1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 using namespace clang;
44 using namespace CodeGen;
45
46 /***/
47
ClangCallConvToLLVMCallConv(CallingConv CC)48 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
49 switch (CC) {
50 default: return llvm::CallingConv::C;
51 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
52 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
53 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
54 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
55 case CC_Win64: return llvm::CallingConv::Win64;
56 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
57 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
58 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
59 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
60 // TODO: Add support for __pascal to LLVM.
61 case CC_X86Pascal: return llvm::CallingConv::C;
62 // TODO: Add support for __vectorcall to LLVM.
63 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
64 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
65 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall;
66 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL;
67 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
68 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
69 case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
70 case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
71 case CC_Swift: return llvm::CallingConv::Swift;
72 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
73 }
74 }
75
76 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
77 /// qualification. Either or both of RD and MD may be null. A null RD indicates
78 /// that there is no meaningful 'this' type, and a null MD can occur when
79 /// calling a method pointer.
DeriveThisType(const CXXRecordDecl * RD,const CXXMethodDecl * MD)80 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
81 const CXXMethodDecl *MD) {
82 QualType RecTy;
83 if (RD)
84 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
85 else
86 RecTy = Context.VoidTy;
87
88 if (MD)
89 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
90 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
91 }
92
93 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)94 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
95 return MD->getType()->getCanonicalTypeUnqualified()
96 .getAs<FunctionProtoType>();
97 }
98
99 /// Returns the "extra-canonicalized" return type, which discards
100 /// qualifiers on the return type. Codegen doesn't care about them,
101 /// and it makes ABI code a little easier to be able to assume that
102 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)103 static CanQualType GetReturnType(QualType RetTy) {
104 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
105 }
106
107 /// Arrange the argument and result information for a value of the given
108 /// unprototyped freestanding function type.
109 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP)110 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
111 // When translating an unprototyped function type, always use a
112 // variadic type.
113 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
114 /*instanceMethod=*/false,
115 /*chainCall=*/false, None,
116 FTNP->getExtInfo(), {}, RequiredArgs(0));
117 }
118
addExtParameterInfosForCall(llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & paramInfos,const FunctionProtoType * proto,unsigned prefixArgs,unsigned totalArgs)119 static void addExtParameterInfosForCall(
120 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
121 const FunctionProtoType *proto,
122 unsigned prefixArgs,
123 unsigned totalArgs) {
124 assert(proto->hasExtParameterInfos());
125 assert(paramInfos.size() <= prefixArgs);
126 assert(proto->getNumParams() + prefixArgs <= totalArgs);
127
128 paramInfos.reserve(totalArgs);
129
130 // Add default infos for any prefix args that don't already have infos.
131 paramInfos.resize(prefixArgs);
132
133 // Add infos for the prototype.
134 for (const auto &ParamInfo : proto->getExtParameterInfos()) {
135 paramInfos.push_back(ParamInfo);
136 // pass_object_size params have no parameter info.
137 if (ParamInfo.hasPassObjectSize())
138 paramInfos.emplace_back();
139 }
140
141 assert(paramInfos.size() <= totalArgs &&
142 "Did we forget to insert pass_object_size args?");
143 // Add default infos for the variadic and/or suffix arguments.
144 paramInfos.resize(totalArgs);
145 }
146
147 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
148 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
appendParameterTypes(const CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & paramInfos,CanQual<FunctionProtoType> FPT)149 static void appendParameterTypes(const CodeGenTypes &CGT,
150 SmallVectorImpl<CanQualType> &prefix,
151 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
152 CanQual<FunctionProtoType> FPT) {
153 // Fast path: don't touch param info if we don't need to.
154 if (!FPT->hasExtParameterInfos()) {
155 assert(paramInfos.empty() &&
156 "We have paramInfos, but the prototype doesn't?");
157 prefix.append(FPT->param_type_begin(), FPT->param_type_end());
158 return;
159 }
160
161 unsigned PrefixSize = prefix.size();
162 // In the vast majority of cases, we'll have precisely FPT->getNumParams()
163 // parameters; the only thing that can change this is the presence of
164 // pass_object_size. So, we preallocate for the common case.
165 prefix.reserve(prefix.size() + FPT->getNumParams());
166
167 auto ExtInfos = FPT->getExtParameterInfos();
168 assert(ExtInfos.size() == FPT->getNumParams());
169 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
170 prefix.push_back(FPT->getParamType(I));
171 if (ExtInfos[I].hasPassObjectSize())
172 prefix.push_back(CGT.getContext().getSizeType());
173 }
174
175 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
176 prefix.size());
177 }
178
179 /// Arrange the LLVM function layout for a value of the given function
180 /// type, on top of any implicit parameters already stored.
181 static const CGFunctionInfo &
arrangeLLVMFunctionInfo(CodeGenTypes & CGT,bool instanceMethod,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)182 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
183 SmallVectorImpl<CanQualType> &prefix,
184 CanQual<FunctionProtoType> FTP) {
185 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
186 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
187 // FIXME: Kill copy.
188 appendParameterTypes(CGT, prefix, paramInfos, FTP);
189 CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
190
191 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
192 /*chainCall=*/false, prefix,
193 FTP->getExtInfo(), paramInfos,
194 Required);
195 }
196
197 /// Arrange the argument and result information for a value of the
198 /// given freestanding function type.
199 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP)200 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
201 SmallVector<CanQualType, 16> argTypes;
202 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
203 FTP);
204 }
205
getCallingConventionForDecl(const ObjCMethodDecl * D,bool IsWindows)206 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
207 bool IsWindows) {
208 // Set the appropriate calling convention for the Function.
