1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 LValueBaseInfo *BaseInfo, 133 TBAAAccessInfo *TBAAInfo) { 134 // Ask the ABI to compute the actual address. 135 llvm::Value *ptr = 136 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 137 memberPtr, memberPtrType); 138 139 QualType memberType = memberPtrType->getPointeeType(); 140 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo, 141 TBAAInfo); 142 memberAlign = 143 CGM.getDynamicOffsetAlignment(base.getAlignment(), 144 memberPtrType->getClass()->getAsCXXRecordDecl(), 145 memberAlign); 146 return Address(ptr, memberAlign); 147 } 148 149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 150 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 151 CastExpr::path_const_iterator End) { 152 CharUnits Offset = CharUnits::Zero(); 153 154 const ASTContext &Context = getContext(); 155 const CXXRecordDecl *RD = DerivedClass; 156 157 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 158 const CXXBaseSpecifier *Base = *I; 159 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 160 161 // Get the layout. 162 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 163 164 const CXXRecordDecl *BaseDecl = 165 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 166 167 // Add the offset. 168 Offset += Layout.getBaseClassOffset(BaseDecl); 169 170 RD = BaseDecl; 171 } 172 173 return Offset; 174 } 175 176 llvm::Constant * 177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 178 CastExpr::path_const_iterator PathBegin, 179 CastExpr::path_const_iterator PathEnd) { 180 assert(PathBegin != PathEnd && "Base path should not be empty!"); 181 182 CharUnits Offset = 183 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 184 if (Offset.isZero()) 185 return nullptr; 186 187 llvm::Type *PtrDiffTy = 188 Types.ConvertType(getContext().getPointerDiffType()); 189 190 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 191 } 192 193 /// Gets the address of a direct base class within a complete object. 194 /// This should only be used for (1) non-virtual bases or (2) virtual bases 195 /// when the type is known to be complete (e.g. in complete destructors). 196 /// 197 /// The object pointed to by 'This' is assumed to be non-null. 198 Address 199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 200 const CXXRecordDecl *Derived, 201 const CXXRecordDecl *Base, 202 bool BaseIsVirtual) { 203 // 'this' must be a pointer (in some address space) to Derived. 204 assert(This.getElementType() == ConvertType(Derived)); 205 206 // Compute the offset of the virtual base. 207 CharUnits Offset; 208 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 209 if (BaseIsVirtual) 210 Offset = Layout.getVBaseClassOffset(Base); 211 else 212 Offset = Layout.getBaseClassOffset(Base); 213 214 // Shift and cast down to the base type. 215 // TODO: for complete types, this should be possible with a GEP. 216 Address V = This; 217 if (!Offset.isZero()) { 218 V = Builder.CreateElementBitCast(V, Int8Ty); 219 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 220 } 221 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 222 223 return V; 224 } 225 226 static Address 227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 228 CharUnits nonVirtualOffset, 229 llvm::Value *virtualOffset, 230 const CXXRecordDecl *derivedClass, 231 const CXXRecordDecl *nearestVBase) { 232 // Assert that we have something to do. 233 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 234 235 // Compute the offset from the static and dynamic components. 236 llvm::Value *baseOffset; 237 if (!nonVirtualOffset.isZero()) { 238 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 239 nonVirtualOffset.getQuantity()); 240 if (virtualOffset) { 241 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 242 } 243 } else { 244 baseOffset = virtualOffset; 245 } 246 247 // Apply the base offset. 248 llvm::Value *ptr = addr.getPointer(); 249 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 250 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 251 252 // If we have a virtual component, the alignment of the result will 253 // be relative only to the known alignment of that vbase. 254 CharUnits alignment; 255 if (virtualOffset) { 256 assert(nearestVBase && "virtual offset without vbase?"); 257 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 258 derivedClass, nearestVBase); 259 } else { 260 alignment = addr.getAlignment(); 261 } 262 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 263 264 return Address(ptr, alignment); 265 } 266 267 Address CodeGenFunction::GetAddressOfBaseClass( 268 Address Value, const CXXRecordDecl *Derived, 269 CastExpr::path_const_iterator PathBegin, 270 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 271 SourceLocation Loc) { 272 assert(PathBegin != PathEnd && "Base path should not be empty!"); 273 274 CastExpr::path_const_iterator Start = PathBegin; 275 const CXXRecordDecl *VBase = nullptr; 276 277 // Sema has done some convenient canonicalization here: if the 278 // access path involved any virtual steps, the conversion path will 279 // *start* with a step down to the correct virtual base subobject, 280 // and hence will not require any further steps. 281 if ((*Start)->isVirtual()) { 282 VBase = 283 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 284 ++Start; 285 } 286 287 // Compute the static offset of the ultimate destination within its 288 // allocating subobject (the virtual base, if there is one, or else 289 // the "complete" object that we see). 290 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 291 VBase ? VBase : Derived, Start, PathEnd); 292 293 // If there's a virtual step, we can sometimes "devirtualize" it. 294 // For now, that's limited to when the derived type is final. 295 // TODO: "devirtualize" this for accesses to known-complete objects. 296 if (VBase && Derived->hasAttr<FinalAttr>()) { 297 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 298 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 299 NonVirtualOffset += vBaseOffset; 300 VBase = nullptr; // we no longer have a virtual step 301 } 302 303 // Get the base pointer type. 304 llvm::Type *BasePtrTy = 305 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 306 307 QualType DerivedTy = getContext().getRecordType(Derived); 308 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 309 310 // If the static offset is zero and we don't have a virtual step, 311 // just do a bitcast; null checks are unnecessary. 312 if (NonVirtualOffset.isZero() && !VBase) { 313 if (sanitizePerformTypeCheck()) { 314 SanitizerSet SkippedChecks; 315 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 316 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 317 DerivedTy, DerivedAlign, SkippedChecks); 318 } 319 return Builder.CreateBitCast(Value, BasePtrTy); 320 } 321 322 llvm::BasicBlock *origBB = nullptr; 323 llvm::BasicBlock *endBB = nullptr; 324 325 // Skip over the offset (and the vtable load) if we're supposed to 326 // null-check the pointer. 327 if (NullCheckValue) { 328 origBB = Builder.GetInsertBlock(); 329 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 330 endBB = createBasicBlock("cast.end"); 331 332 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 333 Builder.CreateCondBr(isNull, endBB, notNullBB); 334 EmitBlock(notNullBB); 335 } 336 337 if (sanitizePerformTypeCheck()) { 338 SanitizerSet SkippedChecks; 339 SkippedChecks.set(SanitizerKind::Null, true); 340 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 341 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 342 } 343 344 // Compute the virtual offset. 345 llvm::Value *VirtualOffset = nullptr; 346 if (VBase) { 347 VirtualOffset = 348 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 349 } 350 351 // Apply both offsets. 352 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 353 VirtualOffset, Derived, VBase); 354 355 // Cast to the destination type. 356 Value = Builder.CreateBitCast(Value, BasePtrTy); 357 358 // Build a phi if we needed a null check. 359 if (NullCheckValue) { 360 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 361 Builder.CreateBr(endBB); 362 EmitBlock(endBB); 363 364 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 365 PHI->addIncoming(Value.getPointer(), notNullBB); 366 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 367 Value = Address(PHI, Value.getAlignment()); 368 } 369 370 return Value; 371 } 372 373 Address 374 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 375 const CXXRecordDecl *Derived, 376 CastExpr::path_const_iterator PathBegin, 377 CastExpr::path_const_iterator PathEnd, 378 bool NullCheckValue) { 379 assert(PathBegin != PathEnd && "Base path should not be empty!"); 380 381 QualType DerivedTy = 382 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 383 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 384 385 llvm::Value *NonVirtualOffset = 386 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 387 388 if (!NonVirtualOffset) { 389 // No offset, we can just cast back. 390 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 391 } 392 393 llvm::BasicBlock *CastNull = nullptr; 394 llvm::BasicBlock *CastNotNull = nullptr; 395 llvm::BasicBlock *CastEnd = nullptr; 396 397 if (NullCheckValue) { 398 CastNull = createBasicBlock("cast.null"); 399 CastNotNull = createBasicBlock("cast.notnull"); 400 CastEnd = createBasicBlock("cast.end"); 401 402 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 403 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 404 EmitBlock(CastNotNull); 405 } 406 407 // Apply the offset. 408 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 409 Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset), 410 "sub.ptr"); 411 412 // Just cast. 413 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 414 415 // Produce a PHI if we had a null-check. 416 if (NullCheckValue) { 417 Builder.CreateBr(CastEnd); 418 EmitBlock(CastNull); 419 Builder.CreateBr(CastEnd); 420 EmitBlock(CastEnd); 421 422 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 423 PHI->addIncoming(Value, CastNotNull); 424 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 425 Value = PHI; 426 } 427 428 return Address(Value, CGM.getClassPointerAlignment(Derived)); 429 } 430 431 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 432 bool ForVirtualBase, 433 bool Delegating) { 434 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 435 // This constructor/destructor does not need a VTT parameter. 436 return nullptr; 437 } 438 439 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 440 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 441 442 llvm::Value *VTT; 443 444 uint64_t SubVTTIndex; 445 446 if (Delegating) { 447 // If this is a delegating constructor call, just load the VTT. 448 return LoadCXXVTT(); 449 } else if (RD == Base) { 450 // If the record matches the base, this is the complete ctor/dtor 451 // variant calling the base variant in a class with virtual bases. 452 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 453 "doing no-op VTT offset in base dtor/ctor?"); 454 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 455 SubVTTIndex = 0; 456 } else { 457 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 458 CharUnits BaseOffset = ForVirtualBase ? 459 Layout.getVBaseClassOffset(Base) : 460 Layout.getBaseClassOffset(Base); 461 462 SubVTTIndex = 463 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 464 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 465 } 466 467 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 468 // A VTT parameter was passed to the constructor, use it. 469 VTT = LoadCXXVTT(); 470 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 471 } else { 472 // We're the complete constructor, so get the VTT by name. 473 VTT = CGM.getVTables().GetAddrOfVTT(RD); 474 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 475 } 476 477 return VTT; 478 } 479 480 namespace { 481 /// Call the destructor for a direct base class. 