1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 33 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 34 CastExpr::path_const_iterator End) { 35 CharUnits Offset = CharUnits::Zero(); 36 37 const ASTContext &Context = getContext(); 38 const CXXRecordDecl *RD = DerivedClass; 39 40 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 41 const CXXBaseSpecifier *Base = *I; 42 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 43 44 // Get the layout. 45 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 46 47 const CXXRecordDecl *BaseDecl = 48 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 49 50 // Add the offset. 51 Offset += Layout.getBaseClassOffset(BaseDecl); 52 53 RD = BaseDecl; 54 } 55 56 return Offset; 57 } 58 59 llvm::Constant * 60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 61 CastExpr::path_const_iterator PathBegin, 62 CastExpr::path_const_iterator PathEnd) { 63 assert(PathBegin != PathEnd && "Base path should not be empty!"); 64 65 CharUnits Offset = 66 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 67 if (Offset.isZero()) 68 return nullptr; 69 70 llvm::Type *PtrDiffTy = 71 Types.ConvertType(getContext().getPointerDiffType()); 72 73 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 74 } 75 76 /// Gets the address of a direct base class within a complete object. 77 /// This should only be used for (1) non-virtual bases or (2) virtual bases 78 /// when the type is known to be complete (e.g. in complete destructors). 79 /// 80 /// The object pointed to by 'This' is assumed to be non-null. 81 llvm::Value * 82 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This, 83 const CXXRecordDecl *Derived, 84 const CXXRecordDecl *Base, 85 bool BaseIsVirtual) { 86 // 'this' must be a pointer (in some address space) to Derived. 87 assert(This->getType()->isPointerTy() && 88 cast<llvm::PointerType>(This->getType())->getElementType() 89 == ConvertType(Derived)); 90 91 // Compute the offset of the virtual base. 92 CharUnits Offset; 93 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 94 if (BaseIsVirtual) 95 Offset = Layout.getVBaseClassOffset(Base); 96 else 97 Offset = Layout.getBaseClassOffset(Base); 98 99 // Shift and cast down to the base type. 100 // TODO: for complete types, this should be possible with a GEP. 101 llvm::Value *V = This; 102 if (Offset.isPositive()) { 103 V = Builder.CreateBitCast(V, Int8PtrTy); 104 V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity()); 105 } 106 V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo()); 107 108 return V; 109 } 110 111 static llvm::Value * 112 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr, 113 CharUnits nonVirtualOffset, 114 llvm::Value *virtualOffset) { 115 // Assert that we have something to do. 116 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 117 118 // Compute the offset from the static and dynamic components. 119 llvm::Value *baseOffset; 120 if (!nonVirtualOffset.isZero()) { 121 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 122 nonVirtualOffset.getQuantity()); 123 if (virtualOffset) { 124 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 125 } 126 } else { 127 baseOffset = virtualOffset; 128 } 129 130 // Apply the base offset. 131 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 132 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 133 return ptr; 134 } 135 136 llvm::Value *CodeGenFunction::GetAddressOfBaseClass( 137 llvm::Value *Value, const CXXRecordDecl *Derived, 138 CastExpr::path_const_iterator PathBegin, 139 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 140 SourceLocation Loc) { 141 assert(PathBegin != PathEnd && "Base path should not be empty!"); 142 143 CastExpr::path_const_iterator Start = PathBegin; 144 const CXXRecordDecl *VBase = nullptr; 145 146 // Sema has done some convenient canonicalization here: if the 147 // access path involved any virtual steps, the conversion path will 148 // *start* with a step down to the correct virtual base subobject, 149 // and hence will not require any further steps. 150 if ((*Start)->isVirtual()) { 151 VBase = 152 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 153 ++Start; 154 } 155 156 // Compute the static offset of the ultimate destination within its 157 // allocating subobject (the virtual base, if there is one, or else 158 // the "complete" object that we see). 159 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 160 VBase ? VBase : Derived, Start, PathEnd); 161 162 // If there's a virtual step, we can sometimes "devirtualize" it. 163 // For now, that's limited to when the derived type is final. 164 // TODO: "devirtualize" this for accesses to known-complete objects. 165 if (VBase && Derived->hasAttr<FinalAttr>()) { 166 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 167 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 168 NonVirtualOffset += vBaseOffset; 169 VBase = nullptr; // we no longer have a virtual step 170 } 171 172 // Get the base pointer type. 173 llvm::Type *BasePtrTy = 174 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 175 176 QualType DerivedTy = getContext().getRecordType(Derived); 177 CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy); 178 179 // If the static offset is zero and we don't have a virtual step, 180 // just do a bitcast; null checks are unnecessary. 181 if (NonVirtualOffset.isZero() && !VBase) { 182 if (sanitizePerformTypeCheck()) { 183 EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign, 184 !NullCheckValue); 185 } 186 return Builder.CreateBitCast(Value, BasePtrTy); 187 } 188 189 llvm::BasicBlock *origBB = nullptr; 190 llvm::BasicBlock *endBB = nullptr; 191 192 // Skip over the offset (and the vtable load) if we're supposed to 193 // null-check the pointer. 194 if (NullCheckValue) { 195 origBB = Builder.GetInsertBlock(); 196 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 197 endBB = createBasicBlock("cast.end"); 198 199 llvm::Value *isNull = Builder.CreateIsNull(Value); 200 Builder.CreateCondBr(isNull, endBB, notNullBB); 201 EmitBlock(notNullBB); 202 } 203 204 if (sanitizePerformTypeCheck()) { 205 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value, 206 DerivedTy, DerivedAlign, true); 207 } 208 209 // Compute the virtual offset. 210 llvm::Value *VirtualOffset = nullptr; 211 if (VBase) { 212 VirtualOffset = 213 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 214 } 215 216 // Apply both offsets. 217 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, 218 NonVirtualOffset, 219 VirtualOffset); 220 221 // Cast to the destination type. 222 Value = Builder.CreateBitCast(Value, BasePtrTy); 223 224 // Build a phi if we needed a null check. 225 if (NullCheckValue) { 226 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 227 Builder.CreateBr(endBB); 228 EmitBlock(endBB); 229 230 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 231 PHI->addIncoming(Value, notNullBB); 232 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 233 Value = PHI; 234 } 235 236 return Value; 237 } 238 239 llvm::Value * 240 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value, 241 const CXXRecordDecl *Derived, 242 CastExpr::path_const_iterator PathBegin, 243 CastExpr::path_const_iterator PathEnd, 244 bool NullCheckValue) { 245 assert(PathBegin != PathEnd && "Base path should not be empty!"); 246 247 QualType DerivedTy = 248 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 249 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 250 251 llvm::Value *NonVirtualOffset = 252 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 253 254 if (!NonVirtualOffset) { 255 // No offset, we can just cast back. 256 return Builder.CreateBitCast(Value, DerivedPtrTy); 257 } 258 259 llvm::BasicBlock *CastNull = nullptr; 260 llvm::BasicBlock *CastNotNull = nullptr; 261 llvm::BasicBlock *CastEnd = nullptr; 262 263 if (NullCheckValue) { 264 CastNull = createBasicBlock("cast.null"); 265 CastNotNull = createBasicBlock("cast.notnull"); 266 CastEnd = createBasicBlock("cast.end"); 267 268 llvm::Value *IsNull = Builder.CreateIsNull(Value); 269 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 270 EmitBlock(CastNotNull); 271 } 272 273 // Apply the offset. 274 Value = Builder.CreateBitCast(Value, Int8PtrTy); 275 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 276 "sub.ptr"); 277 278 // Just cast. 279 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 280 281 if (NullCheckValue) { 282 Builder.CreateBr(CastEnd); 283 EmitBlock(CastNull); 284 Builder.CreateBr(CastEnd); 285 EmitBlock(CastEnd); 286 287 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 288 PHI->addIncoming(Value, CastNotNull); 289 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), 290 CastNull); 291 Value = PHI; 292 } 293 294 return Value; 295 } 296 297 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 298 bool ForVirtualBase, 299 bool Delegating) { 300 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 301 // This constructor/destructor does not need a VTT parameter. 302 return nullptr; 303 } 304 305 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 306 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 307 308 llvm::Value *VTT; 309 310 uint64_t SubVTTIndex; 311 312 if (Delegating) { 313 // If this is a delegating constructor call, just load the VTT. 314 return LoadCXXVTT(); 315 } else if (RD == Base) { 316 // If the record matches the base, this is the complete ctor/dtor 317 // variant calling the base variant in a class with virtual bases. 318 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 319 "doing no-op VTT offset in base dtor/ctor?"); 320 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 321 SubVTTIndex = 0; 322 } else { 323 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 324 CharUnits BaseOffset = ForVirtualBase ? 325 Layout.getVBaseClassOffset(Base) : 326 Layout.getBaseClassOffset(Base); 327 328 SubVTTIndex = 329 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 330 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 331 } 332 333 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 334 // A VTT parameter was passed to the constructor, use it. 335 VTT = LoadCXXVTT(); 336 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 337 } else { 338 // We're the complete constructor, so get the VTT by name. 339 VTT = CGM.getVTables().GetAddrOfVTT(RD); 340 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 341 } 342 343 return VTT; 344 } 345 346 namespace { 347 /// Call the destructor for a direct base class. 