1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 71 /// qualification. 72 /// FIXME: address space qualification? 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 76 } 77 78 /// Returns the canonical formal type of the given C++ method. 79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 80 return MD->getType()->getCanonicalTypeUnqualified() 81 .getAs<FunctionProtoType>(); 82 } 83 84 /// Returns the "extra-canonicalized" return type, which discards 85 /// qualifiers on the return type. Codegen doesn't care about them, 86 /// and it makes ABI code a little easier to be able to assume that 87 /// all parameter and return types are top-level unqualified. 88 static CanQualType GetReturnType(QualType RetTy) { 89 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 90 } 91 92 /// Arrange the argument and result information for a value of the given 93 /// unprototyped freestanding function type. 94 const CGFunctionInfo & 95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 96 // When translating an unprototyped function type, always use a 97 // variadic type. 98 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 99 /*instanceMethod=*/false, 100 /*chainCall=*/false, None, 101 FTNP->getExtInfo(), {}, RequiredArgs(0)); 102 } 103 104 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in 105 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 106 static void appendParameterTypes(const CodeGenTypes &CGT, 107 SmallVectorImpl<CanQualType> &prefix, 108 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 109 CanQual<FunctionProtoType> FPT, 110 const FunctionDecl *FD) { 111 // Fill out paramInfos. 112 if (FPT->hasExtParameterInfos() || !paramInfos.empty()) { 113 assert(paramInfos.size() <= prefix.size()); 114 auto protoParamInfos = FPT->getExtParameterInfos(); 115 paramInfos.reserve(prefix.size() + protoParamInfos.size()); 116 paramInfos.resize(prefix.size()); 117 paramInfos.append(protoParamInfos.begin(), protoParamInfos.end()); 118 } 119 120 // Fast path: unknown target. 121 if (FD == nullptr) { 122 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 123 return; 124 } 125 126 // In the vast majority cases, we'll have precisely FPT->getNumParams() 127 // parameters; the only thing that can change this is the presence of 128 // pass_object_size. So, we preallocate for the common case. 129 prefix.reserve(prefix.size() + FPT->getNumParams()); 130 131 assert(FD->getNumParams() == FPT->getNumParams()); 132 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 133 prefix.push_back(FPT->getParamType(I)); 134 if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>()) 135 prefix.push_back(CGT.getContext().getSizeType()); 136 } 137 } 138 139 /// Arrange the LLVM function layout for a value of the given function 140 /// type, on top of any implicit parameters already stored. 141 static const CGFunctionInfo & 142 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 143 SmallVectorImpl<CanQualType> &prefix, 144 CanQual<FunctionProtoType> FTP, 145 const FunctionDecl *FD) { 146 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 147 RequiredArgs Required = 148 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 149 // FIXME: Kill copy. 150 appendParameterTypes(CGT, prefix, paramInfos, FTP, FD); 151 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 152 153 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 154 /*chainCall=*/false, prefix, 155 FTP->getExtInfo(), paramInfos, 156 Required); 157 } 158 159 /// Arrange the argument and result information for a value of the 160 /// given freestanding function type. 161 const CGFunctionInfo & 162 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 163 const FunctionDecl *FD) { 164 SmallVector<CanQualType, 16> argTypes; 165 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 166 FTP, FD); 167 } 168 169 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 170 // Set the appropriate calling convention for the Function. 171 if (D->hasAttr<StdCallAttr>()) 172 return CC_X86StdCall; 173 174 if (D->hasAttr<FastCallAttr>()) 175 return CC_X86FastCall; 176 177 if (D->hasAttr<RegCallAttr>()) 178 return CC_X86RegCall; 179 180 if (D->hasAttr<ThisCallAttr>()) 181 return CC_X86ThisCall; 182 183 if (D->hasAttr<VectorCallAttr>()) 184 return CC_X86VectorCall; 185 186 if (D->hasAttr<PascalAttr>()) 187 return CC_X86Pascal; 188 189 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 190 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 191 192 if (D->hasAttr<IntelOclBiccAttr>()) 193 return CC_IntelOclBicc; 194 195 if (D->hasAttr<MSABIAttr>()) 196 return IsWindows ? CC_C : CC_X86_64Win64; 197 198 if (D->hasAttr<SysVABIAttr>()) 199 return IsWindows ? CC_X86_64SysV : CC_C; 200 201 if (D->hasAttr<PreserveMostAttr>()) 202 return CC_PreserveMost; 203 204 if (D->hasAttr<PreserveAllAttr>()) 205 return CC_PreserveAll; 206 207 return CC_C; 208 } 209 210 /// Arrange the argument and result information for a call to an 211 /// unknown C++ non-static member function of the given abstract type. 212 /// (Zero value of RD means we don't have any meaningful "this" argument type, 213 /// so fall back to a generic pointer type). 214 /// The member function must be an ordinary function, i.e. not a 215 /// constructor or destructor. 216 const CGFunctionInfo & 217 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 218 const FunctionProtoType *FTP, 219 const CXXMethodDecl *MD) { 220 SmallVector<CanQualType, 16> argTypes; 221 222 // Add the 'this' pointer. 223 if (RD) 224 argTypes.push_back(GetThisType(Context, RD)); 225 else 226 argTypes.push_back(Context.VoidPtrTy); 227 228 return ::arrangeLLVMFunctionInfo( 229 *this, true, argTypes, 230 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 231 } 232 233 /// Arrange the argument and result information for a declaration or 234 /// definition of the given C++ non-static member function. The 235 /// member function must be an ordinary function, i.e. not a 236 /// constructor or destructor. 237 const CGFunctionInfo & 238 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 239 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 240 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 241 242 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 243 244 if (MD->isInstance()) { 245 // The abstract case is perfectly fine. 246 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 247 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 248 } 249 250 return arrangeFreeFunctionType(prototype, MD); 251 } 252 253 bool CodeGenTypes::inheritingCtorHasParams( 254 const InheritedConstructor &Inherited, CXXCtorType Type) { 255 // Parameters are unnecessary if we're constructing a base class subobject 256 // and the inherited constructor lives in a virtual base. 257 return Type == Ctor_Complete || 258 !Inherited.getShadowDecl()->constructsVirtualBase() || 259 !Target.getCXXABI().hasConstructorVariants(); 260 } 261 262 const CGFunctionInfo & 263 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 264 StructorType Type) { 265 266 SmallVector<CanQualType, 16> argTypes; 267 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 268 argTypes.push_back(GetThisType(Context, MD->getParent())); 269 270 bool PassParams = true; 271 272 GlobalDecl GD; 273 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 274 GD = GlobalDecl(CD, toCXXCtorType(Type)); 275 276 // A base class inheriting constructor doesn't get forwarded arguments 277 // needed to construct a virtual base (or base class thereof). 278 if (auto Inherited = CD->getInheritedConstructor()) 279 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 280 } else { 281 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 282 GD = GlobalDecl(DD, toCXXDtorType(Type)); 283 } 284 285 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 286 287 // Add the formal parameters. 288 if (PassParams) 289 appendParameterTypes(*this, argTypes, paramInfos, FTP, MD); 290 291 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 292 293 RequiredArgs required = 294 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 295 : RequiredArgs::All); 296 297 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 298 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 299 ? argTypes.front() 300 : TheCXXABI.hasMostDerivedReturn(GD) 301 ? CGM.getContext().VoidPtrTy 302 : Context.VoidTy; 303 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 304 /*chainCall=*/false, argTypes, extInfo, 305 paramInfos, required); 306 } 307 308 static SmallVector<CanQualType, 16> 309 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 310 SmallVector<CanQualType, 16> argTypes; 311 for (auto &arg : args) 312 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 313 return argTypes; 314 } 315 316 static SmallVector<CanQualType, 16> 317 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 318 SmallVector<CanQualType, 16> argTypes; 319 for (auto &arg : args) 320 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 321 return argTypes; 322 } 323 324 static void addExtParameterInfosForCall( 325 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 326 const FunctionProtoType *proto, 327 unsigned prefixArgs, 328 unsigned totalArgs) { 329 assert(proto->hasExtParameterInfos()); 330 assert(paramInfos.size() <= prefixArgs); 331 assert(proto->getNumParams() + prefixArgs <= totalArgs); 332 333 // Add default infos for any prefix args that don't already have infos. 334 paramInfos.resize(prefixArgs); 335 336 // Add infos for the prototype. 337 auto protoInfos = proto->getExtParameterInfos(); 338 paramInfos.append(protoInfos.begin(), protoInfos.end()); 339 340 // Add default infos for the variadic arguments. 341 paramInfos.resize(totalArgs); 342 } 343 344 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 345 getExtParameterInfosForCall(const FunctionProtoType *proto, 346 unsigned prefixArgs, unsigned totalArgs) { 347 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 348 if (proto->hasExtParameterInfos()) { 349 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 350 } 351 return result; 352 } 353 354 /// Arrange a call to a C++ method, passing the given arguments. 355 const CGFunctionInfo & 356 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 357 const CXXConstructorDecl *D, 358 CXXCtorType CtorKind, 359 unsigned ExtraArgs) { 360 // FIXME: Kill copy. 361 SmallVector<CanQualType, 16> ArgTypes; 362 for (const auto &Arg : args) 363 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 364 365 CanQual<FunctionProtoType> FPT = GetFormalType(D); 366 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs, D); 367 GlobalDecl GD(D, CtorKind); 368 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 369 ? ArgTypes.front() 370 : TheCXXABI.hasMostDerivedReturn(GD) 371 ? CGM.getContext().VoidPtrTy 372 : Context.VoidTy; 373 374 FunctionType::ExtInfo Info = FPT->getExtInfo(); 375 auto ParamInfos = getExtParameterInfosForCall(FPT.getTypePtr(), 1 + ExtraArgs, 376 ArgTypes.size()); 377 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 378 /*chainCall=*/false, ArgTypes, Info, 379 ParamInfos, Required); 380 } 381 382 /// Arrange the argument and result information for the declaration or 383 /// definition of the given function. 384 const CGFunctionInfo & 385 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 386 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 387 if (MD->isInstance()) 388 return arrangeCXXMethodDeclaration(MD); 389 390 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 391 392 assert(isa<FunctionType>(FTy)); 393 394 // When declaring a function without a prototype, always use a 395 // non-variadic type. 396 if (isa<FunctionNoProtoType>(FTy)) { 397 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 398 return arrangeLLVMFunctionInfo( 399 noProto->getReturnType(), /*instanceMethod=*/false, 400 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 401 } 402 403 assert(isa<FunctionProtoType>(FTy)); 404 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD); 405 } 406 407 /// Arrange the argument and result information for the declaration or 408 /// definition of an Objective-C method. 409 const CGFunctionInfo & 410 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 411 // It happens that this is the same as a call with no optional 412 // arguments, except also using the formal 'self' type. 413 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 414 } 415 416 /// Arrange the argument and result information for the function type 417 /// through which to perform a send to the given Objective-C method, 418 /// using the given receiver type. The receiver type is not always 419 /// the 'self' type of the method or even an Objective-C pointer type. 420 /// This is *not* the right method for actually performing such a 421 /// message send, due to the possibility of optional arguments. 422 const CGFunctionInfo & 423 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 424 QualType receiverType) { 425 SmallVector<CanQualType, 16> argTys; 426 argTys.push_back(Context.getCanonicalParamType(receiverType)); 427 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 428 // FIXME: Kill copy? 429 for (const auto *I : MD->parameters()) { 430 argTys.push_back(Context.getCanonicalParamType(I->getType())); 431 } 432 433 FunctionType::ExtInfo einfo; 434 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 435 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 436 437 if (getContext().getLangOpts().ObjCAutoRefCount && 438 MD->hasAttr<NSReturnsRetainedAttr>()) 439 einfo = einfo.withProducesResult(true); 440 441 RequiredArgs required = 442 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 443 444 return arrangeLLVMFunctionInfo( 445 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 446 /*chainCall=*/false, argTys, einfo, {}, required); 447 } 448 449 const CGFunctionInfo & 450 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 451 const CallArgList &args) { 452 auto argTypes = getArgTypesForCall(Context, args); 453 FunctionType::ExtInfo einfo; 454 455 return arrangeLLVMFunctionInfo( 456 GetReturnType(returnType), /*instanceMethod=*/false, 457 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 458 } 459 460 const CGFunctionInfo & 461 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 462 // FIXME: Do we need to handle ObjCMethodDecl? 463 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 464 465 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 466 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 467 468 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 469 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 470 471 return arrangeFunctionDeclaration(FD); 472 } 473 474 /// Arrange a thunk that takes 'this' as the first parameter followed by 475 /// varargs. Return a void pointer, regardless of the actual return type. 476 /// The body of the thunk will end in a musttail call to a function of the 477 /// correct type, and the caller will bitcast the function to the correct 478 /// prototype. 479 const CGFunctionInfo & 480 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 481 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 482 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 483 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 484 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 485 /*chainCall=*/false, ArgTys, 486 FTP->getExtInfo(), {}, RequiredArgs(1)); 487 } 488 489 const CGFunctionInfo & 490 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 491 CXXCtorType CT) { 492 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 493 494 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 495 SmallVector<CanQualType, 2> ArgTys; 496 const CXXRecordDecl *RD = CD->getParent(); 497 ArgTys.push_back(GetThisType(Context, RD)); 498 if (CT == Ctor_CopyingClosure) 499 ArgTys.push_back(*FTP->param_type_begin()); 500 if (RD->getNumVBases() > 0) 501 ArgTys.push_back(Context.IntTy); 502 CallingConv CC = Context.getDefaultCallingConvention( 503 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 504 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 505 /*chainCall=*/false, ArgTys, 506 FunctionType::ExtInfo(CC), {}, 507 RequiredArgs::All); 508 } 509 510 /// Arrange a call as unto a free function, except possibly with an 511 /// additional number of formal parameters considered required. 512 static const CGFunctionInfo & 513 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 514 CodeGenModule &CGM, 515 const CallArgList &args, 516 const FunctionType *fnType, 517 unsigned numExtraRequiredArgs, 518 bool chainCall) { 519 assert(args.size() >= numExtraRequiredArgs); 520 521 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 522 523 // In most cases, there are no optional arguments. 524 RequiredArgs required = RequiredArgs::All; 525 526 // If we have a variadic prototype, the required arguments are the 527 // extra prefix plus the arguments in the prototype. 528 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 529 if (proto->isVariadic()) 530 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 531 532 if (proto->hasExtParameterInfos()) 533 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 534 args.size()); 535 536 // If we don't have a prototype at all, but we're supposed to 537 // explicitly use the variadic convention for unprototyped calls, 538 // treat all of the arguments as required but preserve the nominal 539 // possibility of variadics. 540 } else if (CGM.getTargetCodeGenInfo() 541 .isNoProtoCallVariadic(args, 542 cast<FunctionNoProtoType>(fnType))) { 543 required = RequiredArgs(args.size()); 544 } 545 546 // FIXME: Kill copy. 547 SmallVector<CanQualType, 16> argTypes; 548 for (const auto &arg : args) 549 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 550 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 551 /*instanceMethod=*/false, chainCall, 552 argTypes, fnType->getExtInfo(), paramInfos, 553 required); 554 } 555 556 /// Figure out the rules for calling a function with the given formal 557 /// type using the given arguments. The arguments are necessary 558 /// because the function might be unprototyped, in which case it's 559 /// target-dependent in crazy ways. 560 const CGFunctionInfo & 561 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 562 const FunctionType *fnType, 563 bool chainCall) { 564 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 565 chainCall ? 1 : 0, chainCall); 566 } 567 568 /// A block function is essentially a free function with an 569 /// extra implicit argument. 