482 struct CallBaseDtor final : EHScopeStack::Cleanup { 483 const CXXRecordDecl *BaseClass; 484 bool BaseIsVirtual; 485 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 486 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 487 488 void Emit(CodeGenFunction &CGF, Flags flags) override { 489 const CXXRecordDecl *DerivedClass = 490 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 491 492 const CXXDestructorDecl *D = BaseClass->getDestructor(); 493 Address Addr = 494 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 495 DerivedClass, BaseClass, 496 BaseIsVirtual); 497 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 498 /*Delegating=*/false, Addr); 499 } 500 }; 501 502 /// A visitor which checks whether an initializer uses 'this' in a 503 /// way which requires the vtable to be properly set. 504 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 505 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 506 507 bool UsesThis; 508 509 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 510 511 // Black-list all explicit and implicit references to 'this'. 512 // 513 // Do we need to worry about external references to 'this' derived 514 // from arbitrary code? If so, then anything which runs arbitrary 515 // external code might potentially access the vtable. 516 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 517 }; 518 } // end anonymous namespace 519 520 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 521 DynamicThisUseChecker Checker(C); 522 Checker.Visit(Init); 523 return Checker.UsesThis; 524 } 525 526 static void EmitBaseInitializer(CodeGenFunction &CGF, 527 const CXXRecordDecl *ClassDecl, 528 CXXCtorInitializer *BaseInit, 529 CXXCtorType CtorType) { 530 assert(BaseInit->isBaseInitializer() && 531 "Must have base initializer!"); 532 533 Address ThisPtr = CGF.LoadCXXThisAddress(); 534 535 const Type *BaseType = BaseInit->getBaseClass(); 536 CXXRecordDecl *BaseClassDecl = 537 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 538 539 bool isBaseVirtual = BaseInit->isBaseVirtual(); 540 541 // The base constructor doesn't construct virtual bases. 542 if (CtorType == Ctor_Base && isBaseVirtual) 543 return; 544 545 // If the initializer for the base (other than the constructor 546 // itself) accesses 'this' in any way, we need to initialize the 547 // vtables. 548 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 549 CGF.InitializeVTablePointers(ClassDecl); 550 551 // We can pretend to be a complete class because it only matters for 552 // virtual bases, and we only do virtual bases for complete ctors. 553 Address V = 554 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 555 BaseClassDecl, 556 isBaseVirtual); 557 AggValueSlot AggSlot = 558 AggValueSlot::forAddr(V, Qualifiers(), 559 AggValueSlot::IsDestructed, 560 AggValueSlot::DoesNotNeedGCBarriers, 561 AggValueSlot::IsNotAliased); 562 563 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 564 565 if (CGF.CGM.getLangOpts().Exceptions && 566 !BaseClassDecl->hasTrivialDestructor()) 567 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 568 isBaseVirtual); 569 } 570 571 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 572 auto *CD = dyn_cast<CXXConstructorDecl>(D); 573 if (!(CD && CD->isCopyOrMoveConstructor()) && 574 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 575 return false; 576 577 // We can emit a memcpy for a trivial copy or move constructor/assignment. 578 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 579 return true; 580 581 // We *must* emit a memcpy for a defaulted union copy or move op. 582 if (D->getParent()->isUnion() && D->isDefaulted()) 583 return true; 584 585 return false; 586 } 587 588 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 589 CXXCtorInitializer *MemberInit, 590 LValue &LHS) { 591 FieldDecl *Field = MemberInit->getAnyMember(); 592 if (MemberInit->isIndirectMemberInitializer()) { 593 // If we are initializing an anonymous union field, drill down to the field. 594 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 595 for (const auto *I : IndirectField->chain()) 596 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 597 } else { 598 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 599 } 600 } 601 602 static void EmitMemberInitializer(CodeGenFunction &CGF, 603 const CXXRecordDecl *ClassDecl, 604 CXXCtorInitializer *MemberInit, 605 const CXXConstructorDecl *Constructor, 606 FunctionArgList &Args) { 607 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 608 assert(MemberInit->isAnyMemberInitializer() && 609 "Must have member initializer!"); 610 assert(MemberInit->getInit() && "Must have initializer!"); 611 612 // non-static data member initializers. 613 FieldDecl *Field = MemberInit->getAnyMember(); 614 QualType FieldType = Field->getType(); 615 616 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 617 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 618 LValue LHS; 619 620 // If a base constructor is being emitted, create an LValue that has the 621 // non-virtual alignment. 622 if (CGF.CurGD.getCtorType() == Ctor_Base) 623 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 624 else 625 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 626 627 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 628 629 // Special case: if we are in a copy or move constructor, and we are copying 630 // an array of PODs or classes with trivial copy constructors, ignore the 631 // AST and perform the copy we know is equivalent. 632 // FIXME: This is hacky at best... if we had a bit more explicit information 633 // in the AST, we could generalize it more easily. 634 const ConstantArrayType *Array 635 = CGF.getContext().getAsConstantArrayType(FieldType); 636 if (Array && Constructor->isDefaulted() && 637 Constructor->isCopyOrMoveConstructor()) { 638 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 639 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 640 if (BaseElementTy.isPODType(CGF.getContext()) || 641 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 642 unsigned SrcArgIndex = 643 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 644 llvm::Value *SrcPtr 645 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 646 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 647 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 648 649 // Copy the aggregate. 650 CGF.EmitAggregateCopy(LHS, Src, FieldType, LHS.isVolatileQualified()); 651 // Ensure that we destroy the objects if an exception is thrown later in 652 // the constructor. 653 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 654 if (CGF.needsEHCleanup(dtorKind)) 655 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 656 return; 657 } 658 } 659 660 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 661 } 662 663 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 664 Expr *Init) { 665 QualType FieldType = Field->getType(); 666 switch (getEvaluationKind(FieldType)) { 667 case TEK_Scalar: 668 if (LHS.isSimple()) { 669 EmitExprAsInit(Init, Field, LHS, false); 670 } else { 671 RValue RHS = RValue::get(EmitScalarExpr(Init)); 672 EmitStoreThroughLValue(RHS, LHS); 673 } 674 break; 675 case TEK_Complex: 676 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 677 break; 678 case TEK_Aggregate: { 679 AggValueSlot Slot = 680 AggValueSlot::forLValue(LHS, 681 AggValueSlot::IsDestructed, 682 AggValueSlot::DoesNotNeedGCBarriers, 683 AggValueSlot::IsNotAliased); 684 EmitAggExpr(Init, Slot); 685 break; 686 } 687 } 688 689 // Ensure that we destroy this object if an exception is thrown 690 // later in the constructor. 691 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 692 if (needsEHCleanup(dtorKind)) 693 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 694 } 695 696 /// Checks whether the given constructor is a valid subject for the 697 /// complete-to-base constructor delegation optimization, i.e. 698 /// emitting the complete constructor as a simple call to the base 699 /// constructor. 700 bool CodeGenFunction::IsConstructorDelegationValid( 701 const CXXConstructorDecl *Ctor) { 702 703 // Currently we disable the optimization for classes with virtual 704 // bases because (1) the addresses of parameter variables need to be 705 // consistent across all initializers but (2) the delegate function 706 // call necessarily creates a second copy of the parameter variable. 707 // 708 // The limiting example (purely theoretical AFAIK): 709 // struct A { A(int &c) { c++; } }; 710 // struct B : virtual A { 711 // B(int count) : A(count) { printf("%d\n", count); } 712 // }; 713 // ...although even this example could in principle be emitted as a 714 // delegation since the address of the parameter doesn't escape. 715 if (Ctor->getParent()->getNumVBases()) { 716 // TODO: white-list trivial vbase initializers. This case wouldn't 717 // be subject to the restrictions below. 718 719 // TODO: white-list cases where: 720 // - there are no non-reference parameters to the constructor 721 // - the initializers don't access any non-reference parameters 722 // - the initializers don't take the address of non-reference 723 // parameters 724 // - etc. 725 // If we ever add any of the above cases, remember that: 726 // - function-try-blocks will always blacklist this optimization 727 // - we need to perform the constructor prologue and cleanup in 728 // EmitConstructorBody. 729 730 return false; 731 } 732 733 // We also disable the optimization for variadic functions because 734 // it's impossible to "re-pass" varargs. 735 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 736 return false; 737 738 // FIXME: Decide if we can do a delegation of a delegating constructor. 739 if (Ctor->isDelegatingConstructor()) 740 return false; 741 742 return true; 743 } 744 745 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 746 // to poison the extra field paddings inserted under 747 // -fsanitize-address-field-padding=1|2. 748 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 749 ASTContext &Context = getContext(); 750 const CXXRecordDecl *ClassDecl = 751 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 752 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 753 if (!ClassDecl->mayInsertExtraPadding()) return; 754 755 struct SizeAndOffset { 756 uint64_t Size; 757 uint64_t Offset; 758 }; 759 760 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 761 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 762 763 // Populate sizes and offsets of fields. 764 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 765 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 766 SSV[i].Offset = 767 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 768 769 size_t NumFields = 0; 770 for (const auto *Field : ClassDecl->fields()) { 771 const FieldDecl *D = Field; 772 std::pair<CharUnits, CharUnits> FieldInfo = 773 Context.getTypeInfoInChars(D->getType()); 774 CharUnits FieldSize = FieldInfo.first; 775 assert(NumFields < SSV.size()); 776 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 777 NumFields++; 778 } 779 assert(NumFields == SSV.size()); 780 if (SSV.size() <= 1) return; 781 782 // We will insert calls to __asan_* run-time functions. 783 // LLVM AddressSanitizer pass may decide to inline them later. 784 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 785 llvm::FunctionType *FTy = 786 llvm::FunctionType::get(CGM.VoidTy, Args, false); 787 llvm::Constant *F = CGM.CreateRuntimeFunction( 788 FTy, Prologue ? "__asan_poison_intra_object_redzone" 789 : "__asan_unpoison_intra_object_redzone"); 790 791 llvm::Value *ThisPtr = LoadCXXThis(); 792 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 793 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 794 // For each field check if it has sufficient padding, 795 // if so (un)poison it with a call. 796 for (size_t i = 0; i < SSV.size(); i++) { 797 uint64_t AsanAlignment = 8; 798 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 799 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 800 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 801 if (PoisonSize < AsanAlignment || !SSV[i].Size || 802 (NextField % AsanAlignment) != 0) 803 continue; 804 Builder.CreateCall( 805 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 806 Builder.getIntN(PtrSize, PoisonSize)}); 807 } 808 } 809 810 /// EmitConstructorBody - Emits the body of the current constructor. 