1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 
28 using namespace clang;
29 using namespace CodeGen;
30 
31 static CharUnits
32 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
33                                  const CXXRecordDecl *DerivedClass,
34                                  CastExpr::path_const_iterator Start,
35                                  CastExpr::path_const_iterator End) {
36   CharUnits Offset = CharUnits::Zero();
37 
38   const CXXRecordDecl *RD = DerivedClass;
39 
40   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
41     const CXXBaseSpecifier *Base = *I;
42     assert(!Base->isVirtual() && "Should not see virtual bases here!");
43 
44     // Get the layout.
45     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
46 
47     const CXXRecordDecl *BaseDecl =
48       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
49 
50     // Add the offset.
51     Offset += Layout.getBaseClassOffset(BaseDecl);
52 
53     RD = BaseDecl;
54   }
55 
56   return Offset;
57 }
58 
59 llvm::Constant *
60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
61                                    CastExpr::path_const_iterator PathBegin,
62                                    CastExpr::path_const_iterator PathEnd) {
63   assert(PathBegin != PathEnd && "Base path should not be empty!");
64 
65   CharUnits Offset =
66     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
67                                      PathBegin, PathEnd);
68   if (Offset.isZero())
69     return nullptr;
70 
71   llvm::Type *PtrDiffTy =
72   Types.ConvertType(getContext().getPointerDiffType());
73 
74   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
75 }
76 
77 /// Gets the address of a direct base class within a complete object.
78 /// This should only be used for (1) non-virtual bases or (2) virtual bases
79 /// when the type is known to be complete (e.g. in complete destructors).
80 ///
81 /// The object pointed to by 'This' is assumed to be non-null.
82 llvm::Value *
83 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
84                                                    const CXXRecordDecl *Derived,
85                                                    const CXXRecordDecl *Base,
86                                                    bool BaseIsVirtual) {
87   // 'this' must be a pointer (in some address space) to Derived.
88   assert(This->getType()->isPointerTy() &&
89          cast<llvm::PointerType>(This->getType())->getElementType()
90            == ConvertType(Derived));
91 
92   // Compute the offset of the virtual base.
93   CharUnits Offset;
94   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
95   if (BaseIsVirtual)
96     Offset = Layout.getVBaseClassOffset(Base);
97   else
98     Offset = Layout.getBaseClassOffset(Base);
99 
100   // Shift and cast down to the base type.
101   // TODO: for complete types, this should be possible with a GEP.
102   llvm::Value *V = This;
103   if (Offset.isPositive()) {
104     V = Builder.CreateBitCast(V, Int8PtrTy);
105     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
106   }
107   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
108 
109   return V;
110 }
111 
112 static llvm::Value *
113 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
114                                 CharUnits nonVirtualOffset,
115                                 llvm::Value *virtualOffset) {
116   // Assert that we have something to do.
117   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
118 
119   // Compute the offset from the static and dynamic components.
120   llvm::Value *baseOffset;
121   if (!nonVirtualOffset.isZero()) {
122     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
123                                         nonVirtualOffset.getQuantity());
124     if (virtualOffset) {
125       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
126     }
127   } else {
128     baseOffset = virtualOffset;
129   }
130 
131   // Apply the base offset.
132   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
133   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
134   return ptr;
135 }
136 
137 llvm::Value *CodeGenFunction::GetAddressOfBaseClass(
138     llvm::Value *Value, const CXXRecordDecl *Derived,
139     CastExpr::path_const_iterator PathBegin,
140     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
141     SourceLocation Loc) {
142   assert(PathBegin != PathEnd && "Base path should not be empty!");
143 
144   CastExpr::path_const_iterator Start = PathBegin;
145   const CXXRecordDecl *VBase = nullptr;
146 
147   // Sema has done some convenient canonicalization here: if the
148   // access path involved any virtual steps, the conversion path will
149   // *start* with a step down to the correct virtual base subobject,
150   // and hence will not require any further steps.
151   if ((*Start)->isVirtual()) {
152     VBase =
153       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
154     ++Start;
155   }
156 
157   // Compute the static offset of the ultimate destination within its
158   // allocating subobject (the virtual base, if there is one, or else
159   // the "complete" object that we see).
160   CharUnits NonVirtualOffset =
161     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
162                                      Start, PathEnd);
163 
164   // If there's a virtual step, we can sometimes "devirtualize" it.
165   // For now, that's limited to when the derived type is final.
166   // TODO: "devirtualize" this for accesses to known-complete objects.
167   if (VBase && Derived->hasAttr<FinalAttr>()) {
168     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
169     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
170     NonVirtualOffset += vBaseOffset;
171     VBase = nullptr; // we no longer have a virtual step
172   }
173 
174   // Get the base pointer type.
175   llvm::Type *BasePtrTy =
176     ConvertType((PathEnd[-1])->getType())->getPointerTo();
177 
178   QualType DerivedTy = getContext().getRecordType(Derived);
179   CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy);
180 
181   // If the static offset is zero and we don't have a virtual step,
182   // just do a bitcast; null checks are unnecessary.
183   if (NonVirtualOffset.isZero() && !VBase) {
184     if (sanitizePerformTypeCheck()) {
185       EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign,
186                     !NullCheckValue);
187     }
188     return Builder.CreateBitCast(Value, BasePtrTy);
189   }
190 
191   llvm::BasicBlock *origBB = nullptr;
192   llvm::BasicBlock *endBB = nullptr;
193 
194   // Skip over the offset (and the vtable load) if we're supposed to
195   // null-check the pointer.
196   if (NullCheckValue) {
197     origBB = Builder.GetInsertBlock();
198     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
199     endBB = createBasicBlock("cast.end");
200 
201     llvm::Value *isNull = Builder.CreateIsNull(Value);
202     Builder.CreateCondBr(isNull, endBB, notNullBB);
203     EmitBlock(notNullBB);
204   }
205 
206   if (sanitizePerformTypeCheck()) {
207     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value,
208                   DerivedTy, DerivedAlign, true);
209   }
210 
211   // Compute the virtual offset.
212   llvm::Value *VirtualOffset = nullptr;
213   if (VBase) {
214     VirtualOffset =
215       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
216   }
217 
218   // Apply both offsets.
219   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
220                                           NonVirtualOffset,
221                                           VirtualOffset);
222 
223   // Cast to the destination type.
224   Value = Builder.CreateBitCast(Value, BasePtrTy);
225 
226   // Build a phi if we needed a null check.
227   if (NullCheckValue) {
228     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
229     Builder.CreateBr(endBB);
230     EmitBlock(endBB);
231 
232     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
233     PHI->addIncoming(Value, notNullBB);
234     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
235     Value = PHI;
236   }
237 
238   return Value;
239 }
240 
241 llvm::Value *
242 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
243                                           const CXXRecordDecl *Derived,
244                                         CastExpr::path_const_iterator PathBegin,
245                                           CastExpr::path_const_iterator PathEnd,
246                                           bool NullCheckValue) {
247   assert(PathBegin != PathEnd && "Base path should not be empty!");
248 
249   QualType DerivedTy =
250     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
251   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
252 
253   llvm::Value *NonVirtualOffset =
254     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
255 
256   if (!NonVirtualOffset) {
257     // No offset, we can just cast back.
258     return Builder.CreateBitCast(Value, DerivedPtrTy);
259   }
260 
261   llvm::BasicBlock *CastNull = nullptr;
262   llvm::BasicBlock *CastNotNull = nullptr;
263   llvm::BasicBlock *CastEnd = nullptr;
264 
265   if (NullCheckValue) {
266     CastNull = createBasicBlock("cast.null");
267     CastNotNull = createBasicBlock("cast.notnull");
268     CastEnd = createBasicBlock("cast.end");
269 
270     llvm::Value *IsNull = Builder.CreateIsNull(Value);
271     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
272     EmitBlock(CastNotNull);
273   }
274 
275   // Apply the offset.
276   Value = Builder.CreateBitCast(Value, Int8PtrTy);
277   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
278                             "sub.ptr");
279 
280   // Just cast.
281   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
282 
283   if (NullCheckValue) {
284     Builder.CreateBr(CastEnd);
285     EmitBlock(CastNull);
286     Builder.CreateBr(CastEnd);
287     EmitBlock(CastEnd);
288 
289     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
290     PHI->addIncoming(Value, CastNotNull);
291     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
292                      CastNull);
293     Value = PHI;
294   }
295 
296   return Value;
297 }
298 
299 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
300                                               bool ForVirtualBase,
301                                               bool Delegating) {
302   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
303     // This constructor/destructor does not need a VTT parameter.
