... if we had a bit more explicit information
633   // in the AST, we could generalize it more easily.
634   const ConstantArrayType *Array
635     = CGF.getContext().getAsConstantArrayType(FieldType);
636   if (Array && Constructor->isDefaulted() &&
637       Constructor->isCopyOrMoveConstructor()) {
638     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
639     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
640     if (BaseElementTy.isPODType(CGF.getContext()) ||
641         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
642       unsigned SrcArgIndex =
643           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
644       llvm::Value *SrcPtr
645         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
646       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
647       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
648 
649       // Copy the aggregate.
650       CGF.EmitAggregateCopy(LHS, Src, FieldType, LHS.isVolatileQualified());
651       // Ensure that we destroy the objects if an exception is thrown later in
652       // the constructor.
653       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
654       if (CGF.needsEHCleanup(dtorKind))
655         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
656       return;
657     }
658   }
659 
660   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
661 }
662 
663 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
664                                               Expr *Init) {
665   QualType FieldType = Field->getType();
666   switch (getEvaluationKind(FieldType)) {
667   case TEK_Scalar:
668     if (LHS.isSimple()) {
669       EmitExprAsInit(Init, Field, LHS, false);
670     } else {
671       RValue RHS = RValue::get(EmitScalarExpr(Init));
672       EmitStoreThroughLValue(RHS, LHS);
673     }
674     break;
675   case TEK_Complex:
676     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
677     break;
678   case TEK_Aggregate: {
679     AggValueSlot Slot =
680       AggValueSlot::forLValue(LHS,
681                               AggValueSlot::IsDestructed,
682                               AggValueSlot::DoesNotNeedGCBarriers,
683                               AggValueSlot::IsNotAliased);
684     EmitAggExpr(Init, Slot);
685     break;
686   }
687   }
688 
689   // Ensure that we destroy this object if an exception is thrown
690   // later in the constructor.
691   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
692   if (needsEHCleanup(dtorKind))
693     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
694 }
695 
696 /// Checks whether the given constructor is a valid subject for the
697 /// complete-to-base constructor delegation optimization, i.e.
698 /// emitting the complete constructor as a simple call to the base
699 /// constructor.
700 bool CodeGenFunction::IsConstructorDelegationValid(
701     const CXXConstructorDecl *Ctor) {
702 
703   // Currently we disable the optimization for classes with virtual
704   // bases because (1) the addresses of parameter variables need to be
705   // consistent across all initializers but (2) the delegate function
706   // call necessarily creates a second copy of the parameter variable.
707   //
708   // The limiting example (purely theoretical AFAIK):
709   //   struct A { A(int &c) { c++; } };
710   //   struct B : virtual A {
711   //     B(int count) : A(count) { printf("%d\n", count); }
712   //   };
713   // ...although even this example could in principle be emitted as a
714   // delegation since the address of the parameter doesn't escape.
715   if (Ctor->getParent()->getNumVBases()) {
716     // TODO: white-list trivial vbase initializers.  This case wouldn't
717     // be subject to the restrictions below.
718 
719     // TODO: white-list cases where:
720     //  - there are no non-reference parameters to the constructor
721     //  - the initializers don't access any non-reference parameters
722     //  - the initializers don't take the address of non-reference
723     //    parameters
724     //  - etc.
725     // If we ever add any of the above cases, remember that:
726     //  - function-try-blocks will always blacklist this optimization
727     //  - we need to perform the constructor prologue and cleanup in
728     //    EmitConstructorBody.
729 
730     return false;
731   }
732 
733   // We also disable the optimization for variadic functions because
734   // it's impossible to "re-pass" varargs.
735   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
736     return false;
737 
738   // FIXME: Decide if we can do a delegation of a delegating constructor.
739   if (Ctor->isDelegatingConstructor())
740     return false;
741 
742   return true;
743 }
744 
745 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
746 // to poison the extra field paddings inserted under
747 // -fsanitize-address-field-padding=1|2.
748 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
749   ASTContext &Context = getContext();
750   const CXXRecordDecl *ClassDecl =
751       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
752                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
753   if (!ClassDecl->mayInsertExtraPadding()) return;
754 
755   struct SizeAndOffset {
756     uint64_t Size;
757     uint64_t Offset;
758   };
759 
760   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
761   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
762 
763   // Populate sizes and offsets of fields.
764   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
765   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
766     SSV[i].Offset =
767         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
768 
769   size_t NumFields = 0;
770   for (const auto *Field : ClassDecl->fields()) {
771     const FieldDecl *D = Field;
772     std::pair<CharUnits, CharUnits> FieldInfo =
773         Context.getTypeInfoInChars(D->getType());
774     CharUnits FieldSize = FieldInfo.first;
775     assert(NumFields < SSV.size());
776     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
777     NumFields++;
778   }
779   assert(NumFields == SSV.size());
780   if (SSV.size() <= 1) return;
781 
782   // We will insert calls to __asan_* run-time functions.
783   // LLVM AddressSanitizer pass may decide to inline them later.
784   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
785   llvm::FunctionType *FTy =
786       llvm::FunctionType::get(CGM.VoidTy, Args, false);
787   llvm::Constant *F = CGM.CreateRuntimeFunction(
788       FTy, Prologue ? "__asan_poison_intra_object_redzone"
789                     : "__asan_unpoison_intra_object_redzone");
790 
791   llvm::Value *ThisPtr = LoadCXXThis();
792   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
793   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
794   // For each field check if it has sufficient padding,
795   // if so (un)poison it with a call.
796   for (size_t i = 0; i < SSV.size(); i++) {
797     uint64_t AsanAlignment = 8;
798     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
799     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
800     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
801     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
802         (NextField % AsanAlignment) != 0)
803       continue;
804     Builder.CreateCall(
805         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
806             Builder.getIntN(PtrSize, PoisonSize)});
807   }
808 }
809 
810 /// EmitConstructorBody - Emits the body of the current constructor.
811 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
812   EmitAsanPrologueOrEpilogue(true);
813   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
814   CXXCtorType CtorType = CurGD.getCtorType();
815 
816   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
817           CtorType == Ctor_Complete) &&
818          "can only generate complete ctor for this ABI");
819 
820   // Before we go any further, try the complete->base constructor
821   // delegation optimization.
822   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
823       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
824     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
825     return;
826   }
827 
828   const FunctionDecl *Definition = nullptr;
829   Stmt *Body = Ctor->getBody(Definition);
830   assert(Definition == Ctor && "emitting wrong constructor body");
831 
832   // Enter the function-try-block before the constructor prologue if
833   // applicable.
834   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
835   if (IsTryBody)
836     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
837 
838   incrementProfileCounter(Body);
839 
840   RunCleanupsScope RunCleanups(*this);
841 
842   // TODO: in restricted cases, we can emit the vbase initializers of
843   // a complete ctor and then delegate to the base ctor.
844 
845   // Emit the constructor prologue, i.e. the base and member
846   // initializers.
847   EmitCtorPrologue(Ctor, CtorType, Args);
848 
849   // Emit the body of the statement.
850   if (IsTryBody)
851     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
852   else if (Body)
853     EmitStmt(Body);
854 
855   // Emit any cleanup blocks associated with the member or base
856   // initializers, which includes (along the exceptional path) the
857   // destructors for those members and bases that were fully
858   // constructed.
859   RunCleanups.ForceCleanup();
860 
861   if (IsTryBody)
862     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
863 }
864 
865 namespace {
866   /// RAII object to indicate that codegen is copying the value representation
867   /// instead of the object representation. Useful when copying a struct or
868   /// class which has uninitialized members and we're only performing
869   /// lvalue-to-rvalue conversion on the object but not its members.
870   class CopyingValueRepresentation {
871   public:
872     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
873         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
874       CGF.SanOpts.set(SanitizerKind::Bool, false);
875       CGF.SanOpts.set(SanitizerKind::Enum, false);
876     }
877     ~CopyingValueRepresentation() {
878       CGF.SanOpts = OldSanOpts;
879     }
880   private:
881     CodeGenFunction &CGF;
882     SanitizerSet OldSanOpts;
883   };
884 } // end anonymous namespace
885 
886 namespace {
887   class FieldMemcpyizer {
888   public:
889     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
890                     const VarDecl *SrcRec)
891       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
892         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
893         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
894         LastFieldOffset(0), LastAddedFieldIndex(0) {}
895 
896     bool isMemcpyableField(FieldDecl *F) const {
897       // Never memcpy fields when we are adding poisoned paddings.