570 const CGFunctionInfo & 571 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 572 const FunctionType *fnType) { 573 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 574 /*chainCall=*/false); 575 } 576 577 const CGFunctionInfo & 578 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 579 const FunctionArgList ¶ms) { 580 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 581 auto argTypes = getArgTypesForDeclaration(Context, params); 582 583 return arrangeLLVMFunctionInfo( 584 GetReturnType(proto->getReturnType()), 585 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 586 proto->getExtInfo(), paramInfos, 587 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 588 } 589 590 const CGFunctionInfo & 591 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 592 const CallArgList &args) { 593 // FIXME: Kill copy. 594 SmallVector<CanQualType, 16> argTypes; 595 for (const auto &Arg : args) 596 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 597 return arrangeLLVMFunctionInfo( 598 GetReturnType(resultType), /*instanceMethod=*/false, 599 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 600 /*paramInfos=*/ {}, RequiredArgs::All); 601 } 602 603 const CGFunctionInfo & 604 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 605 const FunctionArgList &args) { 606 auto argTypes = getArgTypesForDeclaration(Context, args); 607 608 return arrangeLLVMFunctionInfo( 609 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 610 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 611 } 612 613 const CGFunctionInfo & 614 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 615 ArrayRef<CanQualType> argTypes) { 616 return arrangeLLVMFunctionInfo( 617 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 618 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 619 } 620 621 /// Arrange a call to a C++ method, passing the given arguments. 622 const CGFunctionInfo & 623 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 624 const FunctionProtoType *proto, 625 RequiredArgs required) { 626 unsigned numRequiredArgs = 627 (proto->isVariadic() ? required.getNumRequiredArgs() : args.size()); 628 unsigned numPrefixArgs = numRequiredArgs - proto->getNumParams(); 629 auto paramInfos = 630 getExtParameterInfosForCall(proto, numPrefixArgs, args.size()); 631 632 // FIXME: Kill copy. 633 auto argTypes = getArgTypesForCall(Context, args); 634 635 FunctionType::ExtInfo info = proto->getExtInfo(); 636 return arrangeLLVMFunctionInfo( 637 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 638 /*chainCall=*/false, argTypes, info, paramInfos, required); 639 } 640 641 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 642 return arrangeLLVMFunctionInfo( 643 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 644 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 645 } 646 647 const CGFunctionInfo & 648 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 649 const CallArgList &args) { 650 assert(signature.arg_size() <= args.size()); 651 if (signature.arg_size() == args.size()) 652 return signature; 653 654 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 655 auto sigParamInfos = signature.getExtParameterInfos(); 656 if (!sigParamInfos.empty()) { 657 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 658 paramInfos.resize(args.size()); 659 } 660 661 auto argTypes = getArgTypesForCall(Context, args); 662 663 assert(signature.getRequiredArgs().allowsOptionalArgs()); 664 return arrangeLLVMFunctionInfo(signature.getReturnType(), 665 signature.isInstanceMethod(), 666 signature.isChainCall(), 667 argTypes, 668 signature.getExtInfo(), 669 paramInfos, 670 signature.getRequiredArgs()); 671 } 672 673 /// Arrange the argument and result information for an abstract value 674 /// of a given function type. This is the method which all of the 675 /// above functions ultimately defer to. 676 const CGFunctionInfo & 677 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 678 bool instanceMethod, 679 bool chainCall, 680 ArrayRef<CanQualType> argTypes, 681 FunctionType::ExtInfo info, 682 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 683 RequiredArgs required) { 684 assert(std::all_of(argTypes.begin(), argTypes.end(), 685 std::mem_fun_ref(&CanQualType::isCanonicalAsParam))); 686 687 // Lookup or create unique function info. 688 llvm::FoldingSetNodeID ID; 689 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 690 required, resultType, argTypes); 691 692 void *insertPos = nullptr; 693 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 694 if (FI) 695 return *FI; 696 697 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 698 699 // Construct the function info. We co-allocate the ArgInfos. 700 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 701 paramInfos, resultType, argTypes, required); 702 FunctionInfos.InsertNode(FI, insertPos); 703 704 bool inserted = FunctionsBeingProcessed.insert(FI).second; 705 (void)inserted; 706 assert(inserted && "Recursively being processed?"); 707 708 // Compute ABI information. 709 if (info.getCC() != CC_Swift) { 710 getABIInfo().computeInfo(*FI); 711 } else { 712 swiftcall::computeABIInfo(CGM, *FI); 713 } 714 715 // Loop over all of the computed argument and return value info. If any of 716 // them are direct or extend without a specified coerce type, specify the 717 // default now. 718 ABIArgInfo &retInfo = FI->getReturnInfo(); 719 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 720 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 721 722 for (auto &I : FI->arguments()) 723 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 724 I.info.setCoerceToType(ConvertType(I.type)); 725 726 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 727 assert(erased && "Not in set?"); 728 729 return *FI; 730 } 731 732 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 733 bool instanceMethod, 734 bool chainCall, 735 const FunctionType::ExtInfo &info, 736 ArrayRef<ExtParameterInfo> paramInfos, 737 CanQualType resultType, 738 ArrayRef<CanQualType> argTypes, 739 RequiredArgs required) { 740 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 741 742 void *buffer = 743 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 744 argTypes.size() + 1, paramInfos.size())); 745 746 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 747 FI->CallingConvention = llvmCC; 748 FI->EffectiveCallingConvention = llvmCC; 749 FI->ASTCallingConvention = info.getCC(); 750 FI->InstanceMethod = instanceMethod; 751 FI->ChainCall = chainCall; 752 FI->NoReturn = info.getNoReturn(); 753 FI->ReturnsRetained = info.getProducesResult(); 754 FI->Required = required; 755 FI->HasRegParm = info.getHasRegParm(); 756 FI->RegParm = info.getRegParm(); 757 FI->ArgStruct = nullptr; 758 FI->ArgStructAlign = 0; 759 FI->NumArgs = argTypes.size(); 760 FI->HasExtParameterInfos = !paramInfos.empty(); 761 FI->getArgsBuffer()[0].type = resultType; 762 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 763 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 764 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 765 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 766 return FI; 767 } 768 769 /***/ 770 771 namespace { 772 // ABIArgInfo::Expand implementation. 773 774 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 775 struct TypeExpansion { 776 enum TypeExpansionKind { 777 // Elements of constant arrays are expanded recursively. 778 TEK_ConstantArray, 779 // Record fields are expanded recursively (but if record is a union, only 780 // the field with the largest size is expanded). 781 TEK_Record, 782 // For complex types, real and imaginary parts are expanded recursively. 783 TEK_Complex, 784 // All other types are not expandable. 785 TEK_None 786 }; 787 788 const TypeExpansionKind Kind; 789 790 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 791 virtual ~TypeExpansion() {} 792 }; 793 794 struct ConstantArrayExpansion : TypeExpansion { 795 QualType EltTy; 796 uint64_t NumElts; 797 798 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 799 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 800 static bool classof(const TypeExpansion *TE) { 801 return TE->Kind == TEK_ConstantArray; 802 } 803 }; 804 805 struct RecordExpansion : TypeExpansion { 806 SmallVector<const CXXBaseSpecifier *, 1> Bases; 807 808 SmallVector<const FieldDecl *, 1> Fields; 809 810 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 811 SmallVector<const FieldDecl *, 1> &&Fields) 812 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 813 Fields(std::move(Fields)) {} 814 static bool classof(const TypeExpansion *TE) { 815 return TE->Kind == TEK_Record; 816 } 817 }; 818 819 struct ComplexExpansion : TypeExpansion { 820 QualType EltTy; 821 822 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 823 static bool classof(const TypeExpansion *TE) { 824 return TE->Kind == TEK_Complex; 825 } 826 }; 827 828 struct NoExpansion : TypeExpansion { 829 NoExpansion() : TypeExpansion(TEK_None) {} 830 static bool classof(const TypeExpansion *TE) { 831 return TE->Kind == TEK_None; 832 } 833 }; 834 } // namespace 835 836 static std::unique_ptr<TypeExpansion> 837 getTypeExpansion(QualType Ty, const ASTContext &Context) { 838 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 839 return llvm::make_unique<ConstantArrayExpansion>( 840 AT->getElementType(), AT->getSize().getZExtValue()); 841 } 842 if (const RecordType *RT = Ty->getAs<RecordType>()) { 843 SmallVector<const CXXBaseSpecifier *, 1> Bases; 844 SmallVector<const FieldDecl *, 1> Fields; 845 const RecordDecl *RD = RT->getDecl(); 846 assert(!RD->hasFlexibleArrayMember() && 847 "Cannot expand structure with flexible array."); 848 if (RD->isUnion()) { 849 // Unions can be here only in degenerative cases - all the fields are same 850 // after flattening. Thus we have to use the "largest" field. 851 const FieldDecl *LargestFD = nullptr; 852 CharUnits UnionSize = CharUnits::Zero(); 853 854 for (const auto *FD : RD->fields()) { 855 // Skip zero length bitfields. 856 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 857 continue; 858 assert(!FD->isBitField() && 859 "Cannot expand structure with bit-field members."); 860 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 861 if (UnionSize < FieldSize) { 862 UnionSize = FieldSize; 863 LargestFD = FD; 864 } 865 } 866 if (LargestFD) 867 Fields.push_back(LargestFD); 868 } else { 869 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 870 assert(!CXXRD->isDynamicClass() && 871 "cannot expand vtable pointers in dynamic classes"); 872 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 873 Bases.push_back(&BS); 874 } 875 876 for (const auto *FD : RD->fields()) { 877 // Skip zero length bitfields. 878 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 879 continue; 880 assert(!FD->isBitField() && 881 "Cannot expand structure with bit-field members."); 882 Fields.push_back(FD); 883 } 884 } 885 return llvm::make_unique<RecordExpansion>(std::move(Bases), 886 std::move(Fields)); 887 } 888 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 889 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 890 } 891 return llvm::make_unique<NoExpansion>(); 892 } 893 894 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 895 auto Exp = getTypeExpansion(Ty, Context); 896 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 897 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 898 } 899 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 900 int Res = 0; 901 for (auto BS : RExp->Bases) 902 Res += getExpansionSize(BS->getType(), Context); 903 for (auto FD : RExp->Fields) 904 Res += getExpansionSize(FD->getType(), Context); 905 return Res; 906 } 907 if (isa<ComplexExpansion>(Exp.get())) 908 return 2; 909 assert(isa<NoExpansion>(Exp.get())); 910 return 1; 911 } 912 913 void 914 CodeGenTypes::getExpandedTypes(QualType Ty, 915 SmallVectorImpl<llvm::Type *>::iterator &TI) { 916 auto Exp = getTypeExpansion(Ty, Context); 917 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 918 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 919 getExpandedTypes(CAExp->EltTy, TI); 920 } 921 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 922 for (auto BS : RExp->Bases) 923 getExpandedTypes(BS->getType(), TI); 924 for (auto FD : RExp->Fields) 925 getExpandedTypes(FD->getType(), TI); 926 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 927 llvm::Type *EltTy = ConvertType(CExp->EltTy); 928 *TI++ = EltTy; 929 *TI++ = EltTy; 930 } else { 931 assert(isa<NoExpansion>(Exp.get())); 932 *TI++ = ConvertType(Ty); 933 } 934 } 935 936 static void forConstantArrayExpansion(CodeGenFunction &CGF, 937 ConstantArrayExpansion *CAE, 938 Address BaseAddr, 939 llvm::function_ref<void(Address)> Fn) { 940 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 941 CharUnits EltAlign = 942 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 943 944 for (int i = 0, n = CAE->NumElts; i < n; i++) { 945 llvm::Value *EltAddr = 946 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 947 Fn(Address(EltAddr, EltAlign)); 948 } 949 } 950 951 void CodeGenFunction::ExpandTypeFromArgs( 952 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 953 assert(LV.isSimple() && 954 "Unexpected non-simple lvalue during struct expansion."); 955 956 auto Exp = getTypeExpansion(Ty, getContext()); 957 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 958 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 959 [&](Address EltAddr) { 960 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 961 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 962 }); 963 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 964 Address This = LV.getAddress(); 965 for (const CXXBaseSpecifier *BS : RExp->Bases) { 966 // Perform a single step derived-to-base conversion. 967 Address Base = 968 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 969 /*NullCheckValue=*/false, SourceLocation()); 970 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 971 972 // Recurse onto bases. 973 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 974 } 975 for (auto FD : RExp->Fields) { 976 // FIXME: What are the right qualifiers here? 977 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 978 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 979 } 980 } else if (isa<ComplexExpansion>(Exp.get())) { 981 auto realValue = *AI++; 982 auto imagValue = *AI++; 983 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 984 } else { 985 assert(isa<NoExpansion>(Exp.get())); 986 EmitStoreThroughLValue(RValue::get(*AI++), LV); 987 } 988 } 989 990 void CodeGenFunction::ExpandTypeToArgs( 991 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 992 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 993 auto Exp = getTypeExpansion(Ty, getContext()); 994 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 995 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 996 [&](Address EltAddr) { 997 RValue EltRV = 998 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 999 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 1000 }); 1001 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1002 Address This = RV.getAggregateAddress(); 1003 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1004 // Perform a single step derived-to-base conversion. 1005 Address Base = 1006 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1007 /*NullCheckValue=*/false, SourceLocation()); 1008 RValue BaseRV = RValue::getAggregate(Base); 1009 1010 // Recurse onto bases. 1011 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 1012 IRCallArgPos); 1013 } 1014 1015 LValue LV = MakeAddrLValue(This, Ty); 1016 for (auto FD : RExp->Fields) { 1017 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 1018 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 1019 IRCallArgPos); 1020 } 1021 } else if (isa<ComplexExpansion>(Exp.get())) { 1022 ComplexPairTy CV = RV.getComplexVal(); 1023 IRCallArgs[IRCallArgPos++] = CV.first; 1024 IRCallArgs[IRCallArgPos++] = CV.second; 1025 } else { 1026 assert(isa<NoExpansion>(Exp.get())); 1027 assert(RV.isScalar() && 1028 "Unexpected non-scalar rvalue during struct expansion."); 1029 1030 // Insert a bitcast as needed. 1031 llvm::Value *V = RV.getScalarVal(); 1032 if (IRCallArgPos < IRFuncTy->getNumParams() && 1033 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1034 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1035 1036 IRCallArgs[IRCallArgPos++] = V; 1037 } 1038 } 1039 1040 /// Create a temporary allocation for the purposes of coercion. 1041 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1042 CharUnits MinAlign) { 1043 // Don't use an alignment that's worse than what LLVM would prefer. 1044 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1045 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1046 1047 return CGF.CreateTempAlloca(Ty, Align); 1048 } 1049 1050 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1051 /// accessing some number of bytes out of it, try to gep into the struct to get 1052 /// at its inner goodness. Dive as deep as possible without entering an element 1053 /// with an in-memory size smaller than DstSize. 1054 static Address 1055 EnterStructPointerForCoercedAccess(Address SrcPtr, 1056 llvm::StructType *SrcSTy, 1057 uint64_t DstSize, CodeGenFunction &CGF) { 1058 // We can't dive into a zero-element struct. 1059 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1060 1061 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1062 1063 // If the first elt is at least as large as what we're looking for, or if the 1064 // first element is the same size as the whole struct, we can enter it. The 1065 // comparison must be made on the store size and not the alloca size. Using 1066 // the alloca size may overstate the size of the load. 1067 uint64_t FirstEltSize = 1068 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1069 if (FirstEltSize < DstSize && 1070 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1071 return SrcPtr; 1072 1073 // GEP into the first element. 1074 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1075 1076 // If the first element is a struct, recurse. 1077 llvm::Type *SrcTy = SrcPtr.getElementType(); 1078 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1079 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1080 1081 return SrcPtr; 1082 } 1083 1084 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1085 /// are either integers or pointers. This does a truncation of the value if it 1086 /// is too large or a zero extension if it is too small. 1087 /// 1088 /// This behaves as if the value were coerced through memory, so on big-endian 1089 /// targets the high bits are preserved in a truncation, while little-endian 1090 /// targets preserve the low bits. 1091 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1092 llvm::Type *Ty, 1093 CodeGenFunction &CGF) { 1094 if (Val->getType() == Ty) 1095 return Val; 1096 1097 if (isa<llvm::PointerType>(Val->getType())) { 1098 // If this is Pointer->Pointer avoid conversion to and from int. 1099 if (isa<llvm::PointerType>(Ty)) 1100 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1101 1102 // Convert the pointer to an integer so we can play with its width. 1103 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1104 } 1105 1106 llvm::Type *DestIntTy = Ty; 1107 if (isa<llvm::PointerType>(DestIntTy)) 1108 DestIntTy = CGF.IntPtrTy; 1109 1110 if (Val->getType() != DestIntTy) { 1111 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1112 if (DL.isBigEndian()) { 1113 // Preserve the high bits on big-endian targets. 