1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of classes 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/CodeGenOptions.h" 25 #include "clang/Basic/TargetBuiltins.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/Transforms/Utils/SanitizerStats.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 /// Return the best known alignment for an unknown pointer to a 35 /// particular class. 36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 37 if (!RD->isCompleteDefinition()) 38 return CharUnits::One(); // Hopefully won't be used anywhere. 39 40 auto &layout = getContext().getASTRecordLayout(RD); 41 42 // If the class is final, then we know that the pointer points to an 43 // object of that type and can use the full alignment. 44 if (RD->hasAttr<FinalAttr>()) { 45 return layout.getAlignment(); 46 47 // Otherwise, we have to assume it could be a subclass. 48 } else { 49 return layout.getNonVirtualAlignment(); 50 } 51 } 52 53 /// Return the best known alignment for a pointer to a virtual base, 54 /// given the alignment of a pointer to the derived class. 55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 56 const CXXRecordDecl *derivedClass, 57 const CXXRecordDecl *vbaseClass) { 58 // The basic idea here is that an underaligned derived pointer might 59 // indicate an underaligned base pointer. 60 61 assert(vbaseClass->isCompleteDefinition()); 62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 64 65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 66 expectedVBaseAlign); 67 } 68 69 CharUnits 70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 71 const CXXRecordDecl *baseDecl, 72 CharUnits expectedTargetAlign) { 73 // If the base is an incomplete type (which is, alas, possible with 74 // member pointers), be pessimistic. 75 if (!baseDecl->isCompleteDefinition()) 76 return std::min(actualBaseAlign, expectedTargetAlign); 77 78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 80 81 // If the class is properly aligned, assume the target offset is, too. 82 // 83 // This actually isn't necessarily the right thing to do --- if the 84 // class is a complete object, but it's only properly aligned for a 85 // base subobject, then the alignments of things relative to it are 86 // probably off as well. (Note that this requires the alignment of 87 // the target to be greater than the NV alignment of the derived 88 // class.) 89 // 90 // However, our approach to this kind of under-alignment can only 91 // ever be best effort; after all, we're never going to propagate 92 // alignments through variables or parameters. Note, in particular, 93 // that constructing a polymorphic type in an address that's less 94 // than pointer-aligned will generally trap in the constructor, 95 // unless we someday add some sort of attribute to change the 96 // assumed alignment of 'this'. So our goal here is pretty much 97 // just to allow the user to explicitly say that a pointer is 98 // under-aligned and then safely access its fields and vtables. 99 if (actualBaseAlign >= expectedBaseAlign) { 100 return expectedTargetAlign; 101 } 102 103 // Otherwise, we might be offset by an arbitrary multiple of the 104 // actual alignment. The correct adjustment is to take the min of 105 // the two alignments. 106 return std::min(actualBaseAlign, expectedTargetAlign); 107 } 108 109 Address CodeGenFunction::LoadCXXThisAddress() { 110 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 111 assert(isa<CXXMethodDecl>(CurFuncDecl)); 112 113 // Lazily compute CXXThisAlignment. 114 if (CXXThisAlignment.isZero()) { 115 // Just use the best known alignment for the parent. 116 // TODO: if we're currently emitting a complete-object ctor/dtor, 117 // we can always use the complete-object alignment. 118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 119 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 120 } 121 122 return Address(LoadCXXThis(), CXXThisAlignment); 123 } 124 125 /// Emit the address of a field using a member data pointer. 126 /// 127 /// \param E Only used for emergency diagnostics 128 Address 129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 130 llvm::Value *memberPtr, 131 const MemberPointerType *memberPtrType, 132 LValueBaseInfo *BaseInfo, 133 TBAAAccessInfo *TBAAInfo) { 134 // Ask the ABI to compute the actual address. 135 llvm::Value *ptr = 136 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 137 memberPtr, memberPtrType); 138 139 QualType memberType = memberPtrType->getPointeeType(); 140 CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo, 141 TBAAInfo); 142 memberAlign = 143 CGM.getDynamicOffsetAlignment(base.getAlignment(), 144 memberPtrType->getClass()->getAsCXXRecordDecl(), 145 memberAlign); 146 return Address(ptr, memberAlign); 147 } 148 149 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 150 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 151 CastExpr::path_const_iterator End) { 152 CharUnits Offset = CharUnits::Zero(); 153 154 const ASTContext &Context = getContext(); 155 const CXXRecordDecl *RD = DerivedClass; 156 157 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 158 const CXXBaseSpecifier *Base = *I; 159 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 160 161 // Get the layout. 162 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 163 164 const CXXRecordDecl *BaseDecl = 165 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 166 167 // Add the offset. 168 Offset += Layout.getBaseClassOffset(BaseDecl); 169 170 RD = BaseDecl; 171 } 172 173 return Offset; 174 } 175 176 llvm::Constant * 177 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 178 CastExpr::path_const_iterator PathBegin, 179 CastExpr::path_const_iterator PathEnd) { 180 assert(PathBegin != PathEnd && "Base path should not be empty!"); 181 182 CharUnits Offset = 183 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 184 if (Offset.isZero()) 185 return nullptr; 186 187 llvm::Type *PtrDiffTy = 188 Types.ConvertType(getContext().getPointerDiffType()); 189 190 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 191 } 192 193 /// Gets the address of a direct base class within a complete object. 194 /// This should only be used for (1) non-virtual bases or (2) virtual bases 195 /// when the type is known to be complete (e.g. in complete destructors). 196 /// 197 /// The object pointed to by 'This' is assumed to be non-null. 198 Address 199 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 200 const CXXRecordDecl *Derived, 201 const CXXRecordDecl *Base, 202 bool BaseIsVirtual) { 203 // 'this' must be a pointer (in some address space) to Derived. 204 assert(This.getElementType() == ConvertType(Derived)); 205 206 // Compute the offset of the virtual base. 207 CharUnits Offset; 208 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 209 if (BaseIsVirtual) 210 Offset = Layout.getVBaseClassOffset(Base); 211 else 212 Offset = Layout.getBaseClassOffset(Base); 213 214 // Shift and cast down to the base type. 215 // TODO: for complete types, this should be possible with a GEP. 216 Address V = This; 217 if (!Offset.isZero()) { 218 V = Builder.CreateElementBitCast(V, Int8Ty); 219 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 220 } 221 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 222 223 return V; 224 } 225 226 static Address 227 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 228 CharUnits nonVirtualOffset, 229 llvm::Value *virtualOffset, 230 const CXXRecordDecl *derivedClass, 231 const CXXRecordDecl *nearestVBase) { 232 // Assert that we have something to do. 233 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 234 235 // Compute the offset from the static and dynamic components. 236 llvm::Value *baseOffset; 237 if (!nonVirtualOffset.isZero()) { 238 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 239 nonVirtualOffset.getQuantity()); 240 if (virtualOffset) { 241 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 242 } 243 } else { 244 baseOffset = virtualOffset; 245 } 246 247 // Apply the base offset. 248 llvm::Value *ptr = addr.getPointer(); 249 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 250 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 251 252 // If we have a virtual component, the alignment of the result will 253 // be relative only to the known alignment of that vbase. 254 CharUnits alignment; 255 if (virtualOffset) { 256 assert(nearestVBase && "virtual offset without vbase?"); 257 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 258 derivedClass, nearestVBase); 259 } else { 260 alignment = addr.getAlignment(); 261 } 262 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 263 264 return Address(ptr, alignment); 265 } 266 267 Address CodeGenFunction::GetAddressOfBaseClass( 268 Address Value, const CXXRecordDecl *Derived, 269 CastExpr::path_const_iterator PathBegin, 270 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 271 SourceLocation Loc) { 272 assert(PathBegin != PathEnd && "Base path should not be empty!"); 273 274 CastExpr::path_const_iterator Start = PathBegin; 275 const CXXRecordDecl *VBase = nullptr; 276 277 // Sema has done some convenient canonicalization here: if the 278 // access path involved any virtual steps, the conversion path will 279 // *start* with a step down to the correct virtual base subobject, 280 // and hence will not require any further steps. 281 if ((*Start)->isVirtual()) { 282 VBase = 283 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 284 ++Start; 285 } 286 287 // Compute the static offset of the ultimate destination within its 288 // allocating subobject (the virtual base, if there is one, or else 289 // the "complete" object that we see). 290 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 291 VBase ? VBase : Derived, Start, PathEnd); 292 293 // If there's a virtual step, we can sometimes "devirtualize" it. 294 // For now, that's limited to when the derived type is final. 295 // TODO: "devirtualize" this for accesses to known-complete objects. 296 if (VBase && Derived->hasAttr<FinalAttr>()) { 297 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 298 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 299 NonVirtualOffset += vBaseOffset; 300 VBase = nullptr; // we no longer have a virtual step 301 } 302 303 // Get the base pointer type. 304 llvm::Type *BasePtrTy = 305 ConvertType((PathEnd[-1])->getType()) 306 ->getPointerTo(Value.getType()->getPointerAddressSpace()); 307 308 QualType DerivedTy = getContext().getRecordType(Derived); 309 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 310 311 // If the static offset is zero and we don't have a virtual step, 312 // just do a bitcast; null checks are unnecessary. 313 if (NonVirtualOffset.isZero() && !VBase) { 314 if (sanitizePerformTypeCheck()) { 315 SanitizerSet SkippedChecks; 316 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue); 317 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 318 DerivedTy, DerivedAlign, SkippedChecks); 319 } 320 return Builder.CreateBitCast(Value, BasePtrTy); 321 } 322 323 llvm::BasicBlock *origBB = nullptr; 324 llvm::BasicBlock *endBB = nullptr; 325 326 // Skip over the offset (and the vtable load) if we're supposed to 327 // null-check the pointer. 328 if (NullCheckValue) { 329 origBB = Builder.GetInsertBlock(); 330 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 331 endBB = createBasicBlock("cast.end"); 332 333 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 334 Builder.CreateCondBr(isNull, endBB, notNullBB); 335 EmitBlock(notNullBB); 336 } 337 338 if (sanitizePerformTypeCheck()) { 339 SanitizerSet SkippedChecks; 340 SkippedChecks.set(SanitizerKind::Null, true); 341 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 342 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks); 343 } 344 345 // Compute the virtual offset. 346 llvm::Value *VirtualOffset = nullptr; 347 if (VBase) { 348 VirtualOffset = 349 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 350 } 351 352 // Apply both offsets. 353 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 354 VirtualOffset, Derived, VBase); 355 356 // Cast to the destination type. 357 Value = Builder.CreateBitCast(Value, BasePtrTy); 358 359 // Build a phi if we needed a null check. 360 if (NullCheckValue) { 361 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 362 Builder.CreateBr(endBB); 363 EmitBlock(endBB); 364 365 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 366 PHI->addIncoming(Value.getPointer(), notNullBB); 367 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 368 Value = Address(PHI, Value.getAlignment()); 369 } 370 371 return Value; 372 } 373 374 Address 375 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 376 const CXXRecordDecl *Derived, 377 CastExpr::path_const_iterator PathBegin, 378 CastExpr::path_const_iterator PathEnd, 379 bool NullCheckValue) { 380 assert(PathBegin != PathEnd && "Base path should not be empty!"); 381 382 QualType DerivedTy = 383 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 384 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 385 386 llvm::Value *NonVirtualOffset = 387 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 388 389 if (!NonVirtualOffset) { 390 // No offset, we can just cast back. 391 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 392 } 393 394 llvm::BasicBlock *CastNull = nullptr; 395 llvm::BasicBlock *CastNotNull = nullptr; 396 llvm::BasicBlock *CastEnd = nullptr; 397 398 if (NullCheckValue) { 399 CastNull = createBasicBlock("cast.null"); 400 CastNotNull = createBasicBlock("cast.notnull"); 401 CastEnd = createBasicBlock("cast.end"); 402 403 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 404 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 405 EmitBlock(CastNotNull); 406 } 407 408 // Apply the offset. 