1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28 
29 using namespace clang;
30 using namespace CodeGen;
31 
32 /// Return the best known alignment for an unknown pointer to a
33 /// particular class.
34 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
35   if (!RD->isCompleteDefinition())
36     return CharUnits::One(); // Hopefully won't be used anywhere.
37 
38   auto &layout = getContext().getASTRecordLayout(RD);
39 
40   // If the class is final, then we know that the pointer points to an
41   // object of that type and can use the full alignment.
42   if (RD->hasAttr<FinalAttr>()) {
43     return layout.getAlignment();
44 
45   // Otherwise, we have to assume it could be a subclass.
46   } else {
47     return layout.getNonVirtualAlignment();
48   }
49 }
50 
51 /// Return the best known alignment for a pointer to a virtual base,
52 /// given the alignment of a pointer to the derived class.
53 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
54                                            const CXXRecordDecl *derivedClass,
55                                            const CXXRecordDecl *vbaseClass) {
56   // The basic idea here is that an underaligned derived pointer might
57   // indicate an underaligned base pointer.
58 
59   assert(vbaseClass->isCompleteDefinition());
60   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
61   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
62 
63   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
64                                    expectedVBaseAlign);
65 }
66 
67 CharUnits
68 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
69                                          const CXXRecordDecl *baseDecl,
70                                          CharUnits expectedTargetAlign) {
71   // If the base is an incomplete type (which is, alas, possible with
72   // member pointers), be pessimistic.
73   if (!baseDecl->isCompleteDefinition())
74     return std::min(actualBaseAlign, expectedTargetAlign);
75 
76   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
77   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
78 
79   // If the class is properly aligned, assume the target offset is, too.
80   //
81   // This actually isn't necessarily the right thing to do --- if the
82   // class is a complete object, but it's only properly aligned for a
83   // base subobject, then the alignments of things relative to it are
84   // probably off as well.  (Note that this requires the alignment of
85   // the target to be greater than the NV alignment of the derived
86   // class.)
87   //
88   // However, our approach to this kind of under-alignment can only
89   // ever be best effort; after all, we're never going to propagate
90   // alignments through variables or parameters.  Note, in particular,
91   // that constructing a polymorphic type in an address that's less
92   // than pointer-aligned will generally trap in the constructor,
93   // unless we someday add some sort of attribute to change the
94   // assumed alignment of 'this'.  So our goal here is pretty much
95   // just to allow the user to explicitly say that a pointer is
96   // under-aligned and then safely access its fields and v-tables.
97   if (actualBaseAlign >= expectedBaseAlign) {
98     return expectedTargetAlign;
99   }
100 
101   // Otherwise, we might be offset by an arbitrary multiple of the
102   // actual alignment.  The correct adjustment is to take the min of
103   // the two alignments.
104   return std::min(actualBaseAlign, expectedTargetAlign);
105 }
106 
107 Address CodeGenFunction::LoadCXXThisAddress() {
108   assert(CurFuncDecl && "loading 'this' without a func declaration?");
109   assert(isa<CXXMethodDecl>(CurFuncDecl));
110 
111   // Lazily compute CXXThisAlignment.
112   if (CXXThisAlignment.isZero()) {
113     // Just use the best known alignment for the parent.
114     // TODO: if we're currently emitting a complete-object ctor/dtor,
115     // we can always use the complete-object alignment.
116     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
117     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
118   }
119 
120   return Address(LoadCXXThis(), CXXThisAlignment);
121 }
122 
123 /// Emit the address of a field using a member data pointer.
124 ///
125 /// \param E Only used for emergency diagnostics
126 Address
127 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
128                                                  llvm::Value *memberPtr,
129                                       const MemberPointerType *memberPtrType,
130                                                  AlignmentSource *alignSource) {
131   // Ask the ABI to compute the actual address.
132   llvm::Value *ptr =
133     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
134                                                  memberPtr, memberPtrType);
135 
136   QualType memberType = memberPtrType->getPointeeType();
137   CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource);
138   memberAlign =
139     CGM.getDynamicOffsetAlignment(base.getAlignment(),
140                             memberPtrType->getClass()->getAsCXXRecordDecl(),
141                                   memberAlign);
142   return Address(ptr, memberAlign);
143 }
144 
145 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
146     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
147     CastExpr::path_const_iterator End) {
148   CharUnits Offset = CharUnits::Zero();
149 
150   const ASTContext &Context = getContext();
151   const CXXRecordDecl *RD = DerivedClass;
152 
153   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
154     const CXXBaseSpecifier *Base = *I;
155     assert(!Base->isVirtual() && "Should not see virtual bases here!");
156 
157     // Get the layout.
158     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
159 
160     const CXXRecordDecl *BaseDecl =
161       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
162 
163     // Add the offset.
164     Offset += Layout.getBaseClassOffset(BaseDecl);
165 
166     RD = BaseDecl;
167   }
168 
169   return Offset;
170 }
171 
172 llvm::Constant *
173 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
174                                    CastExpr::path_const_iterator PathBegin,
175                                    CastExpr::path_const_iterator PathEnd) {
176   assert(PathBegin != PathEnd && "Base path should not be empty!");
177 
178   CharUnits Offset =
179       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
180   if (Offset.isZero())
181     return nullptr;
182 
183   llvm::Type *PtrDiffTy =
184   Types.ConvertType(getContext().getPointerDiffType());
185 
186   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
187 }
188 
189 /// Gets the address of a direct base class within a complete object.
190 /// This should only be used for (1) non-virtual bases or (2) virtual bases
191 /// when the type is known to be complete (e.g. in complete destructors).
192 ///
193 /// The object pointed to by 'This' is assumed to be non-null.
194 Address
195 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
196                                                    const CXXRecordDecl *Derived,
197                                                    const CXXRecordDecl *Base,
198                                                    bool BaseIsVirtual) {
199   // 'this' must be a pointer (in some address space) to Derived.
200   assert(This.getElementType() == ConvertType(Derived));
201 
202   // Compute the offset of the virtual base.
203   CharUnits Offset;
204   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
205   if (BaseIsVirtual)
206     Offset = Layout.getVBaseClassOffset(Base);
207   else
208     Offset = Layout.getBaseClassOffset(Base);
209 
210   // Shift and cast down to the base type.
211   // TODO: for complete types, this should be possible with a GEP.
212   Address V = This;
213   if (!Offset.isZero()) {
214     V = Builder.CreateElementBitCast(V, Int8Ty);
215     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
216   }
217   V = Builder.CreateElementBitCast(V, ConvertType(Base));
218 
219   return V;
220 }
221 
222 static Address
223 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
224                                 CharUnits nonVirtualOffset,
225                                 llvm::Value *virtualOffset,
226                                 const CXXRecordDecl *derivedClass,
227                                 const CXXRecordDecl *nearestVBase) {
228   // Assert that we have something to do.
229   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
230 
231   // Compute the offset from the static and dynamic components.
232   llvm::Value *baseOffset;
233   if (!nonVirtualOffset.isZero()) {
234     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
235                                         nonVirtualOffset.getQuantity());
236     if (virtualOffset) {
237       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
238     }
239   } else {
240     baseOffset = virtualOffset;
241   }
242 
243   // Apply the base offset.
244   llvm::Value *ptr = addr.getPointer();
245   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
246   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
247 
248   // If we have a virtual component, the alignment of the result will
249   // be relative only to the known alignment of that vbase.
250   CharUnits alignment;
251   if (virtualOffset) {
252     assert(nearestVBase && "virtual offset without vbase?");
253     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
254                                           derivedClass, nearestVBase);
255   } else {
256     alignment = addr.getAlignment();
257   }
258   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
259 
260   return Address(ptr, alignment);
261 }
262 
263 Address CodeGenFunction::GetAddressOfBaseClass(
264     Address Value, const CXXRecordDecl *Derived,
265     CastExpr::path_const_iterator PathBegin,
266     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
267     SourceLocation Loc) {
268   assert(PathBegin != PathEnd && "Base path should not be empty!");
269 
270   CastExpr::path_const_iterator Start = PathBegin;
271   const CXXRecordDecl *VBase = nullptr;
272 
273   // Sema has done some convenient canonicalization here: if the
274   // access path involved any virtual steps, the conversion path will
275   // *start* with a step down to the correct virtual base subobject,
276   // and hence will not require any further steps.
277   if ((*Start)->isVirtual()) {
278     VBase =
279       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
280     ++Start;
281   }
282 
283   // Compute the static offset of the ultimate destination within its
284   // allocating subobject (the virtual base, if there is one, or else
285   // the "complete" object that we see).
286   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
287       VBase ? VBase : Derived, Start, PathEnd);
288 
289   // If there's a virtual step, we can sometimes "devirtualize" it.
290   // For now, that's limited to when the derived type is final.
291   // TODO: "devirtualize" this for accesses to known-complete objects.
292   if (VBase && Derived->hasAttr<FinalAttr>()) {
293     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
294     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
295     NonVirtualOffset += vBaseOffset;
296     VBase = nullptr; // we no longer have a virtual step
297   }
298 
299   // Get the base pointer type.
300   llvm::Type *BasePtrTy =
301     ConvertType((PathEnd[-1])->getType())->getPointerTo();
302 
303   QualType DerivedTy = getContext().getRecordType(Derived);
304   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
305 
306   // If the static offset is zero and we don't have a virtual step,
307   // just do a bitcast; null checks are unnecessary.
308   if (NonVirtualOffset.isZero() && !VBase) {
309     if (sanitizePerformTypeCheck()) {
310       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
311                     DerivedTy, DerivedAlign, !NullCheckValue);
312     }
313     return Builder.CreateBitCast(Value, BasePtrTy);
314   }
315 
316   llvm::BasicBlock *origBB = nullptr;
317   llvm::BasicBlock *endBB = nullptr;
318 
319   // Skip over the offset (and the vtable load) if we're supposed to
320   // null-check the pointer.
321   if (NullCheckValue) {
322     origBB = Builder.GetInsertBlock();
323     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
324     endBB = createBasicBlock("cast.end");
325 
326     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
327     Builder.CreateCondBr(isNull, endBB, notNullBB);
328     EmitBlock(notNullBB);
329   }
330 
331   if (sanitizePerformTypeCheck()) {
332     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
333                   Value.getPointer(), DerivedTy, DerivedAlign, true);
334   }
335 
336   // Compute the virtual offset.