1114 // That is what memory coercion does. 1115 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1116 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1117 1118 if (SrcSize > DstSize) { 1119 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1120 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1121 } else { 1122 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1123 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1124 } 1125 } else { 1126 // Little-endian targets preserve the low bits. No shifts required. 1127 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1128 } 1129 } 1130 1131 if (isa<llvm::PointerType>(Ty)) 1132 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1133 return Val; 1134 } 1135 1136 1137 1138 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1139 /// a pointer to an object of type \arg Ty, known to be aligned to 1140 /// \arg SrcAlign bytes. 1141 /// 1142 /// This safely handles the case when the src type is smaller than the 1143 /// destination type; in this situation the values of bits which not 1144 /// present in the src are undefined. 1145 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1146 CodeGenFunction &CGF) { 1147 llvm::Type *SrcTy = Src.getElementType(); 1148 1149 // If SrcTy and Ty are the same, just do a load. 1150 if (SrcTy == Ty) 1151 return CGF.Builder.CreateLoad(Src); 1152 1153 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1154 1155 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1156 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1157 SrcTy = Src.getType()->getElementType(); 1158 } 1159 1160 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1161 1162 // If the source and destination are integer or pointer types, just do an 1163 // extension or truncation to the desired type. 1164 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1165 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1166 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1167 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1168 } 1169 1170 // If load is legal, just bitcast the src pointer. 1171 if (SrcSize >= DstSize) { 1172 // Generally SrcSize is never greater than DstSize, since this means we are 1173 // losing bits. However, this can happen in cases where the structure has 1174 // additional padding, for example due to a user specified alignment. 1175 // 1176 // FIXME: Assert that we aren't truncating non-padding bits when have access 1177 // to that information. 1178 Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty)); 1179 return CGF.Builder.CreateLoad(Src); 1180 } 1181 1182 // Otherwise do coercion through memory. This is stupid, but simple. 1183 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1184 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1185 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 1186 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1187 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1188 false); 1189 return CGF.Builder.CreateLoad(Tmp); 1190 } 1191 1192 // Function to store a first-class aggregate into memory. We prefer to 1193 // store the elements rather than the aggregate to be more friendly to 1194 // fast-isel. 1195 // FIXME: Do we need to recurse here? 1196 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1197 Address Dest, bool DestIsVolatile) { 1198 // Prefer scalar stores to first-class aggregate stores. 1199 if (llvm::StructType *STy = 1200 dyn_cast<llvm::StructType>(Val->getType())) { 1201 const llvm::StructLayout *Layout = 1202 CGF.CGM.getDataLayout().getStructLayout(STy); 1203 1204 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1205 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1206 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1207 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1208 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1209 } 1210 } else { 1211 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1212 } 1213 } 1214 1215 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1216 /// where the source and destination may have different types. The 1217 /// destination is known to be aligned to \arg DstAlign bytes. 1218 /// 1219 /// This safely handles the case when the src type is larger than the 1220 /// destination type; the upper bits of the src will be lost. 1221 static void CreateCoercedStore(llvm::Value *Src, 1222 Address Dst, 1223 bool DstIsVolatile, 1224 CodeGenFunction &CGF) { 1225 llvm::Type *SrcTy = Src->getType(); 1226 llvm::Type *DstTy = Dst.getType()->getElementType(); 1227 if (SrcTy == DstTy) { 1228 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1229 return; 1230 } 1231 1232 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1233 1234 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1235 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1236 DstTy = Dst.getType()->getElementType(); 1237 } 1238 1239 // If the source and destination are integer or pointer types, just do an 1240 // extension or truncation to the desired type. 1241 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1242 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1243 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1244 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1245 return; 1246 } 1247 1248 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1249 1250 // If store is legal, just bitcast the src pointer. 1251 if (SrcSize <= DstSize) { 1252 Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy)); 1253 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1254 } else { 1255 // Otherwise do coercion through memory. This is stupid, but 1256 // simple. 1257 1258 // Generally SrcSize is never greater than DstSize, since this means we are 1259 // losing bits. However, this can happen in cases where the structure has 1260 // additional padding, for example due to a user specified alignment. 1261 // 1262 // FIXME: Assert that we aren't truncating non-padding bits when have access 1263 // to that information. 1264 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1265 CGF.Builder.CreateStore(Src, Tmp); 1266 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1267 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1268 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1269 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1270 false); 1271 } 1272 } 1273 1274 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1275 const ABIArgInfo &info) { 1276 if (unsigned offset = info.getDirectOffset()) { 1277 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1278 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1279 CharUnits::fromQuantity(offset)); 1280 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1281 } 1282 return addr; 1283 } 1284 1285 namespace { 1286 1287 /// Encapsulates information about the way function arguments from 1288 /// CGFunctionInfo should be passed to actual LLVM IR function. 1289 class ClangToLLVMArgMapping { 1290 static const unsigned InvalidIndex = ~0U; 1291 unsigned InallocaArgNo; 1292 unsigned SRetArgNo; 1293 unsigned TotalIRArgs; 1294 1295 /// Arguments of LLVM IR function corresponding to single Clang argument. 1296 struct IRArgs { 1297 unsigned PaddingArgIndex; 1298 // Argument is expanded to IR arguments at positions 1299 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1300 unsigned FirstArgIndex; 1301 unsigned NumberOfArgs; 1302 1303 IRArgs() 1304 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1305 NumberOfArgs(0) {} 1306 }; 1307 1308 SmallVector<IRArgs, 8> ArgInfo; 1309 1310 public: 1311 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1312 bool OnlyRequiredArgs = false) 1313 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1314 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1315 construct(Context, FI, OnlyRequiredArgs); 1316 } 1317 1318 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1319 unsigned getInallocaArgNo() const { 1320 assert(hasInallocaArg()); 1321 return InallocaArgNo; 1322 } 1323 1324 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1325 unsigned getSRetArgNo() const { 1326 assert(hasSRetArg()); 1327 return SRetArgNo; 1328 } 1329 1330 unsigned totalIRArgs() const { return TotalIRArgs; } 1331 1332 bool hasPaddingArg(unsigned ArgNo) const { 1333 assert(ArgNo < ArgInfo.size()); 1334 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1335 } 1336 unsigned getPaddingArgNo(unsigned ArgNo) const { 1337 assert(hasPaddingArg(ArgNo)); 1338 return ArgInfo[ArgNo].PaddingArgIndex; 1339 } 1340 1341 /// Returns index of first IR argument corresponding to ArgNo, and their 1342 /// quantity. 1343 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1344 assert(ArgNo < ArgInfo.size()); 1345 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1346 ArgInfo[ArgNo].NumberOfArgs); 1347 } 1348 1349 private: 1350 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1351 bool OnlyRequiredArgs); 1352 }; 1353 1354 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1355 const CGFunctionInfo &FI, 1356 bool OnlyRequiredArgs) { 1357 unsigned IRArgNo = 0; 1358 bool SwapThisWithSRet = false; 1359 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1360 1361 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1362 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1363 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1364 } 1365 1366 unsigned ArgNo = 0; 1367 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1368 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1369 ++I, ++ArgNo) { 1370 assert(I != FI.arg_end()); 1371 QualType ArgType = I->type; 1372 const ABIArgInfo &AI = I->info; 1373 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1374 auto &IRArgs = ArgInfo[ArgNo]; 1375 1376 if (AI.getPaddingType()) 1377 IRArgs.PaddingArgIndex = IRArgNo++; 1378 1379 switch (AI.getKind()) { 1380 case ABIArgInfo::Extend: 1381 case ABIArgInfo::Direct: { 1382 // FIXME: handle sseregparm someday... 1383 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1384 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1385 IRArgs.NumberOfArgs = STy->getNumElements(); 1386 } else { 1387 IRArgs.NumberOfArgs = 1; 1388 } 1389 break; 1390 } 1391 case ABIArgInfo::Indirect: 1392 IRArgs.NumberOfArgs = 1; 1393 break; 1394 case ABIArgInfo::Ignore: 1395 case ABIArgInfo::InAlloca: 1396 // ignore and inalloca doesn't have matching LLVM parameters. 1397 IRArgs.NumberOfArgs = 0; 1398 break; 1399 case ABIArgInfo::CoerceAndExpand: 1400 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1401 break; 1402 case ABIArgInfo::Expand: 1403 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1404 break; 1405 } 1406 1407 if (IRArgs.NumberOfArgs > 0) { 1408 IRArgs.FirstArgIndex = IRArgNo; 1409 IRArgNo += IRArgs.NumberOfArgs; 1410 } 1411 1412 // Skip over the sret parameter when it comes second. We already handled it 1413 // above. 1414 if (IRArgNo == 1 && SwapThisWithSRet) 1415 IRArgNo++; 1416 } 1417 assert(ArgNo == ArgInfo.size()); 1418 1419 if (FI.usesInAlloca()) 1420 InallocaArgNo = IRArgNo++; 1421 1422 TotalIRArgs = IRArgNo; 1423 } 1424 } // namespace 1425 1426 /***/ 1427 1428 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1429 return FI.getReturnInfo().isIndirect(); 1430 } 1431 1432 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1433 return ReturnTypeUsesSRet(FI) && 1434 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1435 } 1436 1437 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1438 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1439 switch (BT->getKind()) { 1440 default: 1441 return false; 1442 case BuiltinType::Float: 1443 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1444 case BuiltinType::Double: 1445 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1446 case BuiltinType::LongDouble: 1447 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1448 } 1449 } 1450 1451 return false; 1452 } 1453 1454 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1455 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1456 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1457 if (BT->getKind() == BuiltinType::LongDouble) 1458 return getTarget().useObjCFP2RetForComplexLongDouble(); 1459 } 1460 } 1461 1462 return false; 1463 } 1464 1465 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1466 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1467 return GetFunctionType(FI); 1468 } 1469 1470 llvm::FunctionType * 1471 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1472 1473 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1474 (void)Inserted; 1475 assert(Inserted && "Recursively being processed?"); 1476 1477 llvm::Type *resultType = nullptr; 1478 const ABIArgInfo &retAI = FI.getReturnInfo(); 1479 switch (retAI.getKind()) { 1480 case ABIArgInfo::Expand: 1481 llvm_unreachable("Invalid ABI kind for return argument"); 1482 1483 case ABIArgInfo::Extend: 1484 case ABIArgInfo::Direct: 1485 resultType = retAI.getCoerceToType(); 1486 break; 1487 1488 case ABIArgInfo::InAlloca: 1489 if (retAI.getInAllocaSRet()) { 1490 // sret things on win32 aren't void, they return the sret pointer. 1491 QualType ret = FI.getReturnType(); 1492 llvm::Type *ty = ConvertType(ret); 1493 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1494 resultType = llvm::PointerType::get(ty, addressSpace); 1495 } else { 1496 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1497 } 1498 break; 1499 1500 case ABIArgInfo::Indirect: 1501 case ABIArgInfo::Ignore: 1502 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1503 break; 1504 1505 case ABIArgInfo::CoerceAndExpand: 1506 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1507 break; 1508 } 1509 1510 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1511 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1512 1513 // Add type for sret argument. 1514 if (IRFunctionArgs.hasSRetArg()) { 1515 QualType Ret = FI.getReturnType(); 1516 llvm::Type *Ty = ConvertType(Ret); 1517 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1518 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1519 llvm::PointerType::get(Ty, AddressSpace); 1520 } 1521 1522 // Add type for inalloca argument. 1523 if (IRFunctionArgs.hasInallocaArg()) { 1524 auto ArgStruct = FI.getArgStruct(); 1525 assert(ArgStruct); 1526 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1527 } 1528 1529 // Add in all of the required arguments. 1530 unsigned ArgNo = 0; 1531 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1532 ie = it + FI.getNumRequiredArgs(); 1533 for (; it != ie; ++it, ++ArgNo) { 1534 const ABIArgInfo &ArgInfo = it->info; 1535 1536 // Insert a padding type to ensure proper alignment. 1537 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1538 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1539 ArgInfo.getPaddingType(); 1540 1541 unsigned FirstIRArg, NumIRArgs; 1542 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1543 1544 switch (ArgInfo.getKind()) { 1545 case ABIArgInfo::Ignore: 1546 case ABIArgInfo::InAlloca: 1547 assert(NumIRArgs == 0); 1548 break; 1549 1550 case ABIArgInfo::Indirect: { 1551 assert(NumIRArgs == 1); 1552 // indirect arguments are always on the stack, which is addr space #0. 1553 llvm::Type *LTy = ConvertTypeForMem(it->type); 1554 ArgTypes[FirstIRArg] = LTy->getPointerTo(); 1555 break; 1556 } 1557 1558 case ABIArgInfo::Extend: 1559 case ABIArgInfo::Direct: { 1560 // Fast-isel and the optimizer generally like scalar values better than 1561 // FCAs, so we flatten them if this is safe to do for this argument. 1562 llvm::Type *argType = ArgInfo.getCoerceToType(); 1563 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1564 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1565 assert(NumIRArgs == st->getNumElements()); 1566 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1567 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1568 } else { 1569 assert(NumIRArgs == 1); 1570 ArgTypes[FirstIRArg] = argType; 1571 } 1572 break; 1573 } 1574 1575 case ABIArgInfo::CoerceAndExpand: { 1576 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1577 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1578 *ArgTypesIter++ = EltTy; 1579 } 1580 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1581 break; 1582 } 1583 1584 case ABIArgInfo::Expand: 1585 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1586 getExpandedTypes(it->type, ArgTypesIter); 1587 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1588 break; 1589 } 1590 } 1591 1592 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1593 assert(Erased && "Not in set?"); 1594 1595 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1596 } 1597 1598 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1599 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1600 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1601 1602 if (!isFuncTypeConvertible(FPT)) 1603 return llvm::StructType::get(getLLVMContext()); 1604 1605 const CGFunctionInfo *Info; 1606 if (isa<CXXDestructorDecl>(MD)) 1607 Info = 1608 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1609 else 1610 Info = &arrangeCXXMethodDeclaration(MD); 1611 return GetFunctionType(*Info); 1612 } 1613 1614 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1615 llvm::AttrBuilder &FuncAttrs, 1616 const FunctionProtoType *FPT) { 1617 if (!FPT) 1618 return; 1619 1620 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1621 FPT->isNothrow(Ctx)) 1622 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1623 } 1624 1625 void CodeGenModule::ConstructAttributeList( 1626 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1627 AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) { 1628 llvm::AttrBuilder FuncAttrs; 1629 llvm::AttrBuilder RetAttrs; 1630 bool HasOptnone = false; 1631 1632 CallingConv = FI.getEffectiveCallingConvention(); 1633 1634 if (FI.isNoReturn()) 1635 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1636 1637 // If we have information about the function prototype, we can learn 1638 // attributes form there. 1639 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1640 CalleeInfo.getCalleeFunctionProtoType()); 1641 1642 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1643 1644 bool HasAnyX86InterruptAttr = false; 1645 // FIXME: handle sseregparm someday... 1646 if (TargetDecl) { 1647 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1648 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1649 if (TargetDecl->hasAttr<NoThrowAttr>()) 1650 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1651 if (TargetDecl->hasAttr<NoReturnAttr>()) 1652 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1653 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1654 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1655 if (TargetDecl->hasAttr<ConvergentAttr>()) 1656 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1657 1658 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1659 AddAttributesFromFunctionProtoType( 1660 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1661 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1662 // These attributes are not inherited by overloads. 