409 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 410 Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset), 411 "sub.ptr"); 412 413 // Just cast. 414 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 415 416 // Produce a PHI if we had a null-check. 417 if (NullCheckValue) { 418 Builder.CreateBr(CastEnd); 419 EmitBlock(CastNull); 420 Builder.CreateBr(CastEnd); 421 EmitBlock(CastEnd); 422 423 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 424 PHI->addIncoming(Value, CastNotNull); 425 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 426 Value = PHI; 427 } 428 429 return Address(Value, CGM.getClassPointerAlignment(Derived)); 430 } 431 432 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 433 bool ForVirtualBase, 434 bool Delegating) { 435 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 436 // This constructor/destructor does not need a VTT parameter. 437 return nullptr; 438 } 439 440 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 441 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 442 443 llvm::Value *VTT; 444 445 uint64_t SubVTTIndex; 446 447 if (Delegating) { 448 // If this is a delegating constructor call, just load the VTT. 449 return LoadCXXVTT(); 450 } else if (RD == Base) { 451 // If the record matches the base, this is the complete ctor/dtor 452 // variant calling the base variant in a class with virtual bases. 453 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 454 "doing no-op VTT offset in base dtor/ctor?"); 455 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 456 SubVTTIndex = 0; 457 } else { 458 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 459 CharUnits BaseOffset = ForVirtualBase ? 460 Layout.getVBaseClassOffset(Base) : 461 Layout.getBaseClassOffset(Base); 462 463 SubVTTIndex = 464 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 465 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 466 } 467 468 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 469 // A VTT parameter was passed to the constructor, use it. 470 VTT = LoadCXXVTT(); 471 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 472 } else { 473 // We're the complete constructor, so get the VTT by name. 474 VTT = CGM.getVTables().GetAddrOfVTT(RD); 475 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 476 } 477 478 return VTT; 479 } 480 481 namespace { 482 /// Call the destructor for a direct base class. 483 struct CallBaseDtor final : EHScopeStack::Cleanup { 484 const CXXRecordDecl *BaseClass; 485 bool BaseIsVirtual; 486 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 487 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 488 489 void Emit(CodeGenFunction &CGF, Flags flags) override { 490 const CXXRecordDecl *DerivedClass = 491 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 492 493 const CXXDestructorDecl *D = BaseClass->getDestructor(); 494 Address Addr = 495 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 496 DerivedClass, BaseClass, 497 BaseIsVirtual); 498 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 499 /*Delegating=*/false, Addr); 500 } 501 }; 502 503 /// A visitor which checks whether an initializer uses 'this' in a 504 /// way which requires the vtable to be properly set. 505 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 506 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 507 508 bool UsesThis; 509 510 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 511 512 // Black-list all explicit and implicit references to 'this'. 513 // 514 // Do we need to worry about external references to 'this' derived 515 // from arbitrary code? If so, then anything which runs arbitrary 516 // external code might potentially access the vtable. 517 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 518 }; 519 } // end anonymous namespace 520 521 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 522 DynamicThisUseChecker Checker(C); 523 Checker.Visit(Init); 524 return Checker.UsesThis; 525 } 526 527 static void EmitBaseInitializer(CodeGenFunction &CGF, 528 const CXXRecordDecl *ClassDecl, 529 CXXCtorInitializer *BaseInit, 530 CXXCtorType CtorType) { 531 assert(BaseInit->isBaseInitializer() && 532 "Must have base initializer!"); 533 534 Address ThisPtr = CGF.LoadCXXThisAddress(); 535 536 const Type *BaseType = BaseInit->getBaseClass(); 537 CXXRecordDecl *BaseClassDecl = 538 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 539 540 bool isBaseVirtual = BaseInit->isBaseVirtual(); 541 542 // The base constructor doesn't construct virtual bases. 543 if (CtorType == Ctor_Base && isBaseVirtual) 544 return; 545 546 // If the initializer for the base (other than the constructor 547 // itself) accesses 'this' in any way, we need to initialize the 548 // vtables. 549 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 550 CGF.InitializeVTablePointers(ClassDecl); 551 552 // We can pretend to be a complete class because it only matters for 553 // virtual bases, and we only do virtual bases for complete ctors. 554 Address V = 555 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 556 BaseClassDecl, 557 isBaseVirtual); 558 AggValueSlot AggSlot = 559 AggValueSlot::forAddr( 560 V, Qualifiers(), 561 AggValueSlot::IsDestructed, 562 AggValueSlot::DoesNotNeedGCBarriers, 563 AggValueSlot::IsNotAliased, 564 CGF.overlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual)); 565 566 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 567 568 if (CGF.CGM.getLangOpts().Exceptions && 569 !BaseClassDecl->hasTrivialDestructor()) 570 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 571 isBaseVirtual); 572 } 573 574 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 575 auto *CD = dyn_cast<CXXConstructorDecl>(D); 576 if (!(CD && CD->isCopyOrMoveConstructor()) && 577 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 578 return false; 579 580 // We can emit a memcpy for a trivial copy or move constructor/assignment. 581 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 582 return true; 583 584 // We *must* emit a memcpy for a defaulted union copy or move op. 585 if (D->getParent()->isUnion() && D->isDefaulted()) 586 return true; 587 588 return false; 589 } 590 591 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 592 CXXCtorInitializer *MemberInit, 593 LValue &LHS) { 594 FieldDecl *Field = MemberInit->getAnyMember(); 595 if (MemberInit->isIndirectMemberInitializer()) { 596 // If we are initializing an anonymous union field, drill down to the field. 597 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 598 for (const auto *I : IndirectField->chain()) 599 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 600 } else { 601 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 602 } 603 } 604 605 static void EmitMemberInitializer(CodeGenFunction &CGF, 606 const CXXRecordDecl *ClassDecl, 607 CXXCtorInitializer *MemberInit, 608 const CXXConstructorDecl *Constructor, 609 FunctionArgList &Args) { 610 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 611 assert(MemberInit->isAnyMemberInitializer() && 612 "Must have member initializer!"); 613 assert(MemberInit->getInit() && "Must have initializer!"); 614 615 // non-static data member initializers. 616 FieldDecl *Field = MemberInit->getAnyMember(); 617 QualType FieldType = Field->getType(); 618 619 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 620 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 621 LValue LHS; 622 623 // If a base constructor is being emitted, create an LValue that has the 624 // non-virtual alignment. 625 if (CGF.CurGD.getCtorType() == Ctor_Base) 626 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy); 627 else 628 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 629 630 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 631 632 // Special case: if we are in a copy or move constructor, and we are copying 633 // an array of PODs or classes with trivial copy constructors, ignore the 634 // AST and perform the copy we know is equivalent. 635 // FIXME: This is hacky at best... if we had a bit more explicit information 636 // in the AST, we could generalize it more easily. 637 const ConstantArrayType *Array 638 = CGF.getContext().getAsConstantArrayType(FieldType); 639 if (Array && Constructor->isDefaulted() && 640 Constructor->isCopyOrMoveConstructor()) { 641 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 642 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 643 if (BaseElementTy.isPODType(CGF.getContext()) || 644 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 645 unsigned SrcArgIndex = 646 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 647 llvm::Value *SrcPtr 648 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 649 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 650 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 651 652 // Copy the aggregate. 653 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.overlapForFieldInit(Field), 654 LHS.isVolatileQualified()); 655 // Ensure that we destroy the objects if an exception is thrown later in 656 // the constructor. 657 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 658 if (CGF.needsEHCleanup(dtorKind)) 659 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 660 return; 661 } 662 } 663 664 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit()); 665 } 666 667 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 668 Expr *Init) { 669 QualType FieldType = Field->getType(); 670 switch (getEvaluationKind(FieldType)) { 671 case TEK_Scalar: 672 if (LHS.isSimple()) { 673 EmitExprAsInit(Init, Field, LHS, false); 674 } else { 675 RValue RHS = RValue::get(EmitScalarExpr(Init)); 676 EmitStoreThroughLValue(RHS, LHS); 677 } 678 break; 679 case TEK_Complex: 680 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 681 break; 682 case TEK_Aggregate: { 683 AggValueSlot Slot = 684 AggValueSlot::forLValue( 685 LHS, 686 AggValueSlot::IsDestructed, 687 AggValueSlot::DoesNotNeedGCBarriers, 688 AggValueSlot::IsNotAliased, 689 overlapForFieldInit(Field), 690 AggValueSlot::IsNotZeroed, 691 // Checks are made by the code that calls constructor. 692 AggValueSlot::IsSanitizerChecked); 693 EmitAggExpr(Init, Slot); 694 break; 695 } 696 } 697 698 // Ensure that we destroy this object if an exception is thrown 699 // later in the constructor. 700 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 701 if (needsEHCleanup(dtorKind)) 702 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 703 } 704 705 /// Checks whether the given constructor is a valid subject for the 706 /// complete-to-base constructor delegation optimization, i.e. 707 /// emitting the complete constructor as a simple call to the base 708 /// constructor. 709 bool CodeGenFunction::IsConstructorDelegationValid( 710 const CXXConstructorDecl *Ctor) { 711 712 // Currently we disable the optimization for classes with virtual 713 // bases because (1) the addresses of parameter variables need to be 714 // consistent across all initializers but (2) the delegate function 715 // call necessarily creates a second copy of the parameter variable. 716 // 717 // The limiting example (purely theoretical AFAIK): 718 // struct A { A(int &c) { c++; } }; 719 // struct B : virtual A { 720 // B(int count) : A(count) { printf("%d\n", count); } 721 // }; 722 // ...although even this example could in principle be emitted as a 723 // delegation since the address of the parameter doesn't escape. 724 if (Ctor->getParent()->getNumVBases()) { 725 // TODO: white-list trivial vbase initializers. This case wouldn't 726 // be subject to the restrictions below. 727 728 // TODO: white-list cases where: 729 // - there are no non-reference parameters to the constructor 730 // - the initializers don't access any non-reference parameters 731 // - the initializers don't take the address of non-reference 732 // parameters 733 // - etc. 734 // If we ever add any of the above cases, remember that: 735 // - function-try-blocks will always blacklist this optimization 736 // - we need to perform the constructor prologue and cleanup in 737 // EmitConstructorBody. 738 739 return false; 740 } 741 742 // We also disable the optimization for variadic functions because 743 // it's impossible to "re-pass" varargs. 