1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/CodeGenOptions.h" 25 #include "clang/Basic/TargetBuiltins.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 LValueBaseInfo *BaseInfo, 133 TBAAAccessInfo *TBAAInfo) { 134 // Ask the ABI to compute the actual address. 135 llvm::Value *ptr = 136 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 137 memberPtr, memberPtrType); 138 139 QualType memberType = memberPtrType->getPointeeType(); 140 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo, 141 TBAAInfo); 142 memberAlign = 143 CGM.getDynamicOffsetAlignment(base.getAlignment(), 144 memberPtrType->getClass()->getAsCXXRecordDecl(), 145 memberAlign); 146 return Address(ptr, memberAlign); 147 } 148 149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 150 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 151 CastExpr::path_const_iterator End) { 152 CharUnits Offset = CharUnits::Zero(); 153 154 const ASTContext &Context = getContext(); 155 const CXXRecordDecl *RD = DerivedClass; 156 157 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 158 const CXXBaseSpecifier *Base = *I; 159 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 160 161 // Get the layout. 162 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 163 164 const auto *BaseDecl = 165 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); 166 167 // Add the offset. 168 Offset += Layout.getBaseClassOffset(BaseDecl); 169 170 RD = BaseDecl; 171 } 172 173 return Offset; 174 } 175 176 llvm::Constant * 177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 178 CastExpr::path_const_iterator PathBegin, 179 CastExpr::path_const_iterator PathEnd) { 180 assert(PathBegin != PathEnd && "Base path should not be empty!"); 181 182 CharUnits Offset = 183 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 184 if (Offset.isZero()) 185 return nullptr; 186 187 llvm::Type *PtrDiffTy = 188 Types.ConvertType(getContext().getPointerDiffType()); 189 190 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 191 } 192 193 /// Gets the address of a direct base class within a complete object. 194 /// This should only be used for (1) non-virtual bases or (2) virtual bases 195 /// when the type is known to be complete (e.g. in complete destructors). 196 /// 197 /// The object pointed to by 'This' is assumed to be non-null. 198 Address 199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 200 const CXXRecordDecl *Derived, 201 const CXXRecordDecl *Base, 202 bool BaseIsVirtual) { 203 // 'this' must be a pointer (in some address space) to Derived. 204 assert(This.getElementType() == ConvertType(Derived)); 205 206 // Compute the offset of the virtual base. 207 CharUnits Offset; 208 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 209 if (BaseIsVirtual) 210 Offset = Layout.getVBaseClassOffset(Base); 211 else 212 Offset = Layout.getBaseClassOffset(Base); 213 214 // Shift and cast down to the base type. 215 // TODO: for complete types, this should be possible with a GEP. 216 Address V = This; 217 if (!Offset.isZero()) { 218 V = Builder.CreateElementBitCast(V, Int8Ty); 219 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 220 } 221 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 222 223 return V; 224 } 225 226 static Address 227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 228 CharUnits nonVirtualOffset, 229 llvm::Value *virtualOffset, 230 const CXXRecordDecl *derivedClass, 231 const CXXRecordDecl *nearestVBase) { 232 // Assert that we have something to do. 233 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 234 235 // Compute the offset from the static and dynamic components. 236 llvm::Value *baseOffset; 237 if (!nonVirtualOffset.isZero()) { 238 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 239 nonVirtualOffset.getQuantity()); 240 if (virtualOffset) { 241 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 242 } 243 } else { 244 baseOffset = virtualOffset; 245 } 246 247 // Apply the base offset. 248 llvm::Value *ptr = addr.getPointer(); 249 unsigned AddrSpace = ptr->getType()->getPointerAddressSpace(); 250 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace)); 251 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 252 253 // If we have a virtual component, the alignment of the result will 254 // be relative only to the known alignment of that vbase. 255 CharUnits alignment; 256 if (virtualOffset) { 257 assert(nearestVBase && "virtual offset without vbase?"); 258 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 259 derivedClass, nearestVBase); 260 } else { 261 alignment = addr.getAlignment(); 262 } 263 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 264 265 return Address(ptr, alignment); 266 } 267 268 Address CodeGenFunction::GetAddressOfBaseClass( 269 Address Value, const CXXRecordDecl *Derived, 270 CastExpr::path_const_iterator PathBegin, 271 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 272 SourceLocation Loc) { 273 assert(PathBegin != PathEnd && "Base path should not be empty!"); 274 275 CastExpr::path_const_iterator Start = PathBegin; 276 const CXXRecordDecl *VBase = nullptr; 277 278 // Sema has done some convenient canonicalization here: if the 279 // access path involved any virtual steps, the conversion path will 280 // *start* with a step down to the correct virtual base subobject, 281 // and hence will not require any further steps. 282 if ((*Start)->isVirtual()) { 283 VBase = cast<CXXRecordDecl>( 284 (*Start)->getType()->castAs<RecordType>()->getDecl()); 285 ++Start; 286 } 287 288 // Compute the static offset of the ultimate destination within its 289 // allocating subobject (the virtual base, if there is one, or else 290 // the "complete" object that we see). 291 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 292 VBase ? VBase : Derived, Start, PathEnd); 293 294 // If there's a virtual step, we can sometimes "devirtualize" it. 295 // For now, that's limited to when the derived type is final. 296 // TODO: "devirtualize" this for accesses to known-complete objects. 297 if (VBase && Derived->hasAttr<FinalAttr>()) { 298 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 299 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 300 NonVirtualOffset += vBaseOffset; 301 VBase = nullptr; // we no longer have a virtual step 302 } 303 304 // Get the base pointer type. 305 llvm::Type *BasePtrTy = 306 ConvertType((PathEnd[-1])->getType()) 307 ->getPointerTo(Value.getType()->getPointerAddressSpace()); 308 309 QualType DerivedTy = getContext().getRecordType(Derived); 310 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 311 312 // If the static offset is zero and we don't have a virtual step, 313 // just do a bitcast; null checks are unnecessary. 314 if (NonVirtualOffset.isZero() && !VBase) { 315 if (sanitizePerformTypeCheck()) { 316 SanitizerSet SkippedChecks; 317 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 318 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 319 DerivedTy, DerivedAlign, SkippedChecks); 320 } 321 return Builder.CreateBitCast(Value, BasePtrTy); 322 } 323 324 llvm::BasicBlock *origBB = nullptr; 325 llvm::BasicBlock *endBB = nullptr; 326 327 // Skip over the offset (and the vtable load) if we're supposed to 328 // null-check the pointer. 329 if (NullCheckValue) { 330 origBB = Builder.GetInsertBlock(); 331 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 332 endBB = createBasicBlock("cast.end"); 333 334 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 335 Builder.CreateCondBr(isNull, endBB, notNullBB); 336 EmitBlock(notNullBB); 337 } 338 339 if (sanitizePerformTypeCheck()) { 340 SanitizerSet SkippedChecks; 341 SkippedChecks.set(SanitizerKind::Null, true); 342 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 343 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 344 } 345 346 // Compute the virtual offset. 347 llvm::Value *VirtualOffset = nullptr; 348 if (VBase) { 349 VirtualOffset = 350 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 351 } 352 353 // Apply both offsets. 354 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 355 VirtualOffset, Derived, VBase); 356 357 // Cast to the destination type. 358 Value = Builder.CreateBitCast(Value, BasePtrTy); 359 360 // Build a phi if we needed a null check. 361 if (NullCheckValue) { 362 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 363 Builder.CreateBr(endBB); 364 EmitBlock(endBB); 365 366 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 367 PHI->addIncoming(Value.getPointer(), notNullBB); 368 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 369 Value = Address(PHI, Value.getAlignment()); 370 } 371 372 return Value; 373 } 374 375 Address 376 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 377 const CXXRecordDecl *Derived, 378 CastExpr::path_const_iterator PathBegin, 379 CastExpr::path_const_iterator PathEnd, 380 bool NullCheckValue) { 381 assert(PathBegin != PathEnd && "Base path should not be empty!"); 382 383 QualType DerivedTy = 384 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 385 unsigned AddrSpace = 386 BaseAddr.getPointer()->getType()->getPointerAddressSpace(); 387 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(AddrSpace); 388 389 llvm::Value *NonVirtualOffset = 390 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 391 392 if (!NonVirtualOffset) { 393 // No offset, we can just cast back. 394 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 395 } 396 397 llvm::BasicBlock *CastNull = nullptr; 398 llvm::BasicBlock *CastNotNull = nullptr; 399 llvm::BasicBlock *CastEnd = nullptr; 400 401 if (NullCheckValue) { 402 CastNull = createBasicBlock("cast.null"); 403 CastNotNull = createBasicBlock("cast.notnull"); 404 CastEnd = createBasicBlock("cast.end"); 405 406 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 407 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 408 EmitBlock(CastNotNull); 409 } 410 411 // Apply the offset. 412 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 413 Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset), 414 "sub.ptr"); 415 416 // Just cast. 417 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 418 419 // Produce a PHI if we had a null-check. 420 if (NullCheckValue) { 421 Builder.CreateBr(CastEnd); 422 EmitBlock(CastNull); 423 Builder.CreateBr(CastEnd); 424 EmitBlock(CastEnd); 425 426 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 427 PHI->addIncoming(Value, CastNotNull); 428 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 429 Value = PHI; 430 } 431 432 return Address(Value, CGM.getClassPointerAlignment(Derived)); 433 } 434 435 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 436 bool ForVirtualBase, 437 bool Delegating) { 438 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 439 // This constructor/destructor does not need a VTT parameter. 440 return nullptr; 441 } 442 443 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 444 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 445 446 llvm::Value *VTT; 447 448 uint64_t SubVTTIndex; 449 450 if (Delegating) { 451 // If this is a delegating constructor call, just load the VTT. 452 return LoadCXXVTT(); 453 } else if (RD == Base) { 454 // If the record matches the base, this is the complete ctor/dtor 455 // variant calling the base variant in a class with virtual bases. 456 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 457 "doing no-op VTT offset in base dtor/ctor?"); 458 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 459 SubVTTIndex = 0; 460 } else { 461 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 462 CharUnits BaseOffset = ForVirtualBase ? 463 Layout.getVBaseClassOffset(Base) : 464 Layout.getBaseClassOffset(Base); 465 466 SubVTTIndex = 467 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 468 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 469 } 470 471 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 472 // A VTT parameter was passed to the constructor, use it. 473 VTT = LoadCXXVTT(); 474 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 475 } else { 476 // We're the complete constructor, so get the VTT by name. 477 VTT = CGM.getVTables().GetAddrOfVTT(RD); 478 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 479 } 480 481 return VTT; 482 } 483 484 namespace { 485 /// Call the destructor for a direct base class. 