304     return nullptr;
305   }
306 
307   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
308   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
309 
310   llvm::Value *VTT;
311 
312   uint64_t SubVTTIndex;
313 
314   if (Delegating) {
315     // If this is a delegating constructor call, just load the VTT.
316     return LoadCXXVTT();
317   } else if (RD == Base) {
318     // If the record matches the base, this is the complete ctor/dtor
319     // variant calling the base variant in a class with virtual bases.
320     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
321            "doing no-op VTT offset in base dtor/ctor?");
322     assert(!ForVirtualBase && "Can't have same class as virtual base!");
323     SubVTTIndex = 0;
324   } else {
325     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
326     CharUnits BaseOffset = ForVirtualBase ?
327       Layout.getVBaseClassOffset(Base) :
328       Layout.getBaseClassOffset(Base);
329 
330     SubVTTIndex =
331       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
332     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
333   }
334 
335   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
336     // A VTT parameter was passed to the constructor, use it.
337     VTT = LoadCXXVTT();
338     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
339   } else {
340     // We're the complete constructor, so get the VTT by name.
341     VTT = CGM.getVTables().GetAddrOfVTT(RD);
342     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
343   }
344 
345   return VTT;
346 }
347 
348 namespace {
349   /// Call the destructor for a direct base class.
350   struct CallBaseDtor : EHScopeStack::Cleanup {
351     const CXXRecordDecl *BaseClass;
352     bool BaseIsVirtual;
353     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
354       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
355 
356     void Emit(CodeGenFunction &CGF, Flags flags) override {
357       const CXXRecordDecl *DerivedClass =
358         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
359 
360       const CXXDestructorDecl *D = BaseClass->getDestructor();
361       llvm::Value *Addr =
362         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
363                                                   DerivedClass, BaseClass,
364                                                   BaseIsVirtual);
365       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
366                                 /*Delegating=*/false, Addr);
367     }
368   };
369 
370   /// A visitor which checks whether an initializer uses 'this' in a
371   /// way which requires the vtable to be properly set.
372   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
373     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
374 
375     bool UsesThis;
376 
377     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
378 
379     // Black-list all explicit and implicit references to 'this'.
380     //
381     // Do we need to worry about external references to 'this' derived
382     // from arbitrary code?  If so, then anything which runs arbitrary
383     // external code might potentially access the vtable.
384     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
385   };
386 }
387 
388 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
389   DynamicThisUseChecker Checker(C);
390   Checker.Visit(const_cast<Expr*>(Init));
391   return Checker.UsesThis;
392 }
393 
394 static void EmitBaseInitializer(CodeGenFunction &CGF,
395                                 const CXXRecordDecl *ClassDecl,
396                                 CXXCtorInitializer *BaseInit,
397                                 CXXCtorType CtorType) {
398   assert(BaseInit->isBaseInitializer() &&
399          "Must have base initializer!");
400 
401   llvm::Value *ThisPtr = CGF.LoadCXXThis();
402 
403   const Type *BaseType = BaseInit->getBaseClass();
404   CXXRecordDecl *BaseClassDecl =
405     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
406 
407   bool isBaseVirtual = BaseInit->isBaseVirtual();
408 
409   // The base constructor doesn't construct virtual bases.
410   if (CtorType == Ctor_Base && isBaseVirtual)
411     return;
412 
413   // If the initializer for the base (other than the constructor
414   // itself) accesses 'this' in any way, we need to initialize the
415   // vtables.
416   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
417     CGF.InitializeVTablePointers(ClassDecl);
418 
419   // We can pretend to be a complete class because it only matters for
420   // virtual bases, and we only do virtual bases for complete ctors.
421   llvm::Value *V =
422     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
423                                               BaseClassDecl,
424                                               isBaseVirtual);
425   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
426   AggValueSlot AggSlot =
427     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
428                           AggValueSlot::IsDestructed,
429                           AggValueSlot::DoesNotNeedGCBarriers,
430                           AggValueSlot::IsNotAliased);
431 
432   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
433 
434   if (CGF.CGM.getLangOpts().Exceptions &&
435       !BaseClassDecl->hasTrivialDestructor())
436     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
437                                           isBaseVirtual);
438 }
439 
440 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
441                                      LValue LHS,
442                                      Expr *Init,
443                                      llvm::Value *ArrayIndexVar,
444                                      QualType T,
445                                      ArrayRef<VarDecl *> ArrayIndexes,
446                                      unsigned Index) {
447   if (Index == ArrayIndexes.size()) {
448     LValue LV = LHS;
449 
450     if (ArrayIndexVar) {
451       // If we have an array index variable, load it and use it as an offset.
452       // Then, increment the value.
453       llvm::Value *Dest = LHS.getAddress();
454       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
455       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
456       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
457       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
458       CGF.Builder.CreateStore(Next, ArrayIndexVar);
459 
460       // Update the LValue.
461       LV.setAddress(Dest);
462       CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
463       LV.setAlignment(std::min(Align, LV.getAlignment()));
464     }
465 
466     switch (CGF.getEvaluationKind(T)) {
467     case TEK_Scalar:
468       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
469       break;
470     case TEK_Complex:
471       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
472       break;
473     case TEK_Aggregate: {
474       AggValueSlot Slot =
475         AggValueSlot::forLValue(LV,
476                                 AggValueSlot::IsDestructed,
477                                 AggValueSlot::DoesNotNeedGCBarriers,
478                                 AggValueSlot::IsNotAliased);
479 
480       CGF.EmitAggExpr(Init, Slot);
481       break;
482     }
483     }
484 
485     return;
486   }
487 
488   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
489   assert(Array && "Array initialization without the array type?");
490   llvm::Value *IndexVar
491     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
492   assert(IndexVar && "Array index variable not loaded");
493 
494   // Initialize this index variable to zero.
495   llvm::Value* Zero
496     = llvm::Constant::getNullValue(
497                               CGF.ConvertType(CGF.getContext().getSizeType()));
498   CGF.Builder.CreateStore(Zero, IndexVar);
499 
500   // Start the loop with a block that tests the condition.
501   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
502   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
503 
504   CGF.EmitBlock(CondBlock);
505 
506   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
507   // Generate: if (loop-index < number-of-elements) fall to the loop body,
508   // otherwise, go to the block after the for-loop.
509   uint64_t NumElements = Array->getSize().getZExtValue();
510   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
511   llvm::Value *NumElementsPtr =
512     llvm::ConstantInt::get(Counter->getType(), NumElements);
513   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
514                                                   "isless");
515 
516   // If the condition is true, execute the body.
517   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
518 
519   CGF.EmitBlock(ForBody);
520   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
521 
522   // Inside the loop body recurse to emit the inner loop or, eventually, the
523   // constructor call.
524   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
525                            Array->getElementType(), ArrayIndexes, Index + 1);
526 
527   CGF.EmitBlock(ContinueBlock);
528 
529   // Emit the increment of the loop counter.
530   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
531   Counter = CGF.Builder.CreateLoad(IndexVar);
532   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
533   CGF.Builder.CreateStore(NextVal, IndexVar);
534 
535   // Finally, branch back up to the condition for the next iteration.
536   CGF.EmitBranch(CondBlock);
537 
538   // Emit the fall-through block.
539   CGF.EmitBlock(AfterFor, true);
540 }
541 
542 static void EmitMemberInitializer(CodeGenFunction &CGF,
543                                   const CXXRecordDecl *ClassDecl,
544                                   CXXCtorInitializer *MemberInit,
545                                   const CXXConstructorDecl *Constructor,
546                                   FunctionArgList &Args) {
547   assert(MemberInit->isAnyMemberInitializer() &&
548          "Must have member initializer!");
549   assert(MemberInit->getInit() && "Must have initializer!");
550 
551   // non-static data member initializers.
552   FieldDecl *Field = MemberInit->getAnyMember();
553   QualType FieldType = Field->getType();
554 
555   llvm::Value *ThisPtr = CGF.LoadCXXThis();
556   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
557   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
558 
559   if (MemberInit->isIndirectMemberInitializer()) {
560     // If we are initializing an anonymous union field, drill down to
561     // the field.
562     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
563     for (const auto *I : IndirectField->chain())
564       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
565     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
566   } else {
567     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
568   }
569 
570   // Special case: if we are in a copy or move constructor, and we are copying
571   // an array of PODs or classes with trivial copy constructors, ignore the
572   // AST and perform the copy we know is equivalent.
573   // FIXME: This is hacky at best... if we had a bit more explicit information
574   // in the AST, we could generalize it more easily.
