1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CGCXXABI.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 
27 using namespace clang;
28 using namespace CodeGen;
29 
30 static CharUnits
31 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
32                                  const CXXRecordDecl *DerivedClass,
33                                  CastExpr::path_const_iterator Start,
34                                  CastExpr::path_const_iterator End) {
35   CharUnits Offset = CharUnits::Zero();
36 
37   const CXXRecordDecl *RD = DerivedClass;
38 
39   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
40     const CXXBaseSpecifier *Base = *I;
41     assert(!Base->isVirtual() && "Should not see virtual bases here!");
42 
43     // Get the layout.
44     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
45 
46     const CXXRecordDecl *BaseDecl =
47       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
48 
49     // Add the offset.
50     Offset += Layout.getBaseClassOffset(BaseDecl);
51 
52     RD = BaseDecl;
53   }
54 
55   return Offset;
56 }
57 
58 llvm::Constant *
59 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
60                                    CastExpr::path_const_iterator PathBegin,
61                                    CastExpr::path_const_iterator PathEnd) {
62   assert(PathBegin != PathEnd && "Base path should not be empty!");
63 
64   CharUnits Offset =
65     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
66                                      PathBegin, PathEnd);
67   if (Offset.isZero())
68     return 0;
69 
70   llvm::Type *PtrDiffTy =
71   Types.ConvertType(getContext().getPointerDiffType());
72 
73   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
74 }
75 
76 /// Gets the address of a direct base class within a complete object.
77 /// This should only be used for (1) non-virtual bases or (2) virtual bases
78 /// when the type is known to be complete (e.g. in complete destructors).
79 ///
80 /// The object pointed to by 'This' is assumed to be non-null.
81 llvm::Value *
82 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
83                                                    const CXXRecordDecl *Derived,
84                                                    const CXXRecordDecl *Base,
85                                                    bool BaseIsVirtual) {
86   // 'this' must be a pointer (in some address space) to Derived.
87   assert(This->getType()->isPointerTy() &&
88          cast<llvm::PointerType>(This->getType())->getElementType()
89            == ConvertType(Derived));
90 
91   // Compute the offset of the virtual base.
92   CharUnits Offset;
93   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
94   if (BaseIsVirtual)
95     Offset = Layout.getVBaseClassOffset(Base);
96   else
97     Offset = Layout.getBaseClassOffset(Base);
98 
99   // Shift and cast down to the base type.
100   // TODO: for complete types, this should be possible with a GEP.
101   llvm::Value *V = This;
102   if (Offset.isPositive()) {
103     V = Builder.CreateBitCast(V, Int8PtrTy);
104     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
105   }
106   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
107 
108   return V;
109 }
110 
111 static llvm::Value *
112 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
113                                 CharUnits nonVirtualOffset,
114                                 llvm::Value *virtualOffset) {
115   // Assert that we have something to do.
116   assert(!nonVirtualOffset.isZero() || virtualOffset != 0);
117 
118   // Compute the offset from the static and dynamic components.
119   llvm::Value *baseOffset;
120   if (!nonVirtualOffset.isZero()) {
121     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
122                                         nonVirtualOffset.getQuantity());
123     if (virtualOffset) {
124       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
125     }
126   } else {
127     baseOffset = virtualOffset;
128   }
129 
130   // Apply the base offset.
131   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
132   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
133   return ptr;
134 }
135 
136 llvm::Value *
137 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
138                                        const CXXRecordDecl *Derived,
139                                        CastExpr::path_const_iterator PathBegin,
140                                        CastExpr::path_const_iterator PathEnd,
141                                        bool NullCheckValue) {
142   assert(PathBegin != PathEnd && "Base path should not be empty!");
143 
144   CastExpr::path_const_iterator Start = PathBegin;
145   const CXXRecordDecl *VBase = 0;
146 
147   // Sema has done some convenient canonicalization here: if the
148   // access path involved any virtual steps, the conversion path will
149   // *start* with a step down to the correct virtual base subobject,
150   // and hence will not require any further steps.
151   if ((*Start)->isVirtual()) {
152     VBase =
153       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
154     ++Start;
155   }
156 
157   // Compute the static offset of the ultimate destination within its
158   // allocating subobject (the virtual base, if there is one, or else
159   // the "complete" object that we see).
160   CharUnits NonVirtualOffset =
161     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
162                                      Start, PathEnd);
163 
164   // If there's a virtual step, we can sometimes "devirtualize" it.
165   // For now, that's limited to when the derived type is final.
166   // TODO: "devirtualize" this for accesses to known-complete objects.
167   if (VBase && Derived->hasAttr<FinalAttr>()) {
168     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
169     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
170     NonVirtualOffset += vBaseOffset;
171     VBase = 0; // we no longer have a virtual step
172   }
173 
174   // Get the base pointer type.
175   llvm::Type *BasePtrTy =
176     ConvertType((PathEnd[-1])->getType())->getPointerTo();
177 
178   // If the static offset is zero and we don't have a virtual step,
179   // just do a bitcast; null checks are unnecessary.
180   if (NonVirtualOffset.isZero() && !VBase) {
181     return Builder.CreateBitCast(Value, BasePtrTy);
182   }
183 
184   llvm::BasicBlock *origBB = 0;
185   llvm::BasicBlock *endBB = 0;
186 
187   // Skip over the offset (and the vtable load) if we're supposed to
188   // null-check the pointer.
189   if (NullCheckValue) {
190     origBB = Builder.GetInsertBlock();
191     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
192     endBB = createBasicBlock("cast.end");
193 
194     llvm::Value *isNull = Builder.CreateIsNull(Value);
195     Builder.CreateCondBr(isNull, endBB, notNullBB);
196     EmitBlock(notNullBB);
197   }
198 
199   // Compute the virtual offset.
200   llvm::Value *VirtualOffset = 0;
201   if (VBase) {
202     VirtualOffset =
203       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
204   }
205 
206   // Apply both offsets.
207   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
208                                           NonVirtualOffset,
209                                           VirtualOffset);
210 
211   // Cast to the destination type.
212   Value = Builder.CreateBitCast(Value, BasePtrTy);
213 
214   // Build a phi if we needed a null check.
215   if (NullCheckValue) {
216     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
217     Builder.CreateBr(endBB);
218     EmitBlock(endBB);
219 
220     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
221     PHI->addIncoming(Value, notNullBB);
222     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
223     Value = PHI;
224   }
225 
226   return Value;
227 }
228 
229 llvm::Value *
230 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
231                                           const CXXRecordDecl *Derived,
232                                         CastExpr::path_const_iterator PathBegin,
233                                           CastExpr::path_const_iterator PathEnd,
234                                           bool NullCheckValue) {
235   assert(PathBegin != PathEnd && "Base path should not be empty!");
236 
237   QualType DerivedTy =
238     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
239   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
240 
241   llvm::Value *NonVirtualOffset =
242     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
243 
244   if (!NonVirtualOffset) {
245     // No offset, we can just cast back.
246     return Builder.CreateBitCast(Value, DerivedPtrTy);
247   }
248 
249   llvm::BasicBlock *CastNull = 0;
250   llvm::BasicBlock *CastNotNull = 0;
251   llvm::BasicBlock *CastEnd = 0;
252 
253   if (NullCheckValue) {
254     CastNull = createBasicBlock("cast.null");
255     CastNotNull = createBasicBlock("cast.notnull");
256     CastEnd = createBasicBlock("cast.end");
257 
258     llvm::Value *IsNull = Builder.CreateIsNull(Value);
259     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
260     EmitBlock(CastNotNull);
261   }
262 
263   // Apply the offset.
264   Value = Builder.CreateBitCast(Value, Int8PtrTy);
265   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
266                             "sub.ptr");
267 
268   // Just cast.
269   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
270 
271   if (NullCheckValue) {
272     Builder.CreateBr(CastEnd);
273     EmitBlock(CastNull);
274     Builder.CreateBr(CastEnd);
275     EmitBlock(CastEnd);
276 
277     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
278     PHI->addIncoming(Value, CastNotNull);
279     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
280                      CastNull);
281     Value = PHI;
282   }
283 
284   return Value;
285 }
286 
287 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
288                                               bool ForVirtualBase,
289                                               bool Delegating) {
290   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
291     // This constructor/destructor does not need a VTT parameter.
292     return 0;
293   }
294 
295   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
296   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
297 
298   llvm::Value *VTT;
299 
300   uint64_t SubVTTIndex;
301 
302   if (Delegating) {
303     // If this is a delegating constructor call, just load the VTT.
304     return LoadCXXVTT();
305   } else if (RD == Base) {
306     // If the record matches the base, this is the complete ctor/dtor
307     // variant calling the base variant in a class with virtual bases.
