1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of classes
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Basic/CodeGenOptions.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/Transforms/Utils/SanitizerStats.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 /// Return the best known alignment for an unknown pointer to a
36 /// particular class.
37 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
38   if (!RD->hasDefinition())
39     return CharUnits::One(); // Hopefully won't be used anywhere.
40 
41   auto &layout = getContext().getASTRecordLayout(RD);
42 
43   // If the class is final, then we know that the pointer points to an
44   // object of that type and can use the full alignment.
45   if (RD->isEffectivelyFinal())
46     return layout.getAlignment();
47 
48   // Otherwise, we have to assume it could be a subclass.
49   return layout.getNonVirtualAlignment();
50 }
51 
52 /// Return the smallest possible amount of storage that might be allocated
53 /// starting from the beginning of an object of a particular class.
54 ///
55 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
56 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
57   if (!RD->hasDefinition())
58     return CharUnits::One();
59 
60   auto &layout = getContext().getASTRecordLayout(RD);
61 
62   // If the class is final, then we know that the pointer points to an
63   // object of that type and can use the full alignment.
64   if (RD->isEffectivelyFinal())
65     return layout.getSize();
66 
67   // Otherwise, we have to assume it could be a subclass.
68   return std::max(layout.getNonVirtualSize(), CharUnits::One());
69 }
70 
71 /// Return the best known alignment for a pointer to a virtual base,
72 /// given the alignment of a pointer to the derived class.
73 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
74                                            const CXXRecordDecl *derivedClass,
75                                            const CXXRecordDecl *vbaseClass) {
76   // The basic idea here is that an underaligned derived pointer might
77   // indicate an underaligned base pointer.
78 
79   assert(vbaseClass->isCompleteDefinition());
80   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
81   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
82 
83   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
84                                    expectedVBaseAlign);
85 }
86 
87 CharUnits
88 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
89                                          const CXXRecordDecl *baseDecl,
90                                          CharUnits expectedTargetAlign) {
91   // If the base is an incomplete type (which is, alas, possible with
92   // member pointers), be pessimistic.
93   if (!baseDecl->isCompleteDefinition())
94     return std::min(actualBaseAlign, expectedTargetAlign);
95 
96   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
97   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
98 
99   // If the class is properly aligned, assume the target offset is, too.
100   //
101   // This actually isn't necessarily the right thing to do --- if the
102   // class is a complete object, but it's only properly aligned for a
103   // base subobject, then the alignments of things relative to it are
104   // probably off as well.  (Note that this requires the alignment of
105   // the target to be greater than the NV alignment of the derived
106   // class.)
107   //
108   // However, our approach to this kind of under-alignment can only
109   // ever be best effort; after all, we're never going to propagate
110   // alignments through variables or parameters.  Note, in particular,
111   // that constructing a polymorphic type in an address that's less
112   // than pointer-aligned will generally trap in the constructor,
113   // unless we someday add some sort of attribute to change the
114   // assumed alignment of 'this'.  So our goal here is pretty much
115   // just to allow the user to explicitly say that a pointer is
116   // under-aligned and then safely access its fields and vtables.
117   if (actualBaseAlign >= expectedBaseAlign) {
118     return expectedTargetAlign;
119   }
120 
121   // Otherwise, we might be offset by an arbitrary multiple of the
122   // actual alignment.  The correct adjustment is to take the min of
123   // the two alignments.
124   return std::min(actualBaseAlign, expectedTargetAlign);
125 }
126 
127 Address CodeGenFunction::LoadCXXThisAddress() {
128   assert(CurFuncDecl && "loading 'this' without a func declaration?");
129   assert(isa<CXXMethodDecl>(CurFuncDecl));
130 
131   // Lazily compute CXXThisAlignment.
132   if (CXXThisAlignment.isZero()) {
133     // Just use the best known alignment for the parent.
134     // TODO: if we're currently emitting a complete-object ctor/dtor,
135     // we can always use the complete-object alignment.
136     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
137     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
138   }
139 
140   return Address(LoadCXXThis(), CXXThisAlignment);
141 }
142 
143 /// Emit the address of a field using a member data pointer.
144 ///
145 /// \param E Only used for emergency diagnostics
146 Address
147 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
148                                                  llvm::Value *memberPtr,
149                                       const MemberPointerType *memberPtrType,
150                                                  LValueBaseInfo *BaseInfo,
151                                                  TBAAAccessInfo *TBAAInfo) {
152   // Ask the ABI to compute the actual address.
153   llvm::Value *ptr =
154     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
155                                                  memberPtr, memberPtrType);
156 
157   QualType memberType = memberPtrType->getPointeeType();
158   CharUnits memberAlign =
159       CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
160   memberAlign =
161     CGM.getDynamicOffsetAlignment(base.getAlignment(),
162                             memberPtrType->getClass()->getAsCXXRecordDecl(),
163                                   memberAlign);
164   return Address(ptr, memberAlign);
165 }
166 
167 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
168     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
169     CastExpr::path_const_iterator End) {
170   CharUnits Offset = CharUnits::Zero();
171 
172   const ASTContext &Context = getContext();
173   const CXXRecordDecl *RD = DerivedClass;
174 
175   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
176     const CXXBaseSpecifier *Base = *I;
177     assert(!Base->isVirtual() && "Should not see virtual bases here!");
178 
179     // Get the layout.
180     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
181 
182     const auto *BaseDecl =
183         cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
184 
185     // Add the offset.
186     Offset += Layout.getBaseClassOffset(BaseDecl);
187 
188     RD = BaseDecl;
189   }
190 
191   return Offset;
192 }
193 
194 llvm::Constant *
195 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
196                                    CastExpr::path_const_iterator PathBegin,
197                                    CastExpr::path_const_iterator PathEnd) {
198   assert(PathBegin != PathEnd && "Base path should not be empty!");
199 
200   CharUnits Offset =
201       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
202   if (Offset.isZero())
203     return nullptr;
204 
205   llvm::Type *PtrDiffTy =
206   Types.ConvertType(getContext().getPointerDiffType());
207 
208   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
209 }
210 
211 /// Gets the address of a direct base class within a complete object.
212 /// This should only be used for (1) non-virtual bases or (2) virtual bases
213 /// when the type is known to be complete (e.g. in complete destructors).
214 ///
215 /// The object pointed to by 'This' is assumed to be non-null.
216 Address
217 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
218                                                    const CXXRecordDecl *Derived,
219                                                    const CXXRecordDecl *Base,
220                                                    bool BaseIsVirtual) {
221   // 'this' must be a pointer (in some address space) to Derived.
222   assert(This.getElementType() == ConvertType(Derived));
223 
224   // Compute the offset of the virtual base.
225   CharUnits Offset;
226   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
227   if (BaseIsVirtual)
228     Offset = Layout.getVBaseClassOffset(Base);
229   else
230     Offset = Layout.getBaseClassOffset(Base);
231 
232   // Shift and cast down to the base type.
233   // TODO: for complete types, this should be possible with a GEP.
234   Address V = This;
235   if (!Offset.isZero()) {
236     V = Builder.CreateElementBitCast(V, Int8Ty);
237     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
238   }
239   V = Builder.CreateElementBitCast(V, ConvertType(Base));
240 
241   return V;
242 }
243 
244 static Address
245 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
246                                 CharUnits nonVirtualOffset,
247                                 llvm::Value *virtualOffset,
248                                 const CXXRecordDecl *derivedClass,
249                                 const CXXRecordDecl *nearestVBase) {
250   // Assert that we have something to do.
251   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
252 
253   // Compute the offset from the static and dynamic components.
254   llvm::Value *baseOffset;
255   if (!nonVirtualOffset.isZero()) {
256     llvm::Type *OffsetType =
257         (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
258          CGF.CGM.getItaniumVTableContext().isRelativeLayout())
259             ? CGF.Int32Ty
260             : CGF.PtrDiffTy;
261     baseOffset =
262         llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
263     if (virtualOffset) {
264       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
265     }
266   } else {
267     baseOffset = virtualOffset;
268   }
269 
270   // Apply the base offset.
271   llvm::Value *ptr = addr.getPointer();
272   unsigned AddrSpace = ptr->getType()->getPointerAddressSpace();
273   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace));
274   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
275 
276   // If we have a virtual component, the alignment of the result will
277   // be relative only to the known alignment of that vbase.
278   CharUnits alignment;
279   if (virtualOffset) {
280     assert(nearestVBase && "virtual offset without vbase?");
281     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
282                                           derivedClass, nearestVBase);
283   } else {
284     alignment = addr.getAlignment();
285   }
286   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
287 
288   return Address(ptr, alignment);
289 }
290 
291 Address CodeGenFunction::GetAddressOfBaseClass(
292     Address Value, const CXXRecordDecl *Derived,
293     CastExpr::path_const_iterator PathBegin,
294     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
295     SourceLocation Loc) {
296   assert(PathBegin != PathEnd && "Base path should not be empty!");
297 
298   CastExpr::path_const_iterator Start = PathBegin;
299   const CXXRecordDecl *VBase = nullptr;
300 
301   // Sema has done some convenient canonicalization here: if the
302   // access path involved any virtual steps, the conversion path will
303   // *start* with a step down to the correct virtual base subobject,
304   // and hence will not require any further steps.
305   if ((*Start)->isVirtual()) {
306     VBase = cast<CXXRecordDecl>(
307         (*Start)->getType()->castAs<RecordType>()->getDecl());
308     ++Start;
309   }
310 
311   // Compute the static offset of the ultimate destination within its
312   // allocating subobject (the virtual base, if there is one, or else
313   // the "complete" object that we see).
314   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
315       VBase ? VBase : Derived, Start, PathEnd);
316 
317   // If there's a virtual step, we can sometimes "devirtualize" it.
318   // For now, that's limited to when the derived type is final.
319   // TODO: "devirtualize" this for accesses to known-complete objects.
320   if (VBase && Derived->hasAttr<FinalAttr>()) {
321     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
322     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
323     NonVirtualOffset += vBaseOffset;
324     VBase = nullptr; // we no longer have a virtual step
325   }
326 
327   // Get the base pointer type.
328   llvm::Type *BasePtrTy =
329       ConvertType((PathEnd[-1])->getType())
330           ->getPointerTo(Value.getType()->getPointerAddressSpace());
331 
332   QualType DerivedTy = getContext().getRecordType(Derived);
333   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
334 
335   // If the static offset is zero and we don't have a virtual step,
336   // just do a bitcast; null checks are unnecessary.
337   if (NonVirtualOffset.isZero() && !VBase) {
338     if (sanitizePerformTypeCheck()) {
339       SanitizerSet SkippedChecks;
340       SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
341       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
342                     DerivedTy, DerivedAlign, SkippedChecks);
343     }
344     return Builder.CreateBitCast(Value, BasePtrTy);
345   }
346 
347   llvm::BasicBlock *origBB = nullptr;
348   llvm::BasicBlock *endBB = nullptr;
349 
350   // Skip over the offset (and the vtable load) if we're supposed to
351   // null-check the pointer.
352   if (NullCheckValue) {
353     origBB = Builder.GetInsertBlock();
354     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
355     endBB = createBasicBlock("cast.end");
356 
357     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
358     Builder.CreateCondBr(isNull, endBB, notNullBB);
359     EmitBlock(notNullBB);
360   }
361 
362   if (sanitizePerformTypeCheck()) {
363     SanitizerSet SkippedChecks;
364     SkippedChecks.set(SanitizerKind::Null, true);
365     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
366                   Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
367   }
368 
369   // Compute the virtual offset.
