1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/Transforms/Utils/SanitizerStats.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 /// Return the best known alignment for an unknown pointer to a
35 /// particular class.
36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
37   if (!RD->isCompleteDefinition())
38     return CharUnits::One(); // Hopefully won't be used anywhere.
39 
40   auto &layout = getContext().getASTRecordLayout(RD);
41 
42   // If the class is final, then we know that the pointer points to an
43   // object of that type and can use the full alignment.
44   if (RD->hasAttr<FinalAttr>()) {
45     return layout.getAlignment();
46 
47   // Otherwise, we have to assume it could be a subclass.
48   } else {
49     return layout.getNonVirtualAlignment();
50   }
51 }
52 
53 /// Return the best known alignment for a pointer to a virtual base,
54 /// given the alignment of a pointer to the derived class.
55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
56                                            const CXXRecordDecl *derivedClass,
57                                            const CXXRecordDecl *vbaseClass) {
58   // The basic idea here is that an underaligned derived pointer might
59   // indicate an underaligned base pointer.
60 
61   assert(vbaseClass->isCompleteDefinition());
62   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
63   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
64 
65   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
66                                    expectedVBaseAlign);
67 }
68 
69 CharUnits
70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
71                                          const CXXRecordDecl *baseDecl,
72                                          CharUnits expectedTargetAlign) {
73   // If the base is an incomplete type (which is, alas, possible with
74   // member pointers), be pessimistic.
75   if (!baseDecl->isCompleteDefinition())
76     return std::min(actualBaseAlign, expectedTargetAlign);
77 
78   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
79   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
80 
81   // If the class is properly aligned, assume the target offset is, too.
82   //
83   // This actually isn't necessarily the right thing to do --- if the
84   // class is a complete object, but it's only properly aligned for a
85   // base subobject, then the alignments of things relative to it are
86   // probably off as well.  (Note that this requires the alignment of
87   // the target to be greater than the NV alignment of the derived
88   // class.)
89   //
90   // However, our approach to this kind of under-alignment can only
91   // ever be best effort; after all, we're never going to propagate
92   // alignments through variables or parameters.  Note, in particular,
93   // that constructing a polymorphic type in an address that's less
94   // than pointer-aligned will generally trap in the constructor,
95   // unless we someday add some sort of attribute to change the
96   // assumed alignment of 'this'.  So our goal here is pretty much
97   // just to allow the user to explicitly say that a pointer is
98   // under-aligned and then safely access its fields and v-tables.
99   if (actualBaseAlign >= expectedBaseAlign) {
100     return expectedTargetAlign;
101   }
102 
103   // Otherwise, we might be offset by an arbitrary multiple of the
104   // actual alignment.  The correct adjustment is to take the min of
105   // the two alignments.
106   return std::min(actualBaseAlign, expectedTargetAlign);
107 }
108 
109 Address CodeGenFunction::LoadCXXThisAddress() {
110   assert(CurFuncDecl && "loading 'this' without a func declaration?");
111   assert(isa<CXXMethodDecl>(CurFuncDecl));
112 
113   // Lazily compute CXXThisAlignment.
114   if (CXXThisAlignment.isZero()) {
115     // Just use the best known alignment for the parent.
116     // TODO: if we're currently emitting a complete-object ctor/dtor,
117     // we can always use the complete-object alignment.
118     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
119     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
120   }
121 
122   return Address(LoadCXXThis(), CXXThisAlignment);
123 }
124 
125 /// Emit the address of a field using a member data pointer.
126 ///
127 /// \param E Only used for emergency diagnostics
128 Address
129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
130                                                  llvm::Value *memberPtr,
131                                       const MemberPointerType *memberPtrType,
132                                                  AlignmentSource *alignSource) {
133   // Ask the ABI to compute the actual address.
134   llvm::Value *ptr =
135     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
136                                                  memberPtr, memberPtrType);
137 
138   QualType memberType = memberPtrType->getPointeeType();
139   CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource);
140   memberAlign =
141     CGM.getDynamicOffsetAlignment(base.getAlignment(),
142                             memberPtrType->getClass()->getAsCXXRecordDecl(),
143                                   memberAlign);
144   return Address(ptr, memberAlign);
145 }
146 
147 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
148     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
149     CastExpr::path_const_iterator End) {
150   CharUnits Offset = CharUnits::Zero();
151 
152   const ASTContext &Context = getContext();
153   const CXXRecordDecl *RD = DerivedClass;
154 
155   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
156     const CXXBaseSpecifier *Base = *I;
157     assert(!Base->isVirtual() && "Should not see virtual bases here!");
158 
159     // Get the layout.
160     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
161 
162     const CXXRecordDecl *BaseDecl =
163       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
164 
165     // Add the offset.
166     Offset += Layout.getBaseClassOffset(BaseDecl);
167 
168     RD = BaseDecl;
169   }
170 
171   return Offset;
172 }
173 
174 llvm::Constant *
175 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
176                                    CastExpr::path_const_iterator PathBegin,
177                                    CastExpr::path_const_iterator PathEnd) {
178   assert(PathBegin != PathEnd && "Base path should not be empty!");
179 
180   CharUnits Offset =
181       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
182   if (Offset.isZero())
183     return nullptr;
184 
185   llvm::Type *PtrDiffTy =
186   Types.ConvertType(getContext().getPointerDiffType());
187 
188   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
189 }
190 
191 /// Gets the address of a direct base class within a complete object.
192 /// This should only be used for (1) non-virtual bases or (2) virtual bases
193 /// when the type is known to be complete (e.g. in complete destructors).
194 ///
195 /// The object pointed to by 'This' is assumed to be non-null.
196 Address
197 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
198                                                    const CXXRecordDecl *Derived,
199                                                    const CXXRecordDecl *Base,
200                                                    bool BaseIsVirtual) {
201   // 'this' must be a pointer (in some address space) to Derived.
202   assert(This.getElementType() == ConvertType(Derived));
203 
204   // Compute the offset of the virtual base.
205   CharUnits Offset;
206   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
207   if (BaseIsVirtual)
208     Offset = Layout.getVBaseClassOffset(Base);
209   else
210     Offset = Layout.getBaseClassOffset(Base);
211 
212   // Shift and cast down to the base type.
213   // TODO: for complete types, this should be possible with a GEP.
214   Address V = This;
215   if (!Offset.isZero()) {
216     V = Builder.CreateElementBitCast(V, Int8Ty);
217     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
218   }
219   V = Builder.CreateElementBitCast(V, ConvertType(Base));
220 
221   return V;
222 }
223 
224 static Address
225 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
226                                 CharUnits nonVirtualOffset,
227                                 llvm::Value *virtualOffset,
228                                 const CXXRecordDecl *derivedClass,
229                                 const CXXRecordDecl *nearestVBase) {
230   // Assert that we have something to do.
231   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
232 
233   // Compute the offset from the static and dynamic components.
234   llvm::Value *baseOffset;
235   if (!nonVirtualOffset.isZero()) {
236     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
237                                         nonVirtualOffset.getQuantity());
238     if (virtualOffset) {
239       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
240     }
241   } else {
242     baseOffset = virtualOffset;
243   }
244 
245   // Apply the base offset.
246   llvm::Value *ptr = addr.getPointer();
247   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
248   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
249 
250   // If we have a virtual component, the alignment of the result will
251   // be relative only to the known alignment of that vbase.
252   CharUnits alignment;
253   if (virtualOffset) {
254     assert(nearestVBase && "virtual offset without vbase?");
255     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
256                                           derivedClass, nearestVBase);
257   } else {
258     alignment = addr.getAlignment();
259   }
260   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
261 
262   return Address(ptr, alignment);
263 }
264 
265 Address CodeGenFunction::GetAddressOfBaseClass(
266     Address Value, const CXXRecordDecl *Derived,
267     CastExpr::path_const_iterator PathBegin,
268     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
269     SourceLocation Loc) {
270   assert(PathBegin != PathEnd && "Base path should not be empty!");
271 
272   CastExpr::path_const_iterator Start = PathBegin;
273   const CXXRecordDecl *VBase = nullptr;
274 
275   // Sema has done some convenient canonicalization here: if the
276   // access path involved any virtual steps, the conversion path will
277   // *start* with a step down to the correct virtual base subobject,
278   // and hence will not require any further steps.
279   if ((*Start)->isVirtual()) {
280     VBase =
281       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
282     ++Start;
283   }
284 
285   // Compute the static offset of the ultimate destination within its
286   // allocating subobject (the virtual base, if there is one, or else
287   // the "complete" object that we see).
288   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
289       VBase ? VBase : Derived, Start, PathEnd);
290 
291   // If there's a virtual step, we can sometimes "devirtualize" it.
292   // For now, that's limited to when the derived type is final.
293   // TODO: "devirtualize" this for accesses to known-complete objects.
294   if (VBase && Derived->hasAttr<FinalAttr>()) {
295     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
296     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
297     NonVirtualOffset += vBaseOffset;
298     VBase = nullptr; // we no longer have a virtual step
299   }
300 
301   // Get the base pointer type.
302   llvm::Type *BasePtrTy =
303     ConvertType((PathEnd[-1])->getType())->getPointerTo();
304 
305   QualType DerivedTy = getContext().getRecordType(Derived);
306   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
307 
308   // If the static offset is zero and we don't have a virtual step,
309   // just do a bitcast; null checks are unnecessary.
310   if (NonVirtualOffset.isZero() && !VBase) {
311     if (sanitizePerformTypeCheck()) {
312       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
313                     DerivedTy, DerivedAlign, !NullCheckValue);
314     }
315     return Builder.CreateBitCast(Value, BasePtrTy);
316   }
317 
318   llvm::BasicBlock *origBB = nullptr;
319   llvm::BasicBlock *endBB = nullptr;
320 
321   // Skip over the offset (and the vtable load) if we're supposed to
322   // null-check the pointer.
323   if (NullCheckValue) {
324     origBB = Builder.GetInsertBlock();
325     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
326     endBB = createBasicBlock("cast.end");
327 
328     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
329     Builder.CreateCondBr(isNull, endBB, notNullBB);
330     EmitBlock(notNullBB);
331   }
332 
333   if (sanitizePerformTypeCheck()) {
334     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
335                   Value.getPointer(), DerivedTy, DerivedAlign, true);
336   }
337 
338   // Compute the virtual offset.
339   llvm::Value *VirtualOffset = nullptr;
340   if (VBase) {
341     VirtualOffset =
342       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
343   }
344 
345   // Apply both offsets.
346   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
347                                           VirtualOffset, Derived, VBase);
348 
349   // Cast to the destination type.