308     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
309            "doing no-op VTT offset in base dtor/ctor?");
310     assert(!ForVirtualBase && "Can't have same class as virtual base!");
311     SubVTTIndex = 0;
312   } else {
313     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
314     CharUnits BaseOffset = ForVirtualBase ?
315       Layout.getVBaseClassOffset(Base) :
316       Layout.getBaseClassOffset(Base);
317 
318     SubVTTIndex =
319       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
320     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
321   }
322 
323   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
324     // A VTT parameter was passed to the constructor, use it.
325     VTT = LoadCXXVTT();
326     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
327   } else {
328     // We're the complete constructor, so get the VTT by name.
329     VTT = CGM.getVTables().GetAddrOfVTT(RD);
330     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
331   }
332 
333   return VTT;
334 }
335 
336 namespace {
337   /// Call the destructor for a direct base class.
338   struct CallBaseDtor : EHScopeStack::Cleanup {
339     const CXXRecordDecl *BaseClass;
340     bool BaseIsVirtual;
341     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
342       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
343 
344     void Emit(CodeGenFunction &CGF, Flags flags) {
345       const CXXRecordDecl *DerivedClass =
346         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
347 
348       const CXXDestructorDecl *D = BaseClass->getDestructor();
349       llvm::Value *Addr =
350         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
351                                                   DerivedClass, BaseClass,
352                                                   BaseIsVirtual);
353       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
354                                 /*Delegating=*/false, Addr);
355     }
356   };
357 
358   /// A visitor which checks whether an initializer uses 'this' in a
359   /// way which requires the vtable to be properly set.
360   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
361     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
362 
363     bool UsesThis;
364 
365     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
366 
367     // Black-list all explicit and implicit references to 'this'.
368     //
369     // Do we need to worry about external references to 'this' derived
370     // from arbitrary code?  If so, then anything which runs arbitrary
371     // external code might potentially access the vtable.
372     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
373   };
374 }
375 
376 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
377   DynamicThisUseChecker Checker(C);
378   Checker.Visit(const_cast<Expr*>(Init));
379   return Checker.UsesThis;
380 }
381 
382 static void EmitBaseInitializer(CodeGenFunction &CGF,
383                                 const CXXRecordDecl *ClassDecl,
384                                 CXXCtorInitializer *BaseInit,
385                                 CXXCtorType CtorType) {
386   assert(BaseInit->isBaseInitializer() &&
387          "Must have base initializer!");
388 
389   llvm::Value *ThisPtr = CGF.LoadCXXThis();
390 
391   const Type *BaseType = BaseInit->getBaseClass();
392   CXXRecordDecl *BaseClassDecl =
393     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
394 
395   bool isBaseVirtual = BaseInit->isBaseVirtual();
396 
397   // The base constructor doesn't construct virtual bases.
398   if (CtorType == Ctor_Base && isBaseVirtual)
399     return;
400 
401   // If the initializer for the base (other than the constructor
402   // itself) accesses 'this' in any way, we need to initialize the
403   // vtables.
404   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
405     CGF.InitializeVTablePointers(ClassDecl);
406 
407   // We can pretend to be a complete class because it only matters for
408   // virtual bases, and we only do virtual bases for complete ctors.
409   llvm::Value *V =
410     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
411                                               BaseClassDecl,
412                                               isBaseVirtual);
413   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
414   AggValueSlot AggSlot =
415     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
416                           AggValueSlot::IsDestructed,
417                           AggValueSlot::DoesNotNeedGCBarriers,
418                           AggValueSlot::IsNotAliased);
419 
420   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
421 
422   if (CGF.CGM.getLangOpts().Exceptions &&
423       !BaseClassDecl->hasTrivialDestructor())
424     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
425                                           isBaseVirtual);
426 }
427 
428 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
429                                      LValue LHS,
430                                      Expr *Init,
431                                      llvm::Value *ArrayIndexVar,
432                                      QualType T,
433                                      ArrayRef<VarDecl *> ArrayIndexes,
434                                      unsigned Index) {
435   if (Index == ArrayIndexes.size()) {
436     LValue LV = LHS;
437 
438     if (ArrayIndexVar) {
439       // If we have an array index variable, load it and use it as an offset.
440       // Then, increment the value.
441       llvm::Value *Dest = LHS.getAddress();
442       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
443       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
444       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
445       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
446       CGF.Builder.CreateStore(Next, ArrayIndexVar);
447 
448       // Update the LValue.
449       LV.setAddress(Dest);
450       CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
451       LV.setAlignment(std::min(Align, LV.getAlignment()));
452     }
453 
454     switch (CGF.getEvaluationKind(T)) {
455     case TEK_Scalar:
456       CGF.EmitScalarInit(Init, /*decl*/ 0, LV, false);
457       break;
458     case TEK_Complex:
459       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
460       break;
461     case TEK_Aggregate: {
462       AggValueSlot Slot =
463         AggValueSlot::forLValue(LV,
464                                 AggValueSlot::IsDestructed,
465                                 AggValueSlot::DoesNotNeedGCBarriers,
466                                 AggValueSlot::IsNotAliased);
467 
468       CGF.EmitAggExpr(Init, Slot);
469       break;
470     }
471     }
472 
473     return;
474   }
475 
476   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
477   assert(Array && "Array initialization without the array type?");
478   llvm::Value *IndexVar
479     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
480   assert(IndexVar && "Array index variable not loaded");
481 
482   // Initialize this index variable to zero.
483   llvm::Value* Zero
484     = llvm::Constant::getNullValue(
485                               CGF.ConvertType(CGF.getContext().getSizeType()));
486   CGF.Builder.CreateStore(Zero, IndexVar);
487 
488   // Start the loop with a block that tests the condition.
489   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
490   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
491 
492   CGF.EmitBlock(CondBlock);
493 
494   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
495   // Generate: if (loop-index < number-of-elements) fall to the loop body,
496   // otherwise, go to the block after the for-loop.
497   uint64_t NumElements = Array->getSize().getZExtValue();
498   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
499   llvm::Value *NumElementsPtr =
500     llvm::ConstantInt::get(Counter->getType(), NumElements);
501   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
502                                                   "isless");
503 
504   // If the condition is true, execute the body.
505   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
506 
507   CGF.EmitBlock(ForBody);
508   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
509 
510   // Inside the loop body recurse to emit the inner loop or, eventually, the
511   // constructor call.
512   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
513                            Array->getElementType(), ArrayIndexes, Index + 1);
514 
515   CGF.EmitBlock(ContinueBlock);
516 
517   // Emit the increment of the loop counter.
518   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
519   Counter = CGF.Builder.CreateLoad(IndexVar);
520   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
521   CGF.Builder.CreateStore(NextVal, IndexVar);
522 
523   // Finally, branch back up to the condition for the next iteration.
524   CGF.EmitBranch(CondBlock);
525 
526   // Emit the fall-through block.
527   CGF.EmitBlock(AfterFor, true);
528 }
529 
530 static void EmitMemberInitializer(CodeGenFunction &CGF,
531                                   const CXXRecordDecl *ClassDecl,
532                                   CXXCtorInitializer *MemberInit,
533                                   const CXXConstructorDecl *Constructor,
534                                   FunctionArgList &Args) {
535   assert(MemberInit->isAnyMemberInitializer() &&
536          "Must have member initializer!");
537   assert(MemberInit->getInit() && "Must have initializer!");
538 
539   // non-static data member initializers.
540   FieldDecl *Field = MemberInit->getAnyMember();
541   QualType FieldType = Field->getType();
542 
543   llvm::Value *ThisPtr = CGF.LoadCXXThis();
544   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
545   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
546 
547   if (MemberInit->isIndirectMemberInitializer()) {
548     // If we are initializing an anonymous union field, drill down to
549     // the field.
550     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
551     IndirectFieldDecl::chain_iterator I = IndirectField->chain_begin(),
552       IEnd = IndirectField->chain_end();
553     for ( ; I != IEnd; ++I)
554       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(*I));
555     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
556   } else {
557     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
558   }
559 
560   // Special case: if we are in a copy or move constructor, and we are copying
561   // an array of PODs or classes with trivial copy constructors, ignore the
562   // AST and perform the copy we know is equivalent.
563   // FIXME: This is hacky at best... if we had a bit more explicit information
564   // in the AST, we could generalize it more easily.
565   const ConstantArrayType *Array
566     = CGF.getContext().getAsConstantArrayType(FieldType);
567   if (Array && Constructor->isDefaulted() &&
568       Constructor->isCopyOrMoveConstructor()) {
569     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
570     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
571     if (BaseElementTy.isPODType(CGF.getContext()) ||
572         (CE && CE->getConstructor()->isTrivial())) {
573       // Find the source pointer. We know it's the last argument because
574       // we know we're in an implicit copy constructor.