337   llvm::Value *VirtualOffset = nullptr;
338   if (VBase) {
339     VirtualOffset =
340       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
341   }
342 
343   // Apply both offsets.
344   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
345                                           VirtualOffset, Derived, VBase);
346 
347   // Cast to the destination type.
348   Value = Builder.CreateBitCast(Value, BasePtrTy);
349 
350   // Build a phi if we needed a null check.
351   if (NullCheckValue) {
352     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
353     Builder.CreateBr(endBB);
354     EmitBlock(endBB);
355 
356     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
357     PHI->addIncoming(Value.getPointer(), notNullBB);
358     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
359     Value = Address(PHI, Value.getAlignment());
360   }
361 
362   return Value;
363 }
364 
365 Address
366 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
367                                           const CXXRecordDecl *Derived,
368                                         CastExpr::path_const_iterator PathBegin,
369                                           CastExpr::path_const_iterator PathEnd,
370                                           bool NullCheckValue) {
371   assert(PathBegin != PathEnd && "Base path should not be empty!");
372 
373   QualType DerivedTy =
374     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
375   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
376 
377   llvm::Value *NonVirtualOffset =
378     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
379 
380   if (!NonVirtualOffset) {
381     // No offset, we can just cast back.
382     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
383   }
384 
385   llvm::BasicBlock *CastNull = nullptr;
386   llvm::BasicBlock *CastNotNull = nullptr;
387   llvm::BasicBlock *CastEnd = nullptr;
388 
389   if (NullCheckValue) {
390     CastNull = createBasicBlock("cast.null");
391     CastNotNull = createBasicBlock("cast.notnull");
392     CastEnd = createBasicBlock("cast.end");
393 
394     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
395     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
396     EmitBlock(CastNotNull);
397   }
398 
399   // Apply the offset.
400   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
401   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
402                             "sub.ptr");
403 
404   // Just cast.
405   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
406 
407   // Produce a PHI if we had a null-check.
408   if (NullCheckValue) {
409     Builder.CreateBr(CastEnd);
410     EmitBlock(CastNull);
411     Builder.CreateBr(CastEnd);
412     EmitBlock(CastEnd);
413 
414     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
415     PHI->addIncoming(Value, CastNotNull);
416     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
417     Value = PHI;
418   }
419 
420   return Address(Value, CGM.getClassPointerAlignment(Derived));
421 }
422 
423 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
424                                               bool ForVirtualBase,
425                                               bool Delegating) {
426   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
427     // This constructor/destructor does not need a VTT parameter.
428     return nullptr;
429   }
430 
431   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
432   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
433 
434   llvm::Value *VTT;
435 
436   uint64_t SubVTTIndex;
437 
438   if (Delegating) {
439     // If this is a delegating constructor call, just load the VTT.
440     return LoadCXXVTT();
441   } else if (RD == Base) {
442     // If the record matches the base, this is the complete ctor/dtor
443     // variant calling the base variant in a class with virtual bases.
444     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
445            "doing no-op VTT offset in base dtor/ctor?");
446     assert(!ForVirtualBase && "Can't have same class as virtual base!");
447     SubVTTIndex = 0;
448   } else {
449     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
450     CharUnits BaseOffset = ForVirtualBase ?
451       Layout.getVBaseClassOffset(Base) :
452       Layout.getBaseClassOffset(Base);
453 
454     SubVTTIndex =
455       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
456     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
457   }
458 
459   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
460     // A VTT parameter was passed to the constructor, use it.
461     VTT = LoadCXXVTT();
462     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
463   } else {
464     // We're the complete constructor, so get the VTT by name.
465     VTT = CGM.getVTables().GetAddrOfVTT(RD);
466     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
467   }
468 
469   return VTT;
470 }
471 
472 namespace {
473   /// Call the destructor for a direct base class.
474   struct CallBaseDtor final : EHScopeStack::Cleanup {
475     const CXXRecordDecl *BaseClass;
476     bool BaseIsVirtual;
477     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
478       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
479 
480     void Emit(CodeGenFunction &CGF, Flags flags) override {
481       const CXXRecordDecl *DerivedClass =
482         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
483 
484       const CXXDestructorDecl *D = BaseClass->getDestructor();
485       Address Addr =
486         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
487                                                   DerivedClass, BaseClass,
488                                                   BaseIsVirtual);
489       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
490                                 /*Delegating=*/false, Addr);
491     }
492   };
493 
494   /// A visitor which checks whether an initializer uses 'this' in a
495   /// way which requires the vtable to be properly set.
496   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
497     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
498 
499     bool UsesThis;
500 
501     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
502 
503     // Black-list all explicit and implicit references to 'this'.
504     //
505     // Do we need to worry about external references to 'this' derived
506     // from arbitrary code?  If so, then anything which runs arbitrary
507     // external code might potentially access the vtable.
508     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
509   };
510 }
511 
512 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
513   DynamicThisUseChecker Checker(C);
514   Checker.Visit(Init);
515   return Checker.UsesThis;
516 }
517 
518 static void EmitBaseInitializer(CodeGenFunction &CGF,
519                                 const CXXRecordDecl *ClassDecl,
520                                 CXXCtorInitializer *BaseInit,
521                                 CXXCtorType CtorType) {
522   assert(BaseInit->isBaseInitializer() &&
523          "Must have base initializer!");
524 
525   Address ThisPtr = CGF.LoadCXXThisAddress();
526 
527   const Type *BaseType = BaseInit->getBaseClass();
528   CXXRecordDecl *BaseClassDecl =
529     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
530 
531   bool isBaseVirtual = BaseInit->isBaseVirtual();
532 
533   // The base constructor doesn't construct virtual bases.
534   if (CtorType == Ctor_Base && isBaseVirtual)
535     return;
536 
537   // If the initializer for the base (other than the constructor
538   // itself) accesses 'this' in any way, we need to initialize the
539   // vtables.
540   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
541     CGF.InitializeVTablePointers(ClassDecl);
542 
543   // We can pretend to be a complete class because it only matters for
544   // virtual bases, and we only do virtual bases for complete ctors.
545   Address V =
546     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
547                                               BaseClassDecl,
548                                               isBaseVirtual);
549   AggValueSlot AggSlot =
550     AggValueSlot::forAddr(V, Qualifiers(),
551                           AggValueSlot::IsDestructed,
552                           AggValueSlot::DoesNotNeedGCBarriers,
553                           AggValueSlot::IsNotAliased);
554 
555   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
556 
557   if (CGF.CGM.getLangOpts().Exceptions &&
558       !BaseClassDecl->hasTrivialDestructor())
559     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
560                                           isBaseVirtual);
561 }
562 
563 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
564                                      LValue LHS,
565                                      Expr *Init,
566                                      Address ArrayIndexVar,
567                                      QualType T,
568                                      ArrayRef<VarDecl *> ArrayIndexes,
569                                      unsigned Index) {
570   if (Index == ArrayIndexes.size()) {
571     LValue LV = LHS;
572 
573     if (ArrayIndexVar.isValid()) {
574       // If we have an array index variable, load it and use it as an offset.
575       // Then, increment the value.
576       llvm::Value *Dest = LHS.getPointer();
577       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
578       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
579       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
580       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
581       CGF.Builder.CreateStore(Next, ArrayIndexVar);
582 
583       // Update the LValue.
584       CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T);
585       CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize);
586       LV.setAddress(Address(Dest, Align));
587     }
588 
589     switch (CGF.getEvaluationKind(T)) {
590     case TEK_Scalar:
591       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
592       break;
593     case TEK_Complex:
594       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
595       break;
596     case TEK_Aggregate: {
597       AggValueSlot Slot =
598         AggValueSlot::forLValue(LV,
599                                 AggValueSlot::IsDestructed,
600                                 AggValueSlot::DoesNotNeedGCBarriers,
601                                 AggValueSlot::IsNotAliased);
602 
603       CGF.EmitAggExpr(Init, Slot);
604       break;
605     }
606     }
607 
608     return;
609   }
610 
611   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
612   assert(Array && "Array initialization without the array type?");
613   Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
614 
615   // Initialize this index variable to zero.
616   llvm::Value* Zero
617     = llvm::Constant::getNullValue(IndexVar.getElementType());
618   CGF.Builder.CreateStore(Zero, IndexVar);
619 
620   // Start the loop with a block that tests the condition.
621   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
622   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
623 
624   CGF.EmitBlock(CondBlock);
625 
626   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
627   // Generate: if (loop-index < number-of-elements) fall to the loop body,
628   // otherwise, go to the block after the for-loop.
629   uint64_t NumElements = Array->getSize().getZExtValue();
630   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
631   llvm::Value *NumElementsPtr =
632     llvm::ConstantInt::get(Counter->getType(), NumElements);
633   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
634                                                   "isless");
635 
636   // If the condition is true, execute the body.
637   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
638 
639   CGF.EmitBlock(ForBody);
640   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
641 
642   // Inside the loop body recurse to emit the inner loop or, eventually, the
643   // constructor call.
644   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
645                            Array->getElementType(), ArrayIndexes, Index + 1);
646 
647   CGF.EmitBlock(ContinueBlock);
648 
649   // Emit the increment of the loop counter.
650   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
651   Counter = CGF.Builder.CreateLoad(IndexVar);
652   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
653   CGF.Builder.CreateStore(NextVal, IndexVar);
654 
655   // Finally, branch back up to the condition for the next iteration.
656   CGF.EmitBranch(CondBlock);
657 
658   // Emit the fall-through block.
659   CGF.EmitBlock(AfterFor, true);
660 }
661 
662 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
663   auto *CD = dyn_cast<CXXConstructorDecl>(D);
664   if (!(CD && CD->isCopyOrMoveConstructor()) &&
665       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
666     return false;
667 
668   // We can emit a memcpy for a trivial copy or move constructor/assignment.
669   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
670     return true;
671 
672   // We *must* emit a memcpy for a defaulted union copy or move op.
673   if (D->getParent()->isUnion() && D->isDefaulted())
674     return true;
675 
676   return false;
677 }
678 
679 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
680                                                 CXXCtorInitializer *MemberInit,
681                                                 LValue &LHS) {
682   FieldDecl *Field = MemberInit->getAnyMember();
683   if (MemberInit->isIndirectMemberInitializer()) {
684     // If we are initializing an anonymous union field, drill down to the field.