350   Value = Builder.CreateBitCast(Value, BasePtrTy);
351 
352   // Build a phi if we needed a null check.
353   if (NullCheckValue) {
354     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
355     Builder.CreateBr(endBB);
356     EmitBlock(endBB);
357 
358     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
359     PHI->addIncoming(Value.getPointer(), notNullBB);
360     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
361     Value = Address(PHI, Value.getAlignment());
362   }
363 
364   return Value;
365 }
366 
367 Address
368 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
369                                           const CXXRecordDecl *Derived,
370                                         CastExpr::path_const_iterator PathBegin,
371                                           CastExpr::path_const_iterator PathEnd,
372                                           bool NullCheckValue) {
373   assert(PathBegin != PathEnd && "Base path should not be empty!");
374 
375   QualType DerivedTy =
376     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
377   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
378 
379   llvm::Value *NonVirtualOffset =
380     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
381 
382   if (!NonVirtualOffset) {
383     // No offset, we can just cast back.
384     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
385   }
386 
387   llvm::BasicBlock *CastNull = nullptr;
388   llvm::BasicBlock *CastNotNull = nullptr;
389   llvm::BasicBlock *CastEnd = nullptr;
390 
391   if (NullCheckValue) {
392     CastNull = createBasicBlock("cast.null");
393     CastNotNull = createBasicBlock("cast.notnull");
394     CastEnd = createBasicBlock("cast.end");
395 
396     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
397     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
398     EmitBlock(CastNotNull);
399   }
400 
401   // Apply the offset.
402   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
403   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
404                             "sub.ptr");
405 
406   // Just cast.
407   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
408 
409   // Produce a PHI if we had a null-check.
410   if (NullCheckValue) {
411     Builder.CreateBr(CastEnd);
412     EmitBlock(CastNull);
413     Builder.CreateBr(CastEnd);
414     EmitBlock(CastEnd);
415 
416     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
417     PHI->addIncoming(Value, CastNotNull);
418     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
419     Value = PHI;
420   }
421 
422   return Address(Value, CGM.getClassPointerAlignment(Derived));
423 }
424 
425 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
426                                               bool ForVirtualBase,
427                                               bool Delegating) {
428   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
429     // This constructor/destructor does not need a VTT parameter.
430     return nullptr;
431   }
432 
433   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
434   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
435 
436   llvm::Value *VTT;
437 
438   uint64_t SubVTTIndex;
439 
440   if (Delegating) {
441     // If this is a delegating constructor call, just load the VTT.
442     return LoadCXXVTT();
443   } else if (RD == Base) {
444     // If the record matches the base, this is the complete ctor/dtor
445     // variant calling the base variant in a class with virtual bases.
446     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
447            "doing no-op VTT offset in base dtor/ctor?");
448     assert(!ForVirtualBase && "Can't have same class as virtual base!");
449     SubVTTIndex = 0;
450   } else {
451     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
452     CharUnits BaseOffset = ForVirtualBase ?
453       Layout.getVBaseClassOffset(Base) :
454       Layout.getBaseClassOffset(Base);
455 
456     SubVTTIndex =
457       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
458     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
459   }
460 
461   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
462     // A VTT parameter was passed to the constructor, use it.
463     VTT = LoadCXXVTT();
464     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
465   } else {
466     // We're the complete constructor, so get the VTT by name.
467     VTT = CGM.getVTables().GetAddrOfVTT(RD);
468     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
469   }
470 
471   return VTT;
472 }
473 
474 namespace {
475   /// Call the destructor for a direct base class.
476   struct CallBaseDtor final : EHScopeStack::Cleanup {
477     const CXXRecordDecl *BaseClass;
478     bool BaseIsVirtual;
479     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
480       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
481 
482     void Emit(CodeGenFunction &CGF, Flags flags) override {
483       const CXXRecordDecl *DerivedClass =
484         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
485 
486       const CXXDestructorDecl *D = BaseClass->getDestructor();
487       Address Addr =
488         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
489                                                   DerivedClass, BaseClass,
490                                                   BaseIsVirtual);
491       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
492                                 /*Delegating=*/false, Addr);
493     }
494   };
495 
496   /// A visitor which checks whether an initializer uses 'this' in a
497   /// way which requires the vtable to be properly set.
498   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
499     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
500 
501     bool UsesThis;
502 
503     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
504 
505     // Black-list all explicit and implicit references to 'this'.
506     //
507     // Do we need to worry about external references to 'this' derived
508     // from arbitrary code?  If so, then anything which runs arbitrary
509     // external code might potentially access the vtable.
510     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
511   };
512 } // end anonymous namespace
513 
514 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
515   DynamicThisUseChecker Checker(C);
516   Checker.Visit(Init);
517   return Checker.UsesThis;
518 }
519 
520 static void EmitBaseInitializer(CodeGenFunction &CGF,
521                                 const CXXRecordDecl *ClassDecl,
522                                 CXXCtorInitializer *BaseInit,
523                                 CXXCtorType CtorType) {
524   assert(BaseInit->isBaseInitializer() &&
525          "Must have base initializer!");
526 
527   Address ThisPtr = CGF.LoadCXXThisAddress();
528 
529   const Type *BaseType = BaseInit->getBaseClass();
530   CXXRecordDecl *BaseClassDecl =
531     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
532 
533   bool isBaseVirtual = BaseInit->isBaseVirtual();
534 
535   // The base constructor doesn't construct virtual bases.
536   if (CtorType == Ctor_Base && isBaseVirtual)
537     return;
538 
539   // If the initializer for the base (other than the constructor
540   // itself) accesses 'this' in any way, we need to initialize the
541   // vtables.
542   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
543     CGF.InitializeVTablePointers(ClassDecl);
544 
545   // We can pretend to be a complete class because it only matters for
546   // virtual bases, and we only do virtual bases for complete ctors.
547   Address V =
548     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
549                                               BaseClassDecl,
550                                               isBaseVirtual);
551   AggValueSlot AggSlot =
552     AggValueSlot::forAddr(V, Qualifiers(),
553                           AggValueSlot::IsDestructed,
554                           AggValueSlot::DoesNotNeedGCBarriers,
555                           AggValueSlot::IsNotAliased);
556 
557   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
558 
559   if (CGF.CGM.getLangOpts().Exceptions &&
560       !BaseClassDecl->hasTrivialDestructor())
561     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
562                                           isBaseVirtual);
563 }
564 
565 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
566                                      LValue LHS,
567                                      Expr *Init,
568                                      Address ArrayIndexVar,
569                                      QualType T,
570                                      ArrayRef<VarDecl *> ArrayIndexes,
571                                      unsigned Index) {
572   if (Index == ArrayIndexes.size()) {
573     LValue LV = LHS;
574 
575     if (ArrayIndexVar.isValid()) {
576       // If we have an array index variable, load it and use it as an offset.
577       // Then, increment the value.
578       llvm::Value *Dest = LHS.getPointer();
579       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
580       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
581       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
582       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
583       CGF.Builder.CreateStore(Next, ArrayIndexVar);
584 
585       // Update the LValue.
586       CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T);
587       CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize);
588       LV.setAddress(Address(Dest, Align));
589     }
590 
591     switch (CGF.getEvaluationKind(T)) {
592     case TEK_Scalar:
593       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
594       break;
595     case TEK_Complex:
596       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
597       break;
598     case TEK_Aggregate: {
599       AggValueSlot Slot =
600         AggValueSlot::forLValue(LV,
601                                 AggValueSlot::IsDestructed,
602                                 AggValueSlot::DoesNotNeedGCBarriers,
603                                 AggValueSlot::IsNotAliased);
604 
605       CGF.EmitAggExpr(Init, Slot);
606       break;
607     }
608     }
609 
610     return;
611   }
612 
613   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
614   assert(Array && "Array initialization without the array type?");
615   Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
616 
617   // Initialize this index variable to zero.
618   llvm::Value* Zero
619     = llvm::Constant::getNullValue(IndexVar.getElementType());
620   CGF.Builder.CreateStore(Zero, IndexVar);
621 
622   // Start the loop with a block that tests the condition.
623   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
624   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
625 
626   CGF.EmitBlock(CondBlock);
627 
628   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
629   // Generate: if (loop-index < number-of-elements) fall to the loop body,
630   // otherwise, go to the block after the for-loop.
631   uint64_t NumElements = Array->getSize().getZExtValue();
632   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
633   llvm::Value *NumElementsPtr =
634     llvm::ConstantInt::get(Counter->getType(), NumElements);
635   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
636                                                   "isless");
637 
638   // If the condition is true, execute the body.
639   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
640 
641   CGF.EmitBlock(ForBody);
642   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
643 
644   // Inside the loop body recurse to emit the inner loop or, eventually, the
645   // constructor call.
646   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
647                            Array->getElementType(), ArrayIndexes, Index + 1);
648 
649   CGF.EmitBlock(ContinueBlock);
650 
651   // Emit the increment of the loop counter.
652   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
653   Counter = CGF.Builder.CreateLoad(IndexVar);
654   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
655   CGF.Builder.CreateStore(NextVal, IndexVar);
656 
657   // Finally, branch back up to the condition for the next iteration.
658   CGF.EmitBranch(CondBlock);
659 
660   // Emit the fall-through block.
661   CGF.EmitBlock(AfterFor, true);
662 }
663 
664 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
665   auto *CD = dyn_cast<CXXConstructorDecl>(D);
666   if (!(CD && CD->isCopyOrMoveConstructor()) &&
667       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
668     return false;
669 
670   // We can emit a memcpy for a trivial copy or move constructor/assignment.
671   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
672     return true;
673 
674   // We *must* emit a memcpy for a defaulted union copy or move op.
675   if (D->getParent()->isUnion() && D->isDefaulted())
676     return true;
677 
678   return false;
679 }
680 
681 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
682                                                 CXXCtorInitializer *MemberInit,
683                                                 LValue &LHS) {
684   FieldDecl *Field = MemberInit->getAnyMember();
685   if (MemberInit->isIndirectMemberInitializer()) {
686     // If we are initializing an anonymous union field, drill down to the field.
687     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
688     for (const auto *I : IndirectField->chain())
689       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
690   } else {
691     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
692   }
693 }
694 
695 static void EmitMemberInitializer(CodeGenFunction &CGF,
696                                   const CXXRecordDecl *ClassDecl,
697                                   CXXCtorInitializer *MemberInit,
698                                   const CXXConstructorDecl *Constructor,
699                                   FunctionArgList &Args) {
700   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
701   assert(MemberInit->isAnyMemberInitializer() &&
702          "Must have member initializer!");
703   assert(MemberInit->getInit() && "Must have initializer!");
704 
705   // non-static data member initializers.