898       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
899         return false;
900       Qualifiers Qual = F->getType().getQualifiers();
901       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
902         return false;
903       return true;
904     }
905 
906     void addMemcpyableField(FieldDecl *F) {
907       if (!FirstField)
908         addInitialField(F);
909       else
910         addNextField(F);
911     }
912 
913     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
914       unsigned LastFieldSize =
915         LastField->isBitField() ?
916           LastField->getBitWidthValue(CGF.getContext()) :
917           CGF.getContext().getTypeSize(LastField->getType());
918       uint64_t MemcpySizeBits =
919         LastFieldOffset + LastFieldSize - FirstByteOffset +
920         CGF.getContext().getCharWidth() - 1;
921       CharUnits MemcpySize =
922         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
923       return MemcpySize;
924     }
925 
926     void emitMemcpy() {
927       // Give the subclass a chance to bail out if it feels the memcpy isn't
928       // worth it (e.g. Hasn't aggregated enough data).
929       if (!FirstField) {
930         return;
931       }
932 
933       uint64_t FirstByteOffset;
934       if (FirstField->isBitField()) {
935         const CGRecordLayout &RL =
936           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
937         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
938         // FirstFieldOffset is not appropriate for bitfields,
939         // we need to use the storage offset instead.
940         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
941       } else {
942         FirstByteOffset = FirstFieldOffset;
943       }
944 
945       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
946       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
947       Address ThisPtr = CGF.LoadCXXThisAddress();
948       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
949       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
950       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
951       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
952       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
953 
954       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
955                    Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
956                    MemcpySize);
957       reset();
958     }
959 
960     void reset() {
961       FirstField = nullptr;
962     }
963 
964   protected:
965     CodeGenFunction &CGF;
966     const CXXRecordDecl *ClassDecl;
967 
968   private:
969     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
970       llvm::PointerType *DPT = DestPtr.getType();
971       llvm::Type *DBP =
972         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
973       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
974 
975       llvm::PointerType *SPT = SrcPtr.getType();
976       llvm::Type *SBP =
977         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
978       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
979 
980       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
981     }
982 
983     void addInitialField(FieldDecl *F) {
984       FirstField = F;
985       LastField = F;
986       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
987       LastFieldOffset = FirstFieldOffset;
988       LastAddedFieldIndex = F->getFieldIndex();
989     }
990 
991     void addNextField(FieldDecl *F) {
992       // For the most part, the following invariant will hold:
993       //   F->getFieldIndex() == LastAddedFieldIndex + 1
994       // The one exception is that Sema won't add a copy-initializer for an
995       // unnamed bitfield, which will show up here as a gap in the sequence.
996       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
997              "Cannot aggregate fields out of order.");
998       LastAddedFieldIndex = F->getFieldIndex();
999 
1000       // The 'first' and 'last' fields are chosen by offset, rather than field
1001       // index. This allows the code to support bitfields, as well as regular
1002       // fields.
1003       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1004       if (FOffset < FirstFieldOffset) {
1005         FirstField = F;
1006         FirstFieldOffset = FOffset;
1007       } else if (FOffset > LastFieldOffset) {
1008         LastField = F;
1009         LastFieldOffset = FOffset;
1010       }
1011     }
1012 
1013     const VarDecl *SrcRec;
1014     const ASTRecordLayout &RecLayout;
1015     FieldDecl *FirstField;
1016     FieldDecl *LastField;
1017     uint64_t FirstFieldOffset, LastFieldOffset;
1018     unsigned LastAddedFieldIndex;
1019   };
1020 
1021   class ConstructorMemcpyizer : public FieldMemcpyizer {
1022   private:
1023     /// Get source argument for copy constructor. Returns null if not a copy
1024     /// constructor.
1025     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1026                                                const CXXConstructorDecl *CD,
1027                                                FunctionArgList &Args) {
1028       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1029         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1030       return nullptr;
1031     }
1032 
1033     // Returns true if a CXXCtorInitializer represents a member initialization
1034     // that can be rolled into a memcpy.
1035     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1036       if (!MemcpyableCtor)
1037         return false;
1038       FieldDecl *Field = MemberInit->getMember();
1039       assert(Field && "No field for member init.");
1040       QualType FieldType = Field->getType();
1041       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1042 
1043       // Bail out on non-memcpyable, not-trivially-copyable members.
1044       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1045           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1046             FieldType->isReferenceType()))
1047         return false;
1048 
1049       // Bail out on volatile fields.
1050       if (!isMemcpyableField(Field))
1051         return false;
1052 
1053       // Otherwise we're good.
1054       return true;
1055     }
1056 
1057   public:
1058     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1059                           FunctionArgList &Args)
1060       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1061         ConstructorDecl(CD),
1062         MemcpyableCtor(CD->isDefaulted() &&
1063                        CD->isCopyOrMoveConstructor() &&
1064                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1065         Args(Args) { }
1066 
1067     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1068       if (isMemberInitMemcpyable(MemberInit)) {
1069         AggregatedInits.push_back(MemberInit);
1070         addMemcpyableField(MemberInit->getMember());
1071       } else {
1072         emitAggregatedInits();
1073         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1074                               ConstructorDecl, Args);
1075       }
1076     }
1077 
1078     void emitAggregatedInits() {
1079       if (AggregatedInits.size() <= 1) {
1080         // This memcpy is too small to be worthwhile. Fall back on default
1081         // codegen.
1082         if (!AggregatedInits.empty()) {
1083           CopyingValueRepresentation CVR(CGF);
1084           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1085                                 AggregatedInits[0], ConstructorDecl, Args);
1086           AggregatedInits.clear();
1087         }
1088         reset();
1089         return;
1090       }
1091 
1092       pushEHDestructors();
1093       emitMemcpy();
1094       AggregatedInits.clear();
1095     }
1096 
1097     void pushEHDestructors() {
1098       Address ThisPtr = CGF.LoadCXXThisAddress();
1099       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1100       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1101 
1102       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1103         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1104         QualType FieldType = MemberInit->getAnyMember()->getType();
1105         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1106         if (!CGF.needsEHCleanup(dtorKind))
1107           continue;
1108         LValue FieldLHS = LHS;
1109         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1110         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1111       }
1112     }
1113 
1114     void finish() {
1115       emitAggregatedInits();
1116     }
1117 
1118   private:
1119     const CXXConstructorDecl *ConstructorDecl;
1120     bool MemcpyableCtor;
1121     FunctionArgList &Args;
1122     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1123   };
1124 
1125   class AssignmentMemcpyizer : public FieldMemcpyizer {
1126   private:
1127     // Returns the memcpyable field copied by the given statement, if one
1128     // exists. Otherwise returns null.
1129     FieldDecl *getMemcpyableField(Stmt *S) {
1130       if (!AssignmentsMemcpyable)
1131         return nullptr;
1132       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1133         // Recognise trivial assignments.
1134         if (BO->getOpcode() != BO_Assign)
1135           return nullptr;
1136         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1137         if (!ME)
1138           return nullptr;
1139         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1140         if (!Field || !isMemcpyableField(Field))
1141           return nullptr;
1142         Stmt *RHS = BO->getRHS();
1143         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1144           RHS = EC->getSubExpr();
1145         if (!RHS)
1146           return nullptr;
1147         if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1148           if (ME2->getMemberDecl() == Field)
1149             return Field;
1150         }
1151         return nullptr;
1152       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1153         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1154         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1155           return nullptr;
1156         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1157         if (!IOA)
1158           return nullptr;
1159         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1160         if (!Field || !isMemcpyableField(Field))
1161           return nullptr;
1162         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1163         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1164           return nullptr;
1165         return Field;
1166       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1167         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1168         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1169           return nullptr;
1170         Expr *DstPtr = CE->getArg(0);
1171         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1172           DstPtr = DC->getSubExpr();
1173         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1174         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1175           return nullptr;
1176         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1177         if (!ME)
1178           return nullptr;
1179         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1180         if (!Field || !isMemcpyableField(Field))
1181           return nullptr;
1182         Expr *SrcPtr = CE->getArg(1);
1183         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1184           SrcPtr = SC->getSubExpr();
1185         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1186         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1187           return nullptr;
1188         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1189         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1190           return nullptr;
1191         return Field;
1192       }
1193 
1194       return nullptr;
1195     }
1196 
1197     bool AssignmentsMemcpyable;
1198     SmallVector<Stmt*, 16> AggregatedStmts;
1199 
1200   public:
1201     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1202                          FunctionArgList &Args)
1203       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1204         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1205       assert(Args.size() == 2);
1206     }
1207 
1208     void emitAssignment(Stmt *S) {
1209       FieldDecl *F = getMemcpyableField(S);
1210       if (F) {
1211         addMemcpyableField(F);
1212         AggregatedStmts.push_back(S);
1213       } else {
1214         emitAggregatedStmts();
1215         CGF.EmitStmt(S);
1216       }
1217     }
1218 
1219     void emitAggregatedStmts() {
1220       if (AggregatedStmts.size() <= 1) {
1221         if (!AggregatedStmts.empty()) {
1222           CopyingValueRepresentation CVR(CGF);
1223           CGF.EmitStmt(AggregatedStmts[0]);
1224         }
1225         reset();
1226       }
1227 
1228       emitMemcpy();
1229       AggregatedStmts.clear();
1230     }
1231 
1232     void finish() {
1233       emitAggregatedStmts();
1234     }
1235   };
1236 } // end anonymous namespace
1237 
1238 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1239   const Type *BaseType = BaseInit->getBaseClass();
1240   const auto *BaseClassDecl =
1241           cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
1242   return BaseClassDecl->isDynamicClass();
1243 }
1244 
1245 /// EmitCtorPrologue - This routine generates necessary code to initialize
1246 /// base classes and non-static data members belonging to this constructor.
