1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/Transforms/Utils/SanitizerStats.h" 31 32 using namespace clang; 33 using namespace CodeGen; 34 35 /// Return the best known alignment for an unknown pointer to a 36 /// particular class. 37 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 38 if (!RD->hasDefinition()) 39 return CharUnits::One(); // Hopefully won't be used anywhere. 40 41 auto &layout = getContext().getASTRecordLayout(RD); 42 43 // If the class is final, then we know that the pointer points to an 44 // object of that type and can use the full alignment. 45 if (RD->isEffectivelyFinal()) 46 return layout.getAlignment(); 47 48 // Otherwise, we have to assume it could be a subclass. 49 return layout.getNonVirtualAlignment(); 50 } 51 52 /// Return the smallest possible amount of storage that might be allocated 53 /// starting from the beginning of an object of a particular class. 54 /// 55 /// This may be smaller than sizeof(RD) if RD has virtual base classes. 56 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) { 57 if (!RD->hasDefinition()) 58 return CharUnits::One(); 59 60 auto &layout = getContext().getASTRecordLayout(RD); 61 62 // If the class is final, then we know that the pointer points to an 63 // object of that type and can use the full alignment. 64 if (RD->isEffectivelyFinal()) 65 return layout.getSize(); 66 67 // Otherwise, we have to assume it could be a subclass. 68 return std::max(layout.getNonVirtualSize(), CharUnits::One()); 69 } 70 71 /// Return the best known alignment for a pointer to a virtual base, 72 /// given the alignment of a pointer to the derived class. 73 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 74 const CXXRecordDecl *derivedClass, 75 const CXXRecordDecl *vbaseClass) { 76 // The basic idea here is that an underaligned derived pointer might 77 // indicate an underaligned base pointer. 78 79 assert(vbaseClass->isCompleteDefinition()); 80 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 81 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 82 83 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 84 expectedVBaseAlign); 85 } 86 87 CharUnits 88 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 89 const CXXRecordDecl *baseDecl, 90 CharUnits expectedTargetAlign) { 91 // If the base is an incomplete type (which is, alas, possible with 92 // member pointers), be pessimistic. 93 if (!baseDecl->isCompleteDefinition()) 94 return std::min(actualBaseAlign, expectedTargetAlign); 95 96 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 97 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 98 99 // If the class is properly aligned, assume the target offset is, too. 100 // 101 // This actually isn't necessarily the right thing to do --- if the 102 // class is a complete object, but it's only properly aligned for a 103 // base subobject, then the alignments of things relative to it are 104 // probably off as well. (Note that this requires the alignment of 105 // the target to be greater than the NV alignment of the derived 106 // class.) 107 // 108 // However, our approach to this kind of under-alignment can only 109 // ever be best effort; after all, we're never going to propagate 110 // alignments through variables or parameters. Note, in particular, 111 // that constructing a polymorphic type in an address that's less 112 // than pointer-aligned will generally trap in the constructor, 113 // unless we someday add some sort of attribute to change the 114 // assumed alignment of 'this'. So our goal here is pretty much 115 // just to allow the user to explicitly say that a pointer is 116 // under-aligned and then safely access its fields and vtables. 117 if (actualBaseAlign >= expectedBaseAlign) { 118 return expectedTargetAlign; 119 } 120 121 // Otherwise, we might be offset by an arbitrary multiple of the 122 // actual alignment. The correct adjustment is to take the min of 123 // the two alignments. 124 return std::min(actualBaseAlign, expectedTargetAlign); 125 } 126 127 Address CodeGenFunction::LoadCXXThisAddress() { 128 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 129 assert(isa<CXXMethodDecl>(CurFuncDecl)); 130 131 // Lazily compute CXXThisAlignment. 132 if (CXXThisAlignment.isZero()) { 133 // Just use the best known alignment for the parent. 134 // TODO: if we're currently emitting a complete-object ctor/dtor, 135 // we can always use the complete-object alignment. 136 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 137 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 138 } 139 140 return Address(LoadCXXThis(), CXXThisAlignment); 141 } 142 143 /// Emit the address of a field using a member data pointer. 144 /// 145 /// \param E Only used for emergency diagnostics 146 Address 147 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 148 llvm::Value *memberPtr, 149 const MemberPointerType *memberPtrType, 150 LValueBaseInfo *BaseInfo, 151 TBAAAccessInfo *TBAAInfo) { 152 // Ask the ABI to compute the actual address. 153 llvm::Value *ptr = 154 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 155 memberPtr, memberPtrType); 156 157 QualType memberType = memberPtrType->getPointeeType(); 158 CharUnits memberAlign = 159 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo); 160 memberAlign = 161 CGM.getDynamicOffsetAlignment(base.getAlignment(), 162 memberPtrType->getClass()->getAsCXXRecordDecl(), 163 memberAlign); 164 return Address(ptr, memberAlign); 165 } 166 167 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 168 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 169 CastExpr::path_const_iterator End) { 170 CharUnits Offset = CharUnits::Zero(); 171 172 const ASTContext &Context = getContext(); 173 const CXXRecordDecl *RD = DerivedClass; 174 175 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 176 const CXXBaseSpecifier *Base = *I; 177 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 178 179 // Get the layout. 180 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 181 182 const auto *BaseDecl = 183 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); 184 185 // Add the offset. 186 Offset += Layout.getBaseClassOffset(BaseDecl); 187 188 RD = BaseDecl; 189 } 190 191 return Offset; 192 } 193 194 llvm::Constant * 195 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 196 CastExpr::path_const_iterator PathBegin, 197 CastExpr::path_const_iterator PathEnd) { 198 assert(PathBegin != PathEnd && "Base path should not be empty!"); 199 200 CharUnits Offset = 201 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 202 if (Offset.isZero()) 203 return nullptr; 204 205 llvm::Type *PtrDiffTy = 206 Types.ConvertType(getContext().getPointerDiffType()); 207 208 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 209 } 210 211 /// Gets the address of a direct base class within a complete object. 212 /// This should only be used for (1) non-virtual bases or (2) virtual bases 213 /// when the type is known to be complete (e.g. in complete destructors). 214 /// 215 /// The object pointed to by 'This' is assumed to be non-null. 216 Address 217 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 218 const CXXRecordDecl *Derived, 219 const CXXRecordDecl *Base, 220 bool BaseIsVirtual) { 221 // 'this' must be a pointer (in some address space) to Derived. 222 assert(This.getElementType() == ConvertType(Derived)); 223 224 // Compute the offset of the virtual base. 225 CharUnits Offset; 226 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 227 if (BaseIsVirtual) 228 Offset = Layout.getVBaseClassOffset(Base); 229 else 230 Offset = Layout.getBaseClassOffset(Base); 231 232 // Shift and cast down to the base type. 233 // TODO: for complete types, this should be possible with a GEP. 234 Address V = This; 235 if (!Offset.isZero()) { 236 V = Builder.CreateElementBitCast(V, Int8Ty); 237 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 238 } 239 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 240 241 return V; 242 } 243 244 static Address 245 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 246 CharUnits nonVirtualOffset, 247 llvm::Value *virtualOffset, 248 const CXXRecordDecl *derivedClass, 249 const CXXRecordDecl *nearestVBase) { 250 // Assert that we have something to do. 251 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 252 253 // Compute the offset from the static and dynamic components. 254 llvm::Value *baseOffset; 255 if (!nonVirtualOffset.isZero()) { 256 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 257 nonVirtualOffset.getQuantity()); 258 if (virtualOffset) { 259 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 260 } 261 } else { 262 baseOffset = virtualOffset; 263 } 264 265 // Apply the base offset. 266 llvm::Value *ptr = addr.getPointer(); 267 unsigned AddrSpace = ptr->getType()->getPointerAddressSpace(); 268 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace)); 269 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 270 271 // If we have a virtual component, the alignment of the result will 272 // be relative only to the known alignment of that vbase. 273 CharUnits alignment; 274 if (virtualOffset) { 275 assert(nearestVBase && "virtual offset without vbase?"); 276 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 277 derivedClass, nearestVBase); 278 } else { 279 alignment = addr.getAlignment(); 280 } 281 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 282 283 return Address(ptr, alignment); 284 } 285 286 Address CodeGenFunction::GetAddressOfBaseClass( 287 Address Value, const CXXRecordDecl *Derived, 288 CastExpr::path_const_iterator PathBegin, 289 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 290 SourceLocation Loc) { 291 assert(PathBegin != PathEnd && "Base path should not be empty!"); 292 293 CastExpr::path_const_iterator Start = PathBegin; 294 const CXXRecordDecl *VBase = nullptr; 295 296 // Sema has done some convenient canonicalization here: if the 297 // access path involved any virtual steps, the conversion path will 298 // *start* with a step down to the correct virtual base subobject, 299 // and hence will not require any further steps. 300 if ((*Start)->isVirtual()) { 301 VBase = cast<CXXRecordDecl>( 302 (*Start)->getType()->castAs<RecordType>()->getDecl()); 303 ++Start; 304 } 305 306 // Compute the static offset of the ultimate destination within its 307 // allocating subobject (the virtual base, if there is one, or else 308 // the "complete" object that we see). 309 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 310 VBase ? VBase : Derived, Start, PathEnd); 311 312 // If there's a virtual step, we can sometimes "devirtualize" it. 313 // For now, that's limited to when the derived type is final. 314 // TODO: "devirtualize" this for accesses to known-complete objects. 315 if (VBase && Derived->hasAttr<FinalAttr>()) { 316 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 317 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 318 NonVirtualOffset += vBaseOffset; 319 VBase = nullptr; // we no longer have a virtual step 320 } 321 322 // Get the base pointer type. 323 llvm::Type *BasePtrTy = 324 ConvertType((PathEnd[-1])->getType()) 325 ->getPointerTo(Value.getType()->getPointerAddressSpace()); 326 327 QualType DerivedTy = getContext().getRecordType(Derived); 328 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 329 330 // If the static offset is zero and we don't have a virtual step, 331 // just do a bitcast; null checks are unnecessary. 332 if (NonVirtualOffset.isZero() && !VBase) { 333 if (sanitizePerformTypeCheck()) { 334 SanitizerSet SkippedChecks; 335 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 336 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 337 DerivedTy, DerivedAlign, SkippedChecks); 338 } 339 return Builder.CreateBitCast(Value, BasePtrTy); 340 } 341 342 llvm::BasicBlock *origBB = nullptr; 343 llvm::BasicBlock *endBB = nullptr; 344 345 // Skip over the offset (and the vtable load) if we're supposed to 346 // null-check the pointer. 347 if (NullCheckValue) { 348 origBB = Builder.GetInsertBlock(); 349 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 350 endBB = createBasicBlock("cast.end"); 351 352 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 353 Builder.CreateCondBr(isNull, endBB, notNullBB); 354 EmitBlock(notNullBB); 355 } 356 357 if (sanitizePerformTypeCheck()) { 358 SanitizerSet SkippedChecks; 359 SkippedChecks.set(SanitizerKind::Null, true); 360 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 361 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 362 } 363 364 // Compute the virtual offset. 365 llvm::Value *VirtualOffset = nullptr; 366 if (VBase) { 367 VirtualOffset = 368 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 369 } 370 371 // Apply both offsets. 372 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 373 VirtualOffset, Derived, VBase); 374 375 // Cast to the destination type. 376 Value = Builder.CreateBitCast(Value, BasePtrTy); 377 378 // Build a phi if we needed a null check. 