685     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
686     for (const auto *I : IndirectField->chain())
687       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
688   } else {
689     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
690   }
691 }
692 
693 static void EmitMemberInitializer(CodeGenFunction &CGF,
694                                   const CXXRecordDecl *ClassDecl,
695                                   CXXCtorInitializer *MemberInit,
696                                   const CXXConstructorDecl *Constructor,
697                                   FunctionArgList &Args) {
698   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
699   assert(MemberInit->isAnyMemberInitializer() &&
700          "Must have member initializer!");
701   assert(MemberInit->getInit() && "Must have initializer!");
702 
703   // non-static data member initializers.
704   FieldDecl *Field = MemberInit->getAnyMember();
705   QualType FieldType = Field->getType();
706 
707   llvm::Value *ThisPtr = CGF.LoadCXXThis();
708   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
709   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
710 
711   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
712 
713   // Special case: if we are in a copy or move constructor, and we are copying
714   // an array of PODs or classes with trivial copy constructors, ignore the
715   // AST and perform the copy we know is equivalent.
716   // FIXME: This is hacky at best... if we had a bit more explicit information
717   // in the AST, we could generalize it more easily.
718   const ConstantArrayType *Array
719     = CGF.getContext().getAsConstantArrayType(FieldType);
720   if (Array && Constructor->isDefaulted() &&
721       Constructor->isCopyOrMoveConstructor()) {
722     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
723     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
724     if (BaseElementTy.isPODType(CGF.getContext()) ||
725         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
726       unsigned SrcArgIndex =
727           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
728       llvm::Value *SrcPtr
729         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
730       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
731       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
732 
733       // Copy the aggregate.
734       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
735                             LHS.isVolatileQualified());
736       // Ensure that we destroy the objects if an exception is thrown later in
737       // the constructor.
738       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
739       if (CGF.needsEHCleanup(dtorKind))
740         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
741       return;
742     }
743   }
744 
745   ArrayRef<VarDecl *> ArrayIndexes;
746   if (MemberInit->getNumArrayIndices())
747     ArrayIndexes = MemberInit->getArrayIndexes();
748   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
749 }
750 
751 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
752                                 Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) {
753   QualType FieldType = Field->getType();
754   switch (getEvaluationKind(FieldType)) {
755   case TEK_Scalar:
756     if (LHS.isSimple()) {
757       EmitExprAsInit(Init, Field, LHS, false);
758     } else {
759       RValue RHS = RValue::get(EmitScalarExpr(Init));
760       EmitStoreThroughLValue(RHS, LHS);
761     }
762     break;
763   case TEK_Complex:
764     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
765     break;
766   case TEK_Aggregate: {
767     Address ArrayIndexVar = Address::invalid();
768     if (ArrayIndexes.size()) {
769       // The LHS is a pointer to the first object we'll be constructing, as
770       // a flat array.
771       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
772       llvm::Type *BasePtr = ConvertType(BaseElementTy);
773       BasePtr = llvm::PointerType::getUnqual(BasePtr);
774       Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr);
775       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
776 
777       // Create an array index that will be used to walk over all of the
778       // objects we're constructing.
779       ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index");
780       llvm::Value *Zero =
781         llvm::Constant::getNullValue(ArrayIndexVar.getElementType());
782       Builder.CreateStore(Zero, ArrayIndexVar);
783 
784       // Emit the block variables for the array indices, if any.
785       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
786         EmitAutoVarDecl(*ArrayIndexes[I]);
787     }
788 
789     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
790                              ArrayIndexes, 0);
791   }
792   }
793 
794   // Ensure that we destroy this object if an exception is thrown
795   // later in the constructor.
796   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
797   if (needsEHCleanup(dtorKind))
798     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
799 }
800 
801 /// Checks whether the given constructor is a valid subject for the
802 /// complete-to-base constructor delegation optimization, i.e.
803 /// emitting the complete constructor as a simple call to the base
804 /// constructor.
805 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
806 
807   // Currently we disable the optimization for classes with virtual
808   // bases because (1) the addresses of parameter variables need to be
809   // consistent across all initializers but (2) the delegate function
810   // call necessarily creates a second copy of the parameter variable.
811   //
812   // The limiting example (purely theoretical AFAIK):
813   //   struct A { A(int &c) { c++; } };
814   //   struct B : virtual A {
815   //     B(int count) : A(count) { printf("%d\n", count); }
816   //   };
817   // ...although even this example could in principle be emitted as a
818   // delegation since the address of the parameter doesn't escape.
819   if (Ctor->getParent()->getNumVBases()) {
820     // TODO: white-list trivial vbase initializers.  This case wouldn't
821     // be subject to the restrictions below.
822 
823     // TODO: white-list cases where:
824     //  - there are no non-reference parameters to the constructor
825     //  - the initializers don't access any non-reference parameters
826     //  - the initializers don't take the address of non-reference
827     //    parameters
828     //  - etc.
829     // If we ever add any of the above cases, remember that:
830     //  - function-try-blocks will always blacklist this optimization
831     //  - we need to perform the constructor prologue and cleanup in
832     //    EmitConstructorBody.
833 
834     return false;
835   }
836 
837   // We also disable the optimization for variadic functions because
838   // it's impossible to "re-pass" varargs.
839   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
840     return false;
841 
842   // FIXME: Decide if we can do a delegation of a delegating constructor.
843   if (Ctor->isDelegatingConstructor())
844     return false;
845 
846   return true;
847 }
848 
849 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
850 // to poison the extra field paddings inserted under
851 // -fsanitize-address-field-padding=1|2.
852 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
853   ASTContext &Context = getContext();
854   const CXXRecordDecl *ClassDecl =
855       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
856                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
857   if (!ClassDecl->mayInsertExtraPadding()) return;
858 
859   struct SizeAndOffset {
860     uint64_t Size;
861     uint64_t Offset;
862   };
863 
864   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
865   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
866 
867   // Populate sizes and offsets of fields.
868   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
869   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
870     SSV[i].Offset =
871         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
872 
873   size_t NumFields = 0;
874   for (const auto *Field : ClassDecl->fields()) {
875     const FieldDecl *D = Field;
876     std::pair<CharUnits, CharUnits> FieldInfo =
877         Context.getTypeInfoInChars(D->getType());
878     CharUnits FieldSize = FieldInfo.first;
879     assert(NumFields < SSV.size());
880     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
881     NumFields++;
882   }
883   assert(NumFields == SSV.size());
884   if (SSV.size() <= 1) return;
885 
886   // We will insert calls to __asan_* run-time functions.
887   // LLVM AddressSanitizer pass may decide to inline them later.
888   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
889   llvm::FunctionType *FTy =
890       llvm::FunctionType::get(CGM.VoidTy, Args, false);
891   llvm::Constant *F = CGM.CreateRuntimeFunction(
892       FTy, Prologue ? "__asan_poison_intra_object_redzone"
893                     : "__asan_unpoison_intra_object_redzone");
894 
895   llvm::Value *ThisPtr = LoadCXXThis();
896   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
897   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
898   // For each field check if it has sufficient padding,
899   // if so (un)poison it with a call.
900   for (size_t i = 0; i < SSV.size(); i++) {
901     uint64_t AsanAlignment = 8;
902     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
903     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
904     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
905     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
906         (NextField % AsanAlignment) != 0)
907       continue;
908     Builder.CreateCall(
909         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
910             Builder.getIntN(PtrSize, PoisonSize)});
911   }
912 }
913 
914 /// EmitConstructorBody - Emits the body of the current constructor.
915 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
916   EmitAsanPrologueOrEpilogue(true);
917   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
918   CXXCtorType CtorType = CurGD.getCtorType();
919 
920   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
921           CtorType == Ctor_Complete) &&
922          "can only generate complete ctor for this ABI");
923 
924   // Before we go any further, try the complete->base constructor
925   // delegation optimization.
926   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
927       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
928     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
929     return;
930   }
931 
932   const FunctionDecl *Definition = 0;
933   Stmt *Body = Ctor->getBody(Definition);
934   assert(Definition == Ctor && "emitting wrong constructor body");
935 
936   // Enter the function-try-block before the constructor prologue if
937   // applicable.
938   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
939   if (IsTryBody)
940     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
941 
942   incrementProfileCounter(Body);
943 
944   RunCleanupsScope RunCleanups(*this);
945 
946   // TODO: in restricted cases, we can emit the vbase initializers of
947   // a complete ctor and then delegate to the base ctor.
948 
949   // Emit the constructor prologue, i.e. the base and member
950   // initializers.
951   EmitCtorPrologue(Ctor, CtorType, Args);
952 
953   // Emit the body of the statement.
954   if (IsTryBody)
955     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
956   else if (Body)
957     EmitStmt(Body);
958 
959   // Emit any cleanup blocks associated with the member or base
960   // initializers, which includes (along the exceptional path) the
961   // destructors for those members and bases that were fully
962   // constructed.
963   RunCleanups.ForceCleanup();
964 
965   if (IsTryBody)
966     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
967 }
968 
969 namespace {
970   /// RAII object to indicate that codegen is copying the value representation
971   /// instead of the object representation. Useful when copying a struct or
972   /// class which has uninitialized members and we're only performing
973   /// lvalue-to-rvalue conversion on the object but not its members.
974   class CopyingValueRepresentation {
975   public:
976     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
977         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
978       CGF.SanOpts.set(SanitizerKind::Bool, false);
979       CGF.SanOpts.set(SanitizerKind::Enum, false);
980     }
981     ~CopyingValueRepresentation() {
982       CGF.SanOpts = OldSanOpts;
983     }
984   private:
985     CodeGenFunction &CGF;
986     SanitizerSet OldSanOpts;
987   };
988 }
989 
990 namespace {
991   class FieldMemcpyizer {
992   public:
993     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
994                     const VarDecl *SrcRec)
995       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
996         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
997         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
998         LastFieldOffset(0), LastAddedFieldIndex(0) {}
999 
1000     bool isMemcpyableField(FieldDecl *F) const {
1001       // Never memcpy fields when we are adding poisoned paddings.