744 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 745 return false; 746 747 // FIXME: Decide if we can do a delegation of a delegating constructor. 748 if (Ctor->isDelegatingConstructor()) 749 return false; 750 751 return true; 752 } 753 754 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 755 // to poison the extra field paddings inserted under 756 // -fsanitize-address-field-padding=1|2. 757 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 758 ASTContext &Context = getContext(); 759 const CXXRecordDecl *ClassDecl = 760 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 761 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 762 if (!ClassDecl->mayInsertExtraPadding()) return; 763 764 struct SizeAndOffset { 765 uint64_t Size; 766 uint64_t Offset; 767 }; 768 769 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 770 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 771 772 // Populate sizes and offsets of fields. 773 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 774 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 775 SSV[i].Offset = 776 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 777 778 size_t NumFields = 0; 779 for (const auto *Field : ClassDecl->fields()) { 780 const FieldDecl *D = Field; 781 std::pair<CharUnits, CharUnits> FieldInfo = 782 Context.getTypeInfoInChars(D->getType()); 783 CharUnits FieldSize = FieldInfo.first; 784 assert(NumFields < SSV.size()); 785 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 786 NumFields++; 787 } 788 assert(NumFields == SSV.size()); 789 if (SSV.size() <= 1) return; 790 791 // We will insert calls to __asan_* run-time functions. 792 // LLVM AddressSanitizer pass may decide to inline them later. 793 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 794 llvm::FunctionType *FTy = 795 llvm::FunctionType::get(CGM.VoidTy, Args, false); 796 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 797 FTy, Prologue ? "__asan_poison_intra_object_redzone" 798 : "__asan_unpoison_intra_object_redzone"); 799 800 llvm::Value *ThisPtr = LoadCXXThis(); 801 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 802 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 803 // For each field check if it has sufficient padding, 804 // if so (un)poison it with a call. 805 for (size_t i = 0; i < SSV.size(); i++) { 806 uint64_t AsanAlignment = 8; 807 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 808 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 809 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 810 if (PoisonSize < AsanAlignment || !SSV[i].Size || 811 (NextField % AsanAlignment) != 0) 812 continue; 813 Builder.CreateCall( 814 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 815 Builder.getIntN(PtrSize, PoisonSize)}); 816 } 817 } 818 819 /// EmitConstructorBody - Emits the body of the current constructor. 820 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 821 EmitAsanPrologueOrEpilogue(true); 822 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 823 CXXCtorType CtorType = CurGD.getCtorType(); 824 825 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 826 CtorType == Ctor_Complete) && 827 "can only generate complete ctor for this ABI"); 828 829 // Before we go any further, try the complete->base constructor 830 // delegation optimization. 831 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 832 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 833 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc()); 834 return; 835 } 836 837 const FunctionDecl *Definition = nullptr; 838 Stmt *Body = Ctor->getBody(Definition); 839 assert(Definition == Ctor && "emitting wrong constructor body"); 840 841 // Enter the function-try-block before the constructor prologue if 842 // applicable. 843 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 844 if (IsTryBody) 845 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 846 847 incrementProfileCounter(Body); 848 849 RunCleanupsScope RunCleanups(*this); 850 851 // TODO: in restricted cases, we can emit the vbase initializers of 852 // a complete ctor and then delegate to the base ctor. 853 854 // Emit the constructor prologue, i.e. the base and member 855 // initializers. 856 EmitCtorPrologue(Ctor, CtorType, Args); 857 858 // Emit the body of the statement. 859 if (IsTryBody) 860 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 861 else if (Body) 862 EmitStmt(Body); 863 864 // Emit any cleanup blocks associated with the member or base 865 // initializers, which includes (along the exceptional path) the 866 // destructors for those members and bases that were fully 867 // constructed. 868 RunCleanups.ForceCleanup(); 869 870 if (IsTryBody) 871 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 872 } 873 874 namespace { 875 /// RAII object to indicate that codegen is copying the value representation 876 /// instead of the object representation. Useful when copying a struct or 877 /// class which has uninitialized members and we're only performing 878 /// lvalue-to-rvalue conversion on the object but not its members. 879 class CopyingValueRepresentation { 880 public: 881 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 882 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 883 CGF.SanOpts.set(SanitizerKind::Bool, false); 884 CGF.SanOpts.set(SanitizerKind::Enum, false); 885 } 886 ~CopyingValueRepresentation() { 887 CGF.SanOpts = OldSanOpts; 888 } 889 private: 890 CodeGenFunction &CGF; 891 SanitizerSet OldSanOpts; 892 }; 893 } // end anonymous namespace 894 895 namespace { 896 class FieldMemcpyizer { 897 public: 898 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 899 const VarDecl *SrcRec) 900 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 901 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 902 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 903 LastFieldOffset(0), LastAddedFieldIndex(0) {} 904 905 bool isMemcpyableField(FieldDecl *F) const { 906 // Never memcpy fields when we are adding poisoned paddings. 907 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 908 return false; 909 Qualifiers Qual = F->getType().getQualifiers(); 910 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 911 return false; 912 return true; 913 } 914 915 void addMemcpyableField(FieldDecl *F) { 916 if (!FirstField) 917 addInitialField(F); 918 else 919 addNextField(F); 920 } 921 922 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 923 ASTContext &Ctx = CGF.getContext(); 924 unsigned LastFieldSize = 925 LastField->isBitField() 926 ? LastField->getBitWidthValue(Ctx) 927 : Ctx.toBits( 928 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first); 929 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize - 930 FirstByteOffset + Ctx.getCharWidth() - 1; 931 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits); 932 return MemcpySize; 933 } 934 935 void emitMemcpy() { 936 // Give the subclass a chance to bail out if it feels the memcpy isn't 937 // worth it (e.g. Hasn't aggregated enough data). 938 if (!FirstField) { 939 return; 940 } 941 942 uint64_t FirstByteOffset; 943 if (FirstField->isBitField()) { 944 const CGRecordLayout &RL = 945 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 946 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 947 // FirstFieldOffset is not appropriate for bitfields, 948 // we need to use the storage offset instead. 949 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 950 } else { 951 FirstByteOffset = FirstFieldOffset; 952 } 953 954 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 955 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 956 Address ThisPtr = CGF.LoadCXXThisAddress(); 957 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 958 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 959 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 960 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 961 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 962 963 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 964 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 965 MemcpySize); 966 reset(); 967 } 968 969 void reset() { 970 FirstField = nullptr; 971 } 972 973 protected: 974 CodeGenFunction &CGF; 975 const CXXRecordDecl *ClassDecl; 976 977 private: 978 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 979 llvm::PointerType *DPT = DestPtr.getType(); 980 llvm::Type *DBP = 981 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 982 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 983 984 llvm::PointerType *SPT = SrcPtr.getType(); 985 llvm::Type *SBP = 986 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 987 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 988 989 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 990 } 991 992 void addInitialField(FieldDecl *F) { 993 FirstField = F; 994 LastField = F; 995 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 996 LastFieldOffset = FirstFieldOffset; 997 LastAddedFieldIndex = F->getFieldIndex(); 998 } 999 1000 void addNextField(FieldDecl *F) { 1001 // For the most part, the following invariant will hold: 1002 // F->getFieldIndex() == LastAddedFieldIndex + 1 1003 // The one exception is that Sema won't add a copy-initializer for an 1004 // unnamed bitfield, which will show up here as a gap in the sequence. 1005 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1006 "Cannot aggregate fields out of order."); 1007 LastAddedFieldIndex = F->getFieldIndex(); 1008 1009 // The 'first' and 'last' fields are chosen by offset, rather than field 1010 // index. This allows the code to support bitfields, as well as regular 1011 // fields. 1012 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1013 if (FOffset < FirstFieldOffset) { 1014 FirstField = F; 1015 FirstFieldOffset = FOffset; 1016 } else if (FOffset > LastFieldOffset) { 1017 LastField = F; 1018 LastFieldOffset = FOffset; 1019 } 1020 } 1021 1022 const VarDecl *SrcRec; 1023 const ASTRecordLayout &RecLayout; 1024 FieldDecl *FirstField; 1025 FieldDecl *LastField; 1026 uint64_t FirstFieldOffset, LastFieldOffset; 1027 unsigned LastAddedFieldIndex; 1028 }; 1029 1030 class ConstructorMemcpyizer : public FieldMemcpyizer { 1031 private: 1032 /// Get source argument for copy constructor. Returns null if not a copy 1033 /// constructor. 1034 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1035 const CXXConstructorDecl *CD, 1036 FunctionArgList &Args) { 1037 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1038 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1039 return nullptr; 1040 } 1041 1042 // Returns true if a CXXCtorInitializer represents a member initialization 1043 // that can be rolled into a memcpy. 1044 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1045 if (!MemcpyableCtor) 1046 return false; 1047 FieldDecl *Field = MemberInit->getMember(); 1048 assert(Field && "No field for member init."); 1049 QualType FieldType = Field->getType(); 1050 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1051 1052 // Bail out on non-memcpyable, not-trivially-copyable members. 1053 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1054 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1055 FieldType->isReferenceType())) 1056 return false; 1057 1058 // Bail out on volatile fields. 1059 if (!isMemcpyableField(Field)) 1060 return false; 1061 1062 // Otherwise we're good. 1063 return true; 1064 } 1065 1066 public: 1067 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1068 FunctionArgList &Args) 1069 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1070 ConstructorDecl(CD), 1071 MemcpyableCtor(CD->isDefaulted() && 1072 CD->isCopyOrMoveConstructor() && 1073 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1074 Args(Args) { } 1075 1076 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1077 if (isMemberInitMemcpyable(MemberInit)) { 1078 AggregatedInits.push_back(MemberInit); 1079 addMemcpyableField(MemberInit->getMember()); 1080 } else { 1081 emitAggregatedInits(); 1082 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1083 ConstructorDecl, Args); 1084 } 1085 } 1086 1087 void emitAggregatedInits() { 1088 if (AggregatedInits.size() <= 1) { 1089 // This memcpy is too small to be worthwhile. Fall back on default 1090 // codegen. 