209 if (D->hasAttr<StdCallAttr>())
210 return CC_X86StdCall;
211
212 if (D->hasAttr<FastCallAttr>())
213 return CC_X86FastCall;
214
215 if (D->hasAttr<RegCallAttr>())
216 return CC_X86RegCall;
217
218 if (D->hasAttr<ThisCallAttr>())
219 return CC_X86ThisCall;
220
221 if (D->hasAttr<VectorCallAttr>())
222 return CC_X86VectorCall;
223
224 if (D->hasAttr<PascalAttr>())
225 return CC_X86Pascal;
226
227 if (PcsAttr *PCS = D->getAttr<PcsAttr>())
228 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
229
230 if (D->hasAttr<AArch64VectorPcsAttr>())
231 return CC_AArch64VectorCall;
232
233 if (D->hasAttr<AArch64SVEPcsAttr>())
234 return CC_AArch64SVEPCS;
235
236 if (D->hasAttr<AMDGPUKernelCallAttr>())
237 return CC_AMDGPUKernelCall;
238
239 if (D->hasAttr<IntelOclBiccAttr>())
240 return CC_IntelOclBicc;
241
242 if (D->hasAttr<MSABIAttr>())
243 return IsWindows ? CC_C : CC_Win64;
244
245 if (D->hasAttr<SysVABIAttr>())
246 return IsWindows ? CC_X86_64SysV : CC_C;
247
248 if (D->hasAttr<PreserveMostAttr>())
249 return CC_PreserveMost;
250
251 if (D->hasAttr<PreserveAllAttr>())
252 return CC_PreserveAll;
253
254 return CC_C;
255 }
256
257 /// Arrange the argument and result information for a call to an
258 /// unknown C++ non-static member function of the given abstract type.
259 /// (A null RD means we don't have any meaningful "this" argument type,
260 /// so fall back to a generic pointer type).
261 /// The member function must be an ordinary function, i.e. not a
262 /// constructor or destructor.
263 const CGFunctionInfo &
arrangeCXXMethodType(const CXXRecordDecl * RD,const FunctionProtoType * FTP,const CXXMethodDecl * MD)264 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
265 const FunctionProtoType *FTP,
266 const CXXMethodDecl *MD) {
267 SmallVector<CanQualType, 16> argTypes;
268
269 // Add the 'this' pointer.
270 argTypes.push_back(DeriveThisType(RD, MD));
271
272 return ::arrangeLLVMFunctionInfo(
273 *this, true, argTypes,
274 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
275 }
276
277 /// Set calling convention for CUDA/HIP kernel.
setCUDAKernelCallingConvention(CanQualType & FTy,CodeGenModule & CGM,const FunctionDecl * FD)278 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
279 const FunctionDecl *FD) {
280 if (FD->hasAttr<CUDAGlobalAttr>()) {
281 const FunctionType *FT = FTy->getAs<FunctionType>();
282 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
283 FTy = FT->getCanonicalTypeUnqualified();
284 }
285 }
286
287 /// Arrange the argument and result information for a declaration or
288 /// definition of the given C++ non-static member function. The
289 /// member function must be an ordinary function, i.e. not a
290 /// constructor or destructor.
291 const CGFunctionInfo &
arrangeCXXMethodDeclaration(const CXXMethodDecl * MD)292 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
293 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
294 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
295
296 CanQualType FT = GetFormalType(MD).getAs<Type>();
297 setCUDAKernelCallingConvention(FT, CGM, MD);
298 auto prototype = FT.getAs<FunctionProtoType>();
299
300 if (MD->isInstance()) {
301 // The abstract case is perfectly fine.
302 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
303 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
304 }
305
306 return arrangeFreeFunctionType(prototype);
307 }
308
inheritingCtorHasParams(const InheritedConstructor & Inherited,CXXCtorType Type)309 bool CodeGenTypes::inheritingCtorHasParams(
310 const InheritedConstructor &Inherited, CXXCtorType Type) {
311 // Parameters are unnecessary if we're constructing a base class subobject
312 // and the inherited constructor lives in a virtual base.
313 return Type == Ctor_Complete ||
314 !Inherited.getShadowDecl()->constructsVirtualBase() ||
315 !Target.getCXXABI().hasConstructorVariants();
316 }
317
318 const CGFunctionInfo &
arrangeCXXStructorDeclaration(GlobalDecl GD)319 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
320 auto *MD = cast<CXXMethodDecl>(GD.getDecl());
321
322 SmallVector<CanQualType, 16> argTypes;
323 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
324 argTypes.push_back(DeriveThisType(MD->getParent(), MD));
325
326 bool PassParams = true;
327
328 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
329 // A base class inheriting constructor doesn't get forwarded arguments
330 // needed to construct a virtual base (or base class thereof).
331 if (auto Inherited = CD->getInheritedConstructor())
332 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
333 }
334
335 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
336
337 // Add the formal parameters.
338 if (PassParams)
339 appendParameterTypes(*this, argTypes, paramInfos, FTP);
340
341 CGCXXABI::AddedStructorArgCounts AddedArgs =
342 TheCXXABI.buildStructorSignature(GD, argTypes);
343 if (!paramInfos.empty()) {
344 // Note: prefix implies after the first param.