486 struct CallBaseDtor final : EHScopeStack::Cleanup { 487 const CXXRecordDecl *BaseClass; 488 bool BaseIsVirtual; 489 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 490 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 491 492 void Emit(CodeGenFunction &CGF, Flags flags) override { 493 const CXXRecordDecl *DerivedClass = 494 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 495 496 const CXXDestructorDecl *D = BaseClass->getDestructor(); 497 // We are already inside a destructor, so presumably the object being 498 // destroyed should have the expected type. 499 QualType ThisTy = D->getThisObjectType(); 500 Address Addr = 501 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 502 DerivedClass, BaseClass, 503 BaseIsVirtual); 504 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 505 /*Delegating=*/false, Addr, ThisTy); 506 } 507 }; 508 509 /// A visitor which checks whether an initializer uses 'this' in a 510 /// way which requires the vtable to be properly set. 511 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 512 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 513 514 bool UsesThis; 515 516 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 517 518 // Black-list all explicit and implicit references to 'this'. 519 // 520 // Do we need to worry about external references to 'this' derived 521 // from arbitrary code? If so, then anything which runs arbitrary 522 // external code might potentially access the vtable. 523 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 524 }; 525 } // end anonymous namespace 526 527 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 528 DynamicThisUseChecker Checker(C); 529 Checker.Visit(Init); 530 return Checker.UsesThis; 531 } 532 533 static void EmitBaseInitializer(CodeGenFunction &CGF, 534 const CXXRecordDecl *ClassDecl, 535 CXXCtorInitializer *BaseInit) { 536 assert(BaseInit->isBaseInitializer() && 537 "Must have base initializer!"); 538 539 Address ThisPtr = CGF.LoadCXXThisAddress(); 540 541 const Type *BaseType = BaseInit->getBaseClass(); 542 const auto *BaseClassDecl = 543 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 544 545 bool isBaseVirtual = BaseInit->isBaseVirtual(); 546 547 // If the initializer for the base (other than the constructor 548 // itself) accesses 'this' in any way, we need to initialize the 549 // vtables. 550 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 551 CGF.InitializeVTablePointers(ClassDecl); 552 553 // We can pretend to be a complete class because it only matters for 554 // virtual bases, and we only do virtual bases for complete ctors. 555 Address V = 556 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 557 BaseClassDecl, 558 isBaseVirtual); 559 AggValueSlot AggSlot = 560 AggValueSlot::forAddr( 561 V, Qualifiers(), 562 AggValueSlot::IsDestructed, 563 AggValueSlot::DoesNotNeedGCBarriers, 564 AggValueSlot::IsNotAliased, 565 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 566 567 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 568 569 if (CGF.CGM.getLangOpts().Exceptions && 570 !BaseClassDecl->hasTrivialDestructor()) 571 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 572 isBaseVirtual); 573 } 574 575 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 576 auto *CD = dyn_cast<CXXConstructorDecl>(D); 577 if (!(CD && CD->isCopyOrMoveConstructor()) && 578 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 579 return false; 580 581 // We can emit a memcpy for a trivial copy or move constructor/assignment. 582 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 583 return true; 584 585 // We *must* emit a memcpy for a defaulted union copy or move op. 586 if (D->getParent()->isUnion() && D->isDefaulted()) 587 return true; 588 589 return false; 590 } 591 592 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 593 CXXCtorInitializer *MemberInit, 594 LValue &LHS) { 595 FieldDecl *Field = MemberInit->getAnyMember(); 596 if (MemberInit->isIndirectMemberInitializer()) { 597 // If we are initializing an anonymous union field, drill down to the field. 598 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 599 for (const auto *I : IndirectField->chain()) 600 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 601 } else { 602 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 603 } 604 } 605 606 static void EmitMemberInitializer(CodeGenFunction &CGF, 607 const CXXRecordDecl *ClassDecl, 608 CXXCtorInitializer *MemberInit, 609 const CXXConstructorDecl *Constructor, 610 FunctionArgList &Args) { 611 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 612 assert(MemberInit->isAnyMemberInitializer() && 613 "Must have member initializer!"); 614 assert(MemberInit->getInit() && "Must have initializer!"); 615 616 // non-static data member initializers. 617 FieldDecl *Field = MemberInit->getAnyMember(); 618 QualType FieldType = Field->getType(); 619 620 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 621 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 622 LValue LHS; 623 624 // If a base constructor is being emitted, create an LValue that has the 625 // non-virtual alignment. 626 if (CGF.CurGD.getCtorType() == Ctor_Base) 627 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 628 else 629 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 630 631 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 632 633 // Special case: if we are in a copy or move constructor, and we are copying 634 // an array of PODs or classes with trivial copy constructors, ignore the 635 // AST and perform the copy we know is equivalent. 636 // FIXME: This is hacky at best... if we had a bit more explicit information 637 // in the AST, we could generalize it more easily. 638 const ConstantArrayType *Array 639 = CGF.getContext().getAsConstantArrayType(FieldType); 640 if (Array && Constructor->isDefaulted() && 641 Constructor->isCopyOrMoveConstructor()) { 642 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 643 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 644 if (BaseElementTy.isPODType(CGF.getContext()) || 645 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 646 unsigned SrcArgIndex = 647 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 648 llvm::Value *SrcPtr 649 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 650 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 651 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 652 653 // Copy the aggregate. 654 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field), 655 LHS.isVolatileQualified()); 656 // Ensure that we destroy the objects if an exception is thrown later in 657 // the constructor. 658 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 659 if (CGF.needsEHCleanup(dtorKind)) 660 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType); 661 return; 662 } 663 } 664 665 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 666 } 667 668 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 669 Expr *Init) { 670 QualType FieldType = Field->getType(); 671 switch (getEvaluationKind(FieldType)) { 672 case TEK_Scalar: 673 if (LHS.isSimple()) { 674 EmitExprAsInit(Init, Field, LHS, false); 675 } else { 676 RValue RHS = RValue::get(EmitScalarExpr(Init)); 677 EmitStoreThroughLValue(RHS, LHS); 678 } 679 break; 680 case TEK_Complex: 681 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 682 break; 683 case TEK_Aggregate: { 684 AggValueSlot Slot = AggValueSlot::forLValue( 685 LHS, *this, AggValueSlot::IsDestructed, 686 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 687 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed, 688 // Checks are made by the code that calls constructor. 689 AggValueSlot::IsSanitizerChecked); 690 EmitAggExpr(Init, Slot); 691 break; 692 } 693 } 694 695 // Ensure that we destroy this object if an exception is thrown 696 // later in the constructor. 697 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 698 if (needsEHCleanup(dtorKind)) 699 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType); 700 } 701 702 /// Checks whether the given constructor is a valid subject for the 703 /// complete-to-base constructor delegation optimization, i.e. 704 /// emitting the complete constructor as a simple call to the base 705 /// constructor. 706 bool CodeGenFunction::IsConstructorDelegationValid( 707 const CXXConstructorDecl *Ctor) { 708 709 // Currently we disable the optimization for classes with virtual 710 // bases because (1) the addresses of parameter variables need to be 711 // consistent across all initializers but (2) the delegate function 712 // call necessarily creates a second copy of the parameter variable. 713 // 714 // The limiting example (purely theoretical AFAIK): 715 // struct A { A(int &c) { c++; } }; 716 // struct B : virtual A { 717 // B(int count) : A(count) { printf("%d\n", count); } 718 // }; 719 // ...although even this example could in principle be emitted as a 720 // delegation since the address of the parameter doesn't escape. 721 if (Ctor->getParent()->getNumVBases()) { 722 // TODO: white-list trivial vbase initializers. This case wouldn't 723 // be subject to the restrictions below. 724 725 // TODO: white-list cases where: 726 // - there are no non-reference parameters to the constructor 727 // - the initializers don't access any non-reference parameters 728 // - the initializers don't take the address of non-reference 729 // parameters 730 // - etc. 731 // If we ever add any of the above cases, remember that: 732 // - function-try-blocks will always blacklist this optimization 733 // - we need to perform the constructor prologue and cleanup in 734 // EmitConstructorBody. 735 736 return false; 737 } 738 739 // We also disable the optimization for variadic functions because 740 // it's impossible to "re-pass" varargs. 741 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic()) 742 return false; 743 744 // FIXME: Decide if we can do a delegation of a delegating constructor. 745 if (Ctor->isDelegatingConstructor()) 746 return false; 747 748 return true; 749 } 750 751 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 752 // to poison the extra field paddings inserted under 753 // -fsanitize-address-field-padding=1|2. 754 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 755 ASTContext &Context = getContext(); 756 const CXXRecordDecl *ClassDecl = 757 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 758 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 759 if (!ClassDecl->mayInsertExtraPadding()) return; 760 761 struct SizeAndOffset { 762 uint64_t Size; 763 uint64_t Offset; 764 }; 765 766 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 767 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 768 769 // Populate sizes and offsets of fields. 770 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 771 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 772 SSV[i].Offset = 773 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 774 775 size_t NumFields = 0; 776 for (const auto *Field : ClassDecl->fields()) { 777 const FieldDecl *D = Field; 778 std::pair<CharUnits, CharUnits> FieldInfo = 779 Context.getTypeInfoInChars(D->getType()); 780 CharUnits FieldSize = FieldInfo.first; 781 assert(NumFields < SSV.size()); 782 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 783 NumFields++; 784 } 785 assert(NumFields == SSV.size()); 786 if (SSV.size() <= 1) return; 787 788 // We will insert calls to __asan_* run-time functions. 789 // LLVM AddressSanitizer pass may decide to inline them later. 790 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 791 llvm::FunctionType *FTy = 792 llvm::FunctionType::get(CGM.VoidTy, Args, false); 793 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 794 FTy, Prologue ? "__asan_poison_intra_object_redzone" 795 : "__asan_unpoison_intra_object_redzone"); 796 797 llvm::Value *ThisPtr = LoadCXXThis(); 798 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 799 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 800 // For each field check if it has sufficient padding, 801 // if so (un)poison it with a call. 802 for (size_t i = 0; i < SSV.size(); i++) { 803 uint64_t AsanAlignment = 8; 804 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 805 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 806 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 807 if (PoisonSize < AsanAlignment || !SSV[i].Size || 808 (NextField % AsanAlignment) != 0) 809 continue; 810 Builder.CreateCall( 811 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 812 Builder.getIntN(PtrSize, PoisonSize)}); 813 } 814 } 815 816 /// EmitConstructorBody - Emits the body of the current constructor. 817 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 818 EmitAsanPrologueOrEpilogue(true); 819 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 820 CXXCtorType CtorType = CurGD.getCtorType(); 821 822 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 823 CtorType == Ctor_Complete) && 824 "can only generate complete ctor for this ABI"); 825 826 // Before we go any further, try the complete->base constructor 827 // delegation optimization. 