348 struct CallBaseDtor : EHScopeStack::Cleanup { 349 const CXXRecordDecl *BaseClass; 350 bool BaseIsVirtual; 351 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 352 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 353 354 void Emit(CodeGenFunction &CGF, Flags flags) override { 355 const CXXRecordDecl *DerivedClass = 356 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 357 358 const CXXDestructorDecl *D = BaseClass->getDestructor(); 359 llvm::Value *Addr = 360 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(), 361 DerivedClass, BaseClass, 362 BaseIsVirtual); 363 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 364 /*Delegating=*/false, Addr); 365 } 366 }; 367 368 /// A visitor which checks whether an initializer uses 'this' in a 369 /// way which requires the vtable to be properly set. 370 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 371 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 372 373 bool UsesThis; 374 375 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 376 377 // Black-list all explicit and implicit references to 'this'. 378 // 379 // Do we need to worry about external references to 'this' derived 380 // from arbitrary code? If so, then anything which runs arbitrary 381 // external code might potentially access the vtable. 382 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 383 }; 384 } 385 386 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 387 DynamicThisUseChecker Checker(C); 388 Checker.Visit(Init); 389 return Checker.UsesThis; 390 } 391 392 static void EmitBaseInitializer(CodeGenFunction &CGF, 393 const CXXRecordDecl *ClassDecl, 394 CXXCtorInitializer *BaseInit, 395 CXXCtorType CtorType) { 396 assert(BaseInit->isBaseInitializer() && 397 "Must have base initializer!"); 398 399 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 400 401 const Type *BaseType = BaseInit->getBaseClass(); 402 CXXRecordDecl *BaseClassDecl = 403 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 404 405 bool isBaseVirtual = BaseInit->isBaseVirtual(); 406 407 // The base constructor doesn't construct virtual bases. 408 if (CtorType == Ctor_Base && isBaseVirtual) 409 return; 410 411 // If the initializer for the base (other than the constructor 412 // itself) accesses 'this' in any way, we need to initialize the 413 // vtables. 414 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 415 CGF.InitializeVTablePointers(ClassDecl); 416 417 // We can pretend to be a complete class because it only matters for 418 // virtual bases, and we only do virtual bases for complete ctors. 419 llvm::Value *V = 420 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 421 BaseClassDecl, 422 isBaseVirtual); 423 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType); 424 AggValueSlot AggSlot = 425 AggValueSlot::forAddr(V, Alignment, Qualifiers(), 426 AggValueSlot::IsDestructed, 427 AggValueSlot::DoesNotNeedGCBarriers, 428 AggValueSlot::IsNotAliased); 429 430 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 431 432 if (CGF.CGM.getLangOpts().Exceptions && 433 !BaseClassDecl->hasTrivialDestructor()) 434 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 435 isBaseVirtual); 436 } 437 438 static void EmitAggMemberInitializer(CodeGenFunction &CGF, 439 LValue LHS, 440 Expr *Init, 441 llvm::Value *ArrayIndexVar, 442 QualType T, 443 ArrayRef<VarDecl *> ArrayIndexes, 444 unsigned Index) { 445 if (Index == ArrayIndexes.size()) { 446 LValue LV = LHS; 447 448 if (ArrayIndexVar) { 449 // If we have an array index variable, load it and use it as an offset. 450 // Then, increment the value. 451 llvm::Value *Dest = LHS.getAddress(); 452 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar); 453 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress"); 454 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1); 455 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc"); 456 CGF.Builder.CreateStore(Next, ArrayIndexVar); 457 458 // Update the LValue. 459 LV.setAddress(Dest); 460 CharUnits Align = CGF.getContext().getTypeAlignInChars(T); 461 LV.setAlignment(std::min(Align, LV.getAlignment())); 462 } 463 464 switch (CGF.getEvaluationKind(T)) { 465 case TEK_Scalar: 466 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false); 467 break; 468 case TEK_Complex: 469 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true); 470 break; 471 case TEK_Aggregate: { 472 AggValueSlot Slot = 473 AggValueSlot::forLValue(LV, 474 AggValueSlot::IsDestructed, 475 AggValueSlot::DoesNotNeedGCBarriers, 476 AggValueSlot::IsNotAliased); 477 478 CGF.EmitAggExpr(Init, Slot); 479 break; 480 } 481 } 482 483 return; 484 } 485 486 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T); 487 assert(Array && "Array initialization without the array type?"); 488 llvm::Value *IndexVar 489 = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]); 490 assert(IndexVar && "Array index variable not loaded"); 491 492 // Initialize this index variable to zero. 493 llvm::Value* Zero 494 = llvm::Constant::getNullValue( 495 CGF.ConvertType(CGF.getContext().getSizeType())); 496 CGF.Builder.CreateStore(Zero, IndexVar); 497 498 // Start the loop with a block that tests the condition. 499 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond"); 500 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end"); 501 502 CGF.EmitBlock(CondBlock); 503 504 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body"); 505 // Generate: if (loop-index < number-of-elements) fall to the loop body, 506 // otherwise, go to the block after the for-loop. 507 uint64_t NumElements = Array->getSize().getZExtValue(); 508 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar); 509 llvm::Value *NumElementsPtr = 510 llvm::ConstantInt::get(Counter->getType(), NumElements); 511 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr, 512 "isless"); 513 514 // If the condition is true, execute the body. 515 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor); 516 517 CGF.EmitBlock(ForBody); 518 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc"); 519 520 // Inside the loop body recurse to emit the inner loop or, eventually, the 521 // constructor call. 522 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar, 523 Array->getElementType(), ArrayIndexes, Index + 1); 524 525 CGF.EmitBlock(ContinueBlock); 526 527 // Emit the increment of the loop counter. 528 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1); 529 Counter = CGF.Builder.CreateLoad(IndexVar); 530 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc"); 531 CGF.Builder.CreateStore(NextVal, IndexVar); 532 533 // Finally, branch back up to the condition for the next iteration. 534 CGF.EmitBranch(CondBlock); 535 536 // Emit the fall-through block. 537 CGF.EmitBlock(AfterFor, true); 538 } 539 540 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 541 auto *CD = dyn_cast<CXXConstructorDecl>(D); 542 if (!(CD && CD->isCopyOrMoveConstructor()) && 543 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 544 return false; 545 546 // We can emit a memcpy for a trivial copy or move constructor/assignment. 547 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 548 return true; 549 550 // We *must* emit a memcpy for a defaulted union copy or move op. 551 if (D->getParent()->isUnion() && D->isDefaulted()) 552 return true; 553 554 return false; 555 } 556 557 static void EmitMemberInitializer(CodeGenFunction &CGF, 558 const CXXRecordDecl *ClassDecl, 559 CXXCtorInitializer *MemberInit, 560 const CXXConstructorDecl *Constructor, 561 FunctionArgList &Args) { 562 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 563 assert(MemberInit->isAnyMemberInitializer() && 564 "Must have member initializer!"); 565 assert(MemberInit->getInit() && "Must have initializer!"); 566 567 // non-static data member initializers. 568 FieldDecl *Field = MemberInit->getAnyMember(); 569 QualType FieldType = Field->getType(); 570 571 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 572 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 573 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 574 575 if (MemberInit->isIndirectMemberInitializer()) { 576 // If we are initializing an anonymous union field, drill down to 577 // the field. 578 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 579 for (const auto *I : IndirectField->chain()) 580 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 581 FieldType = MemberInit->getIndirectMember()->getAnonField()->getType(); 582 } else { 583 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 584 } 585 586 // Special case: if we are in a copy or move constructor, and we are copying 587 // an array of PODs or classes with trivial copy constructors, ignore the 588 // AST and perform the copy we know is equivalent. 589 // FIXME: This is hacky at best... if we had a bit more explicit information 590 // in the AST, we could generalize it more easily. 591 const ConstantArrayType *Array 592 = CGF.getContext().getAsConstantArrayType(FieldType); 593 if (Array && Constructor->isDefaulted() && 594 Constructor->isCopyOrMoveConstructor()) { 595 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 596 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 597 if (BaseElementTy.isPODType(CGF.getContext()) || 598 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 599 unsigned SrcArgIndex = 600 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 601 llvm::Value *SrcPtr 602 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 603 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 604 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 605 606 // Copy the aggregate. 607 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 608 LHS.isVolatileQualified()); 609 // Ensure that we destroy the objects if an exception is thrown later in 610 // the constructor. 611 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 612 if (CGF.needsEHCleanup(dtorKind)) 613 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 614 return; 615 } 616 } 617 618 ArrayRef<VarDecl *> ArrayIndexes; 619 if (MemberInit->getNumArrayIndices()) 620 ArrayIndexes = MemberInit->getArrayIndexes(); 621 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes); 622 } 623 624 void CodeGenFunction::EmitInitializerForField( 625 FieldDecl *Field, LValue LHS, Expr *Init, 626 ArrayRef<VarDecl *> ArrayIndexes) { 627 QualType FieldType = Field->getType(); 628 switch (getEvaluationKind(FieldType)) { 629 case TEK_Scalar: 630 if (LHS.isSimple()) { 631 EmitExprAsInit(Init, Field, LHS, false); 632 } else { 633 RValue RHS = RValue::get(EmitScalarExpr(Init)); 634 EmitStoreThroughLValue(RHS, LHS); 635 } 636 break; 637 case TEK_Complex: 638 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 639 break; 640 case TEK_Aggregate: { 641 llvm::Value *ArrayIndexVar = nullptr; 642 if (ArrayIndexes.size()) { 643 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 644 645 // The LHS is a pointer to the first object we'll be constructing, as 646 // a flat array. 