575       unsigned SrcArgIndex = Args.size() - 1;
576       llvm::Value *SrcPtr
577         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
578       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
579       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
580 
581       // Copy the aggregate.
582       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
583                             LHS.isVolatileQualified());
584       return;
585     }
586   }
587 
588   ArrayRef<VarDecl *> ArrayIndexes;
589   if (MemberInit->getNumArrayIndices())
590     ArrayIndexes = MemberInit->getArrayIndexes();
591   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
592 }
593 
594 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
595                                               LValue LHS, Expr *Init,
596                                              ArrayRef<VarDecl *> ArrayIndexes) {
597   QualType FieldType = Field->getType();
598   switch (getEvaluationKind(FieldType)) {
599   case TEK_Scalar:
600     if (LHS.isSimple()) {
601       EmitExprAsInit(Init, Field, LHS, false);
602     } else {
603       RValue RHS = RValue::get(EmitScalarExpr(Init));
604       EmitStoreThroughLValue(RHS, LHS);
605     }
606     break;
607   case TEK_Complex:
608     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
609     break;
610   case TEK_Aggregate: {
611     llvm::Value *ArrayIndexVar = 0;
612     if (ArrayIndexes.size()) {
613       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
614 
615       // The LHS is a pointer to the first object we'll be constructing, as
616       // a flat array.
617       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
618       llvm::Type *BasePtr = ConvertType(BaseElementTy);
619       BasePtr = llvm::PointerType::getUnqual(BasePtr);
620       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
621                                                        BasePtr);
622       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
623 
624       // Create an array index that will be used to walk over all of the
625       // objects we're constructing.
626       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
627       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
628       Builder.CreateStore(Zero, ArrayIndexVar);
629 
630 
631       // Emit the block variables for the array indices, if any.
632       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
633         EmitAutoVarDecl(*ArrayIndexes[I]);
634     }
635 
636     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
637                              ArrayIndexes, 0);
638   }
639   }
640 
641   // Ensure that we destroy this object if an exception is thrown
642   // later in the constructor.
643   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
644   if (needsEHCleanup(dtorKind))
645     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
646 }
647 
648 /// Checks whether the given constructor is a valid subject for the
649 /// complete-to-base constructor delegation optimization, i.e.
650 /// emitting the complete constructor as a simple call to the base
651 /// constructor.
652 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
653 
654   // Currently we disable the optimization for classes with virtual
655   // bases because (1) the addresses of parameter variables need to be
656   // consistent across all initializers but (2) the delegate function
657   // call necessarily creates a second copy of the parameter variable.
658   //
659   // The limiting example (purely theoretical AFAIK):
660   //   struct A { A(int &c) { c++; } };
661   //   struct B : virtual A {
662   //     B(int count) : A(count) { printf("%d\n", count); }
663   //   };
664   // ...although even this example could in principle be emitted as a
665   // delegation since the address of the parameter doesn't escape.
666   if (Ctor->getParent()->getNumVBases()) {
667     // TODO: white-list trivial vbase initializers.  This case wouldn't
668     // be subject to the restrictions below.
669 
670     // TODO: white-list cases where:
671     //  - there are no non-reference parameters to the constructor
672     //  - the initializers don't access any non-reference parameters
673     //  - the initializers don't take the address of non-reference
674     //    parameters
675     //  - etc.
676     // If we ever add any of the above cases, remember that:
677     //  - function-try-blocks will always blacklist this optimization
678     //  - we need to perform the constructor prologue and cleanup in
679     //    EmitConstructorBody.
680 
681     return false;
682   }
683 
684   // We also disable the optimization for variadic functions because
685   // it's impossible to "re-pass" varargs.
686   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
687     return false;
688 
689   // FIXME: Decide if we can do a delegation of a delegating constructor.
690   if (Ctor->isDelegatingConstructor())
691     return false;
692 
693   return true;
694 }
695 
696 /// EmitConstructorBody - Emits the body of the current constructor.
697 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
698   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
699   CXXCtorType CtorType = CurGD.getCtorType();
700 
701   // Before we go any further, try the complete->base constructor
702   // delegation optimization.
703   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
704       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
705     if (CGDebugInfo *DI = getDebugInfo())
706       DI->EmitLocation(Builder, Ctor->getLocEnd());
707     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
708     return;
709   }
710 
711   Stmt *Body = Ctor->getBody();
712 
713   // Enter the function-try-block before the constructor prologue if
714   // applicable.
715   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
716   if (IsTryBody)
717     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
718 
719   RunCleanupsScope RunCleanups(*this);
720 
721   // TODO: in restricted cases, we can emit the vbase initializers of
722   // a complete ctor and then delegate to the base ctor.
723 
724   // Emit the constructor prologue, i.e. the base and member
725   // initializers.
726   EmitCtorPrologue(Ctor, CtorType, Args);
727 
728   // Emit the body of the statement.
729   if (IsTryBody)
730     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
731   else if (Body)
732     EmitStmt(Body);
733 
734   // Emit any cleanup blocks associated with the member or base
735   // initializers, which includes (along the exceptional path) the
736   // destructors for those members and bases that were fully
737   // constructed.
738   RunCleanups.ForceCleanup();
739 
740   if (IsTryBody)
741     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
742 }
743 
744 namespace {
745   /// RAII object to indicate that codegen is copying the value representation
746   /// instead of the object representation. Useful when copying a struct or
747   /// class which has uninitialized members and we're only performing
748   /// lvalue-to-rvalue conversion on the object but not its members.
749   class CopyingValueRepresentation {
750   public:
751     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
752         : CGF(CGF), SO(*CGF.SanOpts), OldSanOpts(CGF.SanOpts) {
753       SO.Bool = false;
754       SO.Enum = false;
755       CGF.SanOpts = &SO;
756     }
757     ~CopyingValueRepresentation() {
758       CGF.SanOpts = OldSanOpts;
759     }
760   private:
761     CodeGenFunction &CGF;
762     SanitizerOptions SO;
763     const SanitizerOptions *OldSanOpts;
764   };
765 }
766 
767 namespace {
768   class FieldMemcpyizer {
769   public:
770     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
771                     const VarDecl *SrcRec)
772       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
773         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
774         FirstField(0), LastField(0), FirstFieldOffset(0), LastFieldOffset(0),
775         LastAddedFieldIndex(0) { }
776 
777     static bool isMemcpyableField(FieldDecl *F) {
778       Qualifiers Qual = F->getType().getQualifiers();
779       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
780         return false;
781       return true;
782     }
783 
784     void addMemcpyableField(FieldDecl *F) {
785       if (FirstField == 0)
786         addInitialField(F);
787       else
788         addNextField(F);
789     }
790 
791     CharUnits getMemcpySize() const {
792       unsigned LastFieldSize =
793         LastField->isBitField() ?
794           LastField->getBitWidthValue(CGF.getContext()) :
795           CGF.getContext().getTypeSize(LastField->getType());
796       uint64_t MemcpySizeBits =
797         LastFieldOffset + LastFieldSize - FirstFieldOffset +
798         CGF.getContext().getCharWidth() - 1;
799       CharUnits MemcpySize =
800         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
801       return MemcpySize;
802     }
803 
804     void emitMemcpy() {
805       // Give the subclass a chance to bail out if it feels the memcpy isn't
806       // worth it (e.g. Hasn't aggregated enough data).
807       if (FirstField == 0) {
808         return;
809       }
810 
811       CharUnits Alignment;
812 
813       if (FirstField->isBitField()) {
814         const CGRecordLayout &RL =
815           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
816         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
817         Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
818       } else {
819         Alignment = CGF.getContext().getDeclAlign(FirstField);
820       }
821 
822       assert((CGF.getContext().toCharUnitsFromBits(FirstFieldOffset) %
823               Alignment) == 0 && "Bad field alignment.");
824 
825       CharUnits MemcpySize = getMemcpySize();
826       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
827       llvm::Value *ThisPtr = CGF.LoadCXXThis();
828       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
829       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
830       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
831       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
832       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
833 
834       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
835                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
836                    MemcpySize, Alignment);
837       reset();
838     }
839 
840     void reset() {
841       FirstField = 0;
842     }
843 
844   protected:
845     CodeGenFunction &CGF;
846     const CXXRecordDecl *ClassDecl;
847 
848   private:
849 
850     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
851                       CharUnits Size, CharUnits Alignment) {
852       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
853       llvm::Type *DBP =
854         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
855       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
856 
857       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
858       llvm::Type *SBP =
859         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
860       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
861 
862       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
863                                Alignment.getQuantity());
864     }
865 
866     void addInitialField(FieldDecl *F) {
867         FirstField = F;
868         LastField = F;
869         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
870         LastFieldOffset = FirstFieldOffset;
871         LastAddedFieldIndex = F->getFieldIndex();
872         return;
873       }
874 
875     void addNextField(FieldDecl *F) {
876       // For the most part, the following invariant will hold:
877       //   F->getFieldIndex() == LastAddedFieldIndex + 1
878       // The one exception is that Sema won't add a copy-initializer for an
879       // unnamed bitfield, which will show up here as a gap in the sequence.