706   FieldDecl *Field = MemberInit->getAnyMember();
707   QualType FieldType = Field->getType();
708 
709   llvm::Value *ThisPtr = CGF.LoadCXXThis();
710   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
711   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
712 
713   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
714 
715   // Special case: if we are in a copy or move constructor, and we are copying
716   // an array of PODs or classes with trivial copy constructors, ignore the
717   // AST and perform the copy we know is equivalent.
718   // FIXME: This is hacky at best... if we had a bit more explicit information
719   // in the AST, we could generalize it more easily.
720   const ConstantArrayType *Array
721     = CGF.getContext().getAsConstantArrayType(FieldType);
722   if (Array && Constructor->isDefaulted() &&
723       Constructor->isCopyOrMoveConstructor()) {
724     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
725     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
726     if (BaseElementTy.isPODType(CGF.getContext()) ||
727         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
728       unsigned SrcArgIndex =
729           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
730       llvm::Value *SrcPtr
731         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
732       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
733       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
734 
735       // Copy the aggregate.
736       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
737                             LHS.isVolatileQualified());
738       // Ensure that we destroy the objects if an exception is thrown later in
739       // the constructor.
740       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
741       if (CGF.needsEHCleanup(dtorKind))
742         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
743       return;
744     }
745   }
746 
747   ArrayRef<VarDecl *> ArrayIndexes;
748   if (MemberInit->getNumArrayIndices())
749     ArrayIndexes = MemberInit->getArrayIndexes();
750   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
751 }
752 
753 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
754                                 Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) {
755   QualType FieldType = Field->getType();
756   switch (getEvaluationKind(FieldType)) {
757   case TEK_Scalar:
758     if (LHS.isSimple()) {
759       EmitExprAsInit(Init, Field, LHS, false);
760     } else {
761       RValue RHS = RValue::get(EmitScalarExpr(Init));
762       EmitStoreThroughLValue(RHS, LHS);
763     }
764     break;
765   case TEK_Complex:
766     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
767     break;
768   case TEK_Aggregate: {
769     Address ArrayIndexVar = Address::invalid();
770     if (ArrayIndexes.size()) {
771       // The LHS is a pointer to the first object we'll be constructing, as
772       // a flat array.
773       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
774       llvm::Type *BasePtr = ConvertType(BaseElementTy);
775       BasePtr = llvm::PointerType::getUnqual(BasePtr);
776       Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr);
777       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
778 
779       // Create an array index that will be used to walk over all of the
780       // objects we're constructing.
781       ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index");
782       llvm::Value *Zero =
783         llvm::Constant::getNullValue(ArrayIndexVar.getElementType());
784       Builder.CreateStore(Zero, ArrayIndexVar);
785 
786       // Emit the block variables for the array indices, if any.
787       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
788         EmitAutoVarDecl(*ArrayIndexes[I]);
789     }
790 
791     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
792                              ArrayIndexes, 0);
793   }
794   }
795 
796   // Ensure that we destroy this object if an exception is thrown
797   // later in the constructor.
798   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
799   if (needsEHCleanup(dtorKind))
800     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
801 }
802 
803 /// Checks whether the given constructor is a valid subject for the
804 /// complete-to-base constructor delegation optimization, i.e.
805 /// emitting the complete constructor as a simple call to the base
806 /// constructor.
807 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
808 
809   // Currently we disable the optimization for classes with virtual
810   // bases because (1) the addresses of parameter variables need to be
811   // consistent across all initializers but (2) the delegate function
812   // call necessarily creates a second copy of the parameter variable.
813   //
814   // The limiting example (purely theoretical AFAIK):
815   //   struct A { A(int &c) { c++; } };
816   //   struct B : virtual A {
817   //     B(int count) : A(count) { printf("%d\n", count); }
818   //   };
819   // ...although even this example could in principle be emitted as a
820   // delegation since the address of the parameter doesn't escape.
821   if (Ctor->getParent()->getNumVBases()) {
822     // TODO: white-list trivial vbase initializers.  This case wouldn't
823     // be subject to the restrictions below.
824 
825     // TODO: white-list cases where:
826     //  - there are no non-reference parameters to the constructor
827     //  - the initializers don't access any non-reference parameters
828     //  - the initializers don't take the address of non-reference
829     //    parameters
830     //  - etc.
831     // If we ever add any of the above cases, remember that:
832     //  - function-try-blocks will always blacklist this optimization
833     //  - we need to perform the constructor prologue and cleanup in
834     //    EmitConstructorBody.
835 
836     return false;
837   }
838 
839   // We also disable the optimization for variadic functions because
840   // it's impossible to "re-pass" varargs.
841   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
842     return false;
843 
844   // FIXME: Decide if we can do a delegation of a delegating constructor.
845   if (Ctor->isDelegatingConstructor())
846     return false;
847 
848   return true;
849 }
850 
851 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
852 // to poison the extra field paddings inserted under
853 // -fsanitize-address-field-padding=1|2.
854 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
855   ASTContext &Context = getContext();
856   const CXXRecordDecl *ClassDecl =
857       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
858                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
859   if (!ClassDecl->mayInsertExtraPadding()) return;
860 
861   struct SizeAndOffset {
862     uint64_t Size;
863     uint64_t Offset;
864   };
865 
866   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
867   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
868 
869   // Populate sizes and offsets of fields.
870   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
871   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
872     SSV[i].Offset =
873         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
874 
875   size_t NumFields = 0;
876   for (const auto *Field : ClassDecl->fields()) {
877     const FieldDecl *D = Field;
878     std::pair<CharUnits, CharUnits> FieldInfo =
879         Context.getTypeInfoInChars(D->getType());
880     CharUnits FieldSize = FieldInfo.first;
881     assert(NumFields < SSV.size());
882     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
883     NumFields++;
884   }
885   assert(NumFields == SSV.size());
886   if (SSV.size() <= 1) return;
887 
888   // We will insert calls to __asan_* run-time functions.
889   // LLVM AddressSanitizer pass may decide to inline them later.
890   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
891   llvm::FunctionType *FTy =
892       llvm::FunctionType::get(CGM.VoidTy, Args, false);
893   llvm::Constant *F = CGM.CreateRuntimeFunction(
894       FTy, Prologue ? "__asan_poison_intra_object_redzone"
895                     : "__asan_unpoison_intra_object_redzone");
896 
897   llvm::Value *ThisPtr = LoadCXXThis();
898   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
899   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
900   // For each field check if it has sufficient padding,
901   // if so (un)poison it with a call.
902   for (size_t i = 0; i < SSV.size(); i++) {
903     uint64_t AsanAlignment = 8;
904     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
905     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
906     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
907     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
908         (NextField % AsanAlignment) != 0)
909       continue;
910     Builder.CreateCall(
911         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
912             Builder.getIntN(PtrSize, PoisonSize)});
913   }
914 }
915 
916 /// EmitConstructorBody - Emits the body of the current constructor.
917 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
918   EmitAsanPrologueOrEpilogue(true);
919   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
920   CXXCtorType CtorType = CurGD.getCtorType();
921 
922   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
923           CtorType == Ctor_Complete) &&
924          "can only generate complete ctor for this ABI");
925 
926   // Before we go any further, try the complete->base constructor
927   // delegation optimization.
928   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
929       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
930     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
931     return;
932   }
933 
934   const FunctionDecl *Definition = nullptr;
935   Stmt *Body = Ctor->getBody(Definition);
936   assert(Definition == Ctor && "emitting wrong constructor body");
937 
938   // Enter the function-try-block before the constructor prologue if
939   // applicable.
940   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
941   if (IsTryBody)
942     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
943 
944   incrementProfileCounter(Body);
945 
946   RunCleanupsScope RunCleanups(*this);
947 
948   // TODO: in restricted cases, we can emit the vbase initializers of
949   // a complete ctor and then delegate to the base ctor.
950 
951   // Emit the constructor prologue, i.e. the base and member
952   // initializers.
953   EmitCtorPrologue(Ctor, CtorType, Args);
954 
955   // Emit the body of the statement.
956   if (IsTryBody)
957     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
958   else if (Body)
959     EmitStmt(Body);
960 
961   // Emit any cleanup blocks associated with the member or base
962   // initializers, which includes (along the exceptional path) the
963   // destructors for those members and bases that were fully
964   // constructed.
965   RunCleanups.ForceCleanup();
966 
967   if (IsTryBody)
968     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
969 }
970 
971 namespace {
972   /// RAII object to indicate that codegen is copying the value representation
973   /// instead of the object representation. Useful when copying a struct or
974   /// class which has uninitialized members and we're only performing
975   /// lvalue-to-rvalue conversion on the object but not its members.
976   class CopyingValueRepresentation {
977   public:
978     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
979         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
980       CGF.SanOpts.set(SanitizerKind::Bool, false);
981       CGF.SanOpts.set(SanitizerKind::Enum, false);
982     }
983     ~CopyingValueRepresentation() {
984       CGF.SanOpts = OldSanOpts;
985     }
986   private:
987     CodeGenFunction &CGF;
988     SanitizerSet OldSanOpts;
989   };
990 }
991 
992 namespace {
993   class FieldMemcpyizer {
994   public:
995     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
996                     const VarDecl *SrcRec)
997       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
998         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
999         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
1000         LastFieldOffset(0), LastAddedFieldIndex(0) {}
1001 
1002     bool isMemcpyableField(FieldDecl *F) const {
1003       // Never memcpy fields when we are adding poisoned paddings.
1004       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
1005         return false;
1006       Qualifiers Qual = F->getType().getQualifiers();
1007       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
1008         return false;
1009       return true;
1010     }
1011 
1012     void addMemcpyableField(FieldDecl *F) {
1013       if (!FirstField)
1014         addInitialField(F);
1015       else
1016         addNextField(F);
1017     }
1018 
1019     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
1020       unsigned LastFieldSize =
1021         LastField->isBitField() ?
1022           LastField->getBitWidthValue(CGF.getContext()) :
1023           CGF.getContext().getTypeSize(LastField->getType());
1024       uint64_t MemcpySizeBits =
1025         LastFieldOffset + LastFieldSize - FirstByteOffset +
1026         CGF.getContext().getCharWidth() - 1;
1027       CharUnits MemcpySize =
1028         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
1029       return MemcpySize;
1030     }
1031 
1032     void emitMemcpy() {
1033       // Give the subclass a chance to bail out if it feels the memcpy isn't
1034       // worth it (e.g. Hasn't aggregated enough data).
1035       if (!FirstField) {
1036         return;
1037       }
1038 
1039       uint64_t FirstByteOffset;
1040       if (FirstField->isBitField()) {
1041         const CGRecordLayout &RL =
1042           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
1043         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
1044         // FirstFieldOffset is not appropriate for bitfields,
1045         // we need to use the storage offset instead.