575   const ConstantArrayType *Array
576     = CGF.getContext().getAsConstantArrayType(FieldType);
577   if (Array && Constructor->isDefaulted() &&
578       Constructor->isCopyOrMoveConstructor()) {
579     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
580     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
581     if (BaseElementTy.isPODType(CGF.getContext()) ||
582         (CE && CE->getConstructor()->isTrivial())) {
583       unsigned SrcArgIndex =
584           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
585       llvm::Value *SrcPtr
586         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
587       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
588       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
589 
590       // Copy the aggregate.
591       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
592                             LHS.isVolatileQualified());
593       return;
594     }
595   }
596 
597   ArrayRef<VarDecl *> ArrayIndexes;
598   if (MemberInit->getNumArrayIndices())
599     ArrayIndexes = MemberInit->getArrayIndexes();
600   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes,
601                               MemberInit->getMemberLocation());
602 }
603 
604 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
605                                               Expr *Init,
606                                               ArrayRef<VarDecl *> ArrayIndexes,
607                                               SourceLocation DbgLoc) {
608   QualType FieldType = Field->getType();
609   switch (getEvaluationKind(FieldType)) {
610   case TEK_Scalar:
611     if (LHS.isSimple()) {
612       EmitExprAsInit(Init, Field, LHS, false, DbgLoc);
613     } else {
614       RValue RHS = RValue::get(EmitScalarExpr(Init));
615       EmitStoreThroughLValue(RHS, LHS);
616     }
617     break;
618   case TEK_Complex:
619     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true, DbgLoc);
620     break;
621   case TEK_Aggregate: {
622     llvm::Value *ArrayIndexVar = nullptr;
623     if (ArrayIndexes.size()) {
624       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
625 
626       // The LHS is a pointer to the first object we'll be constructing, as
627       // a flat array.
628       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
629       llvm::Type *BasePtr = ConvertType(BaseElementTy);
630       BasePtr = llvm::PointerType::getUnqual(BasePtr);
631       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
632                                                        BasePtr);
633       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
634 
635       // Create an array index that will be used to walk over all of the
636       // objects we're constructing.
637       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
638       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
639       Builder.CreateStore(Zero, ArrayIndexVar);
640 
641 
642       // Emit the block variables for the array indices, if any.
643       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
644         EmitAutoVarDecl(*ArrayIndexes[I]);
645     }
646 
647     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
648                              ArrayIndexes, 0);
649   }
650   }
651 
652   // Ensure that we destroy this object if an exception is thrown
653   // later in the constructor.
654   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
655   if (needsEHCleanup(dtorKind))
656     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
657 }
658 
659 /// Checks whether the given constructor is a valid subject for the
660 /// complete-to-base constructor delegation optimization, i.e.
661 /// emitting the complete constructor as a simple call to the base
662 /// constructor.
663 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
664 
665   // Currently we disable the optimization for classes with virtual
666   // bases because (1) the addresses of parameter variables need to be
667   // consistent across all initializers but (2) the delegate function
668   // call necessarily creates a second copy of the parameter variable.
669   //
670   // The limiting example (purely theoretical AFAIK):
671   //   struct A { A(int &c) { c++; } };
672   //   struct B : virtual A {
673   //     B(int count) : A(count) { printf("%d\n", count); }
674   //   };
675   // ...although even this example could in principle be emitted as a
676   // delegation since the address of the parameter doesn't escape.
677   if (Ctor->getParent()->getNumVBases()) {
678     // TODO: white-list trivial vbase initializers.  This case wouldn't
679     // be subject to the restrictions below.
680 
681     // TODO: white-list cases where:
682     //  - there are no non-reference parameters to the constructor
683     //  - the initializers don't access any non-reference parameters
684     //  - the initializers don't take the address of non-reference
685     //    parameters
686     //  - etc.
687     // If we ever add any of the above cases, remember that:
688     //  - function-try-blocks will always blacklist this optimization
689     //  - we need to perform the constructor prologue and cleanup in
690     //    EmitConstructorBody.
691 
692     return false;
693   }
694 
695   // We also disable the optimization for variadic functions because
696   // it's impossible to "re-pass" varargs.
697   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
698     return false;
699 
700   // FIXME: Decide if we can do a delegation of a delegating constructor.
701   if (Ctor->isDelegatingConstructor())
702     return false;
703 
704   return true;
705 }
706 
707 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
708 // to poison the extra field paddings inserted under
709 // -fsanitize-address-field-padding=1|2.
710 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
711   ASTContext &Context = getContext();
712   const CXXRecordDecl *ClassDecl =
713       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
714                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
715   if (!ClassDecl->mayInsertExtraPadding()) return;
716 
717   struct SizeAndOffset {
718     uint64_t Size;
719     uint64_t Offset;
720   };
721 
722   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
723   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
724 
725   // Populate sizes and offsets of fields.
726   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
727   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
728     SSV[i].Offset =
729         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
730 
731   size_t NumFields = 0;
732   for (const auto *Field : ClassDecl->fields()) {
733     const FieldDecl *D = Field;
734     std::pair<CharUnits, CharUnits> FieldInfo =
735         Context.getTypeInfoInChars(D->getType());
736     CharUnits FieldSize = FieldInfo.first;
737     assert(NumFields < SSV.size());
738     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
739     NumFields++;
740   }
741   assert(NumFields == SSV.size());
742   if (SSV.size() <= 1) return;
743 
744   // We will insert calls to __asan_* run-time functions.
745   // LLVM AddressSanitizer pass may decide to inline them later.
746   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
747   llvm::FunctionType *FTy =
748       llvm::FunctionType::get(CGM.VoidTy, Args, false);
749   llvm::Constant *F = CGM.CreateRuntimeFunction(
750       FTy, Prologue ? "__asan_poison_intra_object_redzone"
751                     : "__asan_unpoison_intra_object_redzone");
752 
753   llvm::Value *ThisPtr = LoadCXXThis();
754   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
755   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
756   // For each field check if it has sufficient padding,
757   // if so (un)poison it with a call.
758   for (size_t i = 0; i < SSV.size(); i++) {
759     uint64_t AsanAlignment = 8;
760     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
761     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
762     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
763     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
764         (NextField % AsanAlignment) != 0)
765       continue;
766     Builder.CreateCall2(
767         F, Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
768         Builder.getIntN(PtrSize, PoisonSize));
769   }
770 }
771 
772 /// EmitConstructorBody - Emits the body of the current constructor.
773 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
774   EmitAsanPrologueOrEpilogue(true);
775   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
776   CXXCtorType CtorType = CurGD.getCtorType();
777 
778   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
779           CtorType == Ctor_Complete) &&
780          "can only generate complete ctor for this ABI");
781 
782   // Before we go any further, try the complete->base constructor
783   // delegation optimization.
784   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
785       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
786     if (CGDebugInfo *DI = getDebugInfo())
787       DI->EmitLocation(Builder, Ctor->getLocEnd());
788     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
789     return;
790   }
791 
792   const FunctionDecl *Definition = 0;
793   Stmt *Body = Ctor->getBody(Definition);
794   assert(Definition == Ctor && "emitting wrong constructor body");
795 
796   // Enter the function-try-block before the constructor prologue if
797   // applicable.
798   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
799   if (IsTryBody)
800     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
801 
802   RegionCounter Cnt = getPGORegionCounter(Body);
803   Cnt.beginRegion(Builder);
804 
805   RunCleanupsScope RunCleanups(*this);
806 
807   // TODO: in restricted cases, we can emit the vbase initializers of
808   // a complete ctor and then delegate to the base ctor.
809 
810   // Emit the constructor prologue, i.e. the base and member
811   // initializers.
812   EmitCtorPrologue(Ctor, CtorType, Args);
813 
814   // Emit the body of the statement.
815   if (IsTryBody)
816     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
817   else if (Body)
818     EmitStmt(Body);
819 
820   // Emit any cleanup blocks associated with the member or base
821   // initializers, which includes (along the exceptional path) the
822   // destructors for those members and bases that were fully
823   // constructed.
824   RunCleanups.ForceCleanup();
825 
826   if (IsTryBody)
827     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
828 }
829 
830 namespace {
831   /// RAII object to indicate that codegen is copying the value representation
832   /// instead of the object representation. Useful when copying a struct or
833   /// class which has uninitialized members and we're only performing
834   /// lvalue-to-rvalue conversion on the object but not its members.
835   class CopyingValueRepresentation {
836   public:
837     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
838         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
839       CGF.SanOpts.set(SanitizerKind::Bool, false);
840       CGF.SanOpts.set(SanitizerKind::Enum, false);
841     }
842     ~CopyingValueRepresentation() {
843       CGF.SanOpts = OldSanOpts;
844     }
845   private:
846     CodeGenFunction &CGF;
847     SanitizerSet OldSanOpts;
848   };
849 }
850 
851 namespace {
852   class FieldMemcpyizer {
853   public:
854     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
855                     const VarDecl *SrcRec)
856       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
857         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
858         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
859         LastFieldOffset(0), LastAddedFieldIndex(0) {}
860 
861     bool isMemcpyableField(FieldDecl *F) const {
862       // Never memcpy fields when we are adding poisoned paddings.
