1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 33 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 34 CastExpr::path_const_iterator End) { 35 CharUnits Offset = CharUnits::Zero(); 36 37 const ASTContext &Context = getContext(); 38 const CXXRecordDecl *RD = DerivedClass; 39 40 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 41 const CXXBaseSpecifier *Base = *I; 42 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 43 44 // Get the layout. 45 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 46 47 const CXXRecordDecl *BaseDecl = 48 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 49 50 // Add the offset. 51 Offset += Layout.getBaseClassOffset(BaseDecl); 52 53 RD = BaseDecl; 54 } 55 56 return Offset; 57 } 58 59 llvm::Constant * 60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 61 CastExpr::path_const_iterator PathBegin, 62 CastExpr::path_const_iterator PathEnd) { 63 assert(PathBegin != PathEnd && "Base path should not be empty!"); 64 65 CharUnits Offset = 66 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 67 if (Offset.isZero()) 68 return nullptr; 69 70 llvm::Type *PtrDiffTy = 71 Types.ConvertType(getContext().getPointerDiffType()); 72 73 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 74 } 75 76 /// Gets the address of a direct base class within a complete object. 77 /// This should only be used for (1) non-virtual bases or (2) virtual bases 78 /// when the type is known to be complete (e.g. in complete destructors). 79 /// 80 /// The object pointed to by 'This' is assumed to be non-null. 81 llvm::Value * 82 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This, 83 const CXXRecordDecl *Derived, 84 const CXXRecordDecl *Base, 85 bool BaseIsVirtual) { 86 // 'this' must be a pointer (in some address space) to Derived. 87 assert(This->getType()->isPointerTy() && 88 cast<llvm::PointerType>(This->getType())->getElementType() 89 == ConvertType(Derived)); 90 91 // Compute the offset of the virtual base. 92 CharUnits Offset; 93 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 94 if (BaseIsVirtual) 95 Offset = Layout.getVBaseClassOffset(Base); 96 else 97 Offset = Layout.getBaseClassOffset(Base); 98 99 // Shift and cast down to the base type. 100 // TODO: for complete types, this should be possible with a GEP. 101 llvm::Value *V = This; 102 if (Offset.isPositive()) { 103 V = Builder.CreateBitCast(V, Int8PtrTy); 104 V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity()); 105 } 106 V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo()); 107 108 return V; 109 } 110 111 static llvm::Value * 112 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr, 113 CharUnits nonVirtualOffset, 114 llvm::Value *virtualOffset) { 115 // Assert that we have something to do. 116 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 117 118 // Compute the offset from the static and dynamic components. 119 llvm::Value *baseOffset; 120 if (!nonVirtualOffset.isZero()) { 121 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 122 nonVirtualOffset.getQuantity()); 123 if (virtualOffset) { 124 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 125 } 126 } else { 127 baseOffset = virtualOffset; 128 } 129 130 // Apply the base offset. 131 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 132 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 133 return ptr; 134 } 135 136 llvm::Value *CodeGenFunction::GetAddressOfBaseClass( 137 llvm::Value *Value, const CXXRecordDecl *Derived, 138 CastExpr::path_const_iterator PathBegin, 139 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 140 SourceLocation Loc) { 141 assert(PathBegin != PathEnd && "Base path should not be empty!"); 142 143 CastExpr::path_const_iterator Start = PathBegin; 144 const CXXRecordDecl *VBase = nullptr; 145 146 // Sema has done some convenient canonicalization here: if the 147 // access path involved any virtual steps, the conversion path will 148 // *start* with a step down to the correct virtual base subobject, 149 // and hence will not require any further steps. 150 if ((*Start)->isVirtual()) { 151 VBase = 152 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 153 ++Start; 154 } 155 156 // Compute the static offset of the ultimate destination within its 157 // allocating subobject (the virtual base, if there is one, or else 158 // the "complete" object that we see). 159 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 160 VBase ? VBase : Derived, Start, PathEnd); 161 162 // If there's a virtual step, we can sometimes "devirtualize" it. 163 // For now, that's limited to when the derived type is final. 164 // TODO: "devirtualize" this for accesses to known-complete objects. 165 if (VBase && Derived->hasAttr<FinalAttr>()) { 166 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 167 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 168 NonVirtualOffset += vBaseOffset; 169 VBase = nullptr; // we no longer have a virtual step 170 } 171 172 // Get the base pointer type. 173 llvm::Type *BasePtrTy = 174 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 175 176 QualType DerivedTy = getContext().getRecordType(Derived); 177 CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy); 178 179 // If the static offset is zero and we don't have a virtual step, 180 // just do a bitcast; null checks are unnecessary. 181 if (NonVirtualOffset.isZero() && !VBase) { 182 if (sanitizePerformTypeCheck()) { 183 EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign, 184 !NullCheckValue); 185 } 186 return Builder.CreateBitCast(Value, BasePtrTy); 187 } 188 189 llvm::BasicBlock *origBB = nullptr; 190 llvm::BasicBlock *endBB = nullptr; 191 192 // Skip over the offset (and the vtable load) if we're supposed to 193 // null-check the pointer. 194 if (NullCheckValue) { 195 origBB = Builder.GetInsertBlock(); 196 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 197 endBB = createBasicBlock("cast.end"); 198 199 llvm::Value *isNull = Builder.CreateIsNull(Value); 200 Builder.CreateCondBr(isNull, endBB, notNullBB); 201 EmitBlock(notNullBB); 202 } 203 204 if (sanitizePerformTypeCheck()) { 205 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value, 206 DerivedTy, DerivedAlign, true); 207 } 208 209 // Compute the virtual offset. 210 llvm::Value *VirtualOffset = nullptr; 211 if (VBase) { 212 VirtualOffset = 213 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 214 } 215 216 // Apply both offsets. 217 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, 218 NonVirtualOffset, 219 VirtualOffset); 220 221 // Cast to the destination type. 222 Value = Builder.CreateBitCast(Value, BasePtrTy); 223 224 // Build a phi if we needed a null check. 225 if (NullCheckValue) { 226 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 227 Builder.CreateBr(endBB); 228 EmitBlock(endBB); 229 230 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 231 PHI->addIncoming(Value, notNullBB); 232 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 233 Value = PHI; 234 } 235 236 return Value; 237 } 238 239 llvm::Value * 240 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value, 241 const CXXRecordDecl *Derived, 242 CastExpr::path_const_iterator PathBegin, 243 CastExpr::path_const_iterator PathEnd, 244 bool NullCheckValue) { 245 assert(PathBegin != PathEnd && "Base path should not be empty!"); 246 247 QualType DerivedTy = 248 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 249 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 250 251 llvm::Value *NonVirtualOffset = 252 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 253 254 if (!NonVirtualOffset) { 255 // No offset, we can just cast back. 256 return Builder.CreateBitCast(Value, DerivedPtrTy); 257 } 258 259 llvm::BasicBlock *CastNull = nullptr; 260 llvm::BasicBlock *CastNotNull = nullptr; 261 llvm::BasicBlock *CastEnd = nullptr; 262 263 if (NullCheckValue) { 264 CastNull = createBasicBlock("cast.null"); 265 CastNotNull = createBasicBlock("cast.notnull"); 266 CastEnd = createBasicBlock("cast.end"); 267 268 llvm::Value *IsNull = Builder.CreateIsNull(Value); 269 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 270 EmitBlock(CastNotNull); 271 } 272 273 // Apply the offset. 274 Value = Builder.CreateBitCast(Value, Int8PtrTy); 275 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 276 "sub.ptr"); 277 278 // Just cast. 279 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 280 281 if (NullCheckValue) { 282 Builder.CreateBr(CastEnd); 283 EmitBlock(CastNull); 284 Builder.CreateBr(CastEnd); 285 EmitBlock(CastEnd); 286 287 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 288 PHI->addIncoming(Value, CastNotNull); 289 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), 290 CastNull); 291 Value = PHI; 292 } 293 294 return Value; 295 } 296 297 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 298 bool ForVirtualBase, 299 bool Delegating) { 300 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 301 // This constructor/destructor does not need a VTT parameter. 302 return nullptr; 303 } 304 305 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 306 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 307 308 llvm::Value *VTT; 309 310 uint64_t SubVTTIndex; 311 312 if (Delegating) { 313 // If this is a delegating constructor call, just load the VTT. 314 return LoadCXXVTT(); 315 } else if (RD == Base) { 316 // If the record matches the base, this is the complete ctor/dtor 317 // variant calling the base variant in a class with virtual bases. 318 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 319 "doing no-op VTT offset in base dtor/ctor?"); 320 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 321 SubVTTIndex = 0; 322 } else { 323 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 324 CharUnits BaseOffset = ForVirtualBase ? 325 Layout.getVBaseClassOffset(Base) : 326 Layout.getBaseClassOffset(Base); 327 328 SubVTTIndex = 329 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 330 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 331 } 332 333 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 334 // A VTT parameter was passed to the constructor, use it. 335 VTT = LoadCXXVTT(); 336 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 337 } else { 338 // We're the complete constructor, so get the VTT by name. 339 VTT = CGM.getVTables().GetAddrOfVTT(RD); 340 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 341 } 342 343 return VTT; 344 } 345 346 namespace { 347 /// Call the destructor for a direct base class. 