811 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 812 EmitAsanPrologueOrEpilogue(true); 813 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 814 CXXCtorType CtorType = CurGD.getCtorType(); 815 816 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 817 CtorType == Ctor_Complete) && 818 "can only generate complete ctor for this ABI"); 819 820 // Before we go any further, try the complete->base constructor 821 // delegation optimization. 822 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 823 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 824 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 825 return; 826 } 827 828 const FunctionDecl *Definition = nullptr; 829 Stmt *Body = Ctor->getBody(Definition); 830 assert(Definition == Ctor && "emitting wrong constructor body"); 831 832 // Enter the function-try-block before the constructor prologue if 833 // applicable. 834 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 835 if (IsTryBody) 836 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 837 838 incrementProfileCounter(Body); 839 840 RunCleanupsScope RunCleanups(*this); 841 842 // TODO: in restricted cases, we can emit the vbase initializers of 843 // a complete ctor and then delegate to the base ctor. 844 845 // Emit the constructor prologue, i.e. the base and member 846 // initializers. 847 EmitCtorPrologue(Ctor, CtorType, Args); 848 849 // Emit the body of the statement. 850 if (IsTryBody) 851 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 852 else if (Body) 853 EmitStmt(Body); 854 855 // Emit any cleanup blocks associated with the member or base 856 // initializers, which includes (along the exceptional path) the 857 // destructors for those members and bases that were fully 858 // constructed. 859 RunCleanups.ForceCleanup(); 860 861 if (IsTryBody) 862 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 863 } 864 865 namespace { 866 /// RAII object to indicate that codegen is copying the value representation 867 /// instead of the object representation. Useful when copying a struct or 868 /// class which has uninitialized members and we're only performing 869 /// lvalue-to-rvalue conversion on the object but not its members. 870 class CopyingValueRepresentation { 871 public: 872 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 873 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 874 CGF.SanOpts.set(SanitizerKind::Bool, false); 875 CGF.SanOpts.set(SanitizerKind::Enum, false); 876 } 877 ~CopyingValueRepresentation() { 878 CGF.SanOpts = OldSanOpts; 879 } 880 private: 881 CodeGenFunction &CGF; 882 SanitizerSet OldSanOpts; 883 }; 884 } // end anonymous namespace 885 886 namespace { 887 class FieldMemcpyizer { 888 public: 889 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 890 const VarDecl *SrcRec) 891 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 892 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 893 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 894 LastFieldOffset(0), LastAddedFieldIndex(0) {} 895 896 bool isMemcpyableField(FieldDecl *F) const { 897 // Never memcpy fields when we are adding poisoned paddings. 898 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 899 return false; 900 Qualifiers Qual = F->getType().getQualifiers(); 901 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 902 return false; 903 return true; 904 } 905 906 void addMemcpyableField(FieldDecl *F) { 907 if (!FirstField) 908 addInitialField(F); 909 else 910 addNextField(F); 911 } 912 913 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 914 unsigned LastFieldSize = 915 LastField->isBitField() ? 916 LastField->getBitWidthValue(CGF.getContext()) : 917 CGF.getContext().getTypeSize(LastField->getType()); 918 uint64_t MemcpySizeBits = 919 LastFieldOffset + LastFieldSize - FirstByteOffset + 920 CGF.getContext().getCharWidth() - 1; 921 CharUnits MemcpySize = 922 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 923 return MemcpySize; 924 } 925 926 void emitMemcpy() { 927 // Give the subclass a chance to bail out if it feels the memcpy isn't 928 // worth it (e.g. Hasn't aggregated enough data). 929 if (!FirstField) { 930 return; 931 } 932 933 uint64_t FirstByteOffset; 934 if (FirstField->isBitField()) { 935 const CGRecordLayout &RL = 936 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 937 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 938 // FirstFieldOffset is not appropriate for bitfields, 939 // we need to use the storage offset instead. 940 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 941 } else { 942 FirstByteOffset = FirstFieldOffset; 943 } 944 945 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 946 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 947 Address ThisPtr = CGF.LoadCXXThisAddress(); 948 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 949 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 950 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 951 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 952 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 953 954 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 955 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 956 MemcpySize); 957 reset(); 958 } 959 960 void reset() { 961 FirstField = nullptr; 962 } 963 964 protected: 965 CodeGenFunction &CGF; 966 const CXXRecordDecl *ClassDecl; 967 968 private: 969 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 970 llvm::PointerType *DPT = DestPtr.getType(); 971 llvm::Type *DBP = 972 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 973 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 974 975 llvm::PointerType *SPT = SrcPtr.getType(); 976 llvm::Type *SBP = 977 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 978 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 979 980 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 981 } 982 983 void addInitialField(FieldDecl *F) { 984 FirstField = F; 985 LastField = F; 986 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 987 LastFieldOffset = FirstFieldOffset; 988 LastAddedFieldIndex = F->getFieldIndex(); 989 } 990 991 void addNextField(FieldDecl *F) { 992 // For the most part, the following invariant will hold: 993 // F->getFieldIndex() == LastAddedFieldIndex + 1 994 // The one exception is that Sema won't add a copy-initializer for an 995 // unnamed bitfield, which will show up here as a gap in the sequence. 996 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 997 "Cannot aggregate fields out of order."); 998 LastAddedFieldIndex = F->getFieldIndex(); 999 1000 // The 'first' and 'last' fields are chosen by offset, rather than field 1001 // index. This allows the code to support bitfields, as well as regular 1002 // fields. 1003 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1004 if (FOffset < FirstFieldOffset) { 1005 FirstField = F; 1006 FirstFieldOffset = FOffset; 1007 } else if (FOffset > LastFieldOffset) { 1008 LastField = F; 1009 LastFieldOffset = FOffset; 1010 } 1011 } 1012 1013 const VarDecl *SrcRec; 1014 const ASTRecordLayout &RecLayout; 1015 FieldDecl *FirstField; 1016 FieldDecl *LastField; 1017 uint64_t FirstFieldOffset, LastFieldOffset; 1018 unsigned LastAddedFieldIndex; 1019 }; 1020 1021 class ConstructorMemcpyizer : public FieldMemcpyizer { 1022 private: 1023 /// Get source argument for copy constructor. Returns null if not a copy 1024 /// constructor. 1025 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1026 const CXXConstructorDecl *CD, 1027 FunctionArgList &Args) { 1028 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1029 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1030 return nullptr; 1031 } 1032 1033 // Returns true if a CXXCtorInitializer represents a member initialization 1034 // that can be rolled into a memcpy. 1035 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1036 if (!MemcpyableCtor) 1037 return false; 1038 FieldDecl *Field = MemberInit->getMember(); 1039 assert(Field && "No field for member init."); 1040 QualType FieldType = Field->getType(); 1041 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1042 1043 // Bail out on non-memcpyable, not-trivially-copyable members. 1044 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1045 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1046 FieldType->isReferenceType())) 1047 return false; 1048 1049 // Bail out on volatile fields. 1050 if (!isMemcpyableField(Field)) 1051 return false; 1052 1053 // Otherwise we're good. 1054 return true; 1055 } 1056 1057 public: 1058 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1059 FunctionArgList &Args) 1060 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1061 ConstructorDecl(CD), 1062 MemcpyableCtor(CD->isDefaulted() && 1063 CD->isCopyOrMoveConstructor() && 1064 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1065 Args(Args) { } 1066 1067 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1068 if (isMemberInitMemcpyable(MemberInit)) { 1069 AggregatedInits.push_back(MemberInit); 1070 addMemcpyableField(MemberInit->getMember()); 1071 } else { 1072 emitAggregatedInits(); 1073 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1074 ConstructorDecl, Args); 1075 } 1076 } 1077 1078 void emitAggregatedInits() { 1079 if (AggregatedInits.size() <= 1) { 1080 // This memcpy is too small to be worthwhile. Fall back on default 1081 // codegen. 1082 if (!AggregatedInits.empty()) { 1083 CopyingValueRepresentation CVR(CGF); 1084 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1085 AggregatedInits[0], ConstructorDecl, Args); 1086 AggregatedInits.clear(); 1087 } 1088 reset(); 1089 return; 1090 } 1091 1092 pushEHDestructors(); 1093 emitMemcpy(); 1094 AggregatedInits.clear(); 1095 } 1096 1097 void pushEHDestructors() { 1098 Address ThisPtr = CGF.LoadCXXThisAddress(); 1099 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1100 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1101 1102 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1103 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1104 QualType FieldType = MemberInit->getAnyMember()->getType(); 1105 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1106 if (!CGF.needsEHCleanup(dtorKind)) 1107 continue; 1108 LValue FieldLHS = LHS; 1109 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1110 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1111 } 1112 } 1113 1114 void finish() { 1115 emitAggregatedInits(); 1116 } 1117 1118 private: 1119 const CXXConstructorDecl *ConstructorDecl; 1120 bool MemcpyableCtor; 1121 FunctionArgList &Args; 1122 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1123 }; 1124 1125 class AssignmentMemcpyizer : public FieldMemcpyizer { 1126 private: 1127 // Returns the memcpyable field copied by the given statement, if one 1128 // exists. Otherwise returns null. 1129 FieldDecl *getMemcpyableField(Stmt *S) { 1130 if (!AssignmentsMemcpyable) 1131 return nullptr; 1132 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1133 // Recognise trivial assignments. 