863       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
864         return false;
865       Qualifiers Qual = F->getType().getQualifiers();
866       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
867         return false;
868       return true;
869     }
870 
871     void addMemcpyableField(FieldDecl *F) {
872       if (!FirstField)
873         addInitialField(F);
874       else
875         addNextField(F);
876     }
877 
878     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
879       unsigned LastFieldSize =
880         LastField->isBitField() ?
881           LastField->getBitWidthValue(CGF.getContext()) :
882           CGF.getContext().getTypeSize(LastField->getType());
883       uint64_t MemcpySizeBits =
884         LastFieldOffset + LastFieldSize - FirstByteOffset +
885         CGF.getContext().getCharWidth() - 1;
886       CharUnits MemcpySize =
887         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
888       return MemcpySize;
889     }
890 
891     void emitMemcpy() {
892       // Give the subclass a chance to bail out if it feels the memcpy isn't
893       // worth it (e.g. Hasn't aggregated enough data).
894       if (!FirstField) {
895         return;
896       }
897 
898       CharUnits Alignment;
899 
900       uint64_t FirstByteOffset;
901       if (FirstField->isBitField()) {
902         const CGRecordLayout &RL =
903           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
904         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
905         Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
906         // FirstFieldOffset is not appropriate for bitfields,
907         // it won't tell us what the storage offset should be and thus might not
908         // be properly aligned.
909         //
910         // Instead calculate the storage offset using the offset of the field in
911         // the struct type.
912         const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
913         FirstByteOffset =
914             DL.getStructLayout(RL.getLLVMType())
915                 ->getElementOffsetInBits(RL.getLLVMFieldNo(FirstField));
916       } else {
917         Alignment = CGF.getContext().getDeclAlign(FirstField);
918         FirstByteOffset = FirstFieldOffset;
919       }
920 
921       assert((CGF.getContext().toCharUnitsFromBits(FirstByteOffset) %
922               Alignment) == 0 && "Bad field alignment.");
923 
924       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
925       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
926       llvm::Value *ThisPtr = CGF.LoadCXXThis();
927       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
928       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
929       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
930       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
931       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
932 
933       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
934                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
935                    MemcpySize, Alignment);
936       reset();
937     }
938 
939     void reset() {
940       FirstField = nullptr;
941     }
942 
943   protected:
944     CodeGenFunction &CGF;
945     const CXXRecordDecl *ClassDecl;
946 
947   private:
948 
949     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
950                       CharUnits Size, CharUnits Alignment) {
951       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
952       llvm::Type *DBP =
953         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
954       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
955 
956       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
957       llvm::Type *SBP =
958         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
959       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
960 
961       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
962                                Alignment.getQuantity());
963     }
964 
965     void addInitialField(FieldDecl *F) {
966         FirstField = F;
967         LastField = F;
968         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
969         LastFieldOffset = FirstFieldOffset;
970         LastAddedFieldIndex = F->getFieldIndex();
971         return;
972       }
973 
974     void addNextField(FieldDecl *F) {
975       // For the most part, the following invariant will hold:
976       //   F->getFieldIndex() == LastAddedFieldIndex + 1
977       // The one exception is that Sema won't add a copy-initializer for an
978       // unnamed bitfield, which will show up here as a gap in the sequence.
979       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
980              "Cannot aggregate fields out of order.");
981       LastAddedFieldIndex = F->getFieldIndex();
982 
983       // The 'first' and 'last' fields are chosen by offset, rather than field
984       // index. This allows the code to support bitfields, as well as regular
985       // fields.
986       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
987       if (FOffset < FirstFieldOffset) {
988         FirstField = F;
989         FirstFieldOffset = FOffset;
990       } else if (FOffset > LastFieldOffset) {
991         LastField = F;
992         LastFieldOffset = FOffset;
993       }
994     }
995 
996     const VarDecl *SrcRec;
997     const ASTRecordLayout &RecLayout;
998     FieldDecl *FirstField;
999     FieldDecl *LastField;
1000     uint64_t FirstFieldOffset, LastFieldOffset;
1001     unsigned LastAddedFieldIndex;
1002   };
1003 
1004   class ConstructorMemcpyizer : public FieldMemcpyizer {
1005   private:
1006 
1007     /// Get source argument for copy constructor. Returns null if not a copy
1008     /// constructor.
1009     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1010                                                const CXXConstructorDecl *CD,
1011                                                FunctionArgList &Args) {
1012       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1013         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1014       return nullptr;
1015     }
1016 
1017     // Returns true if a CXXCtorInitializer represents a member initialization
1018     // that can be rolled into a memcpy.
1019     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1020       if (!MemcpyableCtor)
1021         return false;
1022       FieldDecl *Field = MemberInit->getMember();
1023       assert(Field && "No field for member init.");
1024       QualType FieldType = Field->getType();
1025       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1026 
1027       // Bail out on non-POD, not-trivially-constructable members.
1028       if (!(CE && CE->getConstructor()->isTrivial()) &&
1029           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1030             FieldType->isReferenceType()))
1031         return false;
1032 
1033       // Bail out on volatile fields.
1034       if (!isMemcpyableField(Field))
1035         return false;
1036 
1037       // Otherwise we're good.
1038       return true;
1039     }
1040 
1041   public:
1042     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1043                           FunctionArgList &Args)
1044       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1045         ConstructorDecl(CD),
1046         MemcpyableCtor(CD->isDefaulted() &&
1047                        CD->isCopyOrMoveConstructor() &&
1048                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1049         Args(Args) { }
1050 
1051     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1052       if (isMemberInitMemcpyable(MemberInit)) {
1053         AggregatedInits.push_back(MemberInit);
1054         addMemcpyableField(MemberInit->getMember());
1055       } else {
1056         emitAggregatedInits();
1057         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1058                               ConstructorDecl, Args);
1059       }
1060     }
1061 
1062     void emitAggregatedInits() {
1063       if (AggregatedInits.size() <= 1) {
1064         // This memcpy is too small to be worthwhile. Fall back on default
1065         // codegen.
1066         if (!AggregatedInits.empty()) {
1067           CopyingValueRepresentation CVR(CGF);
1068           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1069                                 AggregatedInits[0], ConstructorDecl, Args);
1070         }
1071         reset();
1072         return;
1073       }
1074 
1075       pushEHDestructors();
1076       emitMemcpy();
1077       AggregatedInits.clear();
1078     }
1079 
1080     void pushEHDestructors() {
1081       llvm::Value *ThisPtr = CGF.LoadCXXThis();
1082       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1083       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
1084 
1085       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1086         QualType FieldType = AggregatedInits[i]->getMember()->getType();
1087         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1088         if (CGF.needsEHCleanup(dtorKind))
1089           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
1090       }
1091     }
1092 
1093     void finish() {
1094       emitAggregatedInits();
1095     }
1096 
1097   private:
1098     const CXXConstructorDecl *ConstructorDecl;
1099     bool MemcpyableCtor;
1100     FunctionArgList &Args;
1101     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1102   };
1103 
1104   class AssignmentMemcpyizer : public FieldMemcpyizer {
1105   private:
1106 
1107     // Returns the memcpyable field copied by the given statement, if one
1108     // exists. Otherwise returns null.
1109     FieldDecl *getMemcpyableField(Stmt *S) {
1110       if (!AssignmentsMemcpyable)
1111         return nullptr;
1112       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1113         // Recognise trivial assignments.