379 if (NullCheckValue) { 380 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 381 Builder.CreateBr(endBB); 382 EmitBlock(endBB); 383 384 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 385 PHI->addIncoming(Value.getPointer(), notNullBB); 386 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 387 Value = Address(PHI, Value.getAlignment()); 388 } 389 390 return Value; 391 } 392 393 Address 394 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 395 const CXXRecordDecl *Derived, 396 CastExpr::path_const_iterator PathBegin, 397 CastExpr::path_const_iterator PathEnd, 398 bool NullCheckValue) { 399 assert(PathBegin != PathEnd && "Base path should not be empty!"); 400 401 QualType DerivedTy = 402 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 403 unsigned AddrSpace = 404 BaseAddr.getPointer()->getType()->getPointerAddressSpace(); 405 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(AddrSpace); 406 407 llvm::Value *NonVirtualOffset = 408 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 409 410 if (!NonVirtualOffset) { 411 // No offset, we can just cast back. 412 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 413 } 414 415 llvm::BasicBlock *CastNull = nullptr; 416 llvm::BasicBlock *CastNotNull = nullptr; 417 llvm::BasicBlock *CastEnd = nullptr; 418 419 if (NullCheckValue) { 420 CastNull = createBasicBlock("cast.null"); 421 CastNotNull = createBasicBlock("cast.notnull"); 422 CastEnd = createBasicBlock("cast.end"); 423 424 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 425 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 426 EmitBlock(CastNotNull); 427 } 428 429 // Apply the offset. 430 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 431 Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset), 432 "sub.ptr"); 433 434 // Just cast. 435 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 436 437 // Produce a PHI if we had a null-check. 438 if (NullCheckValue) { 439 Builder.CreateBr(CastEnd); 440 EmitBlock(CastNull); 441 Builder.CreateBr(CastEnd); 442 EmitBlock(CastEnd); 443 444 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 445 PHI->addIncoming(Value, CastNotNull); 446 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 447 Value = PHI; 448 } 449 450 return Address(Value, CGM.getClassPointerAlignment(Derived)); 451 } 452 453 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 454 bool ForVirtualBase, 455 bool Delegating) { 456 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 457 // This constructor/destructor does not need a VTT parameter. 458 return nullptr; 459 } 460 461 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 462 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 463 464 llvm::Value *VTT; 465 466 uint64_t SubVTTIndex; 467 468 if (Delegating) { 469 // If this is a delegating constructor call, just load the VTT. 470 return LoadCXXVTT(); 471 } else if (RD == Base) { 472 // If the record matches the base, this is the complete ctor/dtor 473 // variant calling the base variant in a class with virtual bases. 474 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 475 "doing no-op VTT offset in base dtor/ctor?"); 476 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 477 SubVTTIndex = 0; 478 } else { 479 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 480 CharUnits BaseOffset = ForVirtualBase ? 481 Layout.getVBaseClassOffset(Base) : 482 Layout.getBaseClassOffset(Base); 483 484 SubVTTIndex = 485 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 486 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 487 } 488 489 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 490 // A VTT parameter was passed to the constructor, use it. 491 VTT = LoadCXXVTT(); 492 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 493 } else { 494 // We're the complete constructor, so get the VTT by name. 495 VTT = CGM.getVTables().GetAddrOfVTT(RD); 496 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 497 } 498 499 return VTT; 500 } 501 502 namespace { 503 /// Call the destructor for a direct base class. 504 struct CallBaseDtor final : EHScopeStack::Cleanup { 505 const CXXRecordDecl *BaseClass; 506 bool BaseIsVirtual; 507 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 508 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 509 510 void Emit(CodeGenFunction &CGF, Flags flags) override { 511 const CXXRecordDecl *DerivedClass = 512 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 513 514 const CXXDestructorDecl *D = BaseClass->getDestructor(); 515 // We are already inside a destructor, so presumably the object being 516 // destroyed should have the expected type. 517 QualType ThisTy = D->getThisObjectType(); 518 Address Addr = 519 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 520 DerivedClass, BaseClass, 521 BaseIsVirtual); 522 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 523 /*Delegating=*/false, Addr, ThisTy); 524 } 525 }; 526 527 /// A visitor which checks whether an initializer uses 'this' in a 528 /// way which requires the vtable to be properly set. 529 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 530 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 531 532 bool UsesThis; 533 534 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 535 536 // Black-list all explicit and implicit references to 'this'. 537 // 538 // Do we need to worry about external references to 'this' derived 539 // from arbitrary code? If so, then anything which runs arbitrary 540 // external code might potentially access the vtable. 541 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 542 }; 543 } // end anonymous namespace 544 545 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 546 DynamicThisUseChecker Checker(C); 547 Checker.Visit(Init); 548 return Checker.UsesThis; 549 } 550 551 static void EmitBaseInitializer(CodeGenFunction &CGF, 552 const CXXRecordDecl *ClassDecl, 553 CXXCtorInitializer *BaseInit) { 554 assert(BaseInit->isBaseInitializer() && 555 "Must have base initializer!"); 556 557 Address ThisPtr = CGF.LoadCXXThisAddress(); 558 559 const Type *BaseType = BaseInit->getBaseClass(); 560 const auto *BaseClassDecl = 561 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 562 563 bool isBaseVirtual = BaseInit->isBaseVirtual(); 564 565 // If the initializer for the base (other than the constructor 566 // itself) accesses 'this' in any way, we need to initialize the 567 // vtables. 568 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 569 CGF.InitializeVTablePointers(ClassDecl); 570 571 // We can pretend to be a complete class because it only matters for 572 // virtual bases, and we only do virtual bases for complete ctors. 573 Address V = 574 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 575 BaseClassDecl, 576 isBaseVirtual); 577 AggValueSlot AggSlot = 578 AggValueSlot::forAddr( 579 V, Qualifiers(), 580 AggValueSlot::IsDestructed, 581 AggValueSlot::DoesNotNeedGCBarriers, 582 AggValueSlot::IsNotAliased, 583 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 584 585 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 586 587 if (CGF.CGM.getLangOpts().Exceptions && 588 !BaseClassDecl->hasTrivialDestructor()) 589 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 590 isBaseVirtual); 591 } 592 593 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 594 auto *CD = dyn_cast<CXXConstructorDecl>(D); 595 if (!(CD && CD->isCopyOrMoveConstructor()) && 596 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 597 return false; 598 599 // We can emit a memcpy for a trivial copy or move constructor/assignment. 600 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 601 return true; 602 603 // We *must* emit a memcpy for a defaulted union copy or move op. 604 if (D->getParent()->isUnion() && D->isDefaulted()) 605 return true; 606 607 return false; 608 } 609 610 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 611 CXXCtorInitializer *MemberInit, 612 LValue &LHS) { 613 FieldDecl *Field = MemberInit->getAnyMember(); 614 if (MemberInit->isIndirectMemberInitializer()) { 615 // If we are initializing an anonymous union field, drill down to the field. 616 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 617 for (const auto *I : IndirectField->chain()) 618 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 619 } else { 620 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 621 } 622 } 623 624 static void EmitMemberInitializer(CodeGenFunction &CGF, 625 const CXXRecordDecl *ClassDecl, 626 CXXCtorInitializer *MemberInit, 627 const CXXConstructorDecl *Constructor, 628 FunctionArgList &Args) { 629 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 630 assert(MemberInit->isAnyMemberInitializer() && 631 "Must have member initializer!"); 632 assert(MemberInit->getInit() && "Must have initializer!"); 633 634 // non-static data member initializers. 635 FieldDecl *Field = MemberInit->getAnyMember(); 636 QualType FieldType = Field->getType(); 637 638 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 639 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 640 LValue LHS; 641 642 // If a base constructor is being emitted, create an LValue that has the 643 // non-virtual alignment. 644 if (CGF.CurGD.getCtorType() == Ctor_Base) 645 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 646 else 647 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 648 649 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 650 651 // Special case: if we are in a copy or move constructor, and we are copying 652 // an array of PODs or classes with trivial copy constructors, ignore the 653 // AST and perform the copy we know is equivalent. 654 // FIXME: This is hacky at best... if we had a bit more explicit information 655 // in the AST, we could generalize it more easily. 656 const ConstantArrayType *Array 657 = CGF.getContext().getAsConstantArrayType(FieldType); 658 if (Array && Constructor->isDefaulted() && 659 Constructor->isCopyOrMoveConstructor()) { 660 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 661 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 662 if (BaseElementTy.isPODType(CGF.getContext()) || 663 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 664 unsigned SrcArgIndex = 665 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 666 llvm::Value *SrcPtr 667 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 668 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 669 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 670 671 // Copy the aggregate. 672 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 673 LHS.isVolatileQualified()); 674 // Ensure that we destroy the objects if an exception is thrown later in 675 // the constructor. 676 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 677 if (CGF.needsEHCleanup(dtorKind)) 678 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType); 679 return; 680 } 681 } 682 683 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 684 } 685 686 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 687 Expr *Init) { 688 QualType FieldType = Field->getType(); 689 switch (getEvaluationKind(FieldType)) { 690 case TEK_Scalar: 691 if (LHS.isSimple()) { 692 EmitExprAsInit(Init, Field, LHS, false); 693 } else { 694 RValue RHS = RValue::get(EmitScalarExpr(Init)); 695 EmitStoreThroughLValue(RHS, LHS); 696 } 697 break; 698 case TEK_Complex: 699 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 700 break; 701 case TEK_Aggregate: { 702 AggValueSlot Slot = AggValueSlot::forLValue( 703 LHS, *this, AggValueSlot::IsDestructed, 704 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 705 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed, 706 // Checks are made by the code that calls constructor. 707 AggValueSlot::IsSanitizerChecked); 708 EmitAggExpr(Init, Slot); 709 break; 710 } 711 } 712 713 // Ensure that we destroy this object if an exception is thrown 714 // later in the constructor. 715 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 716 if (needsEHCleanup(dtorKind)) 717 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType); 718 } 719 720 /// Checks whether the given constructor is a valid subject for the 721 /// complete-to-base constructor delegation optimization, i.e. 722 /// emitting the complete constructor as a simple call to the base 723 /// constructor. 724 bool CodeGenFunction::IsConstructorDelegationValid( 725 const CXXConstructorDecl *Ctor) { 726 727 // Currently we disable the optimization for classes with virtual 728 // bases because (1) the addresses of parameter variables need to be 729 // consistent across all initializers but (2) the delegate function 730 // call necessarily creates a second copy of the parameter variable. 731 // 732 // The limiting example (purely theoretical AFAIK): 733 // struct A { A(int &c) { c++; } }; 734 // struct B : virtual A { 735 // B(int count) : A(count) { printf("%d\n", count); } 736 // }; 737 // ...although even this example could in principle be emitted as a 738 // delegation since the address of the parameter doesn't escape. 739 if (Ctor->getParent()->getNumVBases()) { 740 // TODO: white-list trivial vbase initializers. This case wouldn't 741 // be subject to the restrictions below. 742 743 // TODO: white-list cases where: 744 // - there are no non-reference parameters to the constructor 745 // - the initializers don't access any non-reference parameters 746 // - the initializers don't take the address of non-reference 747 // parameters 748 // - etc. 749 // If we ever add any of the above cases, remember that: 750 // - function-try-blocks will always blacklist this optimization 751 // - we need to perform the constructor prologue and cleanup in 752 // EmitConstructorBody. 