1663 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1664 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1665 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1666 } 1667 1668 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1669 if (TargetDecl->hasAttr<ConstAttr>()) { 1670 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1671 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1672 } else if (TargetDecl->hasAttr<PureAttr>()) { 1673 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1674 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1675 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1676 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1677 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1678 } 1679 if (TargetDecl->hasAttr<RestrictAttr>()) 1680 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1681 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1682 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1683 1684 HasAnyX86InterruptAttr = TargetDecl->hasAttr<AnyX86InterruptAttr>(); 1685 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1686 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1687 Optional<unsigned> NumElemsParam; 1688 // alloc_size args are base-1, 0 means not present. 1689 if (unsigned N = AllocSize->getNumElemsParam()) 1690 NumElemsParam = N - 1; 1691 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1, 1692 NumElemsParam); 1693 } 1694 } 1695 1696 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1697 if (!HasOptnone) { 1698 if (CodeGenOpts.OptimizeSize) 1699 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1700 if (CodeGenOpts.OptimizeSize == 2) 1701 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1702 } 1703 1704 if (CodeGenOpts.DisableRedZone) 1705 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1706 if (CodeGenOpts.NoImplicitFloat) 1707 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1708 if (CodeGenOpts.EnableSegmentedStacks && 1709 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1710 FuncAttrs.addAttribute("split-stack"); 1711 1712 if (AttrOnCallSite) { 1713 // Attributes that should go on the call site only. 1714 if (!CodeGenOpts.SimplifyLibCalls || 1715 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1716 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1717 if (!CodeGenOpts.TrapFuncName.empty()) 1718 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1719 } else { 1720 // Attributes that should go on the function, but not the call site. 1721 if (!CodeGenOpts.DisableFPElim) { 1722 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1723 } else if (CodeGenOpts.OmitLeafFramePointer) { 1724 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1725 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1726 } else { 1727 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1728 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1729 } 1730 1731 bool DisableTailCalls = 1732 CodeGenOpts.DisableTailCalls || HasAnyX86InterruptAttr || 1733 (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>()); 1734 FuncAttrs.addAttribute( 1735 "disable-tail-calls", 1736 llvm::toStringRef(DisableTailCalls)); 1737 1738 FuncAttrs.addAttribute("less-precise-fpmad", 1739 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1740 1741 if (!CodeGenOpts.FPDenormalMode.empty()) 1742 FuncAttrs.addAttribute("denormal-fp-math", 1743 CodeGenOpts.FPDenormalMode); 1744 1745 FuncAttrs.addAttribute("no-trapping-math", 1746 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1747 1748 // TODO: Are these all needed? 1749 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1750 FuncAttrs.addAttribute("no-infs-fp-math", 1751 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1752 FuncAttrs.addAttribute("no-nans-fp-math", 1753 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1754 FuncAttrs.addAttribute("unsafe-fp-math", 1755 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1756 FuncAttrs.addAttribute("use-soft-float", 1757 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1758 FuncAttrs.addAttribute("stack-protector-buffer-size", 1759 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1760 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1761 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1762 FuncAttrs.addAttribute( 1763 "correctly-rounded-divide-sqrt-fp-math", 1764 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1765 1766 // TODO: Reciprocal estimate codegen options should apply to instructions? 1767 std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals; 1768 if (!Recips.empty()) 1769 FuncAttrs.addAttribute("reciprocal-estimates", 1770 llvm::join(Recips.begin(), Recips.end(), ",")); 1771 1772 if (CodeGenOpts.StackRealignment) 1773 FuncAttrs.addAttribute("stackrealign"); 1774 if (CodeGenOpts.Backchain) 1775 FuncAttrs.addAttribute("backchain"); 1776 1777 // Add target-cpu and target-features attributes to functions. If 1778 // we have a decl for the function and it has a target attribute then 1779 // parse that and add it to the feature set. 1780 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1781 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1782 if (FD && FD->hasAttr<TargetAttr>()) { 1783 llvm::StringMap<bool> FeatureMap; 1784 getFunctionFeatureMap(FeatureMap, FD); 1785 1786 // Produce the canonical string for this set of features. 1787 std::vector<std::string> Features; 1788 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1789 ie = FeatureMap.end(); 1790 it != ie; ++it) 1791 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1792 1793 // Now add the target-cpu and target-features to the function. 1794 // While we populated the feature map above, we still need to 1795 // get and parse the target attribute so we can get the cpu for 1796 // the function. 1797 const auto *TD = FD->getAttr<TargetAttr>(); 1798 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1799 if (ParsedAttr.second != "") 1800 TargetCPU = ParsedAttr.second; 1801 if (TargetCPU != "") 1802 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1803 if (!Features.empty()) { 1804 std::sort(Features.begin(), Features.end()); 1805 FuncAttrs.addAttribute( 1806 "target-features", 1807 llvm::join(Features.begin(), Features.end(), ",")); 1808 } 1809 } else { 1810 // Otherwise just add the existing target cpu and target features to the 1811 // function. 1812 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1813 if (TargetCPU != "") 1814 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1815 if (!Features.empty()) { 1816 std::sort(Features.begin(), Features.end()); 1817 FuncAttrs.addAttribute( 1818 "target-features", 1819 llvm::join(Features.begin(), Features.end(), ",")); 1820 } 1821 } 1822 } 1823 1824 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1825 // Conservatively, mark all functions and calls in CUDA as convergent 1826 // (meaning, they may call an intrinsically convergent op, such as 1827 // __syncthreads(), and so can't have certain optimizations applied around 1828 // them). LLVM will remove this attribute where it safely can. 1829 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1830 1831 // Exceptions aren't supported in CUDA device code. 1832 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1833 1834 // Respect -fcuda-flush-denormals-to-zero. 1835 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1836 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1837 } 1838 1839 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1840 1841 QualType RetTy = FI.getReturnType(); 1842 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1843 switch (RetAI.getKind()) { 1844 case ABIArgInfo::Extend: 1845 if (RetTy->hasSignedIntegerRepresentation()) 1846 RetAttrs.addAttribute(llvm::Attribute::SExt); 1847 else if (RetTy->hasUnsignedIntegerRepresentation()) 1848 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1849 // FALL THROUGH 1850 case ABIArgInfo::Direct: 1851 if (RetAI.getInReg()) 1852 RetAttrs.addAttribute(llvm::Attribute::InReg); 1853 break; 1854 case ABIArgInfo::Ignore: 1855 break; 1856 1857 case ABIArgInfo::InAlloca: 1858 case ABIArgInfo::Indirect: { 1859 // inalloca and sret disable readnone and readonly 1860 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1861 .removeAttribute(llvm::Attribute::ReadNone); 1862 break; 1863 } 1864 1865 case ABIArgInfo::CoerceAndExpand: 1866 break; 1867 1868 case ABIArgInfo::Expand: 1869 llvm_unreachable("Invalid ABI kind for return argument"); 1870 } 1871 1872 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1873 QualType PTy = RefTy->getPointeeType(); 1874 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1875 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1876 .getQuantity()); 1877 else if (getContext().getTargetAddressSpace(PTy) == 0) 1878 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1879 } 1880 1881 // Attach return attributes. 1882 if (RetAttrs.hasAttributes()) { 1883 PAL.push_back(llvm::AttributeSet::get( 1884 getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs)); 1885 } 1886 1887 bool hasUsedSRet = false; 1888 1889 // Attach attributes to sret. 1890 if (IRFunctionArgs.hasSRetArg()) { 1891 llvm::AttrBuilder SRETAttrs; 1892 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1893 hasUsedSRet = true; 1894 if (RetAI.getInReg()) 1895 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1896 PAL.push_back(llvm::AttributeSet::get( 1897 getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs)); 1898 } 1899 1900 // Attach attributes to inalloca argument. 1901 if (IRFunctionArgs.hasInallocaArg()) { 1902 llvm::AttrBuilder Attrs; 1903 Attrs.addAttribute(llvm::Attribute::InAlloca); 1904 PAL.push_back(llvm::AttributeSet::get( 1905 getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs)); 1906 } 1907 1908 unsigned ArgNo = 0; 1909 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1910 E = FI.arg_end(); 1911 I != E; ++I, ++ArgNo) { 1912 QualType ParamType = I->type; 1913 const ABIArgInfo &AI = I->info; 1914 llvm::AttrBuilder Attrs; 1915 1916 // Add attribute for padding argument, if necessary. 1917 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1918 if (AI.getPaddingInReg()) 1919 PAL.push_back(llvm::AttributeSet::get( 1920 getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1, 1921 llvm::Attribute::InReg)); 1922 } 1923 1924 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1925 // have the corresponding parameter variable. It doesn't make 1926 // sense to do it here because parameters are so messed up. 1927 switch (AI.getKind()) { 1928 case ABIArgInfo::Extend: 1929 if (ParamType->isSignedIntegerOrEnumerationType()) 1930 Attrs.addAttribute(llvm::Attribute::SExt); 1931 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1932 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1933 Attrs.addAttribute(llvm::Attribute::SExt); 1934 else 1935 Attrs.addAttribute(llvm::Attribute::ZExt); 1936 } 1937 // FALL THROUGH 1938 case ABIArgInfo::Direct: 1939 if (ArgNo == 0 && FI.isChainCall()) 1940 Attrs.addAttribute(llvm::Attribute::Nest); 1941 else if (AI.getInReg()) 1942 Attrs.addAttribute(llvm::Attribute::InReg); 1943 break; 1944 1945 case ABIArgInfo::Indirect: { 1946 if (AI.getInReg()) 1947 Attrs.addAttribute(llvm::Attribute::InReg); 1948 1949 if (AI.getIndirectByVal()) 1950 Attrs.addAttribute(llvm::Attribute::ByVal); 1951 1952 CharUnits Align = AI.getIndirectAlign(); 1953 1954 // In a byval argument, it is important that the required 1955 // alignment of the type is honored, as LLVM might be creating a 1956 // *new* stack object, and needs to know what alignment to give 1957 // it. (Sometimes it can deduce a sensible alignment on its own, 1958 // but not if clang decides it must emit a packed struct, or the 1959 // user specifies increased alignment requirements.) 1960 // 1961 // This is different from indirect *not* byval, where the object 1962 // exists already, and the align attribute is purely 1963 // informative. 1964 assert(!Align.isZero()); 1965 1966 // For now, only add this when we have a byval argument. 1967 // TODO: be less lazy about updating test cases. 1968 if (AI.getIndirectByVal()) 1969 Attrs.addAlignmentAttr(Align.getQuantity()); 1970 1971 // byval disables readnone and readonly. 1972 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1973 .removeAttribute(llvm::Attribute::ReadNone); 1974 break; 1975 } 1976 case ABIArgInfo::Ignore: 1977 case ABIArgInfo::Expand: 1978 case ABIArgInfo::CoerceAndExpand: 1979 break; 1980 1981 case ABIArgInfo::InAlloca: 1982 // inalloca disables readnone and readonly. 1983 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1984 .removeAttribute(llvm::Attribute::ReadNone); 1985 continue; 1986 } 1987 1988 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 1989 QualType PTy = RefTy->getPointeeType(); 1990 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1991 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1992 .getQuantity()); 1993 else if (getContext().getTargetAddressSpace(PTy) == 0) 1994 Attrs.addAttribute(llvm::Attribute::NonNull); 1995 } 1996 1997 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 1998 case ParameterABI::Ordinary: 1999 break; 2000 2001 case ParameterABI::SwiftIndirectResult: { 2002 // Add 'sret' if we haven't already used it for something, but 2003 // only if the result is void. 2004 if (!hasUsedSRet && RetTy->isVoidType()) { 2005 Attrs.addAttribute(llvm::Attribute::StructRet); 2006 hasUsedSRet = true; 2007 } 2008 2009 // Add 'noalias' in either case. 2010 Attrs.addAttribute(llvm::Attribute::NoAlias); 2011 2012 // Add 'dereferenceable' and 'alignment'. 2013 auto PTy = ParamType->getPointeeType(); 2014 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2015 auto info = getContext().getTypeInfoInChars(PTy); 2016 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2017 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2018 info.second.getQuantity())); 2019 } 2020 break; 2021 } 2022 2023 case ParameterABI::SwiftErrorResult: 2024 Attrs.addAttribute(llvm::Attribute::SwiftError); 2025 break; 2026 2027 case ParameterABI::SwiftContext: 2028 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2029 break; 2030 } 2031 2032 if (Attrs.hasAttributes()) { 2033 unsigned FirstIRArg, NumIRArgs; 2034 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2035 for (unsigned i = 0; i < NumIRArgs; i++) 2036 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), 2037 FirstIRArg + i + 1, Attrs)); 2038 } 2039 } 2040 assert(ArgNo == FI.arg_size()); 2041 2042 if (FuncAttrs.hasAttributes()) 2043 PAL.push_back(llvm:: 2044 AttributeSet::get(getLLVMContext(), 2045 llvm::AttributeSet::FunctionIndex, 2046 FuncAttrs)); 2047 } 2048 2049 /// An argument came in as a promoted argument; demote it back to its 2050 /// declared type. 2051 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2052 const VarDecl *var, 2053 llvm::Value *value) { 2054 llvm::Type *varType = CGF.ConvertType(var->getType()); 2055 2056 // This can happen with promotions that actually don't change the 2057 // underlying type, like the enum promotions. 2058 if (value->getType() == varType) return value; 2059 2060 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2061 && "unexpected promotion type"); 2062 2063 if (isa<llvm::IntegerType>(varType)) 2064 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2065 2066 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2067 } 2068 2069 /// Returns the attribute (either parameter attribute, or function 2070 /// attribute), which declares argument ArgNo to be non-null. 2071 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2072 QualType ArgType, unsigned ArgNo) { 2073 // FIXME: __attribute__((nonnull)) can also be applied to: 2074 // - references to pointers, where the pointee is known to be 2075 // nonnull (apparently a Clang extension) 2076 // - transparent unions containing pointers 2077 // In the former case, LLVM IR cannot represent the constraint. In 2078 // the latter case, we have no guarantee that the transparent union 2079 // is in fact passed as a pointer. 2080 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2081 return nullptr; 2082 // First, check attribute on parameter itself. 2083 if (PVD) { 2084 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2085 return ParmNNAttr; 2086 } 2087 // Check function attributes. 2088 if (!FD) 2089 return nullptr; 2090 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2091 if (NNAttr->isNonNull(ArgNo)) 2092 return NNAttr; 2093 } 2094 return nullptr; 2095 } 2096 2097 namespace { 2098 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2099 Address Temp; 2100 Address Arg; 2101 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2102 void Emit(CodeGenFunction &CGF, Flags flags) override { 2103 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2104 CGF.Builder.CreateStore(errorValue, Arg); 2105 } 2106 }; 2107 } 2108 2109 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2110 llvm::Function *Fn, 2111 const FunctionArgList &Args) { 2112 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2113 // Naked functions don't have prologues. 2114 return; 2115 2116 // If this is an implicit-return-zero function, go ahead and 2117 // initialize the return value. TODO: it might be nice to have 2118 // a more general mechanism for this that didn't require synthesized 2119 // return statements. 2120 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2121 if (FD->hasImplicitReturnZero()) { 2122 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2123 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2124 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2125 Builder.CreateStore(Zero, ReturnValue); 2126 } 2127 } 2128 2129 // FIXME: We no longer need the types from FunctionArgList; lift up and 2130 // simplify. 2131 2132 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2133 // Flattened function arguments. 2134 SmallVector<llvm::Value *, 16> FnArgs; 2135 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2136 for (auto &Arg : Fn->args()) { 2137 FnArgs.push_back(&Arg); 2138 } 2139 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2140 2141 // If we're using inalloca, all the memory arguments are GEPs off of the last 2142 // parameter, which is a pointer to the complete memory area. 2143 Address ArgStruct = Address::invalid(); 2144 const llvm::StructLayout *ArgStructLayout = nullptr; 2145 if (IRFunctionArgs.hasInallocaArg()) { 2146 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2147 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2148 FI.getArgStructAlignment()); 2149 2150 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2151 } 2152 2153 // Name the struct return parameter. 