647 QualType BaseElementTy = getContext().getBaseElementType(FieldType); 648 llvm::Type *BasePtr = ConvertType(BaseElementTy); 649 BasePtr = llvm::PointerType::getUnqual(BasePtr); 650 llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), 651 BasePtr); 652 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy); 653 654 // Create an array index that will be used to walk over all of the 655 // objects we're constructing. 656 ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index"); 657 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy); 658 Builder.CreateStore(Zero, ArrayIndexVar); 659 660 661 // Emit the block variables for the array indices, if any. 662 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I) 663 EmitAutoVarDecl(*ArrayIndexes[I]); 664 } 665 666 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType, 667 ArrayIndexes, 0); 668 } 669 } 670 671 // Ensure that we destroy this object if an exception is thrown 672 // later in the constructor. 673 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 674 if (needsEHCleanup(dtorKind)) 675 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 676 } 677 678 /// Checks whether the given constructor is a valid subject for the 679 /// complete-to-base constructor delegation optimization, i.e. 680 /// emitting the complete constructor as a simple call to the base 681 /// constructor. 682 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) { 683 684 // Currently we disable the optimization for classes with virtual 685 // bases because (1) the addresses of parameter variables need to be 686 // consistent across all initializers but (2) the delegate function 687 // call necessarily creates a second copy of the parameter variable. 688 // 689 // The limiting example (purely theoretical AFAIK): 690 // struct A { A(int &c) { c++; } }; 691 // struct B : virtual A { 692 // B(int count) : A(count) { printf("%d\n", count); } 693 // }; 694 // ...although even this example could in principle be emitted as a 695 // delegation since the address of the parameter doesn't escape. 696 if (Ctor->getParent()->getNumVBases()) { 697 // TODO: white-list trivial vbase initializers. This case wouldn't 698 // be subject to the restrictions below. 699 700 // TODO: white-list cases where: 701 // - there are no non-reference parameters to the constructor 702 // - the initializers don't access any non-reference parameters 703 // - the initializers don't take the address of non-reference 704 // parameters 705 // - etc. 706 // If we ever add any of the above cases, remember that: 707 // - function-try-blocks will always blacklist this optimization 708 // - we need to perform the constructor prologue and cleanup in 709 // EmitConstructorBody. 710 711 return false; 712 } 713 714 // We also disable the optimization for variadic functions because 715 // it's impossible to "re-pass" varargs. 716 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 717 return false; 718 719 // FIXME: Decide if we can do a delegation of a delegating constructor. 720 if (Ctor->isDelegatingConstructor()) 721 return false; 722 723 return true; 724 } 725 726 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 727 // to poison the extra field paddings inserted under 728 // -fsanitize-address-field-padding=1|2. 729 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 730 ASTContext &Context = getContext(); 731 const CXXRecordDecl *ClassDecl = 732 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 733 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 734 if (!ClassDecl->mayInsertExtraPadding()) return; 735 736 struct SizeAndOffset { 737 uint64_t Size; 738 uint64_t Offset; 739 }; 740 741 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 742 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 743 744 // Populate sizes and offsets of fields. 745 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 746 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 747 SSV[i].Offset = 748 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 749 750 size_t NumFields = 0; 751 for (const auto *Field : ClassDecl->fields()) { 752 const FieldDecl *D = Field; 753 std::pair<CharUnits, CharUnits> FieldInfo = 754 Context.getTypeInfoInChars(D->getType()); 755 CharUnits FieldSize = FieldInfo.first; 756 assert(NumFields < SSV.size()); 757 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 758 NumFields++; 759 } 760 assert(NumFields == SSV.size()); 761 if (SSV.size() <= 1) return; 762 763 // We will insert calls to __asan_* run-time functions. 764 // LLVM AddressSanitizer pass may decide to inline them later. 765 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 766 llvm::FunctionType *FTy = 767 llvm::FunctionType::get(CGM.VoidTy, Args, false); 768 llvm::Constant *F = CGM.CreateRuntimeFunction( 769 FTy, Prologue ? "__asan_poison_intra_object_redzone" 770 : "__asan_unpoison_intra_object_redzone"); 771 772 llvm::Value *ThisPtr = LoadCXXThis(); 773 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 774 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 775 // For each field check if it has sufficient padding, 776 // if so (un)poison it with a call. 777 for (size_t i = 0; i < SSV.size(); i++) { 778 uint64_t AsanAlignment = 8; 779 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 780 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 781 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 782 if (PoisonSize < AsanAlignment || !SSV[i].Size || 783 (NextField % AsanAlignment) != 0) 784 continue; 785 Builder.CreateCall( 786 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 787 Builder.getIntN(PtrSize, PoisonSize)}); 788 } 789 } 790 791 /// EmitConstructorBody - Emits the body of the current constructor. 792 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 793 EmitAsanPrologueOrEpilogue(true); 794 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 795 CXXCtorType CtorType = CurGD.getCtorType(); 796 797 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 798 CtorType == Ctor_Complete) && 799 "can only generate complete ctor for this ABI"); 800 801 // Before we go any further, try the complete->base constructor 802 // delegation optimization. 803 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 804 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 805 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 806 return; 807 } 808 809 const FunctionDecl *Definition = 0; 810 Stmt *Body = Ctor->getBody(Definition); 811 assert(Definition == Ctor && "emitting wrong constructor body"); 812 813 // Enter the function-try-block before the constructor prologue if 814 // applicable. 815 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 816 if (IsTryBody) 817 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 818 819 incrementProfileCounter(Body); 820 821 RunCleanupsScope RunCleanups(*this); 822 823 // TODO: in restricted cases, we can emit the vbase initializers of 824 // a complete ctor and then delegate to the base ctor. 825 826 // Emit the constructor prologue, i.e. the base and member 827 // initializers. 828 EmitCtorPrologue(Ctor, CtorType, Args); 829 830 // Emit the body of the statement. 831 if (IsTryBody) 832 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 833 else if (Body) 834 EmitStmt(Body); 835 836 // Emit any cleanup blocks associated with the member or base 837 // initializers, which includes (along the exceptional path) the 838 // destructors for those members and bases that were fully 839 // constructed. 840 RunCleanups.ForceCleanup(); 841 842 if (IsTryBody) 843 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 844 } 845 846 namespace { 847 /// RAII object to indicate that codegen is copying the value representation 848 /// instead of the object representation. Useful when copying a struct or 849 /// class which has uninitialized members and we're only performing 850 /// lvalue-to-rvalue conversion on the object but not its members. 851 class CopyingValueRepresentation { 852 public: 853 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 854 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 855 CGF.SanOpts.set(SanitizerKind::Bool, false); 856 CGF.SanOpts.set(SanitizerKind::Enum, false); 857 } 858 ~CopyingValueRepresentation() { 859 CGF.SanOpts = OldSanOpts; 860 } 861 private: 862 CodeGenFunction &CGF; 863 SanitizerSet OldSanOpts; 864 }; 865 } 866 867 namespace { 868 class FieldMemcpyizer { 869 public: 870 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 871 const VarDecl *SrcRec) 872 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 873 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 874 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 875 LastFieldOffset(0), LastAddedFieldIndex(0) {} 876 877 bool isMemcpyableField(FieldDecl *F) const { 878 // Never memcpy fields when we are adding poisoned paddings. 879 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 880 return false; 881 Qualifiers Qual = F->getType().getQualifiers(); 882 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 883 return false; 884 return true; 885 } 886 887 void addMemcpyableField(FieldDecl *F) { 888 if (!FirstField) 889 addInitialField(F); 890 else 891 addNextField(F); 892 } 893 894 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 895 unsigned LastFieldSize = 896 LastField->isBitField() ? 897 LastField->getBitWidthValue(CGF.getContext()) : 898 CGF.getContext().getTypeSize(LastField->getType()); 899 uint64_t MemcpySizeBits = 900 LastFieldOffset + LastFieldSize - FirstByteOffset + 901 CGF.getContext().getCharWidth() - 1; 902 CharUnits MemcpySize = 903 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 904 return MemcpySize; 905 } 906 907 void emitMemcpy() { 908 // Give the subclass a chance to bail out if it feels the memcpy isn't 909 // worth it (e.g. Hasn't aggregated enough data). 910 if (!FirstField) { 911 return; 912 } 913 914 CharUnits Alignment; 915 916 uint64_t FirstByteOffset; 917 if (FirstField->isBitField()) { 918 const CGRecordLayout &RL = 919 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 920 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 921 Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment); 922 // FirstFieldOffset is not appropriate for bitfields, 923 // it won't tell us what the storage offset should be and thus might not 924 // be properly aligned. 