1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CGCXXABI.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/TargetBuiltins.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 
26 using namespace clang;
27 using namespace CodeGen;
28 
29 static CharUnits
30 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
31                                  const CXXRecordDecl *DerivedClass,
32                                  CastExpr::path_const_iterator Start,
33                                  CastExpr::path_const_iterator End) {
34   CharUnits Offset = CharUnits::Zero();
35 
36   const CXXRecordDecl *RD = DerivedClass;
37 
38   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
39     const CXXBaseSpecifier *Base = *I;
40     assert(!Base->isVirtual() && "Should not see virtual bases here!");
41 
42     // Get the layout.
43     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
44 
45     const CXXRecordDecl *BaseDecl =
46       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
47 
48     // Add the offset.
49     Offset += Layout.getBaseClassOffset(BaseDecl);
50 
51     RD = BaseDecl;
52   }
53 
54   return Offset;
55 }
56 
57 llvm::Constant *
58 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
59                                    CastExpr::path_const_iterator PathBegin,
60                                    CastExpr::path_const_iterator PathEnd) {
61   assert(PathBegin != PathEnd && "Base path should not be empty!");
62 
63   CharUnits Offset =
64     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
65                                      PathBegin, PathEnd);
66   if (Offset.isZero())
67     return 0;
68 
69   llvm::Type *PtrDiffTy =
70   Types.ConvertType(getContext().getPointerDiffType());
71 
72   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
73 }
74 
75 /// Gets the address of a direct base class within a complete object.
76 /// This should only be used for (1) non-virtual bases or (2) virtual bases
77 /// when the type is known to be complete (e.g. in complete destructors).
78 ///
79 /// The object pointed to by 'This' is assumed to be non-null.
80 llvm::Value *
81 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
82                                                    const CXXRecordDecl *Derived,
83                                                    const CXXRecordDecl *Base,
84                                                    bool BaseIsVirtual) {
85   // 'this' must be a pointer (in some address space) to Derived.
86   assert(This->getType()->isPointerTy() &&
87          cast<llvm::PointerType>(This->getType())->getElementType()
88            == ConvertType(Derived));
89 
90   // Compute the offset of the virtual base.
91   CharUnits Offset;
92   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
93   if (BaseIsVirtual)
94     Offset = Layout.getVBaseClassOffset(Base);
95   else
96     Offset = Layout.getBaseClassOffset(Base);
97 
98   // Shift and cast down to the base type.
99   // TODO: for complete types, this should be possible with a GEP.
100   llvm::Value *V = This;
101   if (Offset.isPositive()) {
102     V = Builder.CreateBitCast(V, Int8PtrTy);
103     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
104   }
105   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
106 
107   return V;
108 }
109 
110 static llvm::Value *
111 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
112                                 CharUnits nonVirtualOffset,
113                                 llvm::Value *virtualOffset) {
114   // Assert that we have something to do.
115   assert(!nonVirtualOffset.isZero() || virtualOffset != 0);
116 
117   // Compute the offset from the static and dynamic components.
118   llvm::Value *baseOffset;
119   if (!nonVirtualOffset.isZero()) {
120     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
121                                         nonVirtualOffset.getQuantity());
122     if (virtualOffset) {
123       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
124     }
125   } else {
126     baseOffset = virtualOffset;
127   }
128 
129   // Apply the base offset.
130   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
131   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
132   return ptr;
133 }
134 
135 llvm::Value *
136 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
137                                        const CXXRecordDecl *Derived,
138                                        CastExpr::path_const_iterator PathBegin,
139                                        CastExpr::path_const_iterator PathEnd,
140                                        bool NullCheckValue) {
141   assert(PathBegin != PathEnd && "Base path should not be empty!");
142 
143   CastExpr::path_const_iterator Start = PathBegin;
144   const CXXRecordDecl *VBase = 0;
145 
146   // Sema has done some convenient canonicalization here: if the
147   // access path involved any virtual steps, the conversion path will
148   // *start* with a step down to the correct virtual base subobject,
149   // and hence will not require any further steps.
150   if ((*Start)->isVirtual()) {
151     VBase =
152       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
153     ++Start;
154   }
155 
156   // Compute the static offset of the ultimate destination within its
157   // allocating subobject (the virtual base, if there is one, or else
158   // the "complete" object that we see).
159   CharUnits NonVirtualOffset =
160     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
161                                      Start, PathEnd);
162 
163   // If there's a virtual step, we can sometimes "devirtualize" it.
164   // For now, that's limited to when the derived type is final.
165   // TODO: "devirtualize" this for accesses to known-complete objects.
166   if (VBase && Derived->hasAttr<FinalAttr>()) {
167     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
168     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
169     NonVirtualOffset += vBaseOffset;
170     VBase = 0; // we no longer have a virtual step
171   }
172 
173   // Get the base pointer type.
174   llvm::Type *BasePtrTy =
175     ConvertType((PathEnd[-1])->getType())->getPointerTo();
176 
177   // If the static offset is zero and we don't have a virtual step,
178   // just do a bitcast; null checks are unnecessary.
179   if (NonVirtualOffset.isZero() && !VBase) {
180     return Builder.CreateBitCast(Value, BasePtrTy);
181   }
182 
183   llvm::BasicBlock *origBB = 0;
184   llvm::BasicBlock *endBB = 0;
185 
186   // Skip over the offset (and the vtable load) if we're supposed to
187   // null-check the pointer.
188   if (NullCheckValue) {
189     origBB = Builder.GetInsertBlock();
190     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
191     endBB = createBasicBlock("cast.end");
192 
193     llvm::Value *isNull = Builder.CreateIsNull(Value);
194     Builder.CreateCondBr(isNull, endBB, notNullBB);
195     EmitBlock(notNullBB);
196   }
197 
198   // Compute the virtual offset.
199   llvm::Value *VirtualOffset = 0;
200   if (VBase) {
201     VirtualOffset = GetVirtualBaseClassOffset(Value, Derived, VBase);
202   }
203 
204   // Apply both offsets.
205   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
206                                           NonVirtualOffset,
207                                           VirtualOffset);
208 
209   // Cast to the destination type.
210   Value = Builder.CreateBitCast(Value, BasePtrTy);
211 
212   // Build a phi if we needed a null check.
213   if (NullCheckValue) {
214     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
215     Builder.CreateBr(endBB);
216     EmitBlock(endBB);
217 
218     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
219     PHI->addIncoming(Value, notNullBB);
220     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
221     Value = PHI;
222   }
223 
224   return Value;
225 }
226 
227 llvm::Value *
228 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
229                                           const CXXRecordDecl *Derived,
230                                         CastExpr::path_const_iterator PathBegin,
231                                           CastExpr::path_const_iterator PathEnd,
232                                           bool NullCheckValue) {
233   assert(PathBegin != PathEnd && "Base path should not be empty!");
234 
235   QualType DerivedTy =
236     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
237   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
238 
239   llvm::Value *NonVirtualOffset =
240     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
241 
242   if (!NonVirtualOffset) {
243     // No offset, we can just cast back.
244     return Builder.CreateBitCast(Value, DerivedPtrTy);
245   }
246 
247   llvm::BasicBlock *CastNull = 0;
248   llvm::BasicBlock *CastNotNull = 0;
249   llvm::BasicBlock *CastEnd = 0;
250 
251   if (NullCheckValue) {
252     CastNull = createBasicBlock("cast.null");
253     CastNotNull = createBasicBlock("cast.notnull");
254     CastEnd = createBasicBlock("cast.end");
255 
256     llvm::Value *IsNull = Builder.CreateIsNull(Value);
257     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
258     EmitBlock(CastNotNull);
259   }
260 
261   // Apply the offset.
262   Value = Builder.CreateBitCast(Value, Int8PtrTy);
263   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
264                             "sub.ptr");
265 
266   // Just cast.
267   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
268 
269   if (NullCheckValue) {
270     Builder.CreateBr(CastEnd);
271     EmitBlock(CastNull);
272     Builder.CreateBr(CastEnd);
273     EmitBlock(CastEnd);
274 
275     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
276     PHI->addIncoming(Value, CastNotNull);
277     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
278                      CastNull);
279     Value = PHI;
280   }
281 
282   return Value;
283 }
284 
285 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
286                                               bool ForVirtualBase,
287                                               bool Delegating) {
288   if (!CodeGenVTables::needsVTTParameter(GD)) {
289     // This constructor/destructor does not need a VTT parameter.
290     return 0;
291   }
292 
293   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
294   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
295 
296   llvm::Value *VTT;
297 
298   uint64_t SubVTTIndex;
299 
300   if (Delegating) {
301     // If this is a delegating constructor call, just load the VTT.
302     return LoadCXXVTT();
303   } else if (RD == Base) {
304     // If the record matches the base, this is the complete ctor/dtor
305     // variant calling the base variant in a class with virtual bases.