1247 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1248                                        CXXCtorType CtorType,
1249                                        FunctionArgList &Args) {
1250   if (CD->isDelegatingConstructor())
1251     return EmitDelegatingCXXConstructorCall(CD, Args);
1252 
1253   const CXXRecordDecl *ClassDecl = CD->getParent();
1254 
1255   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1256                                           E = CD->init_end();
1257 
1258   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1259   if (ClassDecl->getNumVBases() &&
1260       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1261     // The ABIs that don't have constructor variants need to put a branch
1262     // before the virtual base initialization code.
1263     BaseCtorContinueBB =
1264       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1265     assert(BaseCtorContinueBB);
1266   }
1267 
1268   llvm::Value *const OldThis = CXXThisValue;
1269   // Virtual base initializers first.
1270   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1271     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1272         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1273         isInitializerOfDynamicClass(*B))
1274       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1275     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1276   }
1277 
1278   if (BaseCtorContinueBB) {
1279     // Complete object handler should continue to the remaining initializers.
1280     Builder.CreateBr(BaseCtorContinueBB);
1281     EmitBlock(BaseCtorContinueBB);
1282   }
1283 
1284   // Then, non-virtual base initializers.
1285   for (; B != E && (*B)->isBaseInitializer(); B++) {
1286     assert(!(*B)->isBaseVirtual());
1287 
1288     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1289         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1290         isInitializerOfDynamicClass(*B))
1291       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1292     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1293   }
1294 
1295   CXXThisValue = OldThis;
1296 
1297   InitializeVTablePointers(ClassDecl);
1298 
1299   // And finally, initialize class members.
1300   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1301   ConstructorMemcpyizer CM(*this, CD, Args);
1302   for (; B != E; B++) {
1303     CXXCtorInitializer *Member = (*B);
1304     assert(!Member->isBaseInitializer());
1305     assert(Member->isAnyMemberInitializer() &&
1306            "Delegating initializer on non-delegating constructor");
1307     CM.addMemberInitializer(Member);
1308   }
1309   CM.finish();
1310 }
1311 
1312 static bool
1313 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1314 
1315 static bool
1316 HasTrivialDestructorBody(ASTContext &Context,
1317                          const CXXRecordDecl *BaseClassDecl,
1318                          const CXXRecordDecl *MostDerivedClassDecl)
1319 {
1320   // If the destructor is trivial we don't have to check anything else.
1321   if (BaseClassDecl->hasTrivialDestructor())
1322     return true;
1323 
1324   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1325     return false;
1326 
1327   // Check fields.
1328   for (const auto *Field : BaseClassDecl->fields())
1329     if (!FieldHasTrivialDestructorBody(Context, Field))
1330       return false;
1331 
1332   // Check non-virtual bases.
1333   for (const auto &I : BaseClassDecl->bases()) {
1334     if (I.isVirtual())
1335       continue;
1336 
1337     const CXXRecordDecl *NonVirtualBase =
1338       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1339     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1340                                   MostDerivedClassDecl))
1341       return false;
1342   }
1343 
1344   if (BaseClassDecl == MostDerivedClassDecl) {
1345     // Check virtual bases.
1346     for (const auto &I : BaseClassDecl->vbases()) {
1347       const CXXRecordDecl *VirtualBase =
1348         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1349       if (!HasTrivialDestructorBody(Context, VirtualBase,
1350                                     MostDerivedClassDecl))
1351         return false;
1352     }
1353   }
1354 
1355   return true;
1356 }
1357 
1358 static bool
1359 FieldHasTrivialDestructorBody(ASTContext &Context,
1360                                           const FieldDecl *Field)
1361 {
1362   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1363 
1364   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1365   if (!RT)
1366     return true;
1367 
1368   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1369 
1370   // The destructor for an implicit anonymous union member is never invoked.
1371   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1372     return false;
1373 
1374   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1375 }
1376 
1377 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1378 /// any vtable pointers before calling this destructor.
1379 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1380                                                const CXXDestructorDecl *Dtor) {
1381   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1382   if (!ClassDecl->isDynamicClass())
1383     return true;
1384 
1385   if (!Dtor->hasTrivialBody())
1386     return false;
1387 
1388   // Check the fields.
1389   for (const auto *Field : ClassDecl->fields())
1390     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1391       return false;
1392 
1393   return true;
1394 }
1395 
1396 /// EmitDestructorBody - Emits the body of the current destructor.
1397 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1398   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1399   CXXDtorType DtorType = CurGD.getDtorType();
1400 
1401   // For an abstract class, non-base destructors are never used (and can't
1402   // be emitted in general, because vbase dtors may not have been validated
1403   // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1404   // in fact emit references to them from other compilations, so emit them
1405   // as functions containing a trap instruction.
1406   if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1407     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1408     TrapCall->setDoesNotReturn();
1409     TrapCall->setDoesNotThrow();
1410     Builder.CreateUnreachable();
1411     Builder.ClearInsertionPoint();
1412     return;
1413   }
1414 
1415   Stmt *Body = Dtor->getBody();
1416   if (Body)
1417     incrementProfileCounter(Body);
1418 
1419   // The call to operator delete in a deleting destructor happens
1420   // outside of the function-try-block, which means it's always
1421   // possible to delegate the destructor body to the complete
1422   // destructor.  Do so.
1423   if (DtorType == Dtor_Deleting) {
1424     RunCleanupsScope DtorEpilogue(*this);
1425     EnterDtorCleanups(Dtor, Dtor_Deleting);
1426     if (HaveInsertPoint())
1427       EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1428                             /*Delegating=*/false, LoadCXXThisAddress());
1429     return;
1430   }
1431 
1432   // If the body is a function-try-block, enter the try before
1433   // anything else.
1434   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1435   if (isTryBody)
1436     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1437   EmitAsanPrologueOrEpilogue(false);
1438 
1439   // Enter the epilogue cleanups.
1440   RunCleanupsScope DtorEpilogue(*this);
1441 
1442   // If this is the complete variant, just invoke the base variant;
1443   // the epilogue will destruct the virtual bases.  But we can't do
1444   // this optimization if the body is a function-try-block, because
1445   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1446   // always delegate because we might not have a definition in this TU.
1447   switch (DtorType) {
1448   case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1449   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1450 
1451   case Dtor_Complete:
1452     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1453            "can't emit a dtor without a body for non-Microsoft ABIs");
1454 
1455     // Enter the cleanup scopes for virtual bases.
1456     EnterDtorCleanups(Dtor, Dtor_Complete);
1457 
1458     if (!isTryBody) {
1459       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1460                             /*Delegating=*/false, LoadCXXThisAddress());
1461       break;
1462     }
1463 
1464     // Fallthrough: act like we're in the base variant.
1465     LLVM_FALLTHROUGH;
1466 
1467   case Dtor_Base:
1468     assert(Body);
1469 
1470     // Enter the cleanup scopes for fields and non-virtual bases.
1471     EnterDtorCleanups(Dtor, Dtor_Base);
1472 
1473     // Initialize the vtable pointers before entering the body.
1474     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1475       // Insert the llvm.invariant.group.barrier intrinsic before initializing
1476       // the vptrs to cancel any previous assumptions we might have made.
1477       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1478           CGM.getCodeGenOpts().OptimizationLevel > 0)
1479         CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1480       InitializeVTablePointers(Dtor->getParent());
1481     }
1482 
1483     if (isTryBody)
1484       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1485     else if (Body)
1486       EmitStmt(Body);
1487     else {
1488       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1489       // nothing to do besides what's in the epilogue
1490     }
1491     // -fapple-kext must inline any call to this dtor into
1492     // the caller's body.
1493     if (getLangOpts().AppleKext)
1494       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1495 
1496     break;
1497   }
1498 
1499   // Jump out through the epilogue cleanups.