1002       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
1003         return false;
1004       Qualifiers Qual = F->getType().getQualifiers();
1005       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
1006         return false;
1007       return true;
1008     }
1009 
1010     void addMemcpyableField(FieldDecl *F) {
1011       if (!FirstField)
1012         addInitialField(F);
1013       else
1014         addNextField(F);
1015     }
1016 
1017     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
1018       unsigned LastFieldSize =
1019         LastField->isBitField() ?
1020           LastField->getBitWidthValue(CGF.getContext()) :
1021           CGF.getContext().getTypeSize(LastField->getType());
1022       uint64_t MemcpySizeBits =
1023         LastFieldOffset + LastFieldSize - FirstByteOffset +
1024         CGF.getContext().getCharWidth() - 1;
1025       CharUnits MemcpySize =
1026         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
1027       return MemcpySize;
1028     }
1029 
1030     void emitMemcpy() {
1031       // Give the subclass a chance to bail out if it feels the memcpy isn't
1032       // worth it (e.g. Hasn't aggregated enough data).
1033       if (!FirstField) {
1034         return;
1035       }
1036 
1037       uint64_t FirstByteOffset;
1038       if (FirstField->isBitField()) {
1039         const CGRecordLayout &RL =
1040           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
1041         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
1042         // FirstFieldOffset is not appropriate for bitfields,
1043         // we need to use the storage offset instead.
1044         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
1045       } else {
1046         FirstByteOffset = FirstFieldOffset;
1047       }
1048 
1049       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
1050       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1051       Address ThisPtr = CGF.LoadCXXThisAddress();
1052       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1053       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
1054       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
1055       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
1056       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
1057 
1058       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
1059                    Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
1060                    MemcpySize);
1061       reset();
1062     }
1063 
1064     void reset() {
1065       FirstField = nullptr;
1066     }
1067 
1068   protected:
1069     CodeGenFunction &CGF;
1070     const CXXRecordDecl *ClassDecl;
1071 
1072   private:
1073 
1074     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1075       llvm::PointerType *DPT = DestPtr.getType();
1076       llvm::Type *DBP =
1077         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
1078       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
1079 
1080       llvm::PointerType *SPT = SrcPtr.getType();
1081       llvm::Type *SBP =
1082         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
1083       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
1084 
1085       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1086     }
1087 
1088     void addInitialField(FieldDecl *F) {
1089         FirstField = F;
1090         LastField = F;
1091         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1092         LastFieldOffset = FirstFieldOffset;
1093         LastAddedFieldIndex = F->getFieldIndex();
1094         return;
1095       }
1096 
1097     void addNextField(FieldDecl *F) {
1098       // For the most part, the following invariant will hold:
1099       //   F->getFieldIndex() == LastAddedFieldIndex + 1
1100       // The one exception is that Sema won't add a copy-initializer for an
1101       // unnamed bitfield, which will show up here as a gap in the sequence.
1102       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1103              "Cannot aggregate fields out of order.");
1104       LastAddedFieldIndex = F->getFieldIndex();
1105 
1106       // The 'first' and 'last' fields are chosen by offset, rather than field
1107       // index. This allows the code to support bitfields, as well as regular
1108       // fields.
1109       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1110       if (FOffset < FirstFieldOffset) {
1111         FirstField = F;
1112         FirstFieldOffset = FOffset;
1113       } else if (FOffset > LastFieldOffset) {
1114         LastField = F;
1115         LastFieldOffset = FOffset;
1116       }
1117     }
1118 
1119     const VarDecl *SrcRec;
1120     const ASTRecordLayout &RecLayout;
1121     FieldDecl *FirstField;
1122     FieldDecl *LastField;
1123     uint64_t FirstFieldOffset, LastFieldOffset;
1124     unsigned LastAddedFieldIndex;
1125   };
1126 
1127   class ConstructorMemcpyizer : public FieldMemcpyizer {
1128   private:
1129 
1130     /// Get source argument for copy constructor. Returns null if not a copy
1131     /// constructor.
1132     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1133                                                const CXXConstructorDecl *CD,
1134                                                FunctionArgList &Args) {
1135       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1136         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1137       return nullptr;
1138     }
1139 
1140     // Returns true if a CXXCtorInitializer represents a member initialization
1141     // that can be rolled into a memcpy.
1142     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1143       if (!MemcpyableCtor)
1144         return false;
1145       FieldDecl *Field = MemberInit->getMember();
1146       assert(Field && "No field for member init.");
1147       QualType FieldType = Field->getType();
1148       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1149 
1150       // Bail out on non-memcpyable, not-trivially-copyable members.
1151       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1152           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1153             FieldType->isReferenceType()))
1154         return false;
1155 
1156       // Bail out on volatile fields.
1157       if (!isMemcpyableField(Field))
1158         return false;
1159 
1160       // Otherwise we're good.
1161       return true;
1162     }
1163 
1164   public:
1165     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1166                           FunctionArgList &Args)
1167       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1168         ConstructorDecl(CD),
1169         MemcpyableCtor(CD->isDefaulted() &&
1170                        CD->isCopyOrMoveConstructor() &&
1171                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1172         Args(Args) { }
1173 
1174     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1175       if (isMemberInitMemcpyable(MemberInit)) {
1176         AggregatedInits.push_back(MemberInit);
1177         addMemcpyableField(MemberInit->getMember());
1178       } else {
1179         emitAggregatedInits();
1180         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1181                               ConstructorDecl, Args);
1182       }
1183     }
1184 
1185     void emitAggregatedInits() {
1186       if (AggregatedInits.size() <= 1) {
1187         // This memcpy is too small to be worthwhile. Fall back on default
1188         // codegen.
1189         if (!AggregatedInits.empty()) {
1190           CopyingValueRepresentation CVR(CGF);
1191           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1192                                 AggregatedInits[0], ConstructorDecl, Args);
1193           AggregatedInits.clear();
1194         }
1195         reset();
1196         return;
1197       }
1198 
1199       pushEHDestructors();
1200       emitMemcpy();
1201       AggregatedInits.clear();
1202     }
1203 
1204     void pushEHDestructors() {
1205       Address ThisPtr = CGF.LoadCXXThisAddress();
1206       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1207       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1208 
1209       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1210         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1211         QualType FieldType = MemberInit->getAnyMember()->getType();
1212         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1213         if (!CGF.needsEHCleanup(dtorKind))
1214           continue;
1215         LValue FieldLHS = LHS;
1216         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1217         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1218       }
1219     }
1220 
1221     void finish() {
1222       emitAggregatedInits();
1223     }
1224 
1225   private:
1226     const CXXConstructorDecl *ConstructorDecl;
1227     bool MemcpyableCtor;
1228     FunctionArgList &Args;
1229     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1230   };
1231 
1232   class AssignmentMemcpyizer : public FieldMemcpyizer {
1233   private:
1234 
1235     // Returns the memcpyable field copied by the given statement, if one
1236     // exists. Otherwise returns null.
1237     FieldDecl *getMemcpyableField(Stmt *S) {
1238       if (!AssignmentsMemcpyable)
1239         return nullptr;
1240       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1241         // Recognise trivial assignments.
1242         if (BO->getOpcode() != BO_Assign)
1243           return nullptr;
1244         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1245         if (!ME)
1246           return nullptr;
1247         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1248         if (!Field || !isMemcpyableField(Field))
1249           return nullptr;
1250         Stmt *RHS = BO->getRHS();
1251         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1252           RHS = EC->getSubExpr();
1253         if (!RHS)
1254           return nullptr;
1255         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1256         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1257           return nullptr;
1258         return Field;
1259       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1260         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1261         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1262           return nullptr;
1263         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1264         if (!IOA)
1265           return nullptr;
1266         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1267         if (!Field || !isMemcpyableField(Field))
1268           return nullptr;
1269         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1270         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1271           return nullptr;
1272         return Field;
1273       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1274         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1275         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1276           return nullptr;
1277         Expr *DstPtr = CE->getArg(0);
1278         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1279           DstPtr = DC->getSubExpr();
1280         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1281         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1282           return nullptr;
1283         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1284         if (!ME)
1285           return nullptr;
1286         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1287         if (!Field || !isMemcpyableField(Field))
1288           return nullptr;
1289         Expr *SrcPtr = CE->getArg(1);
1290         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1291           SrcPtr = SC->getSubExpr();
1292         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1293         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1294           return nullptr;
1295         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1296         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1297           return nullptr;
1298         return Field;
1299       }
1300 
1301       return nullptr;
1302     }
1303 
1304     bool AssignmentsMemcpyable;
1305     SmallVector<Stmt*, 16> AggregatedStmts;
1306 
1307   public:
1308 
1309     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1310                          FunctionArgList &Args)
1311       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1312         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1313       assert(Args.size() == 2);
1314     }
1315 
1316     void emitAssignment(Stmt *S) {
1317       FieldDecl *F = getMemcpyableField(S);
1318       if (F) {
1319         addMemcpyableField(F);
1320         AggregatedStmts.push_back(S);
1321       } else {
1322         emitAggregatedStmts();
1323         CGF.EmitStmt(S);
1324       }
1325     }
1326 
1327     void emitAggregatedStmts() {
1328       if (AggregatedStmts.size() <= 1) {
1329         if (!AggregatedStmts.empty()) {
1330           CopyingValueRepresentation CVR(CGF);
1331           CGF.EmitStmt(AggregatedStmts[0]);
1332         }
1333         reset();
1334       }
1335 
1336       emitMemcpy();
1337       AggregatedStmts.clear();
1338     }
1339 
1340     void finish() {
1341       emitAggregatedStmts();
1342     }
1343   };
1344 
1345 }
1346 
1347 /// EmitCtorPrologue - This routine generates necessary code to initialize
1348 /// base classes and non-static data members belonging to this constructor.
1349 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1350                                        CXXCtorType CtorType,
1351                                        FunctionArgList &Args) {
1352   if (CD->isDelegatingConstructor())
1353     return EmitDelegatingCXXConstructorCall(CD, Args);
1354 
1355   const CXXRecordDecl *ClassDecl = CD->getParent();
1356 
1357   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1358                                           E = CD->init_end();
1359 
1360   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1361   if (ClassDecl->getNumVBases() &&
1362       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1363     // The ABIs that don't have constructor variants need to put a branch
1364     // before the virtual base initialization code.
1365     BaseCtorContinueBB =
1366       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1367     assert(BaseCtorContinueBB);
1368   }
1369 
1370   // Virtual base initializers first.