1134 if (BO->getOpcode() != BO_Assign) 1135 return nullptr; 1136 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1137 if (!ME) 1138 return nullptr; 1139 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1140 if (!Field || !isMemcpyableField(Field)) 1141 return nullptr; 1142 Stmt *RHS = BO->getRHS(); 1143 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1144 RHS = EC->getSubExpr(); 1145 if (!RHS) 1146 return nullptr; 1147 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1148 if (ME2->getMemberDecl() == Field) 1149 return Field; 1150 } 1151 return nullptr; 1152 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1153 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1154 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1155 return nullptr; 1156 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1157 if (!IOA) 1158 return nullptr; 1159 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1160 if (!Field || !isMemcpyableField(Field)) 1161 return nullptr; 1162 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1163 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1164 return nullptr; 1165 return Field; 1166 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1167 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1168 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1169 return nullptr; 1170 Expr *DstPtr = CE->getArg(0); 1171 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1172 DstPtr = DC->getSubExpr(); 1173 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1174 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1175 return nullptr; 1176 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1177 if (!ME) 1178 return nullptr; 1179 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1180 if (!Field || !isMemcpyableField(Field)) 1181 return nullptr; 1182 Expr *SrcPtr = CE->getArg(1); 1183 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1184 SrcPtr = SC->getSubExpr(); 1185 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1186 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1187 return nullptr; 1188 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1189 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1190 return nullptr; 1191 return Field; 1192 } 1193 1194 return nullptr; 1195 } 1196 1197 bool AssignmentsMemcpyable; 1198 SmallVector<Stmt*, 16> AggregatedStmts; 1199 1200 public: 1201 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1202 FunctionArgList &Args) 1203 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1204 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1205 assert(Args.size() == 2); 1206 } 1207 1208 void emitAssignment(Stmt *S) { 1209 FieldDecl *F = getMemcpyableField(S); 1210 if (F) { 1211 addMemcpyableField(F); 1212 AggregatedStmts.push_back(S); 1213 } else { 1214 emitAggregatedStmts(); 1215 CGF.EmitStmt(S); 1216 } 1217 } 1218 1219 void emitAggregatedStmts() { 1220 if (AggregatedStmts.size() <= 1) { 1221 if (!AggregatedStmts.empty()) { 1222 CopyingValueRepresentation CVR(CGF); 1223 CGF.EmitStmt(AggregatedStmts[0]); 1224 } 1225 reset(); 1226 } 1227 1228 emitMemcpy(); 1229 AggregatedStmts.clear(); 1230 } 1231 1232 void finish() { 1233 emitAggregatedStmts(); 1234 } 1235 }; 1236 } // end anonymous namespace 1237 1238 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1239 const Type *BaseType = BaseInit->getBaseClass(); 1240 const auto *BaseClassDecl = 1241 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1242 return BaseClassDecl->isDynamicClass(); 1243 } 1244 1245 /// EmitCtorPrologue - This routine generates necessary code to initialize 1246 /// base classes and non-static data members belonging to this constructor. 1247 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1248 CXXCtorType CtorType, 1249 FunctionArgList &Args) { 1250 if (CD->isDelegatingConstructor()) 1251 return EmitDelegatingCXXConstructorCall(CD, Args); 1252 1253 const CXXRecordDecl *ClassDecl = CD->getParent(); 1254 1255 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1256 E = CD->init_end(); 1257 1258 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1259 if (ClassDecl->getNumVBases() && 1260 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1261 // The ABIs that don't have constructor variants need to put a branch 1262 // before the virtual base initialization code. 1263 BaseCtorContinueBB = 1264 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1265 assert(BaseCtorContinueBB); 1266 } 1267 1268 llvm::Value *const OldThis = CXXThisValue; 1269 // Virtual base initializers first. 1270 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1271 if (CGM.getCodeGenOpts().StrictVTablePointers && 1272 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1273 isInitializerOfDynamicClass(*B)) 1274 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1275 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1276 } 1277 1278 if (BaseCtorContinueBB) { 1279 // Complete object handler should continue to the remaining initializers. 1280 Builder.CreateBr(BaseCtorContinueBB); 1281 EmitBlock(BaseCtorContinueBB); 1282 } 1283 1284 // Then, non-virtual base initializers. 1285 for (; B != E && (*B)->isBaseInitializer(); B++) { 1286 assert(!(*B)->isBaseVirtual()); 1287 1288 if (CGM.getCodeGenOpts().StrictVTablePointers && 1289 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1290 isInitializerOfDynamicClass(*B)) 1291 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1292 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1293 } 1294 1295 CXXThisValue = OldThis; 1296 1297 InitializeVTablePointers(ClassDecl); 1298 1299 // And finally, initialize class members. 1300 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1301 ConstructorMemcpyizer CM(*this, CD, Args); 1302 for (; B != E; B++) { 1303 CXXCtorInitializer *Member = (*B); 1304 assert(!Member->isBaseInitializer()); 1305 assert(Member->isAnyMemberInitializer() && 1306 "Delegating initializer on non-delegating constructor"); 1307 CM.addMemberInitializer(Member); 1308 } 1309 CM.finish(); 1310 } 1311 1312 static bool 1313 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1314 1315 static bool 1316 HasTrivialDestructorBody(ASTContext &Context, 1317 const CXXRecordDecl *BaseClassDecl, 1318 const CXXRecordDecl *MostDerivedClassDecl) 1319 { 1320 // If the destructor is trivial we don't have to check anything else. 1321 if (BaseClassDecl->hasTrivialDestructor()) 1322 return true; 1323 1324 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1325 return false; 1326 1327 // Check fields. 1328 for (const auto *Field : BaseClassDecl->fields()) 1329 if (!FieldHasTrivialDestructorBody(Context, Field)) 1330 return false; 1331 1332 // Check non-virtual bases. 1333 for (const auto &I : BaseClassDecl->bases()) { 1334 if (I.isVirtual()) 1335 continue; 1336 1337 const CXXRecordDecl *NonVirtualBase = 1338 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1339 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1340 MostDerivedClassDecl)) 1341 return false; 1342 } 1343 1344 if (BaseClassDecl == MostDerivedClassDecl) { 1345 // Check virtual bases. 1346 for (const auto &I : BaseClassDecl->vbases()) { 1347 const CXXRecordDecl *VirtualBase = 1348 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1349 if (!HasTrivialDestructorBody(Context, VirtualBase, 1350 MostDerivedClassDecl)) 1351 return false; 1352 } 1353 } 1354 1355 return true; 1356 } 1357 1358 static bool 1359 FieldHasTrivialDestructorBody(ASTContext &Context, 1360 const FieldDecl *Field) 1361 { 1362 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1363 1364 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1365 if (!RT) 1366 return true; 1367 1368 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1369 1370 // The destructor for an implicit anonymous union member is never invoked. 1371 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1372 return false; 1373 1374 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1375 } 1376 1377 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1378 /// any vtable pointers before calling this destructor. 1379 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1380 const CXXDestructorDecl *Dtor) { 1381 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1382 if (!ClassDecl->isDynamicClass()) 1383 return true; 1384 1385 if (!Dtor->hasTrivialBody()) 1386 return false; 1387 1388 // Check the fields. 1389 for (const auto *Field : ClassDecl->fields()) 1390 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1391 return false; 1392 1393 return true; 1394 } 1395 1396 /// EmitDestructorBody - Emits the body of the current destructor. 1397 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1398 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1399 CXXDtorType DtorType = CurGD.getDtorType(); 1400 1401 // For an abstract class, non-base destructors are never used (and can't 1402 // be emitted in general, because vbase dtors may not have been validated 1403 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1404 // in fact emit references to them from other compilations, so emit them 1405 // as functions containing a trap instruction. 1406 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1407 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1408 TrapCall->setDoesNotReturn(); 1409 TrapCall->setDoesNotThrow(); 1410 Builder.CreateUnreachable(); 1411 Builder.ClearInsertionPoint(); 1412 return; 1413 } 1414 1415 Stmt *Body = Dtor->getBody(); 1416 if (Body) 1417 incrementProfileCounter(Body); 1418 1419 // The call to operator delete in a deleting destructor happens 1420 // outside of the function-try-block, which means it's always 1421 // possible to delegate the destructor body to the complete 1422 // destructor. Do so. 1423 if (DtorType == Dtor_Deleting) { 1424 RunCleanupsScope DtorEpilogue(*this); 1425 EnterDtorCleanups(Dtor, Dtor_Deleting); 1426 if (HaveInsertPoint()) 1427 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1428 /*Delegating=*/false, LoadCXXThisAddress()); 1429 return; 1430 } 1431 1432 // If the body is a function-try-block, enter the try before 1433 // anything else. 1434 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1435 if (isTryBody) 1436 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1437 EmitAsanPrologueOrEpilogue(false); 1438 1439 // Enter the epilogue cleanups. 1440 RunCleanupsScope DtorEpilogue(*this); 1441 1442 // If this is the complete variant, just invoke the base variant; 1443 // the epilogue will destruct the virtual bases. But we can't do 1444 // this optimization if the body is a function-try-block, because 1445 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1446 // always delegate because we might not have a definition in this TU. 1447 switch (DtorType) { 1448 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1449 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1450 1451 case Dtor_Complete: 1452 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1453 "can't emit a dtor without a body for non-Microsoft ABIs"); 1454 1455 // Enter the cleanup scopes for virtual bases. 1456 EnterDtorCleanups(Dtor, Dtor_Complete); 1457 1458 if (!isTryBody) { 1459 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1460 /*Delegating=*/false, LoadCXXThisAddress()); 1461 break; 1462 } 1463 1464 // Fallthrough: act like we're in the base variant. 1465 LLVM_FALLTHROUGH; 1466 1467 case Dtor_Base: 1468 assert(Body); 1469 1470 // Enter the cleanup scopes for fields and non-virtual bases. 1471 EnterDtorCleanups(Dtor, Dtor_Base); 1472 1473 // Initialize the vtable pointers before entering the body. 1474 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1475 // Insert the llvm.invariant.group.barrier intrinsic before initializing 1476 // the vptrs to cancel any previous assumptions we might have made. 1477 if (CGM.getCodeGenOpts().StrictVTablePointers && 1478 CGM.getCodeGenOpts().OptimizationLevel > 0) 1479 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1480 InitializeVTablePointers(Dtor->getParent()); 1481 } 1482 1483 if (isTryBody) 1484 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1485 else if (Body) 1486 EmitStmt(Body); 1487 else { 1488 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1489 // nothing to do besides what's in the epilogue 1490 } 1491 // -fapple-kext must inline any call to this dtor into 1492 // the caller's body. 1493 if (getLangOpts().AppleKext) 1494 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1495 1496 break; 1497 } 1498 1499 // Jump out through the epilogue cleanups. 1500 DtorEpilogue.ForceCleanup(); 1501 1502 // Exit the try if applicable. 1503 if (isTryBody) 1504 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1505 } 1506 1507 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1508 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1509 const Stmt *RootS = AssignOp->getBody(); 1510 assert(isa<CompoundStmt>(RootS) && 1511 "Body of an implicit assignment operator should be compound stmt."); 1512 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1513 1514 LexicalScope Scope(*this, RootCS->getSourceRange()); 1515 1516 incrementProfileCounter(RootCS); 1517 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1518 for (auto *I : RootCS->body()) 1519 AM.emitAssignment(I); 1520 AM.finish(); 1521 } 1522 1523 namespace { 1524 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1525 const CXXDestructorDecl *DD) { 1526 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1527 return CGF.EmitScalarExpr(ThisArg); 1528 return CGF.LoadCXXThis(); 1529 } 1530 1531 /// Call the operator delete associated with the current destructor. 