1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 AlignmentSource *alignSource) { 133 // Ask the ABI to compute the actual address. 134 llvm::Value *ptr = 135 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 136 memberPtr, memberPtrType); 137 138 QualType memberType = memberPtrType->getPointeeType(); 139 CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource); 140 memberAlign = 141 CGM.getDynamicOffsetAlignment(base.getAlignment(), 142 memberPtrType->getClass()->getAsCXXRecordDecl(), 143 memberAlign); 144 return Address(ptr, memberAlign); 145 } 146 147 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 148 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 149 CastExpr::path_const_iterator End) { 150 CharUnits Offset = CharUnits::Zero(); 151 152 const ASTContext &Context = getContext(); 153 const CXXRecordDecl *RD = DerivedClass; 154 155 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 156 const CXXBaseSpecifier *Base = *I; 157 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 158 159 // Get the layout. 160 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 161 162 const CXXRecordDecl *BaseDecl = 163 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 164 165 // Add the offset. 166 Offset += Layout.getBaseClassOffset(BaseDecl); 167 168 RD = BaseDecl; 169 } 170 171 return Offset; 172 } 173 174 llvm::Constant * 175 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 176 CastExpr::path_const_iterator PathBegin, 177 CastExpr::path_const_iterator PathEnd) { 178 assert(PathBegin != PathEnd && "Base path should not be empty!"); 179 180 CharUnits Offset = 181 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 182 if (Offset.isZero()) 183 return nullptr; 184 185 llvm::Type *PtrDiffTy = 186 Types.ConvertType(getContext().getPointerDiffType()); 187 188 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 189 } 190 191 /// Gets the address of a direct base class within a complete object. 192 /// This should only be used for (1) non-virtual bases or (2) virtual bases 193 /// when the type is known to be complete (e.g. in complete destructors). 194 /// 195 /// The object pointed to by 'This' is assumed to be non-null. 196 Address 197 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 198 const CXXRecordDecl *Derived, 199 const CXXRecordDecl *Base, 200 bool BaseIsVirtual) { 201 // 'this' must be a pointer (in some address space) to Derived. 202 assert(This.getElementType() == ConvertType(Derived)); 203 204 // Compute the offset of the virtual base. 205 CharUnits Offset; 206 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 207 if (BaseIsVirtual) 208 Offset = Layout.getVBaseClassOffset(Base); 209 else 210 Offset = Layout.getBaseClassOffset(Base); 211 212 // Shift and cast down to the base type. 213 // TODO: for complete types, this should be possible with a GEP. 214 Address V = This; 215 if (!Offset.isZero()) { 216 V = Builder.CreateElementBitCast(V, Int8Ty); 217 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 218 } 219 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 220 221 return V; 222 } 223 224 static Address 225 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 226 CharUnits nonVirtualOffset, 227 llvm::Value *virtualOffset, 228 const CXXRecordDecl *derivedClass, 229 const CXXRecordDecl *nearestVBase) { 230 // Assert that we have something to do. 231 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 232 233 // Compute the offset from the static and dynamic components. 234 llvm::Value *baseOffset; 235 if (!nonVirtualOffset.isZero()) { 236 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 237 nonVirtualOffset.getQuantity()); 238 if (virtualOffset) { 239 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 240 } 241 } else { 242 baseOffset = virtualOffset; 243 } 244 245 // Apply the base offset. 246 llvm::Value *ptr = addr.getPointer(); 247 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 248 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 249 250 // If we have a virtual component, the alignment of the result will 251 // be relative only to the known alignment of that vbase. 252 CharUnits alignment; 253 if (virtualOffset) { 254 assert(nearestVBase && "virtual offset without vbase?"); 255 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 256 derivedClass, nearestVBase); 257 } else { 258 alignment = addr.getAlignment(); 259 } 260 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 261 262 return Address(ptr, alignment); 263 } 264 265 Address CodeGenFunction::GetAddressOfBaseClass( 266 Address Value, const CXXRecordDecl *Derived, 267 CastExpr::path_const_iterator PathBegin, 268 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 269 SourceLocation Loc) { 270 assert(PathBegin != PathEnd && "Base path should not be empty!"); 271 272 CastExpr::path_const_iterator Start = PathBegin; 273 const CXXRecordDecl *VBase = nullptr; 274 275 // Sema has done some convenient canonicalization here: if the 276 // access path involved any virtual steps, the conversion path will 277 // *start* with a step down to the correct virtual base subobject, 278 // and hence will not require any further steps. 279 if ((*Start)->isVirtual()) { 280 VBase = 281 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 282 ++Start; 283 } 284 285 // Compute the static offset of the ultimate destination within its 286 // allocating subobject (the virtual base, if there is one, or else 287 // the "complete" object that we see). 288 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 289 VBase ? VBase : Derived, Start, PathEnd); 290 291 // If there's a virtual step, we can sometimes "devirtualize" it. 292 // For now, that's limited to when the derived type is final. 293 // TODO: "devirtualize" this for accesses to known-complete objects. 294 if (VBase && Derived->hasAttr<FinalAttr>()) { 295 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 296 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 297 NonVirtualOffset += vBaseOffset; 298 VBase = nullptr; // we no longer have a virtual step 299 } 300 301 // Get the base pointer type. 302 llvm::Type *BasePtrTy = 303 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 304 305 QualType DerivedTy = getContext().getRecordType(Derived); 306 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 307 308 // If the static offset is zero and we don't have a virtual step, 309 // just do a bitcast; null checks are unnecessary. 310 if (NonVirtualOffset.isZero() && !VBase) { 311 if (sanitizePerformTypeCheck()) { 312 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 313 DerivedTy, DerivedAlign, !NullCheckValue); 314 } 315 return Builder.CreateBitCast(Value, BasePtrTy); 316 } 317 318 llvm::BasicBlock *origBB = nullptr; 319 llvm::BasicBlock *endBB = nullptr; 320 321 // Skip over the offset (and the vtable load) if we're supposed to 322 // null-check the pointer. 323 if (NullCheckValue) { 324 origBB = Builder.GetInsertBlock(); 325 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 326 endBB = createBasicBlock("cast.end"); 327 328 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 329 Builder.CreateCondBr(isNull, endBB, notNullBB); 330 EmitBlock(notNullBB); 331 } 332 333 if (sanitizePerformTypeCheck()) { 334 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 335 Value.getPointer(), DerivedTy, DerivedAlign, true); 336 } 337 338 // Compute the virtual offset. 339 llvm::Value *VirtualOffset = nullptr; 340 if (VBase) { 341 VirtualOffset = 342 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 343 } 344 345 // Apply both offsets. 346 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 347 VirtualOffset, Derived, VBase); 348 349 // Cast to the destination type. 350 Value = Builder.CreateBitCast(Value, BasePtrTy); 351 352 // Build a phi if we needed a null check. 353 if (NullCheckValue) { 354 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 355 Builder.CreateBr(endBB); 356 EmitBlock(endBB); 357 358 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 359 PHI->addIncoming(Value.getPointer(), notNullBB); 360 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 361 Value = Address(PHI, Value.getAlignment()); 362 } 363 364 return Value; 365 } 366 367 Address 368 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 369 const CXXRecordDecl *Derived, 370 CastExpr::path_const_iterator PathBegin, 371 CastExpr::path_const_iterator PathEnd, 372 bool NullCheckValue) { 373 assert(PathBegin != PathEnd && "Base path should not be empty!"); 374 375 QualType DerivedTy = 376 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 377 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 378 379 llvm::Value *NonVirtualOffset = 380 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 381 382 if (!NonVirtualOffset) { 383 // No offset, we can just cast back. 384 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 385 } 386 387 llvm::BasicBlock *CastNull = nullptr; 388 llvm::BasicBlock *CastNotNull = nullptr; 389 llvm::BasicBlock *CastEnd = nullptr; 390 391 if (NullCheckValue) { 392 CastNull = createBasicBlock("cast.null"); 393 CastNotNull = createBasicBlock("cast.notnull"); 394 CastEnd = createBasicBlock("cast.end"); 395 396 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 397 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 398 EmitBlock(CastNotNull); 399 } 400 401 // Apply the offset. 402 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 403 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 404 "sub.ptr"); 405 406 // Just cast. 407 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 408 409 // Produce a PHI if we had a null-check. 410 if (NullCheckValue) { 411 Builder.CreateBr(CastEnd); 412 EmitBlock(CastNull); 413 Builder.CreateBr(CastEnd); 414 EmitBlock(CastEnd); 415 416 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 417 PHI->addIncoming(Value, CastNotNull); 418 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 419 Value = PHI; 420 } 421 422 return Address(Value, CGM.getClassPointerAlignment(Derived)); 423 } 424 425 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 426 bool ForVirtualBase, 427 bool Delegating) { 428 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 429 // This constructor/destructor does not need a VTT parameter. 430 return nullptr; 431 } 432 433 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 434 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 435 436 llvm::Value *VTT; 437 438 uint64_t SubVTTIndex; 439 440 if (Delegating) { 441 // If this is a delegating constructor call, just load the VTT. 442 return LoadCXXVTT(); 443 } else if (RD == Base) { 444 // If the record matches the base, this is the complete ctor/dtor 445 // variant calling the base variant in a class with virtual bases. 446 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 447 "doing no-op VTT offset in base dtor/ctor?"); 448 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 449 SubVTTIndex = 0; 450 } else { 451 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 452 CharUnits BaseOffset = ForVirtualBase ? 453 Layout.getVBaseClassOffset(Base) : 454 Layout.getBaseClassOffset(Base); 455 456 SubVTTIndex = 457 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 458 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 459 } 460 461 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 462 // A VTT parameter was passed to the constructor, use it. 463 VTT = LoadCXXVTT(); 464 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 465 } else { 466 // We're the complete constructor, so get the VTT by name. 467 VTT = CGM.getVTables().GetAddrOfVTT(RD); 468 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 469 } 470 471 return VTT; 472 } 473 474 namespace { 475 /// Call the destructor for a direct base class. 476 struct CallBaseDtor final : EHScopeStack::Cleanup { 477 const CXXRecordDecl *BaseClass; 478 bool BaseIsVirtual; 479 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 480 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 481 482 void Emit(CodeGenFunction &CGF, Flags flags) override { 483 const CXXRecordDecl *DerivedClass = 484 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 485 486 const CXXDestructorDecl *D = BaseClass->getDestructor(); 487 Address Addr = 488 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 489 DerivedClass, BaseClass, 490 BaseIsVirtual); 491 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 492 /*Delegating=*/false, Addr); 493 } 494 }; 495 496 /// A visitor which checks whether an initializer uses 'this' in a 497 /// way which requires the vtable to be properly set. 498 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 499 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 500 501 bool UsesThis; 502 503 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 504 505 // Black-list all explicit and implicit references to 'this'. 506 // 507 // Do we need to worry about external references to 'this' derived 508 // from arbitrary code? If so, then anything which runs arbitrary 509 // external code might potentially access the vtable. 