1371   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1372     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1373   }
1374 
1375   if (BaseCtorContinueBB) {
1376     // Complete object handler should continue to the remaining initializers.
1377     Builder.CreateBr(BaseCtorContinueBB);
1378     EmitBlock(BaseCtorContinueBB);
1379   }
1380 
1381   // Then, non-virtual base initializers.
1382   for (; B != E && (*B)->isBaseInitializer(); B++) {
1383     assert(!(*B)->isBaseVirtual());
1384     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1385   }
1386 
1387   InitializeVTablePointers(ClassDecl);
1388 
1389   // And finally, initialize class members.
1390   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1391   ConstructorMemcpyizer CM(*this, CD, Args);
1392   for (; B != E; B++) {
1393     CXXCtorInitializer *Member = (*B);
1394     assert(!Member->isBaseInitializer());
1395     assert(Member->isAnyMemberInitializer() &&
1396            "Delegating initializer on non-delegating constructor");
1397     CM.addMemberInitializer(Member);
1398   }
1399   CM.finish();
1400 }
1401 
1402 static bool
1403 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1404 
1405 static bool
1406 HasTrivialDestructorBody(ASTContext &Context,
1407                          const CXXRecordDecl *BaseClassDecl,
1408                          const CXXRecordDecl *MostDerivedClassDecl)
1409 {
1410   // If the destructor is trivial we don't have to check anything else.
1411   if (BaseClassDecl->hasTrivialDestructor())
1412     return true;
1413 
1414   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1415     return false;
1416 
1417   // Check fields.
1418   for (const auto *Field : BaseClassDecl->fields())
1419     if (!FieldHasTrivialDestructorBody(Context, Field))
1420       return false;
1421 
1422   // Check non-virtual bases.
1423   for (const auto &I : BaseClassDecl->bases()) {
1424     if (I.isVirtual())
1425       continue;
1426 
1427     const CXXRecordDecl *NonVirtualBase =
1428       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1429     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1430                                   MostDerivedClassDecl))
1431       return false;
1432   }
1433 
1434   if (BaseClassDecl == MostDerivedClassDecl) {
1435     // Check virtual bases.
1436     for (const auto &I : BaseClassDecl->vbases()) {
1437       const CXXRecordDecl *VirtualBase =
1438         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1439       if (!HasTrivialDestructorBody(Context, VirtualBase,
1440                                     MostDerivedClassDecl))
1441         return false;
1442     }
1443   }
1444 
1445   return true;
1446 }
1447 
1448 static bool
1449 FieldHasTrivialDestructorBody(ASTContext &Context,
1450                                           const FieldDecl *Field)
1451 {
1452   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1453 
1454   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1455   if (!RT)
1456     return true;
1457 
1458   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1459 
1460   // The destructor for an implicit anonymous union member is never invoked.
1461   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1462     return false;
1463 
1464   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1465 }
1466 
1467 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1468 /// any vtable pointers before calling this destructor.
1469 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1470                                                const CXXDestructorDecl *Dtor) {
1471   if (!Dtor->hasTrivialBody())
1472     return false;
1473 
1474   // Check the fields.
1475   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1476   for (const auto *Field : ClassDecl->fields())
1477     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1478       return false;
1479 
1480   return true;
1481 }
1482 
1483 /// EmitDestructorBody - Emits the body of the current destructor.
1484 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1485   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1486   CXXDtorType DtorType = CurGD.getDtorType();
1487 
1488   Stmt *Body = Dtor->getBody();
1489   if (Body)
1490     incrementProfileCounter(Body);
1491 
1492   // The call to operator delete in a deleting destructor happens
1493   // outside of the function-try-block, which means it's always
1494   // possible to delegate the destructor body to the complete
1495   // destructor.  Do so.
1496   if (DtorType == Dtor_Deleting) {
1497     EnterDtorCleanups(Dtor, Dtor_Deleting);
1498     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1499                           /*Delegating=*/false, LoadCXXThisAddress());
1500     PopCleanupBlock();
1501     return;
1502   }
1503 
1504   // If the body is a function-try-block, enter the try before
1505   // anything else.
1506   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1507   if (isTryBody)
1508     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1509   EmitAsanPrologueOrEpilogue(false);
1510 
1511   // Enter the epilogue cleanups.
1512   RunCleanupsScope DtorEpilogue(*this);
1513 
1514   // If this is the complete variant, just invoke the base variant;
1515   // the epilogue will destruct the virtual bases.  But we can't do
1516   // this optimization if the body is a function-try-block, because
1517   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1518   // always delegate because we might not have a definition in this TU.
1519   switch (DtorType) {
1520   case Dtor_Comdat:
1521     llvm_unreachable("not expecting a COMDAT");
1522 
1523   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1524 
1525   case Dtor_Complete:
1526     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1527            "can't emit a dtor without a body for non-Microsoft ABIs");
1528 
1529     // Enter the cleanup scopes for virtual bases.
1530     EnterDtorCleanups(Dtor, Dtor_Complete);
1531 
1532     if (!isTryBody) {
1533       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1534                             /*Delegating=*/false, LoadCXXThisAddress());
1535       break;
1536     }
1537     // Fallthrough: act like we're in the base variant.
1538 
1539   case Dtor_Base:
1540     assert(Body);
1541 
1542     // Enter the cleanup scopes for fields and non-virtual bases.
1543     EnterDtorCleanups(Dtor, Dtor_Base);
1544 
1545     // Initialize the vtable pointers before entering the body.
1546     if (!CanSkipVTablePointerInitialization(*this, Dtor))
1547         InitializeVTablePointers(Dtor->getParent());
1548 
1549     if (isTryBody)
1550       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1551     else if (Body)
1552       EmitStmt(Body);
1553     else {
1554       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1555       // nothing to do besides what's in the epilogue
1556     }
1557     // -fapple-kext must inline any call to this dtor into
1558     // the caller's body.
1559     if (getLangOpts().AppleKext)
1560       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1561 
1562     break;
1563   }
1564 
1565   // Jump out through the epilogue cleanups.
1566   DtorEpilogue.ForceCleanup();
1567 
1568   // Exit the try if applicable.
1569   if (isTryBody)
1570     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1571 }
1572 
1573 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1574   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1575   const Stmt *RootS = AssignOp->getBody();
1576   assert(isa<CompoundStmt>(RootS) &&
1577          "Body of an implicit assignment operator should be compound stmt.");
1578   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1579 
1580   LexicalScope Scope(*this, RootCS->getSourceRange());
1581 
1582   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1583   for (auto *I : RootCS->body())
1584     AM.emitAssignment(I);
1585   AM.finish();
1586 }
1587 
1588 namespace {
1589   /// Call the operator delete associated with the current destructor.
1590   struct CallDtorDelete final : EHScopeStack::Cleanup {
1591     CallDtorDelete() {}
1592 
1593     void Emit(CodeGenFunction &CGF, Flags flags) override {
1594       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1595       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1596       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1597                          CGF.getContext().getTagDeclType(ClassDecl));
1598     }
1599   };
1600 
1601   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1602     llvm::Value *ShouldDeleteCondition;
1603   public:
1604     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1605         : ShouldDeleteCondition(ShouldDeleteCondition) {
1606       assert(ShouldDeleteCondition != nullptr);
1607     }
1608 
1609     void Emit(CodeGenFunction &CGF, Flags flags) override {
1610       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1611       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1612       llvm::Value *ShouldCallDelete
1613         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1614       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1615 
1616       CGF.EmitBlock(callDeleteBB);
1617       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1618       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1619       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1620                          CGF.getContext().getTagDeclType(ClassDecl));
1621       CGF.Builder.CreateBr(continueBB);
1622 
1623       CGF.EmitBlock(continueBB);
1624     }
1625   };
1626 
1627   class DestroyField  final : public EHScopeStack::Cleanup {
1628     const FieldDecl *field;
1629     CodeGenFunction::Destroyer *destroyer;
1630     bool useEHCleanupForArray;
1631 
1632   public:
1633     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1634                  bool useEHCleanupForArray)
1635         : field(field), destroyer(destroyer),
1636           useEHCleanupForArray(useEHCleanupForArray) {}
1637 
1638     void Emit(CodeGenFunction &CGF, Flags flags) override {
1639       // Find the address of the field.
1640       Address thisValue = CGF.LoadCXXThisAddress();
1641       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1642       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1643       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1644       assert(LV.isSimple());
1645 
1646       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1647                       flags.isForNormalCleanup() && useEHCleanupForArray);
1648     }
1649   };
1650 
1651   class SanitizeDtor final : public EHScopeStack::Cleanup {
1652     const CXXDestructorDecl *Dtor;
1653 
1654   public:
1655     SanitizeDtor(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1656 
1657     // Generate function call for handling object poisoning.
1658     // Disables tail call elimination, to prevent the current stack frame
1659     // from disappearing from the stack trace.
1660     void Emit(CodeGenFunction &CGF, Flags flags) override {
1661       const ASTRecordLayout &Layout =
1662           CGF.getContext().getASTRecordLayout(Dtor->getParent());
1663 
1664       // Nothing to poison.
1665       if (Layout.getFieldCount() == 0)
1666         return;
1667 
1668       // Prevent the current stack frame from disappearing from the stack trace.
1669       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1670 
1671       // Construct pointer to region to begin poisoning, and calculate poison
1672       // size, so that only members declared in this class are poisoned.
1673       ASTContext &Context = CGF.getContext();
1674       unsigned fieldIndex = 0;
1675       int startIndex = -1;
1676       // RecordDecl::field_iterator Field;
1677       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1678         // Poison field if it is trivial
1679         if (FieldHasTrivialDestructorBody(Context, Field)) {
1680           // Start sanitizing at this field
1681           if (startIndex < 0)
1682             startIndex = fieldIndex;
1683 
1684           // Currently on the last field, and it must be poisoned with the
1685           // current block.