753 754 return false; 755 } 756 757 // We also disable the optimization for variadic functions because 758 // it's impossible to "re-pass" varargs. 759 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) 760 return false; 761 762 // FIXME: Decide if we can do a delegation of a delegating constructor. 763 if (Ctor->isDelegatingConstructor()) 764 return false; 765 766 return true; 767 } 768 769 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 770 // to poison the extra field paddings inserted under 771 // -fsanitize-address-field-padding=1|2. 772 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 773 ASTContext &Context = getContext(); 774 const CXXRecordDecl *ClassDecl = 775 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 776 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 777 if (!ClassDecl->mayInsertExtraPadding()) return; 778 779 struct SizeAndOffset { 780 uint64_t Size; 781 uint64_t Offset; 782 }; 783 784 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 785 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 786 787 // Populate sizes and offsets of fields. 788 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 789 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 790 SSV[i].Offset = 791 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 792 793 size_t NumFields = 0; 794 for (const auto *Field : ClassDecl->fields()) { 795 const FieldDecl *D = Field; 796 std::pair<CharUnits, CharUnits> FieldInfo = 797 Context.getTypeInfoInChars(D->getType()); 798 CharUnits FieldSize = FieldInfo.first; 799 assert(NumFields < SSV.size()); 800 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 801 NumFields++; 802 } 803 assert(NumFields == SSV.size()); 804 if (SSV.size() <= 1) return; 805 806 // We will insert calls to __asan_* run-time functions. 807 // LLVM AddressSanitizer pass may decide to inline them later. 808 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 809 llvm::FunctionType *FTy = 810 llvm::FunctionType::get(CGM.VoidTy, Args, false); 811 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 812 FTy, Prologue ? "__asan_poison_intra_object_redzone" 813 : "__asan_unpoison_intra_object_redzone"); 814 815 llvm::Value *ThisPtr = LoadCXXThis(); 816 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 817 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 818 // For each field check if it has sufficient padding, 819 // if so (un)poison it with a call. 820 for (size_t i = 0; i < SSV.size(); i++) { 821 uint64_t AsanAlignment = 8; 822 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 823 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 824 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 825 if (PoisonSize < AsanAlignment || !SSV[i].Size || 826 (NextField % AsanAlignment) != 0) 827 continue; 828 Builder.CreateCall( 829 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 830 Builder.getIntN(PtrSize, PoisonSize)}); 831 } 832 } 833 834 /// EmitConstructorBody - Emits the body of the current constructor. 835 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 836 EmitAsanPrologueOrEpilogue(true); 837 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 838 CXXCtorType CtorType = CurGD.getCtorType(); 839 840 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 841 CtorType == Ctor_Complete) && 842 "can only generate complete ctor for this ABI"); 843 844 // Before we go any further, try the complete->base constructor 845 // delegation optimization. 846 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 847 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 848 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 849 return; 850 } 851 852 const FunctionDecl *Definition = nullptr; 853 Stmt *Body = Ctor->getBody(Definition); 854 assert(Definition == Ctor && "emitting wrong constructor body"); 855 856 // Enter the function-try-block before the constructor prologue if 857 // applicable. 858 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 859 if (IsTryBody) 860 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 861 862 incrementProfileCounter(Body); 863 864 RunCleanupsScope RunCleanups(*this); 865 866 // TODO: in restricted cases, we can emit the vbase initializers of 867 // a complete ctor and then delegate to the base ctor. 868 869 // Emit the constructor prologue, i.e. the base and member 870 // initializers. 871 EmitCtorPrologue(Ctor, CtorType, Args); 872 873 // Emit the body of the statement. 874 if (IsTryBody) 875 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 876 else if (Body) 877 EmitStmt(Body); 878 879 // Emit any cleanup blocks associated with the member or base 880 // initializers, which includes (along the exceptional path) the 881 // destructors for those members and bases that were fully 882 // constructed. 883 RunCleanups.ForceCleanup(); 884 885 if (IsTryBody) 886 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 887 } 888 889 namespace { 890 /// RAII object to indicate that codegen is copying the value representation 891 /// instead of the object representation. Useful when copying a struct or 892 /// class which has uninitialized members and we're only performing 893 /// lvalue-to-rvalue conversion on the object but not its members. 894 class CopyingValueRepresentation { 895 public: 896 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 897 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 898 CGF.SanOpts.set(SanitizerKind::Bool, false); 899 CGF.SanOpts.set(SanitizerKind::Enum, false); 900 } 901 ~CopyingValueRepresentation() { 902 CGF.SanOpts = OldSanOpts; 903 } 904 private: 905 CodeGenFunction &CGF; 906 SanitizerSet OldSanOpts; 907 }; 908 } // end anonymous namespace 909 910 namespace { 911 class FieldMemcpyizer { 912 public: 913 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 914 const VarDecl *SrcRec) 915 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 916 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 917 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 918 LastFieldOffset(0), LastAddedFieldIndex(0) {} 919 920 bool isMemcpyableField(FieldDecl *F) const { 921 // Never memcpy fields when we are adding poisoned paddings. 922 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 923 return false; 924 Qualifiers Qual = F->getType().getQualifiers(); 925 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 926 return false; 927 return true; 928 } 929 930 void addMemcpyableField(FieldDecl *F) { 931 if (F->isZeroSize(CGF.getContext())) 932 return; 933 if (!FirstField) 934 addInitialField(F); 935 else 936 addNextField(F); 937 } 938 939 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 940 ASTContext &Ctx = CGF.getContext(); 941 unsigned LastFieldSize = 942 LastField->isBitField() 943 ? LastField->getBitWidthValue(Ctx) 944 : Ctx.toBits( 945 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first); 946 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 947 FirstByteOffset + Ctx.getCharWidth() - 1; 948 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 949 return MemcpySize; 950 } 951 952 void emitMemcpy() { 953 // Give the subclass a chance to bail out if it feels the memcpy isn't 954 // worth it (e.g. Hasn't aggregated enough data). 955 if (!FirstField) { 956 return; 957 } 958 959 uint64_t FirstByteOffset; 960 if (FirstField->isBitField()) { 961 const CGRecordLayout &RL = 962 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 963 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 964 // FirstFieldOffset is not appropriate for bitfields, 965 // we need to use the storage offset instead. 966 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 967 } else { 968 FirstByteOffset = FirstFieldOffset; 969 } 970 971 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 972 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 973 Address ThisPtr = CGF.LoadCXXThisAddress(); 974 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 975 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 976 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 977 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 978 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 979 980 emitMemcpyIR( 981 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF), 982 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF), 983 MemcpySize); 984 reset(); 985 } 986 987 void reset() { 988 FirstField = nullptr; 989 } 990 991 protected: 992 CodeGenFunction &CGF; 993 const CXXRecordDecl *ClassDecl; 994 995 private: 996 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 997 llvm::PointerType *DPT = DestPtr.getType(); 998 llvm::Type *DBP = 999 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 1000 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 1001 1002 llvm::PointerType *SPT = SrcPtr.getType(); 1003 llvm::Type *SBP = 1004 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 1005 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 1006 1007 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 1008 } 1009 1010 void addInitialField(FieldDecl *F) { 1011 FirstField = F; 1012 LastField = F; 1013 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1014 LastFieldOffset = FirstFieldOffset; 1015 LastAddedFieldIndex = F->getFieldIndex(); 1016 } 1017 1018 void addNextField(FieldDecl *F) { 1019 // For the most part, the following invariant will hold: 1020 // F->getFieldIndex() == LastAddedFieldIndex + 1 1021 // The one exception is that Sema won't add a copy-initializer for an 1022 // unnamed bitfield, which will show up here as a gap in the sequence. 1023 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1024 "Cannot aggregate fields out of order."); 1025 LastAddedFieldIndex = F->getFieldIndex(); 1026 1027 // The 'first' and 'last' fields are chosen by offset, rather than field 1028 // index. This allows the code to support bitfields, as well as regular 1029 // fields. 1030 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1031 if (FOffset < FirstFieldOffset) { 1032 FirstField = F; 1033 FirstFieldOffset = FOffset; 1034 } else if (FOffset >= LastFieldOffset) { 1035 LastField = F; 1036 LastFieldOffset = FOffset; 1037 } 1038 } 1039 1040 const VarDecl *SrcRec; 1041 const ASTRecordLayout &RecLayout; 1042 FieldDecl *FirstField; 1043 FieldDecl *LastField; 1044 uint64_t FirstFieldOffset, LastFieldOffset; 1045 unsigned LastAddedFieldIndex; 1046 }; 1047 1048 class ConstructorMemcpyizer : public FieldMemcpyizer { 1049 private: 1050 /// Get source argument for copy constructor. Returns null if not a copy 1051 /// constructor. 1052 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1053 const CXXConstructorDecl *CD, 1054 FunctionArgList &Args) { 1055 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1056 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1057 return nullptr; 1058 } 1059 1060 // Returns true if a CXXCtorInitializer represents a member initialization 1061 // that can be rolled into a memcpy. 1062 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1063 if (!MemcpyableCtor) 1064 return false; 1065 FieldDecl *Field = MemberInit->getMember(); 1066 assert(Field && "No field for member init."); 1067 QualType FieldType = Field->getType(); 1068 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1069 1070 // Bail out on non-memcpyable, not-trivially-copyable members. 1071 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1072 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1073 FieldType->isReferenceType())) 1074 return false; 1075 1076 // Bail out on volatile fields. 1077 if (!isMemcpyableField(Field)) 1078 return false; 1079 1080 // Otherwise we're good. 1081 return true; 1082 } 1083 1084 public: 1085 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1086 FunctionArgList &Args) 1087 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1088 ConstructorDecl(CD), 1089 MemcpyableCtor(CD->isDefaulted() && 1090 CD->isCopyOrMoveConstructor() && 1091 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1092 Args(Args) { } 1093 1094 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1095 if (isMemberInitMemcpyable(MemberInit)) { 1096 AggregatedInits.push_back(MemberInit); 1097 addMemcpyableField(MemberInit->getMember()); 1098 } else { 1099 emitAggregatedInits(); 1100 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1101 ConstructorDecl, Args); 1102 } 1103 } 1104 1105 void emitAggregatedInits() { 1106 if (AggregatedInits.size() <= 1) { 1107 // This memcpy is too small to be worthwhile. Fall back on default 1108 // codegen. 