880       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
881              "Cannot aggregate fields out of order.");
882       LastAddedFieldIndex = F->getFieldIndex();
883 
884       // The 'first' and 'last' fields are chosen by offset, rather than field
885       // index. This allows the code to support bitfields, as well as regular
886       // fields.
887       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
888       if (FOffset < FirstFieldOffset) {
889         FirstField = F;
890         FirstFieldOffset = FOffset;
891       } else if (FOffset > LastFieldOffset) {
892         LastField = F;
893         LastFieldOffset = FOffset;
894       }
895     }
896 
897     const VarDecl *SrcRec;
898     const ASTRecordLayout &RecLayout;
899     FieldDecl *FirstField;
900     FieldDecl *LastField;
901     uint64_t FirstFieldOffset, LastFieldOffset;
902     unsigned LastAddedFieldIndex;
903   };
904 
905   class ConstructorMemcpyizer : public FieldMemcpyizer {
906   private:
907 
908     /// Get source argument for copy constructor. Returns null if not a copy
909     /// constructor.
910     static const VarDecl* getTrivialCopySource(const CXXConstructorDecl *CD,
911                                                FunctionArgList &Args) {
912       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
913         return Args[Args.size() - 1];
914       return 0;
915     }
916 
917     // Returns true if a CXXCtorInitializer represents a member initialization
918     // that can be rolled into a memcpy.
919     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
920       if (!MemcpyableCtor)
921         return false;
922       FieldDecl *Field = MemberInit->getMember();
923       assert(Field != 0 && "No field for member init.");
924       QualType FieldType = Field->getType();
925       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
926 
927       // Bail out on non-POD, not-trivially-constructable members.
928       if (!(CE && CE->getConstructor()->isTrivial()) &&
929           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
930             FieldType->isReferenceType()))
931         return false;
932 
933       // Bail out on volatile fields.
934       if (!isMemcpyableField(Field))
935         return false;
936 
937       // Otherwise we're good.
938       return true;
939     }
940 
941   public:
942     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
943                           FunctionArgList &Args)
944       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CD, Args)),
945         ConstructorDecl(CD),
946         MemcpyableCtor(CD->isDefaulted() &&
947                        CD->isCopyOrMoveConstructor() &&
948                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
949         Args(Args) { }
950 
951     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
952       if (isMemberInitMemcpyable(MemberInit)) {
953         AggregatedInits.push_back(MemberInit);
954         addMemcpyableField(MemberInit->getMember());
955       } else {
956         emitAggregatedInits();
957         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
958                               ConstructorDecl, Args);
959       }
960     }
961 
962     void emitAggregatedInits() {
963       if (AggregatedInits.size() <= 1) {
964         // This memcpy is too small to be worthwhile. Fall back on default
965         // codegen.
966         if (!AggregatedInits.empty()) {
967           CopyingValueRepresentation CVR(CGF);
968           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
969                                 AggregatedInits[0], ConstructorDecl, Args);
970         }
971         reset();
972         return;
973       }
974 
975       pushEHDestructors();
976       emitMemcpy();
977       AggregatedInits.clear();
978     }
979 
980     void pushEHDestructors() {
981       llvm::Value *ThisPtr = CGF.LoadCXXThis();
982       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
983       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
984 
985       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
986         QualType FieldType = AggregatedInits[i]->getMember()->getType();
987         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
988         if (CGF.needsEHCleanup(dtorKind))
989           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
990       }
991     }
992 
993     void finish() {
994       emitAggregatedInits();
995     }
996 
997   private:
998     const CXXConstructorDecl *ConstructorDecl;
999     bool MemcpyableCtor;
1000     FunctionArgList &Args;
1001     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1002   };
1003 
1004   class AssignmentMemcpyizer : public FieldMemcpyizer {
1005   private:
1006 
1007     // Returns the memcpyable field copied by the given statement, if one
1008     // exists. Otherwise returns null.
1009     FieldDecl *getMemcpyableField(Stmt *S) {
1010       if (!AssignmentsMemcpyable)
1011         return 0;
1012       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1013         // Recognise trivial assignments.
1014         if (BO->getOpcode() != BO_Assign)
1015           return 0;
1016         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1017         if (!ME)
1018           return 0;
1019         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1020         if (!Field || !isMemcpyableField(Field))
1021           return 0;
1022         Stmt *RHS = BO->getRHS();
1023         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1024           RHS = EC->getSubExpr();
1025         if (!RHS)
1026           return 0;
1027         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1028         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1029           return 0;
1030         return Field;
1031       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1032         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1033         if (!(MD && (MD->isCopyAssignmentOperator() ||
1034                        MD->isMoveAssignmentOperator()) &&
1035               MD->isTrivial()))
1036           return 0;
1037         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1038         if (!IOA)
1039           return 0;
1040         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1041         if (!Field || !isMemcpyableField(Field))
1042           return 0;
1043         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1044         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1045           return 0;
1046         return Field;
1047       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1048         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1049         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1050           return 0;
1051         Expr *DstPtr = CE->getArg(0);
1052         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1053           DstPtr = DC->getSubExpr();
1054         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1055         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1056           return 0;
1057         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1058         if (!ME)
1059           return 0;
1060         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1061         if (!Field || !isMemcpyableField(Field))
1062           return 0;
1063         Expr *SrcPtr = CE->getArg(1);
1064         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1065           SrcPtr = SC->getSubExpr();
1066         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1067         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1068           return 0;
1069         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1070         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1071           return 0;
1072         return Field;
1073       }
1074 
1075       return 0;
1076     }
1077 
1078     bool AssignmentsMemcpyable;
1079     SmallVector<Stmt*, 16> AggregatedStmts;
1080 
1081   public:
1082 
1083     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1084                          FunctionArgList &Args)
1085       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1086         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1087       assert(Args.size() == 2);
1088     }
1089 
1090     void emitAssignment(Stmt *S) {
1091       FieldDecl *F = getMemcpyableField(S);
1092       if (F) {
1093         addMemcpyableField(F);
1094         AggregatedStmts.push_back(S);
1095       } else {
1096         emitAggregatedStmts();
1097         CGF.EmitStmt(S);
1098       }
1099     }
1100 
1101     void emitAggregatedStmts() {
1102       if (AggregatedStmts.size() <= 1) {
1103         if (!AggregatedStmts.empty()) {
1104           CopyingValueRepresentation CVR(CGF);
1105           CGF.EmitStmt(AggregatedStmts[0]);
1106         }
1107         reset();
1108       }
1109 
1110       emitMemcpy();
1111       AggregatedStmts.clear();
1112     }
1113 
1114     void finish() {
1115       emitAggregatedStmts();
1116     }
1117   };
1118 
1119 }
1120 
1121 /// EmitCtorPrologue - This routine generates necessary code to initialize
1122 /// base classes and non-static data members belonging to this constructor.
1123 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1124                                        CXXCtorType CtorType,
1125                                        FunctionArgList &Args) {
1126   if (CD->isDelegatingConstructor())
1127     return EmitDelegatingCXXConstructorCall(CD, Args);
1128 
1129   const CXXRecordDecl *ClassDecl = CD->getParent();
1130 
1131   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1132                                           E = CD->init_end();
1133 
1134   llvm::BasicBlock *BaseCtorContinueBB = 0;
1135   if (ClassDecl->getNumVBases() &&
1136       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1137     // The ABIs that don't have constructor variants need to put a branch
1138     // before the virtual base initialization code.
1139     BaseCtorContinueBB =
1140       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1141     assert(BaseCtorContinueBB);
1142   }
1143 
1144   // Virtual base initializers first.
1145   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1146     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1147   }
1148 
1149   if (BaseCtorContinueBB) {
1150     // Complete object handler should continue to the remaining initializers.
1151     Builder.CreateBr(BaseCtorContinueBB);
1152     EmitBlock(BaseCtorContinueBB);
1153   }
1154 
1155   // Then, non-virtual base initializers.
1156   for (; B != E && (*B)->isBaseInitializer(); B++) {
1157     assert(!(*B)->isBaseVirtual());
1158     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1159   }
1160 
1161   InitializeVTablePointers(ClassDecl);
1162 
1163   // And finally, initialize class members.