370   llvm::Value *VirtualOffset = nullptr;
371   if (VBase) {
372     VirtualOffset =
373       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
374   }
375 
376   // Apply both offsets.
377   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
378                                           VirtualOffset, Derived, VBase);
379 
380   // Cast to the destination type.
381   Value = Builder.CreateBitCast(Value, BasePtrTy);
382 
383   // Build a phi if we needed a null check.
384   if (NullCheckValue) {
385     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
386     Builder.CreateBr(endBB);
387     EmitBlock(endBB);
388 
389     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
390     PHI->addIncoming(Value.getPointer(), notNullBB);
391     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
392     Value = Address(PHI, Value.getAlignment());
393   }
394 
395   return Value;
396 }
397 
398 Address
399 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
400                                           const CXXRecordDecl *Derived,
401                                         CastExpr::path_const_iterator PathBegin,
402                                           CastExpr::path_const_iterator PathEnd,
403                                           bool NullCheckValue) {
404   assert(PathBegin != PathEnd && "Base path should not be empty!");
405 
406   QualType DerivedTy =
407     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
408   unsigned AddrSpace =
409     BaseAddr.getPointer()->getType()->getPointerAddressSpace();
410   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(AddrSpace);
411 
412   llvm::Value *NonVirtualOffset =
413     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
414 
415   if (!NonVirtualOffset) {
416     // No offset, we can just cast back.
417     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
418   }
419 
420   llvm::BasicBlock *CastNull = nullptr;
421   llvm::BasicBlock *CastNotNull = nullptr;
422   llvm::BasicBlock *CastEnd = nullptr;
423 
424   if (NullCheckValue) {
425     CastNull = createBasicBlock("cast.null");
426     CastNotNull = createBasicBlock("cast.notnull");
427     CastEnd = createBasicBlock("cast.end");
428 
429     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
430     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
431     EmitBlock(CastNotNull);
432   }
433 
434   // Apply the offset.
435   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
436   Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset),
437                                     "sub.ptr");
438 
439   // Just cast.
440   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
441 
442   // Produce a PHI if we had a null-check.
443   if (NullCheckValue) {
444     Builder.CreateBr(CastEnd);
445     EmitBlock(CastNull);
446     Builder.CreateBr(CastEnd);
447     EmitBlock(CastEnd);
448 
449     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
450     PHI->addIncoming(Value, CastNotNull);
451     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
452     Value = PHI;
453   }
454 
455   return Address(Value, CGM.getClassPointerAlignment(Derived));
456 }
457 
458 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
459                                               bool ForVirtualBase,
460                                               bool Delegating) {
461   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
462     // This constructor/destructor does not need a VTT parameter.
463     return nullptr;
464   }
465 
466   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
467   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
468 
469   llvm::Value *VTT;
470 
471   uint64_t SubVTTIndex;
472 
473   if (Delegating) {
474     // If this is a delegating constructor call, just load the VTT.
475     return LoadCXXVTT();
476   } else if (RD == Base) {
477     // If the record matches the base, this is the complete ctor/dtor
478     // variant calling the base variant in a class with virtual bases.
479     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
480            "doing no-op VTT offset in base dtor/ctor?");
481     assert(!ForVirtualBase && "Can't have same class as virtual base!");
482     SubVTTIndex = 0;
483   } else {
484     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
485     CharUnits BaseOffset = ForVirtualBase ?
486       Layout.getVBaseClassOffset(Base) :
487       Layout.getBaseClassOffset(Base);
488 
489     SubVTTIndex =
490       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
491     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
492   }
493 
494   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
495     // A VTT parameter was passed to the constructor, use it.
496     VTT = LoadCXXVTT();
497     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
498   } else {
499     // We're the complete constructor, so get the VTT by name.
500     VTT = CGM.getVTables().GetAddrOfVTT(RD);
501     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
502   }
503 
504   return VTT;
505 }
506 
507 namespace {
508   /// Call the destructor for a direct base class.
509   struct CallBaseDtor final : EHScopeStack::Cleanup {
510     const CXXRecordDecl *BaseClass;
511     bool BaseIsVirtual;
512     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
513       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
514 
515     void Emit(CodeGenFunction &CGF, Flags flags) override {
516       const CXXRecordDecl *DerivedClass =
517         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
518 
519       const CXXDestructorDecl *D = BaseClass->getDestructor();
520       // We are already inside a destructor, so presumably the object being
521       // destroyed should have the expected type.
522       QualType ThisTy = D->getThisObjectType();
523       Address Addr =
524         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
525                                                   DerivedClass, BaseClass,
526                                                   BaseIsVirtual);
527       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
528                                 /*Delegating=*/false, Addr, ThisTy);
529     }
530   };
531 
532   /// A visitor which checks whether an initializer uses 'this' in a
533   /// way which requires the vtable to be properly set.
534   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
535     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
536 
537     bool UsesThis;
538 
539     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
540 
541     // Black-list all explicit and implicit references to 'this'.
542     //
543     // Do we need to worry about external references to 'this' derived
544     // from arbitrary code?  If so, then anything which runs arbitrary
545     // external code might potentially access the vtable.
546     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
547   };
548 } // end anonymous namespace
549 
550 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
551   DynamicThisUseChecker Checker(C);
552   Checker.Visit(Init);
553   return Checker.UsesThis;
554 }
555 
556 static void EmitBaseInitializer(CodeGenFunction &CGF,
557                                 const CXXRecordDecl *ClassDecl,
558                                 CXXCtorInitializer *BaseInit) {
559   assert(BaseInit->isBaseInitializer() &&
560          "Must have base initializer!");
561 
562   Address ThisPtr = CGF.LoadCXXThisAddress();
563 
564   const Type *BaseType = BaseInit->getBaseClass();
565   const auto *BaseClassDecl =
566       cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
567 
568   bool isBaseVirtual = BaseInit->isBaseVirtual();
569 
570   // If the initializer for the base (other than the constructor
571   // itself) accesses 'this' in any way, we need to initialize the
572   // vtables.
573   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
574     CGF.InitializeVTablePointers(ClassDecl);
575 
576   // We can pretend to be a complete class because it only matters for
577   // virtual bases, and we only do virtual bases for complete ctors.
578   Address V =
579     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
580                                               BaseClassDecl,
581                                               isBaseVirtual);
582   AggValueSlot AggSlot =
583       AggValueSlot::forAddr(
584           V, Qualifiers(),
585           AggValueSlot::IsDestructed,
586           AggValueSlot::DoesNotNeedGCBarriers,
587           AggValueSlot::IsNotAliased,
588           CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
589 
590   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
591 
592   if (CGF.CGM.getLangOpts().Exceptions &&
593       !BaseClassDecl->hasTrivialDestructor())
594     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
595                                           isBaseVirtual);
596 }
597 
598 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
599   auto *CD = dyn_cast<CXXConstructorDecl>(D);
600   if (!(CD && CD->isCopyOrMoveConstructor()) &&
601       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
602     return false;
603 
604   // We can emit a memcpy for a trivial copy or move constructor/assignment.
605   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
606     return true;
607 
608   // We *must* emit a memcpy for a defaulted union copy or move op.
609   if (D->getParent()->isUnion() && D->isDefaulted())
610     return true;
611 
612   return false;
613 }
614 
615 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
616                                                 CXXCtorInitializer *MemberInit,
617                                                 LValue &LHS) {
618   FieldDecl *Field = MemberInit->getAnyMember();
619   if (MemberInit->isIndirectMemberInitializer()) {
620     // If we are initializing an anonymous union field, drill down to the field.
621     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
622     for (const auto *I : IndirectField->chain())
623       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
624   } else {
625     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
626   }
627 }
628 
629 static void EmitMemberInitializer(CodeGenFunction &CGF,
630                                   const CXXRecordDecl *ClassDecl,
631                                   CXXCtorInitializer *MemberInit,
632                                   const CXXConstructorDecl *Constructor,
633                                   FunctionArgList &Args) {
634   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
635   assert(MemberInit->isAnyMemberInitializer() &&
636          "Must have member initializer!");
637   assert(MemberInit->getInit() && "Must have initializer!");
638 
639   // non-static data member initializers.
640   FieldDecl *Field = MemberInit->getAnyMember();
641   QualType FieldType = Field->getType();
642 
643   llvm::Value *ThisPtr = CGF.LoadCXXThis();
644   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
645   LValue LHS;
646 
647   // If a base constructor is being emitted, create an LValue that has the
648   // non-virtual alignment.
649   if (CGF.CurGD.getCtorType() == Ctor_Base)
650     LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
651   else
652     LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
653 
654   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
655 
656   // Special case: if we are in a copy or move constructor, and we are copying
657   // an array of PODs or classes with trivial copy constructors, ignore the
658   // AST and perform the copy we know is equivalent.
659   // FIXME: This is hacky at best... if we had a bit more explicit information
660   // in the AST, we could generalize it more easily.
661   const ConstantArrayType *Array
662     = CGF.getContext().getAsConstantArrayType(FieldType);
663   if (Array && Constructor->isDefaulted() &&
664       Constructor->isCopyOrMoveConstructor()) {
665     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
666     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
667     if (BaseElementTy.isPODType(CGF.getContext()) ||
668         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
669       unsigned SrcArgIndex =
670           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
671       llvm::Value *SrcPtr
672         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
673       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
674       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
675 
676       // Copy the aggregate.
677       CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
678                             LHS.isVolatileQualified());
679       // Ensure that we destroy the objects if an exception is thrown later in
680       // the constructor.
681       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
682       if (CGF.needsEHCleanup(dtorKind))
683         CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType);
684       return;
685     }
686   }
687 
688   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
689 }
690 
691 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
692                                               Expr *Init) {
693   QualType FieldType = Field->getType();
694   switch (getEvaluationKind(FieldType)) {
695   case TEK_Scalar:
696     if (LHS.isSimple()) {
697       EmitExprAsInit(Init, Field, LHS, false);
698     } else {
699       RValue RHS = RValue::get(EmitScalarExpr(Init));
700       EmitStoreThroughLValue(RHS, LHS);
701     }
702     break;
703   case TEK_Complex:
704     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
705     break;
706   case TEK_Aggregate: {
707     AggValueSlot Slot = AggValueSlot::forLValue(
708         LHS, *this, AggValueSlot::IsDestructed,
709         AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
710         getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed,
711         // Checks are made by the code that calls constructor.
712         AggValueSlot::IsSanitizerChecked);
713     EmitAggExpr(Init, Slot);
714     break;
715   }
716   }
717 
718   // Ensure that we destroy this object if an exception is thrown
719   // later in the constructor.
720   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
721   if (needsEHCleanup(dtorKind))
722     pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType);
723 }
724 
725 /// Checks whether the given constructor is a valid subject for the
726 /// complete-to-base constructor delegation optimization, i.e.
727 /// emitting the complete constructor as a simple call to the base
728 /// constructor.
729 bool CodeGenFunction::IsConstructorDelegationValid(
730     const CXXConstructorDecl *Ctor) {
731 
732   // Currently we disable the optimization for classes with virtual
733   // bases because (1) the addresses of parameter variables need to be
734   // consistent across all initializers but (2) the delegate function
735   // call necessarily creates a second copy of the parameter variable.
736   //
737   // The limiting example (purely theoretical AFAIK):
738   //   struct A { A(int &c) { c++; } };
739   //   struct B : virtual A {
740   //     B(int count) : A(count) { printf("%d\n", count); }
741   //   };
742   // ...although even this example could in principle be emitted as a
743   // delegation since the address of the parameter doesn't escape.