1114         if (BO->getOpcode() != BO_Assign)
1115           return nullptr;
1116         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1117         if (!ME)
1118           return nullptr;
1119         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1120         if (!Field || !isMemcpyableField(Field))
1121           return nullptr;
1122         Stmt *RHS = BO->getRHS();
1123         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1124           RHS = EC->getSubExpr();
1125         if (!RHS)
1126           return nullptr;
1127         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1128         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1129           return nullptr;
1130         return Field;
1131       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1132         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1133         if (!(MD && (MD->isCopyAssignmentOperator() ||
1134                        MD->isMoveAssignmentOperator()) &&
1135               MD->isTrivial()))
1136           return nullptr;
1137         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1138         if (!IOA)
1139           return nullptr;
1140         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1141         if (!Field || !isMemcpyableField(Field))
1142           return nullptr;
1143         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1144         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1145           return nullptr;
1146         return Field;
1147       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1148         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1149         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1150           return nullptr;
1151         Expr *DstPtr = CE->getArg(0);
1152         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1153           DstPtr = DC->getSubExpr();
1154         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1155         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1156           return nullptr;
1157         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1158         if (!ME)
1159           return nullptr;
1160         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1161         if (!Field || !isMemcpyableField(Field))
1162           return nullptr;
1163         Expr *SrcPtr = CE->getArg(1);
1164         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1165           SrcPtr = SC->getSubExpr();
1166         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1167         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1168           return nullptr;
1169         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1170         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1171           return nullptr;
1172         return Field;
1173       }
1174 
1175       return nullptr;
1176     }
1177 
1178     bool AssignmentsMemcpyable;
1179     SmallVector<Stmt*, 16> AggregatedStmts;
1180 
1181   public:
1182 
1183     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1184                          FunctionArgList &Args)
1185       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1186         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1187       assert(Args.size() == 2);
1188     }
1189 
1190     void emitAssignment(Stmt *S) {
1191       FieldDecl *F = getMemcpyableField(S);
1192       if (F) {
1193         addMemcpyableField(F);
1194         AggregatedStmts.push_back(S);
1195       } else {
1196         emitAggregatedStmts();
1197         CGF.EmitStmt(S);
1198       }
1199     }
1200 
1201     void emitAggregatedStmts() {
1202       if (AggregatedStmts.size() <= 1) {
1203         if (!AggregatedStmts.empty()) {
1204           CopyingValueRepresentation CVR(CGF);
1205           CGF.EmitStmt(AggregatedStmts[0]);
1206         }
1207         reset();
1208       }
1209 
1210       emitMemcpy();
1211       AggregatedStmts.clear();
1212     }
1213 
1214     void finish() {
1215       emitAggregatedStmts();
1216     }
1217   };
1218 
1219 }
1220 
1221 /// EmitCtorPrologue - This routine generates necessary code to initialize
1222 /// base classes and non-static data members belonging to this constructor.
1223 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1224                                        CXXCtorType CtorType,
1225                                        FunctionArgList &Args) {
1226   if (CD->isDelegatingConstructor())
1227     return EmitDelegatingCXXConstructorCall(CD, Args);
1228 
1229   const CXXRecordDecl *ClassDecl = CD->getParent();
1230 
1231   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1232                                           E = CD->init_end();
1233 
1234   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1235   if (ClassDecl->getNumVBases() &&
1236       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1237     // The ABIs that don't have constructor variants need to put a branch
1238     // before the virtual base initialization code.
1239     BaseCtorContinueBB =
1240       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1241     assert(BaseCtorContinueBB);
1242   }
1243 
1244   // Virtual base initializers first.
1245   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1246     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1247   }
1248 
1249   if (BaseCtorContinueBB) {
1250     // Complete object handler should continue to the remaining initializers.
1251     Builder.CreateBr(BaseCtorContinueBB);
1252     EmitBlock(BaseCtorContinueBB);
1253   }
1254 
1255   // Then, non-virtual base initializers.
1256   for (; B != E && (*B)->isBaseInitializer(); B++) {
1257     assert(!(*B)->isBaseVirtual());
1258     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1259   }
1260 
1261   InitializeVTablePointers(ClassDecl);
1262 
1263   // And finally, initialize class members.
1264   FieldConstructionScope FCS(*this, CXXThisValue);
1265   ConstructorMemcpyizer CM(*this, CD, Args);
1266   for (; B != E; B++) {
1267     CXXCtorInitializer *Member = (*B);
1268     assert(!Member->isBaseInitializer());
1269     assert(Member->isAnyMemberInitializer() &&
1270            "Delegating initializer on non-delegating constructor");
1271     CM.addMemberInitializer(Member);
1272   }
1273   CM.finish();
1274 }
1275 
1276 static bool
1277 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1278 
1279 static bool
1280 HasTrivialDestructorBody(ASTContext &Context,
1281                          const CXXRecordDecl *BaseClassDecl,
1282                          const CXXRecordDecl *MostDerivedClassDecl)
1283 {
1284   // If the destructor is trivial we don't have to check anything else.
1285   if (BaseClassDecl->hasTrivialDestructor())
1286     return true;
1287 
1288   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1289     return false;
1290 
1291   // Check fields.
1292   for (const auto *Field : BaseClassDecl->fields())
1293     if (!FieldHasTrivialDestructorBody(Context, Field))
1294       return false;
1295 
1296   // Check non-virtual bases.
1297   for (const auto &I : BaseClassDecl->bases()) {
1298     if (I.isVirtual())
1299       continue;
1300 
1301     const CXXRecordDecl *NonVirtualBase =
1302       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1303     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1304                                   MostDerivedClassDecl))
1305       return false;
1306   }
1307 
1308   if (BaseClassDecl == MostDerivedClassDecl) {
1309     // Check virtual bases.
1310     for (const auto &I : BaseClassDecl->vbases()) {
1311       const CXXRecordDecl *VirtualBase =
1312         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1313       if (!HasTrivialDestructorBody(Context, VirtualBase,
1314                                     MostDerivedClassDecl))
1315         return false;
1316     }
1317   }
1318 
1319   return true;
1320 }
1321 
1322 static bool
1323 FieldHasTrivialDestructorBody(ASTContext &Context,
1324                               const FieldDecl *Field)
1325 {
1326   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1327 
1328   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1329   if (!RT)
1330     return true;
1331 
1332   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1333   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1334 }
1335 
1336 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1337 /// any vtable pointers before calling this destructor.
1338 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
1339                                                const CXXDestructorDecl *Dtor) {
1340   if (!Dtor->hasTrivialBody())
1341     return false;
1342 
1343   // Check the fields.
1344   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1345   for (const auto *Field : ClassDecl->fields())
1346     if (!FieldHasTrivialDestructorBody(Context, Field))
1347       return false;
1348 
1349   return true;
1350 }
1351 
1352 /// EmitDestructorBody - Emits the body of the current destructor.
1353 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1354   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1355   CXXDtorType DtorType = CurGD.getDtorType();
1356 
1357   // The call to operator delete in a deleting destructor happens
1358   // outside of the function-try-block, which means it's always
1359   // possible to delegate the destructor body to the complete
1360   // destructor.  Do so.
1361   if (DtorType == Dtor_Deleting) {
1362     EnterDtorCleanups(Dtor, Dtor_Deleting);
1363     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1364                           /*Delegating=*/false, LoadCXXThis());
1365     PopCleanupBlock();
1366     return;
1367   }
1368 
1369   Stmt *Body = Dtor->getBody();
1370 
1371   // If the body is a function-try-block, enter the try before
1372   // anything else.
1373   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1374   if (isTryBody)
1375     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1376   EmitAsanPrologueOrEpilogue(false);
1377 
1378   // Enter the epilogue cleanups.
1379   RunCleanupsScope DtorEpilogue(*this);
1380 
1381   // If this is the complete variant, just invoke the base variant;
1382   // the epilogue will destruct the virtual bases.  But we can't do
1383   // this optimization if the body is a function-try-block, because
1384   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1385   // always delegate because we might not have a definition in this TU.
1386   switch (DtorType) {
1387   case Dtor_Comdat:
1388     llvm_unreachable("not expecting a COMDAT");
1389 
1390   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1391 
1392   case Dtor_Complete:
1393     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1394            "can't emit a dtor without a body for non-Microsoft ABIs");
1395 
1396     // Enter the cleanup scopes for virtual bases.
1397     EnterDtorCleanups(Dtor, Dtor_Complete);
1398 
1399     if (!isTryBody) {
1400       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1401                             /*Delegating=*/false, LoadCXXThis());
1402       break;
1403     }
1404     // Fallthrough: act like we're in the base variant.
1405 
1406   case Dtor_Base:
1407     assert(Body);
1408 
1409     RegionCounter Cnt = getPGORegionCounter(Body);
1410     Cnt.beginRegion(Builder);
1411 
1412     // Enter the cleanup scopes for fields and non-virtual bases.
1413     EnterDtorCleanups(Dtor, Dtor_Base);
1414 
1415     // Initialize the vtable pointers before entering the body.
1416     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
1417         InitializeVTablePointers(Dtor->getParent());
1418 
1419     if (isTryBody)
1420       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1421     else if (Body)
1422       EmitStmt(Body);
1423     else {
1424       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1425       // nothing to do besides what's in the epilogue
1426     }
1427     // -fapple-kext must inline any call to this dtor into
1428     // the caller's body.
1429     if (getLangOpts().AppleKext)
1430       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1431     break;
1432   }
1433 
1434   // Jump out through the epilogue cleanups.
1435   DtorEpilogue.ForceCleanup();
1436 
1437   // Exit the try if applicable.