345 if (AddedArgs.Prefix)
346 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
347 FunctionProtoType::ExtParameterInfo{});
348 if (AddedArgs.Suffix)
349 paramInfos.append(AddedArgs.Suffix,
350 FunctionProtoType::ExtParameterInfo{});
351 }
352
353 RequiredArgs required =
354 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
355 : RequiredArgs::All);
356
357 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
358 CanQualType resultType = TheCXXABI.HasThisReturn(GD)
359 ? argTypes.front()
360 : TheCXXABI.hasMostDerivedReturn(GD)
361 ? CGM.getContext().VoidPtrTy
362 : Context.VoidTy;
363 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
364 /*chainCall=*/false, argTypes, extInfo,
365 paramInfos, required);
366 }
367
368 static SmallVector<CanQualType, 16>
getArgTypesForCall(ASTContext & ctx,const CallArgList & args)369 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
370 SmallVector<CanQualType, 16> argTypes;
371 for (auto &arg : args)
372 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
373 return argTypes;
374 }
375
376 static SmallVector<CanQualType, 16>
getArgTypesForDeclaration(ASTContext & ctx,const FunctionArgList & args)377 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
378 SmallVector<CanQualType, 16> argTypes;
379 for (auto &arg : args)
380 argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
381 return argTypes;
382 }
383
384 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
getExtParameterInfosForCall(const FunctionProtoType * proto,unsigned prefixArgs,unsigned totalArgs)385 getExtParameterInfosForCall(const FunctionProtoType *proto,
386 unsigned prefixArgs, unsigned totalArgs) {
387 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
388 if (proto->hasExtParameterInfos()) {
389 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
390 }
391 return result;
392 }
393
394 /// Arrange a call to a C++ method, passing the given arguments.
395 ///
396 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
397 /// parameter.
398 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
399 /// args.
400 /// PassProtoArgs indicates whether `args` has args for the parameters in the
401 /// given CXXConstructorDecl.
402 const CGFunctionInfo &
arrangeCXXConstructorCall(const CallArgList & args,const CXXConstructorDecl * D,CXXCtorType CtorKind,unsigned ExtraPrefixArgs,unsigned ExtraSuffixArgs,bool PassProtoArgs)403 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
404 const CXXConstructorDecl *D,
405 CXXCtorType CtorKind,
406 unsigned ExtraPrefixArgs,
407 unsigned ExtraSuffixArgs,
408 bool PassProtoArgs) {
409 // FIXME: Kill copy.
410 SmallVector<CanQualType, 16> ArgTypes;
411 for (const auto &Arg : args)
412 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
413
414 // +1 for implicit this, which should always be args[0].
415 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
416
417 CanQual<FunctionProtoType> FPT = GetFormalType(D);
418 RequiredArgs Required = PassProtoArgs
419 ? RequiredArgs::forPrototypePlus(
420 FPT, TotalPrefixArgs + ExtraSuffixArgs)
421 : RequiredArgs::All;
422
423 GlobalDecl GD(D, CtorKind);
424 CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
425 ? ArgTypes.front()
426 : TheCXXABI.hasMostDerivedReturn(GD)
427 ? CGM.getContext().VoidPtrTy
428 : Context.VoidTy;
429
430 FunctionType::ExtInfo Info = FPT->getExtInfo();
431 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
432 // If the prototype args are elided, we should only have ABI-specific args,
433 // which never have param info.
434 if (PassProtoArgs && FPT->hasExtParameterInfos()) {
435 // ABI-specific suffix arguments are treated the same as variadic arguments.
436 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
437 ArgTypes.size());
438 }
439 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
440 /*chainCall=*/false, ArgTypes, Info,
441 ParamInfos, Required);
442 }
443
444 /// Arrange the argument and result information for the declaration or
445 /// definition of the given function.
446 const CGFunctionInfo &
arrangeFunctionDeclaration(const FunctionDecl * FD)447 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
448 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
449 if (MD->isInstance())
450 return arrangeCXXMethodDeclaration(MD);
451
452 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
453
454 assert(isa<FunctionType>(FTy));
455 setCUDAKernelCallingConvention(FTy, CGM, FD);
456
457 // When declaring a function without a prototype, always use a
458 // non-variadic type.
459 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
460 return arrangeLLVMFunctionInfo(
461 noProto->getReturnType(), /*instanceMethod=*/false,
462 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
463 }
464
465 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
466 }
467
468 /// Arrange the argument and result information for the declaration or
469 /// definition of an Objective-C method.
470 const CGFunctionInfo &
arrangeObjCMethodDeclaration(const ObjCMethodDecl * MD)471 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
472 // It happens that this is the same as a call with no optional
473 // arguments, except also using the formal 'self' type.
474 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
475 }
476
477 /// Arrange the argument and result information for the function type
478 /// through which to perform a send to the given Objective-C method,
479 /// using the given receiver type. The receiver type is not always
480 /// the 'self' type of the method or even an Objective-C pointer type.
481 /// This is *not* the right method for actually performing such a
482 /// message send, due to the possibility of optional arguments.
483 const CGFunctionInfo &
arrangeObjCMessageSendSignature(const ObjCMethodDecl * MD,QualType receiverType)484 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
485 QualType receiverType) {
486 SmallVector<CanQualType, 16> argTys;
487 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
488 argTys.push_back(Context.getCanonicalParamType(receiverType));
489 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
490 // FIXME: Kill copy?
491 for (const auto *I : MD->parameters()) {
492 argTys.push_back(Context.getCanonicalParamType(I->getType()));
493 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
494 I->hasAttr<NoEscapeAttr>());
495 extParamInfos.push_back(extParamInfo);
496 }
497
498 FunctionType::ExtInfo einfo;
499 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
500 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
501
502 if (getContext().getLangOpts().ObjCAutoRefCount &&
503 MD->hasAttr<NSReturnsRetainedAttr>())
504 einfo = einfo.withProducesResult(true);
505
506 RequiredArgs required =
507 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
508
509 return arrangeLLVMFunctionInfo(
510 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
511 /*chainCall=*/false, argTys, einfo, extParamInfos, required);
512 }
513
514 const CGFunctionInfo &
arrangeUnprototypedObjCMessageSend(QualType returnType,const CallArgList & args)515 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
516 const CallArgList &args) {
517 auto argTypes = getArgTypesForCall(Context, args);
518 FunctionType::ExtInfo einfo;
519
520 return arrangeLLVMFunctionInfo(
521 GetReturnType(returnType), /*instanceMethod=*/false,
522 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
523 }
524
525 const CGFunctionInfo &
arrangeGlobalDeclaration(GlobalDecl GD)526 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
527 // FIXME: Do we need to handle ObjCMethodDecl?