744   if (Ctor->getParent()->getNumVBases()) {
745     // TODO: white-list trivial vbase initializers.  This case wouldn't
746     // be subject to the restrictions below.
747 
748     // TODO: white-list cases where:
749     //  - there are no non-reference parameters to the constructor
750     //  - the initializers don't access any non-reference parameters
751     //  - the initializers don't take the address of non-reference
752     //    parameters
753     //  - etc.
754     // If we ever add any of the above cases, remember that:
755     //  - function-try-blocks will always exclude this optimization
756     //  - we need to perform the constructor prologue and cleanup in
757     //    EmitConstructorBody.
758 
759     return false;
760   }
761 
762   // We also disable the optimization for variadic functions because
763   // it's impossible to "re-pass" varargs.
764   if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
765     return false;
766 
767   // FIXME: Decide if we can do a delegation of a delegating constructor.
768   if (Ctor->isDelegatingConstructor())
769     return false;
770 
771   return true;
772 }
773 
774 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
775 // to poison the extra field paddings inserted under
776 // -fsanitize-address-field-padding=1|2.
777 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
778   ASTContext &Context = getContext();
779   const CXXRecordDecl *ClassDecl =
780       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
781                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
782   if (!ClassDecl->mayInsertExtraPadding()) return;
783 
784   struct SizeAndOffset {
785     uint64_t Size;
786     uint64_t Offset;
787   };
788 
789   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
790   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
791 
792   // Populate sizes and offsets of fields.
793   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
794   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
795     SSV[i].Offset =
796         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
797 
798   size_t NumFields = 0;
799   for (const auto *Field : ClassDecl->fields()) {
800     const FieldDecl *D = Field;
801     auto FieldInfo = Context.getTypeInfoInChars(D->getType());
802     CharUnits FieldSize = FieldInfo.Width;
803     assert(NumFields < SSV.size());
804     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
805     NumFields++;
806   }
807   assert(NumFields == SSV.size());
808   if (SSV.size() <= 1) return;
809 
810   // We will insert calls to __asan_* run-time functions.
811   // LLVM AddressSanitizer pass may decide to inline them later.
812   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
813   llvm::FunctionType *FTy =
814       llvm::FunctionType::get(CGM.VoidTy, Args, false);
815   llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
816       FTy, Prologue ? "__asan_poison_intra_object_redzone"
817                     : "__asan_unpoison_intra_object_redzone");
818 
819   llvm::Value *ThisPtr = LoadCXXThis();
820   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
821   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
822   // For each field check if it has sufficient padding,
823   // if so (un)poison it with a call.
824   for (size_t i = 0; i < SSV.size(); i++) {
825     uint64_t AsanAlignment = 8;
826     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
827     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
828     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
829     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
830         (NextField % AsanAlignment) != 0)
831       continue;
832     Builder.CreateCall(
833         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
834             Builder.getIntN(PtrSize, PoisonSize)});
835   }
836 }
837 
838 /// EmitConstructorBody - Emits the body of the current constructor.
839 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
840   EmitAsanPrologueOrEpilogue(true);
841   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
842   CXXCtorType CtorType = CurGD.getCtorType();
843 
844   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
845           CtorType == Ctor_Complete) &&
846          "can only generate complete ctor for this ABI");
847 
848   // Before we go any further, try the complete->base constructor
849   // delegation optimization.
850   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
851       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
852     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
853     return;
854   }
855 
856   const FunctionDecl *Definition = nullptr;
857   Stmt *Body = Ctor->getBody(Definition);
858   assert(Definition == Ctor && "emitting wrong constructor body");
859 
860   // Enter the function-try-block before the constructor prologue if
861   // applicable.
862   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
863   if (IsTryBody)
864     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
865 
866   incrementProfileCounter(Body);
867 
868   RunCleanupsScope RunCleanups(*this);
869 
870   // TODO: in restricted cases, we can emit the vbase initializers of
871   // a complete ctor and then delegate to the base ctor.
872 
873   // Emit the constructor prologue, i.e. the base and member
874   // initializers.
875   EmitCtorPrologue(Ctor, CtorType, Args);
876 
877   // Emit the body of the statement.
878   if (IsTryBody)
879     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
880   else if (Body)
881     EmitStmt(Body);
882 
883   // Emit any cleanup blocks associated with the member or base
884   // initializers, which includes (along the exceptional path) the
885   // destructors for those members and bases that were fully
886   // constructed.
887   RunCleanups.ForceCleanup();
888 
889   if (IsTryBody)
890     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
891 }
892 
893 namespace {
894   /// RAII object to indicate that codegen is copying the value representation
895   /// instead of the object representation. Useful when copying a struct or
896   /// class which has uninitialized members and we're only performing
897   /// lvalue-to-rvalue conversion on the object but not its members.
898   class CopyingValueRepresentation {
899   public:
900     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
901         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
902       CGF.SanOpts.set(SanitizerKind::Bool, false);
903       CGF.SanOpts.set(SanitizerKind::Enum, false);
904     }
905     ~CopyingValueRepresentation() {
906       CGF.SanOpts = OldSanOpts;
907     }
908   private:
909     CodeGenFunction &CGF;
910     SanitizerSet OldSanOpts;
911   };
912 } // end anonymous namespace
913 
914 namespace {
915   class FieldMemcpyizer {
916   public:
917     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
918                     const VarDecl *SrcRec)
919       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
920         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
921         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
922         LastFieldOffset(0), LastAddedFieldIndex(0) {}
923 
924     bool isMemcpyableField(FieldDecl *F) const {
925       // Never memcpy fields when we are adding poisoned paddings.
926       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
927         return false;
928       Qualifiers Qual = F->getType().getQualifiers();
929       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
930         return false;
931       return true;
932     }
933 
934     void addMemcpyableField(FieldDecl *F) {
935       if (F->isZeroSize(CGF.getContext()))
936         return;
937       if (!FirstField)
938         addInitialField(F);
939       else
940         addNextField(F);
941     }
942 
943     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
944       ASTContext &Ctx = CGF.getContext();
945       unsigned LastFieldSize =
946           LastField->isBitField()
947               ? LastField->getBitWidthValue(Ctx)
948               : Ctx.toBits(
949                     Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
950       uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
951                                 FirstByteOffset + Ctx.getCharWidth() - 1;
952       CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
953       return MemcpySize;
954     }
955 
956     void emitMemcpy() {
957       // Give the subclass a chance to bail out if it feels the memcpy isn't
958       // worth it (e.g. Hasn't aggregated enough data).
959       if (!FirstField) {
960         return;
961       }
962 
963       uint64_t FirstByteOffset;
964       if (FirstField->isBitField()) {
965         const CGRecordLayout &RL =
966           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
967         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
968         // FirstFieldOffset is not appropriate for bitfields,
969         // we need to use the storage offset instead.
970         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
971       } else {
972         FirstByteOffset = FirstFieldOffset;
973       }
974 
975       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
976       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
977       Address ThisPtr = CGF.LoadCXXThisAddress();
978       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
979       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
980       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
981       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
982       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
983 
984       emitMemcpyIR(
985           Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
986           Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
987           MemcpySize);
988       reset();
989     }
990 
991     void reset() {
992       FirstField = nullptr;
993     }
994 
995   protected:
996     CodeGenFunction &CGF;
997     const CXXRecordDecl *ClassDecl;
998 
999   private:
1000     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1001       llvm::PointerType *DPT = DestPtr.getType();
1002       llvm::Type *DBP =
1003         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
1004       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
1005 
1006       llvm::PointerType *SPT = SrcPtr.getType();
1007       llvm::Type *SBP =
1008         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
1009       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
1010 
1011       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1012     }
1013 
1014     void addInitialField(FieldDecl *F) {
1015       FirstField = F;
1016       LastField = F;
1017       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1018       LastFieldOffset = FirstFieldOffset;
1019       LastAddedFieldIndex = F->getFieldIndex();
1020     }
1021 
1022     void addNextField(FieldDecl *F) {
1023       // For the most part, the following invariant will hold:
1024       //   F->getFieldIndex() == LastAddedFieldIndex + 1
1025       // The one exception is that Sema won't add a copy-initializer for an
1026       // unnamed bitfield, which will show up here as a gap in the sequence.
1027       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1028              "Cannot aggregate fields out of order.");
1029       LastAddedFieldIndex = F->getFieldIndex();
1030 
1031       // The 'first' and 'last' fields are chosen by offset, rather than field
1032       // index. This allows the code to support bitfields, as well as regular
1033       // fields.
1034       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1035       if (FOffset < FirstFieldOffset) {
1036         FirstField = F;
1037         FirstFieldOffset = FOffset;
1038       } else if (FOffset >= LastFieldOffset) {
1039         LastField = F;
1040         LastFieldOffset = FOffset;
1041       }
1042     }
1043 
1044     const VarDecl *SrcRec;
1045     const ASTRecordLayout &RecLayout;
1046     FieldDecl *FirstField;
1047     FieldDecl *LastField;
1048     uint64_t FirstFieldOffset, LastFieldOffset;
1049     unsigned LastAddedFieldIndex;
1050   };
1051 
1052   class ConstructorMemcpyizer : public FieldMemcpyizer {
1053   private:
1054     /// Get source argument for copy constructor. Returns null if not a copy
1055     /// constructor.
1056     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1057                                                const CXXConstructorDecl *CD,
1058                                                FunctionArgList &Args) {
1059       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1060         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1061       return nullptr;
1062     }
1063 
1064     // Returns true if a CXXCtorInitializer represents a member initialization
1065     // that can be rolled into a memcpy.
1066     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1067       if (!MemcpyableCtor)
1068         return false;
1069       FieldDecl *Field = MemberInit->getMember();
1070       assert(Field && "No field for member init.");
1071       QualType FieldType = Field->getType();
1072       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1073 
1074       // Bail out on non-memcpyable, not-trivially-copyable members.
1075       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1076           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1077             FieldType->isReferenceType()))
1078         return false;
1079 
1080       // Bail out on volatile fields.
1081       if (!isMemcpyableField(Field))
1082         return false;
1083 
1084       // Otherwise we're good.
1085       return true;
1086     }
1087 
1088   public:
1089     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1090                           FunctionArgList &Args)
1091       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1092         ConstructorDecl(CD),
1093         MemcpyableCtor(CD->isDefaulted() &&
1094                        CD->isCopyOrMoveConstructor() &&
1095                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1096         Args(Args) { }
1097 
1098     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1099       if (isMemberInitMemcpyable(MemberInit)) {
1100         AggregatedInits.push_back(MemberInit);
1101         addMemcpyableField(MemberInit->getMember());
1102       } else {
1103         emitAggregatedInits();
1104         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1105                               ConstructorDecl, Args);
1106       }
1107     }
1108 
1109     void emitAggregatedInits() {
1110       if (AggregatedInits.size() <= 1) {
1111         // This memcpy is too small to be worthwhile. Fall back on default
1112         // codegen.