306     assert(!CodeGenVTables::needsVTTParameter(CurGD) &&
307            "doing no-op VTT offset in base dtor/ctor?");
308     assert(!ForVirtualBase && "Can't have same class as virtual base!");
309     SubVTTIndex = 0;
310   } else {
311     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
312     CharUnits BaseOffset = ForVirtualBase ?
313       Layout.getVBaseClassOffset(Base) :
314       Layout.getBaseClassOffset(Base);
315 
316     SubVTTIndex =
317       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
318     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
319   }
320 
321   if (CodeGenVTables::needsVTTParameter(CurGD)) {
322     // A VTT parameter was passed to the constructor, use it.
323     VTT = LoadCXXVTT();
324     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
325   } else {
326     // We're the complete constructor, so get the VTT by name.
327     VTT = CGM.getVTables().GetAddrOfVTT(RD);
328     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
329   }
330 
331   return VTT;
332 }
333 
334 namespace {
335   /// Call the destructor for a direct base class.
336   struct CallBaseDtor : EHScopeStack::Cleanup {
337     const CXXRecordDecl *BaseClass;
338     bool BaseIsVirtual;
339     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
340       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
341 
342     void Emit(CodeGenFunction &CGF, Flags flags) {
343       const CXXRecordDecl *DerivedClass =
344         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
345 
346       const CXXDestructorDecl *D = BaseClass->getDestructor();
347       llvm::Value *Addr =
348         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
349                                                   DerivedClass, BaseClass,
350                                                   BaseIsVirtual);
351       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
352                                 /*Delegating=*/false, Addr);
353     }
354   };
355 
356   /// A visitor which checks whether an initializer uses 'this' in a
357   /// way which requires the vtable to be properly set.
358   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
359     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
360 
361     bool UsesThis;
362 
363     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
364 
365     // Black-list all explicit and implicit references to 'this'.
366     //
367     // Do we need to worry about external references to 'this' derived
368     // from arbitrary code?  If so, then anything which runs arbitrary
369     // external code might potentially access the vtable.
370     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
371   };
372 }
373 
374 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
375   DynamicThisUseChecker Checker(C);
376   Checker.Visit(const_cast<Expr*>(Init));
377   return Checker.UsesThis;
378 }
379 
380 static void EmitBaseInitializer(CodeGenFunction &CGF,
381                                 const CXXRecordDecl *ClassDecl,
382                                 CXXCtorInitializer *BaseInit,
383                                 CXXCtorType CtorType) {
384   assert(BaseInit->isBaseInitializer() &&
385          "Must have base initializer!");
386 
387   llvm::Value *ThisPtr = CGF.LoadCXXThis();
388 
389   const Type *BaseType = BaseInit->getBaseClass();
390   CXXRecordDecl *BaseClassDecl =
391     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
392 
393   bool isBaseVirtual = BaseInit->isBaseVirtual();
394 
395   // The base constructor doesn't construct virtual bases.
396   if (CtorType == Ctor_Base && isBaseVirtual)
397     return;
398 
399   // If the initializer for the base (other than the constructor
400   // itself) accesses 'this' in any way, we need to initialize the
401   // vtables.
402   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
403     CGF.InitializeVTablePointers(ClassDecl);
404 
405   // We can pretend to be a complete class because it only matters for
406   // virtual bases, and we only do virtual bases for complete ctors.
407   llvm::Value *V =
408     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
409                                               BaseClassDecl,
410                                               isBaseVirtual);
411   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
412   AggValueSlot AggSlot =
413     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
414                           AggValueSlot::IsDestructed,
415                           AggValueSlot::DoesNotNeedGCBarriers,
416                           AggValueSlot::IsNotAliased);
417 
418   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
419 
420   if (CGF.CGM.getLangOpts().Exceptions &&
421       !BaseClassDecl->hasTrivialDestructor())
422     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
423                                           isBaseVirtual);
424 }
425 
426 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
427                                      LValue LHS,
428                                      Expr *Init,
429                                      llvm::Value *ArrayIndexVar,
430                                      QualType T,
431                                      ArrayRef<VarDecl *> ArrayIndexes,
432                                      unsigned Index) {
433   if (Index == ArrayIndexes.size()) {
434     LValue LV = LHS;
435     { // Scope for Cleanups.
436       CodeGenFunction::RunCleanupsScope Cleanups(CGF);
437 
438       if (ArrayIndexVar) {
439         // If we have an array index variable, load it and use it as an offset.
440         // Then, increment the value.
441         llvm::Value *Dest = LHS.getAddress();
442         llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
443         Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
444         llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
445         Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
446         CGF.Builder.CreateStore(Next, ArrayIndexVar);
447 
448         // Update the LValue.
449         LV.setAddress(Dest);
450         CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
451         LV.setAlignment(std::min(Align, LV.getAlignment()));
452       }
453 
454       switch (CGF.getEvaluationKind(T)) {
455       case TEK_Scalar:
456         CGF.EmitScalarInit(Init, /*decl*/ 0, LV, false);
457         break;
458       case TEK_Complex:
459         CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
460         break;
461       case TEK_Aggregate: {
462         AggValueSlot Slot =
463           AggValueSlot::forLValue(LV,
464                                   AggValueSlot::IsDestructed,
465                                   AggValueSlot::DoesNotNeedGCBarriers,
466                                   AggValueSlot::IsNotAliased);
467 
468         CGF.EmitAggExpr(Init, Slot);
469         break;
470       }
471       }
472     }
473 
474     // Now, outside of the initializer cleanup scope, destroy the backing array
475     // for a std::initializer_list member.
476     CGF.MaybeEmitStdInitializerListCleanup(LV.getAddress(), Init);
477 
478     return;
479   }
480 
481   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
482   assert(Array && "Array initialization without the array type?");
483   llvm::Value *IndexVar
484     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
485   assert(IndexVar && "Array index variable not loaded");
486 
487   // Initialize this index variable to zero.
488   llvm::Value* Zero
489     = llvm::Constant::getNullValue(
490                               CGF.ConvertType(CGF.getContext().getSizeType()));
491   CGF.Builder.CreateStore(Zero, IndexVar);
492 
493   // Start the loop with a block that tests the condition.
494   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
495   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
496 
497   CGF.EmitBlock(CondBlock);
498 
499   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
500   // Generate: if (loop-index < number-of-elements) fall to the loop body,
501   // otherwise, go to the block after the for-loop.
502   uint64_t NumElements = Array->getSize().getZExtValue();
503   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
504   llvm::Value *NumElementsPtr =
505     llvm::ConstantInt::get(Counter->getType(), NumElements);
506   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
507                                                   "isless");
508 
509   // If the condition is true, execute the body.
510   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
511 
512   CGF.EmitBlock(ForBody);
513   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
514 
515   {
516     CodeGenFunction::RunCleanupsScope Cleanups(CGF);
517 
518     // Inside the loop body recurse to emit the inner loop or, eventually, the
519     // constructor call.
520     EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
521                              Array->getElementType(), ArrayIndexes, Index + 1);
522   }
523 
524   CGF.EmitBlock(ContinueBlock);
525 
526   // Emit the increment of the loop counter.
527   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
528   Counter = CGF.Builder.CreateLoad(IndexVar);
529   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
530   CGF.Builder.CreateStore(NextVal, IndexVar);
531 
532   // Finally, branch back up to the condition for the next iteration.
533   CGF.EmitBranch(CondBlock);
534 
535   // Emit the fall-through block.
536   CGF.EmitBlock(AfterFor, true);
537 }
538 
539 static void EmitMemberInitializer(CodeGenFunction &CGF,
540                                   const CXXRecordDecl *ClassDecl,
541                                   CXXCtorInitializer *MemberInit,
542                                   const CXXConstructorDecl *Constructor,
543                                   FunctionArgList &Args) {
544   assert(MemberInit->isAnyMemberInitializer() &&
545          "Must have member initializer!");
546   assert(MemberInit->getInit() && "Must have initializer!");
547 
548   // non-static data member initializers.
549   FieldDecl *Field = MemberInit->getAnyMember();
550   QualType FieldType = Field->getType();
551 
552   llvm::Value *ThisPtr = CGF.LoadCXXThis();
553   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
554   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
555 
556   if (MemberInit->isIndirectMemberInitializer()) {
557     // If we are initializing an anonymous union field, drill down to
558     // the field.
559     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
560     IndirectFieldDecl::chain_iterator I = IndirectField->chain_begin(),
561       IEnd = IndirectField->chain_end();
562     for ( ; I != IEnd; ++I)
563       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(*I));
564     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
565   } else {
566     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
567   }
568 
569   // Special case: if we are in a copy or move constructor, and we are copying
570   // an array of PODs or classes with trivial copy constructors, ignore the
571   // AST and perform the copy we know is equivalent.
572   // FIXME: This is hacky at best... if we had a bit more explicit information
573   // in the AST, we could generalize it more easily.
574   const ConstantArrayType *Array
575     = CGF.getContext().getAsConstantArrayType(FieldType);
576   if (Array && Constructor->isImplicitlyDefined() &&
577       Constructor->isCopyOrMoveConstructor()) {
578     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
579     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
580     if (BaseElementTy.isPODType(CGF.getContext()) ||
581         (CE && CE->getConstructor()->isTrivial())) {
582       // Find the source pointer. We know it's the last argument because
583       // we know we're in an implicit copy constructor.