348 struct CallBaseDtor : EHScopeStack::Cleanup { 349 const CXXRecordDecl *BaseClass; 350 bool BaseIsVirtual; 351 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 352 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 353 354 void Emit(CodeGenFunction &CGF, Flags flags) override { 355 const CXXRecordDecl *DerivedClass = 356 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 357 358 const CXXDestructorDecl *D = BaseClass->getDestructor(); 359 llvm::Value *Addr = 360 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(), 361 DerivedClass, BaseClass, 362 BaseIsVirtual); 363 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 364 /*Delegating=*/false, Addr); 365 } 366 }; 367 368 /// A visitor which checks whether an initializer uses 'this' in a 369 /// way which requires the vtable to be properly set. 370 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 371 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 372 373 bool UsesThis; 374 375 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 376 377 // Black-list all explicit and implicit references to 'this'. 378 // 379 // Do we need to worry about external references to 'this' derived 380 // from arbitrary code? If so, then anything which runs arbitrary 381 // external code might potentially access the vtable. 382 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 383 }; 384 } 385 386 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 387 DynamicThisUseChecker Checker(C); 388 Checker.Visit(Init); 389 return Checker.UsesThis; 390 } 391 392 static void EmitBaseInitializer(CodeGenFunction &CGF, 393 const CXXRecordDecl *ClassDecl, 394 CXXCtorInitializer *BaseInit, 395 CXXCtorType CtorType) { 396 assert(BaseInit->isBaseInitializer() && 397 "Must have base initializer!"); 398 399 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 400 401 const Type *BaseType = BaseInit->getBaseClass(); 402 CXXRecordDecl *BaseClassDecl = 403 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 404 405 bool isBaseVirtual = BaseInit->isBaseVirtual(); 406 407 // The base constructor doesn't construct virtual bases. 408 if (CtorType == Ctor_Base && isBaseVirtual) 409 return; 410 411 // If the initializer for the base (other than the constructor 412 // itself) accesses 'this' in any way, we need to initialize the 413 // vtables. 414 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 415 CGF.InitializeVTablePointers(ClassDecl); 416 417 // We can pretend to be a complete class because it only matters for 418 // virtual bases, and we only do virtual bases for complete ctors. 419 llvm::Value *V = 420 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 421 BaseClassDecl, 422 isBaseVirtual); 423 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType); 424 AggValueSlot AggSlot = 425 AggValueSlot::forAddr(V, Alignment, Qualifiers(), 426 AggValueSlot::IsDestructed, 427 AggValueSlot::DoesNotNeedGCBarriers, 428 AggValueSlot::IsNotAliased); 429 430 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 431 432 if (CGF.CGM.getLangOpts().Exceptions && 433 !BaseClassDecl->hasTrivialDestructor()) 434 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 435 isBaseVirtual); 436 } 437 438 static void EmitAggMemberInitializer(CodeGenFunction &CGF, 439 LValue LHS, 440 Expr *Init, 441 llvm::Value *ArrayIndexVar, 442 QualType T, 443 ArrayRef<VarDecl *> ArrayIndexes, 444 unsigned Index) { 445 if (Index == ArrayIndexes.size()) { 446 LValue LV = LHS; 447 448 if (ArrayIndexVar) { 449 // If we have an array index variable, load it and use it as an offset. 450 // Then, increment the value. 451 llvm::Value *Dest = LHS.getAddress(); 452 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar); 453 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress"); 454 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1); 455 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc"); 456 CGF.Builder.CreateStore(Next, ArrayIndexVar); 457 458 // Update the LValue. 459 LV.setAddress(Dest); 460 CharUnits Align = CGF.getContext().getTypeAlignInChars(T); 461 LV.setAlignment(std::min(Align, LV.getAlignment())); 462 } 463 464 switch (CGF.getEvaluationKind(T)) { 465 case TEK_Scalar: 466 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false); 467 break; 468 case TEK_Complex: 469 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true); 470 break; 471 case TEK_Aggregate: { 472 AggValueSlot Slot = 473 AggValueSlot::forLValue(LV, 474 AggValueSlot::IsDestructed, 475 AggValueSlot::DoesNotNeedGCBarriers, 476 AggValueSlot::IsNotAliased); 477 478 CGF.EmitAggExpr(Init, Slot); 479 break; 480 } 481 } 482 483 return; 484 } 485 486 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T); 487 assert(Array && "Array initialization without the array type?"); 488 llvm::Value *IndexVar 489 = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]); 490 assert(IndexVar && "Array index variable not loaded"); 491 492 // Initialize this index variable to zero. 493 llvm::Value* Zero 494 = llvm::Constant::getNullValue( 495 CGF.ConvertType(CGF.getContext().getSizeType())); 496 CGF.Builder.CreateStore(Zero, IndexVar); 497 498 // Start the loop with a block that tests the condition. 499 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond"); 500 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end"); 501 502 CGF.EmitBlock(CondBlock); 503 504 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body"); 505 // Generate: if (loop-index < number-of-elements) fall to the loop body, 506 // otherwise, go to the block after the for-loop. 507 uint64_t NumElements = Array->getSize().getZExtValue(); 508 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar); 509 llvm::Value *NumElementsPtr = 510 llvm::ConstantInt::get(Counter->getType(), NumElements); 511 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr, 512 "isless"); 513 514 // If the condition is true, execute the body. 515 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor); 516 517 CGF.EmitBlock(ForBody); 518 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc"); 519 520 // Inside the loop body recurse to emit the inner loop or, eventually, the 521 // constructor call. 522 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar, 523 Array->getElementType(), ArrayIndexes, Index + 1); 524 525 CGF.EmitBlock(ContinueBlock); 526 527 // Emit the increment of the loop counter. 528 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1); 529 Counter = CGF.Builder.CreateLoad(IndexVar); 530 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc"); 531 CGF.Builder.CreateStore(NextVal, IndexVar); 532 533 // Finally, branch back up to the condition for the next iteration. 534 CGF.EmitBranch(CondBlock); 535 536 // Emit the fall-through block. 537 CGF.EmitBlock(AfterFor, true); 538 } 539 540 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 541 auto *CD = dyn_cast<CXXConstructorDecl>(D); 542 if (!(CD && CD->isCopyOrMoveConstructor()) && 543 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 544 return false; 545 546 // We can emit a memcpy for a trivial copy or move constructor/assignment. 547 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 548 return true; 549 550 // We *must* emit a memcpy for a defaulted union copy or move op. 551 if (D->getParent()->isUnion() && D->isDefaulted()) 552 return true; 553 554 return false; 555 } 556 557 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 558 CXXCtorInitializer *MemberInit, 559 LValue &LHS) { 560 FieldDecl *Field = MemberInit->getAnyMember(); 561 if (MemberInit->isIndirectMemberInitializer()) { 562 // If we are initializing an anonymous union field, drill down to the field. 563 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 564 for (const auto *I : IndirectField->chain()) 565 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 566 } else { 567 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 568 } 569 } 570 571 static void EmitMemberInitializer(CodeGenFunction &CGF, 572 const CXXRecordDecl *ClassDecl, 573 CXXCtorInitializer *MemberInit, 574 const CXXConstructorDecl *Constructor, 575 FunctionArgList &Args) { 576 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 577 assert(MemberInit->isAnyMemberInitializer() && 578 "Must have member initializer!"); 579 assert(MemberInit->getInit() && "Must have initializer!"); 580 581 // non-static data member initializers. 582 FieldDecl *Field = MemberInit->getAnyMember(); 583 QualType FieldType = Field->getType(); 584 585 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 586 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 587 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 588 589 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 590 591 // Special case: if we are in a copy or move constructor, and we are copying 592 // an array of PODs or classes with trivial copy constructors, ignore the 593 // AST and perform the copy we know is equivalent. 594 // FIXME: This is hacky at best... if we had a bit more explicit information 595 // in the AST, we could generalize it more easily. 596 const ConstantArrayType *Array 597 = CGF.getContext().getAsConstantArrayType(FieldType); 598 if (Array && Constructor->isDefaulted() && 599 Constructor->isCopyOrMoveConstructor()) { 600 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 601 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 602 if (BaseElementTy.isPODType(CGF.getContext()) || 603 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 604 unsigned SrcArgIndex = 605 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 606 llvm::Value *SrcPtr 607 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 608 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 609 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 610 611 // Copy the aggregate. 612 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 613 LHS.isVolatileQualified()); 614 // Ensure that we destroy the objects if an exception is thrown later in 615 // the constructor. 616 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 617 if (CGF.needsEHCleanup(dtorKind)) 618 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 619 return; 620 } 621 } 622 623 ArrayRef<VarDecl *> ArrayIndexes; 624 if (MemberInit->getNumArrayIndices()) 625 ArrayIndexes = MemberInit->getArrayIndexes(); 626 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes); 627 } 628 629 void CodeGenFunction::EmitInitializerForField( 630 FieldDecl *Field, LValue LHS, Expr *Init, 631 ArrayRef<VarDecl *> ArrayIndexes) { 632 QualType FieldType = Field->getType(); 633 switch (getEvaluationKind(FieldType)) { 634 case TEK_Scalar: 635 if (LHS.isSimple()) { 636 EmitExprAsInit(Init, Field, LHS, false); 637 } else { 638 RValue RHS = RValue::get(EmitScalarExpr(Init)); 639 EmitStoreThroughLValue(RHS, LHS); 640 } 641 break; 642 case TEK_Complex: 643 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 644 break; 645 case TEK_Aggregate: { 646 llvm::Value *ArrayIndexVar = nullptr; 647 if (ArrayIndexes.size()) { 648 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 649 650 // The LHS is a pointer to the first object we'll be constructing, as 651 // a flat array. 