1438   if (isTryBody)
1439     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1440 }
1441 
1442 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1443   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1444   const Stmt *RootS = AssignOp->getBody();
1445   assert(isa<CompoundStmt>(RootS) &&
1446          "Body of an implicit assignment operator should be compound stmt.");
1447   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1448 
1449   LexicalScope Scope(*this, RootCS->getSourceRange());
1450 
1451   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1452   for (auto *I : RootCS->body())
1453     AM.emitAssignment(I);
1454   AM.finish();
1455 }
1456 
1457 namespace {
1458   /// Call the operator delete associated with the current destructor.
1459   struct CallDtorDelete : EHScopeStack::Cleanup {
1460     CallDtorDelete() {}
1461 
1462     void Emit(CodeGenFunction &CGF, Flags flags) override {
1463       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1464       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1465       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1466                          CGF.getContext().getTagDeclType(ClassDecl));
1467     }
1468   };
1469 
1470   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
1471     llvm::Value *ShouldDeleteCondition;
1472   public:
1473     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1474       : ShouldDeleteCondition(ShouldDeleteCondition) {
1475       assert(ShouldDeleteCondition != nullptr);
1476     }
1477 
1478     void Emit(CodeGenFunction &CGF, Flags flags) override {
1479       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1480       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1481       llvm::Value *ShouldCallDelete
1482         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1483       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1484 
1485       CGF.EmitBlock(callDeleteBB);
1486       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1487       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1488       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1489                          CGF.getContext().getTagDeclType(ClassDecl));
1490       CGF.Builder.CreateBr(continueBB);
1491 
1492       CGF.EmitBlock(continueBB);
1493     }
1494   };
1495 
1496   class DestroyField  : public EHScopeStack::Cleanup {
1497     const FieldDecl *field;
1498     CodeGenFunction::Destroyer *destroyer;
1499     bool useEHCleanupForArray;
1500 
1501   public:
1502     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1503                  bool useEHCleanupForArray)
1504       : field(field), destroyer(destroyer),
1505         useEHCleanupForArray(useEHCleanupForArray) {}
1506 
1507     void Emit(CodeGenFunction &CGF, Flags flags) override {
1508       // Find the address of the field.
1509       llvm::Value *thisValue = CGF.LoadCXXThis();
1510       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1511       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1512       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1513       assert(LV.isSimple());
1514 
1515       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1516                       flags.isForNormalCleanup() && useEHCleanupForArray);
1517     }
1518   };
1519 }
1520 
1521 /// \brief Emit all code that comes at the end of class's
1522 /// destructor. This is to call destructors on members and base classes
1523 /// in reverse order of their construction.
1524 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1525                                         CXXDtorType DtorType) {
1526   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1527          "Should not emit dtor epilogue for non-exported trivial dtor!");
1528 
1529   // The deleting-destructor phase just needs to call the appropriate
1530   // operator delete that Sema picked up.
1531   if (DtorType == Dtor_Deleting) {
1532     assert(DD->getOperatorDelete() &&
1533            "operator delete missing - EnterDtorCleanups");
1534     if (CXXStructorImplicitParamValue) {
1535       // If there is an implicit param to the deleting dtor, it's a boolean
1536       // telling whether we should call delete at the end of the dtor.
1537       EHStack.pushCleanup<CallDtorDeleteConditional>(
1538           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1539     } else {
1540       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1541     }
1542     return;
1543   }
1544 
1545   const CXXRecordDecl *ClassDecl = DD->getParent();
1546 
1547   // Unions have no bases and do not call field destructors.
1548   if (ClassDecl->isUnion())
1549     return;
1550 
1551   // The complete-destructor phase just destructs all the virtual bases.
1552   if (DtorType == Dtor_Complete) {
1553 
1554     // We push them in the forward order so that they'll be popped in
1555     // the reverse order.
1556     for (const auto &Base : ClassDecl->vbases()) {
1557       CXXRecordDecl *BaseClassDecl
1558         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1559 
1560       // Ignore trivial destructors.
1561       if (BaseClassDecl->hasTrivialDestructor())
1562         continue;
1563 
1564       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1565                                         BaseClassDecl,
1566                                         /*BaseIsVirtual*/ true);
1567     }
1568 
1569     return;
1570   }
1571 
1572   assert(DtorType == Dtor_Base);
1573 
1574   // Destroy non-virtual bases.
1575   for (const auto &Base : ClassDecl->bases()) {
1576     // Ignore virtual bases.
1577     if (Base.isVirtual())
1578       continue;
1579 
1580     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1581 
1582     // Ignore trivial destructors.
1583     if (BaseClassDecl->hasTrivialDestructor())
1584       continue;
1585 
1586     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1587                                       BaseClassDecl,
1588                                       /*BaseIsVirtual*/ false);
1589   }
1590 
1591   // Destroy direct fields.
1592   for (const auto *Field : ClassDecl->fields()) {
1593     QualType type = Field->getType();
1594     QualType::DestructionKind dtorKind = type.isDestructedType();
1595     if (!dtorKind) continue;
1596 
1597     // Anonymous union members do not have their destructors called.
1598     const RecordType *RT = type->getAsUnionType();
1599     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1600 
1601     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1602     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1603                                       getDestroyer(dtorKind),
1604                                       cleanupKind & EHCleanup);
1605   }
1606 }
1607 
1608 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1609 /// constructor for each of several members of an array.
1610 ///
1611 /// \param ctor the constructor to call for each element
1612 /// \param arrayType the type of the array to initialize
1613 /// \param arrayBegin an arrayType*
1614 /// \param zeroInitialize true if each element should be
1615 ///   zero-initialized before it is constructed
1616 void CodeGenFunction::EmitCXXAggrConstructorCall(
1617     const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
1618     llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1619   QualType elementType;
1620   llvm::Value *numElements =
1621     emitArrayLength(arrayType, elementType, arrayBegin);
1622 
1623   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1624 }
1625 
1626 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1627 /// constructor for each of several members of an array.
1628 ///
1629 /// \param ctor the constructor to call for each element
1630 /// \param numElements the number of elements in the array;
1631 ///   may be zero
1632 /// \param arrayBegin a T*, where T is the type constructed by ctor
1633 /// \param zeroInitialize true if each element should be
1634 ///   zero-initialized before it is constructed
1635 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1636                                                  llvm::Value *numElements,
1637                                                  llvm::Value *arrayBegin,
1638                                                  const CXXConstructExpr *E,
1639                                                  bool zeroInitialize) {
1640 
1641   // It's legal for numElements to be zero.  This can happen both
1642   // dynamically, because x can be zero in 'new A[x]', and statically,
1643   // because of GCC extensions that permit zero-length arrays.  There
1644   // are probably legitimate places where we could assume that this
1645   // doesn't happen, but it's not clear that it's worth it.
1646   llvm::BranchInst *zeroCheckBranch = nullptr;
1647 
1648   // Optimize for a constant count.
1649   llvm::ConstantInt *constantCount
1650     = dyn_cast<llvm::ConstantInt>(numElements);
1651   if (constantCount) {
1652     // Just skip out if the constant count is zero.
1653     if (constantCount->isZero()) return;
1654 
1655   // Otherwise, emit the check.
1656   } else {
1657     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1658     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1659     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1660     EmitBlock(loopBB);
1661   }
1662 
1663   // Find the end of the array.
1664   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1665                                                     "arrayctor.end");
1666 
1667   // Enter the loop, setting up a phi for the current location to initialize.
1668   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1669   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1670   EmitBlock(loopBB);
1671   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1672                                          "arrayctor.cur");
1673   cur->addIncoming(arrayBegin, entryBB);
1674 
1675   // Inside the loop body, emit the constructor call on the array element.
1676 
1677   QualType type = getContext().getTypeDeclType(ctor->getParent());
1678 
1679   // Zero initialize the storage, if requested.
1680   if (zeroInitialize)
1681     EmitNullInitialization(cur, type);
1682 
1683   // C++ [class.temporary]p4:
1684   // There are two contexts in which temporaries are destroyed at a different
1685   // point than the end of the full-expression. The first context is when a
1686   // default constructor is called to initialize an element of an array.
1687   // If the constructor has one or more default arguments, the destruction of
1688   // every temporary created in a default argument expression is sequenced
1689   // before the construction of the next array element, if any.
1690 
1691   {
1692     RunCleanupsScope Scope(*this);
1693 
1694     // Evaluate the constructor and its arguments in a regular
1695     // partial-destroy cleanup.
1696     if (getLangOpts().Exceptions &&
1697         !ctor->getParent()->hasTrivialDestructor()) {
1698       Destroyer *destroyer = destroyCXXObject;
1699       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1700     }
1701 
1702     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
1703                            /*Delegating=*/false, cur, E);
1704   }
1705 
1706   // Go to the next element.