1091 if (!AggregatedInits.empty()) { 1092 CopyingValueRepresentation CVR(CGF); 1093 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1094 AggregatedInits[0], ConstructorDecl, Args); 1095 AggregatedInits.clear(); 1096 } 1097 reset(); 1098 return; 1099 } 1100 1101 pushEHDestructors(); 1102 emitMemcpy(); 1103 AggregatedInits.clear(); 1104 } 1105 1106 void pushEHDestructors() { 1107 Address ThisPtr = CGF.LoadCXXThisAddress(); 1108 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1109 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1110 1111 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1112 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1113 QualType FieldType = MemberInit->getAnyMember()->getType(); 1114 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1115 if (!CGF.needsEHCleanup(dtorKind)) 1116 continue; 1117 LValue FieldLHS = LHS; 1118 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1119 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1120 } 1121 } 1122 1123 void finish() { 1124 emitAggregatedInits(); 1125 } 1126 1127 private: 1128 const CXXConstructorDecl *ConstructorDecl; 1129 bool MemcpyableCtor; 1130 FunctionArgList &Args; 1131 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1132 }; 1133 1134 class AssignmentMemcpyizer : public FieldMemcpyizer { 1135 private: 1136 // Returns the memcpyable field copied by the given statement, if one 1137 // exists. Otherwise returns null. 1138 FieldDecl *getMemcpyableField(Stmt *S) { 1139 if (!AssignmentsMemcpyable) 1140 return nullptr; 1141 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1142 // Recognise trivial assignments. 1143 if (BO->getOpcode() != BO_Assign) 1144 return nullptr; 1145 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1146 if (!ME) 1147 return nullptr; 1148 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1149 if (!Field || !isMemcpyableField(Field)) 1150 return nullptr; 1151 Stmt *RHS = BO->getRHS(); 1152 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1153 RHS = EC->getSubExpr(); 1154 if (!RHS) 1155 return nullptr; 1156 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) { 1157 if (ME2->getMemberDecl() == Field) 1158 return Field; 1159 } 1160 return nullptr; 1161 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1162 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1163 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1164 return nullptr; 1165 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1166 if (!IOA) 1167 return nullptr; 1168 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1169 if (!Field || !isMemcpyableField(Field)) 1170 return nullptr; 1171 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1172 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1173 return nullptr; 1174 return Field; 1175 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1176 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1177 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1178 return nullptr; 1179 Expr *DstPtr = CE->getArg(0); 1180 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1181 DstPtr = DC->getSubExpr(); 1182 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1183 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1184 return nullptr; 1185 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1186 if (!ME) 1187 return nullptr; 1188 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1189 if (!Field || !isMemcpyableField(Field)) 1190 return nullptr; 1191 Expr *SrcPtr = CE->getArg(1); 1192 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1193 SrcPtr = SC->getSubExpr(); 1194 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1195 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1196 return nullptr; 1197 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1198 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1199 return nullptr; 1200 return Field; 1201 } 1202 1203 return nullptr; 1204 } 1205 1206 bool AssignmentsMemcpyable; 1207 SmallVector<Stmt*, 16> AggregatedStmts; 1208 1209 public: 1210 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1211 FunctionArgList &Args) 1212 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1213 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1214 assert(Args.size() == 2); 1215 } 1216 1217 void emitAssignment(Stmt *S) { 1218 FieldDecl *F = getMemcpyableField(S); 1219 if (F) { 1220 addMemcpyableField(F); 1221 AggregatedStmts.push_back(S); 1222 } else { 1223 emitAggregatedStmts(); 1224 CGF.EmitStmt(S); 1225 } 1226 } 1227 1228 void emitAggregatedStmts() { 1229 if (AggregatedStmts.size() <= 1) { 1230 if (!AggregatedStmts.empty()) { 1231 CopyingValueRepresentation CVR(CGF); 1232 CGF.EmitStmt(AggregatedStmts[0]); 1233 } 1234 reset(); 1235 } 1236 1237 emitMemcpy(); 1238 AggregatedStmts.clear(); 1239 } 1240 1241 void finish() { 1242 emitAggregatedStmts(); 1243 } 1244 }; 1245 } // end anonymous namespace 1246 1247 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1248 const Type *BaseType = BaseInit->getBaseClass(); 1249 const auto *BaseClassDecl = 1250 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1251 return BaseClassDecl->isDynamicClass(); 1252 } 1253 1254 /// EmitCtorPrologue - This routine generates necessary code to initialize 1255 /// base classes and non-static data members belonging to this constructor. 1256 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1257 CXXCtorType CtorType, 1258 FunctionArgList &Args) { 1259 if (CD->isDelegatingConstructor()) 1260 return EmitDelegatingCXXConstructorCall(CD, Args); 1261 1262 const CXXRecordDecl *ClassDecl = CD->getParent(); 1263 1264 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1265 E = CD->init_end(); 1266 1267 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1268 if (ClassDecl->getNumVBases() && 1269 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1270 // The ABIs that don't have constructor variants need to put a branch 1271 // before the virtual base initialization code. 1272 BaseCtorContinueBB = 1273 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1274 assert(BaseCtorContinueBB); 1275 } 1276 1277 llvm::Value *const OldThis = CXXThisValue; 1278 // Virtual base initializers first. 1279 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1280 if (CGM.getCodeGenOpts().StrictVTablePointers && 1281 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1282 isInitializerOfDynamicClass(*B)) 1283 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1284 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1285 } 1286 1287 if (BaseCtorContinueBB) { 1288 // Complete object handler should continue to the remaining initializers. 1289 Builder.CreateBr(BaseCtorContinueBB); 1290 EmitBlock(BaseCtorContinueBB); 1291 } 1292 1293 // Then, non-virtual base initializers. 1294 for (; B != E && (*B)->isBaseInitializer(); B++) { 1295 assert(!(*B)->isBaseVirtual()); 1296 1297 if (CGM.getCodeGenOpts().StrictVTablePointers && 1298 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1299 isInitializerOfDynamicClass(*B)) 1300 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1301 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1302 } 1303 1304 CXXThisValue = OldThis; 1305 1306 InitializeVTablePointers(ClassDecl); 1307 1308 // And finally, initialize class members. 1309 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1310 ConstructorMemcpyizer CM(*this, CD, Args); 1311 for (; B != E; B++) { 1312 CXXCtorInitializer *Member = (*B); 1313 assert(!Member->isBaseInitializer()); 1314 assert(Member->isAnyMemberInitializer() && 1315 "Delegating initializer on non-delegating constructor"); 1316 CM.addMemberInitializer(Member); 1317 } 1318 CM.finish(); 1319 } 1320 1321 static bool 1322 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1323 1324 static bool 1325 HasTrivialDestructorBody(ASTContext &Context, 1326 const CXXRecordDecl *BaseClassDecl, 1327 const CXXRecordDecl *MostDerivedClassDecl) 1328 { 1329 // If the destructor is trivial we don't have to check anything else. 1330 if (BaseClassDecl->hasTrivialDestructor()) 1331 return true; 1332 1333 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1334 return false; 1335 1336 // Check fields. 1337 for (const auto *Field : BaseClassDecl->fields()) 1338 if (!FieldHasTrivialDestructorBody(Context, Field)) 1339 return false; 1340 1341 // Check non-virtual bases. 1342 for (const auto &I : BaseClassDecl->bases()) { 1343 if (I.isVirtual()) 1344 continue; 1345 1346 const CXXRecordDecl *NonVirtualBase = 1347 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1348 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1349 MostDerivedClassDecl)) 1350 return false; 1351 } 1352 1353 if (BaseClassDecl == MostDerivedClassDecl) { 1354 // Check virtual bases. 1355 for (const auto &I : BaseClassDecl->vbases()) { 1356 const CXXRecordDecl *VirtualBase = 1357 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1358 if (!HasTrivialDestructorBody(Context, VirtualBase, 1359 MostDerivedClassDecl)) 1360 return false; 1361 } 1362 } 1363 1364 return true; 1365 } 1366 1367 static bool 1368 FieldHasTrivialDestructorBody(ASTContext &Context, 1369 const FieldDecl *Field) 1370 { 1371 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1372 1373 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1374 if (!RT) 1375 return true; 1376 1377 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1378 1379 // The destructor for an implicit anonymous union member is never invoked. 1380 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1381 return false; 1382 1383 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1384 } 1385 1386 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1387 /// any vtable pointers before calling this destructor. 1388 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1389 const CXXDestructorDecl *Dtor) { 1390 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1391 if (!ClassDecl->isDynamicClass()) 1392 return true; 1393 1394 if (!Dtor->hasTrivialBody()) 1395 return false; 1396 1397 // Check the fields. 1398 for (const auto *Field : ClassDecl->fields()) 1399 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1400 return false; 1401 1402 return true; 1403 } 1404 1405 /// EmitDestructorBody - Emits the body of the current destructor. 1406 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1407 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1408 CXXDtorType DtorType = CurGD.getDtorType(); 1409 1410 // For an abstract class, non-base destructors are never used (and can't 1411 // be emitted in general, because vbase dtors may not have been validated 1412 // by Sema), but the Itanium ABI doesn't make them optional and Clang may 1413 // in fact emit references to them from other compilations, so emit them 1414 // as functions containing a trap instruction. 1415 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) { 1416 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 1417 TrapCall->setDoesNotReturn(); 1418 TrapCall->setDoesNotThrow(); 1419 Builder.CreateUnreachable(); 1420 Builder.ClearInsertionPoint(); 1421 return; 1422 } 1423 1424 Stmt *Body = Dtor->getBody(); 1425 if (Body) 1426 incrementProfileCounter(Body); 1427 1428 // The call to operator delete in a deleting destructor happens 1429 // outside of the function-try-block, which means it's always 1430 // possible to delegate the destructor body to the complete 1431 // destructor. Do so. 1432 if (DtorType == Dtor_Deleting) { 1433 RunCleanupsScope DtorEpilogue(*this); 1434 EnterDtorCleanups(Dtor, Dtor_Deleting); 1435 if (HaveInsertPoint()) 1436 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1437 /*Delegating=*/false, LoadCXXThisAddress()); 1438 return; 1439 } 1440 1441 // If the body is a function-try-block, enter the try before 1442 // anything else. 1443 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1444 if (isTryBody) 1445 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1446 EmitAsanPrologueOrEpilogue(false); 1447 1448 // Enter the epilogue cleanups. 1449 RunCleanupsScope DtorEpilogue(*this); 1450 1451 // If this is the complete variant, just invoke the base variant; 1452 // the epilogue will destruct the virtual bases. But we can't do 1453 // this optimization if the body is a function-try-block, because 1454 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1455 // always delegate because we might not have a definition in this TU. 1456 switch (DtorType) { 1457 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT"); 1458 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1459 1460 case Dtor_Complete: 1461 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1462 "can't emit a dtor without a body for non-Microsoft ABIs"); 1463 1464 // Enter the cleanup scopes for virtual bases. 1465 EnterDtorCleanups(Dtor, Dtor_Complete); 1466 1467 if (!isTryBody) { 1468 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1469 /*Delegating=*/false, LoadCXXThisAddress()); 1470 break; 1471 } 1472 1473 // Fallthrough: act like we're in the base variant. 1474 LLVM_FALLTHROUGH; 1475 1476 case Dtor_Base: 1477 assert(Body); 1478 1479 // Enter the cleanup scopes for fields and non-virtual bases. 1480 EnterDtorCleanups(Dtor, Dtor_Base); 1481 1482 // Initialize the vtable pointers before entering the body. 1483 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1484 // Insert the llvm.launder.invariant.group intrinsic before initializing 1485 // the vptrs to cancel any previous assumptions we might have made. 1486 if (CGM.getCodeGenOpts().StrictVTablePointers && 1487 CGM.getCodeGenOpts().OptimizationLevel > 0) 1488 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis()); 1489 InitializeVTablePointers(Dtor->getParent()); 1490 } 1491 1492 if (isTryBody) 1493 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1494 else if (Body) 1495 EmitStmt(Body); 1496 else { 1497 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1498 // nothing to do besides what's in the epilogue 1499 } 1500 // -fapple-kext must inline any call to this dtor into 1501 // the caller's body. 1502 if (getLangOpts().AppleKext) 1503 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1504 1505 break; 1506 } 1507 1508 // Jump out through the epilogue cleanups. 