1113         if (!AggregatedInits.empty()) {
1114           CopyingValueRepresentation CVR(CGF);
1115           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1116                                 AggregatedInits[0], ConstructorDecl, Args);
1117           AggregatedInits.clear();
1118         }
1119         reset();
1120         return;
1121       }
1122 
1123       pushEHDestructors();
1124       emitMemcpy();
1125       AggregatedInits.clear();
1126     }
1127 
1128     void pushEHDestructors() {
1129       Address ThisPtr = CGF.LoadCXXThisAddress();
1130       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1131       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1132 
1133       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1134         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1135         QualType FieldType = MemberInit->getAnyMember()->getType();
1136         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1137         if (!CGF.needsEHCleanup(dtorKind))
1138           continue;
1139         LValue FieldLHS = LHS;
1140         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1141         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType);
1142       }
1143     }
1144 
1145     void finish() {
1146       emitAggregatedInits();
1147     }
1148 
1149   private:
1150     const CXXConstructorDecl *ConstructorDecl;
1151     bool MemcpyableCtor;
1152     FunctionArgList &Args;
1153     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1154   };
1155 
1156   class AssignmentMemcpyizer : public FieldMemcpyizer {
1157   private:
1158     // Returns the memcpyable field copied by the given statement, if one
1159     // exists. Otherwise returns null.
1160     FieldDecl *getMemcpyableField(Stmt *S) {
1161       if (!AssignmentsMemcpyable)
1162         return nullptr;
1163       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1164         // Recognise trivial assignments.
1165         if (BO->getOpcode() != BO_Assign)
1166           return nullptr;
1167         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1168         if (!ME)
1169           return nullptr;
1170         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1171         if (!Field || !isMemcpyableField(Field))
1172           return nullptr;
1173         Stmt *RHS = BO->getRHS();
1174         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1175           RHS = EC->getSubExpr();
1176         if (!RHS)
1177           return nullptr;
1178         if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1179           if (ME2->getMemberDecl() == Field)
1180             return Field;
1181         }
1182         return nullptr;
1183       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1184         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1185         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1186           return nullptr;
1187         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1188         if (!IOA)
1189           return nullptr;
1190         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1191         if (!Field || !isMemcpyableField(Field))
1192           return nullptr;
1193         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1194         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1195           return nullptr;
1196         return Field;
1197       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1198         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1199         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1200           return nullptr;
1201         Expr *DstPtr = CE->getArg(0);
1202         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1203           DstPtr = DC->getSubExpr();
1204         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1205         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1206           return nullptr;
1207         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1208         if (!ME)
1209           return nullptr;
1210         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1211         if (!Field || !isMemcpyableField(Field))
1212           return nullptr;
1213         Expr *SrcPtr = CE->getArg(1);
1214         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1215           SrcPtr = SC->getSubExpr();
1216         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1217         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1218           return nullptr;
1219         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1220         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1221           return nullptr;
1222         return Field;
1223       }
1224 
1225       return nullptr;
1226     }
1227 
1228     bool AssignmentsMemcpyable;
1229     SmallVector<Stmt*, 16> AggregatedStmts;
1230 
1231   public:
1232     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1233                          FunctionArgList &Args)
1234       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1235         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1236       assert(Args.size() == 2);
1237     }
1238 
1239     void emitAssignment(Stmt *S) {
1240       FieldDecl *F = getMemcpyableField(S);
1241       if (F) {
1242         addMemcpyableField(F);
1243         AggregatedStmts.push_back(S);
1244       } else {
1245         emitAggregatedStmts();
1246         CGF.EmitStmt(S);
1247       }
1248     }
1249 
1250     void emitAggregatedStmts() {
1251       if (AggregatedStmts.size() <= 1) {
1252         if (!AggregatedStmts.empty()) {
1253           CopyingValueRepresentation CVR(CGF);
1254           CGF.EmitStmt(AggregatedStmts[0]);
1255         }
1256         reset();
1257       }
1258 
1259       emitMemcpy();
1260       AggregatedStmts.clear();
1261     }
1262 
1263     void finish() {
1264       emitAggregatedStmts();
1265     }
1266   };
1267 } // end anonymous namespace
1268 
1269 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1270   const Type *BaseType = BaseInit->getBaseClass();
1271   const auto *BaseClassDecl =
1272       cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1273   return BaseClassDecl->isDynamicClass();
1274 }
1275 
1276 /// EmitCtorPrologue - This routine generates necessary code to initialize
1277 /// base classes and non-static data members belonging to this constructor.
1278 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1279                                        CXXCtorType CtorType,
1280                                        FunctionArgList &Args) {
1281   if (CD->isDelegatingConstructor())
1282     return EmitDelegatingCXXConstructorCall(CD, Args);
1283 
1284   const CXXRecordDecl *ClassDecl = CD->getParent();
1285 
1286   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1287                                           E = CD->init_end();
1288 
1289   // Virtual base initializers first, if any. They aren't needed if:
1290   // - This is a base ctor variant
1291   // - There are no vbases
1292   // - The class is abstract, so a complete object of it cannot be constructed
1293   //
1294   // The check for an abstract class is necessary because sema may not have
1295   // marked virtual base destructors referenced.
1296   bool ConstructVBases = CtorType != Ctor_Base &&
1297                          ClassDecl->getNumVBases() != 0 &&
1298                          !ClassDecl->isAbstract();
1299 
1300   // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1301   // constructor of a class with virtual bases takes an additional parameter to
1302   // conditionally construct the virtual bases. Emit that check here.
1303   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1304   if (ConstructVBases &&
1305       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1306     BaseCtorContinueBB =
1307         CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1308     assert(BaseCtorContinueBB);
1309   }
1310 
1311   llvm::Value *const OldThis = CXXThisValue;
1312   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1313     if (!ConstructVBases)
1314       continue;
1315     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1316         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1317         isInitializerOfDynamicClass(*B))
1318       CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1319     EmitBaseInitializer(*this, ClassDecl, *B);
1320   }
1321 
1322   if (BaseCtorContinueBB) {
1323     // Complete object handler should continue to the remaining initializers.
1324     Builder.CreateBr(BaseCtorContinueBB);
1325     EmitBlock(BaseCtorContinueBB);
1326   }
1327 
1328   // Then, non-virtual base initializers.
1329   for (; B != E && (*B)->isBaseInitializer(); B++) {
1330     assert(!(*B)->isBaseVirtual());
1331 
1332     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1333         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1334         isInitializerOfDynamicClass(*B))
1335       CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1336     EmitBaseInitializer(*this, ClassDecl, *B);
1337   }
1338 
1339   CXXThisValue = OldThis;
1340 
1341   InitializeVTablePointers(ClassDecl);
1342 
1343   // And finally, initialize class members.
1344   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1345   ConstructorMemcpyizer CM(*this, CD, Args);
1346   for (; B != E; B++) {
1347     CXXCtorInitializer *Member = (*B);
1348     assert(!Member->isBaseInitializer());
1349     assert(Member->isAnyMemberInitializer() &&
1350            "Delegating initializer on non-delegating constructor");
1351     CM.addMemberInitializer(Member);
1352   }
1353   CM.finish();
1354 }
1355 
1356 static bool
1357 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1358 
1359 static bool
1360 HasTrivialDestructorBody(ASTContext &Context,
1361                          const CXXRecordDecl *BaseClassDecl,
1362                          const CXXRecordDecl *MostDerivedClassDecl)
1363 {
1364   // If the destructor is trivial we don't have to check anything else.
1365   if (BaseClassDecl->hasTrivialDestructor())
1366     return true;
1367 
1368   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1369     return false;
1370 
1371   // Check fields.
1372   for (const auto *Field : BaseClassDecl->fields())
1373     if (!FieldHasTrivialDestructorBody(Context, Field))
1374       return false;
1375 
1376   // Check non-virtual bases.
1377   for (const auto &I : BaseClassDecl->bases()) {
1378     if (I.isVirtual())
1379       continue;
1380 
1381     const CXXRecordDecl *NonVirtualBase =
1382       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1383     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1384                                   MostDerivedClassDecl))
1385       return false;
1386   }
1387 
1388   if (BaseClassDecl == MostDerivedClassDecl) {
1389     // Check virtual bases.
1390     for (const auto &I : BaseClassDecl->vbases()) {
1391       const CXXRecordDecl *VirtualBase =
1392         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1393       if (!HasTrivialDestructorBody(Context, VirtualBase,
1394                                     MostDerivedClassDecl))
1395         return false;
1396     }
1397   }
1398 
1399   return true;
1400 }
1401 
1402 static bool
1403 FieldHasTrivialDestructorBody(ASTContext &Context,
1404                                           const FieldDecl *Field)
1405 {
1406   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1407 
1408   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1409   if (!RT)
1410     return true;
1411 
1412   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1413 
1414   // The destructor for an implicit anonymous union member is never invoked.
1415   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1416     return false;
1417 
1418   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1419 }
1420 
1421 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1422 /// any vtable pointers before calling this destructor.
1423 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1424                                                const CXXDestructorDecl *Dtor) {
1425   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1426   if (!ClassDecl->isDynamicClass())
1427     return true;
1428 
1429   if (!Dtor->hasTrivialBody())
1430     return false;
1431 
1432   // Check the fields.
1433   for (const auto *Field : ClassDecl->fields())
1434     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1435       return false;
1436 
1437   return true;
1438 }
1439 
1440 /// EmitDestructorBody - Emits the body of the current destructor.
1441 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1442   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1443   CXXDtorType DtorType = CurGD.getDtorType();
1444 
1445   // For an abstract class, non-base destructors are never used (and can't
1446   // be emitted in general, because vbase dtors may not have been validated
1447   // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1448   // in fact emit references to them from other compilations, so emit them
1449   // as functions containing a trap instruction.
1450   if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1451     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1452     TrapCall->setDoesNotReturn();
1453     TrapCall->setDoesNotThrow();
1454     Builder.CreateUnreachable();
1455     Builder.ClearInsertionPoint();
1456     return;
1457   }
1458 
1459   Stmt *Body = Dtor->getBody();
1460   if (Body)
1461     incrementProfileCounter(Body);
1462 
1463   // The call to operator delete in a deleting destructor happens
1464   // outside of the function-try-block, which means it's always
1465   // possible to delegate the destructor body to the complete
1466   // destructor.  Do so.
1467   if (DtorType == Dtor_Deleting) {
1468     RunCleanupsScope DtorEpilogue(*this);
1469     EnterDtorCleanups(Dtor, Dtor_Deleting);
1470     if (HaveInsertPoint()) {
1471       QualType ThisTy = Dtor->getThisObjectType();
1472       EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1473                             /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1474     }
1475     return;
1476   }
1477 
1478   // If the body is a function-try-block, enter the try before
1479   // anything else.
1480   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1481   if (isTryBody)
1482     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1483   EmitAsanPrologueOrEpilogue(false);
1484 
1485   // Enter the epilogue cleanups.
1486   RunCleanupsScope DtorEpilogue(*this);
1487 
1488   // If this is the complete variant, just invoke the base variant;
1489   // the epilogue will destruct the virtual bases.  But we can't do
1490   // this optimization if the body is a function-try-block, because
1491   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1492   // always delegate because we might not have a definition in this TU.
1493   switch (DtorType) {
1494   case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1495   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1496 
1497   case Dtor_Complete:
1498     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1499            "can't emit a dtor without a body for non-Microsoft ABIs");
1500 
1501     // Enter the cleanup scopes for virtual bases.
1502     EnterDtorCleanups(Dtor, Dtor_Complete);
1503 
1504     if (!isTryBody) {
1505       QualType ThisTy = Dtor->getThisObjectType();
1506       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1507                             /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1508       break;
1509     }
1510 
1511     // Fallthrough: act like we're in the base variant.
1512     LLVM_FALLTHROUGH;
1513 
1514   case Dtor_Base:
1515     assert(Body);
1516 
1517     // Enter the cleanup scopes for fields and non-virtual bases.
1518     EnterDtorCleanups(Dtor, Dtor_Base);
1519 
1520     // Initialize the vtable pointers before entering the body.