652 QualType BaseElementTy = getContext().getBaseElementType(FieldType); 653 llvm::Type *BasePtr = ConvertType(BaseElementTy); 654 BasePtr = llvm::PointerType::getUnqual(BasePtr); 655 llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), 656 BasePtr); 657 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy); 658 659 // Create an array index that will be used to walk over all of the 660 // objects we're constructing. 661 ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index"); 662 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy); 663 Builder.CreateStore(Zero, ArrayIndexVar); 664 665 666 // Emit the block variables for the array indices, if any. 667 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I) 668 EmitAutoVarDecl(*ArrayIndexes[I]); 669 } 670 671 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType, 672 ArrayIndexes, 0); 673 } 674 } 675 676 // Ensure that we destroy this object if an exception is thrown 677 // later in the constructor. 678 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 679 if (needsEHCleanup(dtorKind)) 680 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 681 } 682 683 /// Checks whether the given constructor is a valid subject for the 684 /// complete-to-base constructor delegation optimization, i.e. 685 /// emitting the complete constructor as a simple call to the base 686 /// constructor. 687 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) { 688 689 // Currently we disable the optimization for classes with virtual 690 // bases because (1) the addresses of parameter variables need to be 691 // consistent across all initializers but (2) the delegate function 692 // call necessarily creates a second copy of the parameter variable. 693 // 694 // The limiting example (purely theoretical AFAIK): 695 // struct A { A(int &c) { c++; } }; 696 // struct B : virtual A { 697 // B(int count) : A(count) { printf("%d\n", count); } 698 // }; 699 // ...although even this example could in principle be emitted as a 700 // delegation since the address of the parameter doesn't escape. 701 if (Ctor->getParent()->getNumVBases()) { 702 // TODO: white-list trivial vbase initializers. This case wouldn't 703 // be subject to the restrictions below. 704 705 // TODO: white-list cases where: 706 // - there are no non-reference parameters to the constructor 707 // - the initializers don't access any non-reference parameters 708 // - the initializers don't take the address of non-reference 709 // parameters 710 // - etc. 711 // If we ever add any of the above cases, remember that: 712 // - function-try-blocks will always blacklist this optimization 713 // - we need to perform the constructor prologue and cleanup in 714 // EmitConstructorBody. 715 716 return false; 717 } 718 719 // We also disable the optimization for variadic functions because 720 // it's impossible to "re-pass" varargs. 721 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 722 return false; 723 724 // FIXME: Decide if we can do a delegation of a delegating constructor. 725 if (Ctor->isDelegatingConstructor()) 726 return false; 727 728 return true; 729 } 730 731 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 732 // to poison the extra field paddings inserted under 733 // -fsanitize-address-field-padding=1|2. 734 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 735 ASTContext &Context = getContext(); 736 const CXXRecordDecl *ClassDecl = 737 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 738 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 739 if (!ClassDecl->mayInsertExtraPadding()) return; 740 741 struct SizeAndOffset { 742 uint64_t Size; 743 uint64_t Offset; 744 }; 745 746 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 747 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 748 749 // Populate sizes and offsets of fields. 750 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 751 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 752 SSV[i].Offset = 753 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 754 755 size_t NumFields = 0; 756 for (const auto *Field : ClassDecl->fields()) { 757 const FieldDecl *D = Field; 758 std::pair<CharUnits, CharUnits> FieldInfo = 759 Context.getTypeInfoInChars(D->getType()); 760 CharUnits FieldSize = FieldInfo.first; 761 assert(NumFields < SSV.size()); 762 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 763 NumFields++; 764 } 765 assert(NumFields == SSV.size()); 766 if (SSV.size() <= 1) return; 767 768 // We will insert calls to __asan_* run-time functions. 769 // LLVM AddressSanitizer pass may decide to inline them later. 770 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 771 llvm::FunctionType *FTy = 772 llvm::FunctionType::get(CGM.VoidTy, Args, false); 773 llvm::Constant *F = CGM.CreateRuntimeFunction( 774 FTy, Prologue ? "__asan_poison_intra_object_redzone" 775 : "__asan_unpoison_intra_object_redzone"); 776 777 llvm::Value *ThisPtr = LoadCXXThis(); 778 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 779 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 780 // For each field check if it has sufficient padding, 781 // if so (un)poison it with a call. 782 for (size_t i = 0; i < SSV.size(); i++) { 783 uint64_t AsanAlignment = 8; 784 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 785 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 786 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 787 if (PoisonSize < AsanAlignment || !SSV[i].Size || 788 (NextField % AsanAlignment) != 0) 789 continue; 790 Builder.CreateCall( 791 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 792 Builder.getIntN(PtrSize, PoisonSize)}); 793 } 794 } 795 796 /// EmitConstructorBody - Emits the body of the current constructor. 797 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 798 EmitAsanPrologueOrEpilogue(true); 799 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 800 CXXCtorType CtorType = CurGD.getCtorType(); 801 802 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 803 CtorType == Ctor_Complete) && 804 "can only generate complete ctor for this ABI"); 805 806 // Before we go any further, try the complete->base constructor 807 // delegation optimization. 808 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 809 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 810 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 811 return; 812 } 813 814 const FunctionDecl *Definition = 0; 815 Stmt *Body = Ctor->getBody(Definition); 816 assert(Definition == Ctor && "emitting wrong constructor body"); 817 818 // Enter the function-try-block before the constructor prologue if 819 // applicable. 820 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 821 if (IsTryBody) 822 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 823 824 incrementProfileCounter(Body); 825 826 RunCleanupsScope RunCleanups(*this); 827 828 // TODO: in restricted cases, we can emit the vbase initializers of 829 // a complete ctor and then delegate to the base ctor. 830 831 // Emit the constructor prologue, i.e. the base and member 832 // initializers. 833 EmitCtorPrologue(Ctor, CtorType, Args); 834 835 // Emit the body of the statement. 836 if (IsTryBody) 837 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 838 else if (Body) 839 EmitStmt(Body); 840 841 // Emit any cleanup blocks associated with the member or base 842 // initializers, which includes (along the exceptional path) the 843 // destructors for those members and bases that were fully 844 // constructed. 845 RunCleanups.ForceCleanup(); 846 847 if (IsTryBody) 848 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 849 } 850 851 namespace { 852 /// RAII object to indicate that codegen is copying the value representation 853 /// instead of the object representation. Useful when copying a struct or 854 /// class which has uninitialized members and we're only performing 855 /// lvalue-to-rvalue conversion on the object but not its members. 856 class CopyingValueRepresentation { 857 public: 858 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 859 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 860 CGF.SanOpts.set(SanitizerKind::Bool, false); 861 CGF.SanOpts.set(SanitizerKind::Enum, false); 862 } 863 ~CopyingValueRepresentation() { 864 CGF.SanOpts = OldSanOpts; 865 } 866 private: 867 CodeGenFunction &CGF; 868 SanitizerSet OldSanOpts; 869 }; 870 } 871 872 namespace { 873 class FieldMemcpyizer { 874 public: 875 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 876 const VarDecl *SrcRec) 877 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 878 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 879 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 880 LastFieldOffset(0), LastAddedFieldIndex(0) {} 881 882 bool isMemcpyableField(FieldDecl *F) const { 883 // Never memcpy fields when we are adding poisoned paddings. 884 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 885 return false; 886 Qualifiers Qual = F->getType().getQualifiers(); 887 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 888 return false; 889 return true; 890 } 891 892 void addMemcpyableField(FieldDecl *F) { 893 if (!FirstField) 894 addInitialField(F); 895 else 896 addNextField(F); 897 } 898 899 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 900 unsigned LastFieldSize = 901 LastField->isBitField() ? 902 LastField->getBitWidthValue(CGF.getContext()) : 903 CGF.getContext().getTypeSize(LastField->getType()); 904 uint64_t MemcpySizeBits = 905 LastFieldOffset + LastFieldSize - FirstByteOffset + 906 CGF.getContext().getCharWidth() - 1; 907 CharUnits MemcpySize = 908 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 909 return MemcpySize; 910 } 911 912 void emitMemcpy() { 913 // Give the subclass a chance to bail out if it feels the memcpy isn't 914 // worth it (e.g. Hasn't aggregated enough data). 915 if (!FirstField) { 916 return; 917 } 918 919 uint64_t FirstByteOffset; 920 if (FirstField->isBitField()) { 921 const CGRecordLayout &RL = 922 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 923 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 924 // FirstFieldOffset is not appropriate for bitfields, 925 // we need to use the storage offset instead. 