584       unsigned SrcArgIndex = Args.size() - 1;
585       llvm::Value *SrcPtr
586         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
587       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
588       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
589 
590       // Copy the aggregate.
591       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
592                             LHS.isVolatileQualified());
593       return;
594     }
595   }
596 
597   ArrayRef<VarDecl *> ArrayIndexes;
598   if (MemberInit->getNumArrayIndices())
599     ArrayIndexes = MemberInit->getArrayIndexes();
600   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
601 }
602 
603 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
604                                               LValue LHS, Expr *Init,
605                                              ArrayRef<VarDecl *> ArrayIndexes) {
606   QualType FieldType = Field->getType();
607   switch (getEvaluationKind(FieldType)) {
608   case TEK_Scalar:
609     if (LHS.isSimple()) {
610       EmitExprAsInit(Init, Field, LHS, false);
611     } else {
612       RValue RHS = RValue::get(EmitScalarExpr(Init));
613       EmitStoreThroughLValue(RHS, LHS);
614     }
615     break;
616   case TEK_Complex:
617     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
618     break;
619   case TEK_Aggregate: {
620     llvm::Value *ArrayIndexVar = 0;
621     if (ArrayIndexes.size()) {
622       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
623 
624       // The LHS is a pointer to the first object we'll be constructing, as
625       // a flat array.
626       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
627       llvm::Type *BasePtr = ConvertType(BaseElementTy);
628       BasePtr = llvm::PointerType::getUnqual(BasePtr);
629       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
630                                                        BasePtr);
631       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
632 
633       // Create an array index that will be used to walk over all of the
634       // objects we're constructing.
635       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
636       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
637       Builder.CreateStore(Zero, ArrayIndexVar);
638 
639 
640       // Emit the block variables for the array indices, if any.
641       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
642         EmitAutoVarDecl(*ArrayIndexes[I]);
643     }
644 
645     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
646                              ArrayIndexes, 0);
647   }
648   }
649 
650   // Ensure that we destroy this object if an exception is thrown
651   // later in the constructor.
652   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
653   if (needsEHCleanup(dtorKind))
654     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
655 }
656 
657 /// Checks whether the given constructor is a valid subject for the
658 /// complete-to-base constructor delegation optimization, i.e.
659 /// emitting the complete constructor as a simple call to the base
660 /// constructor.
661 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
662 
663   // Currently we disable the optimization for classes with virtual
664   // bases because (1) the addresses of parameter variables need to be
665   // consistent across all initializers but (2) the delegate function
666   // call necessarily creates a second copy of the parameter variable.
667   //
668   // The limiting example (purely theoretical AFAIK):
669   //   struct A { A(int &c) { c++; } };
670   //   struct B : virtual A {
671   //     B(int count) : A(count) { printf("%d\n", count); }
672   //   };
673   // ...although even this example could in principle be emitted as a
674   // delegation since the address of the parameter doesn't escape.
675   if (Ctor->getParent()->getNumVBases()) {
676     // TODO: white-list trivial vbase initializers.  This case wouldn't
677     // be subject to the restrictions below.
678 
679     // TODO: white-list cases where:
680     //  - there are no non-reference parameters to the constructor
681     //  - the initializers don't access any non-reference parameters
682     //  - the initializers don't take the address of non-reference
683     //    parameters
684     //  - etc.
685     // If we ever add any of the above cases, remember that:
686     //  - function-try-blocks will always blacklist this optimization
687     //  - we need to perform the constructor prologue and cleanup in
688     //    EmitConstructorBody.
689 
690     return false;
691   }
692 
693   // We also disable the optimization for variadic functions because
694   // it's impossible to "re-pass" varargs.
695   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
696     return false;
697 
698   // FIXME: Decide if we can do a delegation of a delegating constructor.
699   if (Ctor->isDelegatingConstructor())
700     return false;
701 
702   return true;
703 }
704 
705 /// EmitConstructorBody - Emits the body of the current constructor.
706 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
707   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
708   CXXCtorType CtorType = CurGD.getCtorType();
709 
710   // Before we go any further, try the complete->base constructor
711   // delegation optimization.
712   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
713       CGM.getContext().getTargetInfo().getCXXABI().hasConstructorVariants()) {
714     if (CGDebugInfo *DI = getDebugInfo())
715       DI->EmitLocation(Builder, Ctor->getLocEnd());
716     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args);
717     return;
718   }
719 
720   Stmt *Body = Ctor->getBody();
721 
722   // Enter the function-try-block before the constructor prologue if
723   // applicable.
724   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
725   if (IsTryBody)
726     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
727 
728   EHScopeStack::stable_iterator CleanupDepth = EHStack.stable_begin();
729 
730   // TODO: in restricted cases, we can emit the vbase initializers of
731   // a complete ctor and then delegate to the base ctor.
732 
733   // Emit the constructor prologue, i.e. the base and member
734   // initializers.
735   EmitCtorPrologue(Ctor, CtorType, Args);
736 
737   // Emit the body of the statement.
738   if (IsTryBody)
739     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
740   else if (Body)
741     EmitStmt(Body);
742 
743   // Emit any cleanup blocks associated with the member or base
744   // initializers, which includes (along the exceptional path) the
745   // destructors for those members and bases that were fully
746   // constructed.
747   PopCleanupBlocks(CleanupDepth);
748 
749   if (IsTryBody)
750     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
751 }
752 
753 namespace {
754   class FieldMemcpyizer {
755   public:
756     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
757                     const VarDecl *SrcRec)
758       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
759         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
760         FirstField(0), LastField(0), FirstFieldOffset(0), LastFieldOffset(0),
761         LastAddedFieldIndex(0) { }
762 
763     static bool isMemcpyableField(FieldDecl *F) {
764       Qualifiers Qual = F->getType().getQualifiers();
765       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
766         return false;
767       return true;
768     }
769 
770     void addMemcpyableField(FieldDecl *F) {
771       if (FirstField == 0)
772         addInitialField(F);
773       else
774         addNextField(F);
775     }
776 
777     CharUnits getMemcpySize() const {
778       unsigned LastFieldSize =
779         LastField->isBitField() ?
780           LastField->getBitWidthValue(CGF.getContext()) :
781           CGF.getContext().getTypeSize(LastField->getType());
782       uint64_t MemcpySizeBits =
783         LastFieldOffset + LastFieldSize - FirstFieldOffset +
784         CGF.getContext().getCharWidth() - 1;
785       CharUnits MemcpySize =
786         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
787       return MemcpySize;
788     }
789 
790     void emitMemcpy() {
791       // Give the subclass a chance to bail out if it feels the memcpy isn't
792       // worth it (e.g. Hasn't aggregated enough data).
793       if (FirstField == 0) {
794         return;
795       }
796 
797       CharUnits Alignment;
798 
799       if (FirstField->isBitField()) {
800         const CGRecordLayout &RL =
801           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
802         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
803         Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
804       } else {
805         Alignment = CGF.getContext().getDeclAlign(FirstField);
806       }
807 
808       assert((CGF.getContext().toCharUnitsFromBits(FirstFieldOffset) %
809               Alignment) == 0 && "Bad field alignment.");
810 
811       CharUnits MemcpySize = getMemcpySize();
812       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
813       llvm::Value *ThisPtr = CGF.LoadCXXThis();
814       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
815       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
816       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
817       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
818       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
819 
820       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
821                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
822                    MemcpySize, Alignment);
823       reset();
824     }
825 
826     void reset() {
827       FirstField = 0;
828     }
829 
830   protected:
831     CodeGenFunction &CGF;
832     const CXXRecordDecl *ClassDecl;
833 
834   private:
835 
836     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
837                       CharUnits Size, CharUnits Alignment) {
838       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
839       llvm::Type *DBP =
840         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
841       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
842 
843       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
844       llvm::Type *SBP =
845         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
846       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
847 
848       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
849                                Alignment.getQuantity());
850     }
851 
852     void addInitialField(FieldDecl *F) {
853         FirstField = F;
854         LastField = F;
855         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
856         LastFieldOffset = FirstFieldOffset;
857         LastAddedFieldIndex = F->getFieldIndex();
858         return;
859       }
860 
861     void addNextField(FieldDecl *F) {
862       assert(F->getFieldIndex() == LastAddedFieldIndex + 1 &&
863              "Cannot aggregate non-contiguous fields.");
864       LastAddedFieldIndex = F->getFieldIndex();
865 
866       // The 'first' and 'last' fields are chosen by offset, rather than field
867       // index. This allows the code to support bitfields, as well as regular
868       // fields.
869       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
870       if (FOffset < FirstFieldOffset) {
871         FirstField = F;
872         FirstFieldOffset = FOffset;
873       } else if (FOffset > LastFieldOffset) {
874         LastField = F;
875         LastFieldOffset = FOffset;
876       }
877     }
878 
879     const VarDecl *SrcRec;
880     const ASTRecordLayout &RecLayout;
881     FieldDecl *FirstField;
882     FieldDecl *LastField;
883     uint64_t FirstFieldOffset, LastFieldOffset;
884     unsigned LastAddedFieldIndex;
885   };
886 
887   class ConstructorMemcpyizer : public FieldMemcpyizer {
888   private:
889 
890     /// Get source argument for copy constructor. Returns null if not a copy
891     /// constructor.