1500   DtorEpilogue.ForceCleanup();
1501 
1502   // Exit the try if applicable.
1503   if (isTryBody)
1504     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1505 }
1506 
1507 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1508   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1509   const Stmt *RootS = AssignOp->getBody();
1510   assert(isa<CompoundStmt>(RootS) &&
1511          "Body of an implicit assignment operator should be compound stmt.");
1512   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1513 
1514   LexicalScope Scope(*this, RootCS->getSourceRange());
1515 
1516   incrementProfileCounter(RootCS);
1517   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1518   for (auto *I : RootCS->body())
1519     AM.emitAssignment(I);
1520   AM.finish();
1521 }
1522 
1523 namespace {
1524   llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1525                                      const CXXDestructorDecl *DD) {
1526     if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1527       return CGF.EmitScalarExpr(ThisArg);
1528     return CGF.LoadCXXThis();
1529   }
1530 
1531   /// Call the operator delete associated with the current destructor.
1532   struct CallDtorDelete final : EHScopeStack::Cleanup {
1533     CallDtorDelete() {}
1534 
1535     void Emit(CodeGenFunction &CGF, Flags flags) override {
1536       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1537       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1538       CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1539                          LoadThisForDtorDelete(CGF, Dtor),
1540                          CGF.getContext().getTagDeclType(ClassDecl));
1541     }
1542   };
1543 
1544   void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1545                                      llvm::Value *ShouldDeleteCondition,
1546                                      bool ReturnAfterDelete) {
1547     llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1548     llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1549     llvm::Value *ShouldCallDelete
1550       = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1551     CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1552 
1553     CGF.EmitBlock(callDeleteBB);
1554     const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1555     const CXXRecordDecl *ClassDecl = Dtor->getParent();
1556     CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1557                        LoadThisForDtorDelete(CGF, Dtor),
1558                        CGF.getContext().getTagDeclType(ClassDecl));
1559     assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1560                ReturnAfterDelete &&
1561            "unexpected value for ReturnAfterDelete");
1562     if (ReturnAfterDelete)
1563       CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1564     else
1565       CGF.Builder.CreateBr(continueBB);
1566 
1567     CGF.EmitBlock(continueBB);
1568   }
1569 
1570   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1571     llvm::Value *ShouldDeleteCondition;
1572 
1573   public:
1574     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1575         : ShouldDeleteCondition(ShouldDeleteCondition) {
1576       assert(ShouldDeleteCondition != nullptr);
1577     }
1578 
1579     void Emit(CodeGenFunction &CGF, Flags flags) override {
1580       EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1581                                     /*ReturnAfterDelete*/false);
1582     }
1583   };
1584 
1585   class DestroyField  final : public EHScopeStack::Cleanup {
1586     const FieldDecl *field;
1587     CodeGenFunction::Destroyer *destroyer;
1588     bool useEHCleanupForArray;
1589 
1590   public:
1591     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1592                  bool useEHCleanupForArray)
1593         : field(field), destroyer(destroyer),
1594           useEHCleanupForArray(useEHCleanupForArray) {}
1595 
1596     void Emit(CodeGenFunction &CGF, Flags flags) override {
1597       // Find the address of the field.
1598       Address thisValue = CGF.LoadCXXThisAddress();
1599       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1600       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1601       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1602       assert(LV.isSimple());
1603 
1604       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1605                       flags.isForNormalCleanup() && useEHCleanupForArray);
1606     }
1607   };
1608 
1609  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1610              CharUnits::QuantityType PoisonSize) {
1611    CodeGenFunction::SanitizerScope SanScope(&CGF);
1612    // Pass in void pointer and size of region as arguments to runtime
1613    // function
1614    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1615                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1616 
1617    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1618 
1619    llvm::FunctionType *FnType =
1620        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1621    llvm::Value *Fn =
1622        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1623    CGF.EmitNounwindRuntimeCall(Fn, Args);
1624  }
1625 
1626   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1627     const CXXDestructorDecl *Dtor;
1628 
1629   public:
1630     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1631 
1632     // Generate function call for handling object poisoning.
1633     // Disables tail call elimination, to prevent the current stack frame
1634     // from disappearing from the stack trace.
1635     void Emit(CodeGenFunction &CGF, Flags flags) override {
1636       const ASTRecordLayout &Layout =
1637           CGF.getContext().getASTRecordLayout(Dtor->getParent());
1638 
1639       // Nothing to poison.
1640       if (Layout.getFieldCount() == 0)
1641         return;
1642 
1643       // Prevent the current stack frame from disappearing from the stack trace.
1644       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1645 
1646       // Construct pointer to region to begin poisoning, and calculate poison
1647       // size, so that only members declared in this class are poisoned.
1648       ASTContext &Context = CGF.getContext();
1649       unsigned fieldIndex = 0;
1650       int startIndex = -1;
1651       // RecordDecl::field_iterator Field;
1652       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1653         // Poison field if it is trivial
1654         if (FieldHasTrivialDestructorBody(Context, Field)) {
1655           // Start sanitizing at this field
1656           if (startIndex < 0)
1657             startIndex = fieldIndex;
1658 
1659           // Currently on the last field, and it must be poisoned with the
1660           // current block.
1661           if (fieldIndex == Layout.getFieldCount() - 1) {
1662             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1663           }
1664         } else if (startIndex >= 0) {
1665           // No longer within a block of memory to poison, so poison the block
1666           PoisonMembers(CGF, startIndex, fieldIndex);
1667           // Re-set the start index
1668           startIndex = -1;
1669         }
1670         fieldIndex += 1;
1671       }
1672     }
1673 
1674   private:
1675     /// \param layoutStartOffset index of the ASTRecordLayout field to
1676     ///     start poisoning (inclusive)
1677     /// \param layoutEndOffset index of the ASTRecordLayout field to
1678     ///     end poisoning (exclusive)
1679     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1680                      unsigned layoutEndOffset) {
1681       ASTContext &Context = CGF.getContext();
1682       const ASTRecordLayout &Layout =
1683           Context.getASTRecordLayout(Dtor->getParent());
1684 
1685       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1686           CGF.SizeTy,
1687           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1688               .getQuantity());
1689 
1690       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1691           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1692           OffsetSizePtr);
1693 
1694       CharUnits::QuantityType PoisonSize;
1695       if (layoutEndOffset >= Layout.getFieldCount()) {
1696         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1697                      Context.toCharUnitsFromBits(
1698                                 Layout.getFieldOffset(layoutStartOffset))
1699                          .getQuantity();
1700       } else {
1701         PoisonSize = Context.toCharUnitsFromBits(
1702                                 Layout.getFieldOffset(layoutEndOffset) -
1703                                 Layout.getFieldOffset(layoutStartOffset))
1704                          .getQuantity();
1705       }
1706 
1707       if (PoisonSize == 0)
1708         return;
1709 
1710       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1711     }
1712   };
1713 
1714  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1715     const CXXDestructorDecl *Dtor;
1716 
1717   public:
1718     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1719 
1720     // Generate function call for handling vtable pointer poisoning.
1721     void Emit(CodeGenFunction &CGF, Flags flags) override {
1722       assert(Dtor->getParent()->isDynamicClass());
1723       (void)Dtor;
1724       ASTContext &Context = CGF.getContext();
1725       // Poison vtable and vtable ptr if they exist for this class.
1726       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1727 
1728       CharUnits::QuantityType PoisonSize =
1729           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1730       // Pass in void pointer and size of region as arguments to runtime
1731       // function
1732       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1733     }
1734  };
1735 } // end anonymous namespace
1736 
1737 /// \brief Emit all code that comes at the end of class's
1738 /// destructor. This is to call destructors on members and base classes
1739 /// in reverse order of their construction.
1740 ///
1741 /// For a deleting destructor, this also handles the case where a destroying
1742 /// operator delete completely overrides the definition.
1743 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1744                                         CXXDtorType DtorType) {
1745   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1746          "Should not emit dtor epilogue for non-exported trivial dtor!");
1747 
1748   // The deleting-destructor phase just needs to call the appropriate
1749   // operator delete that Sema picked up.
1750   if (DtorType == Dtor_Deleting) {
1751     assert(DD->getOperatorDelete() &&
1752            "operator delete missing - EnterDtorCleanups");
1753     if (CXXStructorImplicitParamValue) {
1754       // If there is an implicit param to the deleting dtor, it's a boolean
1755       // telling whether this is a deleting destructor.