925 // 926 // Instead calculate the storage offset using the offset of the field in 927 // the struct type. 928 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 929 FirstByteOffset = 930 DL.getStructLayout(RL.getLLVMType()) 931 ->getElementOffsetInBits(RL.getLLVMFieldNo(FirstField)); 932 } else { 933 Alignment = CGF.getContext().getDeclAlign(FirstField); 934 FirstByteOffset = FirstFieldOffset; 935 } 936 937 assert((CGF.getContext().toCharUnitsFromBits(FirstByteOffset) % 938 Alignment) == 0 && "Bad field alignment."); 939 940 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 941 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 942 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 943 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 944 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 945 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 946 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 947 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 948 949 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(), 950 Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(), 951 MemcpySize, Alignment); 952 reset(); 953 } 954 955 void reset() { 956 FirstField = nullptr; 957 } 958 959 protected: 960 CodeGenFunction &CGF; 961 const CXXRecordDecl *ClassDecl; 962 963 private: 964 965 void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr, 966 CharUnits Size, CharUnits Alignment) { 967 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 968 llvm::Type *DBP = 969 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 970 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 971 972 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 973 llvm::Type *SBP = 974 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 975 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 976 977 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(), 978 Alignment.getQuantity()); 979 } 980 981 void addInitialField(FieldDecl *F) { 982 FirstField = F; 983 LastField = F; 984 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 985 LastFieldOffset = FirstFieldOffset; 986 LastAddedFieldIndex = F->getFieldIndex(); 987 return; 988 } 989 990 void addNextField(FieldDecl *F) { 991 // For the most part, the following invariant will hold: 992 // F->getFieldIndex() == LastAddedFieldIndex + 1 993 // The one exception is that Sema won't add a copy-initializer for an 994 // unnamed bitfield, which will show up here as a gap in the sequence. 995 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 996 "Cannot aggregate fields out of order."); 997 LastAddedFieldIndex = F->getFieldIndex(); 998 999 // The 'first' and 'last' fields are chosen by offset, rather than field 1000 // index. This allows the code to support bitfields, as well as regular 1001 // fields. 1002 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1003 if (FOffset < FirstFieldOffset) { 1004 FirstField = F; 1005 FirstFieldOffset = FOffset; 1006 } else if (FOffset > LastFieldOffset) { 1007 LastField = F; 1008 LastFieldOffset = FOffset; 1009 } 1010 } 1011 1012 const VarDecl *SrcRec; 1013 const ASTRecordLayout &RecLayout; 1014 FieldDecl *FirstField; 1015 FieldDecl *LastField; 1016 uint64_t FirstFieldOffset, LastFieldOffset; 1017 unsigned LastAddedFieldIndex; 1018 }; 1019 1020 class ConstructorMemcpyizer : public FieldMemcpyizer { 1021 private: 1022 1023 /// Get source argument for copy constructor. Returns null if not a copy 1024 /// constructor. 1025 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1026 const CXXConstructorDecl *CD, 1027 FunctionArgList &Args) { 1028 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1029 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1030 return nullptr; 1031 } 1032 1033 // Returns true if a CXXCtorInitializer represents a member initialization 1034 // that can be rolled into a memcpy. 1035 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1036 if (!MemcpyableCtor) 1037 return false; 1038 FieldDecl *Field = MemberInit->getMember(); 1039 assert(Field && "No field for member init."); 1040 QualType FieldType = Field->getType(); 1041 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1042 1043 // Bail out on non-memcpyable, not-trivially-copyable members. 1044 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1045 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1046 FieldType->isReferenceType())) 1047 return false; 1048 1049 // Bail out on volatile fields. 1050 if (!isMemcpyableField(Field)) 1051 return false; 1052 1053 // Otherwise we're good. 1054 return true; 1055 } 1056 1057 public: 1058 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1059 FunctionArgList &Args) 1060 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1061 ConstructorDecl(CD), 1062 MemcpyableCtor(CD->isDefaulted() && 1063 CD->isCopyOrMoveConstructor() && 1064 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1065 Args(Args) { } 1066 1067 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1068 if (isMemberInitMemcpyable(MemberInit)) { 1069 AggregatedInits.push_back(MemberInit); 1070 addMemcpyableField(MemberInit->getMember()); 1071 } else { 1072 emitAggregatedInits(); 1073 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1074 ConstructorDecl, Args); 1075 } 1076 } 1077 1078 void emitAggregatedInits() { 1079 if (AggregatedInits.size() <= 1) { 1080 // This memcpy is too small to be worthwhile. Fall back on default 1081 // codegen. 1082 if (!AggregatedInits.empty()) { 1083 CopyingValueRepresentation CVR(CGF); 1084 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1085 AggregatedInits[0], ConstructorDecl, Args); 1086 } 1087 reset(); 1088 return; 1089 } 1090 1091 pushEHDestructors(); 1092 emitMemcpy(); 1093 AggregatedInits.clear(); 1094 } 1095 1096 void pushEHDestructors() { 1097 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 1098 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1099 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 1100 1101 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1102 QualType FieldType = AggregatedInits[i]->getMember()->getType(); 1103 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1104 if (CGF.needsEHCleanup(dtorKind)) 1105 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 1106 } 1107 } 1108 1109 void finish() { 1110 emitAggregatedInits(); 1111 } 1112 1113 private: 1114 const CXXConstructorDecl *ConstructorDecl; 1115 bool MemcpyableCtor; 1116 FunctionArgList &Args; 1117 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1118 }; 1119 1120 class AssignmentMemcpyizer : public FieldMemcpyizer { 1121 private: 1122 1123 // Returns the memcpyable field copied by the given statement, if one 1124 // exists. Otherwise returns null. 1125 FieldDecl *getMemcpyableField(Stmt *S) { 1126 if (!AssignmentsMemcpyable) 1127 return nullptr; 1128 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1129 // Recognise trivial assignments. 1130 if (BO->getOpcode() != BO_Assign) 1131 return nullptr; 1132 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1133 if (!ME) 1134 return nullptr; 1135 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1136 if (!Field || !isMemcpyableField(Field)) 1137 return nullptr; 1138 Stmt *RHS = BO->getRHS(); 1139 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1140 RHS = EC->getSubExpr(); 1141 if (!RHS) 1142 return nullptr; 1143 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS); 1144 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field) 1145 return nullptr; 1146 return Field; 1147 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1148 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1149 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1150 return nullptr; 1151 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1152 if (!IOA) 1153 return nullptr; 1154 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1155 if (!Field || !isMemcpyableField(Field)) 1156 return nullptr; 1157 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1158 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1159 return nullptr; 1160 return Field; 1161 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1162 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1163 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1164 return nullptr; 1165 Expr *DstPtr = CE->getArg(0); 1166 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1167 DstPtr = DC->getSubExpr(); 1168 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1169 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1170 return nullptr; 1171 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1172 if (!ME) 1173 return nullptr; 1174 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1175 if (!Field || !isMemcpyableField(Field)) 1176 return nullptr; 1177 Expr *SrcPtr = CE->getArg(1); 1178 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1179 SrcPtr = SC->getSubExpr(); 1180 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1181 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1182 return nullptr; 1183 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1184 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1185 return nullptr; 1186 return Field; 1187 } 1188 1189 return nullptr; 1190 } 1191 1192 bool AssignmentsMemcpyable; 1193 SmallVector<Stmt*, 16> AggregatedStmts; 1194 1195 public: 1196 1197 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1198 FunctionArgList &Args) 1199 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1200 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1201 assert(Args.size() == 2); 1202 } 1203 1204 void emitAssignment(Stmt *S) { 1205 FieldDecl *F = getMemcpyableField(S); 1206 if (F) { 1207 addMemcpyableField(F); 1208 AggregatedStmts.push_back(S); 1209 } else { 1210 emitAggregatedStmts(); 1211 CGF.EmitStmt(S); 1212 } 1213 } 1214 1215 void emitAggregatedStmts() { 1216 if (AggregatedStmts.size() <= 1) { 1217 if (!AggregatedStmts.empty()) { 1218 CopyingValueRepresentation CVR(CGF); 1219 CGF.EmitStmt(AggregatedStmts[0]); 1220 } 1221 reset(); 1222 } 1223 1224 emitMemcpy(); 1225 AggregatedStmts.clear(); 1226 } 1227 1228 void finish() { 1229 emitAggregatedStmts(); 1230 } 1231 }; 1232 1233 } 1234 1235 /// EmitCtorPrologue - This routine generates necessary code to initialize 1236 /// base classes and non-static data members belonging to this constructor. 