1164   FieldConstructionScope FCS(*this, CXXThisValue);
1165   ConstructorMemcpyizer CM(*this, CD, Args);
1166   for (; B != E; B++) {
1167     CXXCtorInitializer *Member = (*B);
1168     assert(!Member->isBaseInitializer());
1169     assert(Member->isAnyMemberInitializer() &&
1170            "Delegating initializer on non-delegating constructor");
1171     CM.addMemberInitializer(Member);
1172   }
1173   CM.finish();
1174 }
1175 
1176 static bool
1177 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1178 
1179 static bool
1180 HasTrivialDestructorBody(ASTContext &Context,
1181                          const CXXRecordDecl *BaseClassDecl,
1182                          const CXXRecordDecl *MostDerivedClassDecl)
1183 {
1184   // If the destructor is trivial we don't have to check anything else.
1185   if (BaseClassDecl->hasTrivialDestructor())
1186     return true;
1187 
1188   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1189     return false;
1190 
1191   // Check fields.
1192   for (CXXRecordDecl::field_iterator I = BaseClassDecl->field_begin(),
1193        E = BaseClassDecl->field_end(); I != E; ++I) {
1194     const FieldDecl *Field = *I;
1195 
1196     if (!FieldHasTrivialDestructorBody(Context, Field))
1197       return false;
1198   }
1199 
1200   // Check non-virtual bases.
1201   for (CXXRecordDecl::base_class_const_iterator I =
1202        BaseClassDecl->bases_begin(), E = BaseClassDecl->bases_end();
1203        I != E; ++I) {
1204     if (I->isVirtual())
1205       continue;
1206 
1207     const CXXRecordDecl *NonVirtualBase =
1208       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1209     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1210                                   MostDerivedClassDecl))
1211       return false;
1212   }
1213 
1214   if (BaseClassDecl == MostDerivedClassDecl) {
1215     // Check virtual bases.
1216     for (CXXRecordDecl::base_class_const_iterator I =
1217          BaseClassDecl->vbases_begin(), E = BaseClassDecl->vbases_end();
1218          I != E; ++I) {
1219       const CXXRecordDecl *VirtualBase =
1220         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1221       if (!HasTrivialDestructorBody(Context, VirtualBase,
1222                                     MostDerivedClassDecl))
1223         return false;
1224     }
1225   }
1226 
1227   return true;
1228 }
1229 
1230 static bool
1231 FieldHasTrivialDestructorBody(ASTContext &Context,
1232                               const FieldDecl *Field)
1233 {
1234   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1235 
1236   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1237   if (!RT)
1238     return true;
1239 
1240   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1241   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1242 }
1243 
1244 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1245 /// any vtable pointers before calling this destructor.
1246 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
1247                                                const CXXDestructorDecl *Dtor) {
1248   if (!Dtor->hasTrivialBody())
1249     return false;
1250 
1251   // Check the fields.
1252   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1253   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1254        E = ClassDecl->field_end(); I != E; ++I) {
1255     const FieldDecl *Field = *I;
1256 
1257     if (!FieldHasTrivialDestructorBody(Context, Field))
1258       return false;
1259   }
1260 
1261   return true;
1262 }
1263 
1264 /// EmitDestructorBody - Emits the body of the current destructor.
1265 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1266   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1267   CXXDtorType DtorType = CurGD.getDtorType();
1268 
1269   // The call to operator delete in a deleting destructor happens
1270   // outside of the function-try-block, which means it's always
1271   // possible to delegate the destructor body to the complete
1272   // destructor.  Do so.
1273   if (DtorType == Dtor_Deleting) {
1274     EnterDtorCleanups(Dtor, Dtor_Deleting);
1275     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1276                           /*Delegating=*/false, LoadCXXThis());
1277     PopCleanupBlock();
1278     return;
1279   }
1280 
1281   Stmt *Body = Dtor->getBody();
1282 
1283   // If the body is a function-try-block, enter the try before
1284   // anything else.
1285   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1286   if (isTryBody)
1287     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1288 
1289   // Enter the epilogue cleanups.
1290   RunCleanupsScope DtorEpilogue(*this);
1291 
1292   // If this is the complete variant, just invoke the base variant;
1293   // the epilogue will destruct the virtual bases.  But we can't do
1294   // this optimization if the body is a function-try-block, because
1295   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1296   // always delegate because we might not have a definition in this TU.
1297   switch (DtorType) {
1298   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1299 
1300   case Dtor_Complete:
1301     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1302            "can't emit a dtor without a body for non-Microsoft ABIs");
1303 
1304     // Enter the cleanup scopes for virtual bases.
1305     EnterDtorCleanups(Dtor, Dtor_Complete);
1306 
1307     if (!isTryBody) {
1308       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1309                             /*Delegating=*/false, LoadCXXThis());
1310       break;
1311     }
1312     // Fallthrough: act like we're in the base variant.
1313 
1314   case Dtor_Base:
1315     assert(Body);
1316 
1317     // Enter the cleanup scopes for fields and non-virtual bases.
1318     EnterDtorCleanups(Dtor, Dtor_Base);
1319 
1320     // Initialize the vtable pointers before entering the body.
1321     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
1322         InitializeVTablePointers(Dtor->getParent());
1323 
1324     if (isTryBody)
1325       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1326     else if (Body)
1327       EmitStmt(Body);
1328     else {
1329       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1330       // nothing to do besides what's in the epilogue
1331     }
1332     // -fapple-kext must inline any call to this dtor into
1333     // the caller's body.
1334     if (getLangOpts().AppleKext)
1335       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1336     break;
1337   }
1338 
1339   // Jump out through the epilogue cleanups.
1340   DtorEpilogue.ForceCleanup();
1341 
1342   // Exit the try if applicable.
1343   if (isTryBody)
1344     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1345 }
1346 
1347 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1348   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1349   const Stmt *RootS = AssignOp->getBody();
1350   assert(isa<CompoundStmt>(RootS) &&
1351          "Body of an implicit assignment operator should be compound stmt.");
1352   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1353 
1354   LexicalScope Scope(*this, RootCS->getSourceRange());
1355 
1356   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1357   for (CompoundStmt::const_body_iterator I = RootCS->body_begin(),
1358                                          E = RootCS->body_end();
1359        I != E; ++I) {
1360     AM.emitAssignment(*I);
1361   }
1362   AM.finish();
1363 }
1364 
1365 namespace {
1366   /// Call the operator delete associated with the current destructor.
1367   struct CallDtorDelete : EHScopeStack::Cleanup {
1368     CallDtorDelete() {}
1369 
1370     void Emit(CodeGenFunction &CGF, Flags flags) {
1371       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1372       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1373       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1374                          CGF.getContext().getTagDeclType(ClassDecl));
1375     }
1376   };
1377 
1378   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
1379     llvm::Value *ShouldDeleteCondition;
1380   public:
1381     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1382       : ShouldDeleteCondition(ShouldDeleteCondition) {
1383       assert(ShouldDeleteCondition != NULL);
1384     }
1385 
1386     void Emit(CodeGenFunction &CGF, Flags flags) {
1387       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1388       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1389       llvm::Value *ShouldCallDelete
1390         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1391       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1392 
1393       CGF.EmitBlock(callDeleteBB);
1394       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1395       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1396       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1397                          CGF.getContext().getTagDeclType(ClassDecl));
1398       CGF.Builder.CreateBr(continueBB);
1399 
1400       CGF.EmitBlock(continueBB);
1401     }
1402   };
1403 
1404   class DestroyField  : public EHScopeStack::Cleanup {
1405     const FieldDecl *field;
1406     CodeGenFunction::Destroyer *destroyer;
1407     bool useEHCleanupForArray;
1408 
1409   public:
1410     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1411                  bool useEHCleanupForArray)
1412       : field(field), destroyer(destroyer),
1413         useEHCleanupForArray(useEHCleanupForArray) {}
1414 
1415     void Emit(CodeGenFunction &CGF, Flags flags) {
1416       // Find the address of the field.
1417       llvm::Value *thisValue = CGF.LoadCXXThis();
1418       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1419       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1420       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1421       assert(LV.isSimple());
1422 
1423       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1424                       flags.isForNormalCleanup() && useEHCleanupForArray);
1425     }
1426   };
1427 }
1428 
1429 /// EmitDtorEpilogue - Emit all code that comes at the end of class's
1430 /// destructor. This is to call destructors on members and base classes
1431 /// in reverse order of their construction.
1432 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1433                                         CXXDtorType DtorType) {
1434   assert(!DD->isTrivial() &&
1435          "Should not emit dtor epilogue for trivial dtor!");
1436 
1437   // The deleting-destructor phase just needs to call the appropriate
1438   // operator delete that Sema picked up.