828 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 829 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 830 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 831 return; 832 } 833 834 const FunctionDecl *Definition = nullptr; 835 Stmt *Body = Ctor->getBody(Definition); 836 assert(Definition == Ctor && "emitting wrong constructor body"); 837 838 // Enter the function-try-block before the constructor prologue if 839 // applicable. 840 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 841 if (IsTryBody) 842 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 843 844 incrementProfileCounter(Body); 845 846 RunCleanupsScope RunCleanups(*this); 847 848 // TODO: in restricted cases, we can emit the vbase initializers of 849 // a complete ctor and then delegate to the base ctor. 850 851 // Emit the constructor prologue, i.e. the base and member 852 // initializers. 853 EmitCtorPrologue(Ctor, CtorType, Args); 854 855 // Emit the body of the statement. 856 if (IsTryBody) 857 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 858 else if (Body) 859 EmitStmt(Body); 860 861 // Emit any cleanup blocks associated with the member or base 862 // initializers, which includes (along the exceptional path) the 863 // destructors for those members and bases that were fully 864 // constructed. 865 RunCleanups.ForceCleanup(); 866 867 if (IsTryBody) 868 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 869 } 870 871 namespace { 872 /// RAII object to indicate that codegen is copying the value representation 873 /// instead of the object representation. Useful when copying a struct or 874 /// class which has uninitialized members and we're only performing 875 /// lvalue-to-rvalue conversion on the object but not its members. 876 class CopyingValueRepresentation { 877 public: 878 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 879 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 880 CGF.SanOpts.set(SanitizerKind::Bool, false); 881 CGF.SanOpts.set(SanitizerKind::Enum, false); 882 } 883 ~CopyingValueRepresentation() { 884 CGF.SanOpts = OldSanOpts; 885 } 886 private: 887 CodeGenFunction &CGF; 888 SanitizerSet OldSanOpts; 889 }; 890 } // end anonymous namespace 891 892 namespace { 893 class FieldMemcpyizer { 894 public: 895 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 896 const VarDecl *SrcRec) 897 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 898 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 899 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 900 LastFieldOffset(0), LastAddedFieldIndex(0) {} 901 902 bool isMemcpyableField(FieldDecl *F) const { 903 // Never memcpy fields when we are adding poisoned paddings. 904 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 905 return false; 906 Qualifiers Qual = F->getType().getQualifiers(); 907 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 908 return false; 909 return true; 910 } 911 912 void addMemcpyableField(FieldDecl *F) { 913 if (F->isZeroSize(CGF.getContext())) 914 return; 915 if (!FirstField) 916 addInitialField(F); 917 else 918 addNextField(F); 919 } 920 921 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 922 ASTContext &Ctx = CGF.getContext(); 923 unsigned LastFieldSize = 924 LastField->isBitField() 925 ? LastField->getBitWidthValue(Ctx) 926 : Ctx.toBits( 927 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first); 928 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 929 FirstByteOffset + Ctx.getCharWidth() - 1; 930 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 931 return MemcpySize; 932 } 933 934 void emitMemcpy() { 935 // Give the subclass a chance to bail out if it feels the memcpy isn't 936 // worth it (e.g. Hasn't aggregated enough data). 937 if (!FirstField) { 938 return; 939 } 940 941 uint64_t FirstByteOffset; 942 if (FirstField->isBitField()) { 943 const CGRecordLayout &RL = 944 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 945 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 946 // FirstFieldOffset is not appropriate for bitfields, 947 // we need to use the storage offset instead. 948 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 949 } else { 950 FirstByteOffset = FirstFieldOffset; 951 } 952 953 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 954 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 955 Address ThisPtr = CGF.LoadCXXThisAddress(); 956 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 957 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 958 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 959 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 960 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 961 962 emitMemcpyIR( 963 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF), 964 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF), 965 MemcpySize); 966 reset(); 967 } 968 969 void reset() { 970 FirstField = nullptr; 971 } 972 973 protected: 974 CodeGenFunction &CGF; 975 const CXXRecordDecl *ClassDecl; 976 977 private: 978 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 979 llvm::PointerType *DPT = DestPtr.getType(); 980 llvm::Type *DBP = 981 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 982 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 983 984 llvm::PointerType *SPT = SrcPtr.getType(); 985 llvm::Type *SBP = 986 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 987 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 988 989 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 990 } 991 992 void addInitialField(FieldDecl *F) { 993 FirstField = F; 994 LastField = F; 995 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 996 LastFieldOffset = FirstFieldOffset; 997 LastAddedFieldIndex = F->getFieldIndex(); 998 } 999 1000 void addNextField(FieldDecl *F) { 1001 // For the most part, the following invariant will hold: 1002 // F->getFieldIndex() == LastAddedFieldIndex + 1 1003 // The one exception is that Sema won't add a copy-initializer for an 1004 // unnamed bitfield, which will show up here as a gap in the sequence. 1005 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1006 "Cannot aggregate fields out of order."); 1007 LastAddedFieldIndex = F->getFieldIndex(); 1008 1009 // The 'first' and 'last' fields are chosen by offset, rather than field 1010 // index. This allows the code to support bitfields, as well as regular 1011 // fields. 1012 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1013 if (FOffset < FirstFieldOffset) { 1014 FirstField = F; 1015 FirstFieldOffset = FOffset; 1016 } else if (FOffset >= LastFieldOffset) { 1017 LastField = F; 1018 LastFieldOffset = FOffset; 1019 } 1020 } 1021 1022 const VarDecl *SrcRec; 1023 const ASTRecordLayout &RecLayout; 1024 FieldDecl *FirstField; 1025 FieldDecl *LastField; 1026 uint64_t FirstFieldOffset, LastFieldOffset; 1027 unsigned LastAddedFieldIndex; 1028 }; 1029 1030 class ConstructorMemcpyizer : public FieldMemcpyizer { 1031 private: 1032 /// Get source argument for copy constructor. Returns null if not a copy 1033 /// constructor. 1034 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1035 const CXXConstructorDecl *CD, 1036 FunctionArgList &Args) { 1037 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1038 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1039 return nullptr; 1040 } 1041 1042 // Returns true if a CXXCtorInitializer represents a member initialization 1043 // that can be rolled into a memcpy. 1044 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1045 if (!MemcpyableCtor) 1046 return false; 1047 FieldDecl *Field = MemberInit->getMember(); 1048 assert(Field && "No field for member init."); 1049 QualType FieldType = Field->getType(); 1050 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1051 1052 // Bail out on non-memcpyable, not-trivially-copyable members. 1053 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1054 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1055 FieldType->isReferenceType())) 1056 return false; 1057 1058 // Bail out on volatile fields. 1059 if (!isMemcpyableField(Field)) 1060 return false; 1061 1062 // Otherwise we're good. 1063 return true; 1064 } 1065 1066 public: 1067 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1068 FunctionArgList &Args) 1069 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1070 ConstructorDecl(CD), 1071 MemcpyableCtor(CD->isDefaulted() && 1072 CD->isCopyOrMoveConstructor() && 1073 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1074 Args(Args) { } 1075 1076 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1077 if (isMemberInitMemcpyable(MemberInit)) { 1078 AggregatedInits.push_back(MemberInit); 1079 addMemcpyableField(MemberInit->getMember()); 1080 } else { 1081 emitAggregatedInits(); 1082 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1083 ConstructorDecl, Args); 1084 } 1085 } 1086 1087 void emitAggregatedInits() { 1088 if (AggregatedInits.size() <= 1) { 1089 // This memcpy is too small to be worthwhile. Fall back on default 1090 // codegen. 1091 if (!AggregatedInits.empty()) { 1092 CopyingValueRepresentation CVR(CGF); 1093 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1094 AggregatedInits[0], ConstructorDecl, Args); 1095 AggregatedInits.clear(); 1096 } 1097 reset(); 1098 return; 1099 } 1100 1101 pushEHDestructors(); 1102 emitMemcpy(); 1103 AggregatedInits.clear(); 1104 } 1105 1106 void pushEHDestructors() { 1107 Address ThisPtr = CGF.LoadCXXThisAddress(); 1108 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1109 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1110 1111 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1112 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1113 QualType FieldType = MemberInit->getAnyMember()->getType(); 1114 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1115 if (!CGF.needsEHCleanup(dtorKind)) 1116 continue; 1117 LValue FieldLHS = LHS; 1118 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1119 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType); 1120 } 1121 } 1122 1123 void finish() { 1124 emitAggregatedInits(); 1125 } 1126 1127 private: 1128 const CXXConstructorDecl *ConstructorDecl; 1129 bool MemcpyableCtor; 1130 FunctionArgList &Args; 1131 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1132 }; 1133 1134 class AssignmentMemcpyizer : public FieldMemcpyizer { 1135 private: 1136 // Returns the memcpyable field copied by the given statement, if one 1137 // exists. Otherwise returns null. 1138 FieldDecl *getMemcpyableField(Stmt *S) { 1139 if (!AssignmentsMemcpyable) 1140 return nullptr; 1141 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1142 // Recognise trivial assignments. 1143 if (BO->getOpcode() != BO_Assign) 1144 return nullptr; 1145 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1146 if (!ME) 1147 return nullptr; 1148 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1149 if (!Field || !isMemcpyableField(Field)) 1150 return nullptr; 1151 Stmt *RHS = BO->getRHS(); 1152 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1153 RHS = EC->getSubExpr(); 1154 if (!RHS) 1155 return nullptr; 1156 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1157 if (ME2->getMemberDecl() == Field) 1158 return Field; 1159 } 1160 return nullptr; 1161 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1162 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1163 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1164 return nullptr; 1165 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1166 if (!IOA) 1167 return nullptr; 1168 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1169 if (!Field || !isMemcpyableField(Field)) 1170 return nullptr; 1171 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1172 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1173 return nullptr; 1174 return Field; 1175 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1176 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1177 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1178 return nullptr; 1179 Expr *DstPtr = CE->getArg(0); 1180 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1181 DstPtr = DC->getSubExpr(); 1182 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1183 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1184 return nullptr; 1185 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1186 if (!ME) 1187 return nullptr; 1188 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1189 if (!Field || !isMemcpyableField(Field)) 1190 return nullptr; 1191 Expr *SrcPtr = CE->getArg(1); 1192 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1193 SrcPtr = SC->getSubExpr(); 1194 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1195 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1196 return nullptr; 1197 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1198 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1199 return nullptr; 1200 return Field; 1201 } 1202 1203 return nullptr; 1204 } 1205 1206 bool AssignmentsMemcpyable; 1207 SmallVector<Stmt*, 16> AggregatedStmts; 1208 1209 public: 1210 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1211 FunctionArgList &Args) 1212 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1213 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1214 assert(Args.size() == 2); 1215 } 1216 1217 void emitAssignment(Stmt *S) { 1218 FieldDecl *F = getMemcpyableField(S); 1219 if (F) { 1220 addMemcpyableField(F); 1221 AggregatedStmts.push_back(S); 1222 } else { 1223 emitAggregatedStmts(); 1224 CGF.EmitStmt(S); 1225 } 1226 } 1227 1228 void emitAggregatedStmts() { 1229 if (AggregatedStmts.size() <= 1) { 1230 if (!AggregatedStmts.empty()) { 1231 CopyingValueRepresentation CVR(CGF); 1232 CGF.EmitStmt(AggregatedStmts[0]); 1233 } 1234 reset(); 1235 } 1236 1237 emitMemcpy(); 1238 AggregatedStmts.clear(); 1239 } 1240 1241 void finish() { 1242 emitAggregatedStmts(); 1243 } 1244 }; 1245 } // end anonymous namespace 1246 1247 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1248 const Type *BaseType = BaseInit->getBaseClass(); 1249 const auto *BaseClassDecl = 1250 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 1251 return BaseClassDecl->isDynamicClass(); 1252 } 1253 1254 /// EmitCtorPrologue - This routine generates necessary code to initialize 1255 /// base classes and non-static data members belonging to this constructor. 