1756       if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1757         EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1758                                       /*ReturnAfterDelete*/true);
1759       else
1760         EHStack.pushCleanup<CallDtorDeleteConditional>(
1761             NormalAndEHCleanup, CXXStructorImplicitParamValue);
1762     } else {
1763       if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1764         const CXXRecordDecl *ClassDecl = DD->getParent();
1765         EmitDeleteCall(DD->getOperatorDelete(),
1766                        LoadThisForDtorDelete(*this, DD),
1767                        getContext().getTagDeclType(ClassDecl));
1768         EmitBranchThroughCleanup(ReturnBlock);
1769       } else {
1770         EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1771       }
1772     }
1773     return;
1774   }
1775 
1776   const CXXRecordDecl *ClassDecl = DD->getParent();
1777 
1778   // Unions have no bases and do not call field destructors.
1779   if (ClassDecl->isUnion())
1780     return;
1781 
1782   // The complete-destructor phase just destructs all the virtual bases.
1783   if (DtorType == Dtor_Complete) {
1784     // Poison the vtable pointer such that access after the base
1785     // and member destructors are invoked is invalid.
1786     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1787         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1788         ClassDecl->isPolymorphic())
1789       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1790 
1791     // We push them in the forward order so that they'll be popped in
1792     // the reverse order.
1793     for (const auto &Base : ClassDecl->vbases()) {
1794       CXXRecordDecl *BaseClassDecl
1795         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1796 
1797       // Ignore trivial destructors.
1798       if (BaseClassDecl->hasTrivialDestructor())
1799         continue;
1800 
1801       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1802                                         BaseClassDecl,
1803                                         /*BaseIsVirtual*/ true);
1804     }
1805 
1806     return;
1807   }
1808 
1809   assert(DtorType == Dtor_Base);
1810   // Poison the vtable pointer if it has no virtual bases, but inherits
1811   // virtual functions.
1812   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1813       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1814       ClassDecl->isPolymorphic())
1815     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1816 
1817   // Destroy non-virtual bases.
1818   for (const auto &Base : ClassDecl->bases()) {
1819     // Ignore virtual bases.
1820     if (Base.isVirtual())
1821       continue;
1822 
1823     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1824 
1825     // Ignore trivial destructors.
1826     if (BaseClassDecl->hasTrivialDestructor())
1827       continue;
1828 
1829     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1830                                       BaseClassDecl,
1831                                       /*BaseIsVirtual*/ false);
1832   }
1833 
1834   // Poison fields such that access after their destructors are
1835   // invoked, and before the base class destructor runs, is invalid.
1836   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1837       SanOpts.has(SanitizerKind::Memory))
1838     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1839 
1840   // Destroy direct fields.
1841   for (const auto *Field : ClassDecl->fields()) {
1842     QualType type = Field->getType();
1843     QualType::DestructionKind dtorKind = type.isDestructedType();
1844     if (!dtorKind) continue;
1845 
1846     // Anonymous union members do not have their destructors called.
1847     const RecordType *RT = type->getAsUnionType();
1848     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1849 
1850     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1851     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1852                                       getDestroyer(dtorKind),
1853                                       cleanupKind & EHCleanup);
1854   }
1855 }
1856 
1857 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1858 /// constructor for each of several members of an array.
1859 ///
1860 /// \param ctor the constructor to call for each element
1861 /// \param arrayType the type of the array to initialize
1862 /// \param arrayBegin an arrayType*
1863 /// \param zeroInitialize true if each element should be
1864 ///   zero-initialized before it is constructed
1865 void CodeGenFunction::EmitCXXAggrConstructorCall(
1866     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1867     Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1868   QualType elementType;
1869   llvm::Value *numElements =
1870     emitArrayLength(arrayType, elementType, arrayBegin);
1871 
1872   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1873 }
1874 
1875 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1876 /// constructor for each of several members of an array.
1877 ///
1878 /// \param ctor the constructor to call for each element
1879 /// \param numElements the number of elements in the array;
1880 ///   may be zero
1881 /// \param arrayBase a T*, where T is the type constructed by ctor
1882 /// \param zeroInitialize true if each element should be
1883 ///   zero-initialized before it is constructed
1884 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1885                                                  llvm::Value *numElements,
1886                                                  Address arrayBase,
1887                                                  const CXXConstructExpr *E,
1888                                                  bool zeroInitialize) {
1889   // It's legal for numElements to be zero.  This can happen both
1890   // dynamically, because x can be zero in 'new A[x]', and statically,
1891   // because of GCC extensions that permit zero-length arrays.  There
1892   // are probably legitimate places where we could assume that this
1893   // doesn't happen, but it's not clear that it's worth it.
1894   llvm::BranchInst *zeroCheckBranch = nullptr;
1895 
1896   // Optimize for a constant count.
1897   llvm::ConstantInt *constantCount
1898     = dyn_cast<llvm::ConstantInt>(numElements);
1899   if (constantCount) {
1900     // Just skip out if the constant count is zero.
1901     if (constantCount->isZero()) return;
1902 
1903   // Otherwise, emit the check.
1904   } else {
1905     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1906     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1907     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1908     EmitBlock(loopBB);
1909   }
1910 
1911   // Find the end of the array.
1912   llvm::Value *arrayBegin = arrayBase.getPointer();
1913   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1914                                                     "arrayctor.end");
1915 
1916   // Enter the loop, setting up a phi for the current location to initialize.
1917   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1918   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1919   EmitBlock(loopBB);
1920   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1921                                          "arrayctor.cur");
1922   cur->addIncoming(arrayBegin, entryBB);
1923 
1924   // Inside the loop body, emit the constructor call on the array element.
1925 
1926   // The alignment of the base, adjusted by the size of a single element,
1927   // provides a conservative estimate of the alignment of every element.
1928   // (This assumes we never start tracking offsetted alignments.)
1929   //
1930   // Note that these are complete objects and so we don't need to
1931   // use the non-virtual size or alignment.
1932   QualType type = getContext().getTypeDeclType(ctor->getParent());
1933   CharUnits eltAlignment =
1934     arrayBase.getAlignment()
1935              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1936   Address curAddr = Address(cur, eltAlignment);
1937 
1938   // Zero initialize the storage, if requested.
1939   if (zeroInitialize)
1940     EmitNullInitialization(curAddr, type);
1941 
1942   // C++ [class.temporary]p4:
1943   // There are two contexts in which temporaries are destroyed at a different
1944   // point than the end of the full-expression. The first context is when a
1945   // default constructor is called to initialize an element of an array.
1946   // If the constructor has one or more default arguments, the destruction of
1947   // every temporary created in a default argument expression is sequenced
1948   // before the construction of the next array element, if any.
1949 
1950   {
1951     RunCleanupsScope Scope(*this);
1952 
1953     // Evaluate the constructor and its arguments in a regular
1954     // partial-destroy cleanup.
1955     if (getLangOpts().Exceptions &&
1956         !ctor->getParent()->hasTrivialDestructor()) {
1957       Destroyer *destroyer = destroyCXXObject;
1958       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
1959                                      *destroyer);
1960     }
1961 
1962     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
1963                            /*Delegating=*/false, curAddr, E);
1964   }
1965 
1966   // Go to the next element.
1967   llvm::Value *next =
1968     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1969                               "arrayctor.next");
1970   cur->addIncoming(next, Builder.GetInsertBlock());
1971 
1972   // Check whether that's the end of the loop.
1973   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1974   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1975   Builder.CreateCondBr(done, contBB, loopBB);
1976 
1977   // Patch the earlier check to skip over the loop.
1978   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1979 
1980   EmitBlock(contBB);
1981 }
1982 
1983 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1984                                        Address addr,
1985                                        QualType type) {
1986   const RecordType *rtype = type->castAs<RecordType>();
1987   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1988   const CXXDestructorDecl *dtor = record->getDestructor();
1989   assert(!dtor->isTrivial());
1990   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1991                             /*Delegating=*/false, addr);
1992 }
1993 
1994 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1995                                              CXXCtorType Type,
1996                                              bool ForVirtualBase,
1997                                              bool Delegating, Address This,
1998                                              const CXXConstructExpr *E) {
1999   CallArgList Args;
2000 
2001   // Push the this ptr.
2002   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2003 
2004   // If this is a trivial constructor, emit a memcpy now before we lose
2005   // the alignment information on the argument.
2006   // FIXME: It would be better to preserve alignment information into CallArg.
2007   if (isMemcpyEquivalentSpecialMember(D)) {
2008     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2009 
2010     const Expr *Arg = E->getArg(0);
2011     LValue Src = EmitLValue(Arg);
2012     QualType DestTy = getContext().getTypeDeclType(D->getParent());
2013     LValue Dest = MakeAddrLValue(This, DestTy);
2014     EmitAggregateCopyCtor(Dest, Src);
2015     return;
2016   }
2017 
2018   // Add the rest of the user-supplied arguments.