510 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 511 }; 512 } // end anonymous namespace 513 514 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 515 DynamicThisUseChecker Checker(C); 516 Checker.Visit(Init); 517 return Checker.UsesThis; 518 } 519 520 static void EmitBaseInitializer(CodeGenFunction &CGF, 521 const CXXRecordDecl *ClassDecl, 522 CXXCtorInitializer *BaseInit, 523 CXXCtorType CtorType) { 524 assert(BaseInit->isBaseInitializer() && 525 "Must have base initializer!"); 526 527 Address ThisPtr = CGF.LoadCXXThisAddress(); 528 529 const Type *BaseType = BaseInit->getBaseClass(); 530 CXXRecordDecl *BaseClassDecl = 531 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 532 533 bool isBaseVirtual = BaseInit->isBaseVirtual(); 534 535 // The base constructor doesn't construct virtual bases. 536 if (CtorType == Ctor_Base && isBaseVirtual) 537 return; 538 539 // If the initializer for the base (other than the constructor 540 // itself) accesses 'this' in any way, we need to initialize the 541 // vtables. 542 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 543 CGF.InitializeVTablePointers(ClassDecl); 544 545 // We can pretend to be a complete class because it only matters for 546 // virtual bases, and we only do virtual bases for complete ctors. 547 Address V = 548 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 549 BaseClassDecl, 550 isBaseVirtual); 551 AggValueSlot AggSlot = 552 AggValueSlot::forAddr(V, Qualifiers(), 553 AggValueSlot::IsDestructed, 554 AggValueSlot::DoesNotNeedGCBarriers, 555 AggValueSlot::IsNotAliased); 556 557 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 558 559 if (CGF.CGM.getLangOpts().Exceptions && 560 !BaseClassDecl->hasTrivialDestructor()) 561 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 562 isBaseVirtual); 563 } 564 565 /// Initialize a member of aggregate type using the given expression 566 /// as an initializer. 567 /// 568 /// The member may be an array. If so: 569 /// - the destination l-value will be a pointer of the *base* element type, 570 /// - ArrayIndexVar will be a pointer to a variable containing the current 571 /// index within the destination array, and 572 /// - ArrayIndexes will be an array of index variables, one for each level 573 /// of array nesting, which will need to be updated as appropriate for the 574 /// array structure. 575 /// 576 /// On an array, this function will invoke itself recursively. Each time, 577 /// it drills into one nesting level of the member type and sets up a 578 /// loop updating the appropriate array index variable. 579 static void EmitAggMemberInitializer(CodeGenFunction &CGF, 580 LValue LHS, 581 Expr *Init, 582 Address ArrayIndexVar, 583 QualType T, 584 ArrayRef<VarDecl *> ArrayIndexes, 585 unsigned Index) { 586 assert(ArrayIndexVar.isValid() == (ArrayIndexes.size() != 0)); 587 588 if (Index == ArrayIndexes.size()) { 589 LValue LV = LHS; 590 591 Optional<CodeGenFunction::RunCleanupsScope> Scope; 592 593 if (ArrayIndexVar.isValid()) { 594 // When we're processing an array, the temporaries from each 595 // element's construction are destroyed immediately. 596 Scope.emplace(CGF); 597 598 // If we have an array index variable, load it and use it as an offset. 599 // Then, increment the value. 600 llvm::Value *Dest = LHS.getPointer(); 601 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar); 602 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress"); 603 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1); 604 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc"); 605 CGF.Builder.CreateStore(Next, ArrayIndexVar); 606 607 // Update the LValue. 608 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T); 609 CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize); 610 LV.setAddress(Address(Dest, Align)); 611 612 // Enter a partial-array EH cleanup to destroy previous members 613 // of the array if this initialization throws. 614 if (CGF.CGM.getLangOpts().Exceptions) { 615 if (auto DtorKind = T.isDestructedType()) { 616 if (CGF.needsEHCleanup(DtorKind)) { 617 CGF.pushRegularPartialArrayCleanup(LHS.getPointer(), 618 LV.getPointer(), T, 619 LV.getAlignment(), 620 CGF.getDestroyer(DtorKind)); 621 } 622 } 623 } 624 } 625 626 switch (CGF.getEvaluationKind(T)) { 627 case TEK_Scalar: 628 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false); 629 break; 630 case TEK_Complex: 631 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true); 632 break; 633 case TEK_Aggregate: { 634 AggValueSlot Slot = 635 AggValueSlot::forLValue(LV, 636 AggValueSlot::IsDestructed, 637 AggValueSlot::DoesNotNeedGCBarriers, 638 AggValueSlot::IsNotAliased); 639 640 CGF.EmitAggExpr(Init, Slot); 641 break; 642 } 643 } 644 645 return; 646 } 647 648 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T); 649 assert(Array && "Array initialization without the array type?"); 650 Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]); 651 652 // Initialize this index variable to zero. 653 llvm::Value* Zero 654 = llvm::Constant::getNullValue(IndexVar.getElementType()); 655 CGF.Builder.CreateStore(Zero, IndexVar); 656 657 // Start the loop with a block that tests the condition. 658 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond"); 659 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end"); 660 661 CGF.EmitBlock(CondBlock); 662 663 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body"); 664 // Generate: if (loop-index < number-of-elements) fall to the loop body, 665 // otherwise, go to the block after the for-loop. 666 uint64_t NumElements = Array->getSize().getZExtValue(); 667 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar); 668 llvm::Value *NumElementsPtr = 669 llvm::ConstantInt::get(Counter->getType(), NumElements); 670 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr, 671 "isless"); 672 673 // If the condition is true, execute the body. 674 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor); 675 676 CGF.EmitBlock(ForBody); 677 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc"); 678 679 // Inside the loop body recurse to emit the inner loop or, eventually, the 680 // constructor call. 681 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar, 682 Array->getElementType(), ArrayIndexes, Index + 1); 683 684 CGF.EmitBlock(ContinueBlock); 685 686 // Emit the increment of the loop counter. 687 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1); 688 Counter = CGF.Builder.CreateLoad(IndexVar); 689 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc"); 690 CGF.Builder.CreateStore(NextVal, IndexVar); 691 692 // Finally, branch back up to the condition for the next iteration. 693 CGF.EmitBranch(CondBlock); 694 695 // Emit the fall-through block. 696 CGF.EmitBlock(AfterFor, true); 697 } 698 699 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 700 auto *CD = dyn_cast<CXXConstructorDecl>(D); 701 if (!(CD && CD->isCopyOrMoveConstructor()) && 702 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 703 return false; 704 705 // We can emit a memcpy for a trivial copy or move constructor/assignment. 706 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 707 return true; 708 709 // We *must* emit a memcpy for a defaulted union copy or move op. 710 if (D->getParent()->isUnion() && D->isDefaulted()) 711 return true; 712 713 return false; 714 } 715 716 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 717 CXXCtorInitializer *MemberInit, 718 LValue &LHS) { 719 FieldDecl *Field = MemberInit->getAnyMember(); 720 if (MemberInit->isIndirectMemberInitializer()) { 721 // If we are initializing an anonymous union field, drill down to the field. 722 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 723 for (const auto *I : IndirectField->chain()) 724 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 725 } else { 726 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 727 } 728 } 729 730 static void EmitMemberInitializer(CodeGenFunction &CGF, 731 const CXXRecordDecl *ClassDecl, 732 CXXCtorInitializer *MemberInit, 733 const CXXConstructorDecl *Constructor, 734 FunctionArgList &Args) { 735 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 736 assert(MemberInit->isAnyMemberInitializer() && 737 "Must have member initializer!"); 738 assert(MemberInit->getInit() && "Must have initializer!"); 739 740 // non-static data member initializers. 741 FieldDecl *Field = MemberInit->getAnyMember(); 742 QualType FieldType = Field->getType(); 743 744 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 745 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 746 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 747 748 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 749 750 // Special case: if we are in a copy or move constructor, and we are copying 751 // an array of PODs or classes with trivial copy constructors, ignore the 752 // AST and perform the copy we know is equivalent. 753 // FIXME: This is hacky at best... if we had a bit more explicit information 754 // in the AST, we could generalize it more easily. 755 const ConstantArrayType *Array 756 = CGF.getContext().getAsConstantArrayType(FieldType); 757 if (Array && Constructor->isDefaulted() && 758 Constructor->isCopyOrMoveConstructor()) { 759 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 760 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 761 if (BaseElementTy.isPODType(CGF.getContext()) || 762 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 763 unsigned SrcArgIndex = 764 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 765 llvm::Value *SrcPtr 766 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 767 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 768 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 769 770 // Copy the aggregate. 771 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 772 LHS.isVolatileQualified()); 773 // Ensure that we destroy the objects if an exception is thrown later in 774 // the constructor. 775 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 776 if (CGF.needsEHCleanup(dtorKind)) 777 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 778 return; 779 } 780 } 781 782 ArrayRef<VarDecl *> ArrayIndexes; 783 if (MemberInit->getNumArrayIndices()) 784 ArrayIndexes = MemberInit->getArrayIndices(); 785 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes); 786 } 787 788 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 789 Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) { 790 QualType FieldType = Field->getType(); 791 switch (getEvaluationKind(FieldType)) { 792 case TEK_Scalar: 793 if (LHS.isSimple()) { 794 EmitExprAsInit(Init, Field, LHS, false); 795 } else { 796 RValue RHS = RValue::get(EmitScalarExpr(Init)); 797 EmitStoreThroughLValue(RHS, LHS); 798 } 799 break; 800 case TEK_Complex: 801 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 802 break; 803 case TEK_Aggregate: { 804 Address ArrayIndexVar = Address::invalid(); 805 if (ArrayIndexes.size()) { 806 // The LHS is a pointer to the first object we'll be constructing, as 807 // a flat array. 808 QualType BaseElementTy = getContext().getBaseElementType(FieldType); 809 llvm::Type *BasePtr = ConvertType(BaseElementTy); 810 BasePtr = llvm::PointerType::getUnqual(BasePtr); 811 Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr); 812 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy); 813 814 // Create an array index that will be used to walk over all of the 815 // objects we're constructing. 816 ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index"); 817 llvm::Value *Zero = 818 llvm::Constant::getNullValue(ArrayIndexVar.getElementType()); 819 Builder.CreateStore(Zero, ArrayIndexVar); 820 821 // Emit the block variables for the array indices, if any. 822 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I) 823 EmitAutoVarDecl(*ArrayIndexes[I]); 824 } 825 826 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType, 827 ArrayIndexes, 0); 828 } 829 } 830 831 // Ensure that we destroy this object if an exception is thrown 832 // later in the constructor. 833 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 834 if (needsEHCleanup(dtorKind)) 835 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 836 } 837 838 /// Checks whether the given constructor is a valid subject for the 839 /// complete-to-base constructor delegation optimization, i.e. 840 /// emitting the complete constructor as a simple call to the base 841 /// constructor. 842 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) { 843 844 // Currently we disable the optimization for classes with virtual 845 // bases because (1) the addresses of parameter variables need to be 846 // consistent across all initializers but (2) the delegate function 847 // call necessarily creates a second copy of the parameter variable. 848 // 849 // The limiting example (purely theoretical AFAIK): 850 // struct A { A(int &c) { c++; } }; 851 // struct B : virtual A { 852 // B(int count) : A(count) { printf("%d\n", count); } 853 // }; 854 // ...although even this example could in principle be emitted as a 855 // delegation since the address of the parameter doesn't escape. 