1256 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1257 CXXCtorType CtorType, 1258 FunctionArgList &Args) { 1259 if (CD->isDelegatingConstructor()) 1260 return EmitDelegatingCXXConstructorCall(CD, Args); 1261 1262 const CXXRecordDecl *ClassDecl = CD->getParent(); 1263 1264 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1265 E = CD->init_end(); 1266 1267 // Virtual base initializers first, if any. They aren't needed if: 1268 // - This is a base ctor variant 1269 // - There are no vbases 1270 // - The class is abstract, so a complete object of it cannot be constructed 1271 // 1272 // The check for an abstract class is necessary because sema may not have 1273 // marked virtual base destructors referenced. 1274 bool ConstructVBases = CtorType != Ctor_Base && 1275 ClassDecl->getNumVBases() != 0 && 1276 !ClassDecl->isAbstract(); 1277 1278 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the 1279 // constructor of a class with virtual bases takes an additional parameter to 1280 // conditionally construct the virtual bases. Emit that check here. 1281 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1282 if (ConstructVBases && 1283 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1284 BaseCtorContinueBB = 1285 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1286 assert(BaseCtorContinueBB); 1287 } 1288 1289 llvm::Value *const OldThis = CXXThisValue; 1290 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1291 if (!ConstructVBases) 1292 continue; 1293 if (CGM.getCodeGenOpts().StrictVTablePointers && 1294 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1295 isInitializerOfDynamicClass(*B)) 1296 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1297 EmitBaseInitializer(*this, ClassDecl, *B); 1298 } 1299 1300 if (BaseCtorContinueBB) { 1301 // Complete object handler should continue to the remaining initializers. 1302 Builder.CreateBr(BaseCtorContinueBB); 1303 EmitBlock(BaseCtorContinueBB); 1304 } 1305 1306 // Then, non-virtual base initializers. 1307 for (; B != E && (*B)->isBaseInitializer(); B++) { 1308 assert(!(*B)->isBaseVirtual()); 1309 1310 if (CGM.getCodeGenOpts().StrictVTablePointers && 1311 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1312 isInitializerOfDynamicClass(*B)) 1313 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1314 EmitBaseInitializer(*this, ClassDecl, *B); 1315 } 1316 1317 CXXThisValue = OldThis; 1318 1319 InitializeVTablePointers(ClassDecl); 1320 1321 // And finally, initialize class members. 1322 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1323 ConstructorMemcpyizer CM(*this, CD, Args); 1324 for (; B != E; B++) { 1325 CXXCtorInitializer *Member = (*B); 1326 assert(!Member->isBaseInitializer()); 1327 assert(Member->isAnyMemberInitializer() && 1328 "Delegating initializer on non-delegating constructor"); 1329 CM.addMemberInitializer(Member); 1330 } 1331 CM.finish(); 1332 } 1333 1334 static bool 1335 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1336 1337 static bool 1338 HasTrivialDestructorBody(ASTContext &Context, 1339 const CXXRecordDecl *BaseClassDecl, 1340 const CXXRecordDecl *MostDerivedClassDecl) 1341 { 1342 // If the destructor is trivial we don't have to check anything else. 1343 if (BaseClassDecl->hasTrivialDestructor()) 1344 return true; 1345 1346 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1347 return false; 1348 1349 // Check fields. 1350 for (const auto *Field : BaseClassDecl->fields()) 1351 if (!FieldHasTrivialDestructorBody(Context, Field)) 1352 return false; 1353 1354 // Check non-virtual bases. 1355 for (const auto &I : BaseClassDecl->bases()) { 1356 if (I.isVirtual()) 1357 continue; 1358 1359 const CXXRecordDecl *NonVirtualBase = 1360 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1361 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1362 MostDerivedClassDecl)) 1363 return false; 1364 } 1365 1366 if (BaseClassDecl == MostDerivedClassDecl) { 1367 // Check virtual bases. 1368 for (const auto &I : BaseClassDecl->vbases()) { 1369 const CXXRecordDecl *VirtualBase = 1370 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1371 if (!HasTrivialDestructorBody(Context, VirtualBase, 1372 MostDerivedClassDecl)) 1373 return false; 1374 } 1375 } 1376 1377 return true; 1378 } 1379 1380 static bool 1381 FieldHasTrivialDestructorBody(ASTContext &Context, 1382 const FieldDecl *Field) 1383 { 1384 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1385 1386 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1387 if (!RT) 1388 return true; 1389 1390 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1391 1392 // The destructor for an implicit anonymous union member is never invoked. 1393 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1394 return false; 1395 1396 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1397 } 1398 1399 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1400 /// any vtable pointers before calling this destructor. 1401 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1402 const CXXDestructorDecl *Dtor) { 1403 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1404 if (!ClassDecl->isDynamicClass()) 1405 return true; 1406 1407 if (!Dtor->hasTrivialBody()) 1408 return false; 1409 1410 // Check the fields. 1411 for (const auto *Field : ClassDecl->fields()) 1412 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1413 return false; 1414 1415 return true; 1416 } 1417 1418 /// EmitDestructorBody - Emits the body of the current destructor. 1419 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1420 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1421 CXXDtorType DtorType = CurGD.getDtorType(); 1422 1423 // For an abstract class, non-base destructors are never used (and can't 1424 // be emitted in general, because vbase dtors may not have been validated 1425 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1426 // in fact emit references to them from other compilations, so emit them 1427 // as functions containing a trap instruction. 1428 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1429 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1430 TrapCall->setDoesNotReturn(); 1431 TrapCall->setDoesNotThrow(); 1432 Builder.CreateUnreachable(); 1433 Builder.ClearInsertionPoint(); 1434 return; 1435 } 1436 1437 Stmt *Body = Dtor->getBody(); 1438 if (Body) 1439 incrementProfileCounter(Body); 1440 1441 // The call to operator delete in a deleting destructor happens 1442 // outside of the function-try-block, which means it's always 1443 // possible to delegate the destructor body to the complete 1444 // destructor. Do so. 1445 if (DtorType == Dtor_Deleting) { 1446 RunCleanupsScope DtorEpilogue(*this); 1447 EnterDtorCleanups(Dtor, Dtor_Deleting); 1448 if (HaveInsertPoint()) { 1449 QualType ThisTy = Dtor->getThisObjectType(); 1450 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1451 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1452 } 1453 return; 1454 } 1455 1456 // If the body is a function-try-block, enter the try before 1457 // anything else. 1458 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1459 if (isTryBody) 1460 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1461 EmitAsanPrologueOrEpilogue(false); 1462 1463 // Enter the epilogue cleanups. 1464 RunCleanupsScope DtorEpilogue(*this); 1465 1466 // If this is the complete variant, just invoke the base variant; 1467 // the epilogue will destruct the virtual bases. But we can't do 1468 // this optimization if the body is a function-try-block, because 1469 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1470 // always delegate because we might not have a definition in this TU. 1471 switch (DtorType) { 1472 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1473 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1474 1475 case Dtor_Complete: 1476 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1477 "can't emit a dtor without a body for non-Microsoft ABIs"); 1478 1479 // Enter the cleanup scopes for virtual bases. 1480 EnterDtorCleanups(Dtor, Dtor_Complete); 1481 1482 if (!isTryBody) { 1483 QualType ThisTy = Dtor->getThisObjectType(); 1484 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1485 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy); 1486 break; 1487 } 1488 1489 // Fallthrough: act like we're in the base variant. 1490 LLVM_FALLTHROUGH; 1491 1492 case Dtor_Base: 1493 assert(Body); 1494 1495 // Enter the cleanup scopes for fields and non-virtual bases. 1496 EnterDtorCleanups(Dtor, Dtor_Base); 1497 1498 // Initialize the vtable pointers before entering the body. 1499 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1500 // Insert the llvm.launder.invariant.group intrinsic before initializing 1501 // the vptrs to cancel any previous assumptions we might have made. 1502 if (CGM.getCodeGenOpts().StrictVTablePointers && 1503 CGM.getCodeGenOpts().OptimizationLevel > 0) 1504 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1505 InitializeVTablePointers(Dtor->getParent()); 1506 } 1507 1508 if (isTryBody) 1509 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1510 else if (Body) 1511 EmitStmt(Body); 1512 else { 1513 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1514 // nothing to do besides what's in the epilogue 1515 } 1516 // -fapple-kext must inline any call to this dtor into 1517 // the caller's body. 1518 if (getLangOpts().AppleKext) 1519 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1520 1521 break; 1522 } 1523 1524 // Jump out through the epilogue cleanups. 1525 DtorEpilogue.ForceCleanup(); 1526 1527 // Exit the try if applicable. 1528 if (isTryBody) 1529 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1530 } 1531 1532 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1533 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1534 const Stmt *RootS = AssignOp->getBody(); 1535 assert(isa<CompoundStmt>(RootS) && 1536 "Body of an implicit assignment operator should be compound stmt."); 1537 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1538 1539 LexicalScope Scope(*this, RootCS->getSourceRange()); 1540 1541 incrementProfileCounter(RootCS); 1542 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1543 for (auto *I : RootCS->body()) 1544 AM.emitAssignment(I); 1545 AM.finish(); 1546 } 1547 1548 namespace { 1549 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1550 const CXXDestructorDecl *DD) { 1551 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1552 return CGF.EmitScalarExpr(ThisArg); 1553 return CGF.LoadCXXThis(); 1554 } 1555 1556 /// Call the operator delete associated with the current destructor. 