528 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
529
530 if (isa<CXXConstructorDecl>(GD.getDecl()) ||
531 isa<CXXDestructorDecl>(GD.getDecl()))
532 return arrangeCXXStructorDeclaration(GD);
533
534 return arrangeFunctionDeclaration(FD);
535 }
536
537 /// Arrange a thunk that takes 'this' as the first parameter followed by
538 /// varargs. Return a void pointer, regardless of the actual return type.
539 /// The body of the thunk will end in a musttail call to a function of the
540 /// correct type, and the caller will bitcast the function to the correct
541 /// prototype.
542 const CGFunctionInfo &
arrangeUnprototypedMustTailThunk(const CXXMethodDecl * MD)543 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
544 assert(MD->isVirtual() && "only methods have thunks");
545 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
546 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
547 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
548 /*chainCall=*/false, ArgTys,
549 FTP->getExtInfo(), {}, RequiredArgs(1));
550 }
551
552 const CGFunctionInfo &
arrangeMSCtorClosure(const CXXConstructorDecl * CD,CXXCtorType CT)553 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
554 CXXCtorType CT) {
555 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
556
557 CanQual<FunctionProtoType> FTP = GetFormalType(CD);
558 SmallVector<CanQualType, 2> ArgTys;
559 const CXXRecordDecl *RD = CD->getParent();
560 ArgTys.push_back(DeriveThisType(RD, CD));
561 if (CT == Ctor_CopyingClosure)
562 ArgTys.push_back(*FTP->param_type_begin());
563 if (RD->getNumVBases() > 0)
564 ArgTys.push_back(Context.IntTy);
565 CallingConv CC = Context.getDefaultCallingConvention(
566 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
567 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
568 /*chainCall=*/false, ArgTys,
569 FunctionType::ExtInfo(CC), {},
570 RequiredArgs::All);
571 }
572
573 /// Arrange a call as unto a free function, except possibly with an
574 /// additional number of formal parameters considered required.
575 static const CGFunctionInfo &
arrangeFreeFunctionLikeCall(CodeGenTypes & CGT,CodeGenModule & CGM,const CallArgList & args,const FunctionType * fnType,unsigned numExtraRequiredArgs,bool chainCall)576 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
577 CodeGenModule &CGM,
578 const CallArgList &args,
579 const FunctionType *fnType,
580 unsigned numExtraRequiredArgs,
581 bool chainCall) {
582 assert(args.size() >= numExtraRequiredArgs);
583
584 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
585
586 // In most cases, there are no optional arguments.
587 RequiredArgs required = RequiredArgs::All;
588
589 // If we have a variadic prototype, the required arguments are the
590 // extra prefix plus the arguments in the prototype.
591 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
592 if (proto->isVariadic())
593 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
594
595 if (proto->hasExtParameterInfos())
596 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
597 args.size());
598
599 // If we don't have a prototype at all, but we're supposed to
600 // explicitly use the variadic convention for unprototyped calls,
601 // treat all of the arguments as required but preserve the nominal
602 // possibility of variadics.
603 } else if (CGM.getTargetCodeGenInfo()
604 .isNoProtoCallVariadic(args,
605 cast<FunctionNoProtoType>(fnType))) {
606 required = RequiredArgs(args.size());
607 }
608
609 // FIXME: Kill copy.
610 SmallVector<CanQualType, 16> argTypes;
611 for (const auto &arg : args)
612 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
613 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
614 /*instanceMethod=*/false, chainCall,
615 argTypes, fnType->getExtInfo(), paramInfos,
616 required);
617 }
618
619 /// Figure out the rules for calling a function with the given formal
620 /// type using the given arguments. The arguments are necessary
621 /// because the function might be unprototyped, in which case it's
622 /// target-dependent in crazy ways.
623 const CGFunctionInfo &
arrangeFreeFunctionCall(const CallArgList & args,const FunctionType * fnType,bool chainCall)624 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
625 const FunctionType *fnType,
626 bool chainCall) {
627 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
628 chainCall ? 1 : 0, chainCall);
629 }
630
631 /// A block function is essentially a free function with an
632 /// extra implicit argument.
633 const CGFunctionInfo &
arrangeBlockFunctionCall(const CallArgList & args,const FunctionType * fnType)634 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
635 const FunctionType *fnType) {
636 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
637 /*chainCall=*/false);
638 }
639
640 const CGFunctionInfo &
arrangeBlockFunctionDeclaration(const FunctionProtoType * proto,const FunctionArgList & params)641 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
642 const FunctionArgList ¶ms) {
643 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
644 auto argTypes = getArgTypesForDeclaration(Context, params);
645
646 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
647 /*instanceMethod*/ false, /*chainCall*/ false,
648 argTypes, proto->getExtInfo(), paramInfos,
649 RequiredArgs::forPrototypePlus(proto, 1));
650 }
651
652 const CGFunctionInfo &
arrangeBuiltinFunctionCall(QualType resultType,const CallArgList & args)653 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
654 const CallArgList &args) {
655 // FIXME: Kill copy.