1109 if (!AggregatedInits.empty()) { 1110 CopyingValueRepresentation CVR(CGF); 1111 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1112 AggregatedInits[0], ConstructorDecl, Args); 1113 AggregatedInits.clear(); 1114 } 1115 reset(); 1116 return; 1117 } 1118 1119 pushEHDestructors(); 1120 emitMemcpy(); 1121 AggregatedInits.clear(); 1122 } 1123 1124 void pushEHDestructors() { 1125 Address ThisPtr = CGF.LoadCXXThisAddress(); 1126 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1127 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1128 1129 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1130 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1131 QualType FieldType = MemberInit->getAnyMember()->getType(); 1132 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1133 if (!CGF.needsEHCleanup(dtorKind)) 1134 continue; 1135 LValue FieldLHS = LHS; 1136 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1137 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType); 1138 } 1139 } 1140 1141 void finish() { 1142 emitAggregatedInits(); 1143 } 1144 1145 private: 1146 const CXXConstructorDecl *ConstructorDecl; 1147 bool MemcpyableCtor; 1148 FunctionArgList &Args; 1149 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1150 }; 1151 1152 class AssignmentMemcpyizer : public FieldMemcpyizer { 1153 private: 1154 // Returns the memcpyable field copied by the given statement, if one 1155 // exists. Otherwise returns null. 1156 FieldDecl *getMemcpyableField(Stmt *S) { 1157 if (!AssignmentsMemcpyable) 1158 return nullptr; 1159 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1160 // Recognise trivial assignments. 1161 if (BO->getOpcode() != BO_Assign) 1162 return nullptr; 1163 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1164 if (!ME) 1165 return nullptr; 1166 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1167 if (!Field || !isMemcpyableField(Field)) 1168 return nullptr; 1169 Stmt *RHS = BO->getRHS(); 1170 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1171 RHS = EC->getSubExpr(); 1172 if (!RHS) 1173 return nullptr; 1174 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1175 if (ME2->getMemberDecl() == Field) 1176 return Field; 1177 } 1178 return nullptr; 1179 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1180 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1181 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1182 return nullptr; 1183 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1184 if (!IOA) 1185 return nullptr; 1186 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1187 if (!Field || !isMemcpyableField(Field)) 1188 return nullptr; 1189 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1190 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1191 return nullptr; 1192 return Field; 1193 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1194 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1195 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1196 return nullptr; 1197 Expr *DstPtr = CE->getArg(0); 1198 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1199 DstPtr = DC->getSubExpr(); 1200 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1201 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1202 return nullptr; 1203 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1204 if (!ME) 1205 return nullptr; 1206 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1207 if (!Field || !isMemcpyableField(Field)) 1208 return nullptr; 1209 Expr *SrcPtr = CE->getArg(1); 1210 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1211 SrcPtr = SC->getSubExpr(); 1212 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1213 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1214 return nullptr; 1215 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1216 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1217 return nullptr; 1218 return Field; 1219 } 1220 1221 return nullptr; 1222 } 1223 1224 bool AssignmentsMemcpyable; 1225 SmallVector<Stmt*, 16> AggregatedStmts; 1226 1227 public: 1228 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1229 FunctionArgList &Args) 1230 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1231 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1232 assert(Args.size() == 2); 1233 } 1234 1235 void emitAssignment(Stmt *S) { 1236 FieldDecl *F = getMemcpyableField(S); 1237 if (F) { 1238 addMemcpyableField(F); 1239 AggregatedStmts.push_back(S); 1240 } else { 1241 emitAggregatedStmts(); 1242 CGF.EmitStmt(S); 1243 } 1244 } 1245 1246 void emitAggregatedStmts() { 1247 if (AggregatedStmts.size() <= 1) { 1248 if (!AggregatedStmts.empty()) { 1249 CopyingValueRepresentation CVR(CGF); 1250 CGF.EmitStmt(AggregatedStmts[0]); 1251 } 1252 reset(); 1253 } 1254 1255 emitMemcpy(); 1256 AggregatedStmts.clear(); 1257 } 1258 1259 void finish() { 1260 emitAggregatedStmts(); 1261 } 1262 }; 1263 } // end anonymous namespace 1264 1265 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1266 const Type *BaseType = BaseInit->getBaseClass(); 1267 const auto *BaseClassDecl = 1268 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 1269 return BaseClassDecl->isDynamicClass(); 1270 } 1271 1272 /// EmitCtorPrologue - This routine generates necessary code to initialize 1273 /// base classes and non-static data members belonging to this constructor. 1274 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1275 CXXCtorType CtorType, 1276 FunctionArgList &Args) { 1277 if (CD->isDelegatingConstructor()) 1278 return EmitDelegatingCXXConstructorCall(CD, Args); 1279 1280 const CXXRecordDecl *ClassDecl = CD->getParent(); 1281 1282 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1283 E = CD->init_end(); 1284 1285 // Virtual base initializers first, if any. They aren't needed if: 1286 // - This is a base ctor variant 1287 // - There are no vbases 1288 // - The class is abstract, so a complete object of it cannot be constructed 1289 // 1290 // The check for an abstract class is necessary because sema may not have 1291 // marked virtual base destructors referenced. 1292 bool ConstructVBases = CtorType != Ctor_Base && 1293 ClassDecl->getNumVBases() != 0 && 1294 !ClassDecl->isAbstract(); 1295 1296 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1297 // constructor of a class with virtual bases takes an additional parameter to 1298 // conditionally construct the virtual bases. Emit that check here. 1299 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1300 if (ConstructVBases && 1301 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1302 BaseCtorContinueBB = 1303 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1304 assert(BaseCtorContinueBB); 1305 } 1306 1307 llvm::Value *const OldThis = CXXThisValue; 1308 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1309 if (!ConstructVBases) 1310 continue; 1311 if (CGM.getCodeGenOpts().StrictVTablePointers && 1312 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1313 isInitializerOfDynamicClass(*B)) 1314 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1315 EmitBaseInitializer(*this, ClassDecl, *B); 1316 } 1317 1318 if (BaseCtorContinueBB) { 1319 // Complete object handler should continue to the remaining initializers. 1320 Builder.CreateBr(BaseCtorContinueBB); 1321 EmitBlock(BaseCtorContinueBB); 1322 } 1323 1324 // Then, non-virtual base initializers. 1325 for (; B != E && (*B)->isBaseInitializer(); B++) { 1326 assert(!(*B)->isBaseVirtual()); 1327 1328 if (CGM.getCodeGenOpts().StrictVTablePointers && 1329 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1330 isInitializerOfDynamicClass(*B)) 1331 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1332 EmitBaseInitializer(*this, ClassDecl, *B); 1333 } 1334 1335 CXXThisValue = OldThis; 1336 1337 InitializeVTablePointers(ClassDecl); 1338 1339 // And finally, initialize class members. 1340 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1341 ConstructorMemcpyizer CM(*this, CD, Args); 1342 for (; B != E; B++) { 1343 CXXCtorInitializer *Member = (*B); 1344 assert(!Member->isBaseInitializer()); 1345 assert(Member->isAnyMemberInitializer() && 1346 "Delegating initializer on non-delegating constructor"); 1347 CM.addMemberInitializer(Member); 1348 } 1349 CM.finish(); 1350 } 1351 1352 static bool 1353 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1354 1355 static bool 1356 HasTrivialDestructorBody(ASTContext &Context, 1357 const CXXRecordDecl *BaseClassDecl, 1358 const CXXRecordDecl *MostDerivedClassDecl) 1359 { 1360 // If the destructor is trivial we don't have to check anything else. 1361 if (BaseClassDecl->hasTrivialDestructor()) 1362 return true; 1363 1364 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1365 return false; 1366 1367 // Check fields. 1368 for (const auto *Field : BaseClassDecl->fields()) 1369 if (!FieldHasTrivialDestructorBody(Context, Field)) 1370 return false; 1371 1372 // Check non-virtual bases. 1373 for (const auto &I : BaseClassDecl->bases()) { 1374 if (I.isVirtual()) 1375 continue; 1376 1377 const CXXRecordDecl *NonVirtualBase = 1378 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1379 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1380 MostDerivedClassDecl)) 1381 return false; 1382 } 1383 1384 if (BaseClassDecl == MostDerivedClassDecl) { 1385 // Check virtual bases. 1386 for (const auto &I : BaseClassDecl->vbases()) { 1387 const CXXRecordDecl *VirtualBase = 1388 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1389 if (!HasTrivialDestructorBody(Context, VirtualBase, 1390 MostDerivedClassDecl)) 1391 return false; 1392 } 1393 } 1394 1395 return true; 1396 } 1397 1398 static bool 1399 FieldHasTrivialDestructorBody(ASTContext &Context, 1400 const FieldDecl *Field) 1401 { 1402 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1403 1404 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1405 if (!RT) 1406 return true; 1407 1408 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1409 1410 // The destructor for an implicit anonymous union member is never invoked. 1411 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1412 return false; 1413 1414 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1415 } 1416 1417 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1418 /// any vtable pointers before calling this destructor. 1419 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1420 const CXXDestructorDecl *Dtor) { 1421 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1422 if (!ClassDecl->isDynamicClass()) 1423 return true; 1424 1425 if (!Dtor->hasTrivialBody()) 1426 return false; 1427 1428 // Check the fields. 1429 for (const auto *Field : ClassDecl->fields()) 1430 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1431 return false; 1432 1433 return true; 1434 } 1435 1436 /// EmitDestructorBody - Emits the body of the current destructor. 1437 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1438 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1439 CXXDtorType DtorType = CurGD.getDtorType(); 1440 1441 // For an abstract class, non-base destructors are never used (and can't 1442 // be emitted in general, because vbase dtors may not have been validated 1443 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1444 // in fact emit references to them from other compilations, so emit them 1445 // as functions containing a trap instruction. 1446 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1447 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1448 TrapCall->setDoesNotReturn(); 1449 TrapCall->setDoesNotThrow(); 1450 Builder.CreateUnreachable(); 1451 Builder.ClearInsertionPoint(); 1452 return; 1453 } 1454 1455 Stmt *Body = Dtor->getBody(); 1456 if (Body) 1457 incrementProfileCounter(Body); 1458 1459 // The call to operator delete in a deleting destructor happens 1460 // outside of the function-try-block, which means it's always 1461 // possible to delegate the destructor body to the complete 1462 // destructor. Do so. 1463 if (DtorType == Dtor_Deleting) { 1464 RunCleanupsScope DtorEpilogue(*this); 1465 EnterDtorCleanups(Dtor, Dtor_Deleting); 1466 if (HaveInsertPoint()) { 1467 QualType ThisTy = Dtor->getThisObjectType(); 1468 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1469 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1470 } 1471 return; 1472 } 1473 1474 // If the body is a function-try-block, enter the try before 1475 // anything else. 1476 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1477 if (isTryBody) 1478 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1479 EmitAsanPrologueOrEpilogue(false); 1480 1481 // Enter the epilogue cleanups. 1482 RunCleanupsScope DtorEpilogue(*this); 1483 1484 // If this is the complete variant, just invoke the base variant; 1485 // the epilogue will destruct the virtual bases. But we can't do 1486 // this optimization if the body is a function-try-block, because 1487 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1488 // always delegate because we might not have a definition in this TU. 1489 switch (DtorType) { 1490 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1491 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1492 1493 case Dtor_Complete: 1494 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1495 "can't emit a dtor without a body for non-Microsoft ABIs"); 1496 1497 // Enter the cleanup scopes for virtual bases. 1498 EnterDtorCleanups(Dtor, Dtor_Complete); 1499 1500 if (!isTryBody) { 1501 QualType ThisTy = Dtor->getThisObjectType(); 1502 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1503 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1504 break; 1505 } 1506 1507 // Fallthrough: act like we're in the base variant. 1508 LLVM_FALLTHROUGH; 1509 1510 case Dtor_Base: 1511 assert(Body); 1512 1513 // Enter the cleanup scopes for fields and non-virtual bases. 