1237 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1238 CXXCtorType CtorType, 1239 FunctionArgList &Args) { 1240 if (CD->isDelegatingConstructor()) 1241 return EmitDelegatingCXXConstructorCall(CD, Args); 1242 1243 const CXXRecordDecl *ClassDecl = CD->getParent(); 1244 1245 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1246 E = CD->init_end(); 1247 1248 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1249 if (ClassDecl->getNumVBases() && 1250 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1251 // The ABIs that don't have constructor variants need to put a branch 1252 // before the virtual base initialization code. 1253 BaseCtorContinueBB = 1254 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1255 assert(BaseCtorContinueBB); 1256 } 1257 1258 // Virtual base initializers first. 1259 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1260 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1261 } 1262 1263 if (BaseCtorContinueBB) { 1264 // Complete object handler should continue to the remaining initializers. 1265 Builder.CreateBr(BaseCtorContinueBB); 1266 EmitBlock(BaseCtorContinueBB); 1267 } 1268 1269 // Then, non-virtual base initializers. 1270 for (; B != E && (*B)->isBaseInitializer(); B++) { 1271 assert(!(*B)->isBaseVirtual()); 1272 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1273 } 1274 1275 InitializeVTablePointers(ClassDecl); 1276 1277 // And finally, initialize class members. 1278 FieldConstructionScope FCS(*this, CXXThisValue); 1279 ConstructorMemcpyizer CM(*this, CD, Args); 1280 for (; B != E; B++) { 1281 CXXCtorInitializer *Member = (*B); 1282 assert(!Member->isBaseInitializer()); 1283 assert(Member->isAnyMemberInitializer() && 1284 "Delegating initializer on non-delegating constructor"); 1285 CM.addMemberInitializer(Member); 1286 } 1287 CM.finish(); 1288 } 1289 1290 static bool 1291 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1292 1293 static bool 1294 HasTrivialDestructorBody(ASTContext &Context, 1295 const CXXRecordDecl *BaseClassDecl, 1296 const CXXRecordDecl *MostDerivedClassDecl) 1297 { 1298 // If the destructor is trivial we don't have to check anything else. 1299 if (BaseClassDecl->hasTrivialDestructor()) 1300 return true; 1301 1302 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1303 return false; 1304 1305 // Check fields. 1306 for (const auto *Field : BaseClassDecl->fields()) 1307 if (!FieldHasTrivialDestructorBody(Context, Field)) 1308 return false; 1309 1310 // Check non-virtual bases. 1311 for (const auto &I : BaseClassDecl->bases()) { 1312 if (I.isVirtual()) 1313 continue; 1314 1315 const CXXRecordDecl *NonVirtualBase = 1316 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1317 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1318 MostDerivedClassDecl)) 1319 return false; 1320 } 1321 1322 if (BaseClassDecl == MostDerivedClassDecl) { 1323 // Check virtual bases. 1324 for (const auto &I : BaseClassDecl->vbases()) { 1325 const CXXRecordDecl *VirtualBase = 1326 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1327 if (!HasTrivialDestructorBody(Context, VirtualBase, 1328 MostDerivedClassDecl)) 1329 return false; 1330 } 1331 } 1332 1333 return true; 1334 } 1335 1336 static bool 1337 FieldHasTrivialDestructorBody(ASTContext &Context, 1338 const FieldDecl *Field) 1339 { 1340 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1341 1342 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1343 if (!RT) 1344 return true; 1345 1346 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1347 1348 // The destructor for an implicit anonymous union member is never invoked. 1349 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1350 return false; 1351 1352 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1353 } 1354 1355 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1356 /// any vtable pointers before calling this destructor. 1357 static bool CanSkipVTablePointerInitialization(ASTContext &Context, 1358 const CXXDestructorDecl *Dtor) { 1359 if (!Dtor->hasTrivialBody()) 1360 return false; 1361 1362 // Check the fields. 1363 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1364 for (const auto *Field : ClassDecl->fields()) 1365 if (!FieldHasTrivialDestructorBody(Context, Field)) 1366 return false; 1367 1368 return true; 1369 } 1370 1371 /// EmitDestructorBody - Emits the body of the current destructor. 1372 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1373 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1374 CXXDtorType DtorType = CurGD.getDtorType(); 1375 1376 Stmt *Body = Dtor->getBody(); 1377 if (Body) 1378 incrementProfileCounter(Body); 1379 1380 // The call to operator delete in a deleting destructor happens 1381 // outside of the function-try-block, which means it's always 1382 // possible to delegate the destructor body to the complete 1383 // destructor. Do so. 1384 if (DtorType == Dtor_Deleting) { 1385 EnterDtorCleanups(Dtor, Dtor_Deleting); 1386 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1387 /*Delegating=*/false, LoadCXXThis()); 1388 PopCleanupBlock(); 1389 return; 1390 } 1391 1392 // If the body is a function-try-block, enter the try before 1393 // anything else. 1394 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1395 if (isTryBody) 1396 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1397 EmitAsanPrologueOrEpilogue(false); 1398 1399 // Enter the epilogue cleanups. 1400 RunCleanupsScope DtorEpilogue(*this); 1401 1402 // If this is the complete variant, just invoke the base variant; 1403 // the epilogue will destruct the virtual bases. But we can't do 1404 // this optimization if the body is a function-try-block, because 1405 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1406 // always delegate because we might not have a definition in this TU. 1407 switch (DtorType) { 1408 case Dtor_Comdat: 1409 llvm_unreachable("not expecting a COMDAT"); 1410 1411 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1412 1413 case Dtor_Complete: 1414 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1415 "can't emit a dtor without a body for non-Microsoft ABIs"); 1416 1417 // Enter the cleanup scopes for virtual bases. 1418 EnterDtorCleanups(Dtor, Dtor_Complete); 1419 1420 if (!isTryBody) { 1421 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1422 /*Delegating=*/false, LoadCXXThis()); 1423 break; 1424 } 1425 // Fallthrough: act like we're in the base variant. 1426 1427 case Dtor_Base: 1428 assert(Body); 1429 1430 // Enter the cleanup scopes for fields and non-virtual bases. 1431 EnterDtorCleanups(Dtor, Dtor_Base); 1432 1433 // Initialize the vtable pointers before entering the body. 1434 if (!CanSkipVTablePointerInitialization(getContext(), Dtor)) 1435 InitializeVTablePointers(Dtor->getParent()); 1436 1437 if (isTryBody) 1438 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1439 else if (Body) 1440 EmitStmt(Body); 1441 else { 1442 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1443 // nothing to do besides what's in the epilogue 1444 } 1445 // -fapple-kext must inline any call to this dtor into 1446 // the caller's body. 1447 if (getLangOpts().AppleKext) 1448 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1449 break; 1450 } 1451 1452 // Jump out through the epilogue cleanups. 1453 DtorEpilogue.ForceCleanup(); 1454 1455 // Exit the try if applicable. 1456 if (isTryBody) 1457 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1458 } 1459 1460 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1461 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1462 const Stmt *RootS = AssignOp->getBody(); 1463 assert(isa<CompoundStmt>(RootS) && 1464 "Body of an implicit assignment operator should be compound stmt."); 1465 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1466 1467 LexicalScope Scope(*this, RootCS->getSourceRange()); 1468 1469 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1470 for (auto *I : RootCS->body()) 1471 AM.emitAssignment(I); 1472 AM.finish(); 1473 } 1474 1475 namespace { 1476 /// Call the operator delete associated with the current destructor. 1477 struct CallDtorDelete : EHScopeStack::Cleanup { 1478 CallDtorDelete() {} 1479 1480 void Emit(CodeGenFunction &CGF, Flags flags) override { 1481 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1482 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1483 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1484 CGF.getContext().getTagDeclType(ClassDecl)); 1485 } 1486 }; 1487 1488 struct CallDtorDeleteConditional : EHScopeStack::Cleanup { 1489 llvm::Value *ShouldDeleteCondition; 1490 public: 1491 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1492 : ShouldDeleteCondition(ShouldDeleteCondition) { 1493 assert(ShouldDeleteCondition != nullptr); 1494 } 1495 1496 void Emit(CodeGenFunction &CGF, Flags flags) override { 1497 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1498 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1499 llvm::Value *ShouldCallDelete 1500 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1501 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1502 1503 CGF.EmitBlock(callDeleteBB); 1504 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1505 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1506 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1507 CGF.getContext().getTagDeclType(ClassDecl)); 1508 CGF.Builder.CreateBr(continueBB); 1509 1510 CGF.EmitBlock(continueBB); 1511 } 1512 }; 1513 1514 class DestroyField : public EHScopeStack::Cleanup { 1515 const FieldDecl *field; 1516 CodeGenFunction::Destroyer *destroyer; 1517 bool useEHCleanupForArray; 1518 1519 public: 1520 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1521 bool useEHCleanupForArray) 1522 : field(field), destroyer(destroyer), 1523 useEHCleanupForArray(useEHCleanupForArray) {} 1524 1525 void Emit(CodeGenFunction &CGF, Flags flags) override { 1526 // Find the address of the field. 1527 llvm::Value *thisValue = CGF.LoadCXXThis(); 1528 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1529 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1530 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1531 assert(LV.isSimple()); 1532 1533 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1534 flags.isForNormalCleanup() && useEHCleanupForArray); 1535 } 1536 }; 1537 } 1538 1539 /// \brief Emit all code that comes at the end of class's 1540 /// destructor. This is to call destructors on members and base classes 1541 /// in reverse order of their construction. 