892     static const VarDecl* getTrivialCopySource(const CXXConstructorDecl *CD,
893                                                FunctionArgList &Args) {
894       if (CD->isCopyOrMoveConstructor() && CD->isImplicitlyDefined())
895         return Args[Args.size() - 1];
896       return 0;
897     }
898 
899     // Returns true if a CXXCtorInitializer represents a member initialization
900     // that can be rolled into a memcpy.
901     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
902       if (!MemcpyableCtor)
903         return false;
904       FieldDecl *Field = MemberInit->getMember();
905       assert(Field != 0 && "No field for member init.");
906       QualType FieldType = Field->getType();
907       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
908 
909       // Bail out on non-POD, not-trivially-constructable members.
910       if (!(CE && CE->getConstructor()->isTrivial()) &&
911           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
912             FieldType->isReferenceType()))
913         return false;
914 
915       // Bail out on volatile fields.
916       if (!isMemcpyableField(Field))
917         return false;
918 
919       // Otherwise we're good.
920       return true;
921     }
922 
923   public:
924     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
925                           FunctionArgList &Args)
926       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CD, Args)),
927         ConstructorDecl(CD),
928         MemcpyableCtor(CD->isImplicitlyDefined() &&
929                        CD->isCopyOrMoveConstructor() &&
930                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
931         Args(Args) { }
932 
933     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
934       if (isMemberInitMemcpyable(MemberInit)) {
935         AggregatedInits.push_back(MemberInit);
936         addMemcpyableField(MemberInit->getMember());
937       } else {
938         emitAggregatedInits();
939         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
940                               ConstructorDecl, Args);
941       }
942     }
943 
944     void emitAggregatedInits() {
945       if (AggregatedInits.size() <= 1) {
946         // This memcpy is too small to be worthwhile. Fall back on default
947         // codegen.
948         for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
949           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
950                                 AggregatedInits[i], ConstructorDecl, Args);
951         }
952         reset();
953         return;
954       }
955 
956       pushEHDestructors();
957       emitMemcpy();
958       AggregatedInits.clear();
959     }
960 
961     void pushEHDestructors() {
962       llvm::Value *ThisPtr = CGF.LoadCXXThis();
963       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
964       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
965 
966       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
967         QualType FieldType = AggregatedInits[i]->getMember()->getType();
968         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
969         if (CGF.needsEHCleanup(dtorKind))
970           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
971       }
972     }
973 
974     void finish() {
975       emitAggregatedInits();
976     }
977 
978   private:
979     const CXXConstructorDecl *ConstructorDecl;
980     bool MemcpyableCtor;
981     FunctionArgList &Args;
982     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
983   };
984 
985   class AssignmentMemcpyizer : public FieldMemcpyizer {
986   private:
987 
988     // Returns the memcpyable field copied by the given statement, if one
989     // exists. Otherwise r
990     FieldDecl* getMemcpyableField(Stmt *S) {
991       if (!AssignmentsMemcpyable)
992         return 0;
993       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
994         // Recognise trivial assignments.
995         if (BO->getOpcode() != BO_Assign)
996           return 0;
997         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
998         if (!ME)
999           return 0;
1000         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1001         if (!Field || !isMemcpyableField(Field))
1002           return 0;
1003         Stmt *RHS = BO->getRHS();
1004         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1005           RHS = EC->getSubExpr();
1006         if (!RHS)
1007           return 0;
1008         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1009         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1010           return 0;
1011         return Field;
1012       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1013         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1014         if (!(MD && (MD->isCopyAssignmentOperator() ||
1015                        MD->isMoveAssignmentOperator()) &&
1016               MD->isTrivial()))
1017           return 0;
1018         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1019         if (!IOA)
1020           return 0;
1021         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1022         if (!Field || !isMemcpyableField(Field))
1023           return 0;
1024         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1025         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1026           return 0;
1027         return Field;
1028       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1029         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1030         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1031           return 0;
1032         Expr *DstPtr = CE->getArg(0);
1033         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1034           DstPtr = DC->getSubExpr();
1035         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1036         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1037           return 0;
1038         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1039         if (!ME)
1040           return 0;
1041         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1042         if (!Field || !isMemcpyableField(Field))
1043           return 0;
1044         Expr *SrcPtr = CE->getArg(1);
1045         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1046           SrcPtr = SC->getSubExpr();
1047         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1048         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1049           return 0;
1050         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1051         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1052           return 0;
1053         return Field;
1054       }
1055 
1056       return 0;
1057     }
1058 
1059     bool AssignmentsMemcpyable;
1060     SmallVector<Stmt*, 16> AggregatedStmts;
1061 
1062   public:
1063 
1064     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1065                          FunctionArgList &Args)
1066       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1067         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1068       assert(Args.size() == 2);
1069     }
1070 
1071     void emitAssignment(Stmt *S) {
1072       FieldDecl *F = getMemcpyableField(S);
1073       if (F) {
1074         addMemcpyableField(F);
1075         AggregatedStmts.push_back(S);
1076       } else {
1077         emitAggregatedStmts();
1078         CGF.EmitStmt(S);
1079       }
1080     }
1081 
1082     void emitAggregatedStmts() {
1083       if (AggregatedStmts.size() <= 1) {
1084         for (unsigned i = 0; i < AggregatedStmts.size(); ++i)
1085           CGF.EmitStmt(AggregatedStmts[i]);
1086         reset();
1087       }
1088 
1089       emitMemcpy();
1090       AggregatedStmts.clear();
1091     }
1092 
1093     void finish() {
1094       emitAggregatedStmts();
1095     }
1096   };
1097 
1098 }
1099 
1100 /// EmitCtorPrologue - This routine generates necessary code to initialize
1101 /// base classes and non-static data members belonging to this constructor.
1102 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1103                                        CXXCtorType CtorType,
1104                                        FunctionArgList &Args) {
1105   if (CD->isDelegatingConstructor())
1106     return EmitDelegatingCXXConstructorCall(CD, Args);
1107 
1108   const CXXRecordDecl *ClassDecl = CD->getParent();
1109 
1110   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1111                                           E = CD->init_end();
1112 
1113   llvm::BasicBlock *BaseCtorContinueBB = 0;
1114   if (ClassDecl->getNumVBases() &&
1115       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1116     // The ABIs that don't have constructor variants need to put a branch
1117     // before the virtual base initialization code.
1118     BaseCtorContinueBB = CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this);
1119     assert(BaseCtorContinueBB);
1120   }
1121 
1122   // Virtual base initializers first.
1123   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1124     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1125   }
1126 
1127   if (BaseCtorContinueBB) {
1128     // Complete object handler should continue to the remaining initializers.
1129     Builder.CreateBr(BaseCtorContinueBB);
1130     EmitBlock(BaseCtorContinueBB);
1131   }
1132 
1133   // Then, non-virtual base initializers.
1134   for (; B != E && (*B)->isBaseInitializer(); B++) {
1135     assert(!(*B)->isBaseVirtual());
1136     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1137   }
1138 
1139   InitializeVTablePointers(ClassDecl);
1140 
1141   // And finally, initialize class members.
1142   ConstructorMemcpyizer CM(*this, CD, Args);
1143   for (; B != E; B++) {
1144     CXXCtorInitializer *Member = (*B);
1145     assert(!Member->isBaseInitializer());
1146     assert(Member->isAnyMemberInitializer() &&
1147            "Delegating initializer on non-delegating constructor");
1148     CM.addMemberInitializer(Member);
1149   }
1150   CM.finish();
1151 }
1152 
1153 static bool
1154 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1155 
1156 static bool
1157 HasTrivialDestructorBody(ASTContext &Context,
1158                          const CXXRecordDecl *BaseClassDecl,
1159                          const CXXRecordDecl *MostDerivedClassDecl)
1160 {
1161   // If the destructor is trivial we don't have to check anything else.
1162   if (BaseClassDecl->hasTrivialDestructor())
1163     return true;
1164 
1165   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1166     return false;
1167 
1168   // Check fields.
1169   for (CXXRecordDecl::field_iterator I = BaseClassDecl->field_begin(),
1170        E = BaseClassDecl->field_end(); I != E; ++I) {
1171     const FieldDecl *Field = *I;
1172 
1173     if (!FieldHasTrivialDestructorBody(Context, Field))
1174       return false;
1175   }
1176 
1177   // Check non-virtual bases.
1178   for (CXXRecordDecl::base_class_const_iterator I =
1179        BaseClassDecl->bases_begin(), E = BaseClassDecl->bases_end();
1180        I != E; ++I) {
1181     if (I->isVirtual())
1182       continue;
1183 
1184     const CXXRecordDecl *NonVirtualBase =
1185       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1186     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1187                                   MostDerivedClassDecl))
1188       return false;
1189   }
1190 
1191   if (BaseClassDecl == MostDerivedClassDecl) {
1192     // Check virtual bases.