926 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 927 } else { 928 FirstByteOffset = FirstFieldOffset; 929 } 930 931 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 932 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 933 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 934 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 935 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 936 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 937 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 938 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 939 940 CharUnits Offset = CGF.getContext().toCharUnitsFromBits(FirstByteOffset); 941 CharUnits Alignment = DestLV.getAlignment().alignmentAtOffset(Offset); 942 943 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(), 944 Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(), 945 MemcpySize, Alignment); 946 reset(); 947 } 948 949 void reset() { 950 FirstField = nullptr; 951 } 952 953 protected: 954 CodeGenFunction &CGF; 955 const CXXRecordDecl *ClassDecl; 956 957 private: 958 959 void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr, 960 CharUnits Size, CharUnits Alignment) { 961 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 962 llvm::Type *DBP = 963 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 964 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 965 966 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 967 llvm::Type *SBP = 968 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 969 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 970 971 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(), 972 Alignment.getQuantity()); 973 } 974 975 void addInitialField(FieldDecl *F) { 976 FirstField = F; 977 LastField = F; 978 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 979 LastFieldOffset = FirstFieldOffset; 980 LastAddedFieldIndex = F->getFieldIndex(); 981 return; 982 } 983 984 void addNextField(FieldDecl *F) { 985 // For the most part, the following invariant will hold: 986 // F->getFieldIndex() == LastAddedFieldIndex + 1 987 // The one exception is that Sema won't add a copy-initializer for an 988 // unnamed bitfield, which will show up here as a gap in the sequence. 989 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 990 "Cannot aggregate fields out of order."); 991 LastAddedFieldIndex = F->getFieldIndex(); 992 993 // The 'first' and 'last' fields are chosen by offset, rather than field 994 // index. This allows the code to support bitfields, as well as regular 995 // fields. 996 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 997 if (FOffset < FirstFieldOffset) { 998 FirstField = F; 999 FirstFieldOffset = FOffset; 1000 } else if (FOffset > LastFieldOffset) { 1001 LastField = F; 1002 LastFieldOffset = FOffset; 1003 } 1004 } 1005 1006 const VarDecl *SrcRec; 1007 const ASTRecordLayout &RecLayout; 1008 FieldDecl *FirstField; 1009 FieldDecl *LastField; 1010 uint64_t FirstFieldOffset, LastFieldOffset; 1011 unsigned LastAddedFieldIndex; 1012 }; 1013 1014 class ConstructorMemcpyizer : public FieldMemcpyizer { 1015 private: 1016 1017 /// Get source argument for copy constructor. Returns null if not a copy 1018 /// constructor. 1019 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1020 const CXXConstructorDecl *CD, 1021 FunctionArgList &Args) { 1022 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1023 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1024 return nullptr; 1025 } 1026 1027 // Returns true if a CXXCtorInitializer represents a member initialization 1028 // that can be rolled into a memcpy. 1029 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1030 if (!MemcpyableCtor) 1031 return false; 1032 FieldDecl *Field = MemberInit->getMember(); 1033 assert(Field && "No field for member init."); 1034 QualType FieldType = Field->getType(); 1035 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1036 1037 // Bail out on non-memcpyable, not-trivially-copyable members. 1038 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1039 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1040 FieldType->isReferenceType())) 1041 return false; 1042 1043 // Bail out on volatile fields. 1044 if (!isMemcpyableField(Field)) 1045 return false; 1046 1047 // Otherwise we're good. 1048 return true; 1049 } 1050 1051 public: 1052 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1053 FunctionArgList &Args) 1054 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1055 ConstructorDecl(CD), 1056 MemcpyableCtor(CD->isDefaulted() && 1057 CD->isCopyOrMoveConstructor() && 1058 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1059 Args(Args) { } 1060 1061 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1062 if (isMemberInitMemcpyable(MemberInit)) { 1063 AggregatedInits.push_back(MemberInit); 1064 addMemcpyableField(MemberInit->getMember()); 1065 } else { 1066 emitAggregatedInits(); 1067 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1068 ConstructorDecl, Args); 1069 } 1070 } 1071 1072 void emitAggregatedInits() { 1073 if (AggregatedInits.size() <= 1) { 1074 // This memcpy is too small to be worthwhile. Fall back on default 1075 // codegen. 1076 if (!AggregatedInits.empty()) { 1077 CopyingValueRepresentation CVR(CGF); 1078 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1079 AggregatedInits[0], ConstructorDecl, Args); 1080 AggregatedInits.clear(); 1081 } 1082 reset(); 1083 return; 1084 } 1085 1086 pushEHDestructors(); 1087 emitMemcpy(); 1088 AggregatedInits.clear(); 1089 } 1090 1091 void pushEHDestructors() { 1092 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 1093 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1094 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 1095 1096 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1097 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1098 QualType FieldType = MemberInit->getAnyMember()->getType(); 1099 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1100 if (!CGF.needsEHCleanup(dtorKind)) 1101 continue; 1102 LValue FieldLHS = LHS; 1103 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1104 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1105 } 1106 } 1107 1108 void finish() { 1109 emitAggregatedInits(); 1110 } 1111 1112 private: 1113 const CXXConstructorDecl *ConstructorDecl; 1114 bool MemcpyableCtor; 1115 FunctionArgList &Args; 1116 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1117 }; 1118 1119 class AssignmentMemcpyizer : public FieldMemcpyizer { 1120 private: 1121 1122 // Returns the memcpyable field copied by the given statement, if one 1123 // exists. Otherwise returns null. 1124 FieldDecl *getMemcpyableField(Stmt *S) { 1125 if (!AssignmentsMemcpyable) 1126 return nullptr; 1127 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1128 // Recognise trivial assignments. 1129 if (BO->getOpcode() != BO_Assign) 1130 return nullptr; 1131 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1132 if (!ME) 1133 return nullptr; 1134 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1135 if (!Field || !isMemcpyableField(Field)) 1136 return nullptr; 1137 Stmt *RHS = BO->getRHS(); 1138 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1139 RHS = EC->getSubExpr(); 1140 if (!RHS) 1141 return nullptr; 1142 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS); 1143 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field) 1144 return nullptr; 1145 return Field; 1146 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1147 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1148 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1149 return nullptr; 1150 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1151 if (!IOA) 1152 return nullptr; 1153 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1154 if (!Field || !isMemcpyableField(Field)) 1155 return nullptr; 1156 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1157 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1158 return nullptr; 1159 return Field; 1160 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1161 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1162 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1163 return nullptr; 1164 Expr *DstPtr = CE->getArg(0); 1165 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1166 DstPtr = DC->getSubExpr(); 1167 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1168 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1169 return nullptr; 1170 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1171 if (!ME) 1172 return nullptr; 1173 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1174 if (!Field || !isMemcpyableField(Field)) 1175 return nullptr; 1176 Expr *SrcPtr = CE->getArg(1); 1177 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1178 SrcPtr = SC->getSubExpr(); 1179 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1180 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1181 return nullptr; 1182 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1183 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1184 return nullptr; 1185 return Field; 1186 } 1187 1188 return nullptr; 1189 } 1190 1191 bool AssignmentsMemcpyable; 1192 SmallVector<Stmt*, 16> AggregatedStmts; 1193 1194 public: 1195 1196 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1197 FunctionArgList &Args) 1198 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1199 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1200 assert(Args.size() == 2); 1201 } 1202 1203 void emitAssignment(Stmt *S) { 1204 FieldDecl *F = getMemcpyableField(S); 1205 if (F) { 1206 addMemcpyableField(F); 1207 AggregatedStmts.push_back(S); 1208 } else { 1209 emitAggregatedStmts(); 1210 CGF.EmitStmt(S); 1211 } 1212 } 1213 1214 void emitAggregatedStmts() { 1215 if (AggregatedStmts.size() <= 1) { 1216 if (!AggregatedStmts.empty()) { 1217 CopyingValueRepresentation CVR(CGF); 1218 CGF.EmitStmt(AggregatedStmts[0]); 1219 } 1220 reset(); 1221 } 1222 1223 emitMemcpy(); 1224 AggregatedStmts.clear(); 1225 } 1226 1227 void finish() { 1228 emitAggregatedStmts(); 1229 } 1230 }; 1231 1232 } 1233 1234 /// EmitCtorPrologue - This routine generates necessary code to initialize 1235 /// base classes and non-static data members belonging to this constructor. 1236 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1237 CXXCtorType CtorType, 1238 FunctionArgList &Args) { 1239 if (CD->isDelegatingConstructor()) 1240 return EmitDelegatingCXXConstructorCall(CD, Args); 1241 1242 const CXXRecordDecl *ClassDecl = CD->getParent(); 1243 1244 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1245 E = CD->init_end(); 1246 1247 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1248 if (ClassDecl->getNumVBases() && 1249 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1250 // The ABIs that don't have constructor variants need to put a branch 1251 // before the virtual base initialization code. 1252 BaseCtorContinueBB = 1253 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1254 assert(BaseCtorContinueBB); 1255 } 1256 1257 // Virtual base initializers first. 