1509 DtorEpilogue.ForceCleanup(); 1510 1511 // Exit the try if applicable. 1512 if (isTryBody) 1513 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1514 } 1515 1516 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1517 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1518 const Stmt *RootS = AssignOp->getBody(); 1519 assert(isa<CompoundStmt>(RootS) && 1520 "Body of an implicit assignment operator should be compound stmt."); 1521 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1522 1523 LexicalScope Scope(*this, RootCS->getSourceRange()); 1524 1525 incrementProfileCounter(RootCS); 1526 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1527 for (auto *I : RootCS->body()) 1528 AM.emitAssignment(I); 1529 AM.finish(); 1530 } 1531 1532 namespace { 1533 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF, 1534 const CXXDestructorDecl *DD) { 1535 if (Expr *ThisArg = DD->getOperatorDeleteThisArg()) 1536 return CGF.EmitScalarExpr(ThisArg); 1537 return CGF.LoadCXXThis(); 1538 } 1539 1540 /// Call the operator delete associated with the current destructor. 1541 struct CallDtorDelete final : EHScopeStack::Cleanup { 1542 CallDtorDelete() {} 1543 1544 void Emit(CodeGenFunction &CGF, Flags flags) override { 1545 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1546 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1547 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1548 LoadThisForDtorDelete(CGF, Dtor), 1549 CGF.getContext().getTagDeclType(ClassDecl)); 1550 } 1551 }; 1552 1553 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF, 1554 llvm::Value *ShouldDeleteCondition, 1555 bool ReturnAfterDelete) { 1556 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1557 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1558 llvm::Value *ShouldCallDelete 1559 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1560 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1561 1562 CGF.EmitBlock(callDeleteBB); 1563 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1564 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1565 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), 1566 LoadThisForDtorDelete(CGF, Dtor), 1567 CGF.getContext().getTagDeclType(ClassDecl)); 1568 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() == 1569 ReturnAfterDelete && 1570 "unexpected value for ReturnAfterDelete"); 1571 if (ReturnAfterDelete) 1572 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 1573 else 1574 CGF.Builder.CreateBr(continueBB); 1575 1576 CGF.EmitBlock(continueBB); 1577 } 1578 1579 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1580 llvm::Value *ShouldDeleteCondition; 1581 1582 public: 1583 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1584 : ShouldDeleteCondition(ShouldDeleteCondition) { 1585 assert(ShouldDeleteCondition != nullptr); 1586 } 1587 1588 void Emit(CodeGenFunction &CGF, Flags flags) override { 1589 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition, 1590 /*ReturnAfterDelete*/false); 1591 } 1592 }; 1593 1594 class DestroyField final : public EHScopeStack::Cleanup { 1595 const FieldDecl *field; 1596 CodeGenFunction::Destroyer *destroyer; 1597 bool useEHCleanupForArray; 1598 1599 public: 1600 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1601 bool useEHCleanupForArray) 1602 : field(field), destroyer(destroyer), 1603 useEHCleanupForArray(useEHCleanupForArray) {} 1604 1605 void Emit(CodeGenFunction &CGF, Flags flags) override { 1606 // Find the address of the field. 1607 Address thisValue = CGF.LoadCXXThisAddress(); 1608 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1609 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1610 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1611 assert(LV.isSimple()); 1612 1613 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1614 flags.isForNormalCleanup() && useEHCleanupForArray); 1615 } 1616 }; 1617 1618 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1619 CharUnits::QuantityType PoisonSize) { 1620 CodeGenFunction::SanitizerScope SanScope(&CGF); 1621 // Pass in void pointer and size of region as arguments to runtime 1622 // function 1623 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1624 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1625 1626 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1627 1628 llvm::FunctionType *FnType = 1629 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1630 llvm::FunctionCallee Fn = 1631 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1632 CGF.EmitNounwindRuntimeCall(Fn, Args); 1633 } 1634 1635 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1636 const CXXDestructorDecl *Dtor; 1637 1638 public: 1639 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1640 1641 // Generate function call for handling object poisoning. 1642 // Disables tail call elimination, to prevent the current stack frame 1643 // from disappearing from the stack trace. 1644 void Emit(CodeGenFunction &CGF, Flags flags) override { 1645 const ASTRecordLayout &Layout = 1646 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1647 1648 // Nothing to poison. 1649 if (Layout.getFieldCount() == 0) 1650 return; 1651 1652 // Prevent the current stack frame from disappearing from the stack trace. 1653 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1654 1655 // Construct pointer to region to begin poisoning, and calculate poison 1656 // size, so that only members declared in this class are poisoned. 1657 ASTContext &Context = CGF.getContext(); 1658 unsigned fieldIndex = 0; 1659 int startIndex = -1; 1660 // RecordDecl::field_iterator Field; 1661 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1662 // Poison field if it is trivial 1663 if (FieldHasTrivialDestructorBody(Context, Field)) { 1664 // Start sanitizing at this field 1665 if (startIndex < 0) 1666 startIndex = fieldIndex; 1667 1668 // Currently on the last field, and it must be poisoned with the 1669 // current block. 1670 if (fieldIndex == Layout.getFieldCount() - 1) { 1671 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1672 } 1673 } else if (startIndex >= 0) { 1674 // No longer within a block of memory to poison, so poison the block 1675 PoisonMembers(CGF, startIndex, fieldIndex); 1676 // Re-set the start index 1677 startIndex = -1; 1678 } 1679 fieldIndex += 1; 1680 } 1681 } 1682 1683 private: 1684 /// \param layoutStartOffset index of the ASTRecordLayout field to 1685 /// start poisoning (inclusive) 1686 /// \param layoutEndOffset index of the ASTRecordLayout field to 1687 /// end poisoning (exclusive) 1688 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1689 unsigned layoutEndOffset) { 1690 ASTContext &Context = CGF.getContext(); 1691 const ASTRecordLayout &Layout = 1692 Context.getASTRecordLayout(Dtor->getParent()); 1693 1694 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1695 CGF.SizeTy, 1696 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1697 .getQuantity()); 1698 1699 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1700 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1701 OffsetSizePtr); 1702 1703 CharUnits::QuantityType PoisonSize; 1704 if (layoutEndOffset >= Layout.getFieldCount()) { 1705 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1706 Context.toCharUnitsFromBits( 1707 Layout.getFieldOffset(layoutStartOffset)) 1708 .getQuantity(); 1709 } else { 1710 PoisonSize = Context.toCharUnitsFromBits( 1711 Layout.getFieldOffset(layoutEndOffset) - 1712 Layout.getFieldOffset(layoutStartOffset)) 1713 .getQuantity(); 1714 } 1715 1716 if (PoisonSize == 0) 1717 return; 1718 1719 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1720 } 1721 }; 1722 1723 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1724 const CXXDestructorDecl *Dtor; 1725 1726 public: 1727 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1728 1729 // Generate function call for handling vtable pointer poisoning. 1730 void Emit(CodeGenFunction &CGF, Flags flags) override { 1731 assert(Dtor->getParent()->isDynamicClass()); 1732 (void)Dtor; 1733 ASTContext &Context = CGF.getContext(); 1734 // Poison vtable and vtable ptr if they exist for this class. 1735 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1736 1737 CharUnits::QuantityType PoisonSize = 1738 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1739 // Pass in void pointer and size of region as arguments to runtime 1740 // function 1741 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1742 } 1743 }; 1744 } // end anonymous namespace 1745 1746 /// Emit all code that comes at the end of class's 1747 /// destructor. This is to call destructors on members and base classes 1748 /// in reverse order of their construction. 1749 /// 1750 /// For a deleting destructor, this also handles the case where a destroying 1751 /// operator delete completely overrides the definition. 1752 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1753 CXXDtorType DtorType) { 1754 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1755 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1756 1757 // The deleting-destructor phase just needs to call the appropriate 1758 // operator delete that Sema picked up. 1759 if (DtorType == Dtor_Deleting) { 1760 assert(DD->getOperatorDelete() && 1761 "operator delete missing - EnterDtorCleanups"); 1762 if (CXXStructorImplicitParamValue) { 1763 // If there is an implicit param to the deleting dtor, it's a boolean 1764 // telling whether this is a deleting destructor. 1765 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) 1766 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue, 1767 /*ReturnAfterDelete*/true); 1768 else 1769 EHStack.pushCleanup<CallDtorDeleteConditional>( 1770 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1771 } else { 1772 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) { 1773 const CXXRecordDecl *ClassDecl = DD->getParent(); 1774 EmitDeleteCall(DD->getOperatorDelete(), 1775 LoadThisForDtorDelete(*this, DD), 1776 getContext().getTagDeclType(ClassDecl)); 1777 EmitBranchThroughCleanup(ReturnBlock); 1778 } else { 1779 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1780 } 1781 } 1782 return; 1783 } 1784 1785 const CXXRecordDecl *ClassDecl = DD->getParent(); 1786 1787 // Unions have no bases and do not call field destructors. 1788 if (ClassDecl->isUnion()) 1789 return; 1790 1791 // The complete-destructor phase just destructs all the virtual bases. 1792 if (DtorType == Dtor_Complete) { 1793 // Poison the vtable pointer such that access after the base 1794 // and member destructors are invoked is invalid. 1795 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1796 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1797 ClassDecl->isPolymorphic()) 1798 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1799 1800 // We push them in the forward order so that they'll be popped in 1801 // the reverse order. 1802 for (const auto &Base : ClassDecl->vbases()) { 1803 CXXRecordDecl *BaseClassDecl 1804 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1805 1806 // Ignore trivial destructors. 1807 if (BaseClassDecl->hasTrivialDestructor()) 1808 continue; 1809 1810 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1811 BaseClassDecl, 1812 /*BaseIsVirtual*/ true); 1813 } 1814 1815 return; 1816 } 1817 1818 assert(DtorType == Dtor_Base); 1819 // Poison the vtable pointer if it has no virtual bases, but inherits 1820 // virtual functions. 1821 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1822 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1823 ClassDecl->isPolymorphic()) 1824 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1825 1826 // Destroy non-virtual bases. 1827 for (const auto &Base : ClassDecl->bases()) { 1828 // Ignore virtual bases. 1829 if (Base.isVirtual()) 1830 continue; 1831 1832 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1833 1834 // Ignore trivial destructors. 1835 if (BaseClassDecl->hasTrivialDestructor()) 1836 continue; 1837 1838 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1839 BaseClassDecl, 1840 /*BaseIsVirtual*/ false); 1841 } 1842 1843 // Poison fields such that access after their destructors are 1844 // invoked, and before the base class destructor runs, is invalid. 1845 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1846 SanOpts.has(SanitizerKind::Memory)) 1847 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1848 1849 // Destroy direct fields. 1850 for (const auto *Field : ClassDecl->fields()) { 1851 QualType type = Field->getType(); 1852 QualType::DestructionKind dtorKind = type.isDestructedType(); 1853 if (!dtorKind) continue; 1854 1855 // Anonymous union members do not have their destructors called. 