656 SmallVector<CanQualType, 16> argTypes;
657 for (const auto &Arg : args)
658 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
659 return arrangeLLVMFunctionInfo(
660 GetReturnType(resultType), /*instanceMethod=*/false,
661 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
662 /*paramInfos=*/ {}, RequiredArgs::All);
663 }
664
665 const CGFunctionInfo &
arrangeBuiltinFunctionDeclaration(QualType resultType,const FunctionArgList & args)666 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
667 const FunctionArgList &args) {
668 auto argTypes = getArgTypesForDeclaration(Context, args);
669
670 return arrangeLLVMFunctionInfo(
671 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
672 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
673 }
674
675 const CGFunctionInfo &
arrangeBuiltinFunctionDeclaration(CanQualType resultType,ArrayRef<CanQualType> argTypes)676 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
677 ArrayRef<CanQualType> argTypes) {
678 return arrangeLLVMFunctionInfo(
679 resultType, /*instanceMethod=*/false, /*chainCall=*/false,
680 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
681 }
682
683 /// Arrange a call to a C++ method, passing the given arguments.
684 ///
685 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
686 /// does not count `this`.
687 const CGFunctionInfo &
arrangeCXXMethodCall(const CallArgList & args,const FunctionProtoType * proto,RequiredArgs required,unsigned numPrefixArgs)688 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
689 const FunctionProtoType *proto,
690 RequiredArgs required,
691 unsigned numPrefixArgs) {
692 assert(numPrefixArgs + 1 <= args.size() &&
693 "Emitting a call with less args than the required prefix?");
694 // Add one to account for `this`. It's a bit awkward here, but we don't count
695 // `this` in similar places elsewhere.
696 auto paramInfos =
697 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
698
699 // FIXME: Kill copy.
700 auto argTypes = getArgTypesForCall(Context, args);
701
702 FunctionType::ExtInfo info = proto->getExtInfo();
703 return arrangeLLVMFunctionInfo(
704 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
705 /*chainCall=*/false, argTypes, info, paramInfos, required);
706 }
707
arrangeNullaryFunction()708 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
709 return arrangeLLVMFunctionInfo(
710 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
711 None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
712 }
713
714 const CGFunctionInfo &
arrangeCall(const CGFunctionInfo & signature,const CallArgList & args)715 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
716 const CallArgList &args) {
717 assert(signature.arg_size() <= args.size());
718 if (signature.arg_size() == args.size())
719 return signature;
720
721 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
722 auto sigParamInfos = signature.getExtParameterInfos();
723 if (!sigParamInfos.empty()) {
724 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
725 paramInfos.resize(args.size());
726 }
727
728 auto argTypes = getArgTypesForCall(Context, args);
729
730 assert(signature.getRequiredArgs().allowsOptionalArgs());
731 return arrangeLLVMFunctionInfo(signature.getReturnType(),
732 signature.isInstanceMethod(),
733 signature.isChainCall(),
734 argTypes,
735 signature.getExtInfo(),
736 paramInfos,
737 signature.getRequiredArgs());
738 }
739
740 namespace clang {
741 namespace CodeGen {
742 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
743 }
744 }
745
746 /// Arrange the argument and result information for an abstract value
747 /// of a given function type. This is the method which all of the
748 /// above functions ultimately defer to.
749 const CGFunctionInfo &
arrangeLLVMFunctionInfo(CanQualType resultType,bool instanceMethod,bool chainCall,ArrayRef<CanQualType> argTypes,FunctionType::ExtInfo info,ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,RequiredArgs required)750 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
751 bool instanceMethod,
752 bool chainCall,
753 ArrayRef<CanQualType> argTypes,
754 FunctionType::ExtInfo info,
755 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
756 RequiredArgs required) {
757 assert(llvm::all_of(argTypes,
758 [](CanQualType T) { return T.isCanonicalAsParam(); }));
759
760 // Lookup or create unique function info.
761 llvm::FoldingSetNodeID ID;
762 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
763 required, resultType, argTypes);
764
765 void *insertPos = nullptr;
766 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
767 if (FI)
768 return *FI;
769
770 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
771
772 // Construct the function info. We co-allocate the ArgInfos.
773 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
774 paramInfos, resultType, argTypes, required);
775 FunctionInfos.InsertNode(FI, insertPos);
776
777 bool inserted = FunctionsBeingProcessed.insert(FI).second;
778 (void)inserted;
779 assert(inserted && "Recursively being processed?");
780
781 // Compute ABI information.
782 if (CC == llvm::CallingConv::SPIR_KERNEL) {
783 // Force target independent argument handling for the host visible
784 // kernel functions.
785 computeSPIRKernelABIInfo(CGM, *FI);
786 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
787 swiftcall::computeABIInfo(CGM, *FI);
788 } else {
789 getABIInfo().computeInfo(*FI);
790 }
791
792 // Loop over all of the computed argument and return value info. If any of
793 // them are direct or extend without a specified coerce type, specify the
794 // default now.
795 ABIArgInfo &retInfo = FI->getReturnInfo();
796 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
797 retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
798
799 for (auto &I : FI->arguments())
800 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
801 I.info.setCoerceToType(ConvertType(I.type));
802
803 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
804 assert(erased && "Not in set?");
805
806 return *FI;
807 }
808
create(unsigned llvmCC,bool instanceMethod,bool chainCall,const FunctionType::ExtInfo & info,ArrayRef<ExtParameterInfo> paramInfos,CanQualType resultType,ArrayRef<CanQualType> argTypes,RequiredArgs required)809 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
810 bool instanceMethod,
811 bool chainCall,
812 const FunctionType::ExtInfo &info,
813 ArrayRef<ExtParameterInfo> paramInfos,
814 CanQualType resultType,
815 ArrayRef<CanQualType> argTypes,
816 RequiredArgs required) {
817 assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
818 assert(!required.allowsOptionalArgs() ||
819 required.getNumRequiredArgs() <= argTypes.size());
820
821 void *buffer =
822 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>(
823 argTypes.size() + 1, paramInfos.size()));
824
825 CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
826 FI->CallingConvention = llvmCC;
827 FI->EffectiveCallingConvention = llvmCC;
828 FI->ASTCallingConvention = info.getCC();
829 FI->InstanceMethod = instanceMethod;
830 FI->ChainCall = chainCall;
831 FI->CmseNSCall = info.getCmseNSCall();
832 FI->NoReturn = info.getNoReturn();
833 FI->ReturnsRetained = info.getProducesResult();
834 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
835 FI->NoCfCheck = info.getNoCfCheck();
836 FI->Required = required;
837 FI->HasRegParm = info.getHasRegParm();
838 FI->RegParm = info.getRegParm();
839 FI->ArgStruct = nullptr;
840 FI->ArgStructAlign = 0;
841 FI->NumArgs = argTypes.size();
842 FI->HasExtParameterInfos = !paramInfos.empty();
843 FI->getArgsBuffer()[0].type = resultType;
844 FI->MaxVectorWidth = 0;
845 for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
846 FI->getArgsBuffer()[i + 1].type = argTypes[i];
847 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
848 FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
849 return FI;
850 }
851
852 /***/
853
854 namespace {
855 // ABIArgInfo::Expand implementation.