856 if (Ctor->getParent()->getNumVBases()) { 857 // TODO: white-list trivial vbase initializers. This case wouldn't 858 // be subject to the restrictions below. 859 860 // TODO: white-list cases where: 861 // - there are no non-reference parameters to the constructor 862 // - the initializers don't access any non-reference parameters 863 // - the initializers don't take the address of non-reference 864 // parameters 865 // - etc. 866 // If we ever add any of the above cases, remember that: 867 // - function-try-blocks will always blacklist this optimization 868 // - we need to perform the constructor prologue and cleanup in 869 // EmitConstructorBody. 870 871 return false; 872 } 873 874 // We also disable the optimization for variadic functions because 875 // it's impossible to "re-pass" varargs. 876 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 877 return false; 878 879 // FIXME: Decide if we can do a delegation of a delegating constructor. 880 if (Ctor->isDelegatingConstructor()) 881 return false; 882 883 return true; 884 } 885 886 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 887 // to poison the extra field paddings inserted under 888 // -fsanitize-address-field-padding=1|2. 889 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 890 ASTContext &Context = getContext(); 891 const CXXRecordDecl *ClassDecl = 892 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 893 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 894 if (!ClassDecl->mayInsertExtraPadding()) return; 895 896 struct SizeAndOffset { 897 uint64_t Size; 898 uint64_t Offset; 899 }; 900 901 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 902 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 903 904 // Populate sizes and offsets of fields. 905 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 906 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 907 SSV[i].Offset = 908 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 909 910 size_t NumFields = 0; 911 for (const auto *Field : ClassDecl->fields()) { 912 const FieldDecl *D = Field; 913 std::pair<CharUnits, CharUnits> FieldInfo = 914 Context.getTypeInfoInChars(D->getType()); 915 CharUnits FieldSize = FieldInfo.first; 916 assert(NumFields < SSV.size()); 917 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 918 NumFields++; 919 } 920 assert(NumFields == SSV.size()); 921 if (SSV.size() <= 1) return; 922 923 // We will insert calls to __asan_* run-time functions. 924 // LLVM AddressSanitizer pass may decide to inline them later. 925 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 926 llvm::FunctionType *FTy = 927 llvm::FunctionType::get(CGM.VoidTy, Args, false); 928 llvm::Constant *F = CGM.CreateRuntimeFunction( 929 FTy, Prologue ? "__asan_poison_intra_object_redzone" 930 : "__asan_unpoison_intra_object_redzone"); 931 932 llvm::Value *ThisPtr = LoadCXXThis(); 933 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 934 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 935 // For each field check if it has sufficient padding, 936 // if so (un)poison it with a call. 937 for (size_t i = 0; i < SSV.size(); i++) { 938 uint64_t AsanAlignment = 8; 939 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 940 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 941 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 942 if (PoisonSize < AsanAlignment || !SSV[i].Size || 943 (NextField % AsanAlignment) != 0) 944 continue; 945 Builder.CreateCall( 946 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 947 Builder.getIntN(PtrSize, PoisonSize)}); 948 } 949 } 950 951 /// EmitConstructorBody - Emits the body of the current constructor. 952 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 953 EmitAsanPrologueOrEpilogue(true); 954 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 955 CXXCtorType CtorType = CurGD.getCtorType(); 956 957 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 958 CtorType == Ctor_Complete) && 959 "can only generate complete ctor for this ABI"); 960 961 // Before we go any further, try the complete->base constructor 962 // delegation optimization. 963 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 964 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 965 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 966 return; 967 } 968 969 const FunctionDecl *Definition = nullptr; 970 Stmt *Body = Ctor->getBody(Definition); 971 assert(Definition == Ctor && "emitting wrong constructor body"); 972 973 // Enter the function-try-block before the constructor prologue if 974 // applicable. 975 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 976 if (IsTryBody) 977 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 978 979 incrementProfileCounter(Body); 980 981 RunCleanupsScope RunCleanups(*this); 982 983 // TODO: in restricted cases, we can emit the vbase initializers of 984 // a complete ctor and then delegate to the base ctor. 985 986 // Emit the constructor prologue, i.e. the base and member 987 // initializers. 988 EmitCtorPrologue(Ctor, CtorType, Args); 989 990 // Emit the body of the statement. 991 if (IsTryBody) 992 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 993 else if (Body) 994 EmitStmt(Body); 995 996 // Emit any cleanup blocks associated with the member or base 997 // initializers, which includes (along the exceptional path) the 998 // destructors for those members and bases that were fully 999 // constructed. 1000 RunCleanups.ForceCleanup(); 1001 1002 if (IsTryBody) 1003 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1004 } 1005 1006 namespace { 1007 /// RAII object to indicate that codegen is copying the value representation 1008 /// instead of the object representation. Useful when copying a struct or 1009 /// class which has uninitialized members and we're only performing 1010 /// lvalue-to-rvalue conversion on the object but not its members. 1011 class CopyingValueRepresentation { 1012 public: 1013 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 1014 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 1015 CGF.SanOpts.set(SanitizerKind::Bool, false); 1016 CGF.SanOpts.set(SanitizerKind::Enum, false); 1017 } 1018 ~CopyingValueRepresentation() { 1019 CGF.SanOpts = OldSanOpts; 1020 } 1021 private: 1022 CodeGenFunction &CGF; 1023 SanitizerSet OldSanOpts; 1024 }; 1025 } // end anonymous namespace 1026 1027 namespace { 1028 class FieldMemcpyizer { 1029 public: 1030 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 1031 const VarDecl *SrcRec) 1032 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 1033 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 1034 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 1035 LastFieldOffset(0), LastAddedFieldIndex(0) {} 1036 1037 bool isMemcpyableField(FieldDecl *F) const { 1038 // Never memcpy fields when we are adding poisoned paddings. 1039 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 1040 return false; 1041 Qualifiers Qual = F->getType().getQualifiers(); 1042 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 1043 return false; 1044 return true; 1045 } 1046 1047 void addMemcpyableField(FieldDecl *F) { 1048 if (!FirstField) 1049 addInitialField(F); 1050 else 1051 addNextField(F); 1052 } 1053 1054 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 1055 unsigned LastFieldSize = 1056 LastField->isBitField() ? 1057 LastField->getBitWidthValue(CGF.getContext()) : 1058 CGF.getContext().getTypeSize(LastField->getType()); 1059 uint64_t MemcpySizeBits = 1060 LastFieldOffset + LastFieldSize - FirstByteOffset + 1061 CGF.getContext().getCharWidth() - 1; 1062 CharUnits MemcpySize = 1063 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 1064 return MemcpySize; 1065 } 1066 1067 void emitMemcpy() { 1068 // Give the subclass a chance to bail out if it feels the memcpy isn't 1069 // worth it (e.g. Hasn't aggregated enough data). 1070 if (!FirstField) { 1071 return; 1072 } 1073 1074 uint64_t FirstByteOffset; 1075 if (FirstField->isBitField()) { 1076 const CGRecordLayout &RL = 1077 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 1078 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 1079 // FirstFieldOffset is not appropriate for bitfields, 1080 // we need to use the storage offset instead. 1081 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 1082 } else { 1083 FirstByteOffset = FirstFieldOffset; 1084 } 1085 1086 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 1087 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1088 Address ThisPtr = CGF.LoadCXXThisAddress(); 1089 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1090 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 1091 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 1092 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 1093 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 1094 1095 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 1096 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 1097 MemcpySize); 1098 reset(); 1099 } 1100 1101 void reset() { 1102 FirstField = nullptr; 1103 } 1104 1105 protected: 1106 CodeGenFunction &CGF; 1107 const CXXRecordDecl *ClassDecl; 1108 1109 private: 1110 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 1111 llvm::PointerType *DPT = DestPtr.getType(); 1112 llvm::Type *DBP = 1113 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 1114 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 1115 1116 llvm::PointerType *SPT = SrcPtr.getType(); 1117 llvm::Type *SBP = 1118 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 1119 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 1120 1121 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 1122 } 1123 1124 void addInitialField(FieldDecl *F) { 1125 FirstField = F; 1126 LastField = F; 1127 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1128 LastFieldOffset = FirstFieldOffset; 1129 LastAddedFieldIndex = F->getFieldIndex(); 1130 } 1131 1132 void addNextField(FieldDecl *F) { 1133 // For the most part, the following invariant will hold: 1134 // F->getFieldIndex() == LastAddedFieldIndex + 1 1135 // The one exception is that Sema won't add a copy-initializer for an 1136 // unnamed bitfield, which will show up here as a gap in the sequence. 1137 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1138 "Cannot aggregate fields out of order."); 1139 LastAddedFieldIndex = F->getFieldIndex(); 1140 1141 // The 'first' and 'last' fields are chosen by offset, rather than field 1142 // index. This allows the code to support bitfields, as well as regular 1143 // fields. 1144 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1145 if (FOffset < FirstFieldOffset) { 1146 FirstField = F; 1147 FirstFieldOffset = FOffset; 1148 } else if (FOffset > LastFieldOffset) { 1149 LastField = F; 1150 LastFieldOffset = FOffset; 1151 } 1152 } 1153 1154 const VarDecl *SrcRec; 1155 const ASTRecordLayout &RecLayout; 1156 FieldDecl *FirstField; 1157 FieldDecl *LastField; 1158 uint64_t FirstFieldOffset, LastFieldOffset; 1159 unsigned LastAddedFieldIndex; 1160 }; 1161 1162 class ConstructorMemcpyizer : public FieldMemcpyizer { 1163 private: 1164 /// Get source argument for copy constructor. Returns null if not a copy 1165 /// constructor. 1166 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1167 const CXXConstructorDecl *CD, 1168 FunctionArgList &Args) { 1169 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1170 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1171 return nullptr; 1172 } 1173 1174 // Returns true if a CXXCtorInitializer represents a member initialization 1175 // that can be rolled into a memcpy. 1176 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1177 if (!MemcpyableCtor) 1178 return false; 1179 FieldDecl *Field = MemberInit->getMember(); 1180 assert(Field && "No field for member init."); 1181 QualType FieldType = Field->getType(); 1182 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1183 1184 // Bail out on non-memcpyable, not-trivially-copyable members. 1185 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1186 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1187 FieldType->isReferenceType())) 1188 return false; 1189 1190 // Bail out on volatile fields. 1191 if (!isMemcpyableField(Field)) 1192 return false; 1193 1194 // Otherwise we're good. 1195 return true; 1196 } 1197 1198 public: 1199 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1200 FunctionArgList &Args) 1201 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1202 ConstructorDecl(CD), 1203 MemcpyableCtor(CD->isDefaulted() && 1204 CD->isCopyOrMoveConstructor() && 1205 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1206 Args(Args) { } 1207 1208 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1209 if (isMemberInitMemcpyable(MemberInit)) { 1210 AggregatedInits.push_back(MemberInit); 1211 addMemcpyableField(MemberInit->getMember()); 1212 } else { 1213 emitAggregatedInits(); 1214 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1215 ConstructorDecl, Args); 1216 } 1217 } 1218 1219 void emitAggregatedInits() { 1220 if (AggregatedInits.size() <= 1) { 1221 // This memcpy is too small to be worthwhile. Fall back on default 1222 // codegen. 