1856 const RecordType *RT = type->getAsUnionType(); 1857 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1858 1859 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1860 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1861 getDestroyer(dtorKind), 1862 cleanupKind & EHCleanup); 1863 } 1864 } 1865 1866 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1867 /// constructor for each of several members of an array. 1868 /// 1869 /// \param ctor the constructor to call for each element 1870 /// \param arrayType the type of the array to initialize 1871 /// \param arrayBegin an arrayType* 1872 /// \param zeroInitialize true if each element should be 1873 /// zero-initialized before it is constructed 1874 void CodeGenFunction::EmitCXXAggrConstructorCall( 1875 const CXXConstructorDecl *ctor, const ArrayType *arrayType, 1876 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked, 1877 bool zeroInitialize) { 1878 QualType elementType; 1879 llvm::Value *numElements = 1880 emitArrayLength(arrayType, elementType, arrayBegin); 1881 1882 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, 1883 NewPointerIsChecked, zeroInitialize); 1884 } 1885 1886 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1887 /// constructor for each of several members of an array. 1888 /// 1889 /// \param ctor the constructor to call for each element 1890 /// \param numElements the number of elements in the array; 1891 /// may be zero 1892 /// \param arrayBase a T*, where T is the type constructed by ctor 1893 /// \param zeroInitialize true if each element should be 1894 /// zero-initialized before it is constructed 1895 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1896 llvm::Value *numElements, 1897 Address arrayBase, 1898 const CXXConstructExpr *E, 1899 bool NewPointerIsChecked, 1900 bool zeroInitialize) { 1901 // It's legal for numElements to be zero. This can happen both 1902 // dynamically, because x can be zero in 'new A[x]', and statically, 1903 // because of GCC extensions that permit zero-length arrays. There 1904 // are probably legitimate places where we could assume that this 1905 // doesn't happen, but it's not clear that it's worth it. 1906 llvm::BranchInst *zeroCheckBranch = nullptr; 1907 1908 // Optimize for a constant count. 1909 llvm::ConstantInt *constantCount 1910 = dyn_cast<llvm::ConstantInt>(numElements); 1911 if (constantCount) { 1912 // Just skip out if the constant count is zero. 1913 if (constantCount->isZero()) return; 1914 1915 // Otherwise, emit the check. 1916 } else { 1917 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1918 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1919 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1920 EmitBlock(loopBB); 1921 } 1922 1923 // Find the end of the array. 1924 llvm::Value *arrayBegin = arrayBase.getPointer(); 1925 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1926 "arrayctor.end"); 1927 1928 // Enter the loop, setting up a phi for the current location to initialize. 1929 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1930 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1931 EmitBlock(loopBB); 1932 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1933 "arrayctor.cur"); 1934 cur->addIncoming(arrayBegin, entryBB); 1935 1936 // Inside the loop body, emit the constructor call on the array element. 1937 1938 // The alignment of the base, adjusted by the size of a single element, 1939 // provides a conservative estimate of the alignment of every element. 1940 // (This assumes we never start tracking offsetted alignments.) 1941 // 1942 // Note that these are complete objects and so we don't need to 1943 // use the non-virtual size or alignment. 1944 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1945 CharUnits eltAlignment = 1946 arrayBase.getAlignment() 1947 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1948 Address curAddr = Address(cur, eltAlignment); 1949 1950 // Zero initialize the storage, if requested. 1951 if (zeroInitialize) 1952 EmitNullInitialization(curAddr, type); 1953 1954 // C++ [class.temporary]p4: 1955 // There are two contexts in which temporaries are destroyed at a different 1956 // point than the end of the full-expression. The first context is when a 1957 // default constructor is called to initialize an element of an array. 1958 // If the constructor has one or more default arguments, the destruction of 1959 // every temporary created in a default argument expression is sequenced 1960 // before the construction of the next array element, if any. 1961 1962 { 1963 RunCleanupsScope Scope(*this); 1964 1965 // Evaluate the constructor and its arguments in a regular 1966 // partial-destroy cleanup. 1967 if (getLangOpts().Exceptions && 1968 !ctor->getParent()->hasTrivialDestructor()) { 1969 Destroyer *destroyer = destroyCXXObject; 1970 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 1971 *destroyer); 1972 } 1973 1974 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1975 /*Delegating=*/false, curAddr, E, 1976 AggValueSlot::DoesNotOverlap, NewPointerIsChecked); 1977 } 1978 1979 // Go to the next element. 1980 llvm::Value *next = 1981 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1982 "arrayctor.next"); 1983 cur->addIncoming(next, Builder.GetInsertBlock()); 1984 1985 // Check whether that's the end of the loop. 1986 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1987 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1988 Builder.CreateCondBr(done, contBB, loopBB); 1989 1990 // Patch the earlier check to skip over the loop. 1991 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1992 1993 EmitBlock(contBB); 1994 } 1995 1996 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1997 Address addr, 1998 QualType type) { 1999 const RecordType *rtype = type->castAs<RecordType>(); 2000 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2001 const CXXDestructorDecl *dtor = record->getDestructor(); 2002 assert(!dtor->isTrivial()); 2003 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2004 /*Delegating=*/false, addr); 2005 } 2006 2007 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2008 CXXCtorType Type, 2009 bool ForVirtualBase, 2010 bool Delegating, Address This, 2011 const CXXConstructExpr *E, 2012 AggValueSlot::Overlap_t Overlap, 2013 bool NewPointerIsChecked) { 2014 CallArgList Args; 2015 2016 LangAS SlotAS = E->getType().getAddressSpace(); 2017 QualType ThisType = D->getThisType(); 2018 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace(); 2019 llvm::Value *ThisPtr = This.getPointer(); 2020 if (SlotAS != ThisAS) { 2021 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS); 2022 llvm::Type *NewType = 2023 ThisPtr->getType()->getPointerElementType()->getPointerTo(TargetThisAS); 2024 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(), 2025 ThisAS, SlotAS, NewType); 2026 } 2027 // Push the this ptr. 2028 Args.add(RValue::get(ThisPtr), D->getThisType()); 2029 2030 // If this is a trivial constructor, emit a memcpy now before we lose 2031 // the alignment information on the argument. 2032 // FIXME: It would be better to preserve alignment information into CallArg. 2033 if (isMemcpyEquivalentSpecialMember(D)) { 2034 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2035 2036 const Expr *Arg = E->getArg(0); 2037 LValue Src = EmitLValue(Arg); 2038 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 2039 LValue Dest = MakeAddrLValue(This, DestTy); 2040 EmitAggregateCopyCtor(Dest, Src, Overlap); 2041 return; 2042 } 2043 2044 // Add the rest of the user-supplied arguments. 2045 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2046 EvaluationOrder Order = E->isListInitialization() 2047 ? EvaluationOrder::ForceLeftToRight 2048 : EvaluationOrder::Default; 2049 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(), 2050 /*ParamsToSkip*/ 0, Order); 2051 2052 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args, 2053 Overlap, E->getExprLoc(), NewPointerIsChecked); 2054 } 2055 2056 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF, 2057 const CXXConstructorDecl *Ctor, 2058 CXXCtorType Type, CallArgList &Args) { 2059 // We can't forward a variadic call. 2060 if (Ctor->isVariadic()) 2061 return false; 2062 2063 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2064 // If the parameters are callee-cleanup, it's not safe to forward. 2065 for (auto *P : Ctor->parameters()) 2066 if (P->getType().isDestructedType()) 2067 return false; 2068 2069 // Likewise if they're inalloca. 2070 const CGFunctionInfo &Info = 2071 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0); 2072 if (Info.usesInAlloca()) 2073 return false; 2074 } 2075 2076 // Anything else should be OK. 2077 return true; 2078 } 2079 2080 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2081 CXXCtorType Type, 2082 bool ForVirtualBase, 2083 bool Delegating, 2084 Address This, 2085 CallArgList &Args, 2086 AggValueSlot::Overlap_t Overlap, 2087 SourceLocation Loc, 2088 bool NewPointerIsChecked) { 2089 const CXXRecordDecl *ClassDecl = D->getParent(); 2090 2091 if (!NewPointerIsChecked) 2092 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(), 2093 getContext().getRecordType(ClassDecl), CharUnits::Zero()); 2094 2095 if (D->isTrivial() && D->isDefaultConstructor()) { 2096 assert(Args.size() == 1 && "trivial default ctor with args"); 2097 return; 2098 } 2099 2100 // If this is a trivial constructor, just emit what's needed. If this is a 2101 // union copy constructor, we must emit a memcpy, because the AST does not 2102 // model that copy. 2103 if (isMemcpyEquivalentSpecialMember(D)) { 2104 assert(Args.size() == 2 && "unexpected argcount for trivial ctor"); 2105 2106 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType(); 2107 Address Src(Args[1].getRValue(*this).getScalarVal(), 2108 getNaturalTypeAlignment(SrcTy)); 2109 LValue SrcLVal = MakeAddrLValue(Src, SrcTy); 2110 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2111 LValue DestLVal = MakeAddrLValue(This, DestTy); 2112 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap); 2113 return; 2114 } 2115 2116 bool PassPrototypeArgs = true; 2117 // Check whether we can actually emit the constructor before trying to do so. 2118 if (auto Inherited = D->getInheritedConstructor()) { 2119 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type); 2120 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) { 2121 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase, 2122 Delegating, Args); 2123 return; 2124 } 2125 } 2126 2127 // Insert any ABI-specific implicit constructor arguments. 2128 CGCXXABI::AddedStructorArgs ExtraArgs = 2129 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase, 2130 Delegating, Args); 2131 2132 // Emit the call. 2133 llvm::Constant *CalleePtr = 2134 CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 2135 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall( 2136 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs); 2137 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type)); 2138 EmitCall(Info, Callee, ReturnValueSlot(), Args); 2139 2140 // Generate vtable assumptions if we're constructing a complete object 2141 // with a vtable. We don't do this for base subobjects for two reasons: 2142 // first, it's incorrect for classes with virtual bases, and second, we're 2143 // about to overwrite the vptrs anyway. 2144 // We also have to make sure if we can refer to vtable: 2145 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2146 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2147 // sure that definition of vtable is not hidden, 2148 // then we are always safe to refer to it. 2149 // FIXME: It looks like InstCombine is very inefficient on dealing with 2150 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2151 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2152 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2153 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2154 CGM.getCodeGenOpts().StrictVTablePointers) 2155 EmitVTableAssumptionLoads(ClassDecl, This); 2156 } 2157 2158 void CodeGenFunction::EmitInheritedCXXConstructorCall( 2159 const CXXConstructorDecl *D, bool ForVirtualBase, Address This, 2160 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) { 2161 CallArgList Args; 2162 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType()); 2163 2164 // Forward the parameters. 2165 if (InheritedFromVBase && 2166 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 2167 // Nothing to do; this construction is not responsible for constructing 2168 // the base class containing the inherited constructor. 2169 // FIXME: Can we just pass undef's for the remaining arguments if we don't 2170 // have constructor variants? 2171 Args.push_back(ThisArg); 2172 } else if (!CXXInheritedCtorInitExprArgs.empty()) { 2173 // The inheriting constructor was inlined; just inject its arguments. 