856
857 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
858 struct TypeExpansion {
859 enum TypeExpansionKind {
860 // Elements of constant arrays are expanded recursively.
861 TEK_ConstantArray,
862 // Record fields are expanded recursively (but if record is a union, only
863 // the field with the largest size is expanded).
864 TEK_Record,
865 // For complex types, real and imaginary parts are expanded recursively.
866 TEK_Complex,
867 // All other types are not expandable.
868 TEK_None
869 };
870
871 const TypeExpansionKind Kind;
872
TypeExpansion__anon4a6f99940211::TypeExpansion873 TypeExpansion(TypeExpansionKind K) : Kind(K) {}
~TypeExpansion__anon4a6f99940211::TypeExpansion874 virtual ~TypeExpansion() {}
875 };
876
877 struct ConstantArrayExpansion : TypeExpansion {
878 QualType EltTy;
879 uint64_t NumElts;
880
ConstantArrayExpansion__anon4a6f99940211::ConstantArrayExpansion881 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
882 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
classof__anon4a6f99940211::ConstantArrayExpansion883 static bool classof(const TypeExpansion *TE) {
884 return TE->Kind == TEK_ConstantArray;
885 }
886 };
887
888 struct RecordExpansion : TypeExpansion {
889 SmallVector<const CXXBaseSpecifier *, 1> Bases;
890
891 SmallVector<const FieldDecl *, 1> Fields;
892
RecordExpansion__anon4a6f99940211::RecordExpansion893 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
894 SmallVector<const FieldDecl *, 1> &&Fields)
895 : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
896 Fields(std::move(Fields)) {}
classof__anon4a6f99940211::RecordExpansion897 static bool classof(const TypeExpansion *TE) {
898 return TE->Kind == TEK_Record;
899 }
900 };
901
902 struct ComplexExpansion : TypeExpansion {
903 QualType EltTy;
904
ComplexExpansion__anon4a6f99940211::ComplexExpansion905 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
classof__anon4a6f99940211::ComplexExpansion906 static bool classof(const TypeExpansion *TE) {
907 return TE->Kind == TEK_Complex;
908 }
909 };
910
911 struct NoExpansion : TypeExpansion {
NoExpansion__anon4a6f99940211::NoExpansion912 NoExpansion() : TypeExpansion(TEK_None) {}
classof__anon4a6f99940211::NoExpansion913 static bool classof(const TypeExpansion *TE) {
914 return TE->Kind == TEK_None;
915 }
916 };
917 } // namespace
918
919 static std::unique_ptr<TypeExpansion>
getTypeExpansion(QualType Ty,const ASTContext & Context)920 getTypeExpansion(QualType Ty, const ASTContext &Context) {
921 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
922 return std::make_unique<ConstantArrayExpansion>(
923 AT->getElementType(), AT->getSize().getZExtValue());
924 }
925 if (const RecordType *RT = Ty->getAs<RecordType>()) {
926 SmallVector<const CXXBaseSpecifier *, 1> Bases;
927 SmallVector<const FieldDecl *, 1> Fields;
928 const RecordDecl *RD = RT->getDecl();
929 assert(!RD->hasFlexibleArrayMember() &&
930 "Cannot expand structure with flexible array.");
931 if (RD->isUnion()) {
932 // Unions can be here only in degenerative cases - all the fields are same
933 // after flattening. Thus we have to use the "largest" field.