1532 struct CallDtorDelete final : EHScopeStack::Cleanup { 1533 CallDtorDelete() {} 1534 1535 void Emit(CodeGenFunction &CGF, Flags flags) override { 1536 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1537 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1538 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1539 LoadThisForDtorDelete(CGF, Dtor), 1540 CGF.getContext().getTagDeclType(ClassDecl)); 1541 } 1542 }; 1543 1544 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1545 llvm::Value *ShouldDeleteCondition, 1546 bool ReturnAfterDelete) { 1547 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1548 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1549 llvm::Value *ShouldCallDelete 1550 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1551 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1552 1553 CGF.EmitBlock(callDeleteBB); 1554 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1555 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1556 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1557 LoadThisForDtorDelete(CGF, Dtor), 1558 CGF.getContext().getTagDeclType(ClassDecl)); 1559 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1560 ReturnAfterDelete && 1561 "unexpected value for ReturnAfterDelete"); 1562 if (ReturnAfterDelete) 1563 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1564 else 1565 CGF.Builder.CreateBr(continueBB); 1566 1567 CGF.EmitBlock(continueBB); 1568 } 1569 1570 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1571 llvm::Value *ShouldDeleteCondition; 1572 1573 public: 1574 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1575 : ShouldDeleteCondition(ShouldDeleteCondition) { 1576 assert(ShouldDeleteCondition != nullptr); 1577 } 1578 1579 void Emit(CodeGenFunction &CGF, Flags flags) override { 1580 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1581 /*ReturnAfterDelete*/false); 1582 } 1583 }; 1584 1585 class DestroyField final : public EHScopeStack::Cleanup { 1586 const FieldDecl *field; 1587 CodeGenFunction::Destroyer *destroyer; 1588 bool useEHCleanupForArray; 1589 1590 public: 1591 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1592 bool useEHCleanupForArray) 1593 : field(field), destroyer(destroyer), 1594 useEHCleanupForArray(useEHCleanupForArray) {} 1595 1596 void Emit(CodeGenFunction &CGF, Flags flags) override { 1597 // Find the address of the field. 1598 Address thisValue = CGF.LoadCXXThisAddress(); 1599 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1600 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1601 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1602 assert(LV.isSimple()); 1603 1604 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1605 flags.isForNormalCleanup() && useEHCleanupForArray); 1606 } 1607 }; 1608 1609 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1610 CharUnits::QuantityType PoisonSize) { 1611 CodeGenFunction::SanitizerScope SanScope(&CGF); 1612 // Pass in void pointer and size of region as arguments to runtime 1613 // function 1614 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1615 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1616 1617 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1618 1619 llvm::FunctionType *FnType = 1620 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1621 llvm::Value *Fn = 1622 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1623 CGF.EmitNounwindRuntimeCall(Fn, Args); 1624 } 1625 1626 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1627 const CXXDestructorDecl *Dtor; 1628 1629 public: 1630 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1631 1632 // Generate function call for handling object poisoning. 1633 // Disables tail call elimination, to prevent the current stack frame 1634 // from disappearing from the stack trace. 1635 void Emit(CodeGenFunction &CGF, Flags flags) override { 1636 const ASTRecordLayout &Layout = 1637 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1638 1639 // Nothing to poison. 1640 if (Layout.getFieldCount() == 0) 1641 return; 1642 1643 // Prevent the current stack frame from disappearing from the stack trace. 1644 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1645 1646 // Construct pointer to region to begin poisoning, and calculate poison 1647 // size, so that only members declared in this class are poisoned. 1648 ASTContext &Context = CGF.getContext(); 1649 unsigned fieldIndex = 0; 1650 int startIndex = -1; 1651 // RecordDecl::field_iterator Field; 1652 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1653 // Poison field if it is trivial 1654 if (FieldHasTrivialDestructorBody(Context, Field)) { 1655 // Start sanitizing at this field 1656 if (startIndex < 0) 1657 startIndex = fieldIndex; 1658 1659 // Currently on the last field, and it must be poisoned with the 1660 // current block. 1661 if (fieldIndex == Layout.getFieldCount() - 1) { 1662 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1663 } 1664 } else if (startIndex >= 0) { 1665 // No longer within a block of memory to poison, so poison the block 1666 PoisonMembers(CGF, startIndex, fieldIndex); 1667 // Re-set the start index 1668 startIndex = -1; 1669 } 1670 fieldIndex += 1; 1671 } 1672 } 1673 1674 private: 1675 /// \param layoutStartOffset index of the ASTRecordLayout field to 1676 /// start poisoning (inclusive) 1677 /// \param layoutEndOffset index of the ASTRecordLayout field to 1678 /// end poisoning (exclusive) 1679 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1680 unsigned layoutEndOffset) { 1681 ASTContext &Context = CGF.getContext(); 1682 const ASTRecordLayout &Layout = 1683 Context.getASTRecordLayout(Dtor->getParent()); 1684 1685 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1686 CGF.SizeTy, 1687 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1688 .getQuantity()); 1689 1690 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1691 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1692 OffsetSizePtr); 1693 1694 CharUnits::QuantityType PoisonSize; 1695 if (layoutEndOffset >= Layout.getFieldCount()) { 1696 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1697 Context.toCharUnitsFromBits( 1698 Layout.getFieldOffset(layoutStartOffset)) 1699 .getQuantity(); 1700 } else { 1701 PoisonSize = Context.toCharUnitsFromBits( 1702 Layout.getFieldOffset(layoutEndOffset) - 1703 Layout.getFieldOffset(layoutStartOffset)) 1704 .getQuantity(); 1705 } 1706 1707 if (PoisonSize == 0) 1708 return; 1709 1710 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1711 } 1712 }; 1713 1714 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1715 const CXXDestructorDecl *Dtor; 1716 1717 public: 1718 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1719 1720 // Generate function call for handling vtable pointer poisoning. 1721 void Emit(CodeGenFunction &CGF, Flags flags) override { 1722 assert(Dtor->getParent()->isDynamicClass()); 1723 (void)Dtor; 1724 ASTContext &Context = CGF.getContext(); 1725 // Poison vtable and vtable ptr if they exist for this class. 1726 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1727 1728 CharUnits::QuantityType PoisonSize = 1729 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1730 // Pass in void pointer and size of region as arguments to runtime 1731 // function 1732 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1733 } 1734 }; 1735 } // end anonymous namespace 1736 1737 /// \brief Emit all code that comes at the end of class's 1738 /// destructor. This is to call destructors on members and base classes 1739 /// in reverse order of their construction. 1740 /// 1741 /// For a deleting destructor, this also handles the case where a destroying 1742 /// operator delete completely overrides the definition. 1743 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1744 CXXDtorType DtorType) { 1745 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1746 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1747 1748 // The deleting-destructor phase just needs to call the appropriate 1749 // operator delete that Sema picked up. 1750 if (DtorType == Dtor_Deleting) { 1751 assert(DD->getOperatorDelete() && 1752 "operator delete missing - EnterDtorCleanups"); 1753 if (CXXStructorImplicitParamValue) { 1754 // If there is an implicit param to the deleting dtor, it's a boolean 1755 // telling whether this is a deleting destructor. 1756 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1757 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1758 /*ReturnAfterDelete*/true); 1759 else 1760 EHStack.pushCleanup<CallDtorDeleteConditional>( 1761 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1762 } else { 1763 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1764 const CXXRecordDecl *ClassDecl = DD->getParent(); 1765 EmitDeleteCall(DD->getOperatorDelete(), 1766 LoadThisForDtorDelete(*this, DD), 1767 getContext().getTagDeclType(ClassDecl)); 1768 EmitBranchThroughCleanup(ReturnBlock); 1769 } else { 1770 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1771 } 1772 } 1773 return; 1774 } 1775 1776 const CXXRecordDecl *ClassDecl = DD->getParent(); 1777 1778 // Unions have no bases and do not call field destructors. 1779 if (ClassDecl->isUnion()) 1780 return; 1781 1782 // The complete-destructor phase just destructs all the virtual bases. 1783 if (DtorType == Dtor_Complete) { 1784 // Poison the vtable pointer such that access after the base 1785 // and member destructors are invoked is invalid. 1786 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1787 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1788 ClassDecl->isPolymorphic()) 1789 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1790 1791 // We push them in the forward order so that they'll be popped in 1792 // the reverse order. 1793 for (const auto &Base : ClassDecl->vbases()) { 1794 CXXRecordDecl *BaseClassDecl 1795 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1796 1797 // Ignore trivial destructors. 1798 if (BaseClassDecl->hasTrivialDestructor()) 1799 continue; 1800 1801 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1802 BaseClassDecl, 1803 /*BaseIsVirtual*/ true); 1804 } 1805 1806 return; 1807 } 1808 1809 assert(DtorType == Dtor_Base); 1810 // Poison the vtable pointer if it has no virtual bases, but inherits 1811 // virtual functions. 1812 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1813 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1814 ClassDecl->isPolymorphic()) 1815 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1816 1817 // Destroy non-virtual bases. 1818 for (const auto &Base : ClassDecl->bases()) { 1819 // Ignore virtual bases. 1820 if (Base.isVirtual()) 1821 continue; 1822 1823 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1824 1825 // Ignore trivial destructors. 1826 if (BaseClassDecl->hasTrivialDestructor()) 1827 continue; 1828 1829 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1830 BaseClassDecl, 1831 /*BaseIsVirtual*/ false); 1832 } 1833 1834 // Poison fields such that access after their destructors are 1835 // invoked, and before the base class destructor runs, is invalid. 1836 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1837 SanOpts.has(SanitizerKind::Memory)) 1838 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1839 1840 // Destroy direct fields. 1841 for (const auto *Field : ClassDecl->fields()) { 1842 QualType type = Field->getType(); 1843 QualType::DestructionKind dtorKind = type.isDestructedType(); 1844 if (!dtorKind) continue; 1845 1846 // Anonymous union members do not have their destructors called. 1847 const RecordType *RT = type->getAsUnionType(); 1848 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1849 1850 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1851 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1852 getDestroyer(dtorKind), 1853 cleanupKind & EHCleanup); 1854 } 1855 } 1856 1857 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1858 /// constructor for each of several members of an array. 