1258 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1259 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1260 } 1261 1262 if (BaseCtorContinueBB) { 1263 // Complete object handler should continue to the remaining initializers. 1264 Builder.CreateBr(BaseCtorContinueBB); 1265 EmitBlock(BaseCtorContinueBB); 1266 } 1267 1268 // Then, non-virtual base initializers. 1269 for (; B != E && (*B)->isBaseInitializer(); B++) { 1270 assert(!(*B)->isBaseVirtual()); 1271 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1272 } 1273 1274 InitializeVTablePointers(ClassDecl); 1275 1276 // And finally, initialize class members. 1277 FieldConstructionScope FCS(*this, CXXThisValue); 1278 ConstructorMemcpyizer CM(*this, CD, Args); 1279 for (; B != E; B++) { 1280 CXXCtorInitializer *Member = (*B); 1281 assert(!Member->isBaseInitializer()); 1282 assert(Member->isAnyMemberInitializer() && 1283 "Delegating initializer on non-delegating constructor"); 1284 CM.addMemberInitializer(Member); 1285 } 1286 CM.finish(); 1287 } 1288 1289 static bool 1290 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1291 1292 static bool 1293 HasTrivialDestructorBody(ASTContext &Context, 1294 const CXXRecordDecl *BaseClassDecl, 1295 const CXXRecordDecl *MostDerivedClassDecl) 1296 { 1297 // If the destructor is trivial we don't have to check anything else. 1298 if (BaseClassDecl->hasTrivialDestructor()) 1299 return true; 1300 1301 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1302 return false; 1303 1304 // Check fields. 1305 for (const auto *Field : BaseClassDecl->fields()) 1306 if (!FieldHasTrivialDestructorBody(Context, Field)) 1307 return false; 1308 1309 // Check non-virtual bases. 1310 for (const auto &I : BaseClassDecl->bases()) { 1311 if (I.isVirtual()) 1312 continue; 1313 1314 const CXXRecordDecl *NonVirtualBase = 1315 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1316 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1317 MostDerivedClassDecl)) 1318 return false; 1319 } 1320 1321 if (BaseClassDecl == MostDerivedClassDecl) { 1322 // Check virtual bases. 1323 for (const auto &I : BaseClassDecl->vbases()) { 1324 const CXXRecordDecl *VirtualBase = 1325 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1326 if (!HasTrivialDestructorBody(Context, VirtualBase, 1327 MostDerivedClassDecl)) 1328 return false; 1329 } 1330 } 1331 1332 return true; 1333 } 1334 1335 static bool 1336 FieldHasTrivialDestructorBody(ASTContext &Context, 1337 const FieldDecl *Field) 1338 { 1339 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1340 1341 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1342 if (!RT) 1343 return true; 1344 1345 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1346 1347 // The destructor for an implicit anonymous union member is never invoked. 1348 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1349 return false; 1350 1351 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1352 } 1353 1354 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1355 /// any vtable pointers before calling this destructor. 1356 static bool CanSkipVTablePointerInitialization(ASTContext &Context, 1357 const CXXDestructorDecl *Dtor) { 1358 if (!Dtor->hasTrivialBody()) 1359 return false; 1360 1361 // Check the fields. 1362 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1363 for (const auto *Field : ClassDecl->fields()) 1364 if (!FieldHasTrivialDestructorBody(Context, Field)) 1365 return false; 1366 1367 return true; 1368 } 1369 1370 // Generates function call for handling object poisoning, passing in 1371 // references to 'this' and its size as arguments. 1372 static void EmitDtorSanitizerCallback(CodeGenFunction &CGF, 1373 const CXXDestructorDecl *Dtor) { 1374 const ASTRecordLayout &Layout = 1375 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1376 1377 llvm::Value *Args[] = { 1378 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.VoidPtrTy), 1379 llvm::ConstantInt::get(CGF.SizeTy, Layout.getSize().getQuantity())}; 1380 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1381 1382 llvm::FunctionType *FnType = 1383 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1384 llvm::Value *Fn = 1385 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1386 CGF.EmitNounwindRuntimeCall(Fn, Args); 1387 } 1388 1389 /// EmitDestructorBody - Emits the body of the current destructor. 1390 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1391 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1392 CXXDtorType DtorType = CurGD.getDtorType(); 1393 1394 Stmt *Body = Dtor->getBody(); 1395 if (Body) 1396 incrementProfileCounter(Body); 1397 1398 // The call to operator delete in a deleting destructor happens 1399 // outside of the function-try-block, which means it's always 1400 // possible to delegate the destructor body to the complete 1401 // destructor. Do so. 1402 if (DtorType == Dtor_Deleting) { 1403 EnterDtorCleanups(Dtor, Dtor_Deleting); 1404 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1405 /*Delegating=*/false, LoadCXXThis()); 1406 PopCleanupBlock(); 1407 return; 1408 } 1409 1410 // If the body is a function-try-block, enter the try before 1411 // anything else. 1412 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1413 if (isTryBody) 1414 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1415 EmitAsanPrologueOrEpilogue(false); 1416 1417 // Enter the epilogue cleanups. 1418 RunCleanupsScope DtorEpilogue(*this); 1419 1420 // If this is the complete variant, just invoke the base variant; 1421 // the epilogue will destruct the virtual bases. But we can't do 1422 // this optimization if the body is a function-try-block, because 1423 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1424 // always delegate because we might not have a definition in this TU. 1425 switch (DtorType) { 1426 case Dtor_Comdat: 1427 llvm_unreachable("not expecting a COMDAT"); 1428 1429 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1430 1431 case Dtor_Complete: 1432 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1433 "can't emit a dtor without a body for non-Microsoft ABIs"); 1434 1435 // Enter the cleanup scopes for virtual bases. 1436 EnterDtorCleanups(Dtor, Dtor_Complete); 1437 1438 if (!isTryBody) { 1439 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1440 /*Delegating=*/false, LoadCXXThis()); 1441 break; 1442 } 1443 // Fallthrough: act like we're in the base variant. 1444 1445 case Dtor_Base: 1446 assert(Body); 1447 1448 // Enter the cleanup scopes for fields and non-virtual bases. 1449 EnterDtorCleanups(Dtor, Dtor_Base); 1450 1451 // Initialize the vtable pointers before entering the body. 1452 if (!CanSkipVTablePointerInitialization(getContext(), Dtor)) 1453 InitializeVTablePointers(Dtor->getParent()); 1454 1455 if (isTryBody) 1456 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1457 else if (Body) 1458 EmitStmt(Body); 1459 else { 1460 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1461 // nothing to do besides what's in the epilogue 1462 } 1463 // -fapple-kext must inline any call to this dtor into 1464 // the caller's body. 1465 if (getLangOpts().AppleKext) 1466 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1467 break; 1468 } 1469 1470 // Jump out through the epilogue cleanups. 1471 DtorEpilogue.ForceCleanup(); 1472 1473 // Exit the try if applicable. 1474 if (isTryBody) 1475 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1476 1477 // Insert memory-poisoning instrumentation. 1478 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor) 1479 EmitDtorSanitizerCallback(*this, Dtor); 1480 } 1481 1482 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1483 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1484 const Stmt *RootS = AssignOp->getBody(); 1485 assert(isa<CompoundStmt>(RootS) && 1486 "Body of an implicit assignment operator should be compound stmt."); 1487 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1488 1489 LexicalScope Scope(*this, RootCS->getSourceRange()); 1490 1491 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1492 for (auto *I : RootCS->body()) 1493 AM.emitAssignment(I); 1494 AM.finish(); 1495 } 1496 1497 namespace { 1498 /// Call the operator delete associated with the current destructor. 1499 struct CallDtorDelete : EHScopeStack::Cleanup { 1500 CallDtorDelete() {} 1501 1502 void Emit(CodeGenFunction &CGF, Flags flags) override { 1503 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1504 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1505 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1506 CGF.getContext().getTagDeclType(ClassDecl)); 1507 } 1508 }; 1509 1510 struct CallDtorDeleteConditional : EHScopeStack::Cleanup { 1511 llvm::Value *ShouldDeleteCondition; 1512 public: 1513 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1514 : ShouldDeleteCondition(ShouldDeleteCondition) { 1515 assert(ShouldDeleteCondition != nullptr); 1516 } 1517 1518 void Emit(CodeGenFunction &CGF, Flags flags) override { 1519 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1520 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1521 llvm::Value *ShouldCallDelete 1522 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1523 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1524 1525 CGF.EmitBlock(callDeleteBB); 1526 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1527 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1528 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1529 CGF.getContext().getTagDeclType(ClassDecl)); 1530 CGF.Builder.CreateBr(continueBB); 1531 1532 CGF.EmitBlock(continueBB); 1533 } 1534 }; 1535 1536 class DestroyField : public EHScopeStack::Cleanup { 1537 const FieldDecl *field; 1538 CodeGenFunction::Destroyer *destroyer; 1539 bool useEHCleanupForArray; 1540 1541 public: 1542 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1543 bool useEHCleanupForArray) 1544 : field(field), destroyer(destroyer), 1545 useEHCleanupForArray(useEHCleanupForArray) {} 1546 1547 void Emit(CodeGenFunction &CGF, Flags flags) override { 1548 // Find the address of the field. 