1707   llvm::Value *next =
1708     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1709                               "arrayctor.next");
1710   cur->addIncoming(next, Builder.GetInsertBlock());
1711 
1712   // Check whether that's the end of the loop.
1713   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1714   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1715   Builder.CreateCondBr(done, contBB, loopBB);
1716 
1717   // Patch the earlier check to skip over the loop.
1718   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1719 
1720   EmitBlock(contBB);
1721 }
1722 
1723 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1724                                        llvm::Value *addr,
1725                                        QualType type) {
1726   const RecordType *rtype = type->castAs<RecordType>();
1727   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1728   const CXXDestructorDecl *dtor = record->getDestructor();
1729   assert(!dtor->isTrivial());
1730   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1731                             /*Delegating=*/false, addr);
1732 }
1733 
1734 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1735                                              CXXCtorType Type,
1736                                              bool ForVirtualBase,
1737                                              bool Delegating, llvm::Value *This,
1738                                              const CXXConstructExpr *E) {
1739   // If this is a trivial constructor, just emit what's needed.
1740   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) {
1741     if (E->getNumArgs() == 0) {
1742       // Trivial default constructor, no codegen required.
1743       assert(D->isDefaultConstructor() &&
1744              "trivial 0-arg ctor not a default ctor");
1745       return;
1746     }
1747 
1748     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1749     assert(D->isCopyOrMoveConstructor() &&
1750            "trivial 1-arg ctor not a copy/move ctor");
1751 
1752     const Expr *Arg = E->getArg(0);
1753     QualType Ty = Arg->getType();
1754     llvm::Value *Src = EmitLValue(Arg).getAddress();
1755     EmitAggregateCopy(This, Src, Ty);
1756     return;
1757   }
1758 
1759   // C++11 [class.mfct.non-static]p2:
1760   //   If a non-static member function of a class X is called for an object that
1761   //   is not of type X, or of a type derived from X, the behavior is undefined.
1762   // FIXME: Provide a source location here.
1763   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This,
1764                 getContext().getRecordType(D->getParent()));
1765 
1766   CallArgList Args;
1767 
1768   // Push the this ptr.
1769   Args.add(RValue::get(This), D->getThisType(getContext()));
1770 
1771   // Add the rest of the user-supplied arguments.
1772   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1773   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor());
1774 
1775   // Insert any ABI-specific implicit constructor arguments.
1776   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
1777       *this, D, Type, ForVirtualBase, Delegating, Args);
1778 
1779   // Emit the call.
1780   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
1781   const CGFunctionInfo &Info =
1782       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
1783   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
1784 }
1785 
1786 void
1787 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1788                                         llvm::Value *This, llvm::Value *Src,
1789                                         const CXXConstructExpr *E) {
1790   if (D->isTrivial() &&
1791       !D->getParent()->mayInsertExtraPadding()) {
1792     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1793     assert(D->isCopyOrMoveConstructor() &&
1794            "trivial 1-arg ctor not a copy/move ctor");
1795     EmitAggregateCopy(This, Src, E->arg_begin()->getType());
1796     return;
1797   }
1798   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
1799   assert(D->isInstance() &&
1800          "Trying to emit a member call expr on a static method!");
1801 
1802   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1803 
1804   CallArgList Args;
1805 
1806   // Push the this ptr.
1807   Args.add(RValue::get(This), D->getThisType(getContext()));
1808 
1809   // Push the src ptr.
1810   QualType QT = *(FPT->param_type_begin());
1811   llvm::Type *t = CGM.getTypes().ConvertType(QT);
1812   Src = Builder.CreateBitCast(Src, t);
1813   Args.add(RValue::get(Src), QT);
1814 
1815   // Skip over first argument (Src).
1816   EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(),
1817                /*ParamsToSkip*/ 1);
1818 
1819   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1820            Callee, ReturnValueSlot(), Args, D);
1821 }
1822 
1823 void
1824 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1825                                                 CXXCtorType CtorType,
1826                                                 const FunctionArgList &Args,
1827                                                 SourceLocation Loc) {
1828   CallArgList DelegateArgs;
1829 
1830   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1831   assert(I != E && "no parameters to constructor");
1832 
1833   // this
1834   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1835   ++I;
1836 
1837   // vtt
1838   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
1839                                          /*ForVirtualBase=*/false,
1840                                          /*Delegating=*/true)) {
1841     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1842     DelegateArgs.add(RValue::get(VTT), VoidPP);
1843 
1844     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
1845       assert(I != E && "cannot skip vtt parameter, already done with args");
1846       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1847       ++I;
1848     }
1849   }
1850 
1851   // Explicit arguments.
1852   for (; I != E; ++I) {
1853     const VarDecl *param = *I;
1854     // FIXME: per-argument source location
1855     EmitDelegateCallArg(DelegateArgs, param, Loc);
1856   }
1857 
1858   llvm::Value *Callee =
1859       CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
1860   EmitCall(CGM.getTypes()
1861                .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
1862            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
1863 }
1864 
1865 namespace {
1866   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1867     const CXXDestructorDecl *Dtor;
1868     llvm::Value *Addr;
1869     CXXDtorType Type;
1870 
1871     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1872                            CXXDtorType Type)
1873       : Dtor(D), Addr(Addr), Type(Type) {}
1874 
1875     void Emit(CodeGenFunction &CGF, Flags flags) override {
1876       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1877                                 /*Delegating=*/true, Addr);
1878     }
1879   };
1880 }
1881 
1882 void
1883 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1884                                                   const FunctionArgList &Args) {
1885   assert(Ctor->isDelegatingConstructor());
1886 
1887   llvm::Value *ThisPtr = LoadCXXThis();
1888 
1889   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1890   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1891   AggValueSlot AggSlot =
1892     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1893                           AggValueSlot::IsDestructed,
1894                           AggValueSlot::DoesNotNeedGCBarriers,
1895                           AggValueSlot::IsNotAliased);
1896 
1897   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1898 
1899   const CXXRecordDecl *ClassDecl = Ctor->getParent();
1900   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1901     CXXDtorType Type =
1902       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1903 
1904     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1905                                                 ClassDecl->getDestructor(),
1906                                                 ThisPtr, Type);
1907   }
1908 }
1909 
1910 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1911                                             CXXDtorType Type,
1912                                             bool ForVirtualBase,
1913                                             bool Delegating,
1914                                             llvm::Value *This) {
1915   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
1916                                      Delegating, This);
1917 }
1918 
1919 namespace {
1920   struct CallLocalDtor : EHScopeStack::Cleanup {
1921     const CXXDestructorDecl *Dtor;
1922     llvm::Value *Addr;
1923 
1924     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1925       : Dtor(D), Addr(Addr) {}
1926 
1927     void Emit(CodeGenFunction &CGF, Flags flags) override {
1928       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1929                                 /*ForVirtualBase=*/false,
1930                                 /*Delegating=*/false, Addr);
1931     }
1932   };
1933 }
1934 
1935 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1936                                             llvm::Value *Addr) {
1937   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1938 }
1939 
1940 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1941   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1942   if (!ClassDecl) return;
1943   if (ClassDecl->hasTrivialDestructor()) return;
1944 
1945   const CXXDestructorDecl *D = ClassDecl->getDestructor();
1946   assert(D && D->isUsed() && "destructor not marked as used!");
1947   PushDestructorCleanup(D, Addr);
1948 }
1949 
1950 void
1951 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1952                                          const CXXRecordDecl *NearestVBase,
1953                                          CharUnits OffsetFromNearestVBase,
1954                                          const CXXRecordDecl *VTableClass) {
1955   // Compute the address point.
1956   bool NeedsVirtualOffset;
1957   llvm::Value *VTableAddressPoint =
1958       CGM.getCXXABI().getVTableAddressPointInStructor(
1959           *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
1960   if (!VTableAddressPoint)
1961     return;
1962 
1963   // Compute where to store the address point.
1964   llvm::Value *VirtualOffset = nullptr;
1965   CharUnits NonVirtualOffset = CharUnits::Zero();
1966 
1967   if (NeedsVirtualOffset) {
1968     // We need to use the virtual base offset offset because the virtual base
1969     // might have a different offset in the most derived class.
1970     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
1971                                                               LoadCXXThis(),
1972                                                               VTableClass,
1973                                                               NearestVBase);
1974     NonVirtualOffset = OffsetFromNearestVBase;
1975   } else {
1976     // We can just use the base offset in the complete class.
1977     NonVirtualOffset = Base.getBaseOffset();
1978   }
1979 
1980   // Apply the offsets.