1193     for (CXXRecordDecl::base_class_const_iterator I =
1194          BaseClassDecl->vbases_begin(), E = BaseClassDecl->vbases_end();
1195          I != E; ++I) {
1196       const CXXRecordDecl *VirtualBase =
1197         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1198       if (!HasTrivialDestructorBody(Context, VirtualBase,
1199                                     MostDerivedClassDecl))
1200         return false;
1201     }
1202   }
1203 
1204   return true;
1205 }
1206 
1207 static bool
1208 FieldHasTrivialDestructorBody(ASTContext &Context,
1209                               const FieldDecl *Field)
1210 {
1211   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1212 
1213   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1214   if (!RT)
1215     return true;
1216 
1217   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1218   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1219 }
1220 
1221 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1222 /// any vtable pointers before calling this destructor.
1223 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
1224                                                const CXXDestructorDecl *Dtor) {
1225   if (!Dtor->hasTrivialBody())
1226     return false;
1227 
1228   // Check the fields.
1229   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1230   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1231        E = ClassDecl->field_end(); I != E; ++I) {
1232     const FieldDecl *Field = *I;
1233 
1234     if (!FieldHasTrivialDestructorBody(Context, Field))
1235       return false;
1236   }
1237 
1238   return true;
1239 }
1240 
1241 /// EmitDestructorBody - Emits the body of the current destructor.
1242 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1243   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1244   CXXDtorType DtorType = CurGD.getDtorType();
1245 
1246   // The call to operator delete in a deleting destructor happens
1247   // outside of the function-try-block, which means it's always
1248   // possible to delegate the destructor body to the complete
1249   // destructor.  Do so.
1250   if (DtorType == Dtor_Deleting) {
1251     EnterDtorCleanups(Dtor, Dtor_Deleting);
1252     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1253                           /*Delegating=*/false, LoadCXXThis());
1254     PopCleanupBlock();
1255     return;
1256   }
1257 
1258   Stmt *Body = Dtor->getBody();
1259 
1260   // If the body is a function-try-block, enter the try before
1261   // anything else.
1262   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1263   if (isTryBody)
1264     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1265 
1266   // Enter the epilogue cleanups.
1267   RunCleanupsScope DtorEpilogue(*this);
1268 
1269   // If this is the complete variant, just invoke the base variant;
1270   // the epilogue will destruct the virtual bases.  But we can't do
1271   // this optimization if the body is a function-try-block, because
1272   // we'd introduce *two* handler blocks.
1273   switch (DtorType) {
1274   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1275 
1276   case Dtor_Complete:
1277     // Enter the cleanup scopes for virtual bases.
1278     EnterDtorCleanups(Dtor, Dtor_Complete);
1279 
1280     if (!isTryBody &&
1281         CGM.getContext().getTargetInfo().getCXXABI().hasDestructorVariants()) {
1282       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1283                             /*Delegating=*/false, LoadCXXThis());
1284       break;
1285     }
1286     // Fallthrough: act like we're in the base variant.
1287 
1288   case Dtor_Base:
1289     // Enter the cleanup scopes for fields and non-virtual bases.
1290     EnterDtorCleanups(Dtor, Dtor_Base);
1291 
1292     // Initialize the vtable pointers before entering the body.
1293     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
1294         InitializeVTablePointers(Dtor->getParent());
1295 
1296     if (isTryBody)
1297       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1298     else if (Body)
1299       EmitStmt(Body);
1300     else {
1301       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1302       // nothing to do besides what's in the epilogue
1303     }
1304     // -fapple-kext must inline any call to this dtor into
1305     // the caller's body.
1306     if (getLangOpts().AppleKext)
1307       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1308     break;
1309   }
1310 
1311   // Jump out through the epilogue cleanups.
1312   DtorEpilogue.ForceCleanup();
1313 
1314   // Exit the try if applicable.
1315   if (isTryBody)
1316     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1317 }
1318 
1319 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1320   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1321   const Stmt *RootS = AssignOp->getBody();
1322   assert(isa<CompoundStmt>(RootS) &&
1323          "Body of an implicit assignment operator should be compound stmt.");
1324   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1325 
1326   LexicalScope Scope(*this, RootCS->getSourceRange());
1327 
1328   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1329   for (CompoundStmt::const_body_iterator I = RootCS->body_begin(),
1330                                          E = RootCS->body_end();
1331        I != E; ++I) {
1332     AM.emitAssignment(*I);
1333   }
1334   AM.finish();
1335 }
1336 
1337 namespace {
1338   /// Call the operator delete associated with the current destructor.
1339   struct CallDtorDelete : EHScopeStack::Cleanup {
1340     CallDtorDelete() {}
1341 
1342     void Emit(CodeGenFunction &CGF, Flags flags) {
1343       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1344       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1345       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1346                          CGF.getContext().getTagDeclType(ClassDecl));
1347     }
1348   };
1349 
1350   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
1351     llvm::Value *ShouldDeleteCondition;
1352   public:
1353     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1354       : ShouldDeleteCondition(ShouldDeleteCondition) {
1355       assert(ShouldDeleteCondition != NULL);
1356     }
1357 
1358     void Emit(CodeGenFunction &CGF, Flags flags) {
1359       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1360       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1361       llvm::Value *ShouldCallDelete
1362         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1363       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1364 
1365       CGF.EmitBlock(callDeleteBB);
1366       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1367       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1368       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1369                          CGF.getContext().getTagDeclType(ClassDecl));
1370       CGF.Builder.CreateBr(continueBB);
1371 
1372       CGF.EmitBlock(continueBB);
1373     }
1374   };
1375 
1376   class DestroyField  : public EHScopeStack::Cleanup {
1377     const FieldDecl *field;
1378     CodeGenFunction::Destroyer *destroyer;
1379     bool useEHCleanupForArray;
1380 
1381   public:
1382     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1383                  bool useEHCleanupForArray)
1384       : field(field), destroyer(destroyer),
1385         useEHCleanupForArray(useEHCleanupForArray) {}
1386 
1387     void Emit(CodeGenFunction &CGF, Flags flags) {
1388       // Find the address of the field.
1389       llvm::Value *thisValue = CGF.LoadCXXThis();
1390       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1391       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1392       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1393       assert(LV.isSimple());
1394 
1395       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1396                       flags.isForNormalCleanup() && useEHCleanupForArray);
1397     }
1398   };
1399 }
1400 
1401 /// EmitDtorEpilogue - Emit all code that comes at the end of class's
1402 /// destructor. This is to call destructors on members and base classes
1403 /// in reverse order of their construction.
1404 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1405                                         CXXDtorType DtorType) {
1406   assert(!DD->isTrivial() &&
1407          "Should not emit dtor epilogue for trivial dtor!");
1408 
1409   // The deleting-destructor phase just needs to call the appropriate
1410   // operator delete that Sema picked up.
1411   if (DtorType == Dtor_Deleting) {
1412     assert(DD->getOperatorDelete() &&
1413            "operator delete missing - EmitDtorEpilogue");
1414     if (CXXStructorImplicitParamValue) {
1415       // If there is an implicit param to the deleting dtor, it's a boolean
1416       // telling whether we should call delete at the end of the dtor.
1417       EHStack.pushCleanup<CallDtorDeleteConditional>(
1418           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1419     } else {
1420       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1421     }
1422     return;
1423   }
1424 
1425   const CXXRecordDecl *ClassDecl = DD->getParent();
1426 
1427   // Unions have no bases and do not call field destructors.
1428   if (ClassDecl->isUnion())
1429     return;
1430 
1431   // The complete-destructor phase just destructs all the virtual bases.
1432   if (DtorType == Dtor_Complete) {
1433 
1434     // We push them in the forward order so that they'll be popped in
1435     // the reverse order.
1436     for (CXXRecordDecl::base_class_const_iterator I =
1437            ClassDecl->vbases_begin(), E = ClassDecl->vbases_end();
1438               I != E; ++I) {
1439       const CXXBaseSpecifier &Base = *I;
1440       CXXRecordDecl *BaseClassDecl
1441         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1442 
1443       // Ignore trivial destructors.
1444       if (BaseClassDecl->hasTrivialDestructor())
1445         continue;
1446 
1447       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1448                                         BaseClassDecl,
1449                                         /*BaseIsVirtual*/ true);
1450     }
1451 
1452     return;
1453   }
1454 
1455   assert(DtorType == Dtor_Base);
1456 
1457   // Destroy non-virtual bases.
1458   for (CXXRecordDecl::base_class_const_iterator I =
1459         ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) {
1460     const CXXBaseSpecifier &Base = *I;
1461 
1462     // Ignore virtual bases.
1463     if (Base.isVirtual())
1464       continue;
1465 
1466     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1467 
1468     // Ignore trivial destructors.
1469     if (BaseClassDecl->hasTrivialDestructor())
1470       continue;
1471 
1472     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1473                                       BaseClassDecl,
1474                                       /*BaseIsVirtual*/ false);
1475   }
1476 
1477   // Destroy direct fields.
1478   SmallVector<const FieldDecl *, 16> FieldDecls;
1479   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1480        E = ClassDecl->field_end(); I != E; ++I) {
1481     const FieldDecl *field = *I;
1482     QualType type = field->getType();
1483     QualType::DestructionKind dtorKind = type.isDestructedType();
1484     if (!dtorKind) continue;
1485 
1486     // Anonymous union members do not have their destructors called.