1686           if (fieldIndex == Layout.getFieldCount() - 1) {
1687             PoisonBlock(CGF, startIndex, Layout.getFieldCount());
1688           }
1689         } else if (startIndex >= 0) {
1690           // No longer within a block of memory to poison, so poison the block
1691           PoisonBlock(CGF, startIndex, fieldIndex);
1692           // Re-set the start index
1693           startIndex = -1;
1694         }
1695         fieldIndex += 1;
1696       }
1697     }
1698 
1699   private:
1700     /// \param layoutStartOffset index of the ASTRecordLayout field to
1701     ///     start poisoning (inclusive)
1702     /// \param layoutEndOffset index of the ASTRecordLayout field to
1703     ///     end poisoning (exclusive)
1704     void PoisonBlock(CodeGenFunction &CGF, unsigned layoutStartOffset,
1705                      unsigned layoutEndOffset) {
1706       ASTContext &Context = CGF.getContext();
1707       const ASTRecordLayout &Layout =
1708           Context.getASTRecordLayout(Dtor->getParent());
1709 
1710       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1711           CGF.SizeTy,
1712           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1713               .getQuantity());
1714 
1715       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1716           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1717           OffsetSizePtr);
1718 
1719       CharUnits::QuantityType PoisonSize;
1720       if (layoutEndOffset >= Layout.getFieldCount()) {
1721         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1722                      Context.toCharUnitsFromBits(
1723                                 Layout.getFieldOffset(layoutStartOffset))
1724                          .getQuantity();
1725       } else {
1726         PoisonSize = Context.toCharUnitsFromBits(
1727                                 Layout.getFieldOffset(layoutEndOffset) -
1728                                 Layout.getFieldOffset(layoutStartOffset))
1729                          .getQuantity();
1730       }
1731 
1732       if (PoisonSize == 0)
1733         return;
1734 
1735       // Pass in void pointer and size of region as arguments to runtime
1736       // function
1737       llvm::Value *Args[] = {CGF.Builder.CreateBitCast(OffsetPtr, CGF.VoidPtrTy),
1738                              llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1739 
1740       llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1741 
1742       llvm::FunctionType *FnType =
1743           llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1744       llvm::Value *Fn =
1745           CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1746       CGF.EmitNounwindRuntimeCall(Fn, Args);
1747     }
1748   };
1749 }
1750 
1751 /// \brief Emit all code that comes at the end of class's
1752 /// destructor. This is to call destructors on members and base classes
1753 /// in reverse order of their construction.
1754 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1755                                         CXXDtorType DtorType) {
1756   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1757          "Should not emit dtor epilogue for non-exported trivial dtor!");
1758 
1759   // The deleting-destructor phase just needs to call the appropriate
1760   // operator delete that Sema picked up.
1761   if (DtorType == Dtor_Deleting) {
1762     assert(DD->getOperatorDelete() &&
1763            "operator delete missing - EnterDtorCleanups");
1764     if (CXXStructorImplicitParamValue) {
1765       // If there is an implicit param to the deleting dtor, it's a boolean
1766       // telling whether we should call delete at the end of the dtor.
1767       EHStack.pushCleanup<CallDtorDeleteConditional>(
1768           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1769     } else {
1770       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1771     }
1772     return;
1773   }
1774 
1775   const CXXRecordDecl *ClassDecl = DD->getParent();
1776 
1777   // Unions have no bases and do not call field destructors.
1778   if (ClassDecl->isUnion())
1779     return;
1780 
1781   // The complete-destructor phase just destructs all the virtual bases.
1782   if (DtorType == Dtor_Complete) {
1783 
1784     // We push them in the forward order so that they'll be popped in
1785     // the reverse order.
1786     for (const auto &Base : ClassDecl->vbases()) {
1787       CXXRecordDecl *BaseClassDecl
1788         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1789 
1790       // Ignore trivial destructors.
1791       if (BaseClassDecl->hasTrivialDestructor())
1792         continue;
1793 
1794       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1795                                         BaseClassDecl,
1796                                         /*BaseIsVirtual*/ true);
1797     }
1798 
1799     return;
1800   }
1801 
1802   assert(DtorType == Dtor_Base);
1803 
1804   // Destroy non-virtual bases.
1805   for (const auto &Base : ClassDecl->bases()) {
1806     // Ignore virtual bases.
1807     if (Base.isVirtual())
1808       continue;
1809 
1810     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1811 
1812     // Ignore trivial destructors.
1813     if (BaseClassDecl->hasTrivialDestructor())
1814       continue;
1815 
1816     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1817                                       BaseClassDecl,
1818                                       /*BaseIsVirtual*/ false);
1819   }
1820 
1821   // Poison fields such that access after their destructors are
1822   // invoked, and before the base class destructor runs, is invalid.
1823   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1824       SanOpts.has(SanitizerKind::Memory))
1825     EHStack.pushCleanup<SanitizeDtor>(NormalAndEHCleanup, DD);
1826 
1827   // Destroy direct fields.
1828   for (const auto *Field : ClassDecl->fields()) {
1829     QualType type = Field->getType();
1830     QualType::DestructionKind dtorKind = type.isDestructedType();
1831     if (!dtorKind) continue;
1832 
1833     // Anonymous union members do not have their destructors called.
1834     const RecordType *RT = type->getAsUnionType();
1835     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1836 
1837     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1838     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1839                                       getDestroyer(dtorKind),
1840                                       cleanupKind & EHCleanup);
1841   }
1842 }
1843 
1844 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1845 /// constructor for each of several members of an array.
1846 ///
1847 /// \param ctor the constructor to call for each element
1848 /// \param arrayType the type of the array to initialize
1849 /// \param arrayBegin an arrayType*
1850 /// \param zeroInitialize true if each element should be
1851 ///   zero-initialized before it is constructed
1852 void CodeGenFunction::EmitCXXAggrConstructorCall(
1853     const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
1854     Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1855   QualType elementType;
1856   llvm::Value *numElements =
1857     emitArrayLength(arrayType, elementType, arrayBegin);
1858 
1859   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1860 }
1861 
1862 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1863 /// constructor for each of several members of an array.
1864 ///
1865 /// \param ctor the constructor to call for each element
1866 /// \param numElements the number of elements in the array;
1867 ///   may be zero
1868 /// \param arrayBase a T*, where T is the type constructed by ctor
1869 /// \param zeroInitialize true if each element should be
1870 ///   zero-initialized before it is constructed
1871 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1872                                                  llvm::Value *numElements,
1873                                                  Address arrayBase,
1874                                                  const CXXConstructExpr *E,
1875                                                  bool zeroInitialize) {
1876 
1877   // It's legal for numElements to be zero.  This can happen both
1878   // dynamically, because x can be zero in 'new A[x]', and statically,
1879   // because of GCC extensions that permit zero-length arrays.  There
1880   // are probably legitimate places where we could assume that this
1881   // doesn't happen, but it's not clear that it's worth it.
1882   llvm::BranchInst *zeroCheckBranch = nullptr;
1883 
1884   // Optimize for a constant count.
1885   llvm::ConstantInt *constantCount
1886     = dyn_cast<llvm::ConstantInt>(numElements);
1887   if (constantCount) {
1888     // Just skip out if the constant count is zero.
1889     if (constantCount->isZero()) return;
1890 
1891   // Otherwise, emit the check.
1892   } else {
1893     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1894     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1895     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1896     EmitBlock(loopBB);
1897   }
1898 
1899   // Find the end of the array.
1900   llvm::Value *arrayBegin = arrayBase.getPointer();
1901   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1902                                                     "arrayctor.end");
1903 
1904   // Enter the loop, setting up a phi for the current location to initialize.
1905   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1906   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1907   EmitBlock(loopBB);
1908   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1909                                          "arrayctor.cur");
1910   cur->addIncoming(arrayBegin, entryBB);
1911 
1912   // Inside the loop body, emit the constructor call on the array element.
1913 
1914   // The alignment of the base, adjusted by the size of a single element,
1915   // provides a conservative estimate of the alignment of every element.
1916   // (This assumes we never start tracking offsetted alignments.)
1917   //
1918   // Note that these are complete objects and so we don't need to
1919   // use the non-virtual size or alignment.
1920   QualType type = getContext().getTypeDeclType(ctor->getParent());
1921   CharUnits eltAlignment =
1922     arrayBase.getAlignment()
1923              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1924   Address curAddr = Address(cur, eltAlignment);
1925 
1926   // Zero initialize the storage, if requested.
1927   if (zeroInitialize)
1928     EmitNullInitialization(curAddr, type);
1929 
1930   // C++ [class.temporary]p4:
1931   // There are two contexts in which temporaries are destroyed at a different
1932   // point than the end of the full-expression. The first context is when a
1933   // default constructor is called to initialize an element of an array.
1934   // If the constructor has one or more default arguments, the destruction of
1935   // every temporary created in a default argument expression is sequenced
1936   // before the construction of the next array element, if any.
1937 
1938   {
1939     RunCleanupsScope Scope(*this);
1940 
1941     // Evaluate the constructor and its arguments in a regular
1942     // partial-destroy cleanup.
1943     if (getLangOpts().Exceptions &&
1944         !ctor->getParent()->hasTrivialDestructor()) {
1945       Destroyer *destroyer = destroyCXXObject;
1946       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
1947                                      *destroyer);
1948     }
1949 
1950     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
1951                            /*Delegating=*/false, curAddr, E);
1952   }
1953 
1954   // Go to the next element.
1955   llvm::Value *next =
1956     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1957                               "arrayctor.next");
1958   cur->addIncoming(next, Builder.GetInsertBlock());
1959 
1960   // Check whether that's the end of the loop.
1961   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1962   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1963   Builder.CreateCondBr(done, contBB, loopBB);
1964 
1965   // Patch the earlier check to skip over the loop.
1966   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1967 
1968   EmitBlock(contBB);
1969 }
1970 
1971 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1972                                        Address addr,
1973                                        QualType type) {
1974   const RecordType *rtype = type->castAs<RecordType>();
1975   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1976   const CXXDestructorDecl *dtor = record->getDestructor();
1977   assert(!dtor->isTrivial());
1978   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1979                             /*Delegating=*/false, addr);
1980 }
1981 
1982 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1983                                              CXXCtorType Type,
1984                                              bool ForVirtualBase,
1985                                              bool Delegating, Address This,
1986                                              const CXXConstructExpr *E) {
1987   const CXXRecordDecl *ClassDecl = D->getParent();
1988 
1989   // C++11 [class.mfct.non-static]p2:
1990   //   If a non-static member function of a class X is called for an object that
1991   //   is not of type X, or of a type derived from X, the behavior is undefined.
1992   // FIXME: Provide a source location here.