1521     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1522       // Insert the llvm.launder.invariant.group intrinsic before initializing
1523       // the vptrs to cancel any previous assumptions we might have made.
1524       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1525           CGM.getCodeGenOpts().OptimizationLevel > 0)
1526         CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1527       InitializeVTablePointers(Dtor->getParent());
1528     }
1529 
1530     if (isTryBody)
1531       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1532     else if (Body)
1533       EmitStmt(Body);
1534     else {
1535       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1536       // nothing to do besides what's in the epilogue
1537     }
1538     // -fapple-kext must inline any call to this dtor into
1539     // the caller's body.
1540     if (getLangOpts().AppleKext)
1541       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1542 
1543     break;
1544   }
1545 
1546   // Jump out through the epilogue cleanups.
1547   DtorEpilogue.ForceCleanup();
1548 
1549   // Exit the try if applicable.
1550   if (isTryBody)
1551     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1552 }
1553 
1554 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1555   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1556   const Stmt *RootS = AssignOp->getBody();
1557   assert(isa<CompoundStmt>(RootS) &&
1558          "Body of an implicit assignment operator should be compound stmt.");
1559   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1560 
1561   LexicalScope Scope(*this, RootCS->getSourceRange());
1562 
1563   incrementProfileCounter(RootCS);
1564   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1565   for (auto *I : RootCS->body())
1566     AM.emitAssignment(I);
1567   AM.finish();
1568 }
1569 
1570 namespace {
1571   llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1572                                      const CXXDestructorDecl *DD) {
1573     if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1574       return CGF.EmitScalarExpr(ThisArg);
1575     return CGF.LoadCXXThis();
1576   }
1577 
1578   /// Call the operator delete associated with the current destructor.
1579   struct CallDtorDelete final : EHScopeStack::Cleanup {
1580     CallDtorDelete() {}
1581 
1582     void Emit(CodeGenFunction &CGF, Flags flags) override {
1583       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1584       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1585       CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1586                          LoadThisForDtorDelete(CGF, Dtor),
1587                          CGF.getContext().getTagDeclType(ClassDecl));
1588     }
1589   };
1590 
1591   void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1592                                      llvm::Value *ShouldDeleteCondition,
1593                                      bool ReturnAfterDelete) {
1594     llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1595     llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1596     llvm::Value *ShouldCallDelete
1597       = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1598     CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1599 
1600     CGF.EmitBlock(callDeleteBB);
1601     const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1602     const CXXRecordDecl *ClassDecl = Dtor->getParent();
1603     CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1604                        LoadThisForDtorDelete(CGF, Dtor),
1605                        CGF.getContext().getTagDeclType(ClassDecl));
1606     assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1607                ReturnAfterDelete &&
1608            "unexpected value for ReturnAfterDelete");
1609     if (ReturnAfterDelete)
1610       CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1611     else
1612       CGF.Builder.CreateBr(continueBB);
1613 
1614     CGF.EmitBlock(continueBB);
1615   }
1616 
1617   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1618     llvm::Value *ShouldDeleteCondition;
1619 
1620   public:
1621     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1622         : ShouldDeleteCondition(ShouldDeleteCondition) {
1623       assert(ShouldDeleteCondition != nullptr);
1624     }
1625 
1626     void Emit(CodeGenFunction &CGF, Flags flags) override {
1627       EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1628                                     /*ReturnAfterDelete*/false);
1629     }
1630   };
1631 
1632   class DestroyField  final : public EHScopeStack::Cleanup {
1633     const FieldDecl *field;
1634     CodeGenFunction::Destroyer *destroyer;
1635     bool useEHCleanupForArray;
1636 
1637   public:
1638     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1639                  bool useEHCleanupForArray)
1640         : field(field), destroyer(destroyer),
1641           useEHCleanupForArray(useEHCleanupForArray) {}
1642 
1643     void Emit(CodeGenFunction &CGF, Flags flags) override {
1644       // Find the address of the field.
1645       Address thisValue = CGF.LoadCXXThisAddress();
1646       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1647       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1648       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1649       assert(LV.isSimple());
1650 
1651       CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer,
1652                       flags.isForNormalCleanup() && useEHCleanupForArray);
1653     }
1654   };
1655 
1656  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1657              CharUnits::QuantityType PoisonSize) {
1658    CodeGenFunction::SanitizerScope SanScope(&CGF);
1659    // Pass in void pointer and size of region as arguments to runtime
1660    // function
1661    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1662                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1663 
1664    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1665 
1666    llvm::FunctionType *FnType =
1667        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1668    llvm::FunctionCallee Fn =
1669        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1670    CGF.EmitNounwindRuntimeCall(Fn, Args);
1671  }
1672 
1673   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1674     const CXXDestructorDecl *Dtor;
1675 
1676   public:
1677     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1678 
1679     // Generate function call for handling object poisoning.
1680     // Disables tail call elimination, to prevent the current stack frame
1681     // from disappearing from the stack trace.
1682     void Emit(CodeGenFunction &CGF, Flags flags) override {
1683       const ASTRecordLayout &Layout =
1684           CGF.getContext().getASTRecordLayout(Dtor->getParent());
1685 
1686       // Nothing to poison.
1687       if (Layout.getFieldCount() == 0)
1688         return;
1689 
1690       // Prevent the current stack frame from disappearing from the stack trace.
1691       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1692 
1693       // Construct pointer to region to begin poisoning, and calculate poison
1694       // size, so that only members declared in this class are poisoned.
1695       ASTContext &Context = CGF.getContext();
1696       unsigned fieldIndex = 0;
1697       int startIndex = -1;
1698       // RecordDecl::field_iterator Field;
1699       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1700         // Poison field if it is trivial
1701         if (FieldHasTrivialDestructorBody(Context, Field)) {
1702           // Start sanitizing at this field
1703           if (startIndex < 0)
1704             startIndex = fieldIndex;
1705 
1706           // Currently on the last field, and it must be poisoned with the
1707           // current block.
1708           if (fieldIndex == Layout.getFieldCount() - 1) {
1709             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1710           }
1711         } else if (startIndex >= 0) {
1712           // No longer within a block of memory to poison, so poison the block
1713           PoisonMembers(CGF, startIndex, fieldIndex);
1714           // Re-set the start index
1715           startIndex = -1;
1716         }
1717         fieldIndex += 1;
1718       }
1719     }
1720 
1721   private:
1722     /// \param layoutStartOffset index of the ASTRecordLayout field to
1723     ///     start poisoning (inclusive)
1724     /// \param layoutEndOffset index of the ASTRecordLayout field to
1725     ///     end poisoning (exclusive)
1726     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1727                      unsigned layoutEndOffset) {
1728       ASTContext &Context = CGF.getContext();
1729       const ASTRecordLayout &Layout =
1730           Context.getASTRecordLayout(Dtor->getParent());
1731 
1732       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1733           CGF.SizeTy,
1734           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1735               .getQuantity());
1736 
1737       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1738           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1739           OffsetSizePtr);
1740 
1741       CharUnits::QuantityType PoisonSize;
1742       if (layoutEndOffset >= Layout.getFieldCount()) {
1743         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1744                      Context.toCharUnitsFromBits(
1745                                 Layout.getFieldOffset(layoutStartOffset))
1746                          .getQuantity();
1747       } else {
1748         PoisonSize = Context.toCharUnitsFromBits(
1749                                 Layout.getFieldOffset(layoutEndOffset) -
1750                                 Layout.getFieldOffset(layoutStartOffset))
1751                          .getQuantity();
1752       }
1753 
1754       if (PoisonSize == 0)
1755         return;
1756 
1757       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1758     }
1759   };
1760 
1761  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1762     const CXXDestructorDecl *Dtor;
1763 
1764   public:
1765     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1766 
1767     // Generate function call for handling vtable pointer poisoning.
1768     void Emit(CodeGenFunction &CGF, Flags flags) override {
1769       assert(Dtor->getParent()->isDynamicClass());
1770       (void)Dtor;
1771       ASTContext &Context = CGF.getContext();
1772       // Poison vtable and vtable ptr if they exist for this class.
1773       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1774 
1775       CharUnits::QuantityType PoisonSize =
1776           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1777       // Pass in void pointer and size of region as arguments to runtime
1778       // function
1779       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1780     }
1781  };
1782 } // end anonymous namespace
1783 
1784 /// Emit all code that comes at the end of class's
1785 /// destructor. This is to call destructors on members and base classes
1786 /// in reverse order of their construction.
1787 ///
1788 /// For a deleting destructor, this also handles the case where a destroying
1789 /// operator delete completely overrides the definition.
1790 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1791                                         CXXDtorType DtorType) {
1792   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1793          "Should not emit dtor epilogue for non-exported trivial dtor!");
1794 
1795   // The deleting-destructor phase just needs to call the appropriate
1796   // operator delete that Sema picked up.
1797   if (DtorType == Dtor_Deleting) {
1798     assert(DD->getOperatorDelete() &&
1799            "operator delete missing - EnterDtorCleanups");
1800     if (CXXStructorImplicitParamValue) {
1801       // If there is an implicit param to the deleting dtor, it's a boolean
1802       // telling whether this is a deleting destructor.
1803       if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1804         EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1805                                       /*ReturnAfterDelete*/true);
1806       else
1807         EHStack.pushCleanup<CallDtorDeleteConditional>(
1808             NormalAndEHCleanup, CXXStructorImplicitParamValue);
1809     } else {
1810       if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1811         const CXXRecordDecl *ClassDecl = DD->getParent();
1812         EmitDeleteCall(DD->getOperatorDelete(),
1813                        LoadThisForDtorDelete(*this, DD),
1814                        getContext().getTagDeclType(ClassDecl));
1815         EmitBranchThroughCleanup(ReturnBlock);
1816       } else {
1817         EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1818       }
1819     }
1820     return;
1821   }
1822 
1823   const CXXRecordDecl *ClassDecl = DD->getParent();
1824 
1825   // Unions have no bases and do not call field destructors.
1826   if (ClassDecl->isUnion())
1827     return;
1828 
1829   // The complete-destructor phase just destructs all the virtual bases.
1830   if (DtorType == Dtor_Complete) {
1831     // Poison the vtable pointer such that access after the base
1832     // and member destructors are invoked is invalid.
1833     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1834         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1835         ClassDecl->isPolymorphic())
1836       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1837 
1838     // We push them in the forward order so that they'll be popped in
1839     // the reverse order.
1840     for (const auto &Base : ClassDecl->vbases()) {
1841       auto *BaseClassDecl =
1842           cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1843 
1844       // Ignore trivial destructors.
1845       if (BaseClassDecl->hasTrivialDestructor())
1846         continue;
1847 
1848       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1849                                         BaseClassDecl,
1850                                         /*BaseIsVirtual*/ true);
1851     }
1852 
1853     return;
1854   }
1855 
1856   assert(DtorType == Dtor_Base);
1857   // Poison the vtable pointer if it has no virtual bases, but inherits
1858   // virtual functions.
1859   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1860       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1861       ClassDecl->isPolymorphic())
1862     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1863 
1864   // Destroy non-virtual bases.
1865   for (const auto &Base : ClassDecl->bases()) {
1866     // Ignore virtual bases.
1867     if (Base.isVirtual())
1868       continue;
1869 
1870     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1871 
1872     // Ignore trivial destructors.
1873     if (BaseClassDecl->hasTrivialDestructor())
1874       continue;
1875 
1876     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1877                                       BaseClassDecl,
1878                                       /*BaseIsVirtual*/ false);
1879   }
1880 
1881   // Poison fields such that access after their destructors are
1882   // invoked, and before the base class destructor runs, is invalid.