1859 /// 1860 /// \param ctor the constructor to call for each element 1861 /// \param arrayType the type of the array to initialize 1862 /// \param arrayBegin an arrayType* 1863 /// \param zeroInitialize true if each element should be 1864 /// zero-initialized before it is constructed 1865 void CodeGenFunction::EmitCXXAggrConstructorCall( 1866 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1867 Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1868 QualType elementType; 1869 llvm::Value *numElements = 1870 emitArrayLength(arrayType, elementType, arrayBegin); 1871 1872 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1873 } 1874 1875 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1876 /// constructor for each of several members of an array. 1877 /// 1878 /// \param ctor the constructor to call for each element 1879 /// \param numElements the number of elements in the array; 1880 /// may be zero 1881 /// \param arrayBase a T*, where T is the type constructed by ctor 1882 /// \param zeroInitialize true if each element should be 1883 /// zero-initialized before it is constructed 1884 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1885 llvm::Value *numElements, 1886 Address arrayBase, 1887 const CXXConstructExpr *E, 1888 bool zeroInitialize) { 1889 // It's legal for numElements to be zero. This can happen both 1890 // dynamically, because x can be zero in 'new A[x]', and statically, 1891 // because of GCC extensions that permit zero-length arrays. There 1892 // are probably legitimate places where we could assume that this 1893 // doesn't happen, but it's not clear that it's worth it. 1894 llvm::BranchInst *zeroCheckBranch = nullptr; 1895 1896 // Optimize for a constant count. 1897 llvm::ConstantInt *constantCount 1898 = dyn_cast<llvm::ConstantInt>(numElements); 1899 if (constantCount) { 1900 // Just skip out if the constant count is zero. 1901 if (constantCount->isZero()) return; 1902 1903 // Otherwise, emit the check. 1904 } else { 1905 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1906 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1907 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1908 EmitBlock(loopBB); 1909 } 1910 1911 // Find the end of the array. 1912 llvm::Value *arrayBegin = arrayBase.getPointer(); 1913 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1914 "arrayctor.end"); 1915 1916 // Enter the loop, setting up a phi for the current location to initialize. 1917 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1918 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1919 EmitBlock(loopBB); 1920 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1921 "arrayctor.cur"); 1922 cur->addIncoming(arrayBegin, entryBB); 1923 1924 // Inside the loop body, emit the constructor call on the array element. 1925 1926 // The alignment of the base, adjusted by the size of a single element, 1927 // provides a conservative estimate of the alignment of every element. 1928 // (This assumes we never start tracking offsetted alignments.) 1929 // 1930 // Note that these are complete objects and so we don't need to 1931 // use the non-virtual size or alignment. 1932 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1933 CharUnits eltAlignment = 1934 arrayBase.getAlignment() 1935 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1936 Address curAddr = Address(cur, eltAlignment); 1937 1938 // Zero initialize the storage, if requested. 1939 if (zeroInitialize) 1940 EmitNullInitialization(curAddr, type); 1941 1942 // C++ [class.temporary]p4: 1943 // There are two contexts in which temporaries are destroyed at a different 1944 // point than the end of the full-expression. The first context is when a 1945 // default constructor is called to initialize an element of an array. 1946 // If the constructor has one or more default arguments, the destruction of 1947 // every temporary created in a default argument expression is sequenced 1948 // before the construction of the next array element, if any. 1949 1950 { 1951 RunCleanupsScope Scope(*this); 1952 1953 // Evaluate the constructor and its arguments in a regular 1954 // partial-destroy cleanup. 1955 if (getLangOpts().Exceptions && 1956 !ctor->getParent()->hasTrivialDestructor()) { 1957 Destroyer *destroyer = destroyCXXObject; 1958 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1959 *destroyer); 1960 } 1961 1962 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1963 /*Delegating=*/false, curAddr, E); 1964 } 1965 1966 // Go to the next element. 1967 llvm::Value *next = 1968 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1969 "arrayctor.next"); 1970 cur->addIncoming(next, Builder.GetInsertBlock()); 1971 1972 // Check whether that's the end of the loop. 1973 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1974 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1975 Builder.CreateCondBr(done, contBB, loopBB); 1976 1977 // Patch the earlier check to skip over the loop. 1978 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1979 1980 EmitBlock(contBB); 1981 } 1982 1983 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1984 Address addr, 1985 QualType type) { 1986 const RecordType *rtype = type->castAs<RecordType>(); 1987 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1988 const CXXDestructorDecl *dtor = record->getDestructor(); 1989 assert(!dtor->isTrivial()); 1990 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1991 /*Delegating=*/false, addr); 1992 } 1993 1994 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1995 CXXCtorType Type, 1996 bool ForVirtualBase, 1997 bool Delegating, Address This, 1998 const CXXConstructExpr *E) { 1999 CallArgList Args; 2000 2001 // Push the this ptr. 2002 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2003 2004 // If this is a trivial constructor, emit a memcpy now before we lose 2005 // the alignment information on the argument. 2006 // FIXME: It would be better to preserve alignment information into CallArg. 2007 if (isMemcpyEquivalentSpecialMember(D)) { 2008 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2009 2010 const Expr *Arg = E->getArg(0); 2011 LValue Src = EmitLValue(Arg); 2012 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2013 LValue Dest = MakeAddrLValue(This, DestTy); 2014 EmitAggregateCopyCtor(Dest, Src); 2015 return; 2016 } 2017 2018 // Add the rest of the user-supplied arguments. 2019 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2020 EvaluationOrder Order = E->isListInitialization() 2021 ? EvaluationOrder::ForceLeftToRight 2022 : EvaluationOrder::Default; 2023 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2024 /*ParamsToSkip*/ 0, Order); 2025 2026 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args); 2027 } 2028 2029 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2030 const CXXConstructorDecl *Ctor, 2031 CXXCtorType Type, CallArgList &Args) { 2032 // We can't forward a variadic call. 2033 if (Ctor->isVariadic()) 2034 return false; 2035 2036 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2037 // If the parameters are callee-cleanup, it's not safe to forward. 2038 for (auto *P : Ctor->parameters()) 2039 if (P->getType().isDestructedType()) 2040 return false; 2041 2042 // Likewise if they're inalloca. 2043 const CGFunctionInfo &Info = 2044 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2045 if (Info.usesInAlloca()) 2046 return false; 2047 } 2048 2049 // Anything else should be OK. 2050 return true; 2051 } 2052 2053 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2054 CXXCtorType Type, 2055 bool ForVirtualBase, 2056 bool Delegating, 2057 Address This, 2058 CallArgList &Args) { 2059 const CXXRecordDecl *ClassDecl = D->getParent(); 2060 2061 // C++11 [class.mfct.non-static]p2: 2062 // If a non-static member function of a class X is called for an object that 2063 // is not of type X, or of a type derived from X, the behavior is undefined. 2064 // FIXME: Provide a source location here. 2065 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), 2066 This.getPointer(), getContext().getRecordType(ClassDecl)); 2067 2068 if (D->isTrivial() && D->isDefaultConstructor()) { 2069 assert(Args.size() == 1 && "trivial default ctor with args"); 2070 return; 2071 } 2072 2073 // If this is a trivial constructor, just emit what's needed. If this is a 2074 // union copy constructor, we must emit a memcpy, because the AST does not 2075 // model that copy. 2076 if (isMemcpyEquivalentSpecialMember(D)) { 2077 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2078 2079 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2080 Address Src(Args[1].getRValue(*this).getScalarVal(), 2081 getNaturalTypeAlignment(SrcTy)); 2082 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2083 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2084 LValue DestLVal = MakeAddrLValue(This, DestTy); 2085 EmitAggregateCopyCtor(DestLVal, SrcLVal); 2086 return; 2087 } 2088 2089 bool PassPrototypeArgs = true; 2090 // Check whether we can actually emit the constructor before trying to do so. 2091 if (auto Inherited = D->getInheritedConstructor()) { 2092 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2093 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2094 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2095 Delegating, Args); 2096 return; 2097 } 2098 } 2099 2100 // Insert any ABI-specific implicit constructor arguments. 2101 CGCXXABI::AddedStructorArgs ExtraArgs = 2102 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2103 Delegating, Args); 2104 2105 // Emit the call. 2106 llvm::Constant *CalleePtr = 2107 CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 2108 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2109 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2110 CGCallee Callee = CGCallee::forDirect(CalleePtr, D); 2111 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2112 2113 // Generate vtable assumptions if we're constructing a complete object 2114 // with a vtable. We don't do this for base subobjects for two reasons: 2115 // first, it's incorrect for classes with virtual bases, and second, we're 2116 // about to overwrite the vptrs anyway. 2117 // We also have to make sure if we can refer to vtable: 2118 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2119 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2120 // sure that definition of vtable is not hidden, 2121 // then we are always safe to refer to it. 2122 // FIXME: It looks like InstCombine is very inefficient on dealing with 2123 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2124 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2125 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2126 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2127 CGM.getCodeGenOpts().StrictVTablePointers) 2128 EmitVTableAssumptionLoads(ClassDecl, This); 2129 } 2130 2131 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2132 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2133 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2134 CallArgList Args; 2135 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext())); 2136 2137 // Forward the parameters. 2138 if (InheritedFromVBase && 2139 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2140 // Nothing to do; this construction is not responsible for constructing 2141 // the base class containing the inherited constructor. 2142 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2143 // have constructor variants? 2144 Args.push_back(ThisArg); 2145 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2146 // The inheriting constructor was inlined; just inject its arguments. 2147 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2148 "wrong number of parameters for inherited constructor call"); 2149 Args = CXXInheritedCtorInitExprArgs; 2150 Args[0] = ThisArg; 2151 } else { 2152 // The inheriting constructor was not inlined. Emit delegating arguments. 2153 Args.push_back(ThisArg); 2154 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2155 assert(OuterCtor->getNumParams() == D->getNumParams()); 2156 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2157 2158 for (const auto *Param : OuterCtor->parameters()) { 2159 assert(getContext().hasSameUnqualifiedType( 2160 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2161 Param->getType())); 2162 EmitDelegateCallArg(Args, Param, E->getLocation()); 2163 2164 // Forward __attribute__(pass_object_size). 