1993   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
1994                 This.getPointer(), getContext().getRecordType(ClassDecl));
1995 
1996   if (D->isTrivial() && D->isDefaultConstructor()) {
1997     assert(E->getNumArgs() == 0 && "trivial default ctor with args");
1998     return;
1999   }
2000 
2001   // If this is a trivial constructor, just emit what's needed. If this is a
2002   // union copy constructor, we must emit a memcpy, because the AST does not
2003   // model that copy.
2004   if (isMemcpyEquivalentSpecialMember(D)) {
2005     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2006 
2007     const Expr *Arg = E->getArg(0);
2008     QualType SrcTy = Arg->getType();
2009     Address Src = EmitLValue(Arg).getAddress();
2010     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2011     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2012     return;
2013   }
2014 
2015   CallArgList Args;
2016 
2017   // Push the this ptr.
2018   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2019 
2020   // Add the rest of the user-supplied arguments.
2021   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2022   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor());
2023 
2024   // Insert any ABI-specific implicit constructor arguments.
2025   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
2026       *this, D, Type, ForVirtualBase, Delegating, Args);
2027 
2028   // Emit the call.
2029   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
2030   const CGFunctionInfo &Info =
2031       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
2032   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
2033 
2034   // Generate vtable assumptions if we're constructing a complete object
2035   // with a vtable.  We don't do this for base subobjects for two reasons:
2036   // first, it's incorrect for classes with virtual bases, and second, we're
2037   // about to overwrite the vptrs anyway.
2038   // We also have to make sure if we can refer to vtable:
2039   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2040   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2041   // sure that definition of vtable is not hidden,
2042   // then we are always safe to refer to it.
2043   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2044       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2045       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl))
2046     EmitVTableAssumptionLoads(ClassDecl, This);
2047 }
2048 
2049 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2050   llvm::Value *VTableGlobal =
2051       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2052   if (!VTableGlobal)
2053     return;
2054 
2055   // We can just use the base offset in the complete class.
2056   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2057 
2058   if (!NonVirtualOffset.isZero())
2059     This =
2060         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2061                                         Vptr.VTableClass, Vptr.NearestVBase);
2062 
2063   llvm::Value *VPtrValue = GetVTablePtr(This, VTableGlobal->getType());
2064   llvm::Value *Cmp =
2065       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2066   Builder.CreateAssumption(Cmp);
2067 }
2068 
2069 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2070                                                 Address This) {
2071   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2072     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2073       EmitVTableAssumptionLoad(Vptr, This);
2074 }
2075 
2076 void
2077 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2078                                                 Address This, Address Src,
2079                                                 const CXXConstructExpr *E) {
2080   if (isMemcpyEquivalentSpecialMember(D)) {
2081     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2082     assert(D->isCopyOrMoveConstructor() &&
2083            "trivial 1-arg ctor not a copy/move ctor");
2084     EmitAggregateCopyCtor(This, Src,
2085                           getContext().getTypeDeclType(D->getParent()),
2086                           (*E->arg_begin())->getType());
2087     return;
2088   }
2089   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
2090   assert(D->isInstance() &&
2091          "Trying to emit a member call expr on a static method!");
2092 
2093   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2094 
2095   CallArgList Args;
2096 
2097   // Push the this ptr.
2098   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2099 
2100   // Push the src ptr.
2101   QualType QT = *(FPT->param_type_begin());
2102   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2103   Src = Builder.CreateBitCast(Src, t);
2104   Args.add(RValue::get(Src.getPointer()), QT);
2105 
2106   // Skip over first argument (Src).
2107   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2108                /*ParamsToSkip*/ 1);
2109 
2110   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
2111            Callee, ReturnValueSlot(), Args, D);
2112 }
2113 
2114 void
2115 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2116                                                 CXXCtorType CtorType,
2117                                                 const FunctionArgList &Args,
2118                                                 SourceLocation Loc) {
2119   CallArgList DelegateArgs;
2120 
2121   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2122   assert(I != E && "no parameters to constructor");
2123 
2124   // this
2125   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
2126   ++I;
2127 
2128   // vtt
2129   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
2130                                          /*ForVirtualBase=*/false,
2131                                          /*Delegating=*/true)) {
2132     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
2133     DelegateArgs.add(RValue::get(VTT), VoidPP);
2134 
2135     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2136       assert(I != E && "cannot skip vtt parameter, already done with args");
2137       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
2138       ++I;
2139     }
2140   }
2141 
2142   // Explicit arguments.
2143   for (; I != E; ++I) {
2144     const VarDecl *param = *I;
2145     // FIXME: per-argument source location
2146     EmitDelegateCallArg(DelegateArgs, param, Loc);
2147   }
2148 
2149   llvm::Value *Callee =
2150       CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
2151   EmitCall(CGM.getTypes()
2152                .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
2153            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
2154 }
2155 
2156 namespace {
2157   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2158     const CXXDestructorDecl *Dtor;
2159     Address Addr;
2160     CXXDtorType Type;
2161 
2162     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2163                            CXXDtorType Type)
2164       : Dtor(D), Addr(Addr), Type(Type) {}
2165 
2166     void Emit(CodeGenFunction &CGF, Flags flags) override {
2167       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2168                                 /*Delegating=*/true, Addr);
2169     }
2170   };
2171 }
2172 
2173 void
2174 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2175                                                   const FunctionArgList &Args) {
2176   assert(Ctor->isDelegatingConstructor());
2177 
2178   Address ThisPtr = LoadCXXThisAddress();
2179 
2180   AggValueSlot AggSlot =
2181     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2182                           AggValueSlot::IsDestructed,
2183                           AggValueSlot::DoesNotNeedGCBarriers,
2184                           AggValueSlot::IsNotAliased);
2185 
2186   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2187 
2188   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2189   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2190     CXXDtorType Type =
2191       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2192 
2193     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2194                                                 ClassDecl->getDestructor(),
2195                                                 ThisPtr, Type);
2196   }
2197 }
2198 
2199 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2200                                             CXXDtorType Type,
2201                                             bool ForVirtualBase,
2202                                             bool Delegating,
2203                                             Address This) {
2204   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2205                                      Delegating, This);
2206 }
2207 
2208 namespace {
2209   struct CallLocalDtor final : EHScopeStack::Cleanup {
2210     const CXXDestructorDecl *Dtor;
2211     Address Addr;
2212 
2213     CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
2214       : Dtor(D), Addr(Addr) {}
2215 
2216     void Emit(CodeGenFunction &CGF, Flags flags) override {
2217       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2218                                 /*ForVirtualBase=*/false,
2219                                 /*Delegating=*/false, Addr);
2220     }
2221   };
2222 }
2223 
2224 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2225                                             Address Addr) {
2226   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
2227 }
2228 
2229 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2230   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2231   if (!ClassDecl) return;
2232   if (ClassDecl->hasTrivialDestructor()) return;
2233 
2234   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2235   assert(D && D->isUsed() && "destructor not marked as used!");
2236   PushDestructorCleanup(D, Addr);
2237 }
2238 
2239 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2240   // Compute the address point.
2241   llvm::Value *VTableAddressPoint =
2242       CGM.getCXXABI().getVTableAddressPointInStructor(
2243           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2244 
2245   if (!VTableAddressPoint)
2246     return;
2247 
2248   // Compute where to store the address point.
2249   llvm::Value *VirtualOffset = nullptr;
2250   CharUnits NonVirtualOffset = CharUnits::Zero();
2251 
2252   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2253     // We need to use the virtual base offset offset because the virtual base
2254     // might have a different offset in the most derived class.
2255 
2256     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2257         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2258     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2259   } else {
2260     // We can just use the base offset in the complete class.
2261     NonVirtualOffset = Vptr.Base.getBaseOffset();
2262   }
2263 
2264   // Apply the offsets.
2265   Address VTableField = LoadCXXThisAddress();
2266 
2267   if (!NonVirtualOffset.isZero() || VirtualOffset)
2268     VTableField = ApplyNonVirtualAndVirtualOffset(
2269         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2270         Vptr.NearestVBase);
2271 
2272   // Finally, store the address point. Use the same LLVM types as the field to
2273   // support optimization.
2274   llvm::Type *VTablePtrTy =
2275       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2276           ->getPointerTo()
2277           ->getPointerTo();
2278   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2279   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2280 
2281   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2282   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
2283 }
2284 
2285 CodeGenFunction::VPtrsVector
2286 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2287   CodeGenFunction::VPtrsVector VPtrsResult;
2288   VisitedVirtualBasesSetTy VBases;
2289   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2290                     /*NearestVBase=*/nullptr,
2291                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2292                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2293                     VPtrsResult);
2294   return VPtrsResult;
2295 }
2296 
2297 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2298                                         const CXXRecordDecl *NearestVBase,
2299                                         CharUnits OffsetFromNearestVBase,
2300                                         bool BaseIsNonVirtualPrimaryBase,
2301                                         const CXXRecordDecl *VTableClass,
2302                                         VisitedVirtualBasesSetTy &VBases,
2303                                         VPtrsVector &Vptrs) {
2304   // If this base is a non-virtual primary base the address point has already
2305   // been set.
2306   if (!BaseIsNonVirtualPrimaryBase) {
2307     // Initialize the vtable pointer for this base.
2308     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2309     Vptrs.push_back(Vptr);
2310   }
2311 
2312   const CXXRecordDecl *RD = Base.getBase();
2313 
2314   // Traverse bases.
2315   for (const auto &I : RD->bases()) {
2316     CXXRecordDecl *BaseDecl
2317       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2318 
2319     // Ignore classes without a vtable.
2320     if (!BaseDecl->isDynamicClass())
2321       continue;
2322 
2323     CharUnits BaseOffset;
2324     CharUnits BaseOffsetFromNearestVBase;
2325     bool BaseDeclIsNonVirtualPrimaryBase;
2326 
2327     if (I.isVirtual()) {
2328       // Check if we've visited this virtual base before.
2329       if (!VBases.insert(BaseDecl).second)
2330         continue;
2331 
2332       const ASTRecordLayout &Layout =
2333         getContext().getASTRecordLayout(VTableClass);
2334 
2335       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2336       BaseOffsetFromNearestVBase = CharUnits::Zero();
2337       BaseDeclIsNonVirtualPrimaryBase = false;
2338     } else {
2339       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2340 
2341       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2342       BaseOffsetFromNearestVBase =
2343         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2344       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2345     }
2346 
2347     getVTablePointers(
2348         BaseSubobject(BaseDecl, BaseOffset),
2349         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2350         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2351   }
2352 }
2353 
2354 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2355   // Ignore classes without a vtable.