1514 EnterDtorCleanups(Dtor, Dtor_Base); 1515 1516 // Initialize the vtable pointers before entering the body. 1517 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1518 // Insert the llvm.launder.invariant.group intrinsic before initializing 1519 // the vptrs to cancel any previous assumptions we might have made. 1520 if (CGM.getCodeGenOpts().StrictVTablePointers && 1521 CGM.getCodeGenOpts().OptimizationLevel > 0) 1522 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1523 InitializeVTablePointers(Dtor->getParent()); 1524 } 1525 1526 if (isTryBody) 1527 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1528 else if (Body) 1529 EmitStmt(Body); 1530 else { 1531 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1532 // nothing to do besides what's in the epilogue 1533 } 1534 // -fapple-kext must inline any call to this dtor into 1535 // the caller's body. 1536 if (getLangOpts().AppleKext) 1537 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1538 1539 break; 1540 } 1541 1542 // Jump out through the epilogue cleanups. 1543 DtorEpilogue.ForceCleanup(); 1544 1545 // Exit the try if applicable. 1546 if (isTryBody) 1547 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1548 } 1549 1550 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1551 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1552 const Stmt *RootS = AssignOp->getBody(); 1553 assert(isa<CompoundStmt>(RootS) && 1554 "Body of an implicit assignment operator should be compound stmt."); 1555 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1556 1557 LexicalScope Scope(*this, RootCS->getSourceRange()); 1558 1559 incrementProfileCounter(RootCS); 1560 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1561 for (auto *I : RootCS->body()) 1562 AM.emitAssignment(I); 1563 AM.finish(); 1564 } 1565 1566 namespace { 1567 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1568 const CXXDestructorDecl *DD) { 1569 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1570 return CGF.EmitScalarExpr(ThisArg); 1571 return CGF.LoadCXXThis(); 1572 } 1573 1574 /// Call the operator delete associated with the current destructor. 1575 struct CallDtorDelete final : EHScopeStack::Cleanup { 1576 CallDtorDelete() {} 1577 1578 void Emit(CodeGenFunction &CGF, Flags flags) override { 1579 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1580 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1581 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1582 LoadThisForDtorDelete(CGF, Dtor), 1583 CGF.getContext().getTagDeclType(ClassDecl)); 1584 } 1585 }; 1586 1587 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1588 llvm::Value *ShouldDeleteCondition, 1589 bool ReturnAfterDelete) { 1590 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1591 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1592 llvm::Value *ShouldCallDelete 1593 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1594 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1595 1596 CGF.EmitBlock(callDeleteBB); 1597 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1598 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1599 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1600 LoadThisForDtorDelete(CGF, Dtor), 1601 CGF.getContext().getTagDeclType(ClassDecl)); 1602 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1603 ReturnAfterDelete && 1604 "unexpected value for ReturnAfterDelete"); 1605 if (ReturnAfterDelete) 1606 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1607 else 1608 CGF.Builder.CreateBr(continueBB); 1609 1610 CGF.EmitBlock(continueBB); 1611 } 1612 1613 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1614 llvm::Value *ShouldDeleteCondition; 1615 1616 public: 1617 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1618 : ShouldDeleteCondition(ShouldDeleteCondition) { 1619 assert(ShouldDeleteCondition != nullptr); 1620 } 1621 1622 void Emit(CodeGenFunction &CGF, Flags flags) override { 1623 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1624 /*ReturnAfterDelete*/false); 1625 } 1626 }; 1627 1628 class DestroyField final : public EHScopeStack::Cleanup { 1629 const FieldDecl *field; 1630 CodeGenFunction::Destroyer *destroyer; 1631 bool useEHCleanupForArray; 1632 1633 public: 1634 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1635 bool useEHCleanupForArray) 1636 : field(field), destroyer(destroyer), 1637 useEHCleanupForArray(useEHCleanupForArray) {} 1638 1639 void Emit(CodeGenFunction &CGF, Flags flags) override { 1640 // Find the address of the field. 1641 Address thisValue = CGF.LoadCXXThisAddress(); 1642 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1643 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1644 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1645 assert(LV.isSimple()); 1646 1647 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer, 1648 flags.isForNormalCleanup() && useEHCleanupForArray); 1649 } 1650 }; 1651 1652 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1653 CharUnits::QuantityType PoisonSize) { 1654 CodeGenFunction::SanitizerScope SanScope(&CGF); 1655 // Pass in void pointer and size of region as arguments to runtime 1656 // function 1657 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1658 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1659 1660 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1661 1662 llvm::FunctionType *FnType = 1663 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1664 llvm::FunctionCallee Fn = 1665 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1666 CGF.EmitNounwindRuntimeCall(Fn, Args); 1667 } 1668 1669 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1670 const CXXDestructorDecl *Dtor; 1671 1672 public: 1673 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1674 1675 // Generate function call for handling object poisoning. 1676 // Disables tail call elimination, to prevent the current stack frame 1677 // from disappearing from the stack trace. 1678 void Emit(CodeGenFunction &CGF, Flags flags) override { 1679 const ASTRecordLayout &Layout = 1680 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1681 1682 // Nothing to poison. 1683 if (Layout.getFieldCount() == 0) 1684 return; 1685 1686 // Prevent the current stack frame from disappearing from the stack trace. 1687 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1688 1689 // Construct pointer to region to begin poisoning, and calculate poison 1690 // size, so that only members declared in this class are poisoned. 1691 ASTContext &Context = CGF.getContext(); 1692 unsigned fieldIndex = 0; 1693 int startIndex = -1; 1694 // RecordDecl::field_iterator Field; 1695 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1696 // Poison field if it is trivial 1697 if (FieldHasTrivialDestructorBody(Context, Field)) { 1698 // Start sanitizing at this field 1699 if (startIndex < 0) 1700 startIndex = fieldIndex; 1701 1702 // Currently on the last field, and it must be poisoned with the 1703 // current block. 1704 if (fieldIndex == Layout.getFieldCount() - 1) { 1705 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1706 } 1707 } else if (startIndex >= 0) { 1708 // No longer within a block of memory to poison, so poison the block 1709 PoisonMembers(CGF, startIndex, fieldIndex); 1710 // Re-set the start index 1711 startIndex = -1; 1712 } 1713 fieldIndex += 1; 1714 } 1715 } 1716 1717 private: 1718 /// \param layoutStartOffset index of the ASTRecordLayout field to 1719 /// start poisoning (inclusive) 1720 /// \param layoutEndOffset index of the ASTRecordLayout field to 1721 /// end poisoning (exclusive) 1722 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1723 unsigned layoutEndOffset) { 1724 ASTContext &Context = CGF.getContext(); 1725 const ASTRecordLayout &Layout = 1726 Context.getASTRecordLayout(Dtor->getParent()); 1727 1728 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1729 CGF.SizeTy, 1730 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1731 .getQuantity()); 1732 1733 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1734 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1735 OffsetSizePtr); 1736 1737 CharUnits::QuantityType PoisonSize; 1738 if (layoutEndOffset >= Layout.getFieldCount()) { 1739 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1740 Context.toCharUnitsFromBits( 1741 Layout.getFieldOffset(layoutStartOffset)) 1742 .getQuantity(); 1743 } else { 1744 PoisonSize = Context.toCharUnitsFromBits( 1745 Layout.getFieldOffset(layoutEndOffset) - 1746 Layout.getFieldOffset(layoutStartOffset)) 1747 .getQuantity(); 1748 } 1749 1750 if (PoisonSize == 0) 1751 return; 1752 1753 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1754 } 1755 }; 1756 1757 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1758 const CXXDestructorDecl *Dtor; 1759 1760 public: 1761 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1762 1763 // Generate function call for handling vtable pointer poisoning. 1764 void Emit(CodeGenFunction &CGF, Flags flags) override { 1765 assert(Dtor->getParent()->isDynamicClass()); 1766 (void)Dtor; 1767 ASTContext &Context = CGF.getContext(); 1768 // Poison vtable and vtable ptr if they exist for this class. 1769 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1770 1771 CharUnits::QuantityType PoisonSize = 1772 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1773 // Pass in void pointer and size of region as arguments to runtime 1774 // function 1775 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1776 } 1777 }; 1778 } // end anonymous namespace 1779 1780 /// Emit all code that comes at the end of class's 1781 /// destructor. This is to call destructors on members and base classes 1782 /// in reverse order of their construction. 1783 /// 1784 /// For a deleting destructor, this also handles the case where a destroying 1785 /// operator delete completely overrides the definition. 1786 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1787 CXXDtorType DtorType) { 1788 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1789 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1790 1791 // The deleting-destructor phase just needs to call the appropriate 1792 // operator delete that Sema picked up. 1793 if (DtorType == Dtor_Deleting) { 1794 assert(DD->getOperatorDelete() && 1795 "operator delete missing - EnterDtorCleanups"); 1796 if (CXXStructorImplicitParamValue) { 1797 // If there is an implicit param to the deleting dtor, it's a boolean 1798 // telling whether this is a deleting destructor. 1799 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1800 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1801 /*ReturnAfterDelete*/true); 1802 else 1803 EHStack.pushCleanup<CallDtorDeleteConditional>( 1804 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1805 } else { 1806 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1807 const CXXRecordDecl *ClassDecl = DD->getParent(); 1808 EmitDeleteCall(DD->getOperatorDelete(), 1809 LoadThisForDtorDelete(*this, DD), 1810 getContext().getTagDeclType(ClassDecl)); 1811 EmitBranchThroughCleanup(ReturnBlock); 1812 } else { 1813 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1814 } 1815 } 1816 return; 1817 } 1818 1819 const CXXRecordDecl *ClassDecl = DD->getParent(); 1820 1821 // Unions have no bases and do not call field destructors. 1822 if (ClassDecl->isUnion()) 1823 return; 1824 1825 // The complete-destructor phase just destructs all the virtual bases. 1826 if (DtorType == Dtor_Complete) { 1827 // Poison the vtable pointer such that access after the base 1828 // and member destructors are invoked is invalid. 1829 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1830 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1831 ClassDecl->isPolymorphic()) 1832 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1833 1834 // We push them in the forward order so that they'll be popped in 1835 // the reverse order. 1836 for (const auto &Base : ClassDecl->vbases()) { 1837 auto *BaseClassDecl = 1838 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); 1839 1840 // Ignore trivial destructors. 1841 if (BaseClassDecl->hasTrivialDestructor()) 1842 continue; 1843 1844 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1845 BaseClassDecl, 1846 /*BaseIsVirtual*/ true); 1847 } 1848 1849 return; 1850 } 1851 1852 assert(DtorType == Dtor_Base); 1853 // Poison the vtable pointer if it has no virtual bases, but inherits 1854 // virtual functions. 1855 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1856 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1857 ClassDecl->isPolymorphic()) 1858 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1859 1860 // Destroy non-virtual bases. 1861 for (const auto &Base : ClassDecl->bases()) { 1862 // Ignore virtual bases. 1863 if (Base.isVirtual()) 1864 continue; 1865 1866 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1867 1868 // Ignore trivial destructors. 1869 if (BaseClassDecl->hasTrivialDestructor()) 1870 continue; 1871 1872 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1873 BaseClassDecl, 1874 /*BaseIsVirtual*/ false); 1875 } 1876 1877 // Poison fields such that access after their destructors are 1878 // invoked, and before the base class destructor runs, is invalid. 1879 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1880 SanOpts.has(SanitizerKind::Memory)) 1881 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1882 1883 // Destroy direct fields. 