2019   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2020   EvaluationOrder Order = E->isListInitialization()
2021                               ? EvaluationOrder::ForceLeftToRight
2022                               : EvaluationOrder::Default;
2023   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2024                /*ParamsToSkip*/ 0, Order);
2025 
2026   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args);
2027 }
2028 
2029 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2030                                     const CXXConstructorDecl *Ctor,
2031                                     CXXCtorType Type, CallArgList &Args) {
2032   // We can't forward a variadic call.
2033   if (Ctor->isVariadic())
2034     return false;
2035 
2036   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2037     // If the parameters are callee-cleanup, it's not safe to forward.
2038     for (auto *P : Ctor->parameters())
2039       if (P->getType().isDestructedType())
2040         return false;
2041 
2042     // Likewise if they're inalloca.
2043     const CGFunctionInfo &Info =
2044         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2045     if (Info.usesInAlloca())
2046       return false;
2047   }
2048 
2049   // Anything else should be OK.
2050   return true;
2051 }
2052 
2053 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2054                                              CXXCtorType Type,
2055                                              bool ForVirtualBase,
2056                                              bool Delegating,
2057                                              Address This,
2058                                              CallArgList &Args) {
2059   const CXXRecordDecl *ClassDecl = D->getParent();
2060 
2061   // C++11 [class.mfct.non-static]p2:
2062   //   If a non-static member function of a class X is called for an object that
2063   //   is not of type X, or of a type derived from X, the behavior is undefined.
2064   // FIXME: Provide a source location here.
2065   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
2066                 This.getPointer(), getContext().getRecordType(ClassDecl));
2067 
2068   if (D->isTrivial() && D->isDefaultConstructor()) {
2069     assert(Args.size() == 1 && "trivial default ctor with args");
2070     return;
2071   }
2072 
2073   // If this is a trivial constructor, just emit what's needed. If this is a
2074   // union copy constructor, we must emit a memcpy, because the AST does not
2075   // model that copy.
2076   if (isMemcpyEquivalentSpecialMember(D)) {
2077     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2078 
2079     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2080     Address Src(Args[1].getRValue(*this).getScalarVal(),
2081                 getNaturalTypeAlignment(SrcTy));
2082     LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2083     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2084     LValue DestLVal = MakeAddrLValue(This, DestTy);
2085     EmitAggregateCopyCtor(DestLVal, SrcLVal);
2086     return;
2087   }
2088 
2089   bool PassPrototypeArgs = true;
2090   // Check whether we can actually emit the constructor before trying to do so.
2091   if (auto Inherited = D->getInheritedConstructor()) {
2092     PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2093     if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2094       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2095                                               Delegating, Args);
2096       return;
2097     }
2098   }
2099 
2100   // Insert any ABI-specific implicit constructor arguments.
2101   CGCXXABI::AddedStructorArgs ExtraArgs =
2102       CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2103                                                  Delegating, Args);
2104 
2105   // Emit the call.
2106   llvm::Constant *CalleePtr =
2107     CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
2108   const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2109       Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2110   CGCallee Callee = CGCallee::forDirect(CalleePtr, D);
2111   EmitCall(Info, Callee, ReturnValueSlot(), Args);
2112 
2113   // Generate vtable assumptions if we're constructing a complete object
2114   // with a vtable.  We don't do this for base subobjects for two reasons:
2115   // first, it's incorrect for classes with virtual bases, and second, we're
2116   // about to overwrite the vptrs anyway.
2117   // We also have to make sure if we can refer to vtable:
2118   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2119   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2120   // sure that definition of vtable is not hidden,
2121   // then we are always safe to refer to it.
2122   // FIXME: It looks like InstCombine is very inefficient on dealing with
2123   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2124   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2125       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2126       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2127       CGM.getCodeGenOpts().StrictVTablePointers)
2128     EmitVTableAssumptionLoads(ClassDecl, This);
2129 }
2130 
2131 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2132     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2133     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2134   CallArgList Args;
2135   CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()));
2136 
2137   // Forward the parameters.
2138   if (InheritedFromVBase &&
2139       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2140     // Nothing to do; this construction is not responsible for constructing
2141     // the base class containing the inherited constructor.
2142     // FIXME: Can we just pass undef's for the remaining arguments if we don't
2143     // have constructor variants?
2144     Args.push_back(ThisArg);
2145   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2146     // The inheriting constructor was inlined; just inject its arguments.
2147     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2148            "wrong number of parameters for inherited constructor call");
2149     Args = CXXInheritedCtorInitExprArgs;
2150     Args[0] = ThisArg;
2151   } else {
2152     // The inheriting constructor was not inlined. Emit delegating arguments.
2153     Args.push_back(ThisArg);
2154     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2155     assert(OuterCtor->getNumParams() == D->getNumParams());
2156     assert(!OuterCtor->isVariadic() && "should have been inlined");
2157 
2158     for (const auto *Param : OuterCtor->parameters()) {
2159       assert(getContext().hasSameUnqualifiedType(
2160           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2161           Param->getType()));
2162       EmitDelegateCallArg(Args, Param, E->getLocation());
2163 
2164       // Forward __attribute__(pass_object_size).
2165       if (Param->hasAttr<PassObjectSizeAttr>()) {
2166         auto *POSParam = SizeArguments[Param];
2167         assert(POSParam && "missing pass_object_size value for forwarding");
2168         EmitDelegateCallArg(Args, POSParam, E->getLocation());
2169       }
2170     }
2171   }
2172 
2173   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2174                          This, Args);
2175 }
2176 
2177 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2178     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2179     bool Delegating, CallArgList &Args) {
2180   GlobalDecl GD(Ctor, CtorType);
2181   InlinedInheritingConstructorScope Scope(*this, GD);
2182   ApplyInlineDebugLocation DebugScope(*this, GD);
2183 
2184   // Save the arguments to be passed to the inherited constructor.
2185   CXXInheritedCtorInitExprArgs = Args;
2186 
2187   FunctionArgList Params;
2188   QualType RetType = BuildFunctionArgList(CurGD, Params);
2189   FnRetTy = RetType;
2190 
2191   // Insert any ABI-specific implicit constructor arguments.
2192   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2193                                              ForVirtualBase, Delegating, Args);
2194 
2195   // Emit a simplified prolog. We only need to emit the implicit params.
2196   assert(Args.size() >= Params.size() && "too few arguments for call");
2197   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2198     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2199       const RValue &RV = Args[I].getRValue(*this);
2200       assert(!RV.isComplex() && "complex indirect params not supported");
2201       ParamValue Val = RV.isScalar()
2202                            ? ParamValue::forDirect(RV.getScalarVal())
2203                            : ParamValue::forIndirect(RV.getAggregateAddress());
2204       EmitParmDecl(*Params[I], Val, I + 1);
2205     }
2206   }
2207 
2208   // Create a return value slot if the ABI implementation wants one.
2209   // FIXME: This is dumb, we should ask the ABI not to try to set the return
2210   // value instead.
2211   if (!RetType->isVoidType())
2212     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2213 
2214   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2215   CXXThisValue = CXXABIThisValue;
2216 
2217   // Directly emit the constructor initializers.
2218   EmitCtorPrologue(Ctor, CtorType, Params);
2219 }
2220 
2221 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2222   llvm::Value *VTableGlobal =
2223       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2224   if (!VTableGlobal)
2225     return;
2226 
2227   // We can just use the base offset in the complete class.
2228   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2229 
2230   if (!NonVirtualOffset.isZero())
2231     This =
2232         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2233                                         Vptr.VTableClass, Vptr.NearestVBase);
2234 
2235   llvm::Value *VPtrValue =
2236       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2237   llvm::Value *Cmp =
2238       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2239   Builder.CreateAssumption(Cmp);
2240 }
2241 
2242 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2243                                                 Address This) {
2244   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2245     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2246       EmitVTableAssumptionLoad(Vptr, This);
2247 }
2248 
2249 void
2250 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2251                                                 Address This, Address Src,
2252                                                 const CXXConstructExpr *E) {
2253   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2254 
2255   CallArgList Args;
2256 
2257   // Push the this ptr.
2258   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2259 
2260   // Push the src ptr.
2261   QualType QT = *(FPT->param_type_begin());
2262   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2263   Src = Builder.CreateBitCast(Src, t);
2264   Args.add(RValue::get(Src.getPointer()), QT);
2265 
2266   // Skip over first argument (Src).
2267   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2268                /*ParamsToSkip*/ 1);
2269 
2270   EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args);
2271 }
2272 
2273 void
2274 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2275                                                 CXXCtorType CtorType,
2276                                                 const FunctionArgList &Args,
2277                                                 SourceLocation Loc) {
2278   CallArgList DelegateArgs;
2279 
2280   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2281   assert(I != E && "no parameters to constructor");
2282 
2283   // this
2284   Address This = LoadCXXThisAddress();
2285   DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2286   ++I;
2287 
2288   // FIXME: The location of the VTT parameter in the parameter list is
2289   // specific to the Itanium ABI and shouldn't be hardcoded here.