1557 struct CallDtorDelete final : EHScopeStack::Cleanup { 1558 CallDtorDelete() {} 1559 1560 void Emit(CodeGenFunction &CGF, Flags flags) override { 1561 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1562 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1563 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1564 LoadThisForDtorDelete(CGF, Dtor), 1565 CGF.getContext().getTagDeclType(ClassDecl)); 1566 } 1567 }; 1568 1569 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1570 llvm::Value *ShouldDeleteCondition, 1571 bool ReturnAfterDelete) { 1572 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1573 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1574 llvm::Value *ShouldCallDelete 1575 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1576 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1577 1578 CGF.EmitBlock(callDeleteBB); 1579 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1580 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1581 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1582 LoadThisForDtorDelete(CGF, Dtor), 1583 CGF.getContext().getTagDeclType(ClassDecl)); 1584 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1585 ReturnAfterDelete && 1586 "unexpected value for ReturnAfterDelete"); 1587 if (ReturnAfterDelete) 1588 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1589 else 1590 CGF.Builder.CreateBr(continueBB); 1591 1592 CGF.EmitBlock(continueBB); 1593 } 1594 1595 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1596 llvm::Value *ShouldDeleteCondition; 1597 1598 public: 1599 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1600 : ShouldDeleteCondition(ShouldDeleteCondition) { 1601 assert(ShouldDeleteCondition != nullptr); 1602 } 1603 1604 void Emit(CodeGenFunction &CGF, Flags flags) override { 1605 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1606 /*ReturnAfterDelete*/false); 1607 } 1608 }; 1609 1610 class DestroyField final : public EHScopeStack::Cleanup { 1611 const FieldDecl *field; 1612 CodeGenFunction::Destroyer *destroyer; 1613 bool useEHCleanupForArray; 1614 1615 public: 1616 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1617 bool useEHCleanupForArray) 1618 : field(field), destroyer(destroyer), 1619 useEHCleanupForArray(useEHCleanupForArray) {} 1620 1621 void Emit(CodeGenFunction &CGF, Flags flags) override { 1622 // Find the address of the field. 1623 Address thisValue = CGF.LoadCXXThisAddress(); 1624 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1625 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1626 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1627 assert(LV.isSimple()); 1628 1629 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer, 1630 flags.isForNormalCleanup() && useEHCleanupForArray); 1631 } 1632 }; 1633 1634 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1635 CharUnits::QuantityType PoisonSize) { 1636 CodeGenFunction::SanitizerScope SanScope(&CGF); 1637 // Pass in void pointer and size of region as arguments to runtime 1638 // function 1639 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1640 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1641 1642 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1643 1644 llvm::FunctionType *FnType = 1645 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1646 llvm::FunctionCallee Fn = 1647 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1648 CGF.EmitNounwindRuntimeCall(Fn, Args); 1649 } 1650 1651 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1652 const CXXDestructorDecl *Dtor; 1653 1654 public: 1655 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1656 1657 // Generate function call for handling object poisoning. 1658 // Disables tail call elimination, to prevent the current stack frame 1659 // from disappearing from the stack trace. 1660 void Emit(CodeGenFunction &CGF, Flags flags) override { 1661 const ASTRecordLayout &Layout = 1662 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1663 1664 // Nothing to poison. 1665 if (Layout.getFieldCount() == 0) 1666 return; 1667 1668 // Prevent the current stack frame from disappearing from the stack trace. 1669 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1670 1671 // Construct pointer to region to begin poisoning, and calculate poison 1672 // size, so that only members declared in this class are poisoned. 1673 ASTContext &Context = CGF.getContext(); 1674 unsigned fieldIndex = 0; 1675 int startIndex = -1; 1676 // RecordDecl::field_iterator Field; 1677 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1678 // Poison field if it is trivial 1679 if (FieldHasTrivialDestructorBody(Context, Field)) { 1680 // Start sanitizing at this field 1681 if (startIndex < 0) 1682 startIndex = fieldIndex; 1683 1684 // Currently on the last field, and it must be poisoned with the 1685 // current block. 1686 if (fieldIndex == Layout.getFieldCount() - 1) { 1687 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1688 } 1689 } else if (startIndex >= 0) { 1690 // No longer within a block of memory to poison, so poison the block 1691 PoisonMembers(CGF, startIndex, fieldIndex); 1692 // Re-set the start index 1693 startIndex = -1; 1694 } 1695 fieldIndex += 1; 1696 } 1697 } 1698 1699 private: 1700 /// \param layoutStartOffset index of the ASTRecordLayout field to 1701 /// start poisoning (inclusive) 1702 /// \param layoutEndOffset index of the ASTRecordLayout field to 1703 /// end poisoning (exclusive) 1704 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1705 unsigned layoutEndOffset) { 1706 ASTContext &Context = CGF.getContext(); 1707 const ASTRecordLayout &Layout = 1708 Context.getASTRecordLayout(Dtor->getParent()); 1709 1710 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1711 CGF.SizeTy, 1712 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1713 .getQuantity()); 1714 1715 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1716 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1717 OffsetSizePtr); 1718 1719 CharUnits::QuantityType PoisonSize; 1720 if (layoutEndOffset >= Layout.getFieldCount()) { 1721 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1722 Context.toCharUnitsFromBits( 1723 Layout.getFieldOffset(layoutStartOffset)) 1724 .getQuantity(); 1725 } else { 1726 PoisonSize = Context.toCharUnitsFromBits( 1727 Layout.getFieldOffset(layoutEndOffset) - 1728 Layout.getFieldOffset(layoutStartOffset)) 1729 .getQuantity(); 1730 } 1731 1732 if (PoisonSize == 0) 1733 return; 1734 1735 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1736 } 1737 }; 1738 1739 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1740 const CXXDestructorDecl *Dtor; 1741 1742 public: 1743 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1744 1745 // Generate function call for handling vtable pointer poisoning. 1746 void Emit(CodeGenFunction &CGF, Flags flags) override { 1747 assert(Dtor->getParent()->isDynamicClass()); 1748 (void)Dtor; 1749 ASTContext &Context = CGF.getContext(); 1750 // Poison vtable and vtable ptr if they exist for this class. 1751 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1752 1753 CharUnits::QuantityType PoisonSize = 1754 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1755 // Pass in void pointer and size of region as arguments to runtime 1756 // function 1757 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1758 } 1759 }; 1760 } // end anonymous namespace 1761 1762 /// Emit all code that comes at the end of class's 1763 /// destructor. This is to call destructors on members and base classes 1764 /// in reverse order of their construction. 1765 /// 1766 /// For a deleting destructor, this also handles the case where a destroying 1767 /// operator delete completely overrides the definition. 1768 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1769 CXXDtorType DtorType) { 1770 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1771 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1772 1773 // The deleting-destructor phase just needs to call the appropriate 1774 // operator delete that Sema picked up. 1775 if (DtorType == Dtor_Deleting) { 1776 assert(DD->getOperatorDelete() && 1777 "operator delete missing - EnterDtorCleanups"); 1778 if (CXXStructorImplicitParamValue) { 1779 // If there is an implicit param to the deleting dtor, it's a boolean 1780 // telling whether this is a deleting destructor. 1781 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1782 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1783 /*ReturnAfterDelete*/true); 1784 else 1785 EHStack.pushCleanup<CallDtorDeleteConditional>( 1786 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1787 } else { 1788 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1789 const CXXRecordDecl *ClassDecl = DD->getParent(); 1790 EmitDeleteCall(DD->getOperatorDelete(), 1791 LoadThisForDtorDelete(*this, DD), 1792 getContext().getTagDeclType(ClassDecl)); 1793 EmitBranchThroughCleanup(ReturnBlock); 1794 } else { 1795 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1796 } 1797 } 1798 return; 1799 } 1800 1801 const CXXRecordDecl *ClassDecl = DD->getParent(); 1802 1803 // Unions have no bases and do not call field destructors. 1804 if (ClassDecl->isUnion()) 1805 return; 1806 1807 // The complete-destructor phase just destructs all the virtual bases. 1808 if (DtorType == Dtor_Complete) { 1809 // Poison the vtable pointer such that access after the base 1810 // and member destructors are invoked is invalid. 1811 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1812 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1813 ClassDecl->isPolymorphic()) 1814 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1815 1816 // We push them in the forward order so that they'll be popped in 1817 // the reverse order. 1818 for (const auto &Base : ClassDecl->vbases()) { 1819 auto *BaseClassDecl = 1820 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); 1821 1822 // Ignore trivial destructors. 1823 if (BaseClassDecl->hasTrivialDestructor()) 1824 continue; 1825 1826 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1827 BaseClassDecl, 1828 /*BaseIsVirtual*/ true); 1829 } 1830 1831 return; 1832 } 1833 1834 assert(DtorType == Dtor_Base); 1835 // Poison the vtable pointer if it has no virtual bases, but inherits 1836 // virtual functions. 1837 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1838 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1839 ClassDecl->isPolymorphic()) 1840 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1841 1842 // Destroy non-virtual bases. 1843 for (const auto &Base : ClassDecl->bases()) { 1844 // Ignore virtual bases. 1845 if (Base.isVirtual()) 1846 continue; 1847 1848 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1849 1850 // Ignore trivial destructors. 1851 if (BaseClassDecl->hasTrivialDestructor()) 1852 continue; 1853 1854 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1855 BaseClassDecl, 1856 /*BaseIsVirtual*/ false); 1857 } 1858 1859 // Poison fields such that access after their destructors are 1860 // invoked, and before the base class destructor runs, is invalid. 1861 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1862 SanOpts.has(SanitizerKind::Memory)) 1863 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1864 1865 // Destroy direct fields. 1866 for (const auto *Field : ClassDecl->fields()) { 1867 QualType type = Field->getType(); 1868 QualType::DestructionKind dtorKind = type.isDestructedType(); 1869 if (!dtorKind) continue; 1870 1871 // Anonymous union members do not have their destructors called. 1872 const RecordType *RT = type->getAsUnionType(); 1873 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1874 1875 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1876 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1877 getDestroyer(dtorKind), 1878 cleanupKind & EHCleanup); 1879 } 1880 } 1881 1882 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1883 /// constructor for each of several members of an array. 1884 /// 1885 /// \param ctor the constructor to call for each element 1886 /// \param arrayType the type of the array to initialize 1887 /// \param arrayBegin an arrayType* 1888 /// \param zeroInitialize true if each element should be 1889 /// zero-initialized before it is constructed 1890 void CodeGenFunction::EmitCXXAggrConstructorCall( 1891 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1892 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1893 bool zeroInitialize) { 1894 QualType elementType; 1895 llvm::Value *numElements = 1896 emitArrayLength(arrayType, elementType, arrayBegin); 1897 1898 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1899 NewPointerIsChecked, zeroInitialize); 1900 } 1901 1902 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1903 /// constructor for each of several members of an array. 