1487     const RecordType *RT = type->getAsUnionType();
1488     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1489 
1490     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1491     EHStack.pushCleanup<DestroyField>(cleanupKind, field,
1492                                       getDestroyer(dtorKind),
1493                                       cleanupKind & EHCleanup);
1494   }
1495 }
1496 
1497 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1498 /// constructor for each of several members of an array.
1499 ///
1500 /// \param ctor the constructor to call for each element
1501 /// \param arrayType the type of the array to initialize
1502 /// \param arrayBegin an arrayType*
1503 /// \param zeroInitialize true if each element should be
1504 ///   zero-initialized before it is constructed
1505 void
1506 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1507                                             const ConstantArrayType *arrayType,
1508                                             llvm::Value *arrayBegin,
1509                                           CallExpr::const_arg_iterator argBegin,
1510                                             CallExpr::const_arg_iterator argEnd,
1511                                             bool zeroInitialize) {
1512   QualType elementType;
1513   llvm::Value *numElements =
1514     emitArrayLength(arrayType, elementType, arrayBegin);
1515 
1516   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin,
1517                              argBegin, argEnd, zeroInitialize);
1518 }
1519 
1520 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1521 /// constructor for each of several members of an array.
1522 ///
1523 /// \param ctor the constructor to call for each element
1524 /// \param numElements the number of elements in the array;
1525 ///   may be zero
1526 /// \param arrayBegin a T*, where T is the type constructed by ctor
1527 /// \param zeroInitialize true if each element should be
1528 ///   zero-initialized before it is constructed
1529 void
1530 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1531                                             llvm::Value *numElements,
1532                                             llvm::Value *arrayBegin,
1533                                          CallExpr::const_arg_iterator argBegin,
1534                                            CallExpr::const_arg_iterator argEnd,
1535                                             bool zeroInitialize) {
1536 
1537   // It's legal for numElements to be zero.  This can happen both
1538   // dynamically, because x can be zero in 'new A[x]', and statically,
1539   // because of GCC extensions that permit zero-length arrays.  There
1540   // are probably legitimate places where we could assume that this
1541   // doesn't happen, but it's not clear that it's worth it.
1542   llvm::BranchInst *zeroCheckBranch = 0;
1543 
1544   // Optimize for a constant count.
1545   llvm::ConstantInt *constantCount
1546     = dyn_cast<llvm::ConstantInt>(numElements);
1547   if (constantCount) {
1548     // Just skip out if the constant count is zero.
1549     if (constantCount->isZero()) return;
1550 
1551   // Otherwise, emit the check.
1552   } else {
1553     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1554     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1555     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1556     EmitBlock(loopBB);
1557   }
1558 
1559   // Find the end of the array.
1560   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1561                                                     "arrayctor.end");
1562 
1563   // Enter the loop, setting up a phi for the current location to initialize.
1564   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1565   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1566   EmitBlock(loopBB);
1567   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1568                                          "arrayctor.cur");
1569   cur->addIncoming(arrayBegin, entryBB);
1570 
1571   // Inside the loop body, emit the constructor call on the array element.
1572 
1573   QualType type = getContext().getTypeDeclType(ctor->getParent());
1574 
1575   // Zero initialize the storage, if requested.
1576   if (zeroInitialize)
1577     EmitNullInitialization(cur, type);
1578 
1579   // C++ [class.temporary]p4:
1580   // There are two contexts in which temporaries are destroyed at a different
1581   // point than the end of the full-expression. The first context is when a
1582   // default constructor is called to initialize an element of an array.
1583   // If the constructor has one or more default arguments, the destruction of
1584   // every temporary created in a default argument expression is sequenced
1585   // before the construction of the next array element, if any.
1586 
1587   {
1588     RunCleanupsScope Scope(*this);
1589 
1590     // Evaluate the constructor and its arguments in a regular
1591     // partial-destroy cleanup.
1592     if (getLangOpts().Exceptions &&
1593         !ctor->getParent()->hasTrivialDestructor()) {
1594       Destroyer *destroyer = destroyCXXObject;
1595       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1596     }
1597 
1598     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false,
1599                            /*Delegating=*/false, cur, argBegin, argEnd);
1600   }
1601 
1602   // Go to the next element.
1603   llvm::Value *next =
1604     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1605                               "arrayctor.next");
1606   cur->addIncoming(next, Builder.GetInsertBlock());
1607 
1608   // Check whether that's the end of the loop.
1609   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1610   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1611   Builder.CreateCondBr(done, contBB, loopBB);
1612 
1613   // Patch the earlier check to skip over the loop.
1614   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1615 
1616   EmitBlock(contBB);
1617 }
1618 
1619 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1620                                        llvm::Value *addr,
1621                                        QualType type) {
1622   const RecordType *rtype = type->castAs<RecordType>();
1623   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1624   const CXXDestructorDecl *dtor = record->getDestructor();
1625   assert(!dtor->isTrivial());
1626   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1627                             /*Delegating=*/false, addr);
1628 }
1629 
1630 void
1631 CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1632                                         CXXCtorType Type, bool ForVirtualBase,
1633                                         bool Delegating,
1634                                         llvm::Value *This,
1635                                         CallExpr::const_arg_iterator ArgBeg,
1636                                         CallExpr::const_arg_iterator ArgEnd) {
1637 
1638   CGDebugInfo *DI = getDebugInfo();
1639   if (DI &&
1640       CGM.getCodeGenOpts().getDebugInfo() == CodeGenOptions::LimitedDebugInfo) {
1641     // If debug info for this class has not been emitted then this is the
1642     // right time to do so.
1643     const CXXRecordDecl *Parent = D->getParent();
1644     DI->getOrCreateRecordType(CGM.getContext().getTypeDeclType(Parent),
1645                               Parent->getLocation());
1646   }
1647 
1648   // If this is a trivial constructor, just emit what's needed.
1649   if (D->isTrivial()) {
1650     if (ArgBeg == ArgEnd) {
1651       // Trivial default constructor, no codegen required.
1652       assert(D->isDefaultConstructor() &&
1653              "trivial 0-arg ctor not a default ctor");
1654       return;
1655     }
1656 
1657     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1658     assert(D->isCopyOrMoveConstructor() &&
1659            "trivial 1-arg ctor not a copy/move ctor");
1660 
1661     const Expr *E = (*ArgBeg);
1662     QualType Ty = E->getType();
1663     llvm::Value *Src = EmitLValue(E).getAddress();
1664     EmitAggregateCopy(This, Src, Ty);
1665     return;
1666   }
1667 
1668   // Non-trivial constructors are handled in an ABI-specific manner.
1669   llvm::Value *Callee = CGM.getCXXABI().EmitConstructorCall(*this, D, Type,
1670                             ForVirtualBase, Delegating, This, ArgBeg, ArgEnd);
1671   if (CGM.getCXXABI().HasThisReturn(CurGD) &&
1672       CGM.getCXXABI().HasThisReturn(GlobalDecl(D, Type)))
1673      CalleeWithThisReturn = Callee;
1674 }
1675 
1676 void
1677 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1678                                         llvm::Value *This, llvm::Value *Src,
1679                                         CallExpr::const_arg_iterator ArgBeg,
1680                                         CallExpr::const_arg_iterator ArgEnd) {
1681   if (D->isTrivial()) {
1682     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1683     assert(D->isCopyOrMoveConstructor() &&
1684            "trivial 1-arg ctor not a copy/move ctor");
1685     EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
1686     return;
1687   }
1688   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D,
1689                                                     clang::Ctor_Complete);
1690   assert(D->isInstance() &&
1691          "Trying to emit a member call expr on a static method!");
1692 
1693   const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>();
1694 
1695   CallArgList Args;
1696 
1697   // Push the this ptr.
1698   Args.add(RValue::get(This), D->getThisType(getContext()));
1699 
1700 
1701   // Push the src ptr.
1702   QualType QT = *(FPT->arg_type_begin());
1703   llvm::Type *t = CGM.getTypes().ConvertType(QT);
1704   Src = Builder.CreateBitCast(Src, t);
1705   Args.add(RValue::get(Src), QT);
1706 
1707   // Skip over first argument (Src).
1708   ++ArgBeg;
1709   CallExpr::const_arg_iterator Arg = ArgBeg;
1710   for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin()+1,
1711        E = FPT->arg_type_end(); I != E; ++I, ++Arg) {
1712     assert(Arg != ArgEnd && "Running over edge of argument list!");
1713     EmitCallArg(Args, *Arg, *I);
1714   }
1715   // Either we've emitted all the call args, or we have a call to a
1716   // variadic function.
1717   assert((Arg == ArgEnd || FPT->isVariadic()) &&
1718          "Extra arguments in non-variadic function!");
1719   // If we still have any arguments, emit them using the type of the argument.