1223 if (!AggregatedInits.empty()) { 1224 CopyingValueRepresentation CVR(CGF); 1225 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1226 AggregatedInits[0], ConstructorDecl, Args); 1227 AggregatedInits.clear(); 1228 } 1229 reset(); 1230 return; 1231 } 1232 1233 pushEHDestructors(); 1234 emitMemcpy(); 1235 AggregatedInits.clear(); 1236 } 1237 1238 void pushEHDestructors() { 1239 Address ThisPtr = CGF.LoadCXXThisAddress(); 1240 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1241 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1242 1243 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1244 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1245 QualType FieldType = MemberInit->getAnyMember()->getType(); 1246 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1247 if (!CGF.needsEHCleanup(dtorKind)) 1248 continue; 1249 LValue FieldLHS = LHS; 1250 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1251 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1252 } 1253 } 1254 1255 void finish() { 1256 emitAggregatedInits(); 1257 } 1258 1259 private: 1260 const CXXConstructorDecl *ConstructorDecl; 1261 bool MemcpyableCtor; 1262 FunctionArgList &Args; 1263 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1264 }; 1265 1266 class AssignmentMemcpyizer : public FieldMemcpyizer { 1267 private: 1268 // Returns the memcpyable field copied by the given statement, if one 1269 // exists. Otherwise returns null. 1270 FieldDecl *getMemcpyableField(Stmt *S) { 1271 if (!AssignmentsMemcpyable) 1272 return nullptr; 1273 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1274 // Recognise trivial assignments. 1275 if (BO->getOpcode() != BO_Assign) 1276 return nullptr; 1277 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1278 if (!ME) 1279 return nullptr; 1280 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1281 if (!Field || !isMemcpyableField(Field)) 1282 return nullptr; 1283 Stmt *RHS = BO->getRHS(); 1284 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1285 RHS = EC->getSubExpr(); 1286 if (!RHS) 1287 return nullptr; 1288 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS); 1289 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field) 1290 return nullptr; 1291 return Field; 1292 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1293 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1294 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1295 return nullptr; 1296 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1297 if (!IOA) 1298 return nullptr; 1299 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1300 if (!Field || !isMemcpyableField(Field)) 1301 return nullptr; 1302 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1303 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1304 return nullptr; 1305 return Field; 1306 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1307 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1308 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1309 return nullptr; 1310 Expr *DstPtr = CE->getArg(0); 1311 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1312 DstPtr = DC->getSubExpr(); 1313 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1314 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1315 return nullptr; 1316 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1317 if (!ME) 1318 return nullptr; 1319 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1320 if (!Field || !isMemcpyableField(Field)) 1321 return nullptr; 1322 Expr *SrcPtr = CE->getArg(1); 1323 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1324 SrcPtr = SC->getSubExpr(); 1325 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1326 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1327 return nullptr; 1328 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1329 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1330 return nullptr; 1331 return Field; 1332 } 1333 1334 return nullptr; 1335 } 1336 1337 bool AssignmentsMemcpyable; 1338 SmallVector<Stmt*, 16> AggregatedStmts; 1339 1340 public: 1341 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1342 FunctionArgList &Args) 1343 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1344 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1345 assert(Args.size() == 2); 1346 } 1347 1348 void emitAssignment(Stmt *S) { 1349 FieldDecl *F = getMemcpyableField(S); 1350 if (F) { 1351 addMemcpyableField(F); 1352 AggregatedStmts.push_back(S); 1353 } else { 1354 emitAggregatedStmts(); 1355 CGF.EmitStmt(S); 1356 } 1357 } 1358 1359 void emitAggregatedStmts() { 1360 if (AggregatedStmts.size() <= 1) { 1361 if (!AggregatedStmts.empty()) { 1362 CopyingValueRepresentation CVR(CGF); 1363 CGF.EmitStmt(AggregatedStmts[0]); 1364 } 1365 reset(); 1366 } 1367 1368 emitMemcpy(); 1369 AggregatedStmts.clear(); 1370 } 1371 1372 void finish() { 1373 emitAggregatedStmts(); 1374 } 1375 }; 1376 } // end anonymous namespace 1377 1378 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1379 const Type *BaseType = BaseInit->getBaseClass(); 1380 const auto *BaseClassDecl = 1381 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1382 return BaseClassDecl->isDynamicClass(); 1383 } 1384 1385 /// EmitCtorPrologue - This routine generates necessary code to initialize 1386 /// base classes and non-static data members belonging to this constructor. 1387 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1388 CXXCtorType CtorType, 1389 FunctionArgList &Args) { 1390 if (CD->isDelegatingConstructor()) 1391 return EmitDelegatingCXXConstructorCall(CD, Args); 1392 1393 const CXXRecordDecl *ClassDecl = CD->getParent(); 1394 1395 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1396 E = CD->init_end(); 1397 1398 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1399 if (ClassDecl->getNumVBases() && 1400 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1401 // The ABIs that don't have constructor variants need to put a branch 1402 // before the virtual base initialization code. 1403 BaseCtorContinueBB = 1404 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1405 assert(BaseCtorContinueBB); 1406 } 1407 1408 llvm::Value *const OldThis = CXXThisValue; 1409 // Virtual base initializers first. 1410 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1411 if (CGM.getCodeGenOpts().StrictVTablePointers && 1412 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1413 isInitializerOfDynamicClass(*B)) 1414 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1415 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1416 } 1417 1418 if (BaseCtorContinueBB) { 1419 // Complete object handler should continue to the remaining initializers. 1420 Builder.CreateBr(BaseCtorContinueBB); 1421 EmitBlock(BaseCtorContinueBB); 1422 } 1423 1424 // Then, non-virtual base initializers. 1425 for (; B != E && (*B)->isBaseInitializer(); B++) { 1426 assert(!(*B)->isBaseVirtual()); 1427 1428 if (CGM.getCodeGenOpts().StrictVTablePointers && 1429 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1430 isInitializerOfDynamicClass(*B)) 1431 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1432 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1433 } 1434 1435 CXXThisValue = OldThis; 1436 1437 InitializeVTablePointers(ClassDecl); 1438 1439 // And finally, initialize class members. 1440 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1441 ConstructorMemcpyizer CM(*this, CD, Args); 1442 for (; B != E; B++) { 1443 CXXCtorInitializer *Member = (*B); 1444 assert(!Member->isBaseInitializer()); 1445 assert(Member->isAnyMemberInitializer() && 1446 "Delegating initializer on non-delegating constructor"); 1447 CM.addMemberInitializer(Member); 1448 } 1449 CM.finish(); 1450 } 1451 1452 static bool 1453 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1454 1455 static bool 1456 HasTrivialDestructorBody(ASTContext &Context, 1457 const CXXRecordDecl *BaseClassDecl, 1458 const CXXRecordDecl *MostDerivedClassDecl) 1459 { 1460 // If the destructor is trivial we don't have to check anything else. 1461 if (BaseClassDecl->hasTrivialDestructor()) 1462 return true; 1463 1464 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1465 return false; 1466 1467 // Check fields. 1468 for (const auto *Field : BaseClassDecl->fields()) 1469 if (!FieldHasTrivialDestructorBody(Context, Field)) 1470 return false; 1471 1472 // Check non-virtual bases. 1473 for (const auto &I : BaseClassDecl->bases()) { 1474 if (I.isVirtual()) 1475 continue; 1476 1477 const CXXRecordDecl *NonVirtualBase = 1478 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1479 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1480 MostDerivedClassDecl)) 1481 return false; 1482 } 1483 1484 if (BaseClassDecl == MostDerivedClassDecl) { 1485 // Check virtual bases. 1486 for (const auto &I : BaseClassDecl->vbases()) { 1487 const CXXRecordDecl *VirtualBase = 1488 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1489 if (!HasTrivialDestructorBody(Context, VirtualBase, 1490 MostDerivedClassDecl)) 1491 return false; 1492 } 1493 } 1494 1495 return true; 1496 } 1497 1498 static bool 1499 FieldHasTrivialDestructorBody(ASTContext &Context, 1500 const FieldDecl *Field) 1501 { 1502 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1503 1504 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1505 if (!RT) 1506 return true; 1507 1508 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1509 1510 // The destructor for an implicit anonymous union member is never invoked. 1511 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1512 return false; 1513 1514 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1515 } 1516 1517 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1518 /// any vtable pointers before calling this destructor. 1519 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1520 const CXXDestructorDecl *Dtor) { 1521 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1522 if (!ClassDecl->isDynamicClass()) 1523 return true; 1524 1525 if (!Dtor->hasTrivialBody()) 1526 return false; 1527 1528 // Check the fields. 1529 for (const auto *Field : ClassDecl->fields()) 1530 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1531 return false; 1532 1533 return true; 1534 } 1535 1536 /// EmitDestructorBody - Emits the body of the current destructor. 1537 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1538 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1539 CXXDtorType DtorType = CurGD.getDtorType(); 1540 1541 Stmt *Body = Dtor->getBody(); 1542 if (Body) 1543 incrementProfileCounter(Body); 1544 1545 // The call to operator delete in a deleting destructor happens 1546 // outside of the function-try-block, which means it's always 1547 // possible to delegate the destructor body to the complete 1548 // destructor. Do so. 1549 if (DtorType == Dtor_Deleting) { 1550 EnterDtorCleanups(Dtor, Dtor_Deleting); 1551 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1552 /*Delegating=*/false, LoadCXXThisAddress()); 1553 PopCleanupBlock(); 1554 return; 1555 } 1556 1557 // If the body is a function-try-block, enter the try before 1558 // anything else. 1559 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1560 if (isTryBody) 1561 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1562 EmitAsanPrologueOrEpilogue(false); 1563 1564 // Enter the epilogue cleanups. 1565 RunCleanupsScope DtorEpilogue(*this); 1566 1567 // If this is the complete variant, just invoke the base variant; 1568 // the epilogue will destruct the virtual bases. But we can't do 1569 // this optimization if the body is a function-try-block, because 1570 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1571 // always delegate because we might not have a definition in this TU. 1572 switch (DtorType) { 1573 case Dtor_Comdat: 1574 llvm_unreachable("not expecting a COMDAT"); 1575 1576 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1577 1578 case Dtor_Complete: 1579 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1580 "can't emit a dtor without a body for non-Microsoft ABIs"); 1581 1582 // Enter the cleanup scopes for virtual bases. 1583 EnterDtorCleanups(Dtor, Dtor_Complete); 1584 1585 if (!isTryBody) { 1586 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1587 /*Delegating=*/false, LoadCXXThisAddress()); 1588 break; 1589 } 1590 // Fallthrough: act like we're in the base variant. 1591 1592 case Dtor_Base: 1593 assert(Body); 1594 1595 // Enter the cleanup scopes for fields and non-virtual bases. 