1046         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
1047       } else {
1048         FirstByteOffset = FirstFieldOffset;
1049       }
1050 
1051       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
1052       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1053       Address ThisPtr = CGF.LoadCXXThisAddress();
1054       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1055       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
1056       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
1057       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
1058       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
1059 
1060       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
1061                    Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
1062                    MemcpySize);
1063       reset();
1064     }
1065 
1066     void reset() {
1067       FirstField = nullptr;
1068     }
1069 
1070   protected:
1071     CodeGenFunction &CGF;
1072     const CXXRecordDecl *ClassDecl;
1073 
1074   private:
1075 
1076     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1077       llvm::PointerType *DPT = DestPtr.getType();
1078       llvm::Type *DBP =
1079         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
1080       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
1081 
1082       llvm::PointerType *SPT = SrcPtr.getType();
1083       llvm::Type *SBP =
1084         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
1085       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
1086 
1087       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1088     }
1089 
1090     void addInitialField(FieldDecl *F) {
1091         FirstField = F;
1092         LastField = F;
1093         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1094         LastFieldOffset = FirstFieldOffset;
1095         LastAddedFieldIndex = F->getFieldIndex();
1096         return;
1097       }
1098 
1099     void addNextField(FieldDecl *F) {
1100       // For the most part, the following invariant will hold:
1101       //   F->getFieldIndex() == LastAddedFieldIndex + 1
1102       // The one exception is that Sema won't add a copy-initializer for an
1103       // unnamed bitfield, which will show up here as a gap in the sequence.
1104       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1105              "Cannot aggregate fields out of order.");
1106       LastAddedFieldIndex = F->getFieldIndex();
1107 
1108       // The 'first' and 'last' fields are chosen by offset, rather than field
1109       // index. This allows the code to support bitfields, as well as regular
1110       // fields.
1111       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1112       if (FOffset < FirstFieldOffset) {
1113         FirstField = F;
1114         FirstFieldOffset = FOffset;
1115       } else if (FOffset > LastFieldOffset) {
1116         LastField = F;
1117         LastFieldOffset = FOffset;
1118       }
1119     }
1120 
1121     const VarDecl *SrcRec;
1122     const ASTRecordLayout &RecLayout;
1123     FieldDecl *FirstField;
1124     FieldDecl *LastField;
1125     uint64_t FirstFieldOffset, LastFieldOffset;
1126     unsigned LastAddedFieldIndex;
1127   };
1128 
1129   class ConstructorMemcpyizer : public FieldMemcpyizer {
1130   private:
1131 
1132     /// Get source argument for copy constructor. Returns null if not a copy
1133     /// constructor.
1134     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1135                                                const CXXConstructorDecl *CD,
1136                                                FunctionArgList &Args) {
1137       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1138         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1139       return nullptr;
1140     }
1141 
1142     // Returns true if a CXXCtorInitializer represents a member initialization
1143     // that can be rolled into a memcpy.
1144     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1145       if (!MemcpyableCtor)
1146         return false;
1147       FieldDecl *Field = MemberInit->getMember();
1148       assert(Field && "No field for member init.");
1149       QualType FieldType = Field->getType();
1150       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1151 
1152       // Bail out on non-memcpyable, not-trivially-copyable members.
1153       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1154           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1155             FieldType->isReferenceType()))
1156         return false;
1157 
1158       // Bail out on volatile fields.
1159       if (!isMemcpyableField(Field))
1160         return false;
1161 
1162       // Otherwise we're good.
1163       return true;
1164     }
1165 
1166   public:
1167     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1168                           FunctionArgList &Args)
1169       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1170         ConstructorDecl(CD),
1171         MemcpyableCtor(CD->isDefaulted() &&
1172                        CD->isCopyOrMoveConstructor() &&
1173                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1174         Args(Args) { }
1175 
1176     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1177       if (isMemberInitMemcpyable(MemberInit)) {
1178         AggregatedInits.push_back(MemberInit);
1179         addMemcpyableField(MemberInit->getMember());
1180       } else {
1181         emitAggregatedInits();
1182         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1183                               ConstructorDecl, Args);
1184       }
1185     }
1186 
1187     void emitAggregatedInits() {
1188       if (AggregatedInits.size() <= 1) {
1189         // This memcpy is too small to be worthwhile. Fall back on default
1190         // codegen.
1191         if (!AggregatedInits.empty()) {
1192           CopyingValueRepresentation CVR(CGF);
1193           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1194                                 AggregatedInits[0], ConstructorDecl, Args);
1195           AggregatedInits.clear();
1196         }
1197         reset();
1198         return;
1199       }
1200 
1201       pushEHDestructors();
1202       emitMemcpy();
1203       AggregatedInits.clear();
1204     }
1205 
1206     void pushEHDestructors() {
1207       Address ThisPtr = CGF.LoadCXXThisAddress();
1208       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1209       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1210 
1211       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1212         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1213         QualType FieldType = MemberInit->getAnyMember()->getType();
1214         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1215         if (!CGF.needsEHCleanup(dtorKind))
1216           continue;
1217         LValue FieldLHS = LHS;
1218         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1219         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1220       }
1221     }
1222 
1223     void finish() {
1224       emitAggregatedInits();
1225     }
1226 
1227   private:
1228     const CXXConstructorDecl *ConstructorDecl;
1229     bool MemcpyableCtor;
1230     FunctionArgList &Args;
1231     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1232   };
1233 
1234   class AssignmentMemcpyizer : public FieldMemcpyizer {
1235   private:
1236 
1237     // Returns the memcpyable field copied by the given statement, if one
1238     // exists. Otherwise returns null.
1239     FieldDecl *getMemcpyableField(Stmt *S) {
1240       if (!AssignmentsMemcpyable)
1241         return nullptr;
1242       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1243         // Recognise trivial assignments.
1244         if (BO->getOpcode() != BO_Assign)
1245           return nullptr;
1246         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1247         if (!ME)
1248           return nullptr;
1249         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1250         if (!Field || !isMemcpyableField(Field))
1251           return nullptr;
1252         Stmt *RHS = BO->getRHS();
1253         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1254           RHS = EC->getSubExpr();
1255         if (!RHS)
1256           return nullptr;
1257         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1258         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1259           return nullptr;
1260         return Field;
1261       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1262         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1263         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1264           return nullptr;
1265         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1266         if (!IOA)
1267           return nullptr;
1268         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1269         if (!Field || !isMemcpyableField(Field))
1270           return nullptr;
1271         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1272         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1273           return nullptr;
1274         return Field;
1275       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1276         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1277         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1278           return nullptr;
1279         Expr *DstPtr = CE->getArg(0);
1280         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1281           DstPtr = DC->getSubExpr();
1282         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1283         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1284           return nullptr;
1285         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1286         if (!ME)
1287           return nullptr;
1288         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1289         if (!Field || !isMemcpyableField(Field))
1290           return nullptr;
1291         Expr *SrcPtr = CE->getArg(1);
1292         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1293           SrcPtr = SC->getSubExpr();
1294         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1295         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1296           return nullptr;
1297         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1298         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1299           return nullptr;
1300         return Field;
1301       }
1302 
1303       return nullptr;
1304     }
1305 
1306     bool AssignmentsMemcpyable;
1307     SmallVector<Stmt*, 16> AggregatedStmts;
1308 
1309   public:
1310 
1311     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1312                          FunctionArgList &Args)
1313       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1314         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1315       assert(Args.size() == 2);
1316     }
1317 
1318     void emitAssignment(Stmt *S) {
1319       FieldDecl *F = getMemcpyableField(S);
1320       if (F) {
1321         addMemcpyableField(F);
1322         AggregatedStmts.push_back(S);
1323       } else {
1324         emitAggregatedStmts();
1325         CGF.EmitStmt(S);
1326       }
1327     }
1328 
1329     void emitAggregatedStmts() {
1330       if (AggregatedStmts.size() <= 1) {
1331         if (!AggregatedStmts.empty()) {
1332           CopyingValueRepresentation CVR(CGF);
1333           CGF.EmitStmt(AggregatedStmts[0]);
1334         }
1335         reset();
1336       }
1337 
1338       emitMemcpy();
1339       AggregatedStmts.clear();
1340     }
1341 
1342     void finish() {
1343       emitAggregatedStmts();
1344     }
1345   };
1346 } // end anonymous namespace
1347 
1348 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1349   const Type *BaseType = BaseInit->getBaseClass();
1350   const auto *BaseClassDecl =
1351           cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
1352   return BaseClassDecl->isDynamicClass();
1353 }
1354 
1355 /// EmitCtorPrologue - This routine generates necessary code to initialize
1356 /// base classes and non-static data members belonging to this constructor.
1357 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1358                                        CXXCtorType CtorType,
1359                                        FunctionArgList &Args) {
1360   if (CD->isDelegatingConstructor())
1361     return EmitDelegatingCXXConstructorCall(CD, Args);
1362 
1363   const CXXRecordDecl *ClassDecl = CD->getParent();
1364 
1365   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1366                                           E = CD->init_end();
1367 
1368   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1369   if (ClassDecl->getNumVBases() &&
1370       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1371     // The ABIs that don't have constructor variants need to put a branch
1372     // before the virtual base initialization code.
1373     BaseCtorContinueBB =
1374       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1375     assert(BaseCtorContinueBB);
1376   }
1377 
1378   llvm::Value *const OldThis = CXXThisValue;
1379   // Virtual base initializers first.
1380   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1381     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1382         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1383         isInitializerOfDynamicClass(*B))
1384       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1385     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1386   }
1387 
1388   if (BaseCtorContinueBB) {
1389     // Complete object handler should continue to the remaining initializers.
1390     Builder.CreateBr(BaseCtorContinueBB);
1391     EmitBlock(BaseCtorContinueBB);
1392   }
1393 
1394   // Then, non-virtual base initializers.
1395   for (; B != E && (*B)->isBaseInitializer(); B++) {
1396     assert(!(*B)->isBaseVirtual());
1397 
1398     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1399         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1400         isInitializerOfDynamicClass(*B))
1401       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1402     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1403   }
1404 
1405   CXXThisValue = OldThis;
1406 
1407   InitializeVTablePointers(ClassDecl);
1408 
1409   // And finally, initialize class members.