1720   for (; Arg != ArgEnd; ++Arg) {
1721     QualType ArgType = Arg->getType();
1722     EmitCallArg(Args, *Arg, ArgType);
1723   }
1724 
1725   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1726            Callee, ReturnValueSlot(), Args, D);
1727 }
1728 
1729 void
1730 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1731                                                 CXXCtorType CtorType,
1732                                                 const FunctionArgList &Args) {
1733   CallArgList DelegateArgs;
1734 
1735   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1736   assert(I != E && "no parameters to constructor");
1737 
1738   // this
1739   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1740   ++I;
1741 
1742   // vtt
1743   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
1744                                          /*ForVirtualBase=*/false,
1745                                          /*Delegating=*/true)) {
1746     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1747     DelegateArgs.add(RValue::get(VTT), VoidPP);
1748 
1749     if (CodeGenVTables::needsVTTParameter(CurGD)) {
1750       assert(I != E && "cannot skip vtt parameter, already done with args");
1751       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1752       ++I;
1753     }
1754   }
1755 
1756   // Explicit arguments.
1757   for (; I != E; ++I) {
1758     const VarDecl *param = *I;
1759     EmitDelegateCallArg(DelegateArgs, param);
1760   }
1761 
1762   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(Ctor, CtorType);
1763   EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
1764            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
1765   if (CGM.getCXXABI().HasThisReturn(CurGD) &&
1766       CGM.getCXXABI().HasThisReturn(GlobalDecl(Ctor, CtorType)))
1767      CalleeWithThisReturn = Callee;
1768 }
1769 
1770 namespace {
1771   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1772     const CXXDestructorDecl *Dtor;
1773     llvm::Value *Addr;
1774     CXXDtorType Type;
1775 
1776     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1777                            CXXDtorType Type)
1778       : Dtor(D), Addr(Addr), Type(Type) {}
1779 
1780     void Emit(CodeGenFunction &CGF, Flags flags) {
1781       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1782                                 /*Delegating=*/true, Addr);
1783     }
1784   };
1785 }
1786 
1787 void
1788 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1789                                                   const FunctionArgList &Args) {
1790   assert(Ctor->isDelegatingConstructor());
1791 
1792   llvm::Value *ThisPtr = LoadCXXThis();
1793 
1794   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1795   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1796   AggValueSlot AggSlot =
1797     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1798                           AggValueSlot::IsDestructed,
1799                           AggValueSlot::DoesNotNeedGCBarriers,
1800                           AggValueSlot::IsNotAliased);
1801 
1802   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1803 
1804   const CXXRecordDecl *ClassDecl = Ctor->getParent();
1805   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1806     CXXDtorType Type =
1807       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1808 
1809     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1810                                                 ClassDecl->getDestructor(),
1811                                                 ThisPtr, Type);
1812   }
1813 }
1814 
1815 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1816                                             CXXDtorType Type,
1817                                             bool ForVirtualBase,
1818                                             bool Delegating,
1819                                             llvm::Value *This) {
1820   llvm::Value *VTT = GetVTTParameter(GlobalDecl(DD, Type),
1821                                      ForVirtualBase, Delegating);
1822   llvm::Value *Callee = 0;
1823   if (getLangOpts().AppleKext)
1824     Callee = BuildAppleKextVirtualDestructorCall(DD, Type,
1825                                                  DD->getParent());
1826 
1827   if (!Callee)
1828     Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
1829 
1830   // FIXME: Provide a source location here.
1831   EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This,
1832                     VTT, getContext().getPointerType(getContext().VoidPtrTy),
1833                     0, 0);
1834   if (CGM.getCXXABI().HasThisReturn(CurGD) &&
1835       CGM.getCXXABI().HasThisReturn(GlobalDecl(DD, Type)))
1836      CalleeWithThisReturn = Callee;
1837 }
1838 
1839 namespace {
1840   struct CallLocalDtor : EHScopeStack::Cleanup {
1841     const CXXDestructorDecl *Dtor;
1842     llvm::Value *Addr;
1843 
1844     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1845       : Dtor(D), Addr(Addr) {}
1846 
1847     void Emit(CodeGenFunction &CGF, Flags flags) {
1848       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1849                                 /*ForVirtualBase=*/false,
1850                                 /*Delegating=*/false, Addr);
1851     }
1852   };
1853 }
1854 
1855 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1856                                             llvm::Value *Addr) {
1857   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1858 }
1859 
1860 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1861   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1862   if (!ClassDecl) return;
1863   if (ClassDecl->hasTrivialDestructor()) return;
1864 
1865   const CXXDestructorDecl *D = ClassDecl->getDestructor();
1866   assert(D && D->isUsed() && "destructor not marked as used!");
1867   PushDestructorCleanup(D, Addr);
1868 }
1869 
1870 llvm::Value *
1871 CodeGenFunction::GetVirtualBaseClassOffset(llvm::Value *This,
1872                                            const CXXRecordDecl *ClassDecl,
1873                                            const CXXRecordDecl *BaseClassDecl) {
1874   llvm::Value *VTablePtr = GetVTablePtr(This, Int8PtrTy);
1875   CharUnits VBaseOffsetOffset =
1876     CGM.getVTableContext().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl);
1877 
1878   llvm::Value *VBaseOffsetPtr =
1879     Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(),
1880                                "vbase.offset.ptr");
1881   llvm::Type *PtrDiffTy =
1882     ConvertType(getContext().getPointerDiffType());
1883 
1884   VBaseOffsetPtr = Builder.CreateBitCast(VBaseOffsetPtr,
1885                                          PtrDiffTy->getPointerTo());
1886 
1887   llvm::Value *VBaseOffset = Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset");
1888 
1889   return VBaseOffset;
1890 }
1891 
1892 void
1893 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1894                                          const CXXRecordDecl *NearestVBase,
1895                                          CharUnits OffsetFromNearestVBase,
1896                                          llvm::Constant *VTable,
1897                                          const CXXRecordDecl *VTableClass) {
1898   const CXXRecordDecl *RD = Base.getBase();
1899 
1900   // Compute the address point.
1901   llvm::Value *VTableAddressPoint;
1902 
1903   // Check if we need to use a vtable from the VTT.
1904   if (CodeGenVTables::needsVTTParameter(CurGD) &&
1905       (RD->getNumVBases() || NearestVBase)) {
1906     // Get the secondary vpointer index.
1907     uint64_t VirtualPointerIndex =
1908      CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
1909 
1910     /// Load the VTT.
1911     llvm::Value *VTT = LoadCXXVTT();
1912     if (VirtualPointerIndex)
1913       VTT = Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
1914 
1915     // And load the address point from the VTT.
1916     VTableAddressPoint = Builder.CreateLoad(VTT);
1917   } else {
1918     uint64_t AddressPoint =
1919       CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
1920     VTableAddressPoint =
1921       Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
1922   }
1923 
1924   // Compute where to store the address point.
1925   llvm::Value *VirtualOffset = 0;
1926   CharUnits NonVirtualOffset = CharUnits::Zero();
1927 
1928   if (CodeGenVTables::needsVTTParameter(CurGD) && NearestVBase) {
1929     // We need to use the virtual base offset offset because the virtual base
1930     // might have a different offset in the most derived class.
1931     VirtualOffset = GetVirtualBaseClassOffset(LoadCXXThis(), VTableClass,
1932                                               NearestVBase);
1933     NonVirtualOffset = OffsetFromNearestVBase;
1934   } else {
1935     // We can just use the base offset in the complete class.
1936     NonVirtualOffset = Base.getBaseOffset();
1937   }
1938 
1939   // Apply the offsets.
1940   llvm::Value *VTableField = LoadCXXThis();
1941 
1942   if (!NonVirtualOffset.isZero() || VirtualOffset)
1943     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
1944                                                   NonVirtualOffset,
1945                                                   VirtualOffset);
1946 
1947   // Finally, store the address point.
1948   llvm::Type *AddressPointPtrTy =
1949     VTableAddressPoint->getType()->getPointerTo();
1950   VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
1951   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
1952   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
1953 }
1954 
1955 void
1956 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
1957                                           const CXXRecordDecl *NearestVBase,
1958                                           CharUnits OffsetFromNearestVBase,
1959                                           bool BaseIsNonVirtualPrimaryBase,
1960                                           llvm::Constant *VTable,
1961                                           const CXXRecordDecl *VTableClass,
1962                                           VisitedVirtualBasesSetTy& VBases) {
1963   // If this base is a non-virtual primary base the address point has already
1964   // been set.
1965   if (!BaseIsNonVirtualPrimaryBase) {
1966     // Initialize the vtable pointer for this base.
1967     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
1968                             VTable, VTableClass);
1969   }
1970 
1971   const CXXRecordDecl *RD = Base.getBase();
1972 
1973   // Traverse bases.
1974   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1975        E = RD->bases_end(); I != E; ++I) {
1976     CXXRecordDecl *BaseDecl
1977       = cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1978 
1979     // Ignore classes without a vtable.
1980     if (!BaseDecl->isDynamicClass())
1981       continue;
1982 
1983     CharUnits BaseOffset;
1984     CharUnits BaseOffsetFromNearestVBase;
1985     bool BaseDeclIsNonVirtualPrimaryBase;
1986 
1987     if (I->isVirtual()) {
1988       // Check if we've visited this virtual base before.