1981   llvm::Value *VTableField = LoadCXXThis();
1982 
1983   if (!NonVirtualOffset.isZero() || VirtualOffset)
1984     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
1985                                                   NonVirtualOffset,
1986                                                   VirtualOffset);
1987 
1988   // Finally, store the address point. Use the same LLVM types as the field to
1989   // support optimization.
1990   llvm::Type *VTablePtrTy =
1991       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
1992           ->getPointerTo()
1993           ->getPointerTo();
1994   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
1995   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
1996   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
1997   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
1998 }
1999 
2000 void
2001 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
2002                                           const CXXRecordDecl *NearestVBase,
2003                                           CharUnits OffsetFromNearestVBase,
2004                                           bool BaseIsNonVirtualPrimaryBase,
2005                                           const CXXRecordDecl *VTableClass,
2006                                           VisitedVirtualBasesSetTy& VBases) {
2007   // If this base is a non-virtual primary base the address point has already
2008   // been set.
2009   if (!BaseIsNonVirtualPrimaryBase) {
2010     // Initialize the vtable pointer for this base.
2011     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
2012                             VTableClass);
2013   }
2014 
2015   const CXXRecordDecl *RD = Base.getBase();
2016 
2017   // Traverse bases.
2018   for (const auto &I : RD->bases()) {
2019     CXXRecordDecl *BaseDecl
2020       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2021 
2022     // Ignore classes without a vtable.
2023     if (!BaseDecl->isDynamicClass())
2024       continue;
2025 
2026     CharUnits BaseOffset;
2027     CharUnits BaseOffsetFromNearestVBase;
2028     bool BaseDeclIsNonVirtualPrimaryBase;
2029 
2030     if (I.isVirtual()) {
2031       // Check if we've visited this virtual base before.
2032       if (!VBases.insert(BaseDecl).second)
2033         continue;
2034 
2035       const ASTRecordLayout &Layout =
2036         getContext().getASTRecordLayout(VTableClass);
2037 
2038       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2039       BaseOffsetFromNearestVBase = CharUnits::Zero();
2040       BaseDeclIsNonVirtualPrimaryBase = false;
2041     } else {
2042       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2043 
2044       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2045       BaseOffsetFromNearestVBase =
2046         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2047       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2048     }
2049 
2050     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
2051                              I.isVirtual() ? BaseDecl : NearestVBase,
2052                              BaseOffsetFromNearestVBase,
2053                              BaseDeclIsNonVirtualPrimaryBase,
2054                              VTableClass, VBases);
2055   }
2056 }
2057 
2058 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2059   // Ignore classes without a vtable.
2060   if (!RD->isDynamicClass())
2061     return;
2062 
2063   // Initialize the vtable pointers for this class and all of its bases.
2064   VisitedVirtualBasesSetTy VBases;
2065   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
2066                            /*NearestVBase=*/nullptr,
2067                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2068                            /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
2069 
2070   if (RD->getNumVBases())
2071     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2072 }
2073 
2074 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
2075                                            llvm::Type *Ty) {
2076   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
2077   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2078   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
2079   return VTable;
2080 }
2081 
2082 
2083 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2084 // quite what we want.
2085 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2086   while (true) {
2087     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2088       E = PE->getSubExpr();
2089       continue;
2090     }
2091 
2092     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2093       if (CE->getCastKind() == CK_NoOp) {
2094         E = CE->getSubExpr();
2095         continue;
2096       }
2097     }
2098     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2099       if (UO->getOpcode() == UO_Extension) {
2100         E = UO->getSubExpr();
2101         continue;
2102       }
2103     }
2104     return E;
2105   }
2106 }
2107 
2108 bool
2109 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2110                                                    const CXXMethodDecl *MD) {
2111   // When building with -fapple-kext, all calls must go through the vtable since
2112   // the kernel linker can do runtime patching of vtables.
2113   if (getLangOpts().AppleKext)
2114     return false;
2115 
2116   // If the most derived class is marked final, we know that no subclass can
2117   // override this member function and so we can devirtualize it. For example:
2118   //
2119   // struct A { virtual void f(); }
2120   // struct B final : A { };
2121   //
2122   // void f(B *b) {
2123   //   b->f();
2124   // }
2125   //
2126   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2127   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2128     return true;
2129 
2130   // If the member function is marked 'final', we know that it can't be
2131   // overridden and can therefore devirtualize it.
2132   if (MD->hasAttr<FinalAttr>())
2133     return true;
2134 
2135   // Similarly, if the class itself is marked 'final' it can't be overridden
2136   // and we can therefore devirtualize the member function call.
2137   if (MD->getParent()->hasAttr<FinalAttr>())
2138     return true;
2139 
2140   Base = skipNoOpCastsAndParens(Base);
2141   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2142     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2143       // This is a record decl. We know the type and can devirtualize it.
2144       return VD->getType()->isRecordType();
2145     }
2146 
2147     return false;
2148   }
2149 
2150   // We can devirtualize calls on an object accessed by a class member access
2151   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2152   // a derived class object constructed in the same location.
2153   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2154     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2155       return VD->getType()->isRecordType();
2156 
2157   // We can always devirtualize calls on temporary object expressions.
2158   if (isa<CXXConstructExpr>(Base))
2159     return true;
2160 
2161   // And calls on bound temporaries.
2162   if (isa<CXXBindTemporaryExpr>(Base))
2163     return true;
2164 
2165   // Check if this is a call expr that returns a record type.
2166   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2167     return CE->getCallReturnType()->isRecordType();
2168 
2169   // We can't devirtualize the call.
2170   return false;
2171 }
2172 
2173 void CodeGenFunction::EmitForwardingCallToLambda(
2174                                       const CXXMethodDecl *callOperator,
2175                                       CallArgList &callArgs) {
2176   // Get the address of the call operator.
2177   const CGFunctionInfo &calleeFnInfo =
2178     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2179   llvm::Value *callee =
2180     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2181                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2182 
2183   // Prepare the return slot.
2184   const FunctionProtoType *FPT =
2185     callOperator->getType()->castAs<FunctionProtoType>();
2186   QualType resultType = FPT->getReturnType();
2187   ReturnValueSlot returnSlot;
2188   if (!resultType->isVoidType() &&
2189       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2190       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2191     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2192 
2193   // We don't need to separately arrange the call arguments because
2194   // the call can't be variadic anyway --- it's impossible to forward
2195   // variadic arguments.
2196 
2197   // Now emit our call.
2198   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2199                        callArgs, callOperator);
2200 
2201   // If necessary, copy the returned value into the slot.
2202   if (!resultType->isVoidType() && returnSlot.isNull())
2203     EmitReturnOfRValue(RV, resultType);
2204   else
2205     EmitBranchThroughCleanup(ReturnBlock);
2206 }
2207 
2208 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2209   const BlockDecl *BD = BlockInfo->getBlockDecl();
2210   const VarDecl *variable = BD->capture_begin()->getVariable();
2211   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2212 
2213   // Start building arguments for forwarding call
2214   CallArgList CallArgs;
2215 
2216   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2217   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
2218   CallArgs.add(RValue::get(ThisPtr), ThisType);
2219 
2220   // Add the rest of the parameters.
2221   for (auto param : BD->params())
2222     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2223 
2224   assert(!Lambda->isGenericLambda() &&
2225             "generic lambda interconversion to block not implemented");
2226   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2227 }
2228 
2229 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2230   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2231     // FIXME: Making this work correctly is nasty because it requires either
2232     // cloning the body of the call operator or making the call operator forward.
2233     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2234     return;
2235   }
2236 
2237   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2238 }
2239 
2240 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2241   const CXXRecordDecl *Lambda = MD->getParent();
2242 
2243   // Start building arguments for forwarding call
2244   CallArgList CallArgs;
2245 
2246   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2247   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2248   CallArgs.add(RValue::get(ThisPtr), ThisType);
2249 
2250   // Add the rest of the parameters.
2251   for (auto Param : MD->params())
2252     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2253 
2254   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2255   // For a generic lambda, find the corresponding call operator specialization
2256   // to which the call to the static-invoker shall be forwarded.
2257   if (Lambda->isGenericLambda()) {
2258     assert(MD->isFunctionTemplateSpecialization());
2259     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2260     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2261     void *InsertPos = nullptr;
2262     FunctionDecl *CorrespondingCallOpSpecialization =
2263         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2264     assert(CorrespondingCallOpSpecialization);
2265     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2266   }
2267   EmitForwardingCallToLambda(CallOp, CallArgs);
2268 }
2269 
2270 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2271   if (MD->isVariadic()) {
2272     // FIXME: Making this work correctly is nasty because it requires either
2273     // cloning the body of the call operator or making the call operator forward.
2274     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2275     return;
2276   }
2277 
2278   EmitLambdaDelegatingInvokeBody(MD);
2279 }
2280