1904 /// 1905 /// \param ctor the constructor to call for each element 1906 /// \param numElements the number of elements in the array; 1907 /// may be zero 1908 /// \param arrayBase a T*, where T is the type constructed by ctor 1909 /// \param zeroInitialize true if each element should be 1910 /// zero-initialized before it is constructed 1911 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1912 llvm::Value *numElements, 1913 Address arrayBase, 1914 const CXXConstructExpr *E, 1915 bool NewPointerIsChecked, 1916 bool zeroInitialize) { 1917 // It's legal for numElements to be zero. This can happen both 1918 // dynamically, because x can be zero in 'new A[x]', and statically, 1919 // because of GCC extensions that permit zero-length arrays. There 1920 // are probably legitimate places where we could assume that this 1921 // doesn't happen, but it's not clear that it's worth it. 1922 llvm::BranchInst *zeroCheckBranch = nullptr; 1923 1924 // Optimize for a constant count. 1925 llvm::ConstantInt *constantCount 1926 = dyn_cast<llvm::ConstantInt>(numElements); 1927 if (constantCount) { 1928 // Just skip out if the constant count is zero. 1929 if (constantCount->isZero()) return; 1930 1931 // Otherwise, emit the check. 1932 } else { 1933 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1934 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1935 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1936 EmitBlock(loopBB); 1937 } 1938 1939 // Find the end of the array. 1940 llvm::Value *arrayBegin = arrayBase.getPointer(); 1941 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1942 "arrayctor.end"); 1943 1944 // Enter the loop, setting up a phi for the current location to initialize. 1945 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1946 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1947 EmitBlock(loopBB); 1948 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1949 "arrayctor.cur"); 1950 cur->addIncoming(arrayBegin, entryBB); 1951 1952 // Inside the loop body, emit the constructor call on the array element. 1953 1954 // The alignment of the base, adjusted by the size of a single element, 1955 // provides a conservative estimate of the alignment of every element. 1956 // (This assumes we never start tracking offsetted alignments.) 1957 // 1958 // Note that these are complete objects and so we don't need to 1959 // use the non-virtual size or alignment. 1960 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1961 CharUnits eltAlignment = 1962 arrayBase.getAlignment() 1963 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1964 Address curAddr = Address(cur, eltAlignment); 1965 1966 // Zero initialize the storage, if requested. 1967 if (zeroInitialize) 1968 EmitNullInitialization(curAddr, type); 1969 1970 // C++ [class.temporary]p4: 1971 // There are two contexts in which temporaries are destroyed at a different 1972 // point than the end of the full-expression. The first context is when a 1973 // default constructor is called to initialize an element of an array. 1974 // If the constructor has one or more default arguments, the destruction of 1975 // every temporary created in a default argument expression is sequenced 1976 // before the construction of the next array element, if any. 1977 1978 { 1979 RunCleanupsScope Scope(*this); 1980 1981 // Evaluate the constructor and its arguments in a regular 1982 // partial-destroy cleanup. 1983 if (getLangOpts().Exceptions && 1984 !ctor->getParent()->hasTrivialDestructor()) { 1985 Destroyer *destroyer = destroyCXXObject; 1986 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1987 *destroyer); 1988 } 1989 auto currAVS = AggValueSlot::forAddr( 1990 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed, 1991 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 1992 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed, 1993 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked 1994 : AggValueSlot::IsNotSanitizerChecked); 1995 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1996 /*Delegating=*/false, currAVS, E); 1997 } 1998 1999 // Go to the next element. 2000 llvm::Value *next = 2001 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 2002 "arrayctor.next"); 2003 cur->addIncoming(next, Builder.GetInsertBlock()); 2004 2005 // Check whether that's the end of the loop. 2006 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2007 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2008 Builder.CreateCondBr(done, contBB, loopBB); 2009 2010 // Patch the earlier check to skip over the loop. 2011 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2012 2013 EmitBlock(contBB); 2014 } 2015 2016 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2017 Address addr, 2018 QualType type) { 2019 const RecordType *rtype = type->castAs<RecordType>(); 2020 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2021 const CXXDestructorDecl *dtor = record->getDestructor(); 2022 assert(!dtor->isTrivial()); 2023 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2024 /*Delegating=*/false, addr, type); 2025 } 2026 2027 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2028 CXXCtorType Type, 2029 bool ForVirtualBase, 2030 bool Delegating, 2031 AggValueSlot ThisAVS, 2032 const CXXConstructExpr *E) { 2033 CallArgList Args; 2034 Address This = ThisAVS.getAddress(); 2035 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace(); 2036 QualType ThisType = D->getThisType(); 2037 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); 2038 llvm::Value *ThisPtr = This.getPointer(); 2039 2040 if (SlotAS != ThisAS) { 2041 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2042 llvm::Type *NewType = 2043 ThisPtr->getType()->getPointerElementType()->getPointerTo(TargetThisAS); 2044 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2045 ThisAS, SlotAS, NewType); 2046 } 2047 2048 // Push the this ptr. 2049 Args.add(RValue::get(ThisPtr), D->getThisType()); 2050 2051 // If this is a trivial constructor, emit a memcpy now before we lose 2052 // the alignment information on the argument. 2053 // FIXME: It would be better to preserve alignment information into CallArg. 2054 if (isMemcpyEquivalentSpecialMember(D)) { 2055 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2056 2057 const Expr *Arg = E->getArg(0); 2058 LValue Src = EmitLValue(Arg); 2059 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2060 LValue Dest = MakeAddrLValue(This, DestTy); 2061 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap()); 2062 return; 2063 } 2064 2065 // Add the rest of the user-supplied arguments. 2066 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2067 EvaluationOrder Order = E->isListInitialization() 2068 ? EvaluationOrder::ForceLeftToRight 2069 : EvaluationOrder::Default; 2070 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2071 /*ParamsToSkip*/ 0, Order); 2072 2073 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2074 ThisAVS.mayOverlap(), E->getExprLoc(), 2075 ThisAVS.isSanitizerChecked()); 2076 } 2077 2078 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2079 const CXXConstructorDecl *Ctor, 2080 CXXCtorType Type, CallArgList &Args) { 2081 // We can't forward a variadic call. 2082 if (Ctor->isVariadic()) 2083 return false; 2084 2085 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2086 // If the parameters are callee-cleanup, it's not safe to forward. 2087 for (auto *P : Ctor->parameters()) 2088 if (P->needsDestruction(CGF.getContext())) 2089 return false; 2090 2091 // Likewise if they're inalloca. 2092 const CGFunctionInfo &Info = 2093 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2094 if (Info.usesInAlloca()) 2095 return false; 2096 } 2097 2098 // Anything else should be OK. 2099 return true; 2100 } 2101 2102 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2103 CXXCtorType Type, 2104 bool ForVirtualBase, 2105 bool Delegating, 2106 Address This, 2107 CallArgList &Args, 2108 AggValueSlot::Overlap_t Overlap, 2109 SourceLocation Loc, 2110 bool NewPointerIsChecked) { 2111 const CXXRecordDecl *ClassDecl = D->getParent(); 2112 2113 if (!NewPointerIsChecked) 2114 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2115 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2116 2117 if (D->isTrivial() && D->isDefaultConstructor()) { 2118 assert(Args.size() == 1 && "trivial default ctor with args"); 2119 return; 2120 } 2121 2122 // If this is a trivial constructor, just emit what's needed. If this is a 2123 // union copy constructor, we must emit a memcpy, because the AST does not 2124 // model that copy. 2125 if (isMemcpyEquivalentSpecialMember(D)) { 2126 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2127 2128 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2129 Address Src(Args[1].getRValue(*this).getScalarVal(), 2130 getNaturalTypeAlignment(SrcTy)); 2131 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2132 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2133 LValue DestLVal = MakeAddrLValue(This, DestTy); 2134 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2135 return; 2136 } 2137 2138 bool PassPrototypeArgs = true; 2139 // Check whether we can actually emit the constructor before trying to do so. 2140 if (auto Inherited = D->getInheritedConstructor()) { 2141 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2142 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2143 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2144 Delegating, Args); 2145 return; 2146 } 2147 } 2148 2149 // Insert any ABI-specific implicit constructor arguments. 2150 CGCXXABI::AddedStructorArgs ExtraArgs = 2151 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2152 Delegating, Args); 2153 2154 // Emit the call. 2155 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type)); 2156 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2157 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2158 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2159 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2160 2161 // Generate vtable assumptions if we're constructing a complete object 2162 // with a vtable. We don't do this for base subobjects for two reasons: 2163 // first, it's incorrect for classes with virtual bases, and second, we're 2164 // about to overwrite the vptrs anyway. 2165 // We also have to make sure if we can refer to vtable: 2166 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2167 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2168 // sure that definition of vtable is not hidden, 2169 // then we are always safe to refer to it. 2170 // FIXME: It looks like InstCombine is very inefficient on dealing with 2171 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2172 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2173 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2174 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2175 CGM.getCodeGenOpts().StrictVTablePointers) 2176 EmitVTableAssumptionLoads(ClassDecl, This); 2177 } 2178 2179 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2180 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2181 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2182 CallArgList Args; 2183 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2184 2185 // Forward the parameters. 2186 if (InheritedFromVBase && 2187 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2188 // Nothing to do; this construction is not responsible for constructing 2189 // the base class containing the inherited constructor. 2190 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2191 // have constructor variants? 2192 Args.push_back(ThisArg); 2193 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2194 // The inheriting constructor was inlined; just inject its arguments. 2195 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2196 "wrong number of parameters for inherited constructor call"); 2197 Args = CXXInheritedCtorInitExprArgs; 2198 Args[0] = ThisArg; 2199 } else { 2200 // The inheriting constructor was not inlined. Emit delegating arguments. 2201 Args.push_back(ThisArg); 2202 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2203 assert(OuterCtor->getNumParams() == D->getNumParams()); 2204 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2205 2206 for (const auto *Param : OuterCtor->parameters()) { 2207 assert(getContext().hasSameUnqualifiedType( 2208 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2209 Param->getType())); 2210 EmitDelegateCallArg(Args, Param, E->getLocation()); 2211 2212 // Forward __attribute__(pass_object_size). 