1883   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1884       SanOpts.has(SanitizerKind::Memory))
1885     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1886 
1887   // Destroy direct fields.
1888   for (const auto *Field : ClassDecl->fields()) {
1889     QualType type = Field->getType();
1890     QualType::DestructionKind dtorKind = type.isDestructedType();
1891     if (!dtorKind) continue;
1892 
1893     // Anonymous union members do not have their destructors called.
1894     const RecordType *RT = type->getAsUnionType();
1895     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1896 
1897     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1898     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1899                                       getDestroyer(dtorKind),
1900                                       cleanupKind & EHCleanup);
1901   }
1902 }
1903 
1904 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1905 /// constructor for each of several members of an array.
1906 ///
1907 /// \param ctor the constructor to call for each element
1908 /// \param arrayType the type of the array to initialize
1909 /// \param arrayBegin an arrayType*
1910 /// \param zeroInitialize true if each element should be
1911 ///   zero-initialized before it is constructed
1912 void CodeGenFunction::EmitCXXAggrConstructorCall(
1913     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1914     Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1915     bool zeroInitialize) {
1916   QualType elementType;
1917   llvm::Value *numElements =
1918     emitArrayLength(arrayType, elementType, arrayBegin);
1919 
1920   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1921                              NewPointerIsChecked, zeroInitialize);
1922 }
1923 
1924 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1925 /// constructor for each of several members of an array.
1926 ///
1927 /// \param ctor the constructor to call for each element
1928 /// \param numElements the number of elements in the array;
1929 ///   may be zero
1930 /// \param arrayBase a T*, where T is the type constructed by ctor
1931 /// \param zeroInitialize true if each element should be
1932 ///   zero-initialized before it is constructed
1933 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1934                                                  llvm::Value *numElements,
1935                                                  Address arrayBase,
1936                                                  const CXXConstructExpr *E,
1937                                                  bool NewPointerIsChecked,
1938                                                  bool zeroInitialize) {
1939   // It's legal for numElements to be zero.  This can happen both
1940   // dynamically, because x can be zero in 'new A[x]', and statically,
1941   // because of GCC extensions that permit zero-length arrays.  There
1942   // are probably legitimate places where we could assume that this
1943   // doesn't happen, but it's not clear that it's worth it.
1944   llvm::BranchInst *zeroCheckBranch = nullptr;
1945 
1946   // Optimize for a constant count.
1947   llvm::ConstantInt *constantCount
1948     = dyn_cast<llvm::ConstantInt>(numElements);
1949   if (constantCount) {
1950     // Just skip out if the constant count is zero.
1951     if (constantCount->isZero()) return;
1952 
1953   // Otherwise, emit the check.
1954   } else {
1955     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1956     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1957     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1958     EmitBlock(loopBB);
1959   }
1960 
1961   // Find the end of the array.
1962   llvm::Value *arrayBegin = arrayBase.getPointer();
1963   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1964                                                     "arrayctor.end");
1965 
1966   // Enter the loop, setting up a phi for the current location to initialize.
1967   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1968   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1969   EmitBlock(loopBB);
1970   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1971                                          "arrayctor.cur");
1972   cur->addIncoming(arrayBegin, entryBB);
1973 
1974   // Inside the loop body, emit the constructor call on the array element.
1975 
1976   // The alignment of the base, adjusted by the size of a single element,
1977   // provides a conservative estimate of the alignment of every element.
1978   // (This assumes we never start tracking offsetted alignments.)
1979   //
1980   // Note that these are complete objects and so we don't need to
1981   // use the non-virtual size or alignment.
1982   QualType type = getContext().getTypeDeclType(ctor->getParent());
1983   CharUnits eltAlignment =
1984     arrayBase.getAlignment()
1985              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1986   Address curAddr = Address(cur, eltAlignment);
1987 
1988   // Zero initialize the storage, if requested.
1989   if (zeroInitialize)
1990     EmitNullInitialization(curAddr, type);
1991 
1992   // C++ [class.temporary]p4:
1993   // There are two contexts in which temporaries are destroyed at a different
1994   // point than the end of the full-expression. The first context is when a
1995   // default constructor is called to initialize an element of an array.
1996   // If the constructor has one or more default arguments, the destruction of
1997   // every temporary created in a default argument expression is sequenced
1998   // before the construction of the next array element, if any.
1999 
2000   {
2001     RunCleanupsScope Scope(*this);
2002 
2003     // Evaluate the constructor and its arguments in a regular
2004     // partial-destroy cleanup.
2005     if (getLangOpts().Exceptions &&
2006         !ctor->getParent()->hasTrivialDestructor()) {
2007       Destroyer *destroyer = destroyCXXObject;
2008       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2009                                      *destroyer);
2010     }
2011     auto currAVS = AggValueSlot::forAddr(
2012         curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2013         AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2014         AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2015         NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2016                             : AggValueSlot::IsNotSanitizerChecked);
2017     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2018                            /*Delegating=*/false, currAVS, E);
2019   }
2020 
2021   // Go to the next element.
2022   llvm::Value *next =
2023     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
2024                               "arrayctor.next");
2025   cur->addIncoming(next, Builder.GetInsertBlock());
2026 
2027   // Check whether that's the end of the loop.
2028   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2029   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2030   Builder.CreateCondBr(done, contBB, loopBB);
2031 
2032   // Patch the earlier check to skip over the loop.
2033   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2034 
2035   EmitBlock(contBB);
2036 }
2037 
2038 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2039                                        Address addr,
2040                                        QualType type) {
2041   const RecordType *rtype = type->castAs<RecordType>();
2042   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2043   const CXXDestructorDecl *dtor = record->getDestructor();
2044   assert(!dtor->isTrivial());
2045   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2046                             /*Delegating=*/false, addr, type);
2047 }
2048 
2049 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2050                                              CXXCtorType Type,
2051                                              bool ForVirtualBase,
2052                                              bool Delegating,
2053                                              AggValueSlot ThisAVS,
2054                                              const CXXConstructExpr *E) {
2055   CallArgList Args;
2056   Address This = ThisAVS.getAddress();
2057   LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2058   QualType ThisType = D->getThisType();
2059   LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace();
2060   llvm::Value *ThisPtr = This.getPointer();
2061 
2062   if (SlotAS != ThisAS) {
2063     unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2064     llvm::Type *NewType =
2065         ThisPtr->getType()->getPointerElementType()->getPointerTo(TargetThisAS);
2066     ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(),
2067                                                     ThisAS, SlotAS, NewType);
2068   }
2069 
2070   // Push the this ptr.
2071   Args.add(RValue::get(ThisPtr), D->getThisType());
2072 
2073   // If this is a trivial constructor, emit a memcpy now before we lose
2074   // the alignment information on the argument.
2075   // FIXME: It would be better to preserve alignment information into CallArg.
2076   if (isMemcpyEquivalentSpecialMember(D)) {
2077     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2078 
2079     const Expr *Arg = E->getArg(0);
2080     LValue Src = EmitLValue(Arg);
2081     QualType DestTy = getContext().getTypeDeclType(D->getParent());
2082     LValue Dest = MakeAddrLValue(This, DestTy);
2083     EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2084     return;
2085   }
2086 
2087   // Add the rest of the user-supplied arguments.
2088   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2089   EvaluationOrder Order = E->isListInitialization()
2090                               ? EvaluationOrder::ForceLeftToRight
2091                               : EvaluationOrder::Default;
2092   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2093                /*ParamsToSkip*/ 0, Order);
2094 
2095   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2096                          ThisAVS.mayOverlap(), E->getExprLoc(),
2097                          ThisAVS.isSanitizerChecked());
2098 }
2099 
2100 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2101                                     const CXXConstructorDecl *Ctor,
2102                                     CXXCtorType Type, CallArgList &Args) {
2103   // We can't forward a variadic call.
2104   if (Ctor->isVariadic())
2105     return false;
2106 
2107   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2108     // If the parameters are callee-cleanup, it's not safe to forward.
2109     for (auto *P : Ctor->parameters())
2110       if (P->needsDestruction(CGF.getContext()))
2111         return false;
2112 
2113     // Likewise if they're inalloca.
2114     const CGFunctionInfo &Info =
2115         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2116     if (Info.usesInAlloca())
2117       return false;
2118   }
2119 
2120   // Anything else should be OK.
2121   return true;
2122 }
2123 
2124 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2125                                              CXXCtorType Type,
2126                                              bool ForVirtualBase,
2127                                              bool Delegating,
2128                                              Address This,
2129                                              CallArgList &Args,
2130                                              AggValueSlot::Overlap_t Overlap,
2131                                              SourceLocation Loc,
2132                                              bool NewPointerIsChecked) {
2133   const CXXRecordDecl *ClassDecl = D->getParent();
2134 
2135   if (!NewPointerIsChecked)
2136     EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(),
2137                   getContext().getRecordType(ClassDecl), CharUnits::Zero());
2138 
2139   if (D->isTrivial() && D->isDefaultConstructor()) {
2140     assert(Args.size() == 1 && "trivial default ctor with args");
2141     return;
2142   }
2143 
2144   // If this is a trivial constructor, just emit what's needed. If this is a
2145   // union copy constructor, we must emit a memcpy, because the AST does not
2146   // model that copy.
2147   if (isMemcpyEquivalentSpecialMember(D)) {
2148     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2149 
2150     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2151     Address Src(Args[1].getRValue(*this).getScalarVal(),
2152                 CGM.getNaturalTypeAlignment(SrcTy));
2153     LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2154     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2155     LValue DestLVal = MakeAddrLValue(This, DestTy);
2156     EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2157     return;
2158   }
2159 
2160   bool PassPrototypeArgs = true;
2161   // Check whether we can actually emit the constructor before trying to do so.
2162   if (auto Inherited = D->getInheritedConstructor()) {
2163     PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2164     if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2165       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2166                                               Delegating, Args);
2167       return;
2168     }
2169   }
2170 
2171   // Insert any ABI-specific implicit constructor arguments.
2172   CGCXXABI::AddedStructorArgCounts ExtraArgs =
2173       CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2174                                                  Delegating, Args);
2175 
2176   // Emit the call.
2177   llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2178   const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2179       Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2180   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2181   EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, Loc);
2182 
2183   // Generate vtable assumptions if we're constructing a complete object
2184   // with a vtable.  We don't do this for base subobjects for two reasons:
2185   // first, it's incorrect for classes with virtual bases, and second, we're
2186   // about to overwrite the vptrs anyway.
2187   // We also have to make sure if we can refer to vtable:
2188   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2189   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2190   // sure that definition of vtable is not hidden,
2191   // then we are always safe to refer to it.
2192   // FIXME: It looks like InstCombine is very inefficient on dealing with
2193   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2194   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2195       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2196       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2197       CGM.getCodeGenOpts().StrictVTablePointers)
2198     EmitVTableAssumptionLoads(ClassDecl, This);
2199 }
2200 
2201 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2202     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2203     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2204   CallArgList Args;
2205   CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType());
2206 
2207   // Forward the parameters.
2208   if (InheritedFromVBase &&
2209       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2210     // Nothing to do; this construction is not responsible for constructing
2211     // the base class containing the inherited constructor.
2212     // FIXME: Can we just pass undef's for the remaining arguments if we don't
2213     // have constructor variants?
2214     Args.push_back(ThisArg);
2215   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2216     // The inheriting constructor was inlined; just inject its arguments.