2356   if (!RD->isDynamicClass())
2357     return;
2358 
2359   // Initialize the vtable pointers for this class and all of its bases.
2360   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2361     for (const VPtr &Vptr : getVTablePointers(RD))
2362       InitializeVTablePointer(Vptr);
2363 
2364   if (RD->getNumVBases())
2365     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2366 }
2367 
2368 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2369                                            llvm::Type *Ty) {
2370   Address VTablePtrSrc = Builder.CreateElementBitCast(This, Ty);
2371   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2372   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
2373   return VTable;
2374 }
2375 
2376 // If a class has a single non-virtual base and does not introduce or override
2377 // virtual member functions or fields, it will have the same layout as its base.
2378 // This function returns the least derived such class.
2379 //
2380 // Casting an instance of a base class to such a derived class is technically
2381 // undefined behavior, but it is a relatively common hack for introducing member
2382 // functions on class instances with specific properties (e.g. llvm::Operator)
2383 // that works under most compilers and should not have security implications, so
2384 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2385 static const CXXRecordDecl *
2386 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2387   if (!RD->field_empty())
2388     return RD;
2389 
2390   if (RD->getNumVBases() != 0)
2391     return RD;
2392 
2393   if (RD->getNumBases() != 1)
2394     return RD;
2395 
2396   for (const CXXMethodDecl *MD : RD->methods()) {
2397     if (MD->isVirtual()) {
2398       // Virtual member functions are only ok if they are implicit destructors
2399       // because the implicit destructor will have the same semantics as the
2400       // base class's destructor if no fields are added.
2401       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2402         continue;
2403       return RD;
2404     }
2405   }
2406 
2407   return LeastDerivedClassWithSameLayout(
2408       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2409 }
2410 
2411 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD,
2412                                                 llvm::Value *VTable,
2413                                                 CFITypeCheckKind TCK,
2414                                                 SourceLocation Loc) {
2415   const CXXRecordDecl *ClassDecl = MD->getParent();
2416   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2417     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2418 
2419   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2420 }
2421 
2422 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2423                                                 llvm::Value *Derived,
2424                                                 bool MayBeNull,
2425                                                 CFITypeCheckKind TCK,
2426                                                 SourceLocation Loc) {
2427   if (!getLangOpts().CPlusPlus)
2428     return;
2429 
2430   auto *ClassTy = T->getAs<RecordType>();
2431   if (!ClassTy)
2432     return;
2433 
2434   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2435 
2436   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2437     return;
2438 
2439   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2440     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2441 
2442   llvm::BasicBlock *ContBlock = 0;
2443 
2444   if (MayBeNull) {
2445     llvm::Value *DerivedNotNull =
2446         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2447 
2448     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2449     ContBlock = createBasicBlock("cast.cont");
2450 
2451     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2452 
2453     EmitBlock(CheckBlock);
2454   }
2455 
2456   llvm::Value *VTable =
2457     GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy);
2458   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2459 
2460   if (MayBeNull) {
2461     Builder.CreateBr(ContBlock);
2462     EmitBlock(ContBlock);
2463   }
2464 }
2465 
2466 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2467                                          llvm::Value *VTable,
2468                                          CFITypeCheckKind TCK,
2469                                          SourceLocation Loc) {
2470   if (CGM.IsCFIBlacklistedRecord(RD))
2471     return;
2472 
2473   SanitizerScope SanScope(this);
2474 
2475   llvm::Value *BitSetName = llvm::MetadataAsValue::get(
2476       getLLVMContext(),
2477       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)));
2478 
2479   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2480   llvm::Value *BitSetTest =
2481       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
2482                          {CastedVTable, BitSetName});
2483 
2484   SanitizerMask M;
2485   switch (TCK) {
2486   case CFITCK_VCall:
2487     M = SanitizerKind::CFIVCall;
2488     break;
2489   case CFITCK_NVCall:
2490     M = SanitizerKind::CFINVCall;
2491     break;
2492   case CFITCK_DerivedCast:
2493     M = SanitizerKind::CFIDerivedCast;
2494     break;
2495   case CFITCK_UnrelatedCast:
2496     M = SanitizerKind::CFIUnrelatedCast;
2497     break;
2498   }
2499 
2500   llvm::Constant *StaticData[] = {
2501     EmitCheckSourceLocation(Loc),
2502     EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2503     llvm::ConstantInt::get(Int8Ty, TCK),
2504   };
2505   EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData,
2506             CastedVTable);
2507 }
2508 
2509 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2510 // quite what we want.
2511 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2512   while (true) {
2513     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2514       E = PE->getSubExpr();
2515       continue;
2516     }
2517 
2518     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2519       if (CE->getCastKind() == CK_NoOp) {
2520         E = CE->getSubExpr();
2521         continue;
2522       }
2523     }
2524     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2525       if (UO->getOpcode() == UO_Extension) {
2526         E = UO->getSubExpr();
2527         continue;
2528       }
2529     }
2530     return E;
2531   }
2532 }
2533 
2534 bool
2535 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2536                                                    const CXXMethodDecl *MD) {
2537   // When building with -fapple-kext, all calls must go through the vtable since
2538   // the kernel linker can do runtime patching of vtables.
2539   if (getLangOpts().AppleKext)
2540     return false;
2541 
2542   // If the most derived class is marked final, we know that no subclass can
2543   // override this member function and so we can devirtualize it. For example:
2544   //
2545   // struct A { virtual void f(); }
2546   // struct B final : A { };
2547   //
2548   // void f(B *b) {
2549   //   b->f();
2550   // }
2551   //
2552   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2553   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2554     return true;
2555 
2556   // If the member function is marked 'final', we know that it can't be
2557   // overridden and can therefore devirtualize it.
2558   if (MD->hasAttr<FinalAttr>())
2559     return true;
2560 
2561   // Similarly, if the class itself is marked 'final' it can't be overridden
2562   // and we can therefore devirtualize the member function call.
2563   if (MD->getParent()->hasAttr<FinalAttr>())
2564     return true;
2565 
2566   Base = skipNoOpCastsAndParens(Base);
2567   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2568     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2569       // This is a record decl. We know the type and can devirtualize it.
2570       return VD->getType()->isRecordType();
2571     }
2572 
2573     return false;
2574   }
2575 
2576   // We can devirtualize calls on an object accessed by a class member access
2577   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2578   // a derived class object constructed in the same location.
2579   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2580     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2581       return VD->getType()->isRecordType();
2582 
2583   // We can always devirtualize calls on temporary object expressions.
2584   if (isa<CXXConstructExpr>(Base))
2585     return true;
2586 
2587   // And calls on bound temporaries.
2588   if (isa<CXXBindTemporaryExpr>(Base))
2589     return true;
2590 
2591   // Check if this is a call expr that returns a record type.
2592   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2593     return CE->getCallReturnType(getContext())->isRecordType();
2594 
2595   // We can't devirtualize the call.
2596   return false;
2597 }
2598 
2599 void CodeGenFunction::EmitForwardingCallToLambda(
2600                                       const CXXMethodDecl *callOperator,
2601                                       CallArgList &callArgs) {
2602   // Get the address of the call operator.
2603   const CGFunctionInfo &calleeFnInfo =
2604     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2605   llvm::Value *callee =
2606     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2607                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2608 
2609   // Prepare the return slot.
2610   const FunctionProtoType *FPT =
2611     callOperator->getType()->castAs<FunctionProtoType>();
2612   QualType resultType = FPT->getReturnType();
2613   ReturnValueSlot returnSlot;
2614   if (!resultType->isVoidType() &&
2615       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2616       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2617     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2618 
2619   // We don't need to separately arrange the call arguments because
2620   // the call can't be variadic anyway --- it's impossible to forward
2621   // variadic arguments.
2622 
2623   // Now emit our call.
2624   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2625                        callArgs, callOperator);
2626 
2627   // If necessary, copy the returned value into the slot.
2628   if (!resultType->isVoidType() && returnSlot.isNull())
2629     EmitReturnOfRValue(RV, resultType);
2630   else
2631     EmitBranchThroughCleanup(ReturnBlock);
2632 }
2633 
2634 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2635   const BlockDecl *BD = BlockInfo->getBlockDecl();
2636   const VarDecl *variable = BD->capture_begin()->getVariable();
2637   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2638 
2639   // Start building arguments for forwarding call
2640   CallArgList CallArgs;
2641 
2642   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2643   Address ThisPtr = GetAddrOfBlockDecl(variable, false);
2644   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2645 
2646   // Add the rest of the parameters.
2647   for (auto param : BD->params())
2648     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2649 
2650   assert(!Lambda->isGenericLambda() &&
2651             "generic lambda interconversion to block not implemented");
2652   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2653 }
2654 
2655 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2656   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2657     // FIXME: Making this work correctly is nasty because it requires either
2658     // cloning the body of the call operator or making the call operator forward.
2659     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2660     return;
2661   }
2662 
2663   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2664 }
2665 
2666 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2667   const CXXRecordDecl *Lambda = MD->getParent();
2668 
2669   // Start building arguments for forwarding call
2670   CallArgList CallArgs;
2671 
2672   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2673   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2674   CallArgs.add(RValue::get(ThisPtr), ThisType);
2675 
2676   // Add the rest of the parameters.
2677   for (auto Param : MD->params())
2678     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2679 
2680   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2681   // For a generic lambda, find the corresponding call operator specialization
2682   // to which the call to the static-invoker shall be forwarded.
2683   if (Lambda->isGenericLambda()) {
2684     assert(MD->isFunctionTemplateSpecialization());
2685     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2686     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2687     void *InsertPos = nullptr;
2688     FunctionDecl *CorrespondingCallOpSpecialization =
2689         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2690     assert(CorrespondingCallOpSpecialization);
2691     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2692   }
2693   EmitForwardingCallToLambda(CallOp, CallArgs);
2694 }
2695 
2696 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2697   if (MD->isVariadic()) {
2698     // FIXME: Making this work correctly is nasty because it requires either
2699     // cloning the body of the call operator or making the call operator forward.
2700     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2701     return;
2702   }
2703 
2704   EmitLambdaDelegatingInvokeBody(MD);
2705 }
2706