1542 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1543 CXXDtorType DtorType) { 1544 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1545 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1546 1547 // The deleting-destructor phase just needs to call the appropriate 1548 // operator delete that Sema picked up. 1549 if (DtorType == Dtor_Deleting) { 1550 assert(DD->getOperatorDelete() && 1551 "operator delete missing - EnterDtorCleanups"); 1552 if (CXXStructorImplicitParamValue) { 1553 // If there is an implicit param to the deleting dtor, it's a boolean 1554 // telling whether we should call delete at the end of the dtor. 1555 EHStack.pushCleanup<CallDtorDeleteConditional>( 1556 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1557 } else { 1558 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1559 } 1560 return; 1561 } 1562 1563 const CXXRecordDecl *ClassDecl = DD->getParent(); 1564 1565 // Unions have no bases and do not call field destructors. 1566 if (ClassDecl->isUnion()) 1567 return; 1568 1569 // The complete-destructor phase just destructs all the virtual bases. 1570 if (DtorType == Dtor_Complete) { 1571 1572 // We push them in the forward order so that they'll be popped in 1573 // the reverse order. 1574 for (const auto &Base : ClassDecl->vbases()) { 1575 CXXRecordDecl *BaseClassDecl 1576 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1577 1578 // Ignore trivial destructors. 1579 if (BaseClassDecl->hasTrivialDestructor()) 1580 continue; 1581 1582 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1583 BaseClassDecl, 1584 /*BaseIsVirtual*/ true); 1585 } 1586 1587 return; 1588 } 1589 1590 assert(DtorType == Dtor_Base); 1591 1592 // Destroy non-virtual bases. 1593 for (const auto &Base : ClassDecl->bases()) { 1594 // Ignore virtual bases. 1595 if (Base.isVirtual()) 1596 continue; 1597 1598 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1599 1600 // Ignore trivial destructors. 1601 if (BaseClassDecl->hasTrivialDestructor()) 1602 continue; 1603 1604 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1605 BaseClassDecl, 1606 /*BaseIsVirtual*/ false); 1607 } 1608 1609 // Destroy direct fields. 1610 for (const auto *Field : ClassDecl->fields()) { 1611 QualType type = Field->getType(); 1612 QualType::DestructionKind dtorKind = type.isDestructedType(); 1613 if (!dtorKind) continue; 1614 1615 // Anonymous union members do not have their destructors called. 1616 const RecordType *RT = type->getAsUnionType(); 1617 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1618 1619 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1620 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1621 getDestroyer(dtorKind), 1622 cleanupKind & EHCleanup); 1623 } 1624 } 1625 1626 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1627 /// constructor for each of several members of an array. 1628 /// 1629 /// \param ctor the constructor to call for each element 1630 /// \param arrayType the type of the array to initialize 1631 /// \param arrayBegin an arrayType* 1632 /// \param zeroInitialize true if each element should be 1633 /// zero-initialized before it is constructed 1634 void CodeGenFunction::EmitCXXAggrConstructorCall( 1635 const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType, 1636 llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1637 QualType elementType; 1638 llvm::Value *numElements = 1639 emitArrayLength(arrayType, elementType, arrayBegin); 1640 1641 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1642 } 1643 1644 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1645 /// constructor for each of several members of an array. 1646 /// 1647 /// \param ctor the constructor to call for each element 1648 /// \param numElements the number of elements in the array; 1649 /// may be zero 1650 /// \param arrayBegin a T*, where T is the type constructed by ctor 1651 /// \param zeroInitialize true if each element should be 1652 /// zero-initialized before it is constructed 1653 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1654 llvm::Value *numElements, 1655 llvm::Value *arrayBegin, 1656 const CXXConstructExpr *E, 1657 bool zeroInitialize) { 1658 1659 // It's legal for numElements to be zero. This can happen both 1660 // dynamically, because x can be zero in 'new A[x]', and statically, 1661 // because of GCC extensions that permit zero-length arrays. There 1662 // are probably legitimate places where we could assume that this 1663 // doesn't happen, but it's not clear that it's worth it. 1664 llvm::BranchInst *zeroCheckBranch = nullptr; 1665 1666 // Optimize for a constant count. 1667 llvm::ConstantInt *constantCount 1668 = dyn_cast<llvm::ConstantInt>(numElements); 1669 if (constantCount) { 1670 // Just skip out if the constant count is zero. 1671 if (constantCount->isZero()) return; 1672 1673 // Otherwise, emit the check. 1674 } else { 1675 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1676 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1677 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1678 EmitBlock(loopBB); 1679 } 1680 1681 // Find the end of the array. 1682 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1683 "arrayctor.end"); 1684 1685 // Enter the loop, setting up a phi for the current location to initialize. 1686 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1687 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1688 EmitBlock(loopBB); 1689 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1690 "arrayctor.cur"); 1691 cur->addIncoming(arrayBegin, entryBB); 1692 1693 // Inside the loop body, emit the constructor call on the array element. 1694 1695 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1696 1697 // Zero initialize the storage, if requested. 1698 if (zeroInitialize) 1699 EmitNullInitialization(cur, type); 1700 1701 // C++ [class.temporary]p4: 1702 // There are two contexts in which temporaries are destroyed at a different 1703 // point than the end of the full-expression. The first context is when a 1704 // default constructor is called to initialize an element of an array. 1705 // If the constructor has one or more default arguments, the destruction of 1706 // every temporary created in a default argument expression is sequenced 1707 // before the construction of the next array element, if any. 1708 1709 { 1710 RunCleanupsScope Scope(*this); 1711 1712 // Evaluate the constructor and its arguments in a regular 1713 // partial-destroy cleanup. 1714 if (getLangOpts().Exceptions && 1715 !ctor->getParent()->hasTrivialDestructor()) { 1716 Destroyer *destroyer = destroyCXXObject; 1717 pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer); 1718 } 1719 1720 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1721 /*Delegating=*/false, cur, E); 1722 } 1723 1724 // Go to the next element. 1725 llvm::Value *next = 1726 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1727 "arrayctor.next"); 1728 cur->addIncoming(next, Builder.GetInsertBlock()); 1729 1730 // Check whether that's the end of the loop. 1731 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1732 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1733 Builder.CreateCondBr(done, contBB, loopBB); 1734 1735 // Patch the earlier check to skip over the loop. 1736 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1737 1738 EmitBlock(contBB); 1739 } 1740 1741 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1742 llvm::Value *addr, 1743 QualType type) { 1744 const RecordType *rtype = type->castAs<RecordType>(); 1745 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1746 const CXXDestructorDecl *dtor = record->getDestructor(); 1747 assert(!dtor->isTrivial()); 1748 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1749 /*Delegating=*/false, addr); 1750 } 1751 1752 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1753 CXXCtorType Type, 1754 bool ForVirtualBase, 1755 bool Delegating, llvm::Value *This, 1756 const CXXConstructExpr *E) { 1757 // C++11 [class.mfct.non-static]p2: 1758 // If a non-static member function of a class X is called for an object that 1759 // is not of type X, or of a type derived from X, the behavior is undefined. 1760 // FIXME: Provide a source location here. 1761 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This, 1762 getContext().getRecordType(D->getParent())); 1763 1764 if (D->isTrivial() && D->isDefaultConstructor()) { 1765 assert(E->getNumArgs() == 0 && "trivial default ctor with args"); 1766 return; 1767 } 1768 1769 // If this is a trivial constructor, just emit what's needed. If this is a 1770 // union copy constructor, we must emit a memcpy, because the AST does not 1771 // model that copy. 1772 if (isMemcpyEquivalentSpecialMember(D)) { 1773 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1774 1775 const Expr *Arg = E->getArg(0); 1776 QualType SrcTy = Arg->getType(); 1777 llvm::Value *Src = EmitLValue(Arg).getAddress(); 1778 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 1779 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 1780 return; 1781 } 1782 1783 CallArgList Args; 1784 1785 // Push the this ptr. 1786 Args.add(RValue::get(This), D->getThisType(getContext())); 1787 1788 // Add the rest of the user-supplied arguments. 1789 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1790 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor()); 1791 1792 // Insert any ABI-specific implicit constructor arguments. 1793 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs( 1794 *this, D, Type, ForVirtualBase, Delegating, Args); 1795 1796 // Emit the call. 1797 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 1798 const CGFunctionInfo &Info = 1799 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs); 1800 EmitCall(Info, Callee, ReturnValueSlot(), Args, D); 1801 } 1802 1803 void 1804 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1805 llvm::Value *This, llvm::Value *Src, 1806 const CXXConstructExpr *E) { 1807 if (isMemcpyEquivalentSpecialMember(D)) { 1808 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1809 assert(D->isCopyOrMoveConstructor() && 1810 "trivial 1-arg ctor not a copy/move ctor"); 1811 EmitAggregateCopyCtor(This, Src, 1812 getContext().getTypeDeclType(D->getParent()), 1813 E->arg_begin()->getType()); 1814 return; 1815 } 1816 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete); 1817 assert(D->isInstance() && 1818 "Trying to emit a member call expr on a static method!"); 1819 1820 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1821 1822 CallArgList Args; 1823 1824 // Push the this ptr. 1825 Args.add(RValue::get(This), D->getThisType(getContext())); 1826 1827 // Push the src ptr. 1828 QualType QT = *(FPT->param_type_begin()); 1829 llvm::Type *t = CGM.getTypes().ConvertType(QT); 1830 Src = Builder.CreateBitCast(Src, t); 1831 Args.add(RValue::get(Src), QT); 1832 1833 // Skip over first argument (Src). 