1410   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1411   ConstructorMemcpyizer CM(*this, CD, Args);
1412   for (; B != E; B++) {
1413     CXXCtorInitializer *Member = (*B);
1414     assert(!Member->isBaseInitializer());
1415     assert(Member->isAnyMemberInitializer() &&
1416            "Delegating initializer on non-delegating constructor");
1417     CM.addMemberInitializer(Member);
1418   }
1419   CM.finish();
1420 }
1421 
1422 static bool
1423 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1424 
1425 static bool
1426 HasTrivialDestructorBody(ASTContext &Context,
1427                          const CXXRecordDecl *BaseClassDecl,
1428                          const CXXRecordDecl *MostDerivedClassDecl)
1429 {
1430   // If the destructor is trivial we don't have to check anything else.
1431   if (BaseClassDecl->hasTrivialDestructor())
1432     return true;
1433 
1434   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1435     return false;
1436 
1437   // Check fields.
1438   for (const auto *Field : BaseClassDecl->fields())
1439     if (!FieldHasTrivialDestructorBody(Context, Field))
1440       return false;
1441 
1442   // Check non-virtual bases.
1443   for (const auto &I : BaseClassDecl->bases()) {
1444     if (I.isVirtual())
1445       continue;
1446 
1447     const CXXRecordDecl *NonVirtualBase =
1448       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1449     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1450                                   MostDerivedClassDecl))
1451       return false;
1452   }
1453 
1454   if (BaseClassDecl == MostDerivedClassDecl) {
1455     // Check virtual bases.
1456     for (const auto &I : BaseClassDecl->vbases()) {
1457       const CXXRecordDecl *VirtualBase =
1458         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1459       if (!HasTrivialDestructorBody(Context, VirtualBase,
1460                                     MostDerivedClassDecl))
1461         return false;
1462     }
1463   }
1464 
1465   return true;
1466 }
1467 
1468 static bool
1469 FieldHasTrivialDestructorBody(ASTContext &Context,
1470                                           const FieldDecl *Field)
1471 {
1472   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1473 
1474   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1475   if (!RT)
1476     return true;
1477 
1478   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1479 
1480   // The destructor for an implicit anonymous union member is never invoked.
1481   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1482     return false;
1483 
1484   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1485 }
1486 
1487 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1488 /// any vtable pointers before calling this destructor.
1489 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1490                                                const CXXDestructorDecl *Dtor) {
1491   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1492   if (!ClassDecl->isDynamicClass())
1493     return true;
1494 
1495   if (!Dtor->hasTrivialBody())
1496     return false;
1497 
1498   // Check the fields.
1499   for (const auto *Field : ClassDecl->fields())
1500     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1501       return false;
1502 
1503   return true;
1504 }
1505 
1506 /// EmitDestructorBody - Emits the body of the current destructor.
1507 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1508   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1509   CXXDtorType DtorType = CurGD.getDtorType();
1510 
1511   Stmt *Body = Dtor->getBody();
1512   if (Body)
1513     incrementProfileCounter(Body);
1514 
1515   // The call to operator delete in a deleting destructor happens
1516   // outside of the function-try-block, which means it's always
1517   // possible to delegate the destructor body to the complete
1518   // destructor.  Do so.
1519   if (DtorType == Dtor_Deleting) {
1520     EnterDtorCleanups(Dtor, Dtor_Deleting);
1521     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1522                           /*Delegating=*/false, LoadCXXThisAddress());
1523     PopCleanupBlock();
1524     return;
1525   }
1526 
1527   // If the body is a function-try-block, enter the try before
1528   // anything else.
1529   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1530   if (isTryBody)
1531     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1532   EmitAsanPrologueOrEpilogue(false);
1533 
1534   // Enter the epilogue cleanups.
1535   RunCleanupsScope DtorEpilogue(*this);
1536 
1537   // If this is the complete variant, just invoke the base variant;
1538   // the epilogue will destruct the virtual bases.  But we can't do
1539   // this optimization if the body is a function-try-block, because
1540   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1541   // always delegate because we might not have a definition in this TU.
1542   switch (DtorType) {
1543   case Dtor_Comdat:
1544     llvm_unreachable("not expecting a COMDAT");
1545 
1546   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1547 
1548   case Dtor_Complete:
1549     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1550            "can't emit a dtor without a body for non-Microsoft ABIs");
1551 
1552     // Enter the cleanup scopes for virtual bases.
1553     EnterDtorCleanups(Dtor, Dtor_Complete);
1554 
1555     if (!isTryBody) {
1556       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1557                             /*Delegating=*/false, LoadCXXThisAddress());
1558       break;
1559     }
1560     // Fallthrough: act like we're in the base variant.
1561 
1562   case Dtor_Base:
1563     assert(Body);
1564 
1565     // Enter the cleanup scopes for fields and non-virtual bases.
1566     EnterDtorCleanups(Dtor, Dtor_Base);
1567 
1568     // Initialize the vtable pointers before entering the body.
1569     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1570       // Insert the llvm.invariant.group.barrier intrinsic before initializing
1571       // the vptrs to cancel any previous assumptions we might have made.
1572       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1573           CGM.getCodeGenOpts().OptimizationLevel > 0)
1574         CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1575       InitializeVTablePointers(Dtor->getParent());
1576     }
1577 
1578     if (isTryBody)
1579       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1580     else if (Body)
1581       EmitStmt(Body);
1582     else {
1583       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1584       // nothing to do besides what's in the epilogue
1585     }
1586     // -fapple-kext must inline any call to this dtor into
1587     // the caller's body.
1588     if (getLangOpts().AppleKext)
1589       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1590 
1591     break;
1592   }
1593 
1594   // Jump out through the epilogue cleanups.
1595   DtorEpilogue.ForceCleanup();
1596 
1597   // Exit the try if applicable.
1598   if (isTryBody)
1599     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1600 }
1601 
1602 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1603   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1604   const Stmt *RootS = AssignOp->getBody();
1605   assert(isa<CompoundStmt>(RootS) &&
1606          "Body of an implicit assignment operator should be compound stmt.");
1607   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1608 
1609   LexicalScope Scope(*this, RootCS->getSourceRange());
1610 
1611   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1612   for (auto *I : RootCS->body())
1613     AM.emitAssignment(I);
1614   AM.finish();
1615 }
1616 
1617 namespace {
1618   /// Call the operator delete associated with the current destructor.
1619   struct CallDtorDelete final : EHScopeStack::Cleanup {
1620     CallDtorDelete() {}
1621 
1622     void Emit(CodeGenFunction &CGF, Flags flags) override {
1623       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1624       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1625       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1626                          CGF.getContext().getTagDeclType(ClassDecl));
1627     }
1628   };
1629 
1630   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1631     llvm::Value *ShouldDeleteCondition;
1632   public:
1633     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1634         : ShouldDeleteCondition(ShouldDeleteCondition) {
1635       assert(ShouldDeleteCondition != nullptr);
1636     }
1637 
1638     void Emit(CodeGenFunction &CGF, Flags flags) override {
1639       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1640       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1641       llvm::Value *ShouldCallDelete
1642         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1643       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1644 
1645       CGF.EmitBlock(callDeleteBB);
1646       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1647       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1648       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1649                          CGF.getContext().getTagDeclType(ClassDecl));
1650       CGF.Builder.CreateBr(continueBB);
1651 
1652       CGF.EmitBlock(continueBB);
1653     }
1654   };
1655 
1656   class DestroyField  final : public EHScopeStack::Cleanup {
1657     const FieldDecl *field;
1658     CodeGenFunction::Destroyer *destroyer;
1659     bool useEHCleanupForArray;
1660 
1661   public:
1662     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1663                  bool useEHCleanupForArray)
1664         : field(field), destroyer(destroyer),
1665           useEHCleanupForArray(useEHCleanupForArray) {}
1666 
1667     void Emit(CodeGenFunction &CGF, Flags flags) override {
1668       // Find the address of the field.
1669       Address thisValue = CGF.LoadCXXThisAddress();
1670       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1671       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1672       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1673       assert(LV.isSimple());
1674 
1675       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1676                       flags.isForNormalCleanup() && useEHCleanupForArray);
1677     }
1678   };
1679 
1680  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1681              CharUnits::QuantityType PoisonSize) {
1682    // Pass in void pointer and size of region as arguments to runtime
1683    // function
1684    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1685                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1686 
1687    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1688 
1689    llvm::FunctionType *FnType =
1690        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1691    llvm::Value *Fn =
1692        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1693    CGF.EmitNounwindRuntimeCall(Fn, Args);
1694  }
1695 
1696   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1697     const CXXDestructorDecl *Dtor;
1698 
1699   public:
1700     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1701 
1702     // Generate function call for handling object poisoning.
1703     // Disables tail call elimination, to prevent the current stack frame
1704     // from disappearing from the stack trace.
1705     void Emit(CodeGenFunction &CGF, Flags flags) override {
1706       const ASTRecordLayout &Layout =
1707           CGF.getContext().getASTRecordLayout(Dtor->getParent());
1708 
1709       // Nothing to poison.
1710       if (Layout.getFieldCount() == 0)
1711         return;
1712 
1713       // Prevent the current stack frame from disappearing from the stack trace.
1714       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1715 
1716       // Construct pointer to region to begin poisoning, and calculate poison
1717       // size, so that only members declared in this class are poisoned.
1718       ASTContext &Context = CGF.getContext();
1719       unsigned fieldIndex = 0;
1720       int startIndex = -1;
1721       // RecordDecl::field_iterator Field;
1722       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1723         // Poison field if it is trivial
1724         if (FieldHasTrivialDestructorBody(Context, Field)) {
1725           // Start sanitizing at this field
1726           if (startIndex < 0)
1727             startIndex = fieldIndex;
1728 
1729           // Currently on the last field, and it must be poisoned with the
1730           // current block.
1731           if (fieldIndex == Layout.getFieldCount() - 1) {
1732             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1733           }
1734         } else if (startIndex >= 0) {
1735           // No longer within a block of memory to poison, so poison the block
1736           PoisonMembers(CGF, startIndex, fieldIndex);
1737           // Re-set the start index
1738           startIndex = -1;
1739         }
1740         fieldIndex += 1;
1741       }
1742     }
1743 
1744   private:
1745     /// \param layoutStartOffset index of the ASTRecordLayout field to
1746     ///     start poisoning (inclusive)
1747     /// \param layoutEndOffset index of the ASTRecordLayout field to
1748     ///     end poisoning (exclusive)
1749     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1750                      unsigned layoutEndOffset) {
1751       ASTContext &Context = CGF.getContext();
1752       const ASTRecordLayout &Layout =
1753           Context.getASTRecordLayout(Dtor->getParent());
1754 
1755       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1756           CGF.SizeTy,
1757           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1758               .getQuantity());
1759 
1760       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1761           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1762           OffsetSizePtr);
1763 
1764       CharUnits::QuantityType PoisonSize;
1765       if (layoutEndOffset >= Layout.getFieldCount()) {
1766         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1767                      Context.toCharUnitsFromBits(
1768                                 Layout.getFieldOffset(layoutStartOffset))
1769                          .getQuantity();
1770       } else {
1771         PoisonSize = Context.toCharUnitsFromBits(
1772                                 Layout.getFieldOffset(layoutEndOffset) -
1773                                 Layout.getFieldOffset(layoutStartOffset))
1774                          .getQuantity();
1775       }
1776 
1777       if (PoisonSize == 0)
1778         return;
1779 
1780       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1781     }
1782   };
1783 
1784  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1785     const CXXDestructorDecl *Dtor;
1786 
1787   public:
1788     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1789 
1790     // Generate function call for handling vtable pointer poisoning.