2165 if (Param->hasAttr<PassObjectSizeAttr>()) { 2166 auto *POSParam = SizeArguments[Param]; 2167 assert(POSParam && "missing pass_object_size value for forwarding"); 2168 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2169 } 2170 } 2171 } 2172 2173 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2174 This, Args); 2175 } 2176 2177 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2178 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2179 bool Delegating, CallArgList &Args) { 2180 GlobalDecl GD(Ctor, CtorType); 2181 InlinedInheritingConstructorScope Scope(*this, GD); 2182 ApplyInlineDebugLocation DebugScope(*this, GD); 2183 2184 // Save the arguments to be passed to the inherited constructor. 2185 CXXInheritedCtorInitExprArgs = Args; 2186 2187 FunctionArgList Params; 2188 QualType RetType = BuildFunctionArgList(CurGD, Params); 2189 FnRetTy = RetType; 2190 2191 // Insert any ABI-specific implicit constructor arguments. 2192 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2193 ForVirtualBase, Delegating, Args); 2194 2195 // Emit a simplified prolog. We only need to emit the implicit params. 2196 assert(Args.size() >= Params.size() && "too few arguments for call"); 2197 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2198 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2199 const RValue &RV = Args[I].getRValue(*this); 2200 assert(!RV.isComplex() && "complex indirect params not supported"); 2201 ParamValue Val = RV.isScalar() 2202 ? ParamValue::forDirect(RV.getScalarVal()) 2203 : ParamValue::forIndirect(RV.getAggregateAddress()); 2204 EmitParmDecl(*Params[I], Val, I + 1); 2205 } 2206 } 2207 2208 // Create a return value slot if the ABI implementation wants one. 2209 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2210 // value instead. 2211 if (!RetType->isVoidType()) 2212 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2213 2214 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2215 CXXThisValue = CXXABIThisValue; 2216 2217 // Directly emit the constructor initializers. 2218 EmitCtorPrologue(Ctor, CtorType, Params); 2219 } 2220 2221 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2222 llvm::Value *VTableGlobal = 2223 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2224 if (!VTableGlobal) 2225 return; 2226 2227 // We can just use the base offset in the complete class. 2228 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2229 2230 if (!NonVirtualOffset.isZero()) 2231 This = 2232 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2233 Vptr.VTableClass, Vptr.NearestVBase); 2234 2235 llvm::Value *VPtrValue = 2236 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2237 llvm::Value *Cmp = 2238 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2239 Builder.CreateAssumption(Cmp); 2240 } 2241 2242 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2243 Address This) { 2244 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2245 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2246 EmitVTableAssumptionLoad(Vptr, This); 2247 } 2248 2249 void 2250 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2251 Address This, Address Src, 2252 const CXXConstructExpr *E) { 2253 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2254 2255 CallArgList Args; 2256 2257 // Push the this ptr. 2258 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2259 2260 // Push the src ptr. 2261 QualType QT = *(FPT->param_type_begin()); 2262 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2263 Src = Builder.CreateBitCast(Src, t); 2264 Args.add(RValue::get(Src.getPointer()), QT); 2265 2266 // Skip over first argument (Src). 2267 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2268 /*ParamsToSkip*/ 1); 2269 2270 EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args); 2271 } 2272 2273 void 2274 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2275 CXXCtorType CtorType, 2276 const FunctionArgList &Args, 2277 SourceLocation Loc) { 2278 CallArgList DelegateArgs; 2279 2280 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2281 assert(I != E && "no parameters to constructor"); 2282 2283 // this 2284 Address This = LoadCXXThisAddress(); 2285 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2286 ++I; 2287 2288 // FIXME: The location of the VTT parameter in the parameter list is 2289 // specific to the Itanium ABI and shouldn't be hardcoded here. 2290 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2291 assert(I != E && "cannot skip vtt parameter, already done with args"); 2292 assert((*I)->getType()->isPointerType() && 2293 "skipping parameter not of vtt type"); 2294 ++I; 2295 } 2296 2297 // Explicit arguments. 2298 for (; I != E; ++I) { 2299 const VarDecl *param = *I; 2300 // FIXME: per-argument source location 2301 EmitDelegateCallArg(DelegateArgs, param, Loc); 2302 } 2303 2304 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2305 /*Delegating=*/true, This, DelegateArgs); 2306 } 2307 2308 namespace { 2309 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2310 const CXXDestructorDecl *Dtor; 2311 Address Addr; 2312 CXXDtorType Type; 2313 2314 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2315 CXXDtorType Type) 2316 : Dtor(D), Addr(Addr), Type(Type) {} 2317 2318 void Emit(CodeGenFunction &CGF, Flags flags) override { 2319 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2320 /*Delegating=*/true, Addr); 2321 } 2322 }; 2323 } // end anonymous namespace 2324 2325 void 2326 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2327 const FunctionArgList &Args) { 2328 assert(Ctor->isDelegatingConstructor()); 2329 2330 Address ThisPtr = LoadCXXThisAddress(); 2331 2332 AggValueSlot AggSlot = 2333 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2334 AggValueSlot::IsDestructed, 2335 AggValueSlot::DoesNotNeedGCBarriers, 2336 AggValueSlot::IsNotAliased); 2337 2338 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2339 2340 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2341 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2342 CXXDtorType Type = 2343 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2344 2345 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2346 ClassDecl->getDestructor(), 2347 ThisPtr, Type); 2348 } 2349 } 2350 2351 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2352 CXXDtorType Type, 2353 bool ForVirtualBase, 2354 bool Delegating, 2355 Address This) { 2356 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2357 Delegating, This); 2358 } 2359 2360 namespace { 2361 struct CallLocalDtor final : EHScopeStack::Cleanup { 2362 const CXXDestructorDecl *Dtor; 2363 Address Addr; 2364 2365 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2366 : Dtor(D), Addr(Addr) {} 2367 2368 void Emit(CodeGenFunction &CGF, Flags flags) override { 2369 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2370 /*ForVirtualBase=*/false, 2371 /*Delegating=*/false, Addr); 2372 } 2373 }; 2374 } // end anonymous namespace 2375 2376 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2377 Address Addr) { 2378 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2379 } 2380 2381 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2382 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2383 if (!ClassDecl) return; 2384 if (ClassDecl->hasTrivialDestructor()) return; 2385 2386 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2387 assert(D && D->isUsed() && "destructor not marked as used!"); 2388 PushDestructorCleanup(D, Addr); 2389 } 2390 2391 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2392 // Compute the address point. 2393 llvm::Value *VTableAddressPoint = 2394 CGM.getCXXABI().getVTableAddressPointInStructor( 2395 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2396 2397 if (!VTableAddressPoint) 2398 return; 2399 2400 // Compute where to store the address point. 2401 llvm::Value *VirtualOffset = nullptr; 2402 CharUnits NonVirtualOffset = CharUnits::Zero(); 2403 2404 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2405 // We need to use the virtual base offset offset because the virtual base 2406 // might have a different offset in the most derived class. 2407 2408 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2409 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2410 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2411 } else { 2412 // We can just use the base offset in the complete class. 2413 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2414 } 2415 2416 // Apply the offsets. 2417 Address VTableField = LoadCXXThisAddress(); 2418 2419 if (!NonVirtualOffset.isZero() || VirtualOffset) 2420 VTableField = ApplyNonVirtualAndVirtualOffset( 2421 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2422 Vptr.NearestVBase); 2423 2424 // Finally, store the address point. Use the same LLVM types as the field to 2425 // support optimization. 2426 llvm::Type *VTablePtrTy = 2427 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2428 ->getPointerTo() 2429 ->getPointerTo(); 2430 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2431 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2432 2433 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2434 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2435 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2436 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2437 CGM.getCodeGenOpts().StrictVTablePointers) 2438 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2439 } 2440 2441 CodeGenFunction::VPtrsVector 2442 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2443 CodeGenFunction::VPtrsVector VPtrsResult; 2444 VisitedVirtualBasesSetTy VBases; 2445 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2446 /*NearestVBase=*/nullptr, 2447 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2448 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2449 VPtrsResult); 2450 return VPtrsResult; 2451 } 2452 2453 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2454 const CXXRecordDecl *NearestVBase, 2455 CharUnits OffsetFromNearestVBase, 2456 bool BaseIsNonVirtualPrimaryBase, 2457 const CXXRecordDecl *VTableClass, 2458 VisitedVirtualBasesSetTy &VBases, 2459 VPtrsVector &Vptrs) { 2460 // If this base is a non-virtual primary base the address point has already 2461 // been set. 2462 if (!BaseIsNonVirtualPrimaryBase) { 2463 // Initialize the vtable pointer for this base. 2464 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2465 Vptrs.push_back(Vptr); 2466 } 2467 2468 const CXXRecordDecl *RD = Base.getBase(); 2469 2470 // Traverse bases. 2471 for (const auto &I : RD->bases()) { 2472 CXXRecordDecl *BaseDecl 2473 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2474 2475 // Ignore classes without a vtable. 2476 if (!BaseDecl->isDynamicClass()) 2477 continue; 2478 2479 CharUnits BaseOffset; 2480 CharUnits BaseOffsetFromNearestVBase; 2481 bool BaseDeclIsNonVirtualPrimaryBase; 2482 2483 if (I.isVirtual()) { 2484 // Check if we've visited this virtual base before. 2485 if (!VBases.insert(BaseDecl).second) 2486 continue; 2487 2488 const ASTRecordLayout &Layout = 2489 getContext().getASTRecordLayout(VTableClass); 2490 2491 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2492 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2493 BaseDeclIsNonVirtualPrimaryBase = false; 2494 } else { 2495 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2496 2497 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2498 BaseOffsetFromNearestVBase = 2499 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2500 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2501 } 2502 2503 getVTablePointers( 2504 BaseSubobject(BaseDecl, BaseOffset), 2505 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2506 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2507 } 2508 } 2509 2510 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2511 // Ignore classes without a vtable. 2512 if (!RD->isDynamicClass()) 2513 return; 2514 2515 // Initialize the vtable pointers for this class and all of its bases. 