1834 EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(), 1835 /*ParamsToSkip*/ 1); 1836 1837 EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All), 1838 Callee, ReturnValueSlot(), Args, D); 1839 } 1840 1841 void 1842 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1843 CXXCtorType CtorType, 1844 const FunctionArgList &Args, 1845 SourceLocation Loc) { 1846 CallArgList DelegateArgs; 1847 1848 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 1849 assert(I != E && "no parameters to constructor"); 1850 1851 // this 1852 DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType()); 1853 ++I; 1854 1855 // vtt 1856 if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType), 1857 /*ForVirtualBase=*/false, 1858 /*Delegating=*/true)) { 1859 QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy); 1860 DelegateArgs.add(RValue::get(VTT), VoidPP); 1861 1862 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 1863 assert(I != E && "cannot skip vtt parameter, already done with args"); 1864 assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type"); 1865 ++I; 1866 } 1867 } 1868 1869 // Explicit arguments. 1870 for (; I != E; ++I) { 1871 const VarDecl *param = *I; 1872 // FIXME: per-argument source location 1873 EmitDelegateCallArg(DelegateArgs, param, Loc); 1874 } 1875 1876 llvm::Value *Callee = 1877 CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType)); 1878 EmitCall(CGM.getTypes() 1879 .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)), 1880 Callee, ReturnValueSlot(), DelegateArgs, Ctor); 1881 } 1882 1883 namespace { 1884 struct CallDelegatingCtorDtor : EHScopeStack::Cleanup { 1885 const CXXDestructorDecl *Dtor; 1886 llvm::Value *Addr; 1887 CXXDtorType Type; 1888 1889 CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr, 1890 CXXDtorType Type) 1891 : Dtor(D), Addr(Addr), Type(Type) {} 1892 1893 void Emit(CodeGenFunction &CGF, Flags flags) override { 1894 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 1895 /*Delegating=*/true, Addr); 1896 } 1897 }; 1898 } 1899 1900 void 1901 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1902 const FunctionArgList &Args) { 1903 assert(Ctor->isDelegatingConstructor()); 1904 1905 llvm::Value *ThisPtr = LoadCXXThis(); 1906 1907 QualType Ty = getContext().getTagDeclType(Ctor->getParent()); 1908 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1909 AggValueSlot AggSlot = 1910 AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(), 1911 AggValueSlot::IsDestructed, 1912 AggValueSlot::DoesNotNeedGCBarriers, 1913 AggValueSlot::IsNotAliased); 1914 1915 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 1916 1917 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 1918 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 1919 CXXDtorType Type = 1920 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 1921 1922 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 1923 ClassDecl->getDestructor(), 1924 ThisPtr, Type); 1925 } 1926 } 1927 1928 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 1929 CXXDtorType Type, 1930 bool ForVirtualBase, 1931 bool Delegating, 1932 llvm::Value *This) { 1933 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 1934 Delegating, This); 1935 } 1936 1937 namespace { 1938 struct CallLocalDtor : EHScopeStack::Cleanup { 1939 const CXXDestructorDecl *Dtor; 1940 llvm::Value *Addr; 1941 1942 CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr) 1943 : Dtor(D), Addr(Addr) {} 1944 1945 void Emit(CodeGenFunction &CGF, Flags flags) override { 1946 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1947 /*ForVirtualBase=*/false, 1948 /*Delegating=*/false, Addr); 1949 } 1950 }; 1951 } 1952 1953 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 1954 llvm::Value *Addr) { 1955 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 1956 } 1957 1958 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) { 1959 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 1960 if (!ClassDecl) return; 1961 if (ClassDecl->hasTrivialDestructor()) return; 1962 1963 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 1964 assert(D && D->isUsed() && "destructor not marked as used!"); 1965 PushDestructorCleanup(D, Addr); 1966 } 1967 1968 void 1969 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base, 1970 const CXXRecordDecl *NearestVBase, 1971 CharUnits OffsetFromNearestVBase, 1972 const CXXRecordDecl *VTableClass) { 1973 const CXXRecordDecl *RD = Base.getBase(); 1974 1975 // Don't initialize the vtable pointer if the class is marked with the 1976 // 'novtable' attribute. 1977 if ((RD == VTableClass || RD == NearestVBase) && 1978 VTableClass->hasAttr<MSNoVTableAttr>()) 1979 return; 1980 1981 // Compute the address point. 1982 bool NeedsVirtualOffset; 1983 llvm::Value *VTableAddressPoint = 1984 CGM.getCXXABI().getVTableAddressPointInStructor( 1985 *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset); 1986 if (!VTableAddressPoint) 1987 return; 1988 1989 // Compute where to store the address point. 1990 llvm::Value *VirtualOffset = nullptr; 1991 CharUnits NonVirtualOffset = CharUnits::Zero(); 1992 1993 if (NeedsVirtualOffset) { 1994 // We need to use the virtual base offset offset because the virtual base 1995 // might have a different offset in the most derived class. 1996 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this, 1997 LoadCXXThis(), 1998 VTableClass, 1999 NearestVBase); 2000 NonVirtualOffset = OffsetFromNearestVBase; 2001 } else { 2002 // We can just use the base offset in the complete class. 2003 NonVirtualOffset = Base.getBaseOffset(); 2004 } 2005 2006 // Apply the offsets. 2007 llvm::Value *VTableField = LoadCXXThis(); 2008 2009 if (!NonVirtualOffset.isZero() || VirtualOffset) 2010 VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField, 2011 NonVirtualOffset, 2012 VirtualOffset); 2013 2014 // Finally, store the address point. Use the same LLVM types as the field to 2015 // support optimization. 2016 llvm::Type *VTablePtrTy = 2017 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2018 ->getPointerTo() 2019 ->getPointerTo(); 2020 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2021 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2022 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2023 CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr()); 2024 } 2025 2026 void 2027 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base, 2028 const CXXRecordDecl *NearestVBase, 2029 CharUnits OffsetFromNearestVBase, 2030 bool BaseIsNonVirtualPrimaryBase, 2031 const CXXRecordDecl *VTableClass, 2032 VisitedVirtualBasesSetTy& VBases) { 2033 // If this base is a non-virtual primary base the address point has already 2034 // been set. 2035 if (!BaseIsNonVirtualPrimaryBase) { 2036 // Initialize the vtable pointer for this base. 2037 InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase, 2038 VTableClass); 2039 } 2040 2041 const CXXRecordDecl *RD = Base.getBase(); 2042 2043 // Traverse bases. 2044 for (const auto &I : RD->bases()) { 2045 CXXRecordDecl *BaseDecl 2046 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2047 2048 // Ignore classes without a vtable. 2049 if (!BaseDecl->isDynamicClass()) 2050 continue; 2051 2052 CharUnits BaseOffset; 2053 CharUnits BaseOffsetFromNearestVBase; 2054 bool BaseDeclIsNonVirtualPrimaryBase; 2055 2056 if (I.isVirtual()) { 2057 // Check if we've visited this virtual base before. 2058 if (!VBases.insert(BaseDecl).second) 2059 continue; 2060 2061 const ASTRecordLayout &Layout = 2062 getContext().getASTRecordLayout(VTableClass); 2063 2064 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2065 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2066 BaseDeclIsNonVirtualPrimaryBase = false; 2067 } else { 2068 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2069 2070 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2071 BaseOffsetFromNearestVBase = 2072 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2073 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2074 } 2075 2076 InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset), 2077 I.isVirtual() ? BaseDecl : NearestVBase, 2078 BaseOffsetFromNearestVBase, 2079 BaseDeclIsNonVirtualPrimaryBase, 2080 VTableClass, VBases); 2081 } 2082 } 2083 2084 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2085 // Ignore classes without a vtable. 2086 if (!RD->isDynamicClass()) 2087 return; 2088 2089 // Initialize the vtable pointers for this class and all of its bases. 2090 VisitedVirtualBasesSetTy VBases; 2091 InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()), 2092 /*NearestVBase=*/nullptr, 2093 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2094 /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases); 2095 2096 if (RD->getNumVBases()) 2097 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2098 } 2099 2100 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This, 2101 llvm::Type *Ty) { 2102 llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo()); 2103 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2104 CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr()); 2105 return VTable; 2106 } 2107 2108 // If a class has a single non-virtual base and does not introduce or override 2109 // virtual member functions or fields, it will have the same layout as its base. 2110 // This function returns the least derived such class. 2111 // 2112 // Casting an instance of a base class to such a derived class is technically 2113 // undefined behavior, but it is a relatively common hack for introducing member 2114 // functions on class instances with specific properties (e.g. llvm::Operator) 2115 // that works under most compilers and should not have security implications, so 2116 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2117 static const CXXRecordDecl * 2118 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2119 if (!RD->field_empty()) 2120 return RD; 2121 2122 if (RD->getNumVBases() != 0) 2123 return RD; 2124 2125 if (RD->getNumBases() != 1) 2126 return RD; 2127 2128 for (const CXXMethodDecl *MD : RD->methods()) { 2129 if (MD->isVirtual()) { 2130 // Virtual member functions are only ok if they are implicit destructors 2131 // because the implicit destructor will have the same semantics as the 2132 // base class's destructor if no fields are added. 