2154 if (IRFunctionArgs.hasSRetArg()) { 2155 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2156 AI->setName("agg.result"); 2157 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1, 2158 llvm::Attribute::NoAlias)); 2159 } 2160 2161 // Track if we received the parameter as a pointer (indirect, byval, or 2162 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2163 // into a local alloca for us. 2164 SmallVector<ParamValue, 16> ArgVals; 2165 ArgVals.reserve(Args.size()); 2166 2167 // Create a pointer value for every parameter declaration. This usually 2168 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2169 // any cleanups or do anything that might unwind. We do that separately, so 2170 // we can push the cleanups in the correct order for the ABI. 2171 assert(FI.arg_size() == Args.size() && 2172 "Mismatch between function signature & arguments."); 2173 unsigned ArgNo = 0; 2174 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2175 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2176 i != e; ++i, ++info_it, ++ArgNo) { 2177 const VarDecl *Arg = *i; 2178 QualType Ty = info_it->type; 2179 const ABIArgInfo &ArgI = info_it->info; 2180 2181 bool isPromoted = 2182 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2183 2184 unsigned FirstIRArg, NumIRArgs; 2185 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2186 2187 switch (ArgI.getKind()) { 2188 case ABIArgInfo::InAlloca: { 2189 assert(NumIRArgs == 0); 2190 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2191 CharUnits FieldOffset = 2192 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2193 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2194 Arg->getName()); 2195 ArgVals.push_back(ParamValue::forIndirect(V)); 2196 break; 2197 } 2198 2199 case ABIArgInfo::Indirect: { 2200 assert(NumIRArgs == 1); 2201 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2202 2203 if (!hasScalarEvaluationKind(Ty)) { 2204 // Aggregates and complex variables are accessed by reference. All we 2205 // need to do is realign the value, if requested. 2206 Address V = ParamAddr; 2207 if (ArgI.getIndirectRealign()) { 2208 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2209 2210 // Copy from the incoming argument pointer to the temporary with the 2211 // appropriate alignment. 2212 // 2213 // FIXME: We should have a common utility for generating an aggregate 2214 // copy. 2215 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2216 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2217 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2218 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2219 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2220 V = AlignedTemp; 2221 } 2222 ArgVals.push_back(ParamValue::forIndirect(V)); 2223 } else { 2224 // Load scalar value from indirect argument. 2225 llvm::Value *V = 2226 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2227 2228 if (isPromoted) 2229 V = emitArgumentDemotion(*this, Arg, V); 2230 ArgVals.push_back(ParamValue::forDirect(V)); 2231 } 2232 break; 2233 } 2234 2235 case ABIArgInfo::Extend: 2236 case ABIArgInfo::Direct: { 2237 2238 // If we have the trivial case, handle it with no muss and fuss. 2239 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2240 ArgI.getCoerceToType() == ConvertType(Ty) && 2241 ArgI.getDirectOffset() == 0) { 2242 assert(NumIRArgs == 1); 2243 llvm::Value *V = FnArgs[FirstIRArg]; 2244 auto AI = cast<llvm::Argument>(V); 2245 2246 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2247 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2248 PVD->getFunctionScopeIndex())) 2249 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2250 AI->getArgNo() + 1, 2251 llvm::Attribute::NonNull)); 2252 2253 QualType OTy = PVD->getOriginalType(); 2254 if (const auto *ArrTy = 2255 getContext().getAsConstantArrayType(OTy)) { 2256 // A C99 array parameter declaration with the static keyword also 2257 // indicates dereferenceability, and if the size is constant we can 2258 // use the dereferenceable attribute (which requires the size in 2259 // bytes). 2260 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2261 QualType ETy = ArrTy->getElementType(); 2262 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2263 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2264 ArrSize) { 2265 llvm::AttrBuilder Attrs; 2266 Attrs.addDereferenceableAttr( 2267 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2268 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2269 AI->getArgNo() + 1, Attrs)); 2270 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2271 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2272 AI->getArgNo() + 1, 2273 llvm::Attribute::NonNull)); 2274 } 2275 } 2276 } else if (const auto *ArrTy = 2277 getContext().getAsVariableArrayType(OTy)) { 2278 // For C99 VLAs with the static keyword, we don't know the size so 2279 // we can't use the dereferenceable attribute, but in addrspace(0) 2280 // we know that it must be nonnull. 2281 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2282 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2283 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2284 AI->getArgNo() + 1, 2285 llvm::Attribute::NonNull)); 2286 } 2287 2288 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2289 if (!AVAttr) 2290 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2291 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2292 if (AVAttr) { 2293 llvm::Value *AlignmentValue = 2294 EmitScalarExpr(AVAttr->getAlignment()); 2295 llvm::ConstantInt *AlignmentCI = 2296 cast<llvm::ConstantInt>(AlignmentValue); 2297 unsigned Alignment = 2298 std::min((unsigned) AlignmentCI->getZExtValue(), 2299 +llvm::Value::MaximumAlignment); 2300 2301 llvm::AttrBuilder Attrs; 2302 Attrs.addAlignmentAttr(Alignment); 2303 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2304 AI->getArgNo() + 1, Attrs)); 2305 } 2306 } 2307 2308 if (Arg->getType().isRestrictQualified()) 2309 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2310 AI->getArgNo() + 1, 2311 llvm::Attribute::NoAlias)); 2312 2313 // LLVM expects swifterror parameters to be used in very restricted 2314 // ways. Copy the value into a less-restricted temporary. 2315 if (FI.getExtParameterInfo(ArgNo).getABI() 2316 == ParameterABI::SwiftErrorResult) { 2317 QualType pointeeTy = Ty->getPointeeType(); 2318 assert(pointeeTy->isPointerType()); 2319 Address temp = 2320 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2321 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2322 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2323 Builder.CreateStore(incomingErrorValue, temp); 2324 V = temp.getPointer(); 2325 2326 // Push a cleanup to copy the value back at the end of the function. 2327 // The convention does not guarantee that the value will be written 2328 // back if the function exits with an unwind exception. 2329 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2330 } 2331 2332 // Ensure the argument is the correct type. 2333 if (V->getType() != ArgI.getCoerceToType()) 2334 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2335 2336 if (isPromoted) 2337 V = emitArgumentDemotion(*this, Arg, V); 2338 2339 // Because of merging of function types from multiple decls it is 2340 // possible for the type of an argument to not match the corresponding 2341 // type in the function type. Since we are codegening the callee 2342 // in here, add a cast to the argument type. 2343 llvm::Type *LTy = ConvertType(Arg->getType()); 2344 if (V->getType() != LTy) 2345 V = Builder.CreateBitCast(V, LTy); 2346 2347 ArgVals.push_back(ParamValue::forDirect(V)); 2348 break; 2349 } 2350 2351 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2352 Arg->getName()); 2353 2354 // Pointer to store into. 2355 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2356 2357 // Fast-isel and the optimizer generally like scalar values better than 2358 // FCAs, so we flatten them if this is safe to do for this argument. 2359 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2360 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2361 STy->getNumElements() > 1) { 2362 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2363 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2364 llvm::Type *DstTy = Ptr.getElementType(); 2365 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2366 2367 Address AddrToStoreInto = Address::invalid(); 2368 if (SrcSize <= DstSize) { 2369 AddrToStoreInto = 2370 Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 2371 } else { 2372 AddrToStoreInto = 2373 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2374 } 2375 2376 assert(STy->getNumElements() == NumIRArgs); 2377 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2378 auto AI = FnArgs[FirstIRArg + i]; 2379 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2380 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2381 Address EltPtr = 2382 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2383 Builder.CreateStore(AI, EltPtr); 2384 } 2385 2386 if (SrcSize > DstSize) { 2387 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2388 } 2389 2390 } else { 2391 // Simple case, just do a coerced store of the argument into the alloca. 2392 assert(NumIRArgs == 1); 2393 auto AI = FnArgs[FirstIRArg]; 2394 AI->setName(Arg->getName() + ".coerce"); 2395 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2396 } 2397 2398 // Match to what EmitParmDecl is expecting for this type. 2399 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2400 llvm::Value *V = 2401 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2402 if (isPromoted) 2403 V = emitArgumentDemotion(*this, Arg, V); 2404 ArgVals.push_back(ParamValue::forDirect(V)); 2405 } else { 2406 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2407 } 2408 break; 2409 } 2410 2411 case ABIArgInfo::CoerceAndExpand: { 2412 // Reconstruct into a temporary. 2413 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2414 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2415 2416 auto coercionType = ArgI.getCoerceAndExpandType(); 2417 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2418 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2419 2420 unsigned argIndex = FirstIRArg; 2421 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2422 llvm::Type *eltType = coercionType->getElementType(i); 2423 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2424 continue; 2425 2426 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2427 auto elt = FnArgs[argIndex++]; 2428 Builder.CreateStore(elt, eltAddr); 2429 } 2430 assert(argIndex == FirstIRArg + NumIRArgs); 2431 break; 2432 } 2433 2434 case ABIArgInfo::Expand: { 2435 // If this structure was expanded into multiple arguments then 2436 // we need to create a temporary and reconstruct it from the 2437 // arguments. 2438 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2439 LValue LV = MakeAddrLValue(Alloca, Ty); 2440 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2441 2442 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2443 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2444 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2445 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2446 auto AI = FnArgs[FirstIRArg + i]; 2447 AI->setName(Arg->getName() + "." + Twine(i)); 2448 } 2449 break; 2450 } 2451 2452 case ABIArgInfo::Ignore: 2453 assert(NumIRArgs == 0); 2454 // Initialize the local variable appropriately. 2455 if (!hasScalarEvaluationKind(Ty)) { 2456 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2457 } else { 2458 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2459 ArgVals.push_back(ParamValue::forDirect(U)); 2460 } 2461 break; 2462 } 2463 } 2464 2465 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2466 for (int I = Args.size() - 1; I >= 0; --I) 2467 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2468 } else { 2469 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2470 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2471 } 2472 } 2473 2474 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2475 while (insn->use_empty()) { 2476 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2477 if (!bitcast) return; 2478 2479 // This is "safe" because we would have used a ConstantExpr otherwise. 2480 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2481 bitcast->eraseFromParent(); 2482 } 2483 } 2484 2485 /// Try to emit a fused autorelease of a return result. 2486 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2487 llvm::Value *result) { 2488 // We must be immediately followed the cast. 2489 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2490 if (BB->empty()) return nullptr; 2491 if (&BB->back() != result) return nullptr; 2492 2493 llvm::Type *resultType = result->getType(); 2494 2495 // result is in a BasicBlock and is therefore an Instruction. 2496 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2497 2498 SmallVector<llvm::Instruction *, 4> InstsToKill; 2499 2500 // Look for: 2501 // %generator = bitcast %type1* %generator2 to %type2* 2502 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2503 // We would have emitted this as a constant if the operand weren't 2504 // an Instruction. 2505 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2506 2507 // Require the generator to be immediately followed by the cast. 2508 if (generator->getNextNode() != bitcast) 2509 return nullptr; 2510 2511 InstsToKill.push_back(bitcast); 2512 } 2513 2514 // Look for: 2515 // %generator = call i8* @objc_retain(i8* %originalResult) 2516 // or 2517 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2518 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2519 if (!call) return nullptr; 2520 2521 bool doRetainAutorelease; 2522 2523 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2524 doRetainAutorelease = true; 2525 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2526 .objc_retainAutoreleasedReturnValue) { 2527 doRetainAutorelease = false; 2528 2529 // If we emitted an assembly marker for this call (and the 2530 // ARCEntrypoints field should have been set if so), go looking 2531 // for that call. If we can't find it, we can't do this 2532 // optimization. But it should always be the immediately previous 2533 // instruction, unless we needed bitcasts around the call. 2534 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2535 llvm::Instruction *prev = call->getPrevNode(); 2536 assert(prev); 2537 if (isa<llvm::BitCastInst>(prev)) { 2538 prev = prev->getPrevNode(); 2539 assert(prev); 2540 } 2541 assert(isa<llvm::CallInst>(prev)); 2542 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2543 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2544 InstsToKill.push_back(prev); 2545 } 2546 } else { 2547 return nullptr; 2548 } 2549 2550 result = call->getArgOperand(0); 2551 InstsToKill.push_back(call); 2552 2553 // Keep killing bitcasts, for sanity. Note that we no longer care 2554 // about precise ordering as long as there's exactly one use. 2555 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2556 if (!bitcast->hasOneUse()) break; 2557 InstsToKill.push_back(bitcast); 2558 result = bitcast->getOperand(0); 2559 } 2560 2561 // Delete all the unnecessary instructions, from latest to earliest. 2562 for (auto *I : InstsToKill) 2563 I->eraseFromParent(); 2564 2565 // Do the fused retain/autorelease if we were asked to. 2566 if (doRetainAutorelease) 2567 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2568 2569 // Cast back to the result type. 2570 return CGF.Builder.CreateBitCast(result, resultType); 2571 } 2572 2573 /// If this is a +1 of the value of an immutable 'self', remove it. 2574 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2575 llvm::Value *result) { 2576 // This is only applicable to a method with an immutable 'self'. 2577 const ObjCMethodDecl *method = 2578 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2579 if (!method) return nullptr; 2580 const VarDecl *self = method->getSelfDecl(); 2581 if (!self->getType().isConstQualified()) return nullptr; 2582 2583 // Look for a retain call. 2584 llvm::CallInst *retainCall = 2585 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2586 if (!retainCall || 2587 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2588 return nullptr; 2589 2590 // Look for an ordinary load of 'self'. 2591 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2592 llvm::LoadInst *load = 2593 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2594 if (!load || load->isAtomic() || load->isVolatile() || 2595 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2596 return nullptr; 2597 2598 // Okay! Burn it all down. This relies for correctness on the 2599 // assumption that the retain is emitted as part of the return and 2600 // that thereafter everything is used "linearly". 2601 llvm::Type *resultType = result->getType(); 2602 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2603 assert(retainCall->use_empty()); 2604 retainCall->eraseFromParent(); 2605 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2606 2607 return CGF.Builder.CreateBitCast(load, resultType); 2608 } 2609 2610 /// Emit an ARC autorelease of the result of a function. 2611 /// 2612 /// \return the value to actually return from the function 2613 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2614 llvm::Value *result) { 2615 // If we're returning 'self', kill the initial retain. This is a 2616 // heuristic attempt to "encourage correctness" in the really unfortunate 2617 // case where we have a return of self during a dealloc and we desperately 2618 // need to avoid the possible autorelease. 2619 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2620 return self; 2621 2622 // At -O0, try to emit a fused retain/autorelease. 2623 if (CGF.shouldUseFusedARCCalls()) 2624 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2625 return fused; 2626 2627 return CGF.EmitARCAutoreleaseReturnValue(result); 2628 } 2629 2630 /// Heuristically search for a dominating store to the return-value slot. 2631 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2632 // Check if a User is a store which pointerOperand is the ReturnValue. 2633 // We are looking for stores to the ReturnValue, not for stores of the 2634 // ReturnValue to some other location. 2635 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2636 auto *SI = dyn_cast<llvm::StoreInst>(U); 2637 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2638 return nullptr; 2639 // These aren't actually possible for non-coerced returns, and we 2640 // only care about non-coerced returns on this code path. 2641 assert(!SI->isAtomic() && !SI->isVolatile()); 2642 return SI; 2643 }; 2644 // If there are multiple uses of the return-value slot, just check 2645 // for something immediately preceding the IP. Sometimes this can 2646 // happen with how we generate implicit-returns; it can also happen 2647 // with noreturn cleanups. 2648 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2649 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2650 if (IP->empty()) return nullptr; 2651 llvm::Instruction *I = &IP->back(); 2652 2653 // Skip lifetime markers 2654 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2655 IE = IP->rend(); 2656 II != IE; ++II) { 2657 if (llvm::IntrinsicInst *Intrinsic = 2658 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2659 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2660 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2661 ++II; 2662 if (II == IE) 2663 break; 2664 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2665 continue; 2666 } 2667 } 2668 I = &*II; 2669 break; 2670 } 2671 2672 return GetStoreIfValid(I); 2673 } 2674 2675 llvm::StoreInst *store = 2676 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2677 if (!store) return nullptr; 2678 2679 // Now do a first-and-dirty dominance check: just walk up the 2680 // single-predecessors chain from the current insertion point. 