1549 llvm::Value *thisValue = CGF.LoadCXXThis(); 1550 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1551 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1552 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1553 assert(LV.isSimple()); 1554 1555 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1556 flags.isForNormalCleanup() && useEHCleanupForArray); 1557 } 1558 }; 1559 } 1560 1561 /// \brief Emit all code that comes at the end of class's 1562 /// destructor. This is to call destructors on members and base classes 1563 /// in reverse order of their construction. 1564 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1565 CXXDtorType DtorType) { 1566 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1567 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1568 1569 // The deleting-destructor phase just needs to call the appropriate 1570 // operator delete that Sema picked up. 1571 if (DtorType == Dtor_Deleting) { 1572 assert(DD->getOperatorDelete() && 1573 "operator delete missing - EnterDtorCleanups"); 1574 if (CXXStructorImplicitParamValue) { 1575 // If there is an implicit param to the deleting dtor, it's a boolean 1576 // telling whether we should call delete at the end of the dtor. 1577 EHStack.pushCleanup<CallDtorDeleteConditional>( 1578 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1579 } else { 1580 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1581 } 1582 return; 1583 } 1584 1585 const CXXRecordDecl *ClassDecl = DD->getParent(); 1586 1587 // Unions have no bases and do not call field destructors. 1588 if (ClassDecl->isUnion()) 1589 return; 1590 1591 // The complete-destructor phase just destructs all the virtual bases. 1592 if (DtorType == Dtor_Complete) { 1593 1594 // We push them in the forward order so that they'll be popped in 1595 // the reverse order. 1596 for (const auto &Base : ClassDecl->vbases()) { 1597 CXXRecordDecl *BaseClassDecl 1598 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1599 1600 // Ignore trivial destructors. 1601 if (BaseClassDecl->hasTrivialDestructor()) 1602 continue; 1603 1604 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1605 BaseClassDecl, 1606 /*BaseIsVirtual*/ true); 1607 } 1608 1609 return; 1610 } 1611 1612 assert(DtorType == Dtor_Base); 1613 1614 // Destroy non-virtual bases. 1615 for (const auto &Base : ClassDecl->bases()) { 1616 // Ignore virtual bases. 1617 if (Base.isVirtual()) 1618 continue; 1619 1620 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1621 1622 // Ignore trivial destructors. 1623 if (BaseClassDecl->hasTrivialDestructor()) 1624 continue; 1625 1626 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1627 BaseClassDecl, 1628 /*BaseIsVirtual*/ false); 1629 } 1630 1631 // Destroy direct fields. 1632 for (const auto *Field : ClassDecl->fields()) { 1633 QualType type = Field->getType(); 1634 QualType::DestructionKind dtorKind = type.isDestructedType(); 1635 if (!dtorKind) continue; 1636 1637 // Anonymous union members do not have their destructors called. 1638 const RecordType *RT = type->getAsUnionType(); 1639 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1640 1641 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1642 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1643 getDestroyer(dtorKind), 1644 cleanupKind & EHCleanup); 1645 } 1646 } 1647 1648 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1649 /// constructor for each of several members of an array. 1650 /// 1651 /// \param ctor the constructor to call for each element 1652 /// \param arrayType the type of the array to initialize 1653 /// \param arrayBegin an arrayType* 1654 /// \param zeroInitialize true if each element should be 1655 /// zero-initialized before it is constructed 1656 void CodeGenFunction::EmitCXXAggrConstructorCall( 1657 const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType, 1658 llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1659 QualType elementType; 1660 llvm::Value *numElements = 1661 emitArrayLength(arrayType, elementType, arrayBegin); 1662 1663 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1664 } 1665 1666 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1667 /// constructor for each of several members of an array. 1668 /// 1669 /// \param ctor the constructor to call for each element 1670 /// \param numElements the number of elements in the array; 1671 /// may be zero 1672 /// \param arrayBegin a T*, where T is the type constructed by ctor 1673 /// \param zeroInitialize true if each element should be 1674 /// zero-initialized before it is constructed 1675 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1676 llvm::Value *numElements, 1677 llvm::Value *arrayBegin, 1678 const CXXConstructExpr *E, 1679 bool zeroInitialize) { 1680 1681 // It's legal for numElements to be zero. This can happen both 1682 // dynamically, because x can be zero in 'new A[x]', and statically, 1683 // because of GCC extensions that permit zero-length arrays. There 1684 // are probably legitimate places where we could assume that this 1685 // doesn't happen, but it's not clear that it's worth it. 1686 llvm::BranchInst *zeroCheckBranch = nullptr; 1687 1688 // Optimize for a constant count. 1689 llvm::ConstantInt *constantCount 1690 = dyn_cast<llvm::ConstantInt>(numElements); 1691 if (constantCount) { 1692 // Just skip out if the constant count is zero. 1693 if (constantCount->isZero()) return; 1694 1695 // Otherwise, emit the check. 1696 } else { 1697 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1698 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1699 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1700 EmitBlock(loopBB); 1701 } 1702 1703 // Find the end of the array. 1704 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1705 "arrayctor.end"); 1706 1707 // Enter the loop, setting up a phi for the current location to initialize. 1708 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1709 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1710 EmitBlock(loopBB); 1711 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1712 "arrayctor.cur"); 1713 cur->addIncoming(arrayBegin, entryBB); 1714 1715 // Inside the loop body, emit the constructor call on the array element. 1716 1717 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1718 1719 // Zero initialize the storage, if requested. 1720 if (zeroInitialize) 1721 EmitNullInitialization(cur, type); 1722 1723 // C++ [class.temporary]p4: 1724 // There are two contexts in which temporaries are destroyed at a different 1725 // point than the end of the full-expression. The first context is when a 1726 // default constructor is called to initialize an element of an array. 1727 // If the constructor has one or more default arguments, the destruction of 1728 // every temporary created in a default argument expression is sequenced 1729 // before the construction of the next array element, if any. 1730 1731 { 1732 RunCleanupsScope Scope(*this); 1733 1734 // Evaluate the constructor and its arguments in a regular 1735 // partial-destroy cleanup. 1736 if (getLangOpts().Exceptions && 1737 !ctor->getParent()->hasTrivialDestructor()) { 1738 Destroyer *destroyer = destroyCXXObject; 1739 pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer); 1740 } 1741 1742 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 1743 /*Delegating=*/false, cur, E); 1744 } 1745 1746 // Go to the next element. 1747 llvm::Value *next = 1748 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 1749 "arrayctor.next"); 1750 cur->addIncoming(next, Builder.GetInsertBlock()); 1751 1752 // Check whether that's the end of the loop. 1753 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 1754 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 1755 Builder.CreateCondBr(done, contBB, loopBB); 1756 1757 // Patch the earlier check to skip over the loop. 1758 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 1759 1760 EmitBlock(contBB); 1761 } 1762 1763 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 1764 llvm::Value *addr, 1765 QualType type) { 1766 const RecordType *rtype = type->castAs<RecordType>(); 1767 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 1768 const CXXDestructorDecl *dtor = record->getDestructor(); 1769 assert(!dtor->isTrivial()); 1770 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 1771 /*Delegating=*/false, addr); 1772 } 1773 1774 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 1775 CXXCtorType Type, 1776 bool ForVirtualBase, 1777 bool Delegating, llvm::Value *This, 1778 const CXXConstructExpr *E) { 1779 // C++11 [class.mfct.non-static]p2: 1780 // If a non-static member function of a class X is called for an object that 1781 // is not of type X, or of a type derived from X, the behavior is undefined. 1782 // FIXME: Provide a source location here. 1783 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This, 1784 getContext().getRecordType(D->getParent())); 1785 1786 if (D->isTrivial() && D->isDefaultConstructor()) { 1787 assert(E->getNumArgs() == 0 && "trivial default ctor with args"); 1788 return; 1789 } 1790 1791 // If this is a trivial constructor, just emit what's needed. If this is a 1792 // union copy constructor, we must emit a memcpy, because the AST does not 1793 // model that copy. 1794 if (isMemcpyEquivalentSpecialMember(D)) { 1795 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1796 1797 const Expr *Arg = E->getArg(0); 1798 QualType SrcTy = Arg->getType(); 1799 llvm::Value *Src = EmitLValue(Arg).getAddress(); 1800 QualType DestTy = getContext().getTypeDeclType(D->getParent()); 1801 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 1802 return; 1803 } 1804 1805 CallArgList Args; 1806 1807 // Push the this ptr. 1808 Args.add(RValue::get(This), D->getThisType(getContext())); 1809 1810 // Add the rest of the user-supplied arguments. 1811 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1812 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor()); 1813 1814 // Insert any ABI-specific implicit constructor arguments. 1815 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs( 1816 *this, D, Type, ForVirtualBase, Delegating, Args); 1817 1818 // Emit the call. 1819 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 1820 const CGFunctionInfo &Info = 1821 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs); 1822 EmitCall(Info, Callee, ReturnValueSlot(), Args, D); 1823 } 1824 1825 void 1826 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1827 llvm::Value *This, llvm::Value *Src, 1828 const CXXConstructExpr *E) { 1829 if (isMemcpyEquivalentSpecialMember(D)) { 1830 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 1831 assert(D->isCopyOrMoveConstructor() && 1832 "trivial 1-arg ctor not a copy/move ctor"); 1833 EmitAggregateCopyCtor(This, Src, 1834 getContext().getTypeDeclType(D->getParent()), 1835 (*E->arg_begin())->getType()); 1836 return; 1837 } 1838 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete); 1839 assert(D->isInstance() && 1840 "Trying to emit a member call expr on a static method!"); 1841 1842 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1843 1844 CallArgList Args; 1845 1846 // Push the this ptr. 1847 Args.add(RValue::get(This), D->getThisType(getContext())); 1848 1849 // Push the src ptr. 1850 QualType QT = *(FPT->param_type_begin()); 1851 llvm::Type *t = CGM.getTypes().ConvertType(QT); 1852 Src = Builder.CreateBitCast(Src, t); 1853 Args.add(RValue::get(Src), QT); 1854 1855 // Skip over first argument (Src). 