1884 for (const auto *Field : ClassDecl->fields()) { 1885 QualType type = Field->getType(); 1886 QualType::DestructionKind dtorKind = type.isDestructedType(); 1887 if (!dtorKind) continue; 1888 1889 // Anonymous union members do not have their destructors called. 1890 const RecordType *RT = type->getAsUnionType(); 1891 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1892 1893 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1894 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1895 getDestroyer(dtorKind), 1896 cleanupKind & EHCleanup); 1897 } 1898 } 1899 1900 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1901 /// constructor for each of several members of an array. 1902 /// 1903 /// \param ctor the constructor to call for each element 1904 /// \param arrayType the type of the array to initialize 1905 /// \param arrayBegin an arrayType* 1906 /// \param zeroInitialize true if each element should be 1907 /// zero-initialized before it is constructed 1908 void CodeGenFunction::EmitCXXAggrConstructorCall( 1909 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1910 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1911 bool zeroInitialize) { 1912 QualType elementType; 1913 llvm::Value *numElements = 1914 emitArrayLength(arrayType, elementType, arrayBegin); 1915 1916 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1917 NewPointerIsChecked, zeroInitialize); 1918 } 1919 1920 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1921 /// constructor for each of several members of an array. 1922 /// 1923 /// \param ctor the constructor to call for each element 1924 /// \param numElements the number of elements in the array; 1925 /// may be zero 1926 /// \param arrayBase a T*, where T is the type constructed by ctor 1927 /// \param zeroInitialize true if each element should be 1928 /// zero-initialized before it is constructed 1929 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1930 llvm::Value *numElements, 1931 Address arrayBase, 1932 const CXXConstructExpr *E, 1933 bool NewPointerIsChecked, 1934 bool zeroInitialize) { 1935 // It's legal for numElements to be zero. This can happen both 1936 // dynamically, because x can be zero in 'new A[x]', and statically, 1937 // because of GCC extensions that permit zero-length arrays. There 1938 // are probably legitimate places where we could assume that this 1939 // doesn't happen, but it's not clear that it's worth it. 1940 llvm::BranchInst *zeroCheckBranch = nullptr; 1941 1942 // Optimize for a constant count. 1943 llvm::ConstantInt *constantCount 1944 = dyn_cast<llvm::ConstantInt>(numElements); 1945 if (constantCount) { 1946 // Just skip out if the constant count is zero. 1947 if (constantCount->isZero()) return; 1948 1949 // Otherwise, emit the check. 1950 } else { 1951 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1952 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1953 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1954 EmitBlock(loopBB); 1955 } 1956 1957 // Find the end of the array. 1958 llvm::Value *arrayBegin = arrayBase.getPointer(); 1959 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1960 "arrayctor.end"); 1961 1962 // Enter the loop, setting up a phi for the current location to initialize. 1963 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1964 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1965 EmitBlock(loopBB); 1966 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1967 "arrayctor.cur"); 1968 cur->addIncoming(arrayBegin, entryBB); 1969 1970 // Inside the loop body, emit the constructor call on the array element. 1971 1972 // The alignment of the base, adjusted by the size of a single element, 1973 // provides a conservative estimate of the alignment of every element. 1974 // (This assumes we never start tracking offsetted alignments.) 1975 // 1976 // Note that these are complete objects and so we don't need to 1977 // use the non-virtual size or alignment. 1978 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1979 CharUnits eltAlignment = 1980 arrayBase.getAlignment() 1981 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1982 Address curAddr = Address(cur, eltAlignment); 1983 1984 // Zero initialize the storage, if requested. 1985 if (zeroInitialize) 1986 EmitNullInitialization(curAddr, type); 1987 1988 // C++ [class.temporary]p4: 1989 // There are two contexts in which temporaries are destroyed at a different 1990 // point than the end of the full-expression. The first context is when a 1991 // default constructor is called to initialize an element of an array. 1992 // If the constructor has one or more default arguments, the destruction of 1993 // every temporary created in a default argument expression is sequenced 1994 // before the construction of the next array element, if any. 1995 1996 { 1997 RunCleanupsScope Scope(*this); 1998 1999 // Evaluate the constructor and its arguments in a regular 2000 // partial-destroy cleanup. 2001 if (getLangOpts().Exceptions && 2002 !ctor->getParent()->hasTrivialDestructor()) { 2003 Destroyer *destroyer = destroyCXXObject; 2004 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 2005 *destroyer); 2006 } 2007 auto currAVS = AggValueSlot::forAddr( 2008 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 2009 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 2010 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 2011 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 2012 : AggValueSlot::IsNotSanitizerChecked); 2013 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 2014 /*Delegating=*/false, currAVS, E); 2015 } 2016 2017 // Go to the next element. 2018 llvm::Value *next = 2019 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 2020 "arrayctor.next"); 2021 cur->addIncoming(next, Builder.GetInsertBlock()); 2022 2023 // Check whether that's the end of the loop. 2024 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2025 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2026 Builder.CreateCondBr(done, contBB, loopBB); 2027 2028 // Patch the earlier check to skip over the loop. 2029 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2030 2031 EmitBlock(contBB); 2032 } 2033 2034 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2035 Address addr, 2036 QualType type) { 2037 const RecordType *rtype = type->castAs<RecordType>(); 2038 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2039 const CXXDestructorDecl *dtor = record->getDestructor(); 2040 assert(!dtor->isTrivial()); 2041 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2042 /*Delegating=*/false, addr, type); 2043 } 2044 2045 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2046 CXXCtorType Type, 2047 bool ForVirtualBase, 2048 bool Delegating, 2049 AggValueSlot ThisAVS, 2050 const CXXConstructExpr *E) { 2051 CallArgList Args; 2052 Address This = ThisAVS.getAddress(); 2053 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2054 QualType ThisType = D->getThisType(); 2055 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); 2056 llvm::Value *ThisPtr = This.getPointer(); 2057 2058 if (SlotAS != ThisAS) { 2059 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2060 llvm::Type *NewType = 2061 ThisPtr->getType()->getPointerElementType()->getPointerTo(TargetThisAS); 2062 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2063 ThisAS, SlotAS, NewType); 2064 } 2065 2066 // Push the this ptr. 2067 Args.add(RValue::get(ThisPtr), D->getThisType()); 2068 2069 // If this is a trivial constructor, emit a memcpy now before we lose 2070 // the alignment information on the argument. 2071 // FIXME: It would be better to preserve alignment information into CallArg. 2072 if (isMemcpyEquivalentSpecialMember(D)) { 2073 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2074 2075 const Expr *Arg = E->getArg(0); 2076 LValue Src = EmitLValue(Arg); 2077 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2078 LValue Dest = MakeAddrLValue(This, DestTy); 2079 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2080 return; 2081 } 2082 2083 // Add the rest of the user-supplied arguments. 2084 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2085 EvaluationOrder Order = E->isListInitialization() 2086 ? EvaluationOrder::ForceLeftToRight 2087 : EvaluationOrder::Default; 2088 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2089 /*ParamsToSkip*/ 0, Order); 2090 2091 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2092 ThisAVS.mayOverlap(), E->getExprLoc(), 2093 ThisAVS.isSanitizerChecked()); 2094 } 2095 2096 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2097 const CXXConstructorDecl *Ctor, 2098 CXXCtorType Type, CallArgList &Args) { 2099 // We can't forward a variadic call. 2100 if (Ctor->isVariadic()) 2101 return false; 2102 2103 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2104 // If the parameters are callee-cleanup, it's not safe to forward. 2105 for (auto *P : Ctor->parameters()) 2106 if (P->needsDestruction(CGF.getContext())) 2107 return false; 2108 2109 // Likewise if they're inalloca. 2110 const CGFunctionInfo &Info = 2111 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2112 if (Info.usesInAlloca()) 2113 return false; 2114 } 2115 2116 // Anything else should be OK. 2117 return true; 2118 } 2119 2120 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2121 CXXCtorType Type, 2122 bool ForVirtualBase, 2123 bool Delegating, 2124 Address This, 2125 CallArgList &Args, 2126 AggValueSlot::Overlap_t Overlap, 2127 SourceLocation Loc, 2128 bool NewPointerIsChecked) { 2129 const CXXRecordDecl *ClassDecl = D->getParent(); 2130 2131 if (!NewPointerIsChecked) 2132 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2133 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2134 2135 if (D->isTrivial() && D->isDefaultConstructor()) { 2136 assert(Args.size() == 1 && "trivial default ctor with args"); 2137 return; 2138 } 2139 2140 // If this is a trivial constructor, just emit what's needed. If this is a 2141 // union copy constructor, we must emit a memcpy, because the AST does not 2142 // model that copy. 2143 if (isMemcpyEquivalentSpecialMember(D)) { 2144 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2145 2146 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2147 Address Src(Args[1].getRValue(*this).getScalarVal(), 2148 CGM.getNaturalTypeAlignment(SrcTy)); 2149 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2150 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2151 LValue DestLVal = MakeAddrLValue(This, DestTy); 2152 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2153 return; 2154 } 2155 2156 bool PassPrototypeArgs = true; 2157 // Check whether we can actually emit the constructor before trying to do so. 2158 if (auto Inherited = D->getInheritedConstructor()) { 2159 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2160 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2161 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2162 Delegating, Args); 2163 return; 2164 } 2165 } 2166 2167 // Insert any ABI-specific implicit constructor arguments. 2168 CGCXXABI::AddedStructorArgCounts ExtraArgs = 2169 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2170 Delegating, Args); 2171 2172 // Emit the call. 2173 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2174 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2175 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2176 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2177 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, Loc); 2178 2179 // Generate vtable assumptions if we're constructing a complete object 2180 // with a vtable. We don't do this for base subobjects for two reasons: 2181 // first, it's incorrect for classes with virtual bases, and second, we're 2182 // about to overwrite the vptrs anyway. 2183 // We also have to make sure if we can refer to vtable: 2184 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2185 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2186 // sure that definition of vtable is not hidden, 2187 // then we are always safe to refer to it. 2188 // FIXME: It looks like InstCombine is very inefficient on dealing with 2189 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2190 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2191 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2192 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2193 CGM.getCodeGenOpts().StrictVTablePointers) 2194 EmitVTableAssumptionLoads(ClassDecl, This); 2195 } 2196 2197 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2198 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2199 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2200 CallArgList Args; 2201 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2202 2203 // Forward the parameters. 2204 if (InheritedFromVBase && 2205 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2206 // Nothing to do; this construction is not responsible for constructing 2207 // the base class containing the inherited constructor. 2208 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2209 // have constructor variants? 2210 Args.push_back(ThisArg); 2211 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2212 // The inheriting constructor was inlined; just inject its arguments. 