2174 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() && 2175 "wrong number of parameters for inherited constructor call"); 2176 Args = CXXInheritedCtorInitExprArgs; 2177 Args[0] = ThisArg; 2178 } else { 2179 // The inheriting constructor was not inlined. Emit delegating arguments. 2180 Args.push_back(ThisArg); 2181 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl); 2182 assert(OuterCtor->getNumParams() == D->getNumParams()); 2183 assert(!OuterCtor->isVariadic() && "should have been inlined"); 2184 2185 for (const auto *Param : OuterCtor->parameters()) { 2186 assert(getContext().hasSameUnqualifiedType( 2187 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(), 2188 Param->getType())); 2189 EmitDelegateCallArg(Args, Param, E->getLocation()); 2190 2191 // Forward __attribute__(pass_object_size). 2192 if (Param->hasAttr<PassObjectSizeAttr>()) { 2193 auto *POSParam = SizeArguments[Param]; 2194 assert(POSParam && "missing pass_object_size value for forwarding"); 2195 EmitDelegateCallArg(Args, POSParam, E->getLocation()); 2196 } 2197 } 2198 } 2199 2200 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false, 2201 This, Args, AggValueSlot::MayOverlap, 2202 E->getLocation(), /*NewPointerIsChecked*/true); 2203 } 2204 2205 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall( 2206 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase, 2207 bool Delegating, CallArgList &Args) { 2208 GlobalDecl GD(Ctor, CtorType); 2209 InlinedInheritingConstructorScope Scope(*this, GD); 2210 ApplyInlineDebugLocation DebugScope(*this, GD); 2211 RunCleanupsScope RunCleanups(*this); 2212 2213 // Save the arguments to be passed to the inherited constructor. 2214 CXXInheritedCtorInitExprArgs = Args; 2215 2216 FunctionArgList Params; 2217 QualType RetType = BuildFunctionArgList(CurGD, Params); 2218 FnRetTy = RetType; 2219 2220 // Insert any ABI-specific implicit constructor arguments. 2221 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType, 2222 ForVirtualBase, Delegating, Args); 2223 2224 // Emit a simplified prolog. We only need to emit the implicit params. 2225 assert(Args.size() >= Params.size() && "too few arguments for call"); 2226 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 2227 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) { 2228 const RValue &RV = Args[I].getRValue(*this); 2229 assert(!RV.isComplex() && "complex indirect params not supported"); 2230 ParamValue Val = RV.isScalar() 2231 ? ParamValue::forDirect(RV.getScalarVal()) 2232 : ParamValue::forIndirect(RV.getAggregateAddress()); 2233 EmitParmDecl(*Params[I], Val, I + 1); 2234 } 2235 } 2236 2237 // Create a return value slot if the ABI implementation wants one. 2238 // FIXME: This is dumb, we should ask the ABI not to try to set the return 2239 // value instead. 2240 if (!RetType->isVoidType()) 2241 ReturnValue = CreateIRTemp(RetType, "retval.inhctor"); 2242 2243 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 2244 CXXThisValue = CXXABIThisValue; 2245 2246 // Directly emit the constructor initializers. 2247 EmitCtorPrologue(Ctor, CtorType, Params); 2248 } 2249 2250 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2251 llvm::Value *VTableGlobal = 2252 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2253 if (!VTableGlobal) 2254 return; 2255 2256 // We can just use the base offset in the complete class. 2257 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2258 2259 if (!NonVirtualOffset.isZero()) 2260 This = 2261 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2262 Vptr.VTableClass, Vptr.NearestVBase); 2263 2264 llvm::Value *VPtrValue = 2265 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2266 llvm::Value *Cmp = 2267 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2268 Builder.CreateAssumption(Cmp); 2269 } 2270 2271 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2272 Address This) { 2273 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2274 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2275 EmitVTableAssumptionLoad(Vptr, This); 2276 } 2277 2278 void 2279 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2280 Address This, Address Src, 2281 const CXXConstructExpr *E) { 2282 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2283 2284 CallArgList Args; 2285 2286 // Push the this ptr. 2287 Args.add(RValue::get(This.getPointer()), D->getThisType()); 2288 2289 // Push the src ptr. 2290 QualType QT = *(FPT->param_type_begin()); 2291 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2292 Src = Builder.CreateBitCast(Src, t); 2293 Args.add(RValue::get(Src.getPointer()), QT); 2294 2295 // Skip over first argument (Src). 2296 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2297 /*ParamsToSkip*/ 1); 2298 2299 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false, 2300 /*Delegating*/false, This, Args, 2301 AggValueSlot::MayOverlap, E->getExprLoc(), 2302 /*NewPointerIsChecked*/false); 2303 } 2304 2305 void 2306 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2307 CXXCtorType CtorType, 2308 const FunctionArgList &Args, 2309 SourceLocation Loc) { 2310 CallArgList DelegateArgs; 2311 2312 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2313 assert(I != E && "no parameters to constructor"); 2314 2315 // this 2316 Address This = LoadCXXThisAddress(); 2317 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType()); 2318 ++I; 2319 2320 // FIXME: The location of the VTT parameter in the parameter list is 2321 // specific to the Itanium ABI and shouldn't be hardcoded here. 2322 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2323 assert(I != E && "cannot skip vtt parameter, already done with args"); 2324 assert((*I)->getType()->isPointerType() && 2325 "skipping parameter not of vtt type"); 2326 ++I; 2327 } 2328 2329 // Explicit arguments. 2330 for (; I != E; ++I) { 2331 const VarDecl *param = *I; 2332 // FIXME: per-argument source location 2333 EmitDelegateCallArg(DelegateArgs, param, Loc); 2334 } 2335 2336 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false, 2337 /*Delegating=*/true, This, DelegateArgs, 2338 AggValueSlot::MayOverlap, Loc, 2339 /*NewPointerIsChecked=*/true); 2340 } 2341 2342 namespace { 2343 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2344 const CXXDestructorDecl *Dtor; 2345 Address Addr; 2346 CXXDtorType Type; 2347 2348 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2349 CXXDtorType Type) 2350 : Dtor(D), Addr(Addr), Type(Type) {} 2351 2352 void Emit(CodeGenFunction &CGF, Flags flags) override { 2353 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2354 /*Delegating=*/true, Addr); 2355 } 2356 }; 2357 } // end anonymous namespace 2358 2359 void 2360 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2361 const FunctionArgList &Args) { 2362 assert(Ctor->isDelegatingConstructor()); 2363 2364 Address ThisPtr = LoadCXXThisAddress(); 2365 2366 AggValueSlot AggSlot = 2367 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2368 AggValueSlot::IsDestructed, 2369 AggValueSlot::DoesNotNeedGCBarriers, 2370 AggValueSlot::IsNotAliased, 2371 AggValueSlot::MayOverlap, 2372 AggValueSlot::IsNotZeroed, 2373 // Checks are made by the code that calls constructor. 2374 AggValueSlot::IsSanitizerChecked); 2375 2376 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2377 2378 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2379 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2380 CXXDtorType Type = 2381 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2382 2383 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2384 ClassDecl->getDestructor(), 2385 ThisPtr, Type); 2386 } 2387 } 2388 2389 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2390 CXXDtorType Type, 2391 bool ForVirtualBase, 2392 bool Delegating, 2393 Address This) { 2394 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2395 Delegating, This); 2396 } 2397 2398 namespace { 2399 struct CallLocalDtor final : EHScopeStack::Cleanup { 2400 const CXXDestructorDecl *Dtor; 2401 Address Addr; 2402 2403 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2404 : Dtor(D), Addr(Addr) {} 2405 2406 void Emit(CodeGenFunction &CGF, Flags flags) override { 2407 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2408 /*ForVirtualBase=*/false, 2409 /*Delegating=*/false, Addr); 2410 } 2411 }; 2412 } // end anonymous namespace 2413 2414 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2415 Address Addr) { 2416 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2417 } 2418 2419 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2420 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2421 if (!ClassDecl) return; 2422 if (ClassDecl->hasTrivialDestructor()) return; 2423 2424 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2425 assert(D && D->isUsed() && "destructor not marked as used!"); 2426 PushDestructorCleanup(D, Addr); 2427 } 2428 2429 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2430 // Compute the address point. 2431 llvm::Value *VTableAddressPoint = 2432 CGM.getCXXABI().getVTableAddressPointInStructor( 2433 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2434 2435 if (!VTableAddressPoint) 2436 return; 2437 2438 // Compute where to store the address point. 2439 llvm::Value *VirtualOffset = nullptr; 2440 CharUnits NonVirtualOffset = CharUnits::Zero(); 2441 2442 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2443 // We need to use the virtual base offset offset because the virtual base 2444 // might have a different offset in the most derived class. 2445 2446 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2447 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2448 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2449 } else { 2450 // We can just use the base offset in the complete class. 2451 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2452 } 2453 2454 // Apply the offsets. 2455 Address VTableField = LoadCXXThisAddress(); 2456 2457 if (!NonVirtualOffset.isZero() || VirtualOffset) 2458 VTableField = ApplyNonVirtualAndVirtualOffset( 2459 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2460 Vptr.NearestVBase); 2461 2462 // Finally, store the address point. Use the same LLVM types as the field to 2463 // support optimization. 2464 llvm::Type *VTablePtrTy = 2465 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2466 ->getPointerTo() 2467 ->getPointerTo(); 2468 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2469 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2470 2471 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2472 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy); 2473 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 2474 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2475 CGM.getCodeGenOpts().StrictVTablePointers) 2476 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2477 } 2478 2479 CodeGenFunction::VPtrsVector 2480 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2481 CodeGenFunction::VPtrsVector VPtrsResult; 2482 VisitedVirtualBasesSetTy VBases; 2483 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2484 /*NearestVBase=*/nullptr, 2485 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2486 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2487 VPtrsResult); 2488 return VPtrsResult; 2489 } 2490 2491 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2492 const CXXRecordDecl *NearestVBase, 2493 CharUnits OffsetFromNearestVBase, 2494 bool BaseIsNonVirtualPrimaryBase, 2495 const CXXRecordDecl *VTableClass, 2496 VisitedVirtualBasesSetTy &VBases, 2497 VPtrsVector &Vptrs) { 2498 // If this base is a non-virtual primary base the address point has already 2499 // been set. 2500 if (!BaseIsNonVirtualPrimaryBase) { 2501 // Initialize the vtable pointer for this base. 2502 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2503 Vptrs.push_back(Vptr); 2504 } 2505 2506 const CXXRecordDecl *RD = Base.getBase(); 2507 2508 // Traverse bases. 2509 for (const auto &I : RD->bases()) { 2510 CXXRecordDecl *BaseDecl 2511 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2512 2513 // Ignore classes without a vtable. 2514 if (!BaseDecl->isDynamicClass()) 2515 continue; 2516 2517 CharUnits BaseOffset; 2518 CharUnits BaseOffsetFromNearestVBase; 2519 bool BaseDeclIsNonVirtualPrimaryBase; 2520 2521 if (I.isVirtual()) { 2522 // Check if we've visited this virtual base before. 2523 if (!VBases.insert(BaseDecl).second) 2524 continue; 2525 2526 const ASTRecordLayout &Layout = 2527 getContext().getASTRecordLayout(VTableClass); 2528 2529 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2530 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2531 BaseDeclIsNonVirtualPrimaryBase = false; 2532 } else { 2533 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2534 2535 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2536 BaseOffsetFromNearestVBase = 2537 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2538 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2539 } 2540 2541 getVTablePointers( 2542 BaseSubobject(BaseDecl, BaseOffset), 2543 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2544 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2545 } 2546 } 2547 2548 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2549 // Ignore classes without a vtable. 