1791     void Emit(CodeGenFunction &CGF, Flags flags) override {
1792       assert(Dtor->getParent()->isDynamicClass());
1793       (void)Dtor;
1794       ASTContext &Context = CGF.getContext();
1795       // Poison vtable and vtable ptr if they exist for this class.
1796       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1797 
1798       CharUnits::QuantityType PoisonSize =
1799           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1800       // Pass in void pointer and size of region as arguments to runtime
1801       // function
1802       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1803     }
1804  };
1805 } // end anonymous namespace
1806 
1807 /// \brief Emit all code that comes at the end of class's
1808 /// destructor. This is to call destructors on members and base classes
1809 /// in reverse order of their construction.
1810 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1811                                         CXXDtorType DtorType) {
1812   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1813          "Should not emit dtor epilogue for non-exported trivial dtor!");
1814 
1815   // The deleting-destructor phase just needs to call the appropriate
1816   // operator delete that Sema picked up.
1817   if (DtorType == Dtor_Deleting) {
1818     assert(DD->getOperatorDelete() &&
1819            "operator delete missing - EnterDtorCleanups");
1820     if (CXXStructorImplicitParamValue) {
1821       // If there is an implicit param to the deleting dtor, it's a boolean
1822       // telling whether we should call delete at the end of the dtor.
1823       EHStack.pushCleanup<CallDtorDeleteConditional>(
1824           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1825     } else {
1826       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1827     }
1828     return;
1829   }
1830 
1831   const CXXRecordDecl *ClassDecl = DD->getParent();
1832 
1833   // Unions have no bases and do not call field destructors.
1834   if (ClassDecl->isUnion())
1835     return;
1836 
1837   // The complete-destructor phase just destructs all the virtual bases.
1838   if (DtorType == Dtor_Complete) {
1839     // Poison the vtable pointer such that access after the base
1840     // and member destructors are invoked is invalid.
1841     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1842         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1843         ClassDecl->isPolymorphic())
1844       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1845 
1846     // We push them in the forward order so that they'll be popped in
1847     // the reverse order.
1848     for (const auto &Base : ClassDecl->vbases()) {
1849       CXXRecordDecl *BaseClassDecl
1850         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1851 
1852       // Ignore trivial destructors.
1853       if (BaseClassDecl->hasTrivialDestructor())
1854         continue;
1855 
1856       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1857                                         BaseClassDecl,
1858                                         /*BaseIsVirtual*/ true);
1859     }
1860 
1861     return;
1862   }
1863 
1864   assert(DtorType == Dtor_Base);
1865   // Poison the vtable pointer if it has no virtual bases, but inherits
1866   // virtual functions.
1867   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1868       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1869       ClassDecl->isPolymorphic())
1870     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1871 
1872   // Destroy non-virtual bases.
1873   for (const auto &Base : ClassDecl->bases()) {
1874     // Ignore virtual bases.
1875     if (Base.isVirtual())
1876       continue;
1877 
1878     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1879 
1880     // Ignore trivial destructors.
1881     if (BaseClassDecl->hasTrivialDestructor())
1882       continue;
1883 
1884     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1885                                       BaseClassDecl,
1886                                       /*BaseIsVirtual*/ false);
1887   }
1888 
1889   // Poison fields such that access after their destructors are
1890   // invoked, and before the base class destructor runs, is invalid.
1891   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1892       SanOpts.has(SanitizerKind::Memory))
1893     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1894 
1895   // Destroy direct fields.
1896   for (const auto *Field : ClassDecl->fields()) {
1897     QualType type = Field->getType();
1898     QualType::DestructionKind dtorKind = type.isDestructedType();
1899     if (!dtorKind) continue;
1900 
1901     // Anonymous union members do not have their destructors called.
1902     const RecordType *RT = type->getAsUnionType();
1903     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1904 
1905     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1906     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1907                                       getDestroyer(dtorKind),
1908                                       cleanupKind & EHCleanup);
1909   }
1910 }
1911 
1912 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1913 /// constructor for each of several members of an array.
1914 ///
1915 /// \param ctor the constructor to call for each element
1916 /// \param arrayType the type of the array to initialize
1917 /// \param arrayBegin an arrayType*
1918 /// \param zeroInitialize true if each element should be
1919 ///   zero-initialized before it is constructed
1920 void CodeGenFunction::EmitCXXAggrConstructorCall(
1921     const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
1922     Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1923   QualType elementType;
1924   llvm::Value *numElements =
1925     emitArrayLength(arrayType, elementType, arrayBegin);
1926 
1927   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1928 }
1929 
1930 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1931 /// constructor for each of several members of an array.
1932 ///
1933 /// \param ctor the constructor to call for each element
1934 /// \param numElements the number of elements in the array;
1935 ///   may be zero
1936 /// \param arrayBase a T*, where T is the type constructed by ctor
1937 /// \param zeroInitialize true if each element should be
1938 ///   zero-initialized before it is constructed
1939 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1940                                                  llvm::Value *numElements,
1941                                                  Address arrayBase,
1942                                                  const CXXConstructExpr *E,
1943                                                  bool zeroInitialize) {
1944   // It's legal for numElements to be zero.  This can happen both
1945   // dynamically, because x can be zero in 'new A[x]', and statically,
1946   // because of GCC extensions that permit zero-length arrays.  There
1947   // are probably legitimate places where we could assume that this
1948   // doesn't happen, but it's not clear that it's worth it.
1949   llvm::BranchInst *zeroCheckBranch = nullptr;
1950 
1951   // Optimize for a constant count.
1952   llvm::ConstantInt *constantCount
1953     = dyn_cast<llvm::ConstantInt>(numElements);
1954   if (constantCount) {
1955     // Just skip out if the constant count is zero.
1956     if (constantCount->isZero()) return;
1957 
1958   // Otherwise, emit the check.
1959   } else {
1960     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1961     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1962     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1963     EmitBlock(loopBB);
1964   }
1965 
1966   // Find the end of the array.
1967   llvm::Value *arrayBegin = arrayBase.getPointer();
1968   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1969                                                     "arrayctor.end");
1970 
1971   // Enter the loop, setting up a phi for the current location to initialize.
1972   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1973   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1974   EmitBlock(loopBB);
1975   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1976                                          "arrayctor.cur");
1977   cur->addIncoming(arrayBegin, entryBB);
1978 
1979   // Inside the loop body, emit the constructor call on the array element.
1980 
1981   // The alignment of the base, adjusted by the size of a single element,
1982   // provides a conservative estimate of the alignment of every element.
1983   // (This assumes we never start tracking offsetted alignments.)
1984   //
1985   // Note that these are complete objects and so we don't need to
1986   // use the non-virtual size or alignment.
1987   QualType type = getContext().getTypeDeclType(ctor->getParent());
1988   CharUnits eltAlignment =
1989     arrayBase.getAlignment()
1990              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1991   Address curAddr = Address(cur, eltAlignment);
1992 
1993   // Zero initialize the storage, if requested.
1994   if (zeroInitialize)
1995     EmitNullInitialization(curAddr, type);
1996 
1997   // C++ [class.temporary]p4:
1998   // There are two contexts in which temporaries are destroyed at a different
1999   // point than the end of the full-expression. The first context is when a
2000   // default constructor is called to initialize an element of an array.
2001   // If the constructor has one or more default arguments, the destruction of
2002   // every temporary created in a default argument expression is sequenced
2003   // before the construction of the next array element, if any.
2004 
2005   {
2006     RunCleanupsScope Scope(*this);
2007 
2008     // Evaluate the constructor and its arguments in a regular
2009     // partial-destroy cleanup.
2010     if (getLangOpts().Exceptions &&
2011         !ctor->getParent()->hasTrivialDestructor()) {
2012       Destroyer *destroyer = destroyCXXObject;
2013       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2014                                      *destroyer);
2015     }
2016 
2017     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2018                            /*Delegating=*/false, curAddr, E);
2019   }
2020 
2021   // Go to the next element.
2022   llvm::Value *next =
2023     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
2024                               "arrayctor.next");
2025   cur->addIncoming(next, Builder.GetInsertBlock());
2026 
2027   // Check whether that's the end of the loop.
2028   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2029   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2030   Builder.CreateCondBr(done, contBB, loopBB);
2031 
2032   // Patch the earlier check to skip over the loop.
2033   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2034 
2035   EmitBlock(contBB);
2036 }
2037 
2038 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2039                                        Address addr,
2040                                        QualType type) {
2041   const RecordType *rtype = type->castAs<RecordType>();
2042   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2043   const CXXDestructorDecl *dtor = record->getDestructor();
2044   assert(!dtor->isTrivial());
2045   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2046                             /*Delegating=*/false, addr);
2047 }
2048 
2049 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2050                                              CXXCtorType Type,
2051                                              bool ForVirtualBase,
2052                                              bool Delegating, Address This,
2053                                              const CXXConstructExpr *E) {
2054   const CXXRecordDecl *ClassDecl = D->getParent();
2055 
2056   // C++11 [class.mfct.non-static]p2:
2057   //   If a non-static member function of a class X is called for an object that
2058   //   is not of type X, or of a type derived from X, the behavior is undefined.
2059   // FIXME: Provide a source location here.
2060   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
2061                 This.getPointer(), getContext().getRecordType(ClassDecl));
2062 
2063   if (D->isTrivial() && D->isDefaultConstructor()) {
2064     assert(E->getNumArgs() == 0 && "trivial default ctor with args");
2065     return;
2066   }
2067 
2068   // If this is a trivial constructor, just emit what's needed. If this is a
2069   // union copy constructor, we must emit a memcpy, because the AST does not
2070   // model that copy.
2071   if (isMemcpyEquivalentSpecialMember(D)) {
2072     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2073 
2074     const Expr *Arg = E->getArg(0);
2075     QualType SrcTy = Arg->getType();
2076     Address Src = EmitLValue(Arg).getAddress();
2077     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2078     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2079     return;
2080   }
2081 
2082   CallArgList Args;
2083 
2084   // Push the this ptr.