1596 EnterDtorCleanups(Dtor, Dtor_Base); 1597 1598 // Initialize the vtable pointers before entering the body. 1599 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1600 // Insert the llvm.invariant.group.barrier intrinsic before initializing 1601 // the vptrs to cancel any previous assumptions we might have made. 1602 if (CGM.getCodeGenOpts().StrictVTablePointers && 1603 CGM.getCodeGenOpts().OptimizationLevel > 0) 1604 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1605 InitializeVTablePointers(Dtor->getParent()); 1606 } 1607 1608 if (isTryBody) 1609 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1610 else if (Body) 1611 EmitStmt(Body); 1612 else { 1613 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1614 // nothing to do besides what's in the epilogue 1615 } 1616 // -fapple-kext must inline any call to this dtor into 1617 // the caller's body. 1618 if (getLangOpts().AppleKext) 1619 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1620 1621 break; 1622 } 1623 1624 // Jump out through the epilogue cleanups. 1625 DtorEpilogue.ForceCleanup(); 1626 1627 // Exit the try if applicable. 1628 if (isTryBody) 1629 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1630 } 1631 1632 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1633 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1634 const Stmt *RootS = AssignOp->getBody(); 1635 assert(isa<CompoundStmt>(RootS) && 1636 "Body of an implicit assignment operator should be compound stmt."); 1637 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1638 1639 LexicalScope Scope(*this, RootCS->getSourceRange()); 1640 1641 incrementProfileCounter(RootCS); 1642 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1643 for (auto *I : RootCS->body()) 1644 AM.emitAssignment(I); 1645 AM.finish(); 1646 } 1647 1648 namespace { 1649 /// Call the operator delete associated with the current destructor. 1650 struct CallDtorDelete final : EHScopeStack::Cleanup { 1651 CallDtorDelete() {} 1652 1653 void Emit(CodeGenFunction &CGF, Flags flags) override { 1654 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1655 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1656 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1657 CGF.getContext().getTagDeclType(ClassDecl)); 1658 } 1659 }; 1660 1661 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1662 llvm::Value *ShouldDeleteCondition; 1663 1664 public: 1665 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1666 : ShouldDeleteCondition(ShouldDeleteCondition) { 1667 assert(ShouldDeleteCondition != nullptr); 1668 } 1669 1670 void Emit(CodeGenFunction &CGF, Flags flags) override { 1671 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1672 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1673 llvm::Value *ShouldCallDelete 1674 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1675 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1676 1677 CGF.EmitBlock(callDeleteBB); 1678 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1679 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1680 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1681 CGF.getContext().getTagDeclType(ClassDecl)); 1682 CGF.Builder.CreateBr(continueBB); 1683 1684 CGF.EmitBlock(continueBB); 1685 } 1686 }; 1687 1688 class DestroyField final : public EHScopeStack::Cleanup { 1689 const FieldDecl *field; 1690 CodeGenFunction::Destroyer *destroyer; 1691 bool useEHCleanupForArray; 1692 1693 public: 1694 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1695 bool useEHCleanupForArray) 1696 : field(field), destroyer(destroyer), 1697 useEHCleanupForArray(useEHCleanupForArray) {} 1698 1699 void Emit(CodeGenFunction &CGF, Flags flags) override { 1700 // Find the address of the field. 1701 Address thisValue = CGF.LoadCXXThisAddress(); 1702 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1703 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1704 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1705 assert(LV.isSimple()); 1706 1707 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1708 flags.isForNormalCleanup() && useEHCleanupForArray); 1709 } 1710 }; 1711 1712 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1713 CharUnits::QuantityType PoisonSize) { 1714 // Pass in void pointer and size of region as arguments to runtime 1715 // function 1716 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1717 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1718 1719 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1720 1721 llvm::FunctionType *FnType = 1722 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1723 llvm::Value *Fn = 1724 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1725 CGF.EmitNounwindRuntimeCall(Fn, Args); 1726 } 1727 1728 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1729 const CXXDestructorDecl *Dtor; 1730 1731 public: 1732 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1733 1734 // Generate function call for handling object poisoning. 1735 // Disables tail call elimination, to prevent the current stack frame 1736 // from disappearing from the stack trace. 1737 void Emit(CodeGenFunction &CGF, Flags flags) override { 1738 const ASTRecordLayout &Layout = 1739 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1740 1741 // Nothing to poison. 1742 if (Layout.getFieldCount() == 0) 1743 return; 1744 1745 // Prevent the current stack frame from disappearing from the stack trace. 1746 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1747 1748 // Construct pointer to region to begin poisoning, and calculate poison 1749 // size, so that only members declared in this class are poisoned. 1750 ASTContext &Context = CGF.getContext(); 1751 unsigned fieldIndex = 0; 1752 int startIndex = -1; 1753 // RecordDecl::field_iterator Field; 1754 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1755 // Poison field if it is trivial 1756 if (FieldHasTrivialDestructorBody(Context, Field)) { 1757 // Start sanitizing at this field 1758 if (startIndex < 0) 1759 startIndex = fieldIndex; 1760 1761 // Currently on the last field, and it must be poisoned with the 1762 // current block. 1763 if (fieldIndex == Layout.getFieldCount() - 1) { 1764 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1765 } 1766 } else if (startIndex >= 0) { 1767 // No longer within a block of memory to poison, so poison the block 1768 PoisonMembers(CGF, startIndex, fieldIndex); 1769 // Re-set the start index 1770 startIndex = -1; 1771 } 1772 fieldIndex += 1; 1773 } 1774 } 1775 1776 private: 1777 /// \param layoutStartOffset index of the ASTRecordLayout field to 1778 /// start poisoning (inclusive) 1779 /// \param layoutEndOffset index of the ASTRecordLayout field to 1780 /// end poisoning (exclusive) 1781 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1782 unsigned layoutEndOffset) { 1783 ASTContext &Context = CGF.getContext(); 1784 const ASTRecordLayout &Layout = 1785 Context.getASTRecordLayout(Dtor->getParent()); 1786 1787 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1788 CGF.SizeTy, 1789 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1790 .getQuantity()); 1791 1792 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1793 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1794 OffsetSizePtr); 1795 1796 CharUnits::QuantityType PoisonSize; 1797 if (layoutEndOffset >= Layout.getFieldCount()) { 1798 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1799 Context.toCharUnitsFromBits( 1800 Layout.getFieldOffset(layoutStartOffset)) 1801 .getQuantity(); 1802 } else { 1803 PoisonSize = Context.toCharUnitsFromBits( 1804 Layout.getFieldOffset(layoutEndOffset) - 1805 Layout.getFieldOffset(layoutStartOffset)) 1806 .getQuantity(); 1807 } 1808 1809 if (PoisonSize == 0) 1810 return; 1811 1812 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1813 } 1814 }; 1815 1816 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1817 const CXXDestructorDecl *Dtor; 1818 1819 public: 1820 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1821 1822 // Generate function call for handling vtable pointer poisoning. 1823 void Emit(CodeGenFunction &CGF, Flags flags) override { 1824 assert(Dtor->getParent()->isDynamicClass()); 1825 (void)Dtor; 1826 ASTContext &Context = CGF.getContext(); 1827 // Poison vtable and vtable ptr if they exist for this class. 1828 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1829 1830 CharUnits::QuantityType PoisonSize = 1831 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1832 // Pass in void pointer and size of region as arguments to runtime 1833 // function 1834 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1835 } 1836 }; 1837 } // end anonymous namespace 1838 1839 /// \brief Emit all code that comes at the end of class's 1840 /// destructor. This is to call destructors on members and base classes 1841 /// in reverse order of their construction. 1842 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1843 CXXDtorType DtorType) { 1844 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1845 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1846 1847 // The deleting-destructor phase just needs to call the appropriate 1848 // operator delete that Sema picked up. 1849 if (DtorType == Dtor_Deleting) { 1850 assert(DD->getOperatorDelete() && 1851 "operator delete missing - EnterDtorCleanups"); 1852 if (CXXStructorImplicitParamValue) { 1853 // If there is an implicit param to the deleting dtor, it's a boolean 1854 // telling whether we should call delete at the end of the dtor. 1855 EHStack.pushCleanup<CallDtorDeleteConditional>( 1856 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1857 } else { 1858 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1859 } 1860 return; 1861 } 1862 1863 const CXXRecordDecl *ClassDecl = DD->getParent(); 1864 1865 // Unions have no bases and do not call field destructors. 1866 if (ClassDecl->isUnion()) 1867 return; 1868 1869 // The complete-destructor phase just destructs all the virtual bases. 1870 if (DtorType == Dtor_Complete) { 1871 // Poison the vtable pointer such that access after the base 1872 // and member destructors are invoked is invalid. 1873 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1874 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1875 ClassDecl->isPolymorphic()) 1876 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1877 1878 // We push them in the forward order so that they'll be popped in 1879 // the reverse order. 1880 for (const auto &Base : ClassDecl->vbases()) { 1881 CXXRecordDecl *BaseClassDecl 1882 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1883 1884 // Ignore trivial destructors. 1885 if (BaseClassDecl->hasTrivialDestructor()) 1886 continue; 1887 1888 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1889 BaseClassDecl, 1890 /*BaseIsVirtual*/ true); 1891 } 1892 1893 return; 1894 } 1895 1896 assert(DtorType == Dtor_Base); 1897 // Poison the vtable pointer if it has no virtual bases, but inherits 1898 // virtual functions. 1899 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1900 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1901 ClassDecl->isPolymorphic()) 1902 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1903 1904 // Destroy non-virtual bases. 1905 for (const auto &Base : ClassDecl->bases()) { 1906 // Ignore virtual bases. 1907 if (Base.isVirtual()) 1908 continue; 1909 1910 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1911 1912 // Ignore trivial destructors. 1913 if (BaseClassDecl->hasTrivialDestructor()) 1914 continue; 1915 1916 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1917 BaseClassDecl, 1918 /*BaseIsVirtual*/ false); 1919 } 1920 1921 // Poison fields such that access after their destructors are 1922 // invoked, and before the base class destructor runs, is invalid. 1923 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1924 SanOpts.has(SanitizerKind::Memory)) 1925 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1926 1927 // Destroy direct fields. 1928 for (const auto *Field : ClassDecl->fields()) { 1929 QualType type = Field->getType(); 1930 QualType::DestructionKind dtorKind = type.isDestructedType(); 1931 if (!dtorKind) continue; 1932 1933 // Anonymous union members do not have their destructors called. 1934 const RecordType *RT = type->getAsUnionType(); 1935 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1936 1937 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1938 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1939 getDestroyer(dtorKind), 1940 cleanupKind & EHCleanup); 1941 } 1942 } 1943 1944 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1945 /// constructor for each of several members of an array. 1946 /// 1947 /// \param ctor the constructor to call for each element 1948 /// \param arrayType the type of the array to initialize 1949 /// \param arrayBegin an arrayType* 1950 /// \param zeroInitialize true if each element should be 1951 /// zero-initialized before it is constructed 1952 void CodeGenFunction::EmitCXXAggrConstructorCall( 1953 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1954 Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1955 QualType elementType; 1956 llvm::Value *numElements = 1957 emitArrayLength(arrayType, elementType, arrayBegin); 1958 1959 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1960 } 1961 1962 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1963 /// constructor for each of several members of an array. 