2681 llvm::BasicBlock *StoreBB = store->getParent(); 2682 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2683 while (IP != StoreBB) { 2684 if (!(IP = IP->getSinglePredecessor())) 2685 return nullptr; 2686 } 2687 2688 // Okay, the store's basic block dominates the insertion point; we 2689 // can do our thing. 2690 return store; 2691 } 2692 2693 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2694 bool EmitRetDbgLoc, 2695 SourceLocation EndLoc) { 2696 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2697 // Naked functions don't have epilogues. 2698 Builder.CreateUnreachable(); 2699 return; 2700 } 2701 2702 // Functions with no result always return void. 2703 if (!ReturnValue.isValid()) { 2704 Builder.CreateRetVoid(); 2705 return; 2706 } 2707 2708 llvm::DebugLoc RetDbgLoc; 2709 llvm::Value *RV = nullptr; 2710 QualType RetTy = FI.getReturnType(); 2711 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2712 2713 switch (RetAI.getKind()) { 2714 case ABIArgInfo::InAlloca: 2715 // Aggregrates get evaluated directly into the destination. Sometimes we 2716 // need to return the sret value in a register, though. 2717 assert(hasAggregateEvaluationKind(RetTy)); 2718 if (RetAI.getInAllocaSRet()) { 2719 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2720 --EI; 2721 llvm::Value *ArgStruct = &*EI; 2722 llvm::Value *SRet = Builder.CreateStructGEP( 2723 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2724 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2725 } 2726 break; 2727 2728 case ABIArgInfo::Indirect: { 2729 auto AI = CurFn->arg_begin(); 2730 if (RetAI.isSRetAfterThis()) 2731 ++AI; 2732 switch (getEvaluationKind(RetTy)) { 2733 case TEK_Complex: { 2734 ComplexPairTy RT = 2735 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2736 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2737 /*isInit*/ true); 2738 break; 2739 } 2740 case TEK_Aggregate: 2741 // Do nothing; aggregrates get evaluated directly into the destination. 2742 break; 2743 case TEK_Scalar: 2744 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2745 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2746 /*isInit*/ true); 2747 break; 2748 } 2749 break; 2750 } 2751 2752 case ABIArgInfo::Extend: 2753 case ABIArgInfo::Direct: 2754 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2755 RetAI.getDirectOffset() == 0) { 2756 // The internal return value temp always will have pointer-to-return-type 2757 // type, just do a load. 2758 2759 // If there is a dominating store to ReturnValue, we can elide 2760 // the load, zap the store, and usually zap the alloca. 2761 if (llvm::StoreInst *SI = 2762 findDominatingStoreToReturnValue(*this)) { 2763 // Reuse the debug location from the store unless there is 2764 // cleanup code to be emitted between the store and return 2765 // instruction. 2766 if (EmitRetDbgLoc && !AutoreleaseResult) 2767 RetDbgLoc = SI->getDebugLoc(); 2768 // Get the stored value and nuke the now-dead store. 2769 RV = SI->getValueOperand(); 2770 SI->eraseFromParent(); 2771 2772 // If that was the only use of the return value, nuke it as well now. 2773 auto returnValueInst = ReturnValue.getPointer(); 2774 if (returnValueInst->use_empty()) { 2775 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2776 alloca->eraseFromParent(); 2777 ReturnValue = Address::invalid(); 2778 } 2779 } 2780 2781 // Otherwise, we have to do a simple load. 2782 } else { 2783 RV = Builder.CreateLoad(ReturnValue); 2784 } 2785 } else { 2786 // If the value is offset in memory, apply the offset now. 2787 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2788 2789 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2790 } 2791 2792 // In ARC, end functions that return a retainable type with a call 2793 // to objc_autoreleaseReturnValue. 2794 if (AutoreleaseResult) { 2795 #ifndef NDEBUG 2796 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2797 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2798 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2799 // CurCodeDecl or BlockInfo. 2800 QualType RT; 2801 2802 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2803 RT = FD->getReturnType(); 2804 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2805 RT = MD->getReturnType(); 2806 else if (isa<BlockDecl>(CurCodeDecl)) 2807 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2808 else 2809 llvm_unreachable("Unexpected function/method type"); 2810 2811 assert(getLangOpts().ObjCAutoRefCount && 2812 !FI.isReturnsRetained() && 2813 RT->isObjCRetainableType()); 2814 #endif 2815 RV = emitAutoreleaseOfResult(*this, RV); 2816 } 2817 2818 break; 2819 2820 case ABIArgInfo::Ignore: 2821 break; 2822 2823 case ABIArgInfo::CoerceAndExpand: { 2824 auto coercionType = RetAI.getCoerceAndExpandType(); 2825 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2826 2827 // Load all of the coerced elements out into results. 2828 llvm::SmallVector<llvm::Value*, 4> results; 2829 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2830 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2831 auto coercedEltType = coercionType->getElementType(i); 2832 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2833 continue; 2834 2835 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2836 auto elt = Builder.CreateLoad(eltAddr); 2837 results.push_back(elt); 2838 } 2839 2840 // If we have one result, it's the single direct result type. 2841 if (results.size() == 1) { 2842 RV = results[0]; 2843 2844 // Otherwise, we need to make a first-class aggregate. 2845 } else { 2846 // Construct a return type that lacks padding elements. 2847 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2848 2849 RV = llvm::UndefValue::get(returnType); 2850 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2851 RV = Builder.CreateInsertValue(RV, results[i], i); 2852 } 2853 } 2854 break; 2855 } 2856 2857 case ABIArgInfo::Expand: 2858 llvm_unreachable("Invalid ABI kind for return argument"); 2859 } 2860 2861 llvm::Instruction *Ret; 2862 if (RV) { 2863 if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) { 2864 if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) { 2865 SanitizerScope SanScope(this); 2866 llvm::Value *Cond = Builder.CreateICmpNE( 2867 RV, llvm::Constant::getNullValue(RV->getType())); 2868 llvm::Constant *StaticData[] = { 2869 EmitCheckSourceLocation(EndLoc), 2870 EmitCheckSourceLocation(RetNNAttr->getLocation()), 2871 }; 2872 EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute), 2873 SanitizerHandler::NonnullReturn, StaticData, None); 2874 } 2875 } 2876 Ret = Builder.CreateRet(RV); 2877 } else { 2878 Ret = Builder.CreateRetVoid(); 2879 } 2880 2881 if (RetDbgLoc) 2882 Ret->setDebugLoc(std::move(RetDbgLoc)); 2883 } 2884 2885 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2886 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2887 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2888 } 2889 2890 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2891 QualType Ty) { 2892 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2893 // placeholders. 2894 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2895 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 2896 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 2897 2898 // FIXME: When we generate this IR in one pass, we shouldn't need 2899 // this win32-specific alignment hack. 2900 CharUnits Align = CharUnits::fromQuantity(4); 2901 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 2902 2903 return AggValueSlot::forAddr(Address(Placeholder, Align), 2904 Ty.getQualifiers(), 2905 AggValueSlot::IsNotDestructed, 2906 AggValueSlot::DoesNotNeedGCBarriers, 2907 AggValueSlot::IsNotAliased); 2908 } 2909 2910 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 2911 const VarDecl *param, 2912 SourceLocation loc) { 2913 // StartFunction converted the ABI-lowered parameter(s) into a 2914 // local alloca. We need to turn that into an r-value suitable 2915 // for EmitCall. 2916 Address local = GetAddrOfLocalVar(param); 2917 2918 QualType type = param->getType(); 2919 2920 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 2921 "cannot emit delegate call arguments for inalloca arguments!"); 2922 2923 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 2924 // but the argument needs to be the original pointer. 2925 if (type->isReferenceType()) { 2926 args.add(RValue::get(Builder.CreateLoad(local)), type); 2927 2928 // In ARC, move out of consumed arguments so that the release cleanup 2929 // entered by StartFunction doesn't cause an over-release. This isn't 2930 // optimal -O0 code generation, but it should get cleaned up when 2931 // optimization is enabled. This also assumes that delegate calls are 2932 // performed exactly once for a set of arguments, but that should be safe. 2933 } else if (getLangOpts().ObjCAutoRefCount && 2934 param->hasAttr<NSConsumedAttr>() && 2935 type->isObjCRetainableType()) { 2936 llvm::Value *ptr = Builder.CreateLoad(local); 2937 auto null = 2938 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 2939 Builder.CreateStore(null, local); 2940 args.add(RValue::get(ptr), type); 2941 2942 // For the most part, we just need to load the alloca, except that 2943 // aggregate r-values are actually pointers to temporaries. 2944 } else { 2945 args.add(convertTempToRValue(local, type, loc), type); 2946 } 2947 } 2948 2949 static bool isProvablyNull(llvm::Value *addr) { 2950 return isa<llvm::ConstantPointerNull>(addr); 2951 } 2952 2953 /// Emit the actual writing-back of a writeback. 2954 static void emitWriteback(CodeGenFunction &CGF, 2955 const CallArgList::Writeback &writeback) { 2956 const LValue &srcLV = writeback.Source; 2957 Address srcAddr = srcLV.getAddress(); 2958 assert(!isProvablyNull(srcAddr.getPointer()) && 2959 "shouldn't have writeback for provably null argument"); 2960 2961 llvm::BasicBlock *contBB = nullptr; 2962 2963 // If the argument wasn't provably non-null, we need to null check 2964 // before doing the store. 2965 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 2966 if (!provablyNonNull) { 2967 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 2968 contBB = CGF.createBasicBlock("icr.done"); 2969 2970 llvm::Value *isNull = 2971 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2972 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 2973 CGF.EmitBlock(writebackBB); 2974 } 2975 2976 // Load the value to writeback. 2977 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 2978 2979 // Cast it back, in case we're writing an id to a Foo* or something. 2980 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 2981 "icr.writeback-cast"); 2982 2983 // Perform the writeback. 2984 2985 // If we have a "to use" value, it's something we need to emit a use 2986 // of. This has to be carefully threaded in: if it's done after the 2987 // release it's potentially undefined behavior (and the optimizer 2988 // will ignore it), and if it happens before the retain then the 2989 // optimizer could move the release there. 2990 if (writeback.ToUse) { 2991 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 2992 2993 // Retain the new value. No need to block-copy here: the block's 2994 // being passed up the stack. 2995 value = CGF.EmitARCRetainNonBlock(value); 2996 2997 // Emit the intrinsic use here. 2998 CGF.EmitARCIntrinsicUse(writeback.ToUse); 2999 3000 // Load the old value (primitively). 3001 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3002 3003 // Put the new value in place (primitively). 3004 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3005 3006 // Release the old value. 3007 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3008 3009 // Otherwise, we can just do a normal lvalue store. 3010 } else { 3011 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3012 } 3013 3014 // Jump to the continuation block. 3015 if (!provablyNonNull) 3016 CGF.EmitBlock(contBB); 3017 } 3018 3019 static void emitWritebacks(CodeGenFunction &CGF, 3020 const CallArgList &args) { 3021 for (const auto &I : args.writebacks()) 3022 emitWriteback(CGF, I); 3023 } 3024 3025 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3026 const CallArgList &CallArgs) { 3027 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 3028 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3029 CallArgs.getCleanupsToDeactivate(); 3030 // Iterate in reverse to increase the likelihood of popping the cleanup. 3031 for (const auto &I : llvm::reverse(Cleanups)) { 3032 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3033 I.IsActiveIP->eraseFromParent(); 3034 } 3035 } 3036 3037 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3038 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3039 if (uop->getOpcode() == UO_AddrOf) 3040 return uop->getSubExpr(); 3041 return nullptr; 3042 } 3043 3044 /// Emit an argument that's being passed call-by-writeback. That is, 3045 /// we are passing the address of an __autoreleased temporary; it 3046 /// might be copy-initialized with the current value of the given 3047 /// address, but it will definitely be copied out of after the call. 3048 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3049 const ObjCIndirectCopyRestoreExpr *CRE) { 3050 LValue srcLV; 3051 3052 // Make an optimistic effort to emit the address as an l-value. 3053 // This can fail if the argument expression is more complicated. 3054 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3055 srcLV = CGF.EmitLValue(lvExpr); 3056 3057 // Otherwise, just emit it as a scalar. 3058 } else { 3059 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3060 3061 QualType srcAddrType = 3062 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3063 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3064 } 3065 Address srcAddr = srcLV.getAddress(); 3066 3067 // The dest and src types don't necessarily match in LLVM terms 3068 // because of the crazy ObjC compatibility rules. 3069 3070 llvm::PointerType *destType = 3071 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3072 3073 // If the address is a constant null, just pass the appropriate null. 3074 if (isProvablyNull(srcAddr.getPointer())) { 3075 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3076 CRE->getType()); 3077 return; 3078 } 3079 3080 // Create the temporary. 3081 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3082 CGF.getPointerAlign(), 3083 "icr.temp"); 3084 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3085 // and that cleanup will be conditional if we can't prove that the l-value 3086 // isn't null, so we need to register a dominating point so that the cleanups 3087 // system will make valid IR. 3088 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3089 3090 // Zero-initialize it if we're not doing a copy-initialization. 3091 bool shouldCopy = CRE->shouldCopy(); 3092 if (!shouldCopy) { 3093 llvm::Value *null = 3094 llvm::ConstantPointerNull::get( 3095 cast<llvm::PointerType>(destType->getElementType())); 3096 CGF.Builder.CreateStore(null, temp); 3097 } 3098 3099 llvm::BasicBlock *contBB = nullptr; 3100 llvm::BasicBlock *originBB = nullptr; 3101 3102 // If the address is *not* known to be non-null, we need to switch. 3103 llvm::Value *finalArgument; 3104 3105 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 3106 if (provablyNonNull) { 3107 finalArgument = temp.getPointer(); 3108 } else { 3109 llvm::Value *isNull = 3110 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3111 3112 finalArgument = CGF.Builder.CreateSelect(isNull, 3113 llvm::ConstantPointerNull::get(destType), 3114 temp.getPointer(), "icr.argument"); 3115 3116 // If we need to copy, then the load has to be conditional, which 3117 // means we need control flow. 3118 if (shouldCopy) { 3119 originBB = CGF.Builder.GetInsertBlock(); 3120 contBB = CGF.createBasicBlock("icr.cont"); 3121 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3122 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3123 CGF.EmitBlock(copyBB); 3124 condEval.begin(CGF); 3125 } 3126 } 3127 3128 llvm::Value *valueToUse = nullptr; 3129 3130 // Perform a copy if necessary. 3131 if (shouldCopy) { 3132 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3133 assert(srcRV.isScalar()); 3134 3135 llvm::Value *src = srcRV.getScalarVal(); 3136 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3137 "icr.cast"); 3138 3139 // Use an ordinary store, not a store-to-lvalue. 3140 CGF.Builder.CreateStore(src, temp); 3141 3142 // If optimization is enabled, and the value was held in a 3143 // __strong variable, we need to tell the optimizer that this 3144 // value has to stay alive until we're doing the store back. 3145 // This is because the temporary is effectively unretained, 3146 // and so otherwise we can violate the high-level semantics. 3147 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3148 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3149 valueToUse = src; 3150 } 3151 } 3152 3153 // Finish the control flow if we needed it. 3154 if (shouldCopy && !provablyNonNull) { 3155 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3156 CGF.EmitBlock(contBB); 3157 3158 // Make a phi for the value to intrinsically use. 3159 if (valueToUse) { 3160 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3161 "icr.to-use"); 3162 phiToUse->addIncoming(valueToUse, copyBB); 3163 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3164 originBB); 3165 valueToUse = phiToUse; 3166 } 3167 3168 condEval.end(CGF); 3169 } 3170 3171 args.addWriteback(srcLV, temp, valueToUse); 3172 args.add(RValue::get(finalArgument), CRE->getType()); 3173 } 3174 3175 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3176 assert(!StackBase); 3177 3178 // Save the stack. 