2217     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2218            "wrong number of parameters for inherited constructor call");
2219     Args = CXXInheritedCtorInitExprArgs;
2220     Args[0] = ThisArg;
2221   } else {
2222     // The inheriting constructor was not inlined. Emit delegating arguments.
2223     Args.push_back(ThisArg);
2224     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2225     assert(OuterCtor->getNumParams() == D->getNumParams());
2226     assert(!OuterCtor->isVariadic() && "should have been inlined");
2227 
2228     for (const auto *Param : OuterCtor->parameters()) {
2229       assert(getContext().hasSameUnqualifiedType(
2230           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2231           Param->getType()));
2232       EmitDelegateCallArg(Args, Param, E->getLocation());
2233 
2234       // Forward __attribute__(pass_object_size).
2235       if (Param->hasAttr<PassObjectSizeAttr>()) {
2236         auto *POSParam = SizeArguments[Param];
2237         assert(POSParam && "missing pass_object_size value for forwarding");
2238         EmitDelegateCallArg(Args, POSParam, E->getLocation());
2239       }
2240     }
2241   }
2242 
2243   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2244                          This, Args, AggValueSlot::MayOverlap,
2245                          E->getLocation(), /*NewPointerIsChecked*/true);
2246 }
2247 
2248 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2249     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2250     bool Delegating, CallArgList &Args) {
2251   GlobalDecl GD(Ctor, CtorType);
2252   InlinedInheritingConstructorScope Scope(*this, GD);
2253   ApplyInlineDebugLocation DebugScope(*this, GD);
2254   RunCleanupsScope RunCleanups(*this);
2255 
2256   // Save the arguments to be passed to the inherited constructor.
2257   CXXInheritedCtorInitExprArgs = Args;
2258 
2259   FunctionArgList Params;
2260   QualType RetType = BuildFunctionArgList(CurGD, Params);
2261   FnRetTy = RetType;
2262 
2263   // Insert any ABI-specific implicit constructor arguments.
2264   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2265                                              ForVirtualBase, Delegating, Args);
2266 
2267   // Emit a simplified prolog. We only need to emit the implicit params.
2268   assert(Args.size() >= Params.size() && "too few arguments for call");
2269   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2270     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2271       const RValue &RV = Args[I].getRValue(*this);
2272       assert(!RV.isComplex() && "complex indirect params not supported");
2273       ParamValue Val = RV.isScalar()
2274                            ? ParamValue::forDirect(RV.getScalarVal())
2275                            : ParamValue::forIndirect(RV.getAggregateAddress());
2276       EmitParmDecl(*Params[I], Val, I + 1);
2277     }
2278   }
2279 
2280   // Create a return value slot if the ABI implementation wants one.
2281   // FIXME: This is dumb, we should ask the ABI not to try to set the return
2282   // value instead.
2283   if (!RetType->isVoidType())
2284     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2285 
2286   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2287   CXXThisValue = CXXABIThisValue;
2288 
2289   // Directly emit the constructor initializers.
2290   EmitCtorPrologue(Ctor, CtorType, Params);
2291 }
2292 
2293 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2294   llvm::Value *VTableGlobal =
2295       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2296   if (!VTableGlobal)
2297     return;
2298 
2299   // We can just use the base offset in the complete class.
2300   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2301 
2302   if (!NonVirtualOffset.isZero())
2303     This =
2304         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2305                                         Vptr.VTableClass, Vptr.NearestVBase);
2306 
2307   llvm::Value *VPtrValue =
2308       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2309   llvm::Value *Cmp =
2310       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2311   Builder.CreateAssumption(Cmp);
2312 }
2313 
2314 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2315                                                 Address This) {
2316   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2317     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2318       EmitVTableAssumptionLoad(Vptr, This);
2319 }
2320 
2321 void
2322 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2323                                                 Address This, Address Src,
2324                                                 const CXXConstructExpr *E) {
2325   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2326 
2327   CallArgList Args;
2328 
2329   // Push the this ptr.
2330   Args.add(RValue::get(This.getPointer()), D->getThisType());
2331 
2332   // Push the src ptr.
2333   QualType QT = *(FPT->param_type_begin());
2334   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2335   Src = Builder.CreateBitCast(Src, t);
2336   Args.add(RValue::get(Src.getPointer()), QT);
2337 
2338   // Skip over first argument (Src).
2339   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2340                /*ParamsToSkip*/ 1);
2341 
2342   EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2343                          /*Delegating*/false, This, Args,
2344                          AggValueSlot::MayOverlap, E->getExprLoc(),
2345                          /*NewPointerIsChecked*/false);
2346 }
2347 
2348 void
2349 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2350                                                 CXXCtorType CtorType,
2351                                                 const FunctionArgList &Args,
2352                                                 SourceLocation Loc) {
2353   CallArgList DelegateArgs;
2354 
2355   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2356   assert(I != E && "no parameters to constructor");
2357 
2358   // this
2359   Address This = LoadCXXThisAddress();
2360   DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2361   ++I;
2362 
2363   // FIXME: The location of the VTT parameter in the parameter list is
2364   // specific to the Itanium ABI and shouldn't be hardcoded here.
2365   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2366     assert(I != E && "cannot skip vtt parameter, already done with args");
2367     assert((*I)->getType()->isPointerType() &&
2368            "skipping parameter not of vtt type");
2369     ++I;
2370   }
2371 
2372   // Explicit arguments.
2373   for (; I != E; ++I) {
2374     const VarDecl *param = *I;
2375     // FIXME: per-argument source location
2376     EmitDelegateCallArg(DelegateArgs, param, Loc);
2377   }
2378 
2379   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2380                          /*Delegating=*/true, This, DelegateArgs,
2381                          AggValueSlot::MayOverlap, Loc,
2382                          /*NewPointerIsChecked=*/true);
2383 }
2384 
2385 namespace {
2386   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2387     const CXXDestructorDecl *Dtor;
2388     Address Addr;
2389     CXXDtorType Type;
2390 
2391     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2392                            CXXDtorType Type)
2393       : Dtor(D), Addr(Addr), Type(Type) {}
2394 
2395     void Emit(CodeGenFunction &CGF, Flags flags) override {
2396       // We are calling the destructor from within the constructor.
2397       // Therefore, "this" should have the expected type.
2398       QualType ThisTy = Dtor->getThisObjectType();
2399       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2400                                 /*Delegating=*/true, Addr, ThisTy);
2401     }
2402   };
2403 } // end anonymous namespace
2404 
2405 void
2406 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2407                                                   const FunctionArgList &Args) {
2408   assert(Ctor->isDelegatingConstructor());
2409 
2410   Address ThisPtr = LoadCXXThisAddress();
2411 
2412   AggValueSlot AggSlot =
2413     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2414                           AggValueSlot::IsDestructed,
2415                           AggValueSlot::DoesNotNeedGCBarriers,
2416                           AggValueSlot::IsNotAliased,
2417                           AggValueSlot::MayOverlap,
2418                           AggValueSlot::IsNotZeroed,
2419                           // Checks are made by the code that calls constructor.
2420                           AggValueSlot::IsSanitizerChecked);
2421 
2422   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2423 
2424   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2425   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2426     CXXDtorType Type =
2427       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2428 
2429     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2430                                                 ClassDecl->getDestructor(),
2431                                                 ThisPtr, Type);
2432   }
2433 }
2434 
2435 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2436                                             CXXDtorType Type,
2437                                             bool ForVirtualBase,
2438                                             bool Delegating, Address This,
2439                                             QualType ThisTy) {
2440   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2441                                      Delegating, This, ThisTy);
2442 }
2443 
2444 namespace {
2445   struct CallLocalDtor final : EHScopeStack::Cleanup {
2446     const CXXDestructorDecl *Dtor;
2447     Address Addr;
2448     QualType Ty;
2449 
2450     CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2451         : Dtor(D), Addr(Addr), Ty(Ty) {}
2452 
2453     void Emit(CodeGenFunction &CGF, Flags flags) override {
2454       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2455                                 /*ForVirtualBase=*/false,
2456                                 /*Delegating=*/false, Addr, Ty);
2457     }
2458   };
2459 } // end anonymous namespace
2460 
2461 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2462                                             QualType T, Address Addr) {
2463   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2464 }
2465 
2466 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2467   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2468   if (!ClassDecl) return;
2469   if (ClassDecl->hasTrivialDestructor()) return;
2470 
2471   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2472   assert(D && D->isUsed() && "destructor not marked as used!");
2473   PushDestructorCleanup(D, T, Addr);
2474 }
2475 
2476 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2477   // Compute the address point.
2478   llvm::Value *VTableAddressPoint =
2479       CGM.getCXXABI().getVTableAddressPointInStructor(
2480           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2481 
2482   if (!VTableAddressPoint)
2483     return;
2484 
2485   // Compute where to store the address point.
2486   llvm::Value *VirtualOffset = nullptr;
2487   CharUnits NonVirtualOffset = CharUnits::Zero();
2488 
2489   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2490     // We need to use the virtual base offset offset because the virtual base
2491     // might have a different offset in the most derived class.
2492 
2493     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2494         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2495     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2496   } else {
2497     // We can just use the base offset in the complete class.
2498     NonVirtualOffset = Vptr.Base.getBaseOffset();
2499   }
2500 
2501   // Apply the offsets.
2502   Address VTableField = LoadCXXThisAddress();
2503 
2504   if (!NonVirtualOffset.isZero() || VirtualOffset)
2505     VTableField = ApplyNonVirtualAndVirtualOffset(
2506         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2507         Vptr.NearestVBase);
2508 
2509   // Finally, store the address point. Use the same LLVM types as the field to
2510   // support optimization.
2511   llvm::Type *VTablePtrTy =
2512       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2513           ->getPointerTo()
2514           ->getPointerTo();
2515   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2516   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2517 
2518   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2519   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy);
2520   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2521   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2522       CGM.getCodeGenOpts().StrictVTablePointers)
2523     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2524 }
2525 
2526 CodeGenFunction::VPtrsVector
2527 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2528   CodeGenFunction::VPtrsVector VPtrsResult;
2529   VisitedVirtualBasesSetTy VBases;
2530   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2531                     /*NearestVBase=*/nullptr,
2532                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2533                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2534                     VPtrsResult);
2535   return VPtrsResult;
2536 }
2537 
2538 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2539                                         const CXXRecordDecl *NearestVBase,
2540                                         CharUnits OffsetFromNearestVBase,
2541                                         bool BaseIsNonVirtualPrimaryBase,
2542                                         const CXXRecordDecl *VTableClass,
2543                                         VisitedVirtualBasesSetTy &VBases,
2544                                         VPtrsVector &Vptrs) {
2545   // If this base is a non-virtual primary base the address point has already
2546   // been set.
2547   if (!BaseIsNonVirtualPrimaryBase) {
2548     // Initialize the vtable pointer for this base.
2549     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2550     Vptrs.push_back(Vptr);
2551   }
2552 
2553   const CXXRecordDecl *RD = Base.getBase();
2554 
2555   // Traverse bases.
2556   for (const auto &I : RD->bases()) {
2557     auto *BaseDecl =
2558         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2559 
2560     // Ignore classes without a vtable.
2561     if (!BaseDecl->isDynamicClass())
2562       continue;
2563 
2564     CharUnits BaseOffset;
2565     CharUnits BaseOffsetFromNearestVBase;
2566     bool BaseDeclIsNonVirtualPrimaryBase;
2567 
2568     if (I.isVirtual()) {
2569       // Check if we've visited this virtual base before.