1964 /// 1965 /// \param ctor the constructor to call for each element 1966 /// \param numElements the number of elements in the array; 1967 /// may be zero 1968 /// \param arrayBase a T*, where T is the type constructed by ctor 1969 /// \param zeroInitialize true if each element should be 1970 /// zero-initialized before it is constructed 1971 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1972 llvm::Value *numElements, 1973 Address arrayBase, 1974 const CXXConstructExpr *E, 1975 bool zeroInitialize) { 1976 // It's legal for numElements to be zero. This can happen both 1977 // dynamically, because x can be zero in 'new A[x]', and statically, 1978 // because of GCC extensions that permit zero-length arrays. There 1979 // are probably legitimate places where we could assume that this 1980 // doesn't happen, but it's not clear that it's worth it. 1981 llvm::BranchInst *zeroCheckBranch = nullptr; 1982 1983 // Optimize for a constant count. 1984 llvm::ConstantInt *constantCount 1985 = dyn_cast<llvm::ConstantInt>(numElements); 1986 if (constantCount) { 1987 // Just skip out if the constant count is zero. 1988 if (constantCount->isZero()) return; 1989 1990 // Otherwise, emit the check. 1991 } else { 1992 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1993 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1994 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1995 EmitBlock(loopBB); 1996 } 1997 1998 // Find the end of the array. 1999 llvm::Value *arrayBegin = arrayBase.getPointer(); 2000 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 2001 "arrayctor.end"); 2002 2003 // Enter the loop, setting up a phi for the current location to initialize. 2004 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2005 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 2006 EmitBlock(loopBB); 2007 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 2008 "arrayctor.cur"); 2009 cur->addIncoming(arrayBegin, entryBB); 2010 2011 // Inside the loop body, emit the constructor call on the array element. 2012 2013 // The alignment of the base, adjusted by the size of a single element, 2014 // provides a conservative estimate of the alignment of every element. 2015 // (This assumes we never start tracking offsetted alignments.) 2016 // 2017 // Note that these are complete objects and so we don't need to 2018 // use the non-virtual size or alignment. 2019 QualType type = getContext().getTypeDeclType(ctor->getParent()); 2020 CharUnits eltAlignment = 2021 arrayBase.getAlignment() 2022 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2023 Address curAddr = Address(cur, eltAlignment); 2024 2025 // Zero initialize the storage, if requested. 2026 if (zeroInitialize) 2027 EmitNullInitialization(curAddr, type); 2028 2029 // C++ [class.temporary]p4: 2030 // There are two contexts in which temporaries are destroyed at a different 2031 // point than the end of the full-expression. The first context is when a 2032 // default constructor is called to initialize an element of an array. 2033 // If the constructor has one or more default arguments, the destruction of 2034 // every temporary created in a default argument expression is sequenced 2035 // before the construction of the next array element, if any. 2036 2037 { 2038 RunCleanupsScope Scope(*this); 2039 2040 // Evaluate the constructor and its arguments in a regular 2041 // partial-destroy cleanup. 2042 if (getLangOpts().Exceptions && 2043 !ctor->getParent()->hasTrivialDestructor()) { 2044 Destroyer *destroyer = destroyCXXObject; 2045 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 2046 *destroyer); 2047 } 2048 2049 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 2050 /*Delegating=*/false, curAddr, E); 2051 } 2052 2053 // Go to the next element. 2054 llvm::Value *next = 2055 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 2056 "arrayctor.next"); 2057 cur->addIncoming(next, Builder.GetInsertBlock()); 2058 2059 // Check whether that's the end of the loop. 2060 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2061 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2062 Builder.CreateCondBr(done, contBB, loopBB); 2063 2064 // Patch the earlier check to skip over the loop. 2065 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2066 2067 EmitBlock(contBB); 2068 } 2069 2070 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2071 Address addr, 2072 QualType type) { 2073 const RecordType *rtype = type->castAs<RecordType>(); 2074 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2075 const CXXDestructorDecl *dtor = record->getDestructor(); 2076 assert(!dtor->isTrivial()); 2077 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2078 /*Delegating=*/false, addr); 2079 } 2080 2081 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2082 CXXCtorType Type, 2083 bool ForVirtualBase, 2084 bool Delegating, Address This, 2085 const CXXConstructExpr *E) { 2086 CallArgList Args; 2087 2088 // Push the this ptr. 2089 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2090 2091 // If this is a trivial constructor, emit a memcpy now before we lose 2092 // the alignment information on the argument. 2093 // FIXME: It would be better to preserve alignment information into CallArg. 2094 if (isMemcpyEquivalentSpecialMember(D)) { 2095 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2096 2097 const Expr *Arg = E->getArg(0); 2098 QualType SrcTy = Arg->getType(); 2099 Address Src = EmitLValue(Arg).getAddress(); 2100 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2101 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 2102 return; 2103 } 2104 2105 // Add the rest of the user-supplied arguments. 2106 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2107 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor()); 2108 2109 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args); 2110 } 2111 2112 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2113 const CXXConstructorDecl *Ctor, 2114 CXXCtorType Type, CallArgList &Args) { 2115 // We can't forward a variadic call. 2116 if (Ctor->isVariadic()) 2117 return false; 2118 2119 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2120 // If the parameters are callee-cleanup, it's not safe to forward. 2121 for (auto *P : Ctor->parameters()) 2122 if (P->getType().isDestructedType()) 2123 return false; 2124 2125 // Likewise if they're inalloca. 2126 const CGFunctionInfo &Info = 2127 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0); 2128 if (Info.usesInAlloca()) 2129 return false; 2130 } 2131 2132 // Anything else should be OK. 2133 return true; 2134 } 2135 2136 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2137 CXXCtorType Type, 2138 bool ForVirtualBase, 2139 bool Delegating, 2140 Address This, 2141 CallArgList &Args) { 2142 const CXXRecordDecl *ClassDecl = D->getParent(); 2143 2144 // C++11 [class.mfct.non-static]p2: 2145 // If a non-static member function of a class X is called for an object that 2146 // is not of type X, or of a type derived from X, the behavior is undefined. 2147 // FIXME: Provide a source location here. 2148 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), 2149 This.getPointer(), getContext().getRecordType(ClassDecl)); 2150 2151 if (D->isTrivial() && D->isDefaultConstructor()) { 2152 assert(Args.size() == 1 && "trivial default ctor with args"); 2153 return; 2154 } 2155 2156 // If this is a trivial constructor, just emit what's needed. If this is a 2157 // union copy constructor, we must emit a memcpy, because the AST does not 2158 // model that copy. 2159 if (isMemcpyEquivalentSpecialMember(D)) { 2160 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2161 2162 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2163 Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy)); 2164 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2165 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 2166 return; 2167 } 2168 2169 // Check whether we can actually emit the constructor before trying to do so. 2170 if (auto Inherited = D->getInheritedConstructor()) { 2171 if (getTypes().inheritingCtorHasParams(Inherited, Type) && 2172 !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2173 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2174 Delegating, Args); 2175 return; 2176 } 2177 } 2178 2179 // Insert any ABI-specific implicit constructor arguments. 2180 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs( 2181 *this, D, Type, ForVirtualBase, Delegating, Args); 2182 2183 // Emit the call. 2184 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 2185 const CGFunctionInfo &Info = 2186 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs); 2187 EmitCall(Info, Callee, ReturnValueSlot(), Args, D); 2188 2189 // Generate vtable assumptions if we're constructing a complete object 2190 // with a vtable. We don't do this for base subobjects for two reasons: 2191 // first, it's incorrect for classes with virtual bases, and second, we're 2192 // about to overwrite the vptrs anyway. 2193 // We also have to make sure if we can refer to vtable: 2194 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2195 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2196 // sure that definition of vtable is not hidden, 2197 // then we are always safe to refer to it. 2198 // FIXME: It looks like InstCombine is very inefficient on dealing with 2199 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2200 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2201 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2202 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2203 CGM.getCodeGenOpts().StrictVTablePointers) 2204 EmitVTableAssumptionLoads(ClassDecl, This); 2205 } 2206 2207 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2208 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2209 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2210 CallArgList Args; 2211 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()), 2212 /*NeedsCopy=*/false); 2213 2214 // Forward the parameters. 2215 if (InheritedFromVBase && 2216 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2217 // Nothing to do; this construction is not responsible for constructing 2218 // the base class containing the inherited constructor. 2219 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2220 // have constructor variants? 2221 Args.push_back(ThisArg); 2222 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2223 // The inheriting constructor was inlined; just inject its arguments. 2224 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2225 "wrong number of parameters for inherited constructor call"); 2226 Args = CXXInheritedCtorInitExprArgs; 2227 Args[0] = ThisArg; 2228 } else { 2229 // The inheriting constructor was not inlined. Emit delegating arguments. 2230 Args.push_back(ThisArg); 2231 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2232 assert(OuterCtor->getNumParams() == D->getNumParams()); 2233 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2234 2235 for (const auto *Param : OuterCtor->parameters()) { 2236 assert(getContext().hasSameUnqualifiedType( 2237 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2238 Param->getType())); 2239 EmitDelegateCallArg(Args, Param, E->getLocation()); 2240 2241 // Forward __attribute__(pass_object_size). 2242 if (Param->hasAttr<PassObjectSizeAttr>()) { 2243 auto *POSParam = SizeArguments[Param]; 2244 assert(POSParam && "missing pass_object_size value for forwarding"); 2245 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2246 } 2247 } 2248 } 2249 2250 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2251 This, Args); 2252 } 2253 2254 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2255 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2256 bool Delegating, CallArgList &Args) { 2257 InlinedInheritingConstructorScope Scope(*this, GlobalDecl(Ctor, CtorType)); 2258 2259 // Save the arguments to be passed to the inherited constructor. 2260 CXXInheritedCtorInitExprArgs = Args; 2261 2262 FunctionArgList Params; 2263 QualType RetType = BuildFunctionArgList(CurGD, Params); 2264 FnRetTy = RetType; 2265 2266 // Insert any ABI-specific implicit constructor arguments. 2267 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2268 ForVirtualBase, Delegating, Args); 2269 2270 // Emit a simplified prolog. We only need to emit the implicit params. 2271 assert(Args.size() >= Params.size() && "too few arguments for call"); 2272 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2273 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2274 const RValue &RV = Args[I].RV; 2275 assert(!RV.isComplex() && "complex indirect params not supported"); 2276 ParamValue Val = RV.isScalar() 2277 ? ParamValue::forDirect(RV.getScalarVal()) 2278 : ParamValue::forIndirect(RV.getAggregateAddress()); 2279 EmitParmDecl(*Params[I], Val, I + 1); 2280 } 2281 } 2282 2283 // Create a return value slot if the ABI implementation wants one. 2284 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2285 // value instead. 