2085   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2086 
2087   // Add the rest of the user-supplied arguments.
2088   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2089   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor());
2090 
2091   // Insert any ABI-specific implicit constructor arguments.
2092   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
2093       *this, D, Type, ForVirtualBase, Delegating, Args);
2094 
2095   // Emit the call.
2096   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
2097   const CGFunctionInfo &Info =
2098       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
2099   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
2100 
2101   // Generate vtable assumptions if we're constructing a complete object
2102   // with a vtable.  We don't do this for base subobjects for two reasons:
2103   // first, it's incorrect for classes with virtual bases, and second, we're
2104   // about to overwrite the vptrs anyway.
2105   // We also have to make sure if we can refer to vtable:
2106   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2107   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2108   // sure that definition of vtable is not hidden,
2109   // then we are always safe to refer to it.
2110   // FIXME: It looks like InstCombine is very inefficient on dealing with
2111   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2112   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2113       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2114       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2115       CGM.getCodeGenOpts().StrictVTablePointers)
2116     EmitVTableAssumptionLoads(ClassDecl, This);
2117 }
2118 
2119 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2120   llvm::Value *VTableGlobal =
2121       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2122   if (!VTableGlobal)
2123     return;
2124 
2125   // We can just use the base offset in the complete class.
2126   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2127 
2128   if (!NonVirtualOffset.isZero())
2129     This =
2130         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2131                                         Vptr.VTableClass, Vptr.NearestVBase);
2132 
2133   llvm::Value *VPtrValue =
2134       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2135   llvm::Value *Cmp =
2136       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2137   Builder.CreateAssumption(Cmp);
2138 }
2139 
2140 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2141                                                 Address This) {
2142   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2143     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2144       EmitVTableAssumptionLoad(Vptr, This);
2145 }
2146 
2147 void
2148 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2149                                                 Address This, Address Src,
2150                                                 const CXXConstructExpr *E) {
2151   if (isMemcpyEquivalentSpecialMember(D)) {
2152     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2153     assert(D->isCopyOrMoveConstructor() &&
2154            "trivial 1-arg ctor not a copy/move ctor");
2155     EmitAggregateCopyCtor(This, Src,
2156                           getContext().getTypeDeclType(D->getParent()),
2157                           (*E->arg_begin())->getType());
2158     return;
2159   }
2160   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
2161   assert(D->isInstance() &&
2162          "Trying to emit a member call expr on a static method!");
2163 
2164   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2165 
2166   CallArgList Args;
2167 
2168   // Push the this ptr.
2169   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2170 
2171   // Push the src ptr.
2172   QualType QT = *(FPT->param_type_begin());
2173   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2174   Src = Builder.CreateBitCast(Src, t);
2175   Args.add(RValue::get(Src.getPointer()), QT);
2176 
2177   // Skip over first argument (Src).
2178   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2179                /*ParamsToSkip*/ 1);
2180 
2181   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
2182            Callee, ReturnValueSlot(), Args, D);
2183 }
2184 
2185 void
2186 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2187                                                 CXXCtorType CtorType,
2188                                                 const FunctionArgList &Args,
2189                                                 SourceLocation Loc) {
2190   CallArgList DelegateArgs;
2191 
2192   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2193   assert(I != E && "no parameters to constructor");
2194 
2195   // this
2196   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
2197   ++I;
2198 
2199   // vtt
2200   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
2201                                          /*ForVirtualBase=*/false,
2202                                          /*Delegating=*/true)) {
2203     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
2204     DelegateArgs.add(RValue::get(VTT), VoidPP);
2205 
2206     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2207       assert(I != E && "cannot skip vtt parameter, already done with args");
2208       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
2209       ++I;
2210     }
2211   }
2212 
2213   // Explicit arguments.
2214   for (; I != E; ++I) {
2215     const VarDecl *param = *I;
2216     // FIXME: per-argument source location
2217     EmitDelegateCallArg(DelegateArgs, param, Loc);
2218   }
2219 
2220   llvm::Value *Callee =
2221       CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
2222   EmitCall(CGM.getTypes()
2223                .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
2224            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
2225 }
2226 
2227 namespace {
2228   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2229     const CXXDestructorDecl *Dtor;
2230     Address Addr;
2231     CXXDtorType Type;
2232 
2233     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2234                            CXXDtorType Type)
2235       : Dtor(D), Addr(Addr), Type(Type) {}
2236 
2237     void Emit(CodeGenFunction &CGF, Flags flags) override {
2238       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2239                                 /*Delegating=*/true, Addr);
2240     }
2241   };
2242 } // end anonymous namespace
2243 
2244 void
2245 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2246                                                   const FunctionArgList &Args) {
2247   assert(Ctor->isDelegatingConstructor());
2248 
2249   Address ThisPtr = LoadCXXThisAddress();
2250 
2251   AggValueSlot AggSlot =
2252     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2253                           AggValueSlot::IsDestructed,
2254                           AggValueSlot::DoesNotNeedGCBarriers,
2255                           AggValueSlot::IsNotAliased);
2256 
2257   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2258 
2259   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2260   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2261     CXXDtorType Type =
2262       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2263 
2264     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2265                                                 ClassDecl->getDestructor(),
2266                                                 ThisPtr, Type);
2267   }
2268 }
2269 
2270 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2271                                             CXXDtorType Type,
2272                                             bool ForVirtualBase,
2273                                             bool Delegating,
2274                                             Address This) {
2275   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2276                                      Delegating, This);
2277 }
2278 
2279 namespace {
2280   struct CallLocalDtor final : EHScopeStack::Cleanup {
2281     const CXXDestructorDecl *Dtor;
2282     Address Addr;
2283 
2284     CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
2285       : Dtor(D), Addr(Addr) {}
2286 
2287     void Emit(CodeGenFunction &CGF, Flags flags) override {
2288       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2289                                 /*ForVirtualBase=*/false,
2290                                 /*Delegating=*/false, Addr);
2291     }
2292   };
2293 }
2294 
2295 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2296                                             Address Addr) {
2297   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
2298 }
2299 
2300 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2301   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2302   if (!ClassDecl) return;
2303   if (ClassDecl->hasTrivialDestructor()) return;
2304 
2305   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2306   assert(D && D->isUsed() && "destructor not marked as used!");
2307   PushDestructorCleanup(D, Addr);
2308 }
2309 
2310 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2311   // Compute the address point.
2312   llvm::Value *VTableAddressPoint =
2313       CGM.getCXXABI().getVTableAddressPointInStructor(
2314           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2315 
2316   if (!VTableAddressPoint)
2317     return;
2318 
2319   // Compute where to store the address point.
2320   llvm::Value *VirtualOffset = nullptr;
2321   CharUnits NonVirtualOffset = CharUnits::Zero();
2322 
2323   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2324     // We need to use the virtual base offset offset because the virtual base
2325     // might have a different offset in the most derived class.
2326 
2327     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2328         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2329     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2330   } else {
2331     // We can just use the base offset in the complete class.
2332     NonVirtualOffset = Vptr.Base.getBaseOffset();
2333   }
2334 
2335   // Apply the offsets.
2336   Address VTableField = LoadCXXThisAddress();
2337 
2338   if (!NonVirtualOffset.isZero() || VirtualOffset)
2339     VTableField = ApplyNonVirtualAndVirtualOffset(
2340         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2341         Vptr.NearestVBase);
2342 
2343   // Finally, store the address point. Use the same LLVM types as the field to
2344   // support optimization.
2345   llvm::Type *VTablePtrTy =
2346       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2347           ->getPointerTo()
2348           ->getPointerTo();
2349   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2350   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2351 
2352   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2353   CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr());
2354   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2355       CGM.getCodeGenOpts().StrictVTablePointers)
2356     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2357 }
2358 
2359 CodeGenFunction::VPtrsVector
2360 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2361   CodeGenFunction::VPtrsVector VPtrsResult;
2362   VisitedVirtualBasesSetTy VBases;
2363   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2364                     /*NearestVBase=*/nullptr,
2365                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2366                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2367                     VPtrsResult);
2368   return VPtrsResult;
2369 }
2370 
2371 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2372                                         const CXXRecordDecl *NearestVBase,
2373                                         CharUnits OffsetFromNearestVBase,
2374                                         bool BaseIsNonVirtualPrimaryBase,
2375                                         const CXXRecordDecl *VTableClass,
2376                                         VisitedVirtualBasesSetTy &VBases,
2377                                         VPtrsVector &Vptrs) {
2378   // If this base is a non-virtual primary base the address point has already
2379   // been set.
2380   if (!BaseIsNonVirtualPrimaryBase) {
2381     // Initialize the vtable pointer for this base.
2382     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2383     Vptrs.push_back(Vptr);
2384   }
2385 
2386   const CXXRecordDecl *RD = Base.getBase();
2387 
2388   // Traverse bases.
2389   for (const auto &I : RD->bases()) {
2390     CXXRecordDecl *BaseDecl
2391       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2392 
2393     // Ignore classes without a vtable.
2394     if (!BaseDecl->isDynamicClass())
2395       continue;
2396 
2397     CharUnits BaseOffset;
2398     CharUnits BaseOffsetFromNearestVBase;
2399     bool BaseDeclIsNonVirtualPrimaryBase;
2400 
2401     if (I.isVirtual()) {
2402       // Check if we've visited this virtual base before.
2403       if (!VBases.insert(BaseDecl).second)
2404         continue;
2405 
2406       const ASTRecordLayout &Layout =
2407         getContext().getASTRecordLayout(VTableClass);
2408 
2409       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2410       BaseOffsetFromNearestVBase = CharUnits::Zero();
2411       BaseDeclIsNonVirtualPrimaryBase = false;
2412     } else {
2413       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2414 
2415       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2416       BaseOffsetFromNearestVBase =
2417         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2418       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2419     }
2420 
2421     getVTablePointers(
2422         BaseSubobject(BaseDecl, BaseOffset),
2423         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2424         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2425   }
2426 }
2427 
2428 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2429   // Ignore classes without a vtable.
2430   if (!RD->isDynamicClass())
2431     return;
2432 
2433   // Initialize the vtable pointers for this class and all of its bases.
2434   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2435     for (const VPtr &Vptr : getVTablePointers(RD))
2436       InitializeVTablePointer(Vptr);
2437 
2438   if (RD->getNumVBases())
2439     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2440 }
2441 
2442 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2443                                            llvm::Type *VTableTy,
2444                                            const CXXRecordDecl *RD) {
2445   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2446   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2447   CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr());
2448 
2449   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2450       CGM.getCodeGenOpts().StrictVTablePointers)
2451     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2452 
2453   return VTable;
2454 }
2455 
2456 // If a class has a single non-virtual base and does not introduce or override
2457 // virtual member functions or fields, it will have the same layout as its base.