2570       if (!VBases.insert(BaseDecl).second)
2571         continue;
2572 
2573       const ASTRecordLayout &Layout =
2574         getContext().getASTRecordLayout(VTableClass);
2575 
2576       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2577       BaseOffsetFromNearestVBase = CharUnits::Zero();
2578       BaseDeclIsNonVirtualPrimaryBase = false;
2579     } else {
2580       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2581 
2582       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2583       BaseOffsetFromNearestVBase =
2584         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2585       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2586     }
2587 
2588     getVTablePointers(
2589         BaseSubobject(BaseDecl, BaseOffset),
2590         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2591         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2592   }
2593 }
2594 
2595 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2596   // Ignore classes without a vtable.
2597   if (!RD->isDynamicClass())
2598     return;
2599 
2600   // Initialize the vtable pointers for this class and all of its bases.
2601   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2602     for (const VPtr &Vptr : getVTablePointers(RD))
2603       InitializeVTablePointer(Vptr);
2604 
2605   if (RD->getNumVBases())
2606     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2607 }
2608 
2609 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2610                                            llvm::Type *VTableTy,
2611                                            const CXXRecordDecl *RD) {
2612   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2613   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2614   TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2615   CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2616 
2617   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2618       CGM.getCodeGenOpts().StrictVTablePointers)
2619     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2620 
2621   return VTable;
2622 }
2623 
2624 // If a class has a single non-virtual base and does not introduce or override
2625 // virtual member functions or fields, it will have the same layout as its base.
2626 // This function returns the least derived such class.
2627 //
2628 // Casting an instance of a base class to such a derived class is technically
2629 // undefined behavior, but it is a relatively common hack for introducing member
2630 // functions on class instances with specific properties (e.g. llvm::Operator)
2631 // that works under most compilers and should not have security implications, so
2632 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2633 static const CXXRecordDecl *
2634 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2635   if (!RD->field_empty())
2636     return RD;
2637 
2638   if (RD->getNumVBases() != 0)
2639     return RD;
2640 
2641   if (RD->getNumBases() != 1)
2642     return RD;
2643 
2644   for (const CXXMethodDecl *MD : RD->methods()) {
2645     if (MD->isVirtual()) {
2646       // Virtual member functions are only ok if they are implicit destructors
2647       // because the implicit destructor will have the same semantics as the
2648       // base class's destructor if no fields are added.
2649       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2650         continue;
2651       return RD;
2652     }
2653   }
2654 
2655   return LeastDerivedClassWithSameLayout(
2656       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2657 }
2658 
2659 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2660                                                    llvm::Value *VTable,
2661                                                    SourceLocation Loc) {
2662   if (SanOpts.has(SanitizerKind::CFIVCall))
2663     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2664   else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2665            // Don't insert type test assumes if we are forcing public std
2666            // visibility.
2667            !CGM.HasLTOVisibilityPublicStd(RD)) {
2668     llvm::Metadata *MD =
2669         CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2670     llvm::Value *TypeId =
2671         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2672 
2673     llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2674     llvm::Value *TypeTest =
2675         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2676                            {CastedVTable, TypeId});
2677     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2678   }
2679 }
2680 
2681 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2682                                                 llvm::Value *VTable,
2683                                                 CFITypeCheckKind TCK,
2684                                                 SourceLocation Loc) {
2685   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2686     RD = LeastDerivedClassWithSameLayout(RD);
2687 
2688   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2689 }
2690 
2691 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2692                                                 llvm::Value *Derived,
2693                                                 bool MayBeNull,
2694                                                 CFITypeCheckKind TCK,
2695                                                 SourceLocation Loc) {
2696   if (!getLangOpts().CPlusPlus)
2697     return;
2698 
2699   auto *ClassTy = T->getAs<RecordType>();
2700   if (!ClassTy)
2701     return;
2702 
2703   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2704 
2705   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2706     return;
2707 
2708   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2709     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2710 
2711   llvm::BasicBlock *ContBlock = nullptr;
2712 
2713   if (MayBeNull) {
2714     llvm::Value *DerivedNotNull =
2715         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2716 
2717     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2718     ContBlock = createBasicBlock("cast.cont");
2719 
2720     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2721 
2722     EmitBlock(CheckBlock);
2723   }
2724 
2725   llvm::Value *VTable;
2726   std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr(
2727       *this, Address(Derived, getPointerAlign()), ClassDecl);
2728 
2729   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2730 
2731   if (MayBeNull) {
2732     Builder.CreateBr(ContBlock);
2733     EmitBlock(ContBlock);
2734   }
2735 }
2736 
2737 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2738                                          llvm::Value *VTable,
2739                                          CFITypeCheckKind TCK,
2740                                          SourceLocation Loc) {
2741   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2742       !CGM.HasHiddenLTOVisibility(RD))
2743     return;
2744 
2745   SanitizerMask M;
2746   llvm::SanitizerStatKind SSK;
2747   switch (TCK) {
2748   case CFITCK_VCall:
2749     M = SanitizerKind::CFIVCall;
2750     SSK = llvm::SanStat_CFI_VCall;
2751     break;
2752   case CFITCK_NVCall:
2753     M = SanitizerKind::CFINVCall;
2754     SSK = llvm::SanStat_CFI_NVCall;
2755     break;
2756   case CFITCK_DerivedCast:
2757     M = SanitizerKind::CFIDerivedCast;
2758     SSK = llvm::SanStat_CFI_DerivedCast;
2759     break;
2760   case CFITCK_UnrelatedCast:
2761     M = SanitizerKind::CFIUnrelatedCast;
2762     SSK = llvm::SanStat_CFI_UnrelatedCast;
2763     break;
2764   case CFITCK_ICall:
2765   case CFITCK_NVMFCall:
2766   case CFITCK_VMFCall:
2767     llvm_unreachable("unexpected sanitizer kind");
2768   }
2769 
2770   std::string TypeName = RD->getQualifiedNameAsString();
2771   if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName))
2772     return;
2773 
2774   SanitizerScope SanScope(this);
2775   EmitSanitizerStatReport(SSK);
2776 
2777   llvm::Metadata *MD =
2778       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2779   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2780 
2781   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2782   llvm::Value *TypeTest = Builder.CreateCall(
2783       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
2784 
2785   llvm::Constant *StaticData[] = {
2786       llvm::ConstantInt::get(Int8Ty, TCK),
2787       EmitCheckSourceLocation(Loc),
2788       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2789   };
2790 
2791   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2792   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2793     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
2794     return;
2795   }
2796 
2797   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2798     EmitTrapCheck(TypeTest);
2799     return;
2800   }
2801 
2802   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2803       CGM.getLLVMContext(),
2804       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2805   llvm::Value *ValidVtable = Builder.CreateCall(
2806       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
2807   EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2808             StaticData, {CastedVTable, ValidVtable});
2809 }
2810 
2811 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2812   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2813       !CGM.HasHiddenLTOVisibility(RD))
2814     return false;
2815 
2816   if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2817     return true;
2818 
2819   if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2820       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2821     return false;
2822 
2823   std::string TypeName = RD->getQualifiedNameAsString();
2824   return !getContext().getSanitizerBlacklist().isBlacklistedType(
2825       SanitizerKind::CFIVCall, TypeName);
2826 }
2827 
2828 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2829     const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
2830   SanitizerScope SanScope(this);
2831 
2832   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2833 
2834   llvm::Metadata *MD =
2835       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2836   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2837 
2838   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2839   llvm::Value *CheckedLoad = Builder.CreateCall(
2840       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2841       {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
2842        TypeId});
2843   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2844 
2845   std::string TypeName = RD->getQualifiedNameAsString();
2846   if (SanOpts.has(SanitizerKind::CFIVCall) &&
2847       !getContext().getSanitizerBlacklist().isBlacklistedType(
2848           SanitizerKind::CFIVCall, TypeName)) {
2849     EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2850               SanitizerHandler::CFICheckFail, {}, {});
2851   }
2852 
2853   return Builder.CreateBitCast(
2854       Builder.CreateExtractValue(CheckedLoad, 0),
2855       cast<llvm::PointerType>(VTable->getType())->getElementType());
2856 }
2857 
2858 void CodeGenFunction::EmitForwardingCallToLambda(
2859                                       const CXXMethodDecl *callOperator,
2860                                       CallArgList &callArgs) {
2861   // Get the address of the call operator.
2862   const CGFunctionInfo &calleeFnInfo =
2863     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2864   llvm::Constant *calleePtr =
2865     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2866                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2867 
2868   // Prepare the return slot.
2869   const FunctionProtoType *FPT =
2870     callOperator->getType()->castAs<FunctionProtoType>();
2871   QualType resultType = FPT->getReturnType();
2872   ReturnValueSlot returnSlot;
2873   if (!resultType->isVoidType() &&
2874       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2875       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2876     returnSlot =
2877         ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2878                         /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2879 
2880   // We don't need to separately arrange the call arguments because
2881   // the call can't be variadic anyway --- it's impossible to forward
2882   // variadic arguments.
2883 
2884   // Now emit our call.
2885   auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2886   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs);
2887 
2888   // If necessary, copy the returned value into the slot.
2889   if (!resultType->isVoidType() && returnSlot.isNull()) {
2890     if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2891       RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2892     }
2893     EmitReturnOfRValue(RV, resultType);
2894   } else
2895     EmitBranchThroughCleanup(ReturnBlock);
2896 }
2897 
2898 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2899   const BlockDecl *BD = BlockInfo->getBlockDecl();
2900   const VarDecl *variable = BD->capture_begin()->getVariable();
2901   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2902   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2903 
2904   if (CallOp->isVariadic()) {
2905     // FIXME: Making this work correctly is nasty because it requires either
2906     // cloning the body of the call operator or making the call operator
2907     // forward.
2908     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2909     return;
2910   }
2911 
2912   // Start building arguments for forwarding call
2913   CallArgList CallArgs;
2914 
2915   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2916   Address ThisPtr = GetAddrOfBlockDecl(variable);
2917   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2918 
2919   // Add the rest of the parameters.
2920   for (auto param : BD->parameters())
2921     EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
2922 
2923   assert(!Lambda->isGenericLambda() &&
2924             "generic lambda interconversion to block not implemented");
2925   EmitForwardingCallToLambda(CallOp, CallArgs);
2926 }
2927 
2928 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2929   const CXXRecordDecl *Lambda = MD->getParent();
2930 
2931   // Start building arguments for forwarding call
2932   CallArgList CallArgs;
2933 
2934   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2935   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2936   CallArgs.add(RValue::get(ThisPtr), ThisType);
2937 
2938   // Add the rest of the parameters.
2939   for (auto Param : MD->parameters())
2940     EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
2941 
2942   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2943   // For a generic lambda, find the corresponding call operator specialization
2944   // to which the call to the static-invoker shall be forwarded.
2945   if (Lambda->isGenericLambda()) {
2946     assert(MD->isFunctionTemplateSpecialization());
2947     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2948     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2949     void *InsertPos = nullptr;
2950     FunctionDecl *CorrespondingCallOpSpecialization =
2951         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2952     assert(CorrespondingCallOpSpecialization);
2953     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2954   }
2955   EmitForwardingCallToLambda(CallOp, CallArgs);
2956 }
2957 
2958 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
2959   if (MD->isVariadic()) {
2960     // FIXME: Making this work correctly is nasty because it requires either
2961     // cloning the body of the call operator or making the call operator forward.
2962     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2963     return;
2964   }
2965 
2966   EmitLambdaDelegatingInvokeBody(MD);
2967 }
2968