3179 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3180 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3181 } 3182 3183 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3184 if (StackBase) { 3185 // Restore the stack after the call. 3186 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3187 CGF.Builder.CreateCall(F, StackBase); 3188 } 3189 } 3190 3191 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3192 SourceLocation ArgLoc, 3193 const FunctionDecl *FD, 3194 unsigned ParmNum) { 3195 if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD) 3196 return; 3197 auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr; 3198 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3199 auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo); 3200 if (!NNAttr) 3201 return; 3202 SanitizerScope SanScope(this); 3203 assert(RV.isScalar()); 3204 llvm::Value *V = RV.getScalarVal(); 3205 llvm::Value *Cond = 3206 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3207 llvm::Constant *StaticData[] = { 3208 EmitCheckSourceLocation(ArgLoc), 3209 EmitCheckSourceLocation(NNAttr->getLocation()), 3210 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3211 }; 3212 EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute), 3213 SanitizerHandler::NonnullArg, StaticData, None); 3214 } 3215 3216 void CodeGenFunction::EmitCallArgs( 3217 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3218 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3219 const FunctionDecl *CalleeDecl, unsigned ParamsToSkip, 3220 EvaluationOrder Order) { 3221 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3222 3223 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) { 3224 if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams()) 3225 return; 3226 auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3227 if (PS == nullptr) 3228 return; 3229 3230 const auto &Context = getContext(); 3231 auto SizeTy = Context.getSizeType(); 3232 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3233 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T); 3234 Args.add(RValue::get(V), SizeTy); 3235 }; 3236 3237 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3238 // because arguments are destroyed left to right in the callee. As a special 3239 // case, there are certain language constructs that require left-to-right 3240 // evaluation, and in those cases we consider the evaluation order requirement 3241 // to trump the "destruction order is reverse construction order" guarantee. 3242 bool LeftToRight = 3243 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3244 ? Order == EvaluationOrder::ForceLeftToRight 3245 : Order != EvaluationOrder::ForceRightToLeft; 3246 3247 // Insert a stack save if we're going to need any inalloca args. 3248 bool HasInAllocaArgs = false; 3249 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3250 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3251 I != E && !HasInAllocaArgs; ++I) 3252 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3253 if (HasInAllocaArgs) { 3254 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3255 Args.allocateArgumentMemory(*this); 3256 } 3257 } 3258 3259 // Evaluate each argument in the appropriate order. 3260 size_t CallArgsStart = Args.size(); 3261 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3262 unsigned Idx = LeftToRight ? I : E - I - 1; 3263 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3264 if (!LeftToRight) MaybeEmitImplicitObjectSize(Idx, *Arg); 3265 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3266 EmitNonNullArgCheck(Args.back().RV, ArgTypes[Idx], (*Arg)->getExprLoc(), 3267 CalleeDecl, ParamsToSkip + Idx); 3268 if (LeftToRight) MaybeEmitImplicitObjectSize(Idx, *Arg); 3269 } 3270 3271 if (!LeftToRight) { 3272 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3273 // IR function. 3274 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3275 } 3276 } 3277 3278 namespace { 3279 3280 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3281 DestroyUnpassedArg(Address Addr, QualType Ty) 3282 : Addr(Addr), Ty(Ty) {} 3283 3284 Address Addr; 3285 QualType Ty; 3286 3287 void Emit(CodeGenFunction &CGF, Flags flags) override { 3288 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3289 assert(!Dtor->isTrivial()); 3290 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3291 /*Delegating=*/false, Addr); 3292 } 3293 }; 3294 3295 struct DisableDebugLocationUpdates { 3296 CodeGenFunction &CGF; 3297 bool disabledDebugInfo; 3298 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3299 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3300 CGF.disableDebugInfo(); 3301 } 3302 ~DisableDebugLocationUpdates() { 3303 if (disabledDebugInfo) 3304 CGF.enableDebugInfo(); 3305 } 3306 }; 3307 3308 } // end anonymous namespace 3309 3310 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3311 QualType type) { 3312 DisableDebugLocationUpdates Dis(*this, E); 3313 if (const ObjCIndirectCopyRestoreExpr *CRE 3314 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3315 assert(getLangOpts().ObjCAutoRefCount); 3316 assert(getContext().hasSameUnqualifiedType(E->getType(), type)); 3317 return emitWritebackArg(*this, args, CRE); 3318 } 3319 3320 assert(type->isReferenceType() == E->isGLValue() && 3321 "reference binding to unmaterialized r-value!"); 3322 3323 if (E->isGLValue()) { 3324 assert(E->getObjectKind() == OK_Ordinary); 3325 return args.add(EmitReferenceBindingToExpr(E), type); 3326 } 3327 3328 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3329 3330 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3331 // However, we still have to push an EH-only cleanup in case we unwind before 3332 // we make it to the call. 3333 if (HasAggregateEvalKind && 3334 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3335 // If we're using inalloca, use the argument memory. Otherwise, use a 3336 // temporary. 3337 AggValueSlot Slot; 3338 if (args.isUsingInAlloca()) 3339 Slot = createPlaceholderSlot(*this, type); 3340 else 3341 Slot = CreateAggTemp(type, "agg.tmp"); 3342 3343 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3344 bool DestroyedInCallee = 3345 RD && RD->hasNonTrivialDestructor() && 3346 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 3347 if (DestroyedInCallee) 3348 Slot.setExternallyDestructed(); 3349 3350 EmitAggExpr(E, Slot); 3351 RValue RV = Slot.asRValue(); 3352 args.add(RV, type); 3353 3354 if (DestroyedInCallee) { 3355 // Create a no-op GEP between the placeholder and the cleanup so we can 3356 // RAUW it successfully. It also serves as a marker of the first 3357 // instruction where the cleanup is active. 3358 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3359 type); 3360 // This unreachable is a temporary marker which will be removed later. 3361 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3362 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3363 } 3364 return; 3365 } 3366 3367 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3368 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3369 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3370 assert(L.isSimple()); 3371 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 3372 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 3373 } else { 3374 // We can't represent a misaligned lvalue in the CallArgList, so copy 3375 // to an aligned temporary now. 3376 Address tmp = CreateMemTemp(type); 3377 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 3378 args.add(RValue::getAggregate(tmp), type); 3379 } 3380 return; 3381 } 3382 3383 args.add(EmitAnyExprToTemp(E), type); 3384 } 3385 3386 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3387 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3388 // implicitly widens null pointer constants that are arguments to varargs 3389 // functions to pointer-sized ints. 3390 if (!getTarget().getTriple().isOSWindows()) 3391 return Arg->getType(); 3392 3393 if (Arg->getType()->isIntegerType() && 3394 getContext().getTypeSize(Arg->getType()) < 3395 getContext().getTargetInfo().getPointerWidth(0) && 3396 Arg->isNullPointerConstant(getContext(), 3397 Expr::NPC_ValueDependentIsNotNull)) { 3398 return getContext().getIntPtrType(); 3399 } 3400 3401 return Arg->getType(); 3402 } 3403 3404 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3405 // optimizer it can aggressively ignore unwind edges. 3406 void 3407 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3408 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3409 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3410 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3411 CGM.getNoObjCARCExceptionsMetadata()); 3412 } 3413 3414 /// Emits a call to the given no-arguments nounwind runtime function. 3415 llvm::CallInst * 3416 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3417 const llvm::Twine &name) { 3418 return EmitNounwindRuntimeCall(callee, None, name); 3419 } 3420 3421 /// Emits a call to the given nounwind runtime function. 3422 llvm::CallInst * 3423 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3424 ArrayRef<llvm::Value*> args, 3425 const llvm::Twine &name) { 3426 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3427 call->setDoesNotThrow(); 3428 return call; 3429 } 3430 3431 /// Emits a simple call (never an invoke) to the given no-arguments 3432 /// runtime function. 3433 llvm::CallInst * 3434 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3435 const llvm::Twine &name) { 3436 return EmitRuntimeCall(callee, None, name); 3437 } 3438 3439 // Calls which may throw must have operand bundles indicating which funclet 3440 // they are nested within. 3441 static void 3442 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad, 3443 SmallVectorImpl<llvm::OperandBundleDef> &BundleList) { 3444 // There is no need for a funclet operand bundle if we aren't inside a 3445 // funclet. 3446 if (!CurrentFuncletPad) 3447 return; 3448 3449 // Skip intrinsics which cannot throw. 3450 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3451 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3452 return; 3453 3454 BundleList.emplace_back("funclet", CurrentFuncletPad); 3455 } 3456 3457 /// Emits a simple call (never an invoke) to the given runtime function. 3458 llvm::CallInst * 3459 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3460 ArrayRef<llvm::Value*> args, 3461 const llvm::Twine &name) { 3462 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3463 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3464 3465 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name); 3466 call->setCallingConv(getRuntimeCC()); 3467 return call; 3468 } 3469 3470 /// Emits a call or invoke to the given noreturn runtime function. 3471 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3472 ArrayRef<llvm::Value*> args) { 3473 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3474 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3475 3476 if (getInvokeDest()) { 3477 llvm::InvokeInst *invoke = 3478 Builder.CreateInvoke(callee, 3479 getUnreachableBlock(), 3480 getInvokeDest(), 3481 args, 3482 BundleList); 3483 invoke->setDoesNotReturn(); 3484 invoke->setCallingConv(getRuntimeCC()); 3485 } else { 3486 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3487 call->setDoesNotReturn(); 3488 call->setCallingConv(getRuntimeCC()); 3489 Builder.CreateUnreachable(); 3490 } 3491 } 3492 3493 /// Emits a call or invoke instruction to the given nullary runtime function. 3494 llvm::CallSite 3495 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3496 const Twine &name) { 3497 return EmitRuntimeCallOrInvoke(callee, None, name); 3498 } 3499 3500 /// Emits a call or invoke instruction to the given runtime function. 3501 llvm::CallSite 3502 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3503 ArrayRef<llvm::Value*> args, 3504 const Twine &name) { 3505 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3506 callSite.setCallingConv(getRuntimeCC()); 3507 return callSite; 3508 } 3509 3510 /// Emits a call or invoke instruction to the given function, depending 3511 /// on the current state of the EH stack. 3512 llvm::CallSite 3513 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3514 ArrayRef<llvm::Value *> Args, 3515 const Twine &Name) { 3516 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3517 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3518 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3519 3520 llvm::Instruction *Inst; 3521 if (!InvokeDest) 3522 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3523 else { 3524 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3525 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3526 Name); 3527 EmitBlock(ContBB); 3528 } 3529 3530 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3531 // optimizer it can aggressively ignore unwind edges. 3532 if (CGM.getLangOpts().ObjCAutoRefCount) 3533 AddObjCARCExceptionMetadata(Inst); 3534 3535 return llvm::CallSite(Inst); 3536 } 3537 3538 /// \brief Store a non-aggregate value to an address to initialize it. For 3539 /// initialization, a non-atomic store will be used. 3540 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3541 LValue Dst) { 3542 if (Src.isScalar()) 3543 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3544 else 3545 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3546 } 3547 3548 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3549 llvm::Value *New) { 3550 DeferredReplacements.push_back(std::make_pair(Old, New)); 3551 } 3552 3553 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3554 const CGCallee &Callee, 3555 ReturnValueSlot ReturnValue, 3556 const CallArgList &CallArgs, 3557 llvm::Instruction **callOrInvoke) { 3558 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3559 3560 assert(Callee.isOrdinary()); 3561 3562 // Handle struct-return functions by passing a pointer to the 3563 // location that we would like to return into. 3564 QualType RetTy = CallInfo.getReturnType(); 3565 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3566 3567 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3568 3569 // 1. Set up the arguments. 3570 3571 // If we're using inalloca, insert the allocation after the stack save. 3572 // FIXME: Do this earlier rather than hacking it in here! 3573 Address ArgMemory = Address::invalid(); 3574 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3575 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3576 ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct); 3577 llvm::Instruction *IP = CallArgs.getStackBase(); 3578 llvm::AllocaInst *AI; 3579 if (IP) { 3580 IP = IP->getNextNode(); 3581 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP); 3582 } else { 3583 AI = CreateTempAlloca(ArgStruct, "argmem"); 3584 } 3585 auto Align = CallInfo.getArgStructAlignment(); 3586 AI->setAlignment(Align.getQuantity()); 3587 AI->setUsedWithInAlloca(true); 3588 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3589 ArgMemory = Address(AI, Align); 3590 } 3591 3592 // Helper function to drill into the inalloca allocation. 3593 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3594 auto FieldOffset = 3595 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3596 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3597 }; 3598 3599 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3600 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3601 3602 // If the call returns a temporary with struct return, create a temporary 3603 // alloca to hold the result, unless one is given to us. 3604 Address SRetPtr = Address::invalid(); 3605 size_t UnusedReturnSize = 0; 3606 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3607 if (!ReturnValue.isNull()) { 3608 SRetPtr = ReturnValue.getValue(); 3609 } else { 3610 SRetPtr = CreateMemTemp(RetTy); 3611 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3612 uint64_t size = 3613 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3614 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3615 UnusedReturnSize = size; 3616 } 3617 } 3618 if (IRFunctionArgs.hasSRetArg()) { 3619 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3620 } else if (RetAI.isInAlloca()) { 3621 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3622 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3623 } 3624 } 3625 3626 Address swiftErrorTemp = Address::invalid(); 3627 Address swiftErrorArg = Address::invalid(); 3628 3629 // Translate all of the arguments as necessary to match the IR lowering. 3630 assert(CallInfo.arg_size() == CallArgs.size() && 3631 "Mismatch between function signature & arguments."); 3632 unsigned ArgNo = 0; 3633 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3634 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3635 I != E; ++I, ++info_it, ++ArgNo) { 3636 const ABIArgInfo &ArgInfo = info_it->info; 3637 RValue RV = I->RV; 3638 3639 // Insert a padding argument to ensure proper alignment. 3640 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3641 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3642 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3643 3644 unsigned FirstIRArg, NumIRArgs; 3645 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3646 3647 switch (ArgInfo.getKind()) { 3648 case ABIArgInfo::InAlloca: { 3649 assert(NumIRArgs == 0); 3650 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3651 if (RV.isAggregate()) { 3652 // Replace the placeholder with the appropriate argument slot GEP. 3653 llvm::Instruction *Placeholder = 3654 cast<llvm::Instruction>(RV.getAggregatePointer()); 3655 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3656 Builder.SetInsertPoint(Placeholder); 3657 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3658 Builder.restoreIP(IP); 3659 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3660 } else { 3661 // Store the RValue into the argument struct. 3662 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3663 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3664 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3665 // There are some cases where a trivial bitcast is not avoidable. The 3666 // definition of a type later in a translation unit may change it's type 3667 // from {}* to (%struct.foo*)*. 3668 if (Addr.getType() != MemType) 3669 Addr = Builder.CreateBitCast(Addr, MemType); 3670 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3671 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3672 } 3673 break; 3674 } 3675 3676 case ABIArgInfo::Indirect: { 3677 assert(NumIRArgs == 1); 3678 if (RV.isScalar() || RV.isComplex()) { 3679 // Make a temporary alloca to pass the argument. 3680 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3681 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3682 3683 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3684 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3685 } else { 3686 // We want to avoid creating an unnecessary temporary+copy here; 3687 // however, we need one in three cases: 3688 // 1. If the argument is not byval, and we are required to copy the 3689 // source. (This case doesn't occur on any common architecture.) 3690 // 2. If the argument is byval, RV is not sufficiently aligned, and 3691 // we cannot force it to be sufficiently aligned. 3692 // 3. If the argument is byval, but RV is located in an address space 3693 // different than that of the argument (0). 