2286 if (!RetType->isVoidType()) 2287 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2288 2289 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2290 CXXThisValue = CXXABIThisValue; 2291 2292 // Directly emit the constructor initializers. 2293 EmitCtorPrologue(Ctor, CtorType, Params); 2294 } 2295 2296 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2297 llvm::Value *VTableGlobal = 2298 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2299 if (!VTableGlobal) 2300 return; 2301 2302 // We can just use the base offset in the complete class. 2303 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2304 2305 if (!NonVirtualOffset.isZero()) 2306 This = 2307 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2308 Vptr.VTableClass, Vptr.NearestVBase); 2309 2310 llvm::Value *VPtrValue = 2311 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2312 llvm::Value *Cmp = 2313 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2314 Builder.CreateAssumption(Cmp); 2315 } 2316 2317 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2318 Address This) { 2319 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2320 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2321 EmitVTableAssumptionLoad(Vptr, This); 2322 } 2323 2324 void 2325 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2326 Address This, Address Src, 2327 const CXXConstructExpr *E) { 2328 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2329 2330 CallArgList Args; 2331 2332 // Push the this ptr. 2333 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2334 2335 // Push the src ptr. 2336 QualType QT = *(FPT->param_type_begin()); 2337 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2338 Src = Builder.CreateBitCast(Src, t); 2339 Args.add(RValue::get(Src.getPointer()), QT); 2340 2341 // Skip over first argument (Src). 2342 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2343 /*ParamsToSkip*/ 1); 2344 2345 EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args); 2346 } 2347 2348 void 2349 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2350 CXXCtorType CtorType, 2351 const FunctionArgList &Args, 2352 SourceLocation Loc) { 2353 CallArgList DelegateArgs; 2354 2355 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2356 assert(I != E && "no parameters to constructor"); 2357 2358 // this 2359 Address This = LoadCXXThisAddress(); 2360 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2361 ++I; 2362 2363 // FIXME: The location of the VTT parameter in the parameter list is 2364 // specific to the Itanium ABI and shouldn't be hardcoded here. 2365 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2366 assert(I != E && "cannot skip vtt parameter, already done with args"); 2367 assert((*I)->getType()->isPointerType() && 2368 "skipping parameter not of vtt type"); 2369 ++I; 2370 } 2371 2372 // Explicit arguments. 2373 for (; I != E; ++I) { 2374 const VarDecl *param = *I; 2375 // FIXME: per-argument source location 2376 EmitDelegateCallArg(DelegateArgs, param, Loc); 2377 } 2378 2379 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2380 /*Delegating=*/true, This, DelegateArgs); 2381 } 2382 2383 namespace { 2384 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2385 const CXXDestructorDecl *Dtor; 2386 Address Addr; 2387 CXXDtorType Type; 2388 2389 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2390 CXXDtorType Type) 2391 : Dtor(D), Addr(Addr), Type(Type) {} 2392 2393 void Emit(CodeGenFunction &CGF, Flags flags) override { 2394 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2395 /*Delegating=*/true, Addr); 2396 } 2397 }; 2398 } // end anonymous namespace 2399 2400 void 2401 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2402 const FunctionArgList &Args) { 2403 assert(Ctor->isDelegatingConstructor()); 2404 2405 Address ThisPtr = LoadCXXThisAddress(); 2406 2407 AggValueSlot AggSlot = 2408 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2409 AggValueSlot::IsDestructed, 2410 AggValueSlot::DoesNotNeedGCBarriers, 2411 AggValueSlot::IsNotAliased); 2412 2413 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2414 2415 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2416 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2417 CXXDtorType Type = 2418 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2419 2420 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2421 ClassDecl->getDestructor(), 2422 ThisPtr, Type); 2423 } 2424 } 2425 2426 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2427 CXXDtorType Type, 2428 bool ForVirtualBase, 2429 bool Delegating, 2430 Address This) { 2431 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2432 Delegating, This); 2433 } 2434 2435 namespace { 2436 struct CallLocalDtor final : EHScopeStack::Cleanup { 2437 const CXXDestructorDecl *Dtor; 2438 Address Addr; 2439 2440 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2441 : Dtor(D), Addr(Addr) {} 2442 2443 void Emit(CodeGenFunction &CGF, Flags flags) override { 2444 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2445 /*ForVirtualBase=*/false, 2446 /*Delegating=*/false, Addr); 2447 } 2448 }; 2449 } // end anonymous namespace 2450 2451 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2452 Address Addr) { 2453 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2454 } 2455 2456 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2457 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2458 if (!ClassDecl) return; 2459 if (ClassDecl->hasTrivialDestructor()) return; 2460 2461 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2462 assert(D && D->isUsed() && "destructor not marked as used!"); 2463 PushDestructorCleanup(D, Addr); 2464 } 2465 2466 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2467 // Compute the address point. 2468 llvm::Value *VTableAddressPoint = 2469 CGM.getCXXABI().getVTableAddressPointInStructor( 2470 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2471 2472 if (!VTableAddressPoint) 2473 return; 2474 2475 // Compute where to store the address point. 2476 llvm::Value *VirtualOffset = nullptr; 2477 CharUnits NonVirtualOffset = CharUnits::Zero(); 2478 2479 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2480 // We need to use the virtual base offset offset because the virtual base 2481 // might have a different offset in the most derived class. 2482 2483 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2484 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2485 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2486 } else { 2487 // We can just use the base offset in the complete class. 2488 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2489 } 2490 2491 // Apply the offsets. 2492 Address VTableField = LoadCXXThisAddress(); 2493 2494 if (!NonVirtualOffset.isZero() || VirtualOffset) 2495 VTableField = ApplyNonVirtualAndVirtualOffset( 2496 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2497 Vptr.NearestVBase); 2498 2499 // Finally, store the address point. Use the same LLVM types as the field to 2500 // support optimization. 2501 llvm::Type *VTablePtrTy = 2502 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2503 ->getPointerTo() 2504 ->getPointerTo(); 2505 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2506 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2507 2508 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2509 CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr()); 2510 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2511 CGM.getCodeGenOpts().StrictVTablePointers) 2512 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2513 } 2514 2515 CodeGenFunction::VPtrsVector 2516 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2517 CodeGenFunction::VPtrsVector VPtrsResult; 2518 VisitedVirtualBasesSetTy VBases; 2519 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2520 /*NearestVBase=*/nullptr, 2521 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2522 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2523 VPtrsResult); 2524 return VPtrsResult; 2525 } 2526 2527 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2528 const CXXRecordDecl *NearestVBase, 2529 CharUnits OffsetFromNearestVBase, 2530 bool BaseIsNonVirtualPrimaryBase, 2531 const CXXRecordDecl *VTableClass, 2532 VisitedVirtualBasesSetTy &VBases, 2533 VPtrsVector &Vptrs) { 2534 // If this base is a non-virtual primary base the address point has already 2535 // been set. 2536 if (!BaseIsNonVirtualPrimaryBase) { 2537 // Initialize the vtable pointer for this base. 2538 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2539 Vptrs.push_back(Vptr); 2540 } 2541 2542 const CXXRecordDecl *RD = Base.getBase(); 2543 2544 // Traverse bases. 2545 for (const auto &I : RD->bases()) { 2546 CXXRecordDecl *BaseDecl 2547 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2548 2549 // Ignore classes without a vtable. 2550 if (!BaseDecl->isDynamicClass()) 2551 continue; 2552 2553 CharUnits BaseOffset; 2554 CharUnits BaseOffsetFromNearestVBase; 2555 bool BaseDeclIsNonVirtualPrimaryBase; 2556 2557 if (I.isVirtual()) { 2558 // Check if we've visited this virtual base before. 2559 if (!VBases.insert(BaseDecl).second) 2560 continue; 2561 2562 const ASTRecordLayout &Layout = 2563 getContext().getASTRecordLayout(VTableClass); 2564 2565 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2566 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2567 BaseDeclIsNonVirtualPrimaryBase = false; 2568 } else { 2569 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2570 2571 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2572 BaseOffsetFromNearestVBase = 2573 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2574 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2575 } 2576 2577 getVTablePointers( 2578 BaseSubobject(BaseDecl, BaseOffset), 2579 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2580 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2581 } 2582 } 2583 2584 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2585 // Ignore classes without a vtable. 2586 if (!RD->isDynamicClass()) 2587 return; 2588 2589 // Initialize the vtable pointers for this class and all of its bases. 2590 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2591 for (const VPtr &Vptr : getVTablePointers(RD)) 2592 InitializeVTablePointer(Vptr); 2593 2594 if (RD->getNumVBases()) 2595 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2596 } 2597 2598 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2599 llvm::Type *VTableTy, 2600 const CXXRecordDecl *RD) { 2601 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2602 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2603 CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr()); 2604 2605 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2606 CGM.getCodeGenOpts().StrictVTablePointers) 2607 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2608 2609 return VTable; 2610 } 2611 2612 // If a class has a single non-virtual base and does not introduce or override 2613 // virtual member functions or fields, it will have the same layout as its base. 2614 // This function returns the least derived such class. 2615 // 2616 // Casting an instance of a base class to such a derived class is technically 2617 // undefined behavior, but it is a relatively common hack for introducing member 2618 // functions on class instances with specific properties (e.g. llvm::Operator) 2619 // that works under most compilers and should not have security implications, so 2620 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2621 static const CXXRecordDecl * 2622 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2623 if (!RD->field_empty()) 2624 return RD; 2625 2626 if (RD->getNumVBases() != 0) 2627 return RD; 2628 2629 if (RD->getNumBases() != 1) 2630 return RD; 2631 2632 for (const CXXMethodDecl *MD : RD->methods()) { 2633 if (MD->isVirtual()) { 2634 // Virtual member functions are only ok if they are implicit destructors 2635 // because the implicit destructor will have the same semantics as the 2636 // base class's destructor if no fields are added. 