2213 if (Param->hasAttr<PassObjectSizeAttr>()) { 2214 auto *POSParam = SizeArguments[Param]; 2215 assert(POSParam && "missing pass_object_size value for forwarding"); 2216 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2217 } 2218 } 2219 } 2220 2221 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2222 This, Args, AggValueSlot::MayOverlap, 2223 E->getLocation(), /*NewPointerIsChecked*/true); 2224 } 2225 2226 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2227 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2228 bool Delegating, CallArgList &Args) { 2229 GlobalDecl GD(Ctor, CtorType); 2230 InlinedInheritingConstructorScope Scope(*this, GD); 2231 ApplyInlineDebugLocation DebugScope(*this, GD); 2232 RunCleanupsScope RunCleanups(*this); 2233 2234 // Save the arguments to be passed to the inherited constructor. 2235 CXXInheritedCtorInitExprArgs = Args; 2236 2237 FunctionArgList Params; 2238 QualType RetType = BuildFunctionArgList(CurGD, Params); 2239 FnRetTy = RetType; 2240 2241 // Insert any ABI-specific implicit constructor arguments. 2242 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2243 ForVirtualBase, Delegating, Args); 2244 2245 // Emit a simplified prolog. We only need to emit the implicit params. 2246 assert(Args.size() >= Params.size() && "too few arguments for call"); 2247 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2248 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2249 const RValue &RV = Args[I].getRValue(*this); 2250 assert(!RV.isComplex() && "complex indirect params not supported"); 2251 ParamValue Val = RV.isScalar() 2252 ? ParamValue::forDirect(RV.getScalarVal()) 2253 : ParamValue::forIndirect(RV.getAggregateAddress()); 2254 EmitParmDecl(*Params[I], Val, I + 1); 2255 } 2256 } 2257 2258 // Create a return value slot if the ABI implementation wants one. 2259 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2260 // value instead. 2261 if (!RetType->isVoidType()) 2262 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2263 2264 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2265 CXXThisValue = CXXABIThisValue; 2266 2267 // Directly emit the constructor initializers. 2268 EmitCtorPrologue(Ctor, CtorType, Params); 2269 } 2270 2271 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2272 llvm::Value *VTableGlobal = 2273 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2274 if (!VTableGlobal) 2275 return; 2276 2277 // We can just use the base offset in the complete class. 2278 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2279 2280 if (!NonVirtualOffset.isZero()) 2281 This = 2282 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2283 Vptr.VTableClass, Vptr.NearestVBase); 2284 2285 llvm::Value *VPtrValue = 2286 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2287 llvm::Value *Cmp = 2288 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2289 Builder.CreateAssumption(Cmp); 2290 } 2291 2292 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2293 Address This) { 2294 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2295 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2296 EmitVTableAssumptionLoad(Vptr, This); 2297 } 2298 2299 void 2300 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2301 Address This, Address Src, 2302 const CXXConstructExpr *E) { 2303 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2304 2305 CallArgList Args; 2306 2307 // Push the this ptr. 2308 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2309 2310 // Push the src ptr. 2311 QualType QT = *(FPT->param_type_begin()); 2312 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2313 Src = Builder.CreateBitCast(Src, t); 2314 Args.add(RValue::get(Src.getPointer()), QT); 2315 2316 // Skip over first argument (Src). 2317 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2318 /*ParamsToSkip*/ 1); 2319 2320 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2321 /*Delegating*/false, This, Args, 2322 AggValueSlot::MayOverlap, E->getExprLoc(), 2323 /*NewPointerIsChecked*/false); 2324 } 2325 2326 void 2327 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2328 CXXCtorType CtorType, 2329 const FunctionArgList &Args, 2330 SourceLocation Loc) { 2331 CallArgList DelegateArgs; 2332 2333 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2334 assert(I != E && "no parameters to constructor"); 2335 2336 // this 2337 Address This = LoadCXXThisAddress(); 2338 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2339 ++I; 2340 2341 // FIXME: The location of the VTT parameter in the parameter list is 2342 // specific to the Itanium ABI and shouldn't be hardcoded here. 2343 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2344 assert(I != E && "cannot skip vtt parameter, already done with args"); 2345 assert((*I)->getType()->isPointerType() && 2346 "skipping parameter not of vtt type"); 2347 ++I; 2348 } 2349 2350 // Explicit arguments. 2351 for (; I != E; ++I) { 2352 const VarDecl *param = *I; 2353 // FIXME: per-argument source location 2354 EmitDelegateCallArg(DelegateArgs, param, Loc); 2355 } 2356 2357 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2358 /*Delegating=*/true, This, DelegateArgs, 2359 AggValueSlot::MayOverlap, Loc, 2360 /*NewPointerIsChecked=*/true); 2361 } 2362 2363 namespace { 2364 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2365 const CXXDestructorDecl *Dtor; 2366 Address Addr; 2367 CXXDtorType Type; 2368 2369 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2370 CXXDtorType Type) 2371 : Dtor(D), Addr(Addr), Type(Type) {} 2372 2373 void Emit(CodeGenFunction &CGF, Flags flags) override { 2374 // We are calling the destructor from within the constructor. 2375 // Therefore, "this" should have the expected type. 2376 QualType ThisTy = Dtor->getThisObjectType(); 2377 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2378 /*Delegating=*/true, Addr, ThisTy); 2379 } 2380 }; 2381 } // end anonymous namespace 2382 2383 void 2384 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2385 const FunctionArgList &Args) { 2386 assert(Ctor->isDelegatingConstructor()); 2387 2388 Address ThisPtr = LoadCXXThisAddress(); 2389 2390 AggValueSlot AggSlot = 2391 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2392 AggValueSlot::IsDestructed, 2393 AggValueSlot::DoesNotNeedGCBarriers, 2394 AggValueSlot::IsNotAliased, 2395 AggValueSlot::MayOverlap, 2396 AggValueSlot::IsNotZeroed, 2397 // Checks are made by the code that calls constructor. 2398 AggValueSlot::IsSanitizerChecked); 2399 2400 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2401 2402 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2403 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2404 CXXDtorType Type = 2405 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2406 2407 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2408 ClassDecl->getDestructor(), 2409 ThisPtr, Type); 2410 } 2411 } 2412 2413 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2414 CXXDtorType Type, 2415 bool ForVirtualBase, 2416 bool Delegating, Address This, 2417 QualType ThisTy) { 2418 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2419 Delegating, This, ThisTy); 2420 } 2421 2422 namespace { 2423 struct CallLocalDtor final : EHScopeStack::Cleanup { 2424 const CXXDestructorDecl *Dtor; 2425 Address Addr; 2426 QualType Ty; 2427 2428 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty) 2429 : Dtor(D), Addr(Addr), Ty(Ty) {} 2430 2431 void Emit(CodeGenFunction &CGF, Flags flags) override { 2432 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2433 /*ForVirtualBase=*/false, 2434 /*Delegating=*/false, Addr, Ty); 2435 } 2436 }; 2437 } // end anonymous namespace 2438 2439 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2440 QualType T, Address Addr) { 2441 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T); 2442 } 2443 2444 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2445 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2446 if (!ClassDecl) return; 2447 if (ClassDecl->hasTrivialDestructor()) return; 2448 2449 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2450 assert(D && D->isUsed() && "destructor not marked as used!"); 2451 PushDestructorCleanup(D, T, Addr); 2452 } 2453 2454 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2455 // Compute the address point. 2456 llvm::Value *VTableAddressPoint = 2457 CGM.getCXXABI().getVTableAddressPointInStructor( 2458 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2459 2460 if (!VTableAddressPoint) 2461 return; 2462 2463 // Compute where to store the address point. 2464 llvm::Value *VirtualOffset = nullptr; 2465 CharUnits NonVirtualOffset = CharUnits::Zero(); 2466 2467 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2468 // We need to use the virtual base offset offset because the virtual base 2469 // might have a different offset in the most derived class. 2470 2471 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2472 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2473 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2474 } else { 2475 // We can just use the base offset in the complete class. 2476 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2477 } 2478 2479 // Apply the offsets. 2480 Address VTableField = LoadCXXThisAddress(); 2481 2482 if (!NonVirtualOffset.isZero() || VirtualOffset) 2483 VTableField = ApplyNonVirtualAndVirtualOffset( 2484 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2485 Vptr.NearestVBase); 2486 2487 // Finally, store the address point. Use the same LLVM types as the field to 2488 // support optimization. 2489 llvm::Type *VTablePtrTy = 2490 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2491 ->getPointerTo() 2492 ->getPointerTo(); 2493 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2494 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2495 2496 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2497 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2498 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2499 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2500 CGM.getCodeGenOpts().StrictVTablePointers) 2501 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2502 } 2503 2504 CodeGenFunction::VPtrsVector 2505 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2506 CodeGenFunction::VPtrsVector VPtrsResult; 2507 VisitedVirtualBasesSetTy VBases; 2508 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2509 /*NearestVBase=*/nullptr, 2510 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2511 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2512 VPtrsResult); 2513 return VPtrsResult; 2514 } 2515 2516 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2517 const CXXRecordDecl *NearestVBase, 2518 CharUnits OffsetFromNearestVBase, 2519 bool BaseIsNonVirtualPrimaryBase, 2520 const CXXRecordDecl *VTableClass, 2521 VisitedVirtualBasesSetTy &VBases, 2522 VPtrsVector &Vptrs) { 2523 // If this base is a non-virtual primary base the address point has already 2524 // been set. 2525 if (!BaseIsNonVirtualPrimaryBase) { 2526 // Initialize the vtable pointer for this base. 2527 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2528 Vptrs.push_back(Vptr); 2529 } 2530 2531 const CXXRecordDecl *RD = Base.getBase(); 2532 2533 // Traverse bases. 2534 for (const auto &I : RD->bases()) { 2535 auto *BaseDecl = 2536 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2537 2538 // Ignore classes without a vtable. 2539 if (!BaseDecl->isDynamicClass()) 2540 continue; 2541 2542 CharUnits BaseOffset; 2543 CharUnits BaseOffsetFromNearestVBase; 2544 bool BaseDeclIsNonVirtualPrimaryBase; 2545 2546 if (I.isVirtual()) { 2547 // Check if we've visited this virtual base before. 2548 if (!VBases.insert(BaseDecl).second) 2549 continue; 2550 2551 const ASTRecordLayout &Layout = 2552 getContext().getASTRecordLayout(VTableClass); 2553 2554 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2555 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2556 BaseDeclIsNonVirtualPrimaryBase = false; 2557 } else { 2558 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2559 2560 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2561 BaseOffsetFromNearestVBase = 2562 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2563 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2564 } 2565 2566 getVTablePointers( 2567 BaseSubobject(BaseDecl, BaseOffset), 2568 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2569 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2570 } 2571 } 2572 2573 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2574 // Ignore classes without a vtable. 2575 if (!RD->isDynamicClass()) 2576 return; 2577 2578 // Initialize the vtable pointers for this class and all of its bases. 