2458 // This function returns the least derived such class.
2459 //
2460 // Casting an instance of a base class to such a derived class is technically
2461 // undefined behavior, but it is a relatively common hack for introducing member
2462 // functions on class instances with specific properties (e.g. llvm::Operator)
2463 // that works under most compilers and should not have security implications, so
2464 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2465 static const CXXRecordDecl *
2466 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2467   if (!RD->field_empty())
2468     return RD;
2469 
2470   if (RD->getNumVBases() != 0)
2471     return RD;
2472 
2473   if (RD->getNumBases() != 1)
2474     return RD;
2475 
2476   for (const CXXMethodDecl *MD : RD->methods()) {
2477     if (MD->isVirtual()) {
2478       // Virtual member functions are only ok if they are implicit destructors
2479       // because the implicit destructor will have the same semantics as the
2480       // base class's destructor if no fields are added.
2481       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2482         continue;
2483       return RD;
2484     }
2485   }
2486 
2487   return LeastDerivedClassWithSameLayout(
2488       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2489 }
2490 
2491 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD,
2492                                                 llvm::Value *VTable,
2493                                                 CFITypeCheckKind TCK,
2494                                                 SourceLocation Loc) {
2495   const CXXRecordDecl *ClassDecl = MD->getParent();
2496   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2497     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2498 
2499   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2500 }
2501 
2502 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2503                                                 llvm::Value *Derived,
2504                                                 bool MayBeNull,
2505                                                 CFITypeCheckKind TCK,
2506                                                 SourceLocation Loc) {
2507   if (!getLangOpts().CPlusPlus)
2508     return;
2509 
2510   auto *ClassTy = T->getAs<RecordType>();
2511   if (!ClassTy)
2512     return;
2513 
2514   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2515 
2516   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2517     return;
2518 
2519   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2520     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2521 
2522   llvm::BasicBlock *ContBlock = nullptr;
2523 
2524   if (MayBeNull) {
2525     llvm::Value *DerivedNotNull =
2526         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2527 
2528     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2529     ContBlock = createBasicBlock("cast.cont");
2530 
2531     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2532 
2533     EmitBlock(CheckBlock);
2534   }
2535 
2536   llvm::Value *VTable =
2537     GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl);
2538 
2539   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2540 
2541   if (MayBeNull) {
2542     Builder.CreateBr(ContBlock);
2543     EmitBlock(ContBlock);
2544   }
2545 }
2546 
2547 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2548                                          llvm::Value *VTable,
2549                                          CFITypeCheckKind TCK,
2550                                          SourceLocation Loc) {
2551   if (CGM.IsCFIBlacklistedRecord(RD))
2552     return;
2553 
2554   SanitizerScope SanScope(this);
2555   llvm::SanitizerStatKind SSK;
2556   switch (TCK) {
2557   case CFITCK_VCall:
2558     SSK = llvm::SanStat_CFI_VCall;
2559     break;
2560   case CFITCK_NVCall:
2561     SSK = llvm::SanStat_CFI_NVCall;
2562     break;
2563   case CFITCK_DerivedCast:
2564     SSK = llvm::SanStat_CFI_DerivedCast;
2565     break;
2566   case CFITCK_UnrelatedCast:
2567     SSK = llvm::SanStat_CFI_UnrelatedCast;
2568     break;
2569   }
2570   EmitSanitizerStatReport(SSK);
2571 
2572   llvm::Metadata *MD =
2573       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2574   llvm::Value *BitSetName = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2575 
2576   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2577   llvm::Value *BitSetTest =
2578       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
2579                          {CastedVTable, BitSetName});
2580 
2581   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso) {
2582     if (auto TypeId = CGM.CreateCfiIdForTypeMetadata(MD)) {
2583       EmitCfiSlowPathCheck(BitSetTest, TypeId, CastedVTable);
2584       return;
2585     }
2586   }
2587 
2588   SanitizerMask M;
2589   switch (TCK) {
2590   case CFITCK_VCall:
2591     M = SanitizerKind::CFIVCall;
2592     break;
2593   case CFITCK_NVCall:
2594     M = SanitizerKind::CFINVCall;
2595     break;
2596   case CFITCK_DerivedCast:
2597     M = SanitizerKind::CFIDerivedCast;
2598     break;
2599   case CFITCK_UnrelatedCast:
2600     M = SanitizerKind::CFIUnrelatedCast;
2601     break;
2602   }
2603 
2604   llvm::Constant *StaticData[] = {
2605       EmitCheckSourceLocation(Loc),
2606       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2607       llvm::ConstantInt::get(Int8Ty, TCK),
2608   };
2609   EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData,
2610             CastedVTable);
2611 }
2612 
2613 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2614 // quite what we want.
2615 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2616   while (true) {
2617     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2618       E = PE->getSubExpr();
2619       continue;
2620     }
2621 
2622     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2623       if (CE->getCastKind() == CK_NoOp) {
2624         E = CE->getSubExpr();
2625         continue;
2626       }
2627     }
2628     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2629       if (UO->getOpcode() == UO_Extension) {
2630         E = UO->getSubExpr();
2631         continue;
2632       }
2633     }
2634     return E;
2635   }
2636 }
2637 
2638 bool
2639 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2640                                                    const CXXMethodDecl *MD) {
2641   // When building with -fapple-kext, all calls must go through the vtable since
2642   // the kernel linker can do runtime patching of vtables.
2643   if (getLangOpts().AppleKext)
2644     return false;
2645 
2646   // If the most derived class is marked final, we know that no subclass can
2647   // override this member function and so we can devirtualize it. For example:
2648   //
2649   // struct A { virtual void f(); }
2650   // struct B final : A { };
2651   //
2652   // void f(B *b) {
2653   //   b->f();
2654   // }
2655   //
2656   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2657   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2658     return true;
2659 
2660   // If the member function is marked 'final', we know that it can't be
2661   // overridden and can therefore devirtualize it.
2662   if (MD->hasAttr<FinalAttr>())
2663     return true;
2664 
2665   // Similarly, if the class itself is marked 'final' it can't be overridden
2666   // and we can therefore devirtualize the member function call.
2667   if (MD->getParent()->hasAttr<FinalAttr>())
2668     return true;
2669 
2670   Base = skipNoOpCastsAndParens(Base);
2671   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2672     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2673       // This is a record decl. We know the type and can devirtualize it.
2674       return VD->getType()->isRecordType();
2675     }
2676 
2677     return false;
2678   }
2679 
2680   // We can devirtualize calls on an object accessed by a class member access
2681   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2682   // a derived class object constructed in the same location.
2683   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2684     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2685       return VD->getType()->isRecordType();
2686 
2687   // We can always devirtualize calls on temporary object expressions.
2688   if (isa<CXXConstructExpr>(Base))
2689     return true;
2690 
2691   // And calls on bound temporaries.
2692   if (isa<CXXBindTemporaryExpr>(Base))
2693     return true;
2694 
2695   // Check if this is a call expr that returns a record type.
2696   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2697     return CE->getCallReturnType(getContext())->isRecordType();
2698 
2699   // We can't devirtualize the call.
2700   return false;
2701 }
2702 
2703 void CodeGenFunction::EmitForwardingCallToLambda(
2704                                       const CXXMethodDecl *callOperator,
2705                                       CallArgList &callArgs) {
2706   // Get the address of the call operator.
2707   const CGFunctionInfo &calleeFnInfo =
2708     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2709   llvm::Value *callee =
2710     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2711                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2712 
2713   // Prepare the return slot.
2714   const FunctionProtoType *FPT =
2715     callOperator->getType()->castAs<FunctionProtoType>();
2716   QualType resultType = FPT->getReturnType();
2717   ReturnValueSlot returnSlot;
2718   if (!resultType->isVoidType() &&
2719       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2720       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2721     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2722 
2723   // We don't need to separately arrange the call arguments because
2724   // the call can't be variadic anyway --- it's impossible to forward
2725   // variadic arguments.
2726 
2727   // Now emit our call.
2728   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2729                        callArgs, callOperator);
2730 
2731   // If necessary, copy the returned value into the slot.
2732   if (!resultType->isVoidType() && returnSlot.isNull())
2733     EmitReturnOfRValue(RV, resultType);
2734   else
2735     EmitBranchThroughCleanup(ReturnBlock);
2736 }
2737 
2738 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2739   const BlockDecl *BD = BlockInfo->getBlockDecl();
2740   const VarDecl *variable = BD->capture_begin()->getVariable();
2741   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2742 
2743   // Start building arguments for forwarding call
2744   CallArgList CallArgs;
2745 
2746   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2747   Address ThisPtr = GetAddrOfBlockDecl(variable, false);
2748   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2749 
2750   // Add the rest of the parameters.
2751   for (auto param : BD->params())
2752     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2753 
2754   assert(!Lambda->isGenericLambda() &&
2755             "generic lambda interconversion to block not implemented");
2756   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2757 }
2758 
2759 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2760   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2761     // FIXME: Making this work correctly is nasty because it requires either
2762     // cloning the body of the call operator or making the call operator forward.
2763     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2764     return;
2765   }
2766 
2767   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2768 }
2769 
2770 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2771   const CXXRecordDecl *Lambda = MD->getParent();
2772 
2773   // Start building arguments for forwarding call
2774   CallArgList CallArgs;
2775 
2776   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2777   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2778   CallArgs.add(RValue::get(ThisPtr), ThisType);
2779 
2780   // Add the rest of the parameters.
2781   for (auto Param : MD->params())
2782     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2783 
2784   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2785   // For a generic lambda, find the corresponding call operator specialization
2786   // to which the call to the static-invoker shall be forwarded.
2787   if (Lambda->isGenericLambda()) {
2788     assert(MD->isFunctionTemplateSpecialization());
2789     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2790     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2791     void *InsertPos = nullptr;
2792     FunctionDecl *CorrespondingCallOpSpecialization =
2793         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2794     assert(CorrespondingCallOpSpecialization);
2795     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2796   }
2797   EmitForwardingCallToLambda(CallOp, CallArgs);
2798 }
2799 
2800 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2801   if (MD->isVariadic()) {
2802     // FIXME: Making this work correctly is nasty because it requires either
2803     // cloning the body of the call operator or making the call operator forward.
2804     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2805     return;
2806   }
2807 
2808   EmitLambdaDelegatingInvokeBody(MD);
2809 }
2810