1439   if (DtorType == Dtor_Deleting) {
1440     assert(DD->getOperatorDelete() &&
1441            "operator delete missing - EmitDtorEpilogue");
1442     if (CXXStructorImplicitParamValue) {
1443       // If there is an implicit param to the deleting dtor, it's a boolean
1444       // telling whether we should call delete at the end of the dtor.
1445       EHStack.pushCleanup<CallDtorDeleteConditional>(
1446           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1447     } else {
1448       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1449     }
1450     return;
1451   }
1452 
1453   const CXXRecordDecl *ClassDecl = DD->getParent();
1454 
1455   // Unions have no bases and do not call field destructors.
1456   if (ClassDecl->isUnion())
1457     return;
1458 
1459   // The complete-destructor phase just destructs all the virtual bases.
1460   if (DtorType == Dtor_Complete) {
1461 
1462     // We push them in the forward order so that they'll be popped in
1463     // the reverse order.
1464     for (CXXRecordDecl::base_class_const_iterator I =
1465            ClassDecl->vbases_begin(), E = ClassDecl->vbases_end();
1466               I != E; ++I) {
1467       const CXXBaseSpecifier &Base = *I;
1468       CXXRecordDecl *BaseClassDecl
1469         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1470 
1471       // Ignore trivial destructors.
1472       if (BaseClassDecl->hasTrivialDestructor())
1473         continue;
1474 
1475       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1476                                         BaseClassDecl,
1477                                         /*BaseIsVirtual*/ true);
1478     }
1479 
1480     return;
1481   }
1482 
1483   assert(DtorType == Dtor_Base);
1484 
1485   // Destroy non-virtual bases.
1486   for (CXXRecordDecl::base_class_const_iterator I =
1487         ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) {
1488     const CXXBaseSpecifier &Base = *I;
1489 
1490     // Ignore virtual bases.
1491     if (Base.isVirtual())
1492       continue;
1493 
1494     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1495 
1496     // Ignore trivial destructors.
1497     if (BaseClassDecl->hasTrivialDestructor())
1498       continue;
1499 
1500     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1501                                       BaseClassDecl,
1502                                       /*BaseIsVirtual*/ false);
1503   }
1504 
1505   // Destroy direct fields.
1506   SmallVector<const FieldDecl *, 16> FieldDecls;
1507   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1508        E = ClassDecl->field_end(); I != E; ++I) {
1509     const FieldDecl *field = *I;
1510     QualType type = field->getType();
1511     QualType::DestructionKind dtorKind = type.isDestructedType();
1512     if (!dtorKind) continue;
1513 
1514     // Anonymous union members do not have their destructors called.
1515     const RecordType *RT = type->getAsUnionType();
1516     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1517 
1518     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1519     EHStack.pushCleanup<DestroyField>(cleanupKind, field,
1520                                       getDestroyer(dtorKind),
1521                                       cleanupKind & EHCleanup);
1522   }
1523 }
1524 
1525 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1526 /// constructor for each of several members of an array.
1527 ///
1528 /// \param ctor the constructor to call for each element
1529 /// \param arrayType the type of the array to initialize
1530 /// \param arrayBegin an arrayType*
1531 /// \param zeroInitialize true if each element should be
1532 ///   zero-initialized before it is constructed
1533 void
1534 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1535                                             const ConstantArrayType *arrayType,
1536                                             llvm::Value *arrayBegin,
1537                                           CallExpr::const_arg_iterator argBegin,
1538                                             CallExpr::const_arg_iterator argEnd,
1539                                             bool zeroInitialize) {
1540   QualType elementType;
1541   llvm::Value *numElements =
1542     emitArrayLength(arrayType, elementType, arrayBegin);
1543 
1544   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin,
1545                              argBegin, argEnd, zeroInitialize);
1546 }
1547 
1548 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1549 /// constructor for each of several members of an array.
1550 ///
1551 /// \param ctor the constructor to call for each element
1552 /// \param numElements the number of elements in the array;
1553 ///   may be zero
1554 /// \param arrayBegin a T*, where T is the type constructed by ctor
1555 /// \param zeroInitialize true if each element should be
1556 ///   zero-initialized before it is constructed
1557 void
1558 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1559                                             llvm::Value *numElements,
1560                                             llvm::Value *arrayBegin,
1561                                          CallExpr::const_arg_iterator argBegin,
1562                                            CallExpr::const_arg_iterator argEnd,
1563                                             bool zeroInitialize) {
1564 
1565   // It's legal for numElements to be zero.  This can happen both
1566   // dynamically, because x can be zero in 'new A[x]', and statically,
1567   // because of GCC extensions that permit zero-length arrays.  There
1568   // are probably legitimate places where we could assume that this
1569   // doesn't happen, but it's not clear that it's worth it.
1570   llvm::BranchInst *zeroCheckBranch = 0;
1571 
1572   // Optimize for a constant count.
1573   llvm::ConstantInt *constantCount
1574     = dyn_cast<llvm::ConstantInt>(numElements);
1575   if (constantCount) {
1576     // Just skip out if the constant count is zero.
1577     if (constantCount->isZero()) return;
1578 
1579   // Otherwise, emit the check.
1580   } else {
1581     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1582     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1583     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1584     EmitBlock(loopBB);
1585   }
1586 
1587   // Find the end of the array.
1588   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1589                                                     "arrayctor.end");
1590 
1591   // Enter the loop, setting up a phi for the current location to initialize.
1592   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1593   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1594   EmitBlock(loopBB);
1595   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1596                                          "arrayctor.cur");
1597   cur->addIncoming(arrayBegin, entryBB);
1598 
1599   // Inside the loop body, emit the constructor call on the array element.
1600 
1601   QualType type = getContext().getTypeDeclType(ctor->getParent());
1602 
1603   // Zero initialize the storage, if requested.
1604   if (zeroInitialize)
1605     EmitNullInitialization(cur, type);
1606 
1607   // C++ [class.temporary]p4:
1608   // There are two contexts in which temporaries are destroyed at a different
1609   // point than the end of the full-expression. The first context is when a
1610   // default constructor is called to initialize an element of an array.
1611   // If the constructor has one or more default arguments, the destruction of
1612   // every temporary created in a default argument expression is sequenced
1613   // before the construction of the next array element, if any.
1614 
1615   {
1616     RunCleanupsScope Scope(*this);
1617 
1618     // Evaluate the constructor and its arguments in a regular
1619     // partial-destroy cleanup.
1620     if (getLangOpts().Exceptions &&
1621         !ctor->getParent()->hasTrivialDestructor()) {
1622       Destroyer *destroyer = destroyCXXObject;
1623       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1624     }
1625 
1626     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false,
1627                            /*Delegating=*/false, cur, argBegin, argEnd);
1628   }
1629 
1630   // Go to the next element.
1631   llvm::Value *next =
1632     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1633                               "arrayctor.next");
1634   cur->addIncoming(next, Builder.GetInsertBlock());
1635 
1636   // Check whether that's the end of the loop.
1637   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1638   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1639   Builder.CreateCondBr(done, contBB, loopBB);
1640 
1641   // Patch the earlier check to skip over the loop.
1642   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1643 
1644   EmitBlock(contBB);
1645 }
1646 
1647 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1648                                        llvm::Value *addr,
1649                                        QualType type) {
1650   const RecordType *rtype = type->castAs<RecordType>();
1651   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1652   const CXXDestructorDecl *dtor = record->getDestructor();
1653   assert(!dtor->isTrivial());
1654   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1655                             /*Delegating=*/false, addr);
1656 }
1657 
1658 void
1659 CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1660                                         CXXCtorType Type, bool ForVirtualBase,
1661                                         bool Delegating,
1662                                         llvm::Value *This,
1663                                         CallExpr::const_arg_iterator ArgBeg,
1664                                         CallExpr::const_arg_iterator ArgEnd) {
1665   // If this is a trivial constructor, just emit what's needed.
1666   if (D->isTrivial()) {
1667     if (ArgBeg == ArgEnd) {
1668       // Trivial default constructor, no codegen required.
1669       assert(D->isDefaultConstructor() &&
1670              "trivial 0-arg ctor not a default ctor");
1671       return;
1672     }
1673 
1674     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1675     assert(D->isCopyOrMoveConstructor() &&
1676            "trivial 1-arg ctor not a copy/move ctor");
1677 
1678     const Expr *E = (*ArgBeg);
1679     QualType Ty = E->getType();
1680     llvm::Value *Src = EmitLValue(E).getAddress();
1681     EmitAggregateCopy(This, Src, Ty);
1682     return;
1683   }
1684 
1685   // Non-trivial constructors are handled in an ABI-specific manner.