1989       if (!VBases.insert(BaseDecl))
1990         continue;
1991 
1992       const ASTRecordLayout &Layout =
1993         getContext().getASTRecordLayout(VTableClass);
1994 
1995       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
1996       BaseOffsetFromNearestVBase = CharUnits::Zero();
1997       BaseDeclIsNonVirtualPrimaryBase = false;
1998     } else {
1999       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2000 
2001       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2002       BaseOffsetFromNearestVBase =
2003         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2004       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2005     }
2006 
2007     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
2008                              I->isVirtual() ? BaseDecl : NearestVBase,
2009                              BaseOffsetFromNearestVBase,
2010                              BaseDeclIsNonVirtualPrimaryBase,
2011                              VTable, VTableClass, VBases);
2012   }
2013 }
2014 
2015 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2016   // Ignore classes without a vtable.
2017   if (!RD->isDynamicClass())
2018     return;
2019 
2020   // Get the VTable.
2021   llvm::Constant *VTable = CGM.getVTables().GetAddrOfVTable(RD);
2022 
2023   // Initialize the vtable pointers for this class and all of its bases.
2024   VisitedVirtualBasesSetTy VBases;
2025   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
2026                            /*NearestVBase=*/0,
2027                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2028                            /*BaseIsNonVirtualPrimaryBase=*/false,
2029                            VTable, RD, VBases);
2030 }
2031 
2032 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
2033                                            llvm::Type *Ty) {
2034   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
2035   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2036   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
2037   return VTable;
2038 }
2039 
2040 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
2041   const Expr *E = Base;
2042 
2043   while (true) {
2044     E = E->IgnoreParens();
2045     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2046       if (CE->getCastKind() == CK_DerivedToBase ||
2047           CE->getCastKind() == CK_UncheckedDerivedToBase ||
2048           CE->getCastKind() == CK_NoOp) {
2049         E = CE->getSubExpr();
2050         continue;
2051       }
2052     }
2053 
2054     break;
2055   }
2056 
2057   QualType DerivedType = E->getType();
2058   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
2059     DerivedType = PTy->getPointeeType();
2060 
2061   return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
2062 }
2063 
2064 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2065 // quite what we want.
2066 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2067   while (true) {
2068     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2069       E = PE->getSubExpr();
2070       continue;
2071     }
2072 
2073     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2074       if (CE->getCastKind() == CK_NoOp) {
2075         E = CE->getSubExpr();
2076         continue;
2077       }
2078     }
2079     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2080       if (UO->getOpcode() == UO_Extension) {
2081         E = UO->getSubExpr();
2082         continue;
2083       }
2084     }
2085     return E;
2086   }
2087 }
2088 
2089 /// canDevirtualizeMemberFunctionCall - Checks whether the given virtual member
2090 /// function call on the given expr can be devirtualized.
2091 static bool canDevirtualizeMemberFunctionCall(const Expr *Base,
2092                                               const CXXMethodDecl *MD) {
2093   // If the most derived class is marked final, we know that no subclass can
2094   // override this member function and so we can devirtualize it. For example:
2095   //
2096   // struct A { virtual void f(); }
2097   // struct B final : A { };
2098   //
2099   // void f(B *b) {
2100   //   b->f();
2101   // }
2102   //
2103   const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
2104   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2105     return true;
2106 
2107   // If the member function is marked 'final', we know that it can't be
2108   // overridden and can therefore devirtualize it.
2109   if (MD->hasAttr<FinalAttr>())
2110     return true;
2111 
2112   // Similarly, if the class itself is marked 'final' it can't be overridden
2113   // and we can therefore devirtualize the member function call.
2114   if (MD->getParent()->hasAttr<FinalAttr>())
2115     return true;
2116 
2117   Base = skipNoOpCastsAndParens(Base);
2118   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2119     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2120       // This is a record decl. We know the type and can devirtualize it.
2121       return VD->getType()->isRecordType();
2122     }
2123 
2124     return false;
2125   }
2126 
2127   // We can always devirtualize calls on temporary object expressions.
2128   if (isa<CXXConstructExpr>(Base))
2129     return true;
2130 
2131   // And calls on bound temporaries.
2132   if (isa<CXXBindTemporaryExpr>(Base))
2133     return true;
2134 
2135   // Check if this is a call expr that returns a record type.
2136   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2137     return CE->getCallReturnType()->isRecordType();
2138 
2139   // We can't devirtualize the call.
2140   return false;
2141 }
2142 
2143 static bool UseVirtualCall(ASTContext &Context,
2144                            const CXXOperatorCallExpr *CE,
2145                            const CXXMethodDecl *MD) {
2146   if (!MD->isVirtual())
2147     return false;
2148 
2149   // When building with -fapple-kext, all calls must go through the vtable since
2150   // the kernel linker can do runtime patching of vtables.
2151   if (Context.getLangOpts().AppleKext)
2152     return true;
2153 
2154   return !canDevirtualizeMemberFunctionCall(CE->getArg(0), MD);
2155 }
2156 
2157 llvm::Value *
2158 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2159                                              const CXXMethodDecl *MD,
2160                                              llvm::Value *This) {
2161   llvm::FunctionType *fnType =
2162     CGM.getTypes().GetFunctionType(
2163                              CGM.getTypes().arrangeCXXMethodDeclaration(MD));
2164 
2165   if (UseVirtualCall(getContext(), E, MD))
2166     return BuildVirtualCall(MD, This, fnType);
2167 
2168   return CGM.GetAddrOfFunction(MD, fnType);
2169 }
2170 
2171 void CodeGenFunction::EmitForwardingCallToLambda(const CXXRecordDecl *lambda,
2172                                                  CallArgList &callArgs) {
2173   // Lookup the call operator
2174   DeclarationName operatorName
2175     = getContext().DeclarationNames.getCXXOperatorName(OO_Call);
2176   CXXMethodDecl *callOperator =
2177     cast<CXXMethodDecl>(lambda->lookup(operatorName).front());
2178 
2179   // Get the address of the call operator.
2180   const CGFunctionInfo &calleeFnInfo =
2181     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2182   llvm::Value *callee =
2183     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2184                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2185 
2186   // Prepare the return slot.
2187   const FunctionProtoType *FPT =
2188     callOperator->getType()->castAs<FunctionProtoType>();
2189   QualType resultType = FPT->getResultType();
2190   ReturnValueSlot returnSlot;
2191   if (!resultType->isVoidType() &&
2192       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2193       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2194     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2195 
2196   // We don't need to separately arrange the call arguments because
2197   // the call can't be variadic anyway --- it's impossible to forward
2198   // variadic arguments.
2199 
2200   // Now emit our call.
2201   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2202                        callArgs, callOperator);
2203 
2204   // If necessary, copy the returned value into the slot.
2205   if (!resultType->isVoidType() && returnSlot.isNull())
2206     EmitReturnOfRValue(RV, resultType);
2207   else
2208     EmitBranchThroughCleanup(ReturnBlock);
2209 }
2210 
2211 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2212   const BlockDecl *BD = BlockInfo->getBlockDecl();
2213   const VarDecl *variable = BD->capture_begin()->getVariable();
2214   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2215 
2216   // Start building arguments for forwarding call
2217   CallArgList CallArgs;
2218 
2219   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2220   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
2221   CallArgs.add(RValue::get(ThisPtr), ThisType);
2222 
2223   // Add the rest of the parameters.
2224   for (BlockDecl::param_const_iterator I = BD->param_begin(),
2225        E = BD->param_end(); I != E; ++I) {
2226     ParmVarDecl *param = *I;
2227     EmitDelegateCallArg(CallArgs, param);
2228   }
2229 
2230   EmitForwardingCallToLambda(Lambda, CallArgs);
2231 }
2232 
2233 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2234   if (cast<CXXMethodDecl>(CurFuncDecl)->isVariadic()) {
2235     // FIXME: Making this work correctly is nasty because it requires either
2236     // cloning the body of the call operator or making the call operator forward.
2237     CGM.ErrorUnsupported(CurFuncDecl, "lambda conversion to variadic function");
2238     return;
2239   }
2240 
2241   EmitFunctionBody(Args);
2242 }
2243 
2244 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2245   const CXXRecordDecl *Lambda = MD->getParent();
2246 
2247   // Start building arguments for forwarding call
2248   CallArgList CallArgs;
2249 
2250   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2251   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2252   CallArgs.add(RValue::get(ThisPtr), ThisType);
2253 
2254   // Add the rest of the parameters.
2255   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
2256        E = MD->param_end(); I != E; ++I) {
2257     ParmVarDecl *param = *I;
2258     EmitDelegateCallArg(CallArgs, param);
2259   }
2260 
2261   EmitForwardingCallToLambda(Lambda, CallArgs);
2262 }
2263 
2264 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2265   if (MD->isVariadic()) {
2266     // FIXME: Making this work correctly is nasty because it requires either
2267     // cloning the body of the call operator or making the call operator forward.
2268     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2269     return;
2270   }
2271 
2272   EmitLambdaDelegatingInvokeBody(MD);
2273 }
2274