2579 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2580 for (const VPtr &Vptr : getVTablePointers(RD)) 2581 InitializeVTablePointer(Vptr); 2582 2583 if (RD->getNumVBases()) 2584 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2585 } 2586 2587 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2588 llvm::Type *VTableTy, 2589 const CXXRecordDecl *RD) { 2590 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2591 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2592 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2593 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2594 2595 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2596 CGM.getCodeGenOpts().StrictVTablePointers) 2597 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2598 2599 return VTable; 2600 } 2601 2602 // If a class has a single non-virtual base and does not introduce or override 2603 // virtual member functions or fields, it will have the same layout as its base. 2604 // This function returns the least derived such class. 2605 // 2606 // Casting an instance of a base class to such a derived class is technically 2607 // undefined behavior, but it is a relatively common hack for introducing member 2608 // functions on class instances with specific properties (e.g. llvm::Operator) 2609 // that works under most compilers and should not have security implications, so 2610 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2611 static const CXXRecordDecl * 2612 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2613 if (!RD->field_empty()) 2614 return RD; 2615 2616 if (RD->getNumVBases() != 0) 2617 return RD; 2618 2619 if (RD->getNumBases() != 1) 2620 return RD; 2621 2622 for (const CXXMethodDecl *MD : RD->methods()) { 2623 if (MD->isVirtual()) { 2624 // Virtual member functions are only ok if they are implicit destructors 2625 // because the implicit destructor will have the same semantics as the 2626 // base class's destructor if no fields are added. 2627 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2628 continue; 2629 return RD; 2630 } 2631 } 2632 2633 return LeastDerivedClassWithSameLayout( 2634 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2635 } 2636 2637 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2638 llvm::Value *VTable, 2639 SourceLocation Loc) { 2640 if (SanOpts.has(SanitizerKind::CFIVCall)) 2641 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2642 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2643 CGM.HasHiddenLTOVisibility(RD)) { 2644 llvm::Metadata *MD = 2645 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2646 llvm::Value *TypeId = 2647 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2648 2649 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2650 llvm::Value *TypeTest = 2651 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2652 {CastedVTable, TypeId}); 2653 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2654 } 2655 } 2656 2657 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2658 llvm::Value *VTable, 2659 CFITypeCheckKind TCK, 2660 SourceLocation Loc) { 2661 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2662 RD = LeastDerivedClassWithSameLayout(RD); 2663 2664 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2665 } 2666 2667 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2668 llvm::Value *Derived, 2669 bool MayBeNull, 2670 CFITypeCheckKind TCK, 2671 SourceLocation Loc) { 2672 if (!getLangOpts().CPlusPlus) 2673 return; 2674 2675 auto *ClassTy = T->getAs<RecordType>(); 2676 if (!ClassTy) 2677 return; 2678 2679 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2680 2681 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2682 return; 2683 2684 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2685 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2686 2687 llvm::BasicBlock *ContBlock = nullptr; 2688 2689 if (MayBeNull) { 2690 llvm::Value *DerivedNotNull = 2691 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2692 2693 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2694 ContBlock = createBasicBlock("cast.cont"); 2695 2696 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2697 2698 EmitBlock(CheckBlock); 2699 } 2700 2701 llvm::Value *VTable; 2702 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2703 *this, Address(Derived, getPointerAlign()), ClassDecl); 2704 2705 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2706 2707 if (MayBeNull) { 2708 Builder.CreateBr(ContBlock); 2709 EmitBlock(ContBlock); 2710 } 2711 } 2712 2713 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2714 llvm::Value *VTable, 2715 CFITypeCheckKind TCK, 2716 SourceLocation Loc) { 2717 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2718 !CGM.HasHiddenLTOVisibility(RD)) 2719 return; 2720 2721 SanitizerMask M; 2722 llvm::SanitizerStatKind SSK; 2723 switch (TCK) { 2724 case CFITCK_VCall: 2725 M = SanitizerKind::CFIVCall; 2726 SSK = llvm::SanStat_CFI_VCall; 2727 break; 2728 case CFITCK_NVCall: 2729 M = SanitizerKind::CFINVCall; 2730 SSK = llvm::SanStat_CFI_NVCall; 2731 break; 2732 case CFITCK_DerivedCast: 2733 M = SanitizerKind::CFIDerivedCast; 2734 SSK = llvm::SanStat_CFI_DerivedCast; 2735 break; 2736 case CFITCK_UnrelatedCast: 2737 M = SanitizerKind::CFIUnrelatedCast; 2738 SSK = llvm::SanStat_CFI_UnrelatedCast; 2739 break; 2740 case CFITCK_ICall: 2741 case CFITCK_NVMFCall: 2742 case CFITCK_VMFCall: 2743 llvm_unreachable("unexpected sanitizer kind"); 2744 } 2745 2746 std::string TypeName = RD->getQualifiedNameAsString(); 2747 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2748 return; 2749 2750 SanitizerScope SanScope(this); 2751 EmitSanitizerStatReport(SSK); 2752 2753 llvm::Metadata *MD = 2754 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2755 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2756 2757 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2758 llvm::Value *TypeTest = Builder.CreateCall( 2759 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2760 2761 llvm::Constant *StaticData[] = { 2762 llvm::ConstantInt::get(Int8Ty, TCK), 2763 EmitCheckSourceLocation(Loc), 2764 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2765 }; 2766 2767 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2768 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2769 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2770 return; 2771 } 2772 2773 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2774 EmitTrapCheck(TypeTest); 2775 return; 2776 } 2777 2778 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2779 CGM.getLLVMContext(), 2780 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2781 llvm::Value *ValidVtable = Builder.CreateCall( 2782 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2783 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2784 StaticData, {CastedVTable, ValidVtable}); 2785 } 2786 2787 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2788 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2789 !CGM.HasHiddenLTOVisibility(RD)) 2790 return false; 2791 2792 if (CGM.getCodeGenOpts().VirtualFunctionElimination) 2793 return true; 2794 2795 if (!SanOpts.has(SanitizerKind::CFIVCall) || 2796 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall)) 2797 return false; 2798 2799 std::string TypeName = RD->getQualifiedNameAsString(); 2800 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2801 SanitizerKind::CFIVCall, TypeName); 2802 } 2803 2804 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2805 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2806 SanitizerScope SanScope(this); 2807 2808 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2809 2810 llvm::Metadata *MD = 2811 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2812 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2813 2814 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2815 llvm::Value *CheckedLoad = Builder.CreateCall( 2816 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2817 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2818 TypeId}); 2819 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2820 2821 std::string TypeName = RD->getQualifiedNameAsString(); 2822 if (SanOpts.has(SanitizerKind::CFIVCall) && 2823 !getContext().getSanitizerBlacklist().isBlacklistedType( 2824 SanitizerKind::CFIVCall, TypeName)) { 2825 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2826 SanitizerHandler::CFICheckFail, {}, {}); 2827 } 2828 2829 return Builder.CreateBitCast( 2830 Builder.CreateExtractValue(CheckedLoad, 0), 2831 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2832 } 2833 2834 void CodeGenFunction::EmitForwardingCallToLambda( 2835 const CXXMethodDecl *callOperator, 2836 CallArgList &callArgs) { 2837 // Get the address of the call operator. 2838 const CGFunctionInfo &calleeFnInfo = 2839 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2840 llvm::Constant *calleePtr = 2841 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2842 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2843 2844 // Prepare the return slot. 2845 const FunctionProtoType *FPT = 2846 callOperator->getType()->castAs<FunctionProtoType>(); 2847 QualType resultType = FPT->getReturnType(); 2848 ReturnValueSlot returnSlot; 2849 if (!resultType->isVoidType() && 2850 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2851 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2852 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2853 2854 // We don't need to separately arrange the call arguments because 2855 // the call can't be variadic anyway --- it's impossible to forward 2856 // variadic arguments. 2857 2858 // Now emit our call. 2859 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2860 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2861 2862 // If necessary, copy the returned value into the slot. 2863 if (!resultType->isVoidType() && returnSlot.isNull()) { 2864 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2865 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2866 } 2867 EmitReturnOfRValue(RV, resultType); 2868 } else 2869 EmitBranchThroughCleanup(ReturnBlock); 2870 } 2871 2872 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2873 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2874 const VarDecl *variable = BD->capture_begin()->getVariable(); 2875 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2876 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2877 2878 if (CallOp->isVariadic()) { 2879 // FIXME: Making this work correctly is nasty because it requires either 2880 // cloning the body of the call operator or making the call operator 2881 // forward. 2882 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2883 return; 2884 } 2885 2886 // Start building arguments for forwarding call 2887 CallArgList CallArgs; 2888 2889 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2890 Address ThisPtr = GetAddrOfBlockDecl(variable); 2891 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2892 2893 // Add the rest of the parameters. 2894 for (auto param : BD->parameters()) 2895 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2896 2897 assert(!Lambda->isGenericLambda() && 2898 "generic lambda interconversion to block not implemented"); 2899 EmitForwardingCallToLambda(CallOp, CallArgs); 2900 } 2901 2902 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2903 const CXXRecordDecl *Lambda = MD->getParent(); 2904 2905 // Start building arguments for forwarding call 2906 CallArgList CallArgs; 2907 2908 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2909 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2910 CallArgs.add(RValue::get(ThisPtr), ThisType); 2911 2912 // Add the rest of the parameters. 2913 for (auto Param : MD->parameters()) 2914 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 2915 2916 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2917 // For a generic lambda, find the corresponding call operator specialization 2918 // to which the call to the static-invoker shall be forwarded. 2919 if (Lambda->isGenericLambda()) { 2920 assert(MD->isFunctionTemplateSpecialization()); 2921 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2922 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2923 void *InsertPos = nullptr; 2924 FunctionDecl *CorrespondingCallOpSpecialization = 2925 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2926 assert(CorrespondingCallOpSpecialization); 2927 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2928 } 2929 EmitForwardingCallToLambda(CallOp, CallArgs); 2930 } 2931 2932 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2933 if (MD->isVariadic()) { 2934 // FIXME: Making this work correctly is nasty because it requires either 2935 // cloning the body of the call operator or making the call operator forward. 2936 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2937 return; 2938 } 2939 2940 EmitLambdaDelegatingInvokeBody(MD); 2941 } 2942