934 const FieldDecl *LargestFD = nullptr;
935 CharUnits UnionSize = CharUnits::Zero();
936
937 for (const auto *FD : RD->fields()) {
938 if (FD->isZeroLengthBitField(Context))
939 continue;
940 assert(!FD->isBitField() &&
941 "Cannot expand structure with bit-field members.");
942 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
943 if (UnionSize < FieldSize) {
944 UnionSize = FieldSize;
945 LargestFD = FD;
946 }
947 }
948 if (LargestFD)
949 Fields.push_back(LargestFD);
950 } else {
951 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
952 assert(!CXXRD->isDynamicClass() &&
953 "cannot expand vtable pointers in dynamic classes");
954 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases()));
955 }
956
957 for (const auto *FD : RD->fields()) {
958 if (FD->isZeroLengthBitField(Context))
959 continue;
960 assert(!FD->isBitField() &&
961 "Cannot expand structure with bit-field members.");
962 Fields.push_back(FD);
963 }
964 }
965 return std::make_unique<RecordExpansion>(std::move(Bases),
966 std::move(Fields));
967 }
968 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
969 return std::make_unique<ComplexExpansion>(CT->getElementType());
970 }
971 return std::make_unique<NoExpansion>();
972 }
973
getExpansionSize(QualType Ty,const ASTContext & Context)974 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
975 auto Exp = getTypeExpansion(Ty, Context);
976 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
977 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
978 }
979 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
980 int Res = 0;
981 for (auto BS : RExp->Bases)
982 Res += getExpansionSize(BS->getType(), Context);
983 for (auto FD : RExp->Fields)
984 Res += getExpansionSize(FD->getType(), Context);
985 return Res;
986 }
987 if (isa<ComplexExpansion>(Exp.get()))
988 return 2;
989 assert(isa<NoExpansion>(Exp.get()));
990 return 1;
991 }
992
993 void
getExpandedTypes(QualType Ty,SmallVectorImpl<llvm::Type * >::iterator & TI)994 CodeGenTypes::getExpandedTypes(QualType Ty,
995 SmallVectorImpl<llvm::Type *>::iterator &TI) {
996 auto Exp = getTypeExpansion(Ty, Context);
997 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
998 for (int i = 0, n = CAExp->NumElts; i < n; i++) {
999 getExpandedTypes(CAExp->EltTy, TI);
1000 }
1001 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1002 for (auto BS : RExp->Bases)
1003 getExpandedTypes(BS->getType(), TI);
1004 for (auto FD : RExp->Fields)
1005 getExpandedTypes(FD->getType(), TI);
1006 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
1007 llvm::Type *EltTy = ConvertType(CExp->EltTy);
1008 *TI++ = EltTy;
1009 *TI++ = EltTy;
1010 } else {
1011 assert(isa<NoExpansion>(Exp.get()));
1012 *TI++ = ConvertType(Ty);
1013 }
1014 }
1015
forConstantArrayExpansion(CodeGenFunction & CGF,ConstantArrayExpansion * CAE,Address BaseAddr,llvm::function_ref<void (Address)> Fn)1016 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1017 ConstantArrayExpansion *CAE,
1018 Address BaseAddr,
1019 llvm::function_ref<void(Address)> Fn) {
1020 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1021 CharUnits EltAlign =
1022 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1023 llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy);
1024
1025 for (int i = 0, n = CAE->NumElts; i < n; i++) {
1026 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1027 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1028 Fn(Address(EltAddr, EltTy, EltAlign));
1029 }
1030 }
1031
ExpandTypeFromArgs(QualType Ty,LValue LV,llvm::Function::arg_iterator & AI)1032 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1033 llvm::Function::arg_iterator &AI) {
1034 assert(LV.isSimple() &&
1035 "Unexpected non-simple lvalue during struct expansion.");
1036
1037 auto Exp = getTypeExpansion(Ty, getContext());
1038 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1039 forConstantArrayExpansion(
1040 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1041 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1042 ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1043 });
1044 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1045 Address This = LV.getAddress(*this);
1046 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1047 // Perform a single step derived-to-base conversion.
1048 Address Base =
1049 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1050 /*NullCheckValue=*/false, SourceLocation());
1051 LValue SubLV = MakeAddrLValue(Base, BS->getType());
1052
1053 // Recurse onto bases.
1054 ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1055 }
1056 for (auto FD : RExp->Fields) {
1057 // FIXME: What are the right qualifiers here?
1058 LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1059 ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1060 }
1061 } else if (isa<ComplexExpansion>(Exp.get())) {
1062 auto realValue = &*AI++;
1063 auto imagValue = &*AI++;
1064 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1065 } else {
1066 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1067 // primitive store.
1068 assert(isa<NoExpansion>(Exp.get()));
1069 llvm::Value *Arg = &*AI++;
1070 if (LV.isBitField()) {
1071 EmitStoreThroughLValue(RValue::get(Arg), LV);
1072 } else {
1073 // TODO: currently there are some places are inconsistent in what LLVM
1074 // pointer type they use (see D118744). Once clang uses opaque pointers
1075 // all LLVM pointer types will be the same and we can remove this check.
1076 if (Arg->getType()->isPointerTy()) {
1077 Address Addr = LV.getAddress(*this);
1078 Arg = Builder.CreateBitCast(Arg, Addr.getElementType());
1079 }
1080 EmitStoreOfScalar(Arg, LV);
1081 }
1082 }
1083 }
1084
ExpandTypeToArgs(QualType Ty,CallArg Arg,llvm::FunctionType * IRFuncTy,SmallVectorImpl<llvm::Value * > & IRCallArgs,unsigned & IRCallArgPos)1085 void CodeGenFunction::ExpandTypeToArgs(
1086 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1087 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1088 auto Exp = getTypeExpansion(Ty, getContext());
1089 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1090 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1091 : Arg.getKnownRValue().getAggregateAddress();
1092 forConstantArrayExpansion(
1093 *this, CAExp, Addr, [&](Address EltAddr) {
1094 CallArg EltArg = CallArg(
1095 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1096 CAExp->EltTy);
1097 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1098 IRCallArgPos);
1099 });
1100 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1101 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1102 : Arg.getKnownRValue().getAggregateAddress();
1103 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1104 // Perform a single step derived-to-base conversion.
1105 Address Base =
1106 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1107 /*NullCheckValue=*/false, SourceLocation());
1108 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1109
1110 // Recurse onto bases.
1111 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1112 IRCallArgPos);
1113 }
1114
1115 LValue LV = MakeAddrLValue(This, Ty);
1116 for (auto FD : RExp->Fields) {
1117 CallArg FldArg =
1118 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1119 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1120 IRCallArgPos);
1121 }
1122 } else if (isa<ComplexExpansion>(Exp.get())) {
1123 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1124 IRCallArgs[IRCallArgPos++] = CV.first;
1125 IRCallArgs[IRCallArgPos++] = CV.second;
1126 } else {
1127 assert(isa<NoExpansion>(Exp.get()));
1128 auto RV = Arg.getKnownRValue();
1129 assert(RV.isScalar() &&
1130 "Unexpected non-scalar rvalue during struct expansion.");
1131
1132 // Insert a bitcast as needed.