1686   CGM.getCXXABI().EmitConstructorCall(*this, D, Type, ForVirtualBase,
1687                                       Delegating, This, ArgBeg, ArgEnd);
1688 }
1689 
1690 void
1691 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1692                                         llvm::Value *This, llvm::Value *Src,
1693                                         CallExpr::const_arg_iterator ArgBeg,
1694                                         CallExpr::const_arg_iterator ArgEnd) {
1695   if (D->isTrivial()) {
1696     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1697     assert(D->isCopyOrMoveConstructor() &&
1698            "trivial 1-arg ctor not a copy/move ctor");
1699     EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
1700     return;
1701   }
1702   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, clang::Ctor_Complete);
1703   assert(D->isInstance() &&
1704          "Trying to emit a member call expr on a static method!");
1705 
1706   const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>();
1707 
1708   CallArgList Args;
1709 
1710   // Push the this ptr.
1711   Args.add(RValue::get(This), D->getThisType(getContext()));
1712 
1713 
1714   // Push the src ptr.
1715   QualType QT = *(FPT->arg_type_begin());
1716   llvm::Type *t = CGM.getTypes().ConvertType(QT);
1717   Src = Builder.CreateBitCast(Src, t);
1718   Args.add(RValue::get(Src), QT);
1719 
1720   // Skip over first argument (Src).
1721   ++ArgBeg;
1722   CallExpr::const_arg_iterator Arg = ArgBeg;
1723   for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin()+1,
1724        E = FPT->arg_type_end(); I != E; ++I, ++Arg) {
1725     assert(Arg != ArgEnd && "Running over edge of argument list!");
1726     EmitCallArg(Args, *Arg, *I);
1727   }
1728   // Either we've emitted all the call args, or we have a call to a
1729   // variadic function.
1730   assert((Arg == ArgEnd || FPT->isVariadic()) &&
1731          "Extra arguments in non-variadic function!");
1732   // If we still have any arguments, emit them using the type of the argument.
1733   for (; Arg != ArgEnd; ++Arg) {
1734     QualType ArgType = Arg->getType();
1735     EmitCallArg(Args, *Arg, ArgType);
1736   }
1737 
1738   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1739            Callee, ReturnValueSlot(), Args, D);
1740 }
1741 
1742 void
1743 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1744                                                 CXXCtorType CtorType,
1745                                                 const FunctionArgList &Args,
1746                                                 SourceLocation Loc) {
1747   CallArgList DelegateArgs;
1748 
1749   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1750   assert(I != E && "no parameters to constructor");
1751 
1752   // this
1753   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1754   ++I;
1755 
1756   // vtt
1757   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
1758                                          /*ForVirtualBase=*/false,
1759                                          /*Delegating=*/true)) {
1760     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1761     DelegateArgs.add(RValue::get(VTT), VoidPP);
1762 
1763     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
1764       assert(I != E && "cannot skip vtt parameter, already done with args");
1765       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1766       ++I;
1767     }
1768   }
1769 
1770   // Explicit arguments.
1771   for (; I != E; ++I) {
1772     const VarDecl *param = *I;
1773     // FIXME: per-argument source location
1774     EmitDelegateCallArg(DelegateArgs, param, Loc);
1775   }
1776 
1777   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(Ctor, CtorType);
1778   EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
1779            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
1780 }
1781 
1782 namespace {
1783   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1784     const CXXDestructorDecl *Dtor;
1785     llvm::Value *Addr;
1786     CXXDtorType Type;
1787 
1788     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1789                            CXXDtorType Type)
1790       : Dtor(D), Addr(Addr), Type(Type) {}
1791 
1792     void Emit(CodeGenFunction &CGF, Flags flags) {
1793       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1794                                 /*Delegating=*/true, Addr);
1795     }
1796   };
1797 }
1798 
1799 void
1800 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1801                                                   const FunctionArgList &Args) {
1802   assert(Ctor->isDelegatingConstructor());
1803 
1804   llvm::Value *ThisPtr = LoadCXXThis();
1805 
1806   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1807   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1808   AggValueSlot AggSlot =
1809     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1810                           AggValueSlot::IsDestructed,
1811                           AggValueSlot::DoesNotNeedGCBarriers,
1812                           AggValueSlot::IsNotAliased);
1813 
1814   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1815 
1816   const CXXRecordDecl *ClassDecl = Ctor->getParent();
1817   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1818     CXXDtorType Type =
1819       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1820 
1821     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1822                                                 ClassDecl->getDestructor(),
1823                                                 ThisPtr, Type);
1824   }
1825 }
1826 
1827 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1828                                             CXXDtorType Type,
1829                                             bool ForVirtualBase,
1830                                             bool Delegating,
1831                                             llvm::Value *This) {
1832   GlobalDecl GD(DD, Type);
1833   llvm::Value *VTT = GetVTTParameter(GD, ForVirtualBase, Delegating);
1834   llvm::Value *Callee = 0;
1835   if (getLangOpts().AppleKext)
1836     Callee = BuildAppleKextVirtualDestructorCall(DD, Type,
1837                                                  DD->getParent());
1838 
1839   if (!Callee)
1840     Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
1841 
1842   if (DD->isVirtual())
1843     This = CGM.getCXXABI().adjustThisArgumentForVirtualCall(*this, GD, This);
1844 
1845   // FIXME: Provide a source location here.
1846   EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This,
1847                     VTT, getContext().getPointerType(getContext().VoidPtrTy),
1848                     0, 0);
1849 }
1850 
1851 namespace {
1852   struct CallLocalDtor : EHScopeStack::Cleanup {
1853     const CXXDestructorDecl *Dtor;
1854     llvm::Value *Addr;
1855 
1856     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1857       : Dtor(D), Addr(Addr) {}
1858 
1859     void Emit(CodeGenFunction &CGF, Flags flags) {
1860       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1861                                 /*ForVirtualBase=*/false,
1862                                 /*Delegating=*/false, Addr);
1863     }
1864   };
1865 }
1866 
1867 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1868                                             llvm::Value *Addr) {
1869   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1870 }
1871 
1872 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1873   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1874   if (!ClassDecl) return;
1875   if (ClassDecl->hasTrivialDestructor()) return;
1876 
1877   const CXXDestructorDecl *D = ClassDecl->getDestructor();
1878   assert(D && D->isUsed() && "destructor not marked as used!");
1879   PushDestructorCleanup(D, Addr);
1880 }
1881 
1882 void
1883 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1884                                          const CXXRecordDecl *NearestVBase,
1885                                          CharUnits OffsetFromNearestVBase,
1886                                          const CXXRecordDecl *VTableClass) {
1887   // Compute the address point.
1888   bool NeedsVirtualOffset;
1889   llvm::Value *VTableAddressPoint =
1890       CGM.getCXXABI().getVTableAddressPointInStructor(
1891           *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
1892   if (!VTableAddressPoint)
1893     return;
1894 
1895   // Compute where to store the address point.
1896   llvm::Value *VirtualOffset = 0;
1897   CharUnits NonVirtualOffset = CharUnits::Zero();
1898 
1899   if (NeedsVirtualOffset) {
1900     // We need to use the virtual base offset offset because the virtual base
1901     // might have a different offset in the most derived class.
1902     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
1903                                                               LoadCXXThis(),
1904                                                               VTableClass,
1905                                                               NearestVBase);
1906     NonVirtualOffset = OffsetFromNearestVBase;
1907   } else {
1908     // We can just use the base offset in the complete class.
1909     NonVirtualOffset = Base.getBaseOffset();
1910   }
1911 
1912   // Apply the offsets.
1913   llvm::Value *VTableField = LoadCXXThis();
1914 
1915   if (!NonVirtualOffset.isZero() || VirtualOffset)
1916     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
1917                                                   NonVirtualOffset,
1918                                                   VirtualOffset);
1919 
1920   // Finally, store the address point.
1921   llvm::Type *AddressPointPtrTy =
1922     VTableAddressPoint->getType()->getPointerTo();
1923   VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
1924   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
1925   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
1926 }
1927 
1928 void
1929 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
1930                                           const CXXRecordDecl *NearestVBase,
1931                                           CharUnits OffsetFromNearestVBase,
1932                                           bool BaseIsNonVirtualPrimaryBase,
1933                                           const CXXRecordDecl *VTableClass,
1934                                           VisitedVirtualBasesSetTy& VBases) {
1935   // If this base is a non-virtual primary base the address point has already
1936   // been set.
1937   if (!BaseIsNonVirtualPrimaryBase) {
1938     // Initialize the vtable pointer for this base.