2213 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2214 "wrong number of parameters for inherited constructor call"); 2215 Args = CXXInheritedCtorInitExprArgs; 2216 Args[0] = ThisArg; 2217 } else { 2218 // The inheriting constructor was not inlined. Emit delegating arguments. 2219 Args.push_back(ThisArg); 2220 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2221 assert(OuterCtor->getNumParams() == D->getNumParams()); 2222 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2223 2224 for (const auto *Param : OuterCtor->parameters()) { 2225 assert(getContext().hasSameUnqualifiedType( 2226 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2227 Param->getType())); 2228 EmitDelegateCallArg(Args, Param, E->getLocation()); 2229 2230 // Forward __attribute__(pass_object_size). 2231 if (Param->hasAttr<PassObjectSizeAttr>()) { 2232 auto *POSParam = SizeArguments[Param]; 2233 assert(POSParam && "missing pass_object_size value for forwarding"); 2234 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2235 } 2236 } 2237 } 2238 2239 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2240 This, Args, AggValueSlot::MayOverlap, 2241 E->getLocation(), /*NewPointerIsChecked*/true); 2242 } 2243 2244 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2245 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2246 bool Delegating, CallArgList &Args) { 2247 GlobalDecl GD(Ctor, CtorType); 2248 InlinedInheritingConstructorScope Scope(*this, GD); 2249 ApplyInlineDebugLocation DebugScope(*this, GD); 2250 RunCleanupsScope RunCleanups(*this); 2251 2252 // Save the arguments to be passed to the inherited constructor. 2253 CXXInheritedCtorInitExprArgs = Args; 2254 2255 FunctionArgList Params; 2256 QualType RetType = BuildFunctionArgList(CurGD, Params); 2257 FnRetTy = RetType; 2258 2259 // Insert any ABI-specific implicit constructor arguments. 2260 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2261 ForVirtualBase, Delegating, Args); 2262 2263 // Emit a simplified prolog. We only need to emit the implicit params. 2264 assert(Args.size() >= Params.size() && "too few arguments for call"); 2265 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2266 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2267 const RValue &RV = Args[I].getRValue(*this); 2268 assert(!RV.isComplex() && "complex indirect params not supported"); 2269 ParamValue Val = RV.isScalar() 2270 ? ParamValue::forDirect(RV.getScalarVal()) 2271 : ParamValue::forIndirect(RV.getAggregateAddress()); 2272 EmitParmDecl(*Params[I], Val, I + 1); 2273 } 2274 } 2275 2276 // Create a return value slot if the ABI implementation wants one. 2277 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2278 // value instead. 2279 if (!RetType->isVoidType()) 2280 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2281 2282 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2283 CXXThisValue = CXXABIThisValue; 2284 2285 // Directly emit the constructor initializers. 2286 EmitCtorPrologue(Ctor, CtorType, Params); 2287 } 2288 2289 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2290 llvm::Value *VTableGlobal = 2291 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2292 if (!VTableGlobal) 2293 return; 2294 2295 // We can just use the base offset in the complete class. 2296 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2297 2298 if (!NonVirtualOffset.isZero()) 2299 This = 2300 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2301 Vptr.VTableClass, Vptr.NearestVBase); 2302 2303 llvm::Value *VPtrValue = 2304 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2305 llvm::Value *Cmp = 2306 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2307 Builder.CreateAssumption(Cmp); 2308 } 2309 2310 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2311 Address This) { 2312 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2313 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2314 EmitVTableAssumptionLoad(Vptr, This); 2315 } 2316 2317 void 2318 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2319 Address This, Address Src, 2320 const CXXConstructExpr *E) { 2321 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2322 2323 CallArgList Args; 2324 2325 // Push the this ptr. 2326 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2327 2328 // Push the src ptr. 2329 QualType QT = *(FPT->param_type_begin()); 2330 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2331 Src = Builder.CreateBitCast(Src, t); 2332 Args.add(RValue::get(Src.getPointer()), QT); 2333 2334 // Skip over first argument (Src). 2335 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2336 /*ParamsToSkip*/ 1); 2337 2338 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2339 /*Delegating*/false, This, Args, 2340 AggValueSlot::MayOverlap, E->getExprLoc(), 2341 /*NewPointerIsChecked*/false); 2342 } 2343 2344 void 2345 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2346 CXXCtorType CtorType, 2347 const FunctionArgList &Args, 2348 SourceLocation Loc) { 2349 CallArgList DelegateArgs; 2350 2351 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2352 assert(I != E && "no parameters to constructor"); 2353 2354 // this 2355 Address This = LoadCXXThisAddress(); 2356 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2357 ++I; 2358 2359 // FIXME: The location of the VTT parameter in the parameter list is 2360 // specific to the Itanium ABI and shouldn't be hardcoded here. 2361 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2362 assert(I != E && "cannot skip vtt parameter, already done with args"); 2363 assert((*I)->getType()->isPointerType() && 2364 "skipping parameter not of vtt type"); 2365 ++I; 2366 } 2367 2368 // Explicit arguments. 2369 for (; I != E; ++I) { 2370 const VarDecl *param = *I; 2371 // FIXME: per-argument source location 2372 EmitDelegateCallArg(DelegateArgs, param, Loc); 2373 } 2374 2375 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2376 /*Delegating=*/true, This, DelegateArgs, 2377 AggValueSlot::MayOverlap, Loc, 2378 /*NewPointerIsChecked=*/true); 2379 } 2380 2381 namespace { 2382 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2383 const CXXDestructorDecl *Dtor; 2384 Address Addr; 2385 CXXDtorType Type; 2386 2387 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2388 CXXDtorType Type) 2389 : Dtor(D), Addr(Addr), Type(Type) {} 2390 2391 void Emit(CodeGenFunction &CGF, Flags flags) override { 2392 // We are calling the destructor from within the constructor. 2393 // Therefore, "this" should have the expected type. 2394 QualType ThisTy = Dtor->getThisObjectType(); 2395 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2396 /*Delegating=*/true, Addr, ThisTy); 2397 } 2398 }; 2399 } // end anonymous namespace 2400 2401 void 2402 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2403 const FunctionArgList &Args) { 2404 assert(Ctor->isDelegatingConstructor()); 2405 2406 Address ThisPtr = LoadCXXThisAddress(); 2407 2408 AggValueSlot AggSlot = 2409 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2410 AggValueSlot::IsDestructed, 2411 AggValueSlot::DoesNotNeedGCBarriers, 2412 AggValueSlot::IsNotAliased, 2413 AggValueSlot::MayOverlap, 2414 AggValueSlot::IsNotZeroed, 2415 // Checks are made by the code that calls constructor. 2416 AggValueSlot::IsSanitizerChecked); 2417 2418 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2419 2420 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2421 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2422 CXXDtorType Type = 2423 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2424 2425 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2426 ClassDecl->getDestructor(), 2427 ThisPtr, Type); 2428 } 2429 } 2430 2431 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2432 CXXDtorType Type, 2433 bool ForVirtualBase, 2434 bool Delegating, Address This, 2435 QualType ThisTy) { 2436 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2437 Delegating, This, ThisTy); 2438 } 2439 2440 namespace { 2441 struct CallLocalDtor final : EHScopeStack::Cleanup { 2442 const CXXDestructorDecl *Dtor; 2443 Address Addr; 2444 QualType Ty; 2445 2446 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2447 : Dtor(D), Addr(Addr), Ty(Ty) {} 2448 2449 void Emit(CodeGenFunction &CGF, Flags flags) override { 2450 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2451 /*ForVirtualBase=*/false, 2452 /*Delegating=*/false, Addr, Ty); 2453 } 2454 }; 2455 } // end anonymous namespace 2456 2457 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2458 QualType T, Address Addr) { 2459 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2460 } 2461 2462 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2463 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2464 if (!ClassDecl) return; 2465 if (ClassDecl->hasTrivialDestructor()) return; 2466 2467 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2468 assert(D && D->isUsed() && "destructor not marked as used!"); 2469 PushDestructorCleanup(D, T, Addr); 2470 } 2471 2472 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2473 // Compute the address point. 2474 llvm::Value *VTableAddressPoint = 2475 CGM.getCXXABI().getVTableAddressPointInStructor( 2476 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2477 2478 if (!VTableAddressPoint) 2479 return; 2480 2481 // Compute where to store the address point. 2482 llvm::Value *VirtualOffset = nullptr; 2483 CharUnits NonVirtualOffset = CharUnits::Zero(); 2484 2485 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2486 // We need to use the virtual base offset offset because the virtual base 2487 // might have a different offset in the most derived class. 2488 2489 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2490 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2491 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2492 } else { 2493 // We can just use the base offset in the complete class. 2494 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2495 } 2496 2497 // Apply the offsets. 2498 Address VTableField = LoadCXXThisAddress(); 2499 2500 if (!NonVirtualOffset.isZero() || VirtualOffset) 2501 VTableField = ApplyNonVirtualAndVirtualOffset( 2502 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2503 Vptr.NearestVBase); 2504 2505 // Finally, store the address point. Use the same LLVM types as the field to 2506 // support optimization. 2507 llvm::Type *VTablePtrTy = 2508 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2509 ->getPointerTo() 2510 ->getPointerTo(); 2511 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2512 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2513 2514 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2515 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2516 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2517 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2518 CGM.getCodeGenOpts().StrictVTablePointers) 2519 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2520 } 2521 2522 CodeGenFunction::VPtrsVector 2523 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2524 CodeGenFunction::VPtrsVector VPtrsResult; 2525 VisitedVirtualBasesSetTy VBases; 2526 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2527 /*NearestVBase=*/nullptr, 2528 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2529 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2530 VPtrsResult); 2531 return VPtrsResult; 2532 } 2533 2534 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2535 const CXXRecordDecl *NearestVBase, 2536 CharUnits OffsetFromNearestVBase, 2537 bool BaseIsNonVirtualPrimaryBase, 2538 const CXXRecordDecl *VTableClass, 2539 VisitedVirtualBasesSetTy &VBases, 2540 VPtrsVector &Vptrs) { 2541 // If this base is a non-virtual primary base the address point has already 2542 // been set. 2543 if (!BaseIsNonVirtualPrimaryBase) { 2544 // Initialize the vtable pointer for this base. 2545 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2546 Vptrs.push_back(Vptr); 2547 } 2548 2549 const CXXRecordDecl *RD = Base.getBase(); 2550 2551 // Traverse bases. 2552 for (const auto &I : RD->bases()) { 2553 auto *BaseDecl = 2554 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2555 2556 // Ignore classes without a vtable. 2557 if (!BaseDecl->isDynamicClass()) 2558 continue; 2559 2560 CharUnits BaseOffset; 2561 CharUnits BaseOffsetFromNearestVBase; 2562 bool BaseDeclIsNonVirtualPrimaryBase; 2563 2564 if (I.isVirtual()) { 2565 // Check if we've visited this virtual base before. 2566 if (!VBases.insert(BaseDecl).second) 2567 continue; 2568 2569 const ASTRecordLayout &Layout = 2570 getContext().getASTRecordLayout(VTableClass); 2571 2572 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2573 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2574 BaseDeclIsNonVirtualPrimaryBase = false; 2575 } else { 2576 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2577 2578 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2579 BaseOffsetFromNearestVBase = 2580 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2581 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2582 } 2583 2584 getVTablePointers( 2585 BaseSubobject(BaseDecl, BaseOffset), 2586 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2587 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2588 } 2589 } 2590 2591 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2592 // Ignore classes without a vtable. 