2516 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2517 for (const VPtr &Vptr : getVTablePointers(RD)) 2518 InitializeVTablePointer(Vptr); 2519 2520 if (RD->getNumVBases()) 2521 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2522 } 2523 2524 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2525 llvm::Type *VTableTy, 2526 const CXXRecordDecl *RD) { 2527 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2528 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2529 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2530 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2531 2532 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2533 CGM.getCodeGenOpts().StrictVTablePointers) 2534 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2535 2536 return VTable; 2537 } 2538 2539 // If a class has a single non-virtual base and does not introduce or override 2540 // virtual member functions or fields, it will have the same layout as its base. 2541 // This function returns the least derived such class. 2542 // 2543 // Casting an instance of a base class to such a derived class is technically 2544 // undefined behavior, but it is a relatively common hack for introducing member 2545 // functions on class instances with specific properties (e.g. llvm::Operator) 2546 // that works under most compilers and should not have security implications, so 2547 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2548 static const CXXRecordDecl * 2549 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2550 if (!RD->field_empty()) 2551 return RD; 2552 2553 if (RD->getNumVBases() != 0) 2554 return RD; 2555 2556 if (RD->getNumBases() != 1) 2557 return RD; 2558 2559 for (const CXXMethodDecl *MD : RD->methods()) { 2560 if (MD->isVirtual()) { 2561 // Virtual member functions are only ok if they are implicit destructors 2562 // because the implicit destructor will have the same semantics as the 2563 // base class's destructor if no fields are added. 2564 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2565 continue; 2566 return RD; 2567 } 2568 } 2569 2570 return LeastDerivedClassWithSameLayout( 2571 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2572 } 2573 2574 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2575 llvm::Value *VTable, 2576 SourceLocation Loc) { 2577 if (SanOpts.has(SanitizerKind::CFIVCall)) 2578 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2579 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2580 CGM.HasHiddenLTOVisibility(RD)) { 2581 llvm::Metadata *MD = 2582 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2583 llvm::Value *TypeId = 2584 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2585 2586 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2587 llvm::Value *TypeTest = 2588 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2589 {CastedVTable, TypeId}); 2590 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2591 } 2592 } 2593 2594 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2595 llvm::Value *VTable, 2596 CFITypeCheckKind TCK, 2597 SourceLocation Loc) { 2598 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2599 RD = LeastDerivedClassWithSameLayout(RD); 2600 2601 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2602 } 2603 2604 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2605 llvm::Value *Derived, 2606 bool MayBeNull, 2607 CFITypeCheckKind TCK, 2608 SourceLocation Loc) { 2609 if (!getLangOpts().CPlusPlus) 2610 return; 2611 2612 auto *ClassTy = T->getAs<RecordType>(); 2613 if (!ClassTy) 2614 return; 2615 2616 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2617 2618 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2619 return; 2620 2621 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2622 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2623 2624 llvm::BasicBlock *ContBlock = nullptr; 2625 2626 if (MayBeNull) { 2627 llvm::Value *DerivedNotNull = 2628 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2629 2630 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2631 ContBlock = createBasicBlock("cast.cont"); 2632 2633 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2634 2635 EmitBlock(CheckBlock); 2636 } 2637 2638 llvm::Value *VTable; 2639 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2640 *this, Address(Derived, getPointerAlign()), ClassDecl); 2641 2642 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2643 2644 if (MayBeNull) { 2645 Builder.CreateBr(ContBlock); 2646 EmitBlock(ContBlock); 2647 } 2648 } 2649 2650 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2651 llvm::Value *VTable, 2652 CFITypeCheckKind TCK, 2653 SourceLocation Loc) { 2654 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2655 !CGM.HasHiddenLTOVisibility(RD)) 2656 return; 2657 2658 SanitizerMask M; 2659 llvm::SanitizerStatKind SSK; 2660 switch (TCK) { 2661 case CFITCK_VCall: 2662 M = SanitizerKind::CFIVCall; 2663 SSK = llvm::SanStat_CFI_VCall; 2664 break; 2665 case CFITCK_NVCall: 2666 M = SanitizerKind::CFINVCall; 2667 SSK = llvm::SanStat_CFI_NVCall; 2668 break; 2669 case CFITCK_DerivedCast: 2670 M = SanitizerKind::CFIDerivedCast; 2671 SSK = llvm::SanStat_CFI_DerivedCast; 2672 break; 2673 case CFITCK_UnrelatedCast: 2674 M = SanitizerKind::CFIUnrelatedCast; 2675 SSK = llvm::SanStat_CFI_UnrelatedCast; 2676 break; 2677 case CFITCK_ICall: 2678 llvm_unreachable("not expecting CFITCK_ICall"); 2679 } 2680 2681 std::string TypeName = RD->getQualifiedNameAsString(); 2682 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2683 return; 2684 2685 SanitizerScope SanScope(this); 2686 EmitSanitizerStatReport(SSK); 2687 2688 llvm::Metadata *MD = 2689 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2690 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2691 2692 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2693 llvm::Value *TypeTest = Builder.CreateCall( 2694 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2695 2696 llvm::Constant *StaticData[] = { 2697 llvm::ConstantInt::get(Int8Ty, TCK), 2698 EmitCheckSourceLocation(Loc), 2699 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2700 }; 2701 2702 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2703 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2704 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2705 return; 2706 } 2707 2708 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2709 EmitTrapCheck(TypeTest); 2710 return; 2711 } 2712 2713 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2714 CGM.getLLVMContext(), 2715 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2716 llvm::Value *ValidVtable = Builder.CreateCall( 2717 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2718 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2719 StaticData, {CastedVTable, ValidVtable}); 2720 } 2721 2722 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2723 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2724 !SanOpts.has(SanitizerKind::CFIVCall) || 2725 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2726 !CGM.HasHiddenLTOVisibility(RD)) 2727 return false; 2728 2729 std::string TypeName = RD->getQualifiedNameAsString(); 2730 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2731 SanitizerKind::CFIVCall, TypeName); 2732 } 2733 2734 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2735 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2736 SanitizerScope SanScope(this); 2737 2738 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2739 2740 llvm::Metadata *MD = 2741 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2742 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2743 2744 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2745 llvm::Value *CheckedLoad = Builder.CreateCall( 2746 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2747 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2748 TypeId}); 2749 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2750 2751 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2752 SanitizerHandler::CFICheckFail, nullptr, nullptr); 2753 2754 return Builder.CreateBitCast( 2755 Builder.CreateExtractValue(CheckedLoad, 0), 2756 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2757 } 2758 2759 void CodeGenFunction::EmitForwardingCallToLambda( 2760 const CXXMethodDecl *callOperator, 2761 CallArgList &callArgs) { 2762 // Get the address of the call operator. 2763 const CGFunctionInfo &calleeFnInfo = 2764 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2765 llvm::Constant *calleePtr = 2766 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2767 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2768 2769 // Prepare the return slot. 2770 const FunctionProtoType *FPT = 2771 callOperator->getType()->castAs<FunctionProtoType>(); 2772 QualType resultType = FPT->getReturnType(); 2773 ReturnValueSlot returnSlot; 2774 if (!resultType->isVoidType() && 2775 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2776 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2777 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2778 2779 // We don't need to separately arrange the call arguments because 2780 // the call can't be variadic anyway --- it's impossible to forward 2781 // variadic arguments. 2782 2783 // Now emit our call. 2784 auto callee = CGCallee::forDirect(calleePtr, callOperator); 2785 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2786 2787 // If necessary, copy the returned value into the slot. 2788 if (!resultType->isVoidType() && returnSlot.isNull()) { 2789 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2790 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2791 } 2792 EmitReturnOfRValue(RV, resultType); 2793 } else 2794 EmitBranchThroughCleanup(ReturnBlock); 2795 } 2796 2797 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2798 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2799 const VarDecl *variable = BD->capture_begin()->getVariable(); 2800 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2801 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2802 2803 if (CallOp->isVariadic()) { 2804 // FIXME: Making this work correctly is nasty because it requires either 2805 // cloning the body of the call operator or making the call operator 2806 // forward. 2807 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2808 return; 2809 } 2810 2811 // Start building arguments for forwarding call 2812 CallArgList CallArgs; 2813 2814 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2815 Address ThisPtr = GetAddrOfBlockDecl(variable, false); 2816 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2817 2818 // Add the rest of the parameters. 2819 for (auto param : BD->parameters()) 2820 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2821 2822 assert(!Lambda->isGenericLambda() && 2823 "generic lambda interconversion to block not implemented"); 2824 EmitForwardingCallToLambda(CallOp, CallArgs); 2825 } 2826 2827 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2828 const CXXRecordDecl *Lambda = MD->getParent(); 2829 2830 // Start building arguments for forwarding call 2831 CallArgList CallArgs; 2832 2833 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2834 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2835 CallArgs.add(RValue::get(ThisPtr), ThisType); 2836 2837 // Add the rest of the parameters. 2838 for (auto Param : MD->parameters()) 2839 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2840 2841 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2842 // For a generic lambda, find the corresponding call operator specialization 2843 // to which the call to the static-invoker shall be forwarded. 2844 if (Lambda->isGenericLambda()) { 2845 assert(MD->isFunctionTemplateSpecialization()); 2846 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2847 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2848 void *InsertPos = nullptr; 2849 FunctionDecl *CorrespondingCallOpSpecialization = 2850 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2851 assert(CorrespondingCallOpSpecialization); 2852 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2853 } 2854 EmitForwardingCallToLambda(CallOp, CallArgs); 2855 } 2856 2857 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2858 if (MD->isVariadic()) { 2859 // FIXME: Making this work correctly is nasty because it requires either 2860 // cloning the body of the call operator or making the call operator forward. 2861 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2862 return; 2863 } 2864 2865 EmitLambdaDelegatingInvokeBody(MD); 2866 } 2867