2133 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2134 continue; 2135 return RD; 2136 } 2137 } 2138 2139 return LeastDerivedClassWithSameLayout( 2140 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2141 } 2142 2143 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, 2144 llvm::Value *VTable, 2145 CFITypeCheckKind TCK, 2146 SourceLocation Loc) { 2147 const CXXRecordDecl *ClassDecl = MD->getParent(); 2148 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2149 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2150 2151 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2152 } 2153 2154 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2155 llvm::Value *Derived, 2156 bool MayBeNull, 2157 CFITypeCheckKind TCK, 2158 SourceLocation Loc) { 2159 if (!getLangOpts().CPlusPlus) 2160 return; 2161 2162 auto *ClassTy = T->getAs<RecordType>(); 2163 if (!ClassTy) 2164 return; 2165 2166 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2167 2168 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2169 return; 2170 2171 SmallString<64> MangledName; 2172 llvm::raw_svector_ostream Out(MangledName); 2173 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(T.getUnqualifiedType(), 2174 Out); 2175 2176 // Blacklist based on the mangled type. 2177 if (CGM.getContext().getSanitizerBlacklist().isBlacklistedType(Out.str())) 2178 return; 2179 2180 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2181 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2182 2183 llvm::BasicBlock *ContBlock = 0; 2184 2185 if (MayBeNull) { 2186 llvm::Value *DerivedNotNull = 2187 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2188 2189 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2190 ContBlock = createBasicBlock("cast.cont"); 2191 2192 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2193 2194 EmitBlock(CheckBlock); 2195 } 2196 2197 llvm::Value *VTable = GetVTablePtr(Derived, Int8PtrTy); 2198 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2199 2200 if (MayBeNull) { 2201 Builder.CreateBr(ContBlock); 2202 EmitBlock(ContBlock); 2203 } 2204 } 2205 2206 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2207 llvm::Value *VTable, 2208 CFITypeCheckKind TCK, 2209 SourceLocation Loc) { 2210 if (CGM.IsCFIBlacklistedRecord(RD)) 2211 return; 2212 2213 SanitizerScope SanScope(this); 2214 2215 std::string OutName; 2216 llvm::raw_string_ostream Out(OutName); 2217 CGM.getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out); 2218 2219 llvm::Value *BitSetName = llvm::MetadataAsValue::get( 2220 getLLVMContext(), llvm::MDString::get(getLLVMContext(), Out.str())); 2221 2222 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2223 llvm::Value *BitSetTest = 2224 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test), 2225 {CastedVTable, BitSetName}); 2226 2227 SanitizerMask M; 2228 switch (TCK) { 2229 case CFITCK_VCall: 2230 M = SanitizerKind::CFIVCall; 2231 break; 2232 case CFITCK_NVCall: 2233 M = SanitizerKind::CFINVCall; 2234 break; 2235 case CFITCK_DerivedCast: 2236 M = SanitizerKind::CFIDerivedCast; 2237 break; 2238 case CFITCK_UnrelatedCast: 2239 M = SanitizerKind::CFIUnrelatedCast; 2240 break; 2241 } 2242 2243 llvm::Constant *StaticData[] = { 2244 EmitCheckSourceLocation(Loc), 2245 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2246 llvm::ConstantInt::get(Int8Ty, TCK), 2247 }; 2248 EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData, 2249 CastedVTable); 2250 } 2251 2252 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 2253 // quite what we want. 2254 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 2255 while (true) { 2256 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 2257 E = PE->getSubExpr(); 2258 continue; 2259 } 2260 2261 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 2262 if (CE->getCastKind() == CK_NoOp) { 2263 E = CE->getSubExpr(); 2264 continue; 2265 } 2266 } 2267 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 2268 if (UO->getOpcode() == UO_Extension) { 2269 E = UO->getSubExpr(); 2270 continue; 2271 } 2272 } 2273 return E; 2274 } 2275 } 2276 2277 bool 2278 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base, 2279 const CXXMethodDecl *MD) { 2280 // When building with -fapple-kext, all calls must go through the vtable since 2281 // the kernel linker can do runtime patching of vtables. 2282 if (getLangOpts().AppleKext) 2283 return false; 2284 2285 // If the most derived class is marked final, we know that no subclass can 2286 // override this member function and so we can devirtualize it. For example: 2287 // 2288 // struct A { virtual void f(); } 2289 // struct B final : A { }; 2290 // 2291 // void f(B *b) { 2292 // b->f(); 2293 // } 2294 // 2295 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 2296 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 2297 return true; 2298 2299 // If the member function is marked 'final', we know that it can't be 2300 // overridden and can therefore devirtualize it. 2301 if (MD->hasAttr<FinalAttr>()) 2302 return true; 2303 2304 // Similarly, if the class itself is marked 'final' it can't be overridden 2305 // and we can therefore devirtualize the member function call. 2306 if (MD->getParent()->hasAttr<FinalAttr>()) 2307 return true; 2308 2309 Base = skipNoOpCastsAndParens(Base); 2310 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 2311 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 2312 // This is a record decl. We know the type and can devirtualize it. 2313 return VD->getType()->isRecordType(); 2314 } 2315 2316 return false; 2317 } 2318 2319 // We can devirtualize calls on an object accessed by a class member access 2320 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2321 // a derived class object constructed in the same location. 2322 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 2323 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 2324 return VD->getType()->isRecordType(); 2325 2326 // We can always devirtualize calls on temporary object expressions. 2327 if (isa<CXXConstructExpr>(Base)) 2328 return true; 2329 2330 // And calls on bound temporaries. 2331 if (isa<CXXBindTemporaryExpr>(Base)) 2332 return true; 2333 2334 // Check if this is a call expr that returns a record type. 2335 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 2336 return CE->getCallReturnType(getContext())->isRecordType(); 2337 2338 // We can't devirtualize the call. 2339 return false; 2340 } 2341 2342 void CodeGenFunction::EmitForwardingCallToLambda( 2343 const CXXMethodDecl *callOperator, 2344 CallArgList &callArgs) { 2345 // Get the address of the call operator. 2346 const CGFunctionInfo &calleeFnInfo = 2347 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2348 llvm::Value *callee = 2349 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2350 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2351 2352 // Prepare the return slot. 2353 const FunctionProtoType *FPT = 2354 callOperator->getType()->castAs<FunctionProtoType>(); 2355 QualType resultType = FPT->getReturnType(); 2356 ReturnValueSlot returnSlot; 2357 if (!resultType->isVoidType() && 2358 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2359 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2360 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2361 2362 // We don't need to separately arrange the call arguments because 2363 // the call can't be variadic anyway --- it's impossible to forward 2364 // variadic arguments. 2365 2366 // Now emit our call. 2367 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, 2368 callArgs, callOperator); 2369 2370 // If necessary, copy the returned value into the slot. 2371 if (!resultType->isVoidType() && returnSlot.isNull()) 2372 EmitReturnOfRValue(RV, resultType); 2373 else 2374 EmitBranchThroughCleanup(ReturnBlock); 2375 } 2376 2377 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2378 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2379 const VarDecl *variable = BD->capture_begin()->getVariable(); 2380 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2381 2382 // Start building arguments for forwarding call 2383 CallArgList CallArgs; 2384 2385 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2386 llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false); 2387 CallArgs.add(RValue::get(ThisPtr), ThisType); 2388 2389 // Add the rest of the parameters. 2390 for (auto param : BD->params()) 2391 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2392 2393 assert(!Lambda->isGenericLambda() && 2394 "generic lambda interconversion to block not implemented"); 2395 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs); 2396 } 2397 2398 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 2399 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) { 2400 // FIXME: Making this work correctly is nasty because it requires either 2401 // cloning the body of the call operator or making the call operator forward. 2402 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2403 return; 2404 } 2405 2406 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody()); 2407 } 2408 2409 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2410 const CXXRecordDecl *Lambda = MD->getParent(); 2411 2412 // Start building arguments for forwarding call 2413 CallArgList CallArgs; 2414 2415 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2416 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2417 CallArgs.add(RValue::get(ThisPtr), ThisType); 2418 2419 // Add the rest of the parameters. 2420 for (auto Param : MD->params()) 2421 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2422 2423 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2424 // For a generic lambda, find the corresponding call operator specialization 2425 // to which the call to the static-invoker shall be forwarded. 2426 if (Lambda->isGenericLambda()) { 2427 assert(MD->isFunctionTemplateSpecialization()); 2428 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2429 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2430 void *InsertPos = nullptr; 2431 FunctionDecl *CorrespondingCallOpSpecialization = 2432 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2433 assert(CorrespondingCallOpSpecialization); 2434 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2435 } 2436 EmitForwardingCallToLambda(CallOp, CallArgs); 2437 } 2438 2439 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 2440 if (MD->isVariadic()) { 2441 // FIXME: Making this work correctly is nasty because it requires either 2442 // cloning the body of the call operator or making the call operator forward. 2443 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2444 return; 2445 } 2446 2447 EmitLambdaDelegatingInvokeBody(MD); 2448 } 2449