1856 EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(), 1857 /*ParamsToSkip*/ 1); 1858 1859 EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All), 1860 Callee, ReturnValueSlot(), Args, D); 1861 } 1862 1863 void 1864 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1865 CXXCtorType CtorType, 1866 const FunctionArgList &Args, 1867 SourceLocation Loc) { 1868 CallArgList DelegateArgs; 1869 1870 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 1871 assert(I != E && "no parameters to constructor"); 1872 1873 // this 1874 DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType()); 1875 ++I; 1876 1877 // vtt 1878 if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType), 1879 /*ForVirtualBase=*/false, 1880 /*Delegating=*/true)) { 1881 QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy); 1882 DelegateArgs.add(RValue::get(VTT), VoidPP); 1883 1884 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 1885 assert(I != E && "cannot skip vtt parameter, already done with args"); 1886 assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type"); 1887 ++I; 1888 } 1889 } 1890 1891 // Explicit arguments. 1892 for (; I != E; ++I) { 1893 const VarDecl *param = *I; 1894 // FIXME: per-argument source location 1895 EmitDelegateCallArg(DelegateArgs, param, Loc); 1896 } 1897 1898 llvm::Value *Callee = 1899 CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType)); 1900 EmitCall(CGM.getTypes() 1901 .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)), 1902 Callee, ReturnValueSlot(), DelegateArgs, Ctor); 1903 } 1904 1905 namespace { 1906 struct CallDelegatingCtorDtor : EHScopeStack::Cleanup { 1907 const CXXDestructorDecl *Dtor; 1908 llvm::Value *Addr; 1909 CXXDtorType Type; 1910 1911 CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr, 1912 CXXDtorType Type) 1913 : Dtor(D), Addr(Addr), Type(Type) {} 1914 1915 void Emit(CodeGenFunction &CGF, Flags flags) override { 1916 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 1917 /*Delegating=*/true, Addr); 1918 } 1919 }; 1920 } 1921 1922 void 1923 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1924 const FunctionArgList &Args) { 1925 assert(Ctor->isDelegatingConstructor()); 1926 1927 llvm::Value *ThisPtr = LoadCXXThis(); 1928 1929 QualType Ty = getContext().getTagDeclType(Ctor->getParent()); 1930 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1931 AggValueSlot AggSlot = 1932 AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(), 1933 AggValueSlot::IsDestructed, 1934 AggValueSlot::DoesNotNeedGCBarriers, 1935 AggValueSlot::IsNotAliased); 1936 1937 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 1938 1939 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 1940 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 1941 CXXDtorType Type = 1942 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 1943 1944 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 1945 ClassDecl->getDestructor(), 1946 ThisPtr, Type); 1947 } 1948 } 1949 1950 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 1951 CXXDtorType Type, 1952 bool ForVirtualBase, 1953 bool Delegating, 1954 llvm::Value *This) { 1955 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 1956 Delegating, This); 1957 } 1958 1959 namespace { 1960 struct CallLocalDtor : EHScopeStack::Cleanup { 1961 const CXXDestructorDecl *Dtor; 1962 llvm::Value *Addr; 1963 1964 CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr) 1965 : Dtor(D), Addr(Addr) {} 1966 1967 void Emit(CodeGenFunction &CGF, Flags flags) override { 1968 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1969 /*ForVirtualBase=*/false, 1970 /*Delegating=*/false, Addr); 1971 } 1972 }; 1973 } 1974 1975 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 1976 llvm::Value *Addr) { 1977 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 1978 } 1979 1980 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) { 1981 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 1982 if (!ClassDecl) return; 1983 if (ClassDecl->hasTrivialDestructor()) return; 1984 1985 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 1986 assert(D && D->isUsed() && "destructor not marked as used!"); 1987 PushDestructorCleanup(D, Addr); 1988 } 1989 1990 void 1991 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base, 1992 const CXXRecordDecl *NearestVBase, 1993 CharUnits OffsetFromNearestVBase, 1994 const CXXRecordDecl *VTableClass) { 1995 const CXXRecordDecl *RD = Base.getBase(); 1996 1997 // Don't initialize the vtable pointer if the class is marked with the 1998 // 'novtable' attribute. 1999 if ((RD == VTableClass || RD == NearestVBase) && 2000 VTableClass->hasAttr<MSNoVTableAttr>()) 2001 return; 2002 2003 // Compute the address point. 2004 bool NeedsVirtualOffset; 2005 llvm::Value *VTableAddressPoint = 2006 CGM.getCXXABI().getVTableAddressPointInStructor( 2007 *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset); 2008 if (!VTableAddressPoint) 2009 return; 2010 2011 // Compute where to store the address point. 2012 llvm::Value *VirtualOffset = nullptr; 2013 CharUnits NonVirtualOffset = CharUnits::Zero(); 2014 2015 if (NeedsVirtualOffset) { 2016 // We need to use the virtual base offset offset because the virtual base 2017 // might have a different offset in the most derived class. 2018 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this, 2019 LoadCXXThis(), 2020 VTableClass, 2021 NearestVBase); 2022 NonVirtualOffset = OffsetFromNearestVBase; 2023 } else { 2024 // We can just use the base offset in the complete class. 2025 NonVirtualOffset = Base.getBaseOffset(); 2026 } 2027 2028 // Apply the offsets. 2029 llvm::Value *VTableField = LoadCXXThis(); 2030 2031 if (!NonVirtualOffset.isZero() || VirtualOffset) 2032 VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField, 2033 NonVirtualOffset, 2034 VirtualOffset); 2035 2036 // Finally, store the address point. Use the same LLVM types as the field to 2037 // support optimization. 2038 llvm::Type *VTablePtrTy = 2039 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2040 ->getPointerTo() 2041 ->getPointerTo(); 2042 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2043 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2044 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2045 CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr()); 2046 } 2047 2048 void 2049 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base, 2050 const CXXRecordDecl *NearestVBase, 2051 CharUnits OffsetFromNearestVBase, 2052 bool BaseIsNonVirtualPrimaryBase, 2053 const CXXRecordDecl *VTableClass, 2054 VisitedVirtualBasesSetTy& VBases) { 2055 // If this base is a non-virtual primary base the address point has already 2056 // been set. 2057 if (!BaseIsNonVirtualPrimaryBase) { 2058 // Initialize the vtable pointer for this base. 2059 InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase, 2060 VTableClass); 2061 } 2062 2063 const CXXRecordDecl *RD = Base.getBase(); 2064 2065 // Traverse bases. 2066 for (const auto &I : RD->bases()) { 2067 CXXRecordDecl *BaseDecl 2068 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2069 2070 // Ignore classes without a vtable. 2071 if (!BaseDecl->isDynamicClass()) 2072 continue; 2073 2074 CharUnits BaseOffset; 2075 CharUnits BaseOffsetFromNearestVBase; 2076 bool BaseDeclIsNonVirtualPrimaryBase; 2077 2078 if (I.isVirtual()) { 2079 // Check if we've visited this virtual base before. 2080 if (!VBases.insert(BaseDecl).second) 2081 continue; 2082 2083 const ASTRecordLayout &Layout = 2084 getContext().getASTRecordLayout(VTableClass); 2085 2086 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2087 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2088 BaseDeclIsNonVirtualPrimaryBase = false; 2089 } else { 2090 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2091 2092 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2093 BaseOffsetFromNearestVBase = 2094 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2095 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2096 } 2097 2098 InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset), 2099 I.isVirtual() ? BaseDecl : NearestVBase, 2100 BaseOffsetFromNearestVBase, 2101 BaseDeclIsNonVirtualPrimaryBase, 2102 VTableClass, VBases); 2103 } 2104 } 2105 2106 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2107 // Ignore classes without a vtable. 2108 if (!RD->isDynamicClass()) 2109 return; 2110 2111 // Initialize the vtable pointers for this class and all of its bases. 2112 VisitedVirtualBasesSetTy VBases; 2113 InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()), 2114 /*NearestVBase=*/nullptr, 2115 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2116 /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases); 2117 2118 if (RD->getNumVBases()) 2119 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2120 } 2121 2122 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This, 2123 llvm::Type *Ty) { 2124 llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo()); 2125 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2126 CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr()); 2127 return VTable; 2128 } 2129 2130 // If a class has a single non-virtual base and does not introduce or override 2131 // virtual member functions or fields, it will have the same layout as its base. 2132 // This function returns the least derived such class. 2133 // 2134 // Casting an instance of a base class to such a derived class is technically 2135 // undefined behavior, but it is a relatively common hack for introducing member 2136 // functions on class instances with specific properties (e.g. llvm::Operator) 2137 // that works under most compilers and should not have security implications, so 2138 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2139 static const CXXRecordDecl * 2140 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2141 if (!RD->field_empty()) 2142 return RD; 2143 2144 if (RD->getNumVBases() != 0) 2145 return RD; 2146 2147 if (RD->getNumBases() != 1) 2148 return RD; 2149 2150 for (const CXXMethodDecl *MD : RD->methods()) { 2151 if (MD->isVirtual()) { 2152 // Virtual member functions are only ok if they are implicit destructors 2153 // because the implicit destructor will have the same semantics as the 2154 // base class's destructor if no fields are added. 