2637 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2638 continue; 2639 return RD; 2640 } 2641 } 2642 2643 return LeastDerivedClassWithSameLayout( 2644 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2645 } 2646 2647 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2648 llvm::Value *VTable, 2649 SourceLocation Loc) { 2650 if (CGM.getCodeGenOpts().WholeProgramVTables && 2651 CGM.HasHiddenLTOVisibility(RD)) { 2652 llvm::Metadata *MD = 2653 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2654 llvm::Value *TypeId = 2655 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2656 2657 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2658 llvm::Value *TypeTest = 2659 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2660 {CastedVTable, TypeId}); 2661 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2662 } 2663 2664 if (SanOpts.has(SanitizerKind::CFIVCall)) 2665 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2666 } 2667 2668 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2669 llvm::Value *VTable, 2670 CFITypeCheckKind TCK, 2671 SourceLocation Loc) { 2672 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2673 RD = LeastDerivedClassWithSameLayout(RD); 2674 2675 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2676 } 2677 2678 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2679 llvm::Value *Derived, 2680 bool MayBeNull, 2681 CFITypeCheckKind TCK, 2682 SourceLocation Loc) { 2683 if (!getLangOpts().CPlusPlus) 2684 return; 2685 2686 auto *ClassTy = T->getAs<RecordType>(); 2687 if (!ClassTy) 2688 return; 2689 2690 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2691 2692 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2693 return; 2694 2695 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2696 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2697 2698 llvm::BasicBlock *ContBlock = nullptr; 2699 2700 if (MayBeNull) { 2701 llvm::Value *DerivedNotNull = 2702 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2703 2704 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2705 ContBlock = createBasicBlock("cast.cont"); 2706 2707 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2708 2709 EmitBlock(CheckBlock); 2710 } 2711 2712 llvm::Value *VTable = 2713 GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl); 2714 2715 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2716 2717 if (MayBeNull) { 2718 Builder.CreateBr(ContBlock); 2719 EmitBlock(ContBlock); 2720 } 2721 } 2722 2723 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2724 llvm::Value *VTable, 2725 CFITypeCheckKind TCK, 2726 SourceLocation Loc) { 2727 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2728 !CGM.HasHiddenLTOVisibility(RD)) 2729 return; 2730 2731 std::string TypeName = RD->getQualifiedNameAsString(); 2732 if (getContext().getSanitizerBlacklist().isBlacklistedType(TypeName)) 2733 return; 2734 2735 SanitizerScope SanScope(this); 2736 llvm::SanitizerStatKind SSK; 2737 switch (TCK) { 2738 case CFITCK_VCall: 2739 SSK = llvm::SanStat_CFI_VCall; 2740 break; 2741 case CFITCK_NVCall: 2742 SSK = llvm::SanStat_CFI_NVCall; 2743 break; 2744 case CFITCK_DerivedCast: 2745 SSK = llvm::SanStat_CFI_DerivedCast; 2746 break; 2747 case CFITCK_UnrelatedCast: 2748 SSK = llvm::SanStat_CFI_UnrelatedCast; 2749 break; 2750 case CFITCK_ICall: 2751 llvm_unreachable("not expecting CFITCK_ICall"); 2752 } 2753 EmitSanitizerStatReport(SSK); 2754 2755 llvm::Metadata *MD = 2756 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2757 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2758 2759 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2760 llvm::Value *TypeTest = Builder.CreateCall( 2761 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2762 2763 SanitizerMask M; 2764 switch (TCK) { 2765 case CFITCK_VCall: 2766 M = SanitizerKind::CFIVCall; 2767 break; 2768 case CFITCK_NVCall: 2769 M = SanitizerKind::CFINVCall; 2770 break; 2771 case CFITCK_DerivedCast: 2772 M = SanitizerKind::CFIDerivedCast; 2773 break; 2774 case CFITCK_UnrelatedCast: 2775 M = SanitizerKind::CFIUnrelatedCast; 2776 break; 2777 case CFITCK_ICall: 2778 llvm_unreachable("not expecting CFITCK_ICall"); 2779 } 2780 2781 llvm::Constant *StaticData[] = { 2782 llvm::ConstantInt::get(Int8Ty, TCK), 2783 EmitCheckSourceLocation(Loc), 2784 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2785 }; 2786 2787 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2788 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2789 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2790 return; 2791 } 2792 2793 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2794 EmitTrapCheck(TypeTest); 2795 return; 2796 } 2797 2798 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2799 CGM.getLLVMContext(), 2800 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2801 llvm::Value *ValidVtable = Builder.CreateCall( 2802 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2803 EmitCheck(std::make_pair(TypeTest, M), "cfi_check_fail", StaticData, 2804 {CastedVTable, ValidVtable}); 2805 } 2806 2807 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2808 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2809 !SanOpts.has(SanitizerKind::CFIVCall) || 2810 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2811 !CGM.HasHiddenLTOVisibility(RD)) 2812 return false; 2813 2814 std::string TypeName = RD->getQualifiedNameAsString(); 2815 return !getContext().getSanitizerBlacklist().isBlacklistedType(TypeName); 2816 } 2817 2818 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2819 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2820 SanitizerScope SanScope(this); 2821 2822 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2823 2824 llvm::Metadata *MD = 2825 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2826 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2827 2828 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2829 llvm::Value *CheckedLoad = Builder.CreateCall( 2830 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2831 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2832 TypeId}); 2833 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2834 2835 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2836 "cfi_check_fail", nullptr, nullptr); 2837 2838 return Builder.CreateBitCast( 2839 Builder.CreateExtractValue(CheckedLoad, 0), 2840 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2841 } 2842 2843 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 2844 // quite what we want. 2845 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 2846 while (true) { 2847 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 2848 E = PE->getSubExpr(); 2849 continue; 2850 } 2851 2852 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 2853 if (CE->getCastKind() == CK_NoOp) { 2854 E = CE->getSubExpr(); 2855 continue; 2856 } 2857 } 2858 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 2859 if (UO->getOpcode() == UO_Extension) { 2860 E = UO->getSubExpr(); 2861 continue; 2862 } 2863 } 2864 return E; 2865 } 2866 } 2867 2868 bool 2869 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base, 2870 const CXXMethodDecl *MD) { 2871 // When building with -fapple-kext, all calls must go through the vtable since 2872 // the kernel linker can do runtime patching of vtables. 2873 if (getLangOpts().AppleKext) 2874 return false; 2875 2876 // If the most derived class is marked final, we know that no subclass can 2877 // override this member function and so we can devirtualize it. For example: 2878 // 2879 // struct A { virtual void f(); } 2880 // struct B final : A { }; 2881 // 2882 // void f(B *b) { 2883 // b->f(); 2884 // } 2885 // 2886 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 2887 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 2888 return true; 2889 2890 // If the member function is marked 'final', we know that it can't be 2891 // overridden and can therefore devirtualize it. 2892 if (MD->hasAttr<FinalAttr>()) 2893 return true; 2894 2895 // Similarly, if the class itself is marked 'final' it can't be overridden 2896 // and we can therefore devirtualize the member function call. 2897 if (MD->getParent()->hasAttr<FinalAttr>()) 2898 return true; 2899 2900 Base = skipNoOpCastsAndParens(Base); 2901 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 2902 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 2903 // This is a record decl. We know the type and can devirtualize it. 2904 return VD->getType()->isRecordType(); 2905 } 2906 2907 return false; 2908 } 2909 2910 // We can devirtualize calls on an object accessed by a class member access 2911 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2912 // a derived class object constructed in the same location. 2913 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 2914 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 2915 return VD->getType()->isRecordType(); 2916 2917 // We can always devirtualize calls on temporary object expressions. 2918 if (isa<CXXConstructExpr>(Base)) 2919 return true; 2920 2921 // And calls on bound temporaries. 2922 if (isa<CXXBindTemporaryExpr>(Base)) 2923 return true; 2924 2925 // Check if this is a call expr that returns a record type. 2926 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 2927 return CE->getCallReturnType(getContext())->isRecordType(); 2928 2929 // We can't devirtualize the call. 2930 return false; 2931 } 2932 2933 void CodeGenFunction::EmitForwardingCallToLambda( 2934 const CXXMethodDecl *callOperator, 2935 CallArgList &callArgs) { 2936 // Get the address of the call operator. 2937 const CGFunctionInfo &calleeFnInfo = 2938 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2939 llvm::Value *callee = 2940 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2941 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2942 2943 // Prepare the return slot. 2944 const FunctionProtoType *FPT = 2945 callOperator->getType()->castAs<FunctionProtoType>(); 2946 QualType resultType = FPT->getReturnType(); 2947 ReturnValueSlot returnSlot; 2948 if (!resultType->isVoidType() && 2949 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2950 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2951 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2952 2953 // We don't need to separately arrange the call arguments because 2954 // the call can't be variadic anyway --- it's impossible to forward 2955 // variadic arguments. 2956 2957 // Now emit our call. 2958 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, 2959 callArgs, callOperator); 2960 2961 // If necessary, copy the returned value into the slot. 2962 if (!resultType->isVoidType() && returnSlot.isNull()) 2963 EmitReturnOfRValue(RV, resultType); 2964 else 2965 EmitBranchThroughCleanup(ReturnBlock); 2966 } 2967 2968 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2969 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2970 const VarDecl *variable = BD->capture_begin()->getVariable(); 2971 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2972 2973 // Start building arguments for forwarding call 2974 CallArgList CallArgs; 2975 2976 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2977 Address ThisPtr = GetAddrOfBlockDecl(variable, false); 2978 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2979 2980 // Add the rest of the parameters. 2981 for (auto param : BD->parameters()) 2982 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2983 2984 assert(!Lambda->isGenericLambda() && 2985 "generic lambda interconversion to block not implemented"); 2986 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs); 2987 } 2988 2989 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 2990 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) { 2991 // FIXME: Making this work correctly is nasty because it requires either 2992 // cloning the body of the call operator or making the call operator forward. 2993 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2994 return; 2995 } 2996 2997 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody()); 2998 } 2999 3000 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 3001 const CXXRecordDecl *Lambda = MD->getParent(); 3002 3003 // Start building arguments for forwarding call 3004 CallArgList CallArgs; 3005 3006 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 3007 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 3008 CallArgs.add(RValue::get(ThisPtr), ThisType); 3009 3010 // Add the rest of the parameters. 3011 for (auto Param : MD->parameters()) 3012 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 3013 3014 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 3015 // For a generic lambda, find the corresponding call operator specialization 3016 // to which the call to the static-invoker shall be forwarded. 3017 if (Lambda->isGenericLambda()) { 3018 assert(MD->isFunctionTemplateSpecialization()); 3019 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 3020 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 3021 void *InsertPos = nullptr; 3022 FunctionDecl *CorrespondingCallOpSpecialization = 3023 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 3024 assert(CorrespondingCallOpSpecialization); 3025 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 3026 } 3027 EmitForwardingCallToLambda(CallOp, CallArgs); 3028 } 3029 3030 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 3031 if (MD->isVariadic()) { 3032 // FIXME: Making this work correctly is nasty because it requires either 3033 // cloning the body of the call operator or making the call operator forward. 3034 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 3035 return; 3036 } 3037 3038 EmitLambdaDelegatingInvokeBody(MD); 3039 } 3040