2290   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2291     assert(I != E && "cannot skip vtt parameter, already done with args");
2292     assert((*I)->getType()->isPointerType() &&
2293            "skipping parameter not of vtt type");
2294     ++I;
2295   }
2296 
2297   // Explicit arguments.
2298   for (; I != E; ++I) {
2299     const VarDecl *param = *I;
2300     // FIXME: per-argument source location
2301     EmitDelegateCallArg(DelegateArgs, param, Loc);
2302   }
2303 
2304   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2305                          /*Delegating=*/true, This, DelegateArgs);
2306 }
2307 
2308 namespace {
2309   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2310     const CXXDestructorDecl *Dtor;
2311     Address Addr;
2312     CXXDtorType Type;
2313 
2314     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2315                            CXXDtorType Type)
2316       : Dtor(D), Addr(Addr), Type(Type) {}
2317 
2318     void Emit(CodeGenFunction &CGF, Flags flags) override {
2319       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2320                                 /*Delegating=*/true, Addr);
2321     }
2322   };
2323 } // end anonymous namespace
2324 
2325 void
2326 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2327                                                   const FunctionArgList &Args) {
2328   assert(Ctor->isDelegatingConstructor());
2329 
2330   Address ThisPtr = LoadCXXThisAddress();
2331 
2332   AggValueSlot AggSlot =
2333     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2334                           AggValueSlot::IsDestructed,
2335                           AggValueSlot::DoesNotNeedGCBarriers,
2336                           AggValueSlot::IsNotAliased);
2337 
2338   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2339 
2340   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2341   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2342     CXXDtorType Type =
2343       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2344 
2345     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2346                                                 ClassDecl->getDestructor(),
2347                                                 ThisPtr, Type);
2348   }
2349 }
2350 
2351 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2352                                             CXXDtorType Type,
2353                                             bool ForVirtualBase,
2354                                             bool Delegating,
2355                                             Address This) {
2356   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2357                                      Delegating, This);
2358 }
2359 
2360 namespace {
2361   struct CallLocalDtor final : EHScopeStack::Cleanup {
2362     const CXXDestructorDecl *Dtor;
2363     Address Addr;
2364 
2365     CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
2366       : Dtor(D), Addr(Addr) {}
2367 
2368     void Emit(CodeGenFunction &CGF, Flags flags) override {
2369       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2370                                 /*ForVirtualBase=*/false,
2371                                 /*Delegating=*/false, Addr);
2372     }
2373   };
2374 } // end anonymous namespace
2375 
2376 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2377                                             Address Addr) {
2378   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
2379 }
2380 
2381 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2382   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2383   if (!ClassDecl) return;
2384   if (ClassDecl->hasTrivialDestructor()) return;
2385 
2386   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2387   assert(D && D->isUsed() && "destructor not marked as used!");
2388   PushDestructorCleanup(D, Addr);
2389 }
2390 
2391 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2392   // Compute the address point.
2393   llvm::Value *VTableAddressPoint =
2394       CGM.getCXXABI().getVTableAddressPointInStructor(
2395           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2396 
2397   if (!VTableAddressPoint)
2398     return;
2399 
2400   // Compute where to store the address point.
2401   llvm::Value *VirtualOffset = nullptr;
2402   CharUnits NonVirtualOffset = CharUnits::Zero();
2403 
2404   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2405     // We need to use the virtual base offset offset because the virtual base
2406     // might have a different offset in the most derived class.
2407 
2408     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2409         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2410     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2411   } else {
2412     // We can just use the base offset in the complete class.
2413     NonVirtualOffset = Vptr.Base.getBaseOffset();
2414   }
2415 
2416   // Apply the offsets.
2417   Address VTableField = LoadCXXThisAddress();
2418 
2419   if (!NonVirtualOffset.isZero() || VirtualOffset)
2420     VTableField = ApplyNonVirtualAndVirtualOffset(
2421         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2422         Vptr.NearestVBase);
2423 
2424   // Finally, store the address point. Use the same LLVM types as the field to
2425   // support optimization.
2426   llvm::Type *VTablePtrTy =
2427       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2428           ->getPointerTo()
2429           ->getPointerTo();
2430   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2431   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2432 
2433   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2434   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy);
2435   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2436   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2437       CGM.getCodeGenOpts().StrictVTablePointers)
2438     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2439 }
2440 
2441 CodeGenFunction::VPtrsVector
2442 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2443   CodeGenFunction::VPtrsVector VPtrsResult;
2444   VisitedVirtualBasesSetTy VBases;
2445   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2446                     /*NearestVBase=*/nullptr,
2447                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2448                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2449                     VPtrsResult);
2450   return VPtrsResult;
2451 }
2452 
2453 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2454                                         const CXXRecordDecl *NearestVBase,
2455                                         CharUnits OffsetFromNearestVBase,
2456                                         bool BaseIsNonVirtualPrimaryBase,
2457                                         const CXXRecordDecl *VTableClass,
2458                                         VisitedVirtualBasesSetTy &VBases,
2459                                         VPtrsVector &Vptrs) {
2460   // If this base is a non-virtual primary base the address point has already
2461   // been set.
2462   if (!BaseIsNonVirtualPrimaryBase) {
2463     // Initialize the vtable pointer for this base.
2464     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2465     Vptrs.push_back(Vptr);
2466   }
2467 
2468   const CXXRecordDecl *RD = Base.getBase();
2469 
2470   // Traverse bases.
2471   for (const auto &I : RD->bases()) {
2472     CXXRecordDecl *BaseDecl
2473       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2474 
2475     // Ignore classes without a vtable.
2476     if (!BaseDecl->isDynamicClass())
2477       continue;
2478 
2479     CharUnits BaseOffset;
2480     CharUnits BaseOffsetFromNearestVBase;
2481     bool BaseDeclIsNonVirtualPrimaryBase;
2482 
2483     if (I.isVirtual()) {
2484       // Check if we've visited this virtual base before.
2485       if (!VBases.insert(BaseDecl).second)
2486         continue;
2487 
2488       const ASTRecordLayout &Layout =
2489         getContext().getASTRecordLayout(VTableClass);
2490 
2491       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2492       BaseOffsetFromNearestVBase = CharUnits::Zero();
2493       BaseDeclIsNonVirtualPrimaryBase = false;
2494     } else {
2495       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2496 
2497       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2498       BaseOffsetFromNearestVBase =
2499         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2500       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2501     }
2502 
2503     getVTablePointers(
2504         BaseSubobject(BaseDecl, BaseOffset),
2505         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2506         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2507   }
2508 }
2509 
2510 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2511   // Ignore classes without a vtable.
2512   if (!RD->isDynamicClass())
2513     return;
2514 
2515   // Initialize the vtable pointers for this class and all of its bases.
2516   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2517     for (const VPtr &Vptr : getVTablePointers(RD))
2518       InitializeVTablePointer(Vptr);
2519 
2520   if (RD->getNumVBases())
2521     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2522 }
2523 
2524 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2525                                            llvm::Type *VTableTy,
2526                                            const CXXRecordDecl *RD) {
2527   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2528   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2529   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2530   CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2531 
2532   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2533       CGM.getCodeGenOpts().StrictVTablePointers)
2534     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2535 
2536   return VTable;
2537 }
2538 
2539 // If a class has a single non-virtual base and does not introduce or override
2540 // virtual member functions or fields, it will have the same layout as its base.
2541 // This function returns the least derived such class.
2542 //
2543 // Casting an instance of a base class to such a derived class is technically
2544 // undefined behavior, but it is a relatively common hack for introducing member
2545 // functions on class instances with specific properties (e.g. llvm::Operator)
2546 // that works under most compilers and should not have security implications, so
2547 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2548 static const CXXRecordDecl *
2549 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2550   if (!RD->field_empty())
2551     return RD;
2552 
2553   if (RD->getNumVBases() != 0)
2554     return RD;
2555 
2556   if (RD->getNumBases() != 1)
2557     return RD;
2558 
2559   for (const CXXMethodDecl *MD : RD->methods()) {
2560     if (MD->isVirtual()) {
2561       // Virtual member functions are only ok if they are implicit destructors
2562       // because the implicit destructor will have the same semantics as the
2563       // base class's destructor if no fields are added.