2550 if (!RD->isDynamicClass()) 2551 return; 2552 2553 // Initialize the vtable pointers for this class and all of its bases. 2554 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2555 for (const VPtr &Vptr : getVTablePointers(RD)) 2556 InitializeVTablePointer(Vptr); 2557 2558 if (RD->getNumVBases()) 2559 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2560 } 2561 2562 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2563 llvm::Type *VTableTy, 2564 const CXXRecordDecl *RD) { 2565 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2566 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2567 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy); 2568 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo); 2569 2570 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2571 CGM.getCodeGenOpts().StrictVTablePointers) 2572 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2573 2574 return VTable; 2575 } 2576 2577 // If a class has a single non-virtual base and does not introduce or override 2578 // virtual member functions or fields, it will have the same layout as its base. 2579 // This function returns the least derived such class. 2580 // 2581 // Casting an instance of a base class to such a derived class is technically 2582 // undefined behavior, but it is a relatively common hack for introducing member 2583 // functions on class instances with specific properties (e.g. llvm::Operator) 2584 // that works under most compilers and should not have security implications, so 2585 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2586 static const CXXRecordDecl * 2587 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2588 if (!RD->field_empty()) 2589 return RD; 2590 2591 if (RD->getNumVBases() != 0) 2592 return RD; 2593 2594 if (RD->getNumBases() != 1) 2595 return RD; 2596 2597 for (const CXXMethodDecl *MD : RD->methods()) { 2598 if (MD->isVirtual()) { 2599 // Virtual member functions are only ok if they are implicit destructors 2600 // because the implicit destructor will have the same semantics as the 2601 // base class's destructor if no fields are added. 2602 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2603 continue; 2604 return RD; 2605 } 2606 } 2607 2608 return LeastDerivedClassWithSameLayout( 2609 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2610 } 2611 2612 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2613 llvm::Value *VTable, 2614 SourceLocation Loc) { 2615 if (SanOpts.has(SanitizerKind::CFIVCall)) 2616 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc); 2617 else if (CGM.getCodeGenOpts().WholeProgramVTables && 2618 CGM.HasHiddenLTOVisibility(RD)) { 2619 llvm::Metadata *MD = 2620 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2621 llvm::Value *TypeId = 2622 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2623 2624 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2625 llvm::Value *TypeTest = 2626 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2627 {CastedVTable, TypeId}); 2628 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest); 2629 } 2630 } 2631 2632 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, 2633 llvm::Value *VTable, 2634 CFITypeCheckKind TCK, 2635 SourceLocation Loc) { 2636 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2637 RD = LeastDerivedClassWithSameLayout(RD); 2638 2639 EmitVTablePtrCheck(RD, VTable, TCK, Loc); 2640 } 2641 2642 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2643 llvm::Value *Derived, 2644 bool MayBeNull, 2645 CFITypeCheckKind TCK, 2646 SourceLocation Loc) { 2647 if (!getLangOpts().CPlusPlus) 2648 return; 2649 2650 auto *ClassTy = T->getAs<RecordType>(); 2651 if (!ClassTy) 2652 return; 2653 2654 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2655 2656 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2657 return; 2658 2659 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2660 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2661 2662 llvm::BasicBlock *ContBlock = nullptr; 2663 2664 if (MayBeNull) { 2665 llvm::Value *DerivedNotNull = 2666 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2667 2668 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2669 ContBlock = createBasicBlock("cast.cont"); 2670 2671 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2672 2673 EmitBlock(CheckBlock); 2674 } 2675 2676 llvm::Value *VTable; 2677 std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr( 2678 *this, Address(Derived, getPointerAlign()), ClassDecl); 2679 2680 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2681 2682 if (MayBeNull) { 2683 Builder.CreateBr(ContBlock); 2684 EmitBlock(ContBlock); 2685 } 2686 } 2687 2688 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2689 llvm::Value *VTable, 2690 CFITypeCheckKind TCK, 2691 SourceLocation Loc) { 2692 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso && 2693 !CGM.HasHiddenLTOVisibility(RD)) 2694 return; 2695 2696 SanitizerMask M; 2697 llvm::SanitizerStatKind SSK; 2698 switch (TCK) { 2699 case CFITCK_VCall: 2700 M = SanitizerKind::CFIVCall; 2701 SSK = llvm::SanStat_CFI_VCall; 2702 break; 2703 case CFITCK_NVCall: 2704 M = SanitizerKind::CFINVCall; 2705 SSK = llvm::SanStat_CFI_NVCall; 2706 break; 2707 case CFITCK_DerivedCast: 2708 M = SanitizerKind::CFIDerivedCast; 2709 SSK = llvm::SanStat_CFI_DerivedCast; 2710 break; 2711 case CFITCK_UnrelatedCast: 2712 M = SanitizerKind::CFIUnrelatedCast; 2713 SSK = llvm::SanStat_CFI_UnrelatedCast; 2714 break; 2715 case CFITCK_ICall: 2716 case CFITCK_NVMFCall: 2717 case CFITCK_VMFCall: 2718 llvm_unreachable("unexpected sanitizer kind"); 2719 } 2720 2721 std::string TypeName = RD->getQualifiedNameAsString(); 2722 if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName)) 2723 return; 2724 2725 SanitizerScope SanScope(this); 2726 EmitSanitizerStatReport(SSK); 2727 2728 llvm::Metadata *MD = 2729 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2730 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2731 2732 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2733 llvm::Value *TypeTest = Builder.CreateCall( 2734 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId}); 2735 2736 llvm::Constant *StaticData[] = { 2737 llvm::ConstantInt::get(Int8Ty, TCK), 2738 EmitCheckSourceLocation(Loc), 2739 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2740 }; 2741 2742 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 2743 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 2744 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData); 2745 return; 2746 } 2747 2748 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) { 2749 EmitTrapCheck(TypeTest); 2750 return; 2751 } 2752 2753 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2754 CGM.getLLVMContext(), 2755 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2756 llvm::Value *ValidVtable = Builder.CreateCall( 2757 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables}); 2758 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail, 2759 StaticData, {CastedVTable, ValidVtable}); 2760 } 2761 2762 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) { 2763 if (!CGM.getCodeGenOpts().WholeProgramVTables || 2764 !SanOpts.has(SanitizerKind::CFIVCall) || 2765 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) || 2766 !CGM.HasHiddenLTOVisibility(RD)) 2767 return false; 2768 2769 std::string TypeName = RD->getQualifiedNameAsString(); 2770 return !getContext().getSanitizerBlacklist().isBlacklistedType( 2771 SanitizerKind::CFIVCall, TypeName); 2772 } 2773 2774 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad( 2775 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) { 2776 SanitizerScope SanScope(this); 2777 2778 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall); 2779 2780 llvm::Metadata *MD = 2781 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2782 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD); 2783 2784 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2785 llvm::Value *CheckedLoad = Builder.CreateCall( 2786 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), 2787 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), 2788 TypeId}); 2789 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); 2790 2791 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall), 2792 SanitizerHandler::CFICheckFail, nullptr, nullptr); 2793 2794 return Builder.CreateBitCast( 2795 Builder.CreateExtractValue(CheckedLoad, 0), 2796 cast<llvm::PointerType>(VTable->getType())->getElementType()); 2797 } 2798 2799 void CodeGenFunction::EmitForwardingCallToLambda( 2800 const CXXMethodDecl *callOperator, 2801 CallArgList &callArgs) { 2802 // Get the address of the call operator. 2803 const CGFunctionInfo &calleeFnInfo = 2804 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2805 llvm::Constant *calleePtr = 2806 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2807 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2808 2809 // Prepare the return slot. 2810 const FunctionProtoType *FPT = 2811 callOperator->getType()->castAs<FunctionProtoType>(); 2812 QualType resultType = FPT->getReturnType(); 2813 ReturnValueSlot returnSlot; 2814 if (!resultType->isVoidType() && 2815 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2816 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2817 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2818 2819 // We don't need to separately arrange the call arguments because 2820 // the call can't be variadic anyway --- it's impossible to forward 2821 // variadic arguments. 2822 2823 // Now emit our call. 2824 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator)); 2825 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs); 2826 2827 // If necessary, copy the returned value into the slot. 2828 if (!resultType->isVoidType() && returnSlot.isNull()) { 2829 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) { 2830 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal())); 2831 } 2832 EmitReturnOfRValue(RV, resultType); 2833 } else 2834 EmitBranchThroughCleanup(ReturnBlock); 2835 } 2836 2837 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2838 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2839 const VarDecl *variable = BD->capture_begin()->getVariable(); 2840 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2841 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2842 2843 if (CallOp->isVariadic()) { 2844 // FIXME: Making this work correctly is nasty because it requires either 2845 // cloning the body of the call operator or making the call operator 2846 // forward. 2847 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2848 return; 2849 } 2850 2851 // Start building arguments for forwarding call 2852 CallArgList CallArgs; 2853 2854 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2855 Address ThisPtr = GetAddrOfBlockDecl(variable); 2856 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2857 2858 // Add the rest of the parameters. 2859 for (auto param : BD->parameters()) 2860 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc()); 2861 2862 assert(!Lambda->isGenericLambda() && 2863 "generic lambda interconversion to block not implemented"); 2864 EmitForwardingCallToLambda(CallOp, CallArgs); 2865 } 2866 2867 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2868 const CXXRecordDecl *Lambda = MD->getParent(); 2869 2870 // Start building arguments for forwarding call 2871 CallArgList CallArgs; 2872 2873 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2874 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2875 CallArgs.add(RValue::get(ThisPtr), ThisType); 2876 2877 // Add the rest of the parameters. 2878 for (auto Param : MD->parameters()) 2879 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc()); 2880 2881 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2882 // For a generic lambda, find the corresponding call operator specialization 2883 // to which the call to the static-invoker shall be forwarded. 2884 if (Lambda->isGenericLambda()) { 2885 assert(MD->isFunctionTemplateSpecialization()); 2886 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2887 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2888 void *InsertPos = nullptr; 2889 FunctionDecl *CorrespondingCallOpSpecialization = 2890 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2891 assert(CorrespondingCallOpSpecialization); 2892 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2893 } 2894 EmitForwardingCallToLambda(CallOp, CallArgs); 2895 } 2896 2897 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) { 2898 if (MD->isVariadic()) { 2899 // FIXME: Making this work correctly is nasty because it requires either 2900 // cloning the body of the call operator or making the call operator forward. 2901 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2902 return; 2903 } 2904 2905 EmitLambdaDelegatingInvokeBody(MD); 2906 } 2907