3694 Address Addr = RV.getAggregateAddress(); 3695 CharUnits Align = ArgInfo.getIndirectAlign(); 3696 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3697 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3698 const unsigned ArgAddrSpace = 3699 (FirstIRArg < IRFuncTy->getNumParams() 3700 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3701 : 0); 3702 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3703 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3704 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3705 Align.getQuantity(), *TD) 3706 < Align.getQuantity()) || 3707 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3708 // Create an aligned temporary, and copy to it. 3709 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3710 IRCallArgs[FirstIRArg] = AI.getPointer(); 3711 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3712 } else { 3713 // Skip the extra memcpy call. 3714 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3715 } 3716 } 3717 break; 3718 } 3719 3720 case ABIArgInfo::Ignore: 3721 assert(NumIRArgs == 0); 3722 break; 3723 3724 case ABIArgInfo::Extend: 3725 case ABIArgInfo::Direct: { 3726 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3727 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3728 ArgInfo.getDirectOffset() == 0) { 3729 assert(NumIRArgs == 1); 3730 llvm::Value *V; 3731 if (RV.isScalar()) 3732 V = RV.getScalarVal(); 3733 else 3734 V = Builder.CreateLoad(RV.getAggregateAddress()); 3735 3736 // Implement swifterror by copying into a new swifterror argument. 3737 // We'll write back in the normal path out of the call. 3738 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3739 == ParameterABI::SwiftErrorResult) { 3740 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3741 3742 QualType pointeeTy = I->Ty->getPointeeType(); 3743 swiftErrorArg = 3744 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3745 3746 swiftErrorTemp = 3747 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3748 V = swiftErrorTemp.getPointer(); 3749 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3750 3751 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3752 Builder.CreateStore(errorValue, swiftErrorTemp); 3753 } 3754 3755 // We might have to widen integers, but we should never truncate. 3756 if (ArgInfo.getCoerceToType() != V->getType() && 3757 V->getType()->isIntegerTy()) 3758 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3759 3760 // If the argument doesn't match, perform a bitcast to coerce it. This 3761 // can happen due to trivial type mismatches. 3762 if (FirstIRArg < IRFuncTy->getNumParams() && 3763 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3764 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3765 3766 IRCallArgs[FirstIRArg] = V; 3767 break; 3768 } 3769 3770 // FIXME: Avoid the conversion through memory if possible. 3771 Address Src = Address::invalid(); 3772 if (RV.isScalar() || RV.isComplex()) { 3773 Src = CreateMemTemp(I->Ty, "coerce"); 3774 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3775 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3776 } else { 3777 Src = RV.getAggregateAddress(); 3778 } 3779 3780 // If the value is offset in memory, apply the offset now. 3781 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3782 3783 // Fast-isel and the optimizer generally like scalar values better than 3784 // FCAs, so we flatten them if this is safe to do for this argument. 3785 llvm::StructType *STy = 3786 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3787 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3788 llvm::Type *SrcTy = Src.getType()->getElementType(); 3789 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3790 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3791 3792 // If the source type is smaller than the destination type of the 3793 // coerce-to logic, copy the source value into a temp alloca the size 3794 // of the destination type to allow loading all of it. The bits past 3795 // the source value are left undef. 3796 if (SrcSize < DstSize) { 3797 Address TempAlloca 3798 = CreateTempAlloca(STy, Src.getAlignment(), 3799 Src.getName() + ".coerce"); 3800 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3801 Src = TempAlloca; 3802 } else { 3803 Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy)); 3804 } 3805 3806 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3807 assert(NumIRArgs == STy->getNumElements()); 3808 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3809 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3810 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3811 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3812 IRCallArgs[FirstIRArg + i] = LI; 3813 } 3814 } else { 3815 // In the simple case, just pass the coerced loaded value. 3816 assert(NumIRArgs == 1); 3817 IRCallArgs[FirstIRArg] = 3818 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3819 } 3820 3821 break; 3822 } 3823 3824 case ABIArgInfo::CoerceAndExpand: { 3825 auto coercionType = ArgInfo.getCoerceAndExpandType(); 3826 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 3827 3828 llvm::Value *tempSize = nullptr; 3829 Address addr = Address::invalid(); 3830 if (RV.isAggregate()) { 3831 addr = RV.getAggregateAddress(); 3832 } else { 3833 assert(RV.isScalar()); // complex should always just be direct 3834 3835 llvm::Type *scalarType = RV.getScalarVal()->getType(); 3836 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 3837 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 3838 3839 tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize); 3840 3841 // Materialize to a temporary. 3842 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 3843 CharUnits::fromQuantity(std::max(layout->getAlignment(), 3844 scalarAlign))); 3845 EmitLifetimeStart(scalarSize, addr.getPointer()); 3846 3847 Builder.CreateStore(RV.getScalarVal(), addr); 3848 } 3849 3850 addr = Builder.CreateElementBitCast(addr, coercionType); 3851 3852 unsigned IRArgPos = FirstIRArg; 3853 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3854 llvm::Type *eltType = coercionType->getElementType(i); 3855 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 3856 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 3857 llvm::Value *elt = Builder.CreateLoad(eltAddr); 3858 IRCallArgs[IRArgPos++] = elt; 3859 } 3860 assert(IRArgPos == FirstIRArg + NumIRArgs); 3861 3862 if (tempSize) { 3863 EmitLifetimeEnd(tempSize, addr.getPointer()); 3864 } 3865 3866 break; 3867 } 3868 3869 case ABIArgInfo::Expand: 3870 unsigned IRArgPos = FirstIRArg; 3871 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 3872 assert(IRArgPos == FirstIRArg + NumIRArgs); 3873 break; 3874 } 3875 } 3876 3877 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 3878 3879 // If we're using inalloca, set up that argument. 3880 if (ArgMemory.isValid()) { 3881 llvm::Value *Arg = ArgMemory.getPointer(); 3882 if (CallInfo.isVariadic()) { 3883 // When passing non-POD arguments by value to variadic functions, we will 3884 // end up with a variadic prototype and an inalloca call site. In such 3885 // cases, we can't do any parameter mismatch checks. Give up and bitcast 3886 // the callee. 3887 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 3888 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 3889 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 3890 } else { 3891 llvm::Type *LastParamTy = 3892 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 3893 if (Arg->getType() != LastParamTy) { 3894 #ifndef NDEBUG 3895 // Assert that these structs have equivalent element types. 3896 llvm::StructType *FullTy = CallInfo.getArgStruct(); 3897 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 3898 cast<llvm::PointerType>(LastParamTy)->getElementType()); 3899 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 3900 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 3901 DE = DeclaredTy->element_end(), 3902 FI = FullTy->element_begin(); 3903 DI != DE; ++DI, ++FI) 3904 assert(*DI == *FI); 3905 #endif 3906 Arg = Builder.CreateBitCast(Arg, LastParamTy); 3907 } 3908 } 3909 assert(IRFunctionArgs.hasInallocaArg()); 3910 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 3911 } 3912 3913 // 2. Prepare the function pointer. 3914 3915 // If the callee is a bitcast of a non-variadic function to have a 3916 // variadic function pointer type, check to see if we can remove the 3917 // bitcast. This comes up with unprototyped functions. 3918 // 3919 // This makes the IR nicer, but more importantly it ensures that we 3920 // can inline the function at -O0 if it is marked always_inline. 3921 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 3922 llvm::FunctionType *CalleeFT = 3923 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 3924 if (!CalleeFT->isVarArg()) 3925 return Ptr; 3926 3927 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 3928 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 3929 return Ptr; 3930 3931 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 3932 if (!OrigFn) 3933 return Ptr; 3934 3935 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 3936 3937 // If the original type is variadic, or if any of the component types 3938 // disagree, we cannot remove the cast. 3939 if (OrigFT->isVarArg() || 3940 OrigFT->getNumParams() != CalleeFT->getNumParams() || 3941 OrigFT->getReturnType() != CalleeFT->getReturnType()) 3942 return Ptr; 3943 3944 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 3945 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 3946 return Ptr; 3947 3948 return OrigFn; 3949 }; 3950 CalleePtr = simplifyVariadicCallee(CalleePtr); 3951 3952 // 3. Perform the actual call. 3953 3954 // Deactivate any cleanups that we're supposed to do immediately before 3955 // the call. 3956 if (!CallArgs.getCleanupsToDeactivate().empty()) 3957 deactivateArgCleanupsBeforeCall(*this, CallArgs); 3958 3959 // Assert that the arguments we computed match up. The IR verifier 3960 // will catch this, but this is a common enough source of problems 3961 // during IRGen changes that it's way better for debugging to catch 3962 // it ourselves here. 3963 #ifndef NDEBUG 3964 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 3965 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 3966 // Inalloca argument can have different type. 3967 if (IRFunctionArgs.hasInallocaArg() && 3968 i == IRFunctionArgs.getInallocaArgNo()) 3969 continue; 3970 if (i < IRFuncTy->getNumParams()) 3971 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 3972 } 3973 #endif 3974 3975 // Compute the calling convention and attributes. 3976 unsigned CallingConv; 3977 CodeGen::AttributeListType AttributeList; 3978 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 3979 Callee.getAbstractInfo(), 3980 AttributeList, CallingConv, 3981 /*AttrOnCallSite=*/true); 3982 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 3983 AttributeList); 3984 3985 // Apply some call-site-specific attributes. 3986 // TODO: work this into building the attribute set. 3987 3988 // Apply always_inline to all calls within flatten functions. 3989 // FIXME: should this really take priority over __try, below? 3990 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 3991 !(Callee.getAbstractInfo().getCalleeDecl() && 3992 Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { 3993 Attrs = 3994 Attrs.addAttribute(getLLVMContext(), 3995 llvm::AttributeSet::FunctionIndex, 3996 llvm::Attribute::AlwaysInline); 3997 } 3998 3999 // Disable inlining inside SEH __try blocks. 4000 if (isSEHTryScope()) { 4001 Attrs = 4002 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 4003 llvm::Attribute::NoInline); 4004 } 4005 4006 // Decide whether to use a call or an invoke. 4007 bool CannotThrow; 4008 if (currentFunctionUsesSEHTry()) { 4009 // SEH cares about asynchronous exceptions, so everything can "throw." 4010 CannotThrow = false; 4011 } else if (isCleanupPadScope() && 4012 EHPersonality::get(*this).isMSVCXXPersonality()) { 4013 // The MSVC++ personality will implicitly terminate the program if an 4014 // exception is thrown during a cleanup outside of a try/catch. 4015 // We don't need to model anything in IR to get this behavior. 4016 CannotThrow = true; 4017 } else { 4018 // Otherwise, nounwind call sites will never throw. 4019 CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 4020 llvm::Attribute::NoUnwind); 4021 } 4022 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4023 4024 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4025 getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList); 4026 4027 // Emit the actual call/invoke instruction. 4028 llvm::CallSite CS; 4029 if (!InvokeDest) { 4030 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4031 } else { 4032 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4033 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4034 BundleList); 4035 EmitBlock(Cont); 4036 } 4037 llvm::Instruction *CI = CS.getInstruction(); 4038 if (callOrInvoke) 4039 *callOrInvoke = CI; 4040 4041 // Apply the attributes and calling convention. 4042 CS.setAttributes(Attrs); 4043 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4044 4045 // Apply various metadata. 4046 4047 if (!CI->getType()->isVoidTy()) 4048 CI->setName("call"); 4049 4050 // Insert instrumentation or attach profile metadata at indirect call sites. 4051 // For more details, see the comment before the definition of 4052 // IPVK_IndirectCallTarget in InstrProfData.inc. 4053 if (!CS.getCalledFunction()) 4054 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4055 CI, CalleePtr); 4056 4057 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4058 // optimizer it can aggressively ignore unwind edges. 4059 if (CGM.getLangOpts().ObjCAutoRefCount) 4060 AddObjCARCExceptionMetadata(CI); 4061 4062 // Suppress tail calls if requested. 4063 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4064 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4065 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4066 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4067 } 4068 4069 // 4. Finish the call. 4070 4071 // If the call doesn't return, finish the basic block and clear the 4072 // insertion point; this allows the rest of IRGen to discard 4073 // unreachable code. 4074 if (CS.doesNotReturn()) { 4075 if (UnusedReturnSize) 4076 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4077 SRetPtr.getPointer()); 4078 4079 Builder.CreateUnreachable(); 4080 Builder.ClearInsertionPoint(); 4081 4082 // FIXME: For now, emit a dummy basic block because expr emitters in 4083 // generally are not ready to handle emitting expressions at unreachable 4084 // points. 4085 EnsureInsertPoint(); 4086 4087 // Return a reasonable RValue. 4088 return GetUndefRValue(RetTy); 4089 } 4090 4091 // Perform the swifterror writeback. 4092 if (swiftErrorTemp.isValid()) { 4093 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4094 Builder.CreateStore(errorResult, swiftErrorArg); 4095 } 4096 4097 // Emit any call-associated writebacks immediately. Arguably this 4098 // should happen after any return-value munging. 4099 if (CallArgs.hasWritebacks()) 4100 emitWritebacks(*this, CallArgs); 4101 4102 // The stack cleanup for inalloca arguments has to run out of the normal 4103 // lexical order, so deactivate it and run it manually here. 4104 CallArgs.freeArgumentMemory(*this); 4105 4106 // Extract the return value. 4107 RValue Ret = [&] { 4108 switch (RetAI.getKind()) { 4109 case ABIArgInfo::CoerceAndExpand: { 4110 auto coercionType = RetAI.getCoerceAndExpandType(); 4111 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4112 4113 Address addr = SRetPtr; 4114 addr = Builder.CreateElementBitCast(addr, coercionType); 4115 4116 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4117 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4118 4119 unsigned unpaddedIndex = 0; 4120 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4121 llvm::Type *eltType = coercionType->getElementType(i); 4122 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4123 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4124 llvm::Value *elt = CI; 4125 if (requiresExtract) 4126 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4127 else 4128 assert(unpaddedIndex == 0); 4129 Builder.CreateStore(elt, eltAddr); 4130 } 4131 // FALLTHROUGH 4132 } 4133 4134 case ABIArgInfo::InAlloca: 4135 case ABIArgInfo::Indirect: { 4136 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4137 if (UnusedReturnSize) 4138 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4139 SRetPtr.getPointer()); 4140 return ret; 4141 } 4142 4143 case ABIArgInfo::Ignore: 4144 // If we are ignoring an argument that had a result, make sure to 4145 // construct the appropriate return value for our caller. 4146 return GetUndefRValue(RetTy); 4147 4148 case ABIArgInfo::Extend: 4149 case ABIArgInfo::Direct: { 4150 llvm::Type *RetIRTy = ConvertType(RetTy); 4151 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4152 switch (getEvaluationKind(RetTy)) { 4153 case TEK_Complex: { 4154 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4155 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4156 return RValue::getComplex(std::make_pair(Real, Imag)); 4157 } 4158 case TEK_Aggregate: { 4159 Address DestPtr = ReturnValue.getValue(); 4160 bool DestIsVolatile = ReturnValue.isVolatile(); 4161 4162 if (!DestPtr.isValid()) { 4163 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4164 DestIsVolatile = false; 4165 } 4166 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4167 return RValue::getAggregate(DestPtr); 4168 } 4169 case TEK_Scalar: { 4170 // If the argument doesn't match, perform a bitcast to coerce it. This 4171 // can happen due to trivial type mismatches. 4172 llvm::Value *V = CI; 4173 if (V->getType() != RetIRTy) 4174 V = Builder.CreateBitCast(V, RetIRTy); 4175 return RValue::get(V); 4176 } 4177 } 4178 llvm_unreachable("bad evaluation kind"); 4179 } 4180 4181 Address DestPtr = ReturnValue.getValue(); 4182 bool DestIsVolatile = ReturnValue.isVolatile(); 4183 4184 if (!DestPtr.isValid()) { 4185 DestPtr = CreateMemTemp(RetTy, "coerce"); 4186 DestIsVolatile = false; 4187 } 4188 4189 // If the value is offset in memory, apply the offset now. 4190 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4191 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4192 4193 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4194 } 4195 4196 case ABIArgInfo::Expand: 4197 llvm_unreachable("Invalid ABI kind for return argument"); 4198 } 4199 4200 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4201 } (); 4202 4203 // Emit the assume_aligned check on the return value. 4204 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4205 if (Ret.isScalar() && TargetDecl) { 4206 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4207 llvm::Value *OffsetValue = nullptr; 4208 if (const auto *Offset = AA->getOffset()) 4209 OffsetValue = EmitScalarExpr(Offset); 4210 4211 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4212 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4213 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4214 OffsetValue); 4215 } 4216 } 4217 4218 return Ret; 4219 } 4220 4221 /* VarArg handling */ 4222 4223 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4224 VAListAddr = VE->isMicrosoftABI() 4225 ? EmitMSVAListRef(VE->getSubExpr()) 4226 : EmitVAListRef(VE->getSubExpr()); 4227 QualType Ty = VE->getType(); 4228 if (VE->isMicrosoftABI()) 4229 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4230 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4231 } 4232