2593 if (!RD->isDynamicClass()) 2594 return; 2595 2596 // Initialize the vtable pointers for this class and all of its bases. 2597 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2598 for (const VPtr &Vptr : getVTablePointers(RD)) 2599 InitializeVTablePointer(Vptr); 2600 2601 if (RD->getNumVBases()) 2602 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2603 } 2604 2605 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2606 llvm::Type *VTableTy, 2607 const CXXRecordDecl *RD) { 2608 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2609 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2610 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2611 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2612 2613 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2614 CGM.getCodeGenOpts().StrictVTablePointers) 2615 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2616 2617 return VTable; 2618 } 2619 2620 // If a class has a single non-virtual base and does not introduce or override 2621 // virtual member functions or fields, it will have the same layout as its base. 2622 // This function returns the least derived such class. 2623 // 2624 // Casting an instance of a base class to such a derived class is technically 2625 // undefined behavior, but it is a relatively common hack for introducing member 2626 // functions on class instances with specific properties (e.g. llvm::Operator) 2627 // that works under most compilers and should not have security implications, so 2628 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2629 static const CXXRecordDecl * 2630 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2631 if (!RD->field_empty()) 2632 return RD; 2633 2634 if (RD->getNumVBases() != 0) 2635 return RD; 2636 2637 if (RD->getNumBases() != 1) 2638 return RD; 2639 2640 for (const CXXMethodDecl *MD : RD->methods()) { 2641 if (MD->isVirtual()) { 2642 // Virtual member functions are only ok if they are implicit destructors 2643 // because the implicit destructor will have the same semantics as the 2644 // base class's destructor if no fields are added. 2645 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2646 continue; 2647 return RD; 2648 } 2649 } 2650 2651 return LeastDerivedClassWithSameLayout( 2652 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2653 } 2654 2655 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2656 llvm::Value *VTable, 2657 SourceLocation Loc) { 2658 if (SanOpts.has(SanitizerKind::CFIVCall)) 2659 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2660 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2661 // Don't insert type test assumes if we are forcing public std 2662 // visibility. 2663 !CGM.HasLTOVisibilityPublicStd(RD)) { 2664 llvm::Metadata *MD = 2665 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2666 llvm::Value *TypeId = 2667 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2668 2669 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2670 llvm::Value *TypeTest = 2671 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2672 {CastedVTable, TypeId}); 2673 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2674 } 2675 } 2676 2677 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2678 llvm::Value *VTable, 2679 CFITypeCheckKind TCK, 2680 SourceLocation Loc) { 2681 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2682 RD = LeastDerivedClassWithSameLayout(RD); 2683 2684 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2685 } 2686 2687 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2688 llvm::Value *Derived, 2689 bool MayBeNull, 2690 CFITypeCheckKind TCK, 2691 SourceLocation Loc) { 2692 if (!getLangOpts().CPlusPlus) 2693 return; 2694 2695 auto *ClassTy = T->getAs<RecordType>(); 2696 if (!ClassTy) 2697 return; 2698 2699 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2700 2701 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2702 return; 2703 2704 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2705 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2706 2707 llvm::BasicBlock *ContBlock = nullptr; 2708 2709 if (MayBeNull) { 2710 llvm::Value *DerivedNotNull = 2711 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2712 2713 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2714 ContBlock = createBasicBlock("cast.cont"); 2715 2716 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2717 2718 EmitBlock(CheckBlock); 2719 } 2720 2721 llvm::Value *VTable; 2722 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2723 *this, Address(Derived, getPointerAlign()), ClassDecl); 2724 2725 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2726 2727 if (MayBeNull) { 2728 Builder.CreateBr(ContBlock); 2729 EmitBlock(ContBlock); 2730 } 2731 } 2732 2733 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2734 llvm::Value *VTable, 2735 CFITypeCheckKind TCK, 2736 SourceLocation Loc) { 2737 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2738 !CGM.HasHiddenLTOVisibility(RD)) 2739 return; 2740 2741 SanitizerMask M; 2742 llvm::SanitizerStatKind SSK; 2743 switch (TCK) { 2744 case CFITCK_VCall: 2745 M = SanitizerKind::CFIVCall; 2746 SSK = llvm::SanStat_CFI_VCall; 2747 break; 2748 case CFITCK_NVCall: 2749 M = SanitizerKind::CFINVCall; 2750 SSK = llvm::SanStat_CFI_NVCall; 2751 break; 2752 case CFITCK_DerivedCast: 2753 M = SanitizerKind::CFIDerivedCast; 2754 SSK = llvm::SanStat_CFI_DerivedCast; 2755 break; 2756 case CFITCK_UnrelatedCast: 2757 M = SanitizerKind::CFIUnrelatedCast; 2758 SSK = llvm::SanStat_CFI_UnrelatedCast; 2759 break; 2760 case CFITCK_ICall: 2761 case CFITCK_NVMFCall: 2762 case CFITCK_VMFCall: 2763 llvm_unreachable("unexpected sanitizer kind"); 2764 } 2765 2766 std::string TypeName = RD->getQualifiedNameAsString(); 2767 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2768 return; 2769 2770 SanitizerScope SanScope(this); 2771 EmitSanitizerStatReport(SSK); 2772 2773 llvm::Metadata *MD = 2774 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2775 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2776 2777 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2778 llvm::Value *TypeTest = Builder.CreateCall( 2779 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2780 2781 llvm::Constant *StaticData[] = { 2782 llvm::ConstantInt::get(Int8Ty, TCK), 2783 EmitCheckSourceLocation(Loc), 2784 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2785 }; 2786 2787 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2788 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2789 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2790 return; 2791 } 2792 2793 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2794 EmitTrapCheck(TypeTest); 2795 return; 2796 } 2797 2798 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2799 CGM.getLLVMContext(), 2800 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2801 llvm::Value *ValidVtable = Builder.CreateCall( 2802 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2803 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2804 StaticData, {CastedVTable, ValidVtable}); 2805 } 2806 2807 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2808 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2809 !CGM.HasHiddenLTOVisibility(RD)) 2810 return false; 2811 2812 if (CGM.getCodeGenOpts().VirtualFunctionElimination) 2813 return true; 2814 2815 if (!SanOpts.has(SanitizerKind::CFIVCall) || 2816 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) 2817 return false; 2818 2819 std::string TypeName = RD->getQualifiedNameAsString(); 2820 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2821 SanitizerKind::CFIVCall, TypeName); 2822 } 2823 2824 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2825 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2826 SanitizerScope SanScope(this); 2827 2828 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2829 2830 llvm::Metadata *MD = 2831 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2832 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2833 2834 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2835 llvm::Value *CheckedLoad = Builder.CreateCall( 2836 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2837 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2838 TypeId}); 2839 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2840 2841 std::string TypeName = RD->getQualifiedNameAsString(); 2842 if (SanOpts.has(SanitizerKind::CFIVCall) && 2843 !getContext().getSanitizerBlacklist().isBlacklistedType( 2844 SanitizerKind::CFIVCall, TypeName)) { 2845 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2846 SanitizerHandler::CFICheckFail, {}, {}); 2847 } 2848 2849 return Builder.CreateBitCast( 2850 Builder.CreateExtractValue(CheckedLoad, 0), 2851 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2852 } 2853 2854 void CodeGenFunction::EmitForwardingCallToLambda( 2855 const CXXMethodDecl *callOperator, 2856 CallArgList &callArgs) { 2857 // Get the address of the call operator. 2858 const CGFunctionInfo &calleeFnInfo = 2859 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2860 llvm::Constant *calleePtr = 2861 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2862 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2863 2864 // Prepare the return slot. 2865 const FunctionProtoType *FPT = 2866 callOperator->getType()->castAs<FunctionProtoType>(); 2867 QualType resultType = FPT->getReturnType(); 2868 ReturnValueSlot returnSlot; 2869 if (!resultType->isVoidType() && 2870 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2871 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2872 returnSlot = 2873 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(), 2874 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 2875 2876 // We don't need to separately arrange the call arguments because 2877 // the call can't be variadic anyway --- it's impossible to forward 2878 // variadic arguments. 2879 2880 // Now emit our call. 2881 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2882 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2883 2884 // If necessary, copy the returned value into the slot. 2885 if (!resultType->isVoidType() && returnSlot.isNull()) { 2886 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2887 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2888 } 2889 EmitReturnOfRValue(RV, resultType); 2890 } else 2891 EmitBranchThroughCleanup(ReturnBlock); 2892 } 2893 2894 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2895 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2896 const VarDecl *variable = BD->capture_begin()->getVariable(); 2897 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2898 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2899 2900 if (CallOp->isVariadic()) { 2901 // FIXME: Making this work correctly is nasty because it requires either 2902 // cloning the body of the call operator or making the call operator 2903 // forward. 2904 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2905 return; 2906 } 2907 2908 // Start building arguments for forwarding call 2909 CallArgList CallArgs; 2910 2911 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2912 Address ThisPtr = GetAddrOfBlockDecl(variable); 2913 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2914 2915 // Add the rest of the parameters. 2916 for (auto param : BD->parameters()) 2917 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2918 2919 assert(!Lambda->isGenericLambda() && 2920 "generic lambda interconversion to block not implemented"); 2921 EmitForwardingCallToLambda(CallOp, CallArgs); 2922 } 2923 2924 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2925 const CXXRecordDecl *Lambda = MD->getParent(); 2926 2927 // Start building arguments for forwarding call 2928 CallArgList CallArgs; 2929 2930 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2931 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2932 CallArgs.add(RValue::get(ThisPtr), ThisType); 2933 2934 // Add the rest of the parameters. 2935 for (auto Param : MD->parameters()) 2936 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 2937 2938 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2939 // For a generic lambda, find the corresponding call operator specialization 2940 // to which the call to the static-invoker shall be forwarded. 2941 if (Lambda->isGenericLambda()) { 2942 assert(MD->isFunctionTemplateSpecialization()); 2943 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2944 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2945 void *InsertPos = nullptr; 2946 FunctionDecl *CorrespondingCallOpSpecialization = 2947 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2948 assert(CorrespondingCallOpSpecialization); 2949 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2950 } 2951 EmitForwardingCallToLambda(CallOp, CallArgs); 2952 } 2953 2954 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2955 if (MD->isVariadic()) { 2956 // FIXME: Making this work correctly is nasty because it requires either 2957 // cloning the body of the call operator or making the call operator forward. 2958 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2959 return; 2960 } 2961 2962 EmitLambdaDelegatingInvokeBody(MD); 2963 } 2964