2564       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2565         continue;
2566       return RD;
2567     }
2568   }
2569 
2570   return LeastDerivedClassWithSameLayout(
2571       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2572 }
2573 
2574 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2575                                                    llvm::Value *VTable,
2576                                                    SourceLocation Loc) {
2577   if (SanOpts.has(SanitizerKind::CFIVCall))
2578     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2579   else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2580            CGM.HasHiddenLTOVisibility(RD)) {
2581     llvm::Metadata *MD =
2582         CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2583     llvm::Value *TypeId =
2584         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2585 
2586     llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2587     llvm::Value *TypeTest =
2588         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2589                            {CastedVTable, TypeId});
2590     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2591   }
2592 }
2593 
2594 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2595                                                 llvm::Value *VTable,
2596                                                 CFITypeCheckKind TCK,
2597                                                 SourceLocation Loc) {
2598   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2599     RD = LeastDerivedClassWithSameLayout(RD);
2600 
2601   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2602 }
2603 
2604 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2605                                                 llvm::Value *Derived,
2606                                                 bool MayBeNull,
2607                                                 CFITypeCheckKind TCK,
2608                                                 SourceLocation Loc) {
2609   if (!getLangOpts().CPlusPlus)
2610     return;
2611 
2612   auto *ClassTy = T->getAs<RecordType>();
2613   if (!ClassTy)
2614     return;
2615 
2616   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2617 
2618   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2619     return;
2620 
2621   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2622     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2623 
2624   llvm::BasicBlock *ContBlock = nullptr;
2625 
2626   if (MayBeNull) {
2627     llvm::Value *DerivedNotNull =
2628         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2629 
2630     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2631     ContBlock = createBasicBlock("cast.cont");
2632 
2633     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2634 
2635     EmitBlock(CheckBlock);
2636   }
2637 
2638   llvm::Value *VTable;
2639   std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr(
2640       *this, Address(Derived, getPointerAlign()), ClassDecl);
2641 
2642   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2643 
2644   if (MayBeNull) {
2645     Builder.CreateBr(ContBlock);
2646     EmitBlock(ContBlock);
2647   }
2648 }
2649 
2650 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2651                                          llvm::Value *VTable,
2652                                          CFITypeCheckKind TCK,
2653                                          SourceLocation Loc) {
2654   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2655       !CGM.HasHiddenLTOVisibility(RD))
2656     return;
2657 
2658   SanitizerMask M;
2659   llvm::SanitizerStatKind SSK;
2660   switch (TCK) {
2661   case CFITCK_VCall:
2662     M = SanitizerKind::CFIVCall;
2663     SSK = llvm::SanStat_CFI_VCall;
2664     break;
2665   case CFITCK_NVCall:
2666     M = SanitizerKind::CFINVCall;
2667     SSK = llvm::SanStat_CFI_NVCall;
2668     break;
2669   case CFITCK_DerivedCast:
2670     M = SanitizerKind::CFIDerivedCast;
2671     SSK = llvm::SanStat_CFI_DerivedCast;
2672     break;
2673   case CFITCK_UnrelatedCast:
2674     M = SanitizerKind::CFIUnrelatedCast;
2675     SSK = llvm::SanStat_CFI_UnrelatedCast;
2676     break;
2677   case CFITCK_ICall:
2678     llvm_unreachable("not expecting CFITCK_ICall");
2679   }
2680 
2681   std::string TypeName = RD->getQualifiedNameAsString();
2682   if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName))
2683     return;
2684 
2685   SanitizerScope SanScope(this);
2686   EmitSanitizerStatReport(SSK);
2687 
2688   llvm::Metadata *MD =
2689       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2690   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2691 
2692   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2693   llvm::Value *TypeTest = Builder.CreateCall(
2694       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
2695 
2696   llvm::Constant *StaticData[] = {
2697       llvm::ConstantInt::get(Int8Ty, TCK),
2698       EmitCheckSourceLocation(Loc),
2699       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2700   };
2701 
2702   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2703   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2704     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
2705     return;
2706   }
2707 
2708   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2709     EmitTrapCheck(TypeTest);
2710     return;
2711   }
2712 
2713   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2714       CGM.getLLVMContext(),
2715       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2716   llvm::Value *ValidVtable = Builder.CreateCall(
2717       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
2718   EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2719             StaticData, {CastedVTable, ValidVtable});
2720 }
2721 
2722 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2723   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2724       !SanOpts.has(SanitizerKind::CFIVCall) ||
2725       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) ||
2726       !CGM.HasHiddenLTOVisibility(RD))
2727     return false;
2728 
2729   std::string TypeName = RD->getQualifiedNameAsString();
2730   return !getContext().getSanitizerBlacklist().isBlacklistedType(
2731       SanitizerKind::CFIVCall, TypeName);
2732 }
2733 
2734 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2735     const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
2736   SanitizerScope SanScope(this);
2737 
2738   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2739 
2740   llvm::Metadata *MD =
2741       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2742   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2743 
2744   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2745   llvm::Value *CheckedLoad = Builder.CreateCall(
2746       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2747       {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
2748        TypeId});
2749   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2750 
2751   EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2752             SanitizerHandler::CFICheckFail, nullptr, nullptr);
2753 
2754   return Builder.CreateBitCast(
2755       Builder.CreateExtractValue(CheckedLoad, 0),
2756       cast<llvm::PointerType>(VTable->getType())->getElementType());
2757 }
2758 
2759 void CodeGenFunction::EmitForwardingCallToLambda(
2760                                       const CXXMethodDecl *callOperator,
2761                                       CallArgList &callArgs) {
2762   // Get the address of the call operator.
2763   const CGFunctionInfo &calleeFnInfo =
2764     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2765   llvm::Constant *calleePtr =
2766     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2767                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2768 
2769   // Prepare the return slot.
2770   const FunctionProtoType *FPT =
2771     callOperator->getType()->castAs<FunctionProtoType>();
2772   QualType resultType = FPT->getReturnType();
2773   ReturnValueSlot returnSlot;
2774   if (!resultType->isVoidType() &&
2775       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2776       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2777     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2778 
2779   // We don't need to separately arrange the call arguments because
2780   // the call can't be variadic anyway --- it's impossible to forward
2781   // variadic arguments.
2782 
2783   // Now emit our call.
2784   auto callee = CGCallee::forDirect(calleePtr, callOperator);
2785   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs);
2786 
2787   // If necessary, copy the returned value into the slot.
2788   if (!resultType->isVoidType() && returnSlot.isNull()) {
2789     if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2790       RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2791     }
2792     EmitReturnOfRValue(RV, resultType);
2793   } else
2794     EmitBranchThroughCleanup(ReturnBlock);
2795 }
2796 
2797 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2798   const BlockDecl *BD = BlockInfo->getBlockDecl();
2799   const VarDecl *variable = BD->capture_begin()->getVariable();
2800   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2801   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2802 
2803   if (CallOp->isVariadic()) {
2804     // FIXME: Making this work correctly is nasty because it requires either
2805     // cloning the body of the call operator or making the call operator
2806     // forward.
2807     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2808     return;
2809   }
2810 
2811   // Start building arguments for forwarding call
2812   CallArgList CallArgs;
2813 
2814   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2815   Address ThisPtr = GetAddrOfBlockDecl(variable, false);
2816   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2817 
2818   // Add the rest of the parameters.
2819   for (auto param : BD->parameters())
2820     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2821 
2822   assert(!Lambda->isGenericLambda() &&
2823             "generic lambda interconversion to block not implemented");
2824   EmitForwardingCallToLambda(CallOp, CallArgs);
2825 }
2826 
2827 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2828   const CXXRecordDecl *Lambda = MD->getParent();
2829 
2830   // Start building arguments for forwarding call
2831   CallArgList CallArgs;
2832 
2833   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2834   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2835   CallArgs.add(RValue::get(ThisPtr), ThisType);
2836 
2837   // Add the rest of the parameters.
2838   for (auto Param : MD->parameters())
2839     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2840 
2841   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2842   // For a generic lambda, find the corresponding call operator specialization
2843   // to which the call to the static-invoker shall be forwarded.
2844   if (Lambda->isGenericLambda()) {
2845     assert(MD->isFunctionTemplateSpecialization());
2846     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2847     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2848     void *InsertPos = nullptr;
2849     FunctionDecl *CorrespondingCallOpSpecialization =
2850         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2851     assert(CorrespondingCallOpSpecialization);
2852     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2853   }
2854   EmitForwardingCallToLambda(CallOp, CallArgs);
2855 }
2856 
2857 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
2858   if (MD->isVariadic()) {
2859     // FIXME: Making this work correctly is nasty because it requires either
2860     // cloning the body of the call operator or making the call operator forward.
2861     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2862     return;
2863   }
2864 
2865   EmitLambdaDelegatingInvokeBody(MD);
2866 }
2867