2155 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2156 continue; 2157 return RD; 2158 } 2159 } 2160 2161 return LeastDerivedClassWithSameLayout( 2162 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2163 } 2164 2165 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, 2166 llvm::Value *VTable, 2167 CFITypeCheckKind TCK, 2168 SourceLocation Loc) { 2169 const CXXRecordDecl *ClassDecl = MD->getParent(); 2170 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2171 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2172 2173 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2174 } 2175 2176 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2177 llvm::Value *Derived, 2178 bool MayBeNull, 2179 CFITypeCheckKind TCK, 2180 SourceLocation Loc) { 2181 if (!getLangOpts().CPlusPlus) 2182 return; 2183 2184 auto *ClassTy = T->getAs<RecordType>(); 2185 if (!ClassTy) 2186 return; 2187 2188 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2189 2190 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2191 return; 2192 2193 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2194 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2195 2196 llvm::BasicBlock *ContBlock = 0; 2197 2198 if (MayBeNull) { 2199 llvm::Value *DerivedNotNull = 2200 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2201 2202 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2203 ContBlock = createBasicBlock("cast.cont"); 2204 2205 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2206 2207 EmitBlock(CheckBlock); 2208 } 2209 2210 llvm::Value *VTable = GetVTablePtr(Derived, Int8PtrTy); 2211 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2212 2213 if (MayBeNull) { 2214 Builder.CreateBr(ContBlock); 2215 EmitBlock(ContBlock); 2216 } 2217 } 2218 2219 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2220 llvm::Value *VTable, 2221 CFITypeCheckKind TCK, 2222 SourceLocation Loc) { 2223 if (CGM.IsCFIBlacklistedRecord(RD)) 2224 return; 2225 2226 SanitizerScope SanScope(this); 2227 2228 std::string OutName; 2229 llvm::raw_string_ostream Out(OutName); 2230 CGM.getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out); 2231 2232 llvm::Value *BitSetName = llvm::MetadataAsValue::get( 2233 getLLVMContext(), llvm::MDString::get(getLLVMContext(), Out.str())); 2234 2235 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2236 llvm::Value *BitSetTest = 2237 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test), 2238 {CastedVTable, BitSetName}); 2239 2240 SanitizerMask M; 2241 switch (TCK) { 2242 case CFITCK_VCall: 2243 M = SanitizerKind::CFIVCall; 2244 break; 2245 case CFITCK_NVCall: 2246 M = SanitizerKind::CFINVCall; 2247 break; 2248 case CFITCK_DerivedCast: 2249 M = SanitizerKind::CFIDerivedCast; 2250 break; 2251 case CFITCK_UnrelatedCast: 2252 M = SanitizerKind::CFIUnrelatedCast; 2253 break; 2254 } 2255 2256 llvm::Constant *StaticData[] = { 2257 EmitCheckSourceLocation(Loc), 2258 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2259 llvm::ConstantInt::get(Int8Ty, TCK), 2260 }; 2261 EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData, 2262 CastedVTable); 2263 } 2264 2265 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 2266 // quite what we want. 2267 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 2268 while (true) { 2269 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 2270 E = PE->getSubExpr(); 2271 continue; 2272 } 2273 2274 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 2275 if (CE->getCastKind() == CK_NoOp) { 2276 E = CE->getSubExpr(); 2277 continue; 2278 } 2279 } 2280 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 2281 if (UO->getOpcode() == UO_Extension) { 2282 E = UO->getSubExpr(); 2283 continue; 2284 } 2285 } 2286 return E; 2287 } 2288 } 2289 2290 bool 2291 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base, 2292 const CXXMethodDecl *MD) { 2293 // When building with -fapple-kext, all calls must go through the vtable since 2294 // the kernel linker can do runtime patching of vtables. 2295 if (getLangOpts().AppleKext) 2296 return false; 2297 2298 // If the most derived class is marked final, we know that no subclass can 2299 // override this member function and so we can devirtualize it. For example: 2300 // 2301 // struct A { virtual void f(); } 2302 // struct B final : A { }; 2303 // 2304 // void f(B *b) { 2305 // b->f(); 2306 // } 2307 // 2308 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 2309 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 2310 return true; 2311 2312 // If the member function is marked 'final', we know that it can't be 2313 // overridden and can therefore devirtualize it. 2314 if (MD->hasAttr<FinalAttr>()) 2315 return true; 2316 2317 // Similarly, if the class itself is marked 'final' it can't be overridden 2318 // and we can therefore devirtualize the member function call. 2319 if (MD->getParent()->hasAttr<FinalAttr>()) 2320 return true; 2321 2322 Base = skipNoOpCastsAndParens(Base); 2323 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 2324 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 2325 // This is a record decl. We know the type and can devirtualize it. 2326 return VD->getType()->isRecordType(); 2327 } 2328 2329 return false; 2330 } 2331 2332 // We can devirtualize calls on an object accessed by a class member access 2333 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2334 // a derived class object constructed in the same location. 2335 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 2336 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 2337 return VD->getType()->isRecordType(); 2338 2339 // We can always devirtualize calls on temporary object expressions. 2340 if (isa<CXXConstructExpr>(Base)) 2341 return true; 2342 2343 // And calls on bound temporaries. 2344 if (isa<CXXBindTemporaryExpr>(Base)) 2345 return true; 2346 2347 // Check if this is a call expr that returns a record type. 2348 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 2349 return CE->getCallReturnType(getContext())->isRecordType(); 2350 2351 // We can't devirtualize the call. 2352 return false; 2353 } 2354 2355 void CodeGenFunction::EmitForwardingCallToLambda( 2356 const CXXMethodDecl *callOperator, 2357 CallArgList &callArgs) { 2358 // Get the address of the call operator. 2359 const CGFunctionInfo &calleeFnInfo = 2360 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2361 llvm::Value *callee = 2362 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2363 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2364 2365 // Prepare the return slot. 2366 const FunctionProtoType *FPT = 2367 callOperator->getType()->castAs<FunctionProtoType>(); 2368 QualType resultType = FPT->getReturnType(); 2369 ReturnValueSlot returnSlot; 2370 if (!resultType->isVoidType() && 2371 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2372 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2373 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2374 2375 // We don't need to separately arrange the call arguments because 2376 // the call can't be variadic anyway --- it's impossible to forward 2377 // variadic arguments. 2378 2379 // Now emit our call. 2380 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, 2381 callArgs, callOperator); 2382 2383 // If necessary, copy the returned value into the slot. 2384 if (!resultType->isVoidType() && returnSlot.isNull()) 2385 EmitReturnOfRValue(RV, resultType); 2386 else 2387 EmitBranchThroughCleanup(ReturnBlock); 2388 } 2389 2390 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2391 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2392 const VarDecl *variable = BD->capture_begin()->getVariable(); 2393 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2394 2395 // Start building arguments for forwarding call 2396 CallArgList CallArgs; 2397 2398 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2399 llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false); 2400 CallArgs.add(RValue::get(ThisPtr), ThisType); 2401 2402 // Add the rest of the parameters. 2403 for (auto param : BD->params()) 2404 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2405 2406 assert(!Lambda->isGenericLambda() && 2407 "generic lambda interconversion to block not implemented"); 2408 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs); 2409 } 2410 2411 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 2412 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) { 2413 // FIXME: Making this work correctly is nasty because it requires either 2414 // cloning the body of the call operator or making the call operator forward. 2415 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2416 return; 2417 } 2418 2419 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody()); 2420 } 2421 2422 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2423 const CXXRecordDecl *Lambda = MD->getParent(); 2424 2425 // Start building arguments for forwarding call 2426 CallArgList CallArgs; 2427 2428 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2429 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2430 CallArgs.add(RValue::get(ThisPtr), ThisType); 2431 2432 // Add the rest of the parameters. 2433 for (auto Param : MD->params()) 2434 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2435 2436 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2437 // For a generic lambda, find the corresponding call operator specialization 2438 // to which the call to the static-invoker shall be forwarded. 2439 if (Lambda->isGenericLambda()) { 2440 assert(MD->isFunctionTemplateSpecialization()); 2441 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2442 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2443 void *InsertPos = nullptr; 2444 FunctionDecl *CorrespondingCallOpSpecialization = 2445 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2446 assert(CorrespondingCallOpSpecialization); 2447 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2448 } 2449 EmitForwardingCallToLambda(CallOp, CallArgs); 2450 } 2451 2452 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 2453 if (MD->isVariadic()) { 2454 // FIXME: Making this work correctly is nasty because it requires either 2455 // cloning the body of the call operator or making the call operator forward. 2456 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2457 return; 2458 } 2459 2460 EmitLambdaDelegatingInvokeBody(MD); 2461 } 2462