1939     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
1940                             VTableClass);
1941   }
1942 
1943   const CXXRecordDecl *RD = Base.getBase();
1944 
1945   // Traverse bases.
1946   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1947        E = RD->bases_end(); I != E; ++I) {
1948     CXXRecordDecl *BaseDecl
1949       = cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1950 
1951     // Ignore classes without a vtable.
1952     if (!BaseDecl->isDynamicClass())
1953       continue;
1954 
1955     CharUnits BaseOffset;
1956     CharUnits BaseOffsetFromNearestVBase;
1957     bool BaseDeclIsNonVirtualPrimaryBase;
1958 
1959     if (I->isVirtual()) {
1960       // Check if we've visited this virtual base before.
1961       if (!VBases.insert(BaseDecl))
1962         continue;
1963 
1964       const ASTRecordLayout &Layout =
1965         getContext().getASTRecordLayout(VTableClass);
1966 
1967       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
1968       BaseOffsetFromNearestVBase = CharUnits::Zero();
1969       BaseDeclIsNonVirtualPrimaryBase = false;
1970     } else {
1971       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1972 
1973       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
1974       BaseOffsetFromNearestVBase =
1975         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
1976       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
1977     }
1978 
1979     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
1980                              I->isVirtual() ? BaseDecl : NearestVBase,
1981                              BaseOffsetFromNearestVBase,
1982                              BaseDeclIsNonVirtualPrimaryBase,
1983                              VTableClass, VBases);
1984   }
1985 }
1986 
1987 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
1988   // Ignore classes without a vtable.
1989   if (!RD->isDynamicClass())
1990     return;
1991 
1992   // Initialize the vtable pointers for this class and all of its bases.
1993   VisitedVirtualBasesSetTy VBases;
1994   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
1995                            /*NearestVBase=*/0,
1996                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
1997                            /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
1998 
1999   if (RD->getNumVBases())
2000     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2001 }
2002 
2003 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
2004                                            llvm::Type *Ty) {
2005   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
2006   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2007   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
2008   return VTable;
2009 }
2010 
2011 
2012 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2013 // quite what we want.
2014 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2015   while (true) {
2016     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2017       E = PE->getSubExpr();
2018       continue;
2019     }
2020 
2021     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2022       if (CE->getCastKind() == CK_NoOp) {
2023         E = CE->getSubExpr();
2024         continue;
2025       }
2026     }
2027     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2028       if (UO->getOpcode() == UO_Extension) {
2029         E = UO->getSubExpr();
2030         continue;
2031       }
2032     }
2033     return E;
2034   }
2035 }
2036 
2037 bool
2038 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2039                                                    const CXXMethodDecl *MD) {
2040   // When building with -fapple-kext, all calls must go through the vtable since
2041   // the kernel linker can do runtime patching of vtables.
2042   if (getLangOpts().AppleKext)
2043     return false;
2044 
2045   // If the most derived class is marked final, we know that no subclass can
2046   // override this member function and so we can devirtualize it. For example:
2047   //
2048   // struct A { virtual void f(); }
2049   // struct B final : A { };
2050   //
2051   // void f(B *b) {
2052   //   b->f();
2053   // }
2054   //
2055   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2056   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2057     return true;
2058 
2059   // If the member function is marked 'final', we know that it can't be
2060   // overridden and can therefore devirtualize it.
2061   if (MD->hasAttr<FinalAttr>())
2062     return true;
2063 
2064   // Similarly, if the class itself is marked 'final' it can't be overridden
2065   // and we can therefore devirtualize the member function call.
2066   if (MD->getParent()->hasAttr<FinalAttr>())
2067     return true;
2068 
2069   Base = skipNoOpCastsAndParens(Base);
2070   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2071     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2072       // This is a record decl. We know the type and can devirtualize it.
2073       return VD->getType()->isRecordType();
2074     }
2075 
2076     return false;
2077   }
2078 
2079   // We can devirtualize calls on an object accessed by a class member access
2080   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2081   // a derived class object constructed in the same location.
2082   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2083     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2084       return VD->getType()->isRecordType();
2085 
2086   // We can always devirtualize calls on temporary object expressions.
2087   if (isa<CXXConstructExpr>(Base))
2088     return true;
2089 
2090   // And calls on bound temporaries.
2091   if (isa<CXXBindTemporaryExpr>(Base))
2092     return true;
2093 
2094   // Check if this is a call expr that returns a record type.
2095   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2096     return CE->getCallReturnType()->isRecordType();
2097 
2098   // We can't devirtualize the call.
2099   return false;
2100 }
2101 
2102 llvm::Value *
2103 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2104                                              const CXXMethodDecl *MD,
2105                                              llvm::Value *This) {
2106   llvm::FunctionType *fnType =
2107     CGM.getTypes().GetFunctionType(
2108                              CGM.getTypes().arrangeCXXMethodDeclaration(MD));
2109 
2110   if (MD->isVirtual() && !CanDevirtualizeMemberFunctionCall(E->getArg(0), MD))
2111     return CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, fnType);
2112 
2113   return CGM.GetAddrOfFunction(MD, fnType);
2114 }
2115 
2116 void CodeGenFunction::EmitForwardingCallToLambda(
2117                                       const CXXMethodDecl *callOperator,
2118                                       CallArgList &callArgs) {
2119   // Get the address of the call operator.
2120   const CGFunctionInfo &calleeFnInfo =
2121     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2122   llvm::Value *callee =
2123     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2124                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2125 
2126   // Prepare the return slot.
2127   const FunctionProtoType *FPT =
2128     callOperator->getType()->castAs<FunctionProtoType>();
2129   QualType resultType = FPT->getResultType();
2130   ReturnValueSlot returnSlot;
2131   if (!resultType->isVoidType() &&
2132       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2133       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2134     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2135 
2136   // We don't need to separately arrange the call arguments because
2137   // the call can't be variadic anyway --- it's impossible to forward
2138   // variadic arguments.
2139 
2140   // Now emit our call.
2141   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2142                        callArgs, callOperator);
2143 
2144   // If necessary, copy the returned value into the slot.
2145   if (!resultType->isVoidType() && returnSlot.isNull())
2146     EmitReturnOfRValue(RV, resultType);
2147   else
2148     EmitBranchThroughCleanup(ReturnBlock);
2149 }
2150 
2151 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2152   const BlockDecl *BD = BlockInfo->getBlockDecl();
2153   const VarDecl *variable = BD->capture_begin()->getVariable();
2154   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2155 
2156   // Start building arguments for forwarding call
2157   CallArgList CallArgs;
2158 
2159   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2160   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
2161   CallArgs.add(RValue::get(ThisPtr), ThisType);
2162 
2163   // Add the rest of the parameters.
2164   for (BlockDecl::param_const_iterator I = BD->param_begin(),
2165        E = BD->param_end(); I != E; ++I) {
2166     ParmVarDecl *param = *I;
2167     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2168   }
2169   assert(!Lambda->isGenericLambda() &&
2170             "generic lambda interconversion to block not implemented");
2171   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2172 }
2173 
2174 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2175   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2176     // FIXME: Making this work correctly is nasty because it requires either
2177     // cloning the body of the call operator or making the call operator forward.
2178     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2179     return;
2180   }
2181 
2182   EmitFunctionBody(Args);
2183 }
2184 
2185 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2186   const CXXRecordDecl *Lambda = MD->getParent();
2187 
2188   // Start building arguments for forwarding call
2189   CallArgList CallArgs;
2190 
2191   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2192   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2193   CallArgs.add(RValue::get(ThisPtr), ThisType);
2194 
2195   // Add the rest of the parameters.
2196   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
2197        E = MD->param_end(); I != E; ++I) {
2198     ParmVarDecl *param = *I;
2199     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2200   }
2201   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2202   // For a generic lambda, find the corresponding call operator specialization
2203   // to which the call to the static-invoker shall be forwarded.
2204   if (Lambda->isGenericLambda()) {
2205     assert(MD->isFunctionTemplateSpecialization());
2206     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2207     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2208     void *InsertPos = 0;
2209     FunctionDecl *CorrespondingCallOpSpecialization =
2210         CallOpTemplate->findSpecialization(TAL->data(), TAL->size(), InsertPos);
2211     assert(CorrespondingCallOpSpecialization);
2212     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2213   }
2214   EmitForwardingCallToLambda(CallOp, CallArgs);
2215 }
2216 
2217 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2218   if (MD->isVariadic()) {
2219     // FIXME: Making this work correctly is nasty because it requires either
2220     // cloning the body of the call operator or making the call operator forward.
2221     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2222     return;
2223   }
2224 
2225   EmitLambdaDelegatingInvokeBody(MD);
2226 }
2227