1133 llvm::Value *V = RV.getScalarVal();
1134 if (IRCallArgPos < IRFuncTy->getNumParams() &&
1135 V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1136 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1137
1138 IRCallArgs[IRCallArgPos++] = V;
1139 }
1140 }
1141
1142 /// Create a temporary allocation for the purposes of coercion.
CreateTempAllocaForCoercion(CodeGenFunction & CGF,llvm::Type * Ty,CharUnits MinAlign,const Twine & Name="tmp")1143 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1144 CharUnits MinAlign,
1145 const Twine &Name = "tmp") {
1146 // Don't use an alignment that's worse than what LLVM would prefer.
1147 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1148 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1149
1150 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1151 }
1152
1153 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1154 /// accessing some number of bytes out of it, try to gep into the struct to get
1155 /// at its inner goodness. Dive as deep as possible without entering an element
1156 /// with an in-memory size smaller than DstSize.
1157 static Address
EnterStructPointerForCoercedAccess(Address SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)1158 EnterStructPointerForCoercedAccess(Address SrcPtr,
1159 llvm::StructType *SrcSTy,
1160 uint64_t DstSize, CodeGenFunction &CGF) {
1161 // We can't dive into a zero-element struct.
1162 if (SrcSTy->getNumElements() == 0) return SrcPtr;
1163
1164 llvm::Type *FirstElt = SrcSTy->getElementType(0);
1165
1166 // If the first elt is at least as large as what we're looking for, or if the
1167 // first element is the same size as the whole struct, we can enter it. The
1168 // comparison must be made on the store size and not the alloca size. Using
1169 // the alloca size may overstate the size of the load.
1170 uint64_t FirstEltSize =
1171 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1172 if (FirstEltSize < DstSize &&
1173 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1174 return SrcPtr;
1175
1176 // GEP into the first element.
1177 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1178
1179 // If the first element is a struct, recurse.
1180 llvm::Type *SrcTy = SrcPtr.getElementType();
1181 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1182 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1183
1184 return SrcPtr;
1185 }
1186
1187 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1188 /// are either integers or pointers. This does a truncation of the value if it
1189 /// is too large or a zero extension if it is too small.
1190 ///
1191 /// This behaves as if the value were coerced through memory, so on big-endian
1192 /// targets the high bits are preserved in a truncation, while little-endian
1193 /// targets preserve the low bits.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)1194 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1195 llvm::Type *Ty,
1196 CodeGenFunction &CGF) {
1197 if (Val->getType() == Ty)
1198 return Val;
1199
1200 if (isa<llvm::PointerType>(Val->getType())) {
1201 // If this is Pointer->Pointer avoid conversion to and from int.
1202 if (isa<llvm::PointerType>(Ty))
1203 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1204
1205 // Convert the pointer to an integer so we can play with its width.
1206 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1207 }
1208
1209 llvm::Type *DestIntTy = Ty;
1210 if (isa<llvm::PointerType>(DestIntTy))
1211 DestIntTy = CGF.IntPtrTy;
1212
1213 if (Val->getType() != DestIntTy) {
1214 const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1215 if (DL.isBigEndian()) {
1216 // Preserve the high bits on big-endian targets.
1217 // That is what memory coercion does.
1218 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1219 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1220
1221 if (SrcSize > DstSize) {
1222 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1223 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1224 } else {
1225 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1226 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1227 }
1228 } else {
1229 // Little-endian targets preserve the low bits. No shifts required.
1230 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1231 }
1232 }
1233
1234 if (isa<llvm::PointerType>(Ty))
1235 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1236 return Val;
1237 }
1238
1239
1240
1241 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1242 /// a pointer to an object of type \arg Ty, known to be aligned to
1243 /// \arg SrcAlign bytes.
1244 ///
1245 /// This safely handles the case when the src type is smaller than the
1246 /// destination type; in this situation the values of bits which not
1247 /// present in the src are undefined.
CreateCoercedLoad(Address Src,llvm::Type * Ty,CodeGenFunction & CGF)1248 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1249 CodeGenFunction &CGF) {
1250 llvm::Type *SrcTy = Src.getElementType();
1251
1252 // If SrcTy and Ty are the same, just do a load.
1253 if (SrcTy == Ty)
1254 return CGF.Builder.CreateLoad(Src);
1255
1256 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1257
1258 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1259 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1260 DstSize.getFixedSize(), CGF);
1261 SrcTy = Src.getElementType();
1262 }
1263
1264 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1265
1266 // If the source and destination are integer or pointer types, just do an
1267 // extension or truncation to the desired type.
1268 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1269 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1270 llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1271 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1272 }
1273
1274 // If load is legal, just bitcast the src pointer.
1275 if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1276 SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1277 // Generally SrcSize is never greater than DstSize, since this means we are
1278 // losing bits. However, this can happen in cases where the structure has
1279 // additional padding, for example due to a user specified alignment.
1280 //
1281 // FIXME: Assert that we aren't truncating non-padding bits when have access
1282 // to that information.
1283 Src = CGF.Builder.CreateElementBitCast(Src, Ty);
1284 return CGF.Builder.CreateLoad(Src);
1285 }
1286
1287 // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1288 // the types match, use the llvm.vector.insert intrinsic to perform the
1289 // conversion.
1290 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1291 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1292 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1293 // vector, use a vector insert and bitcast the result.
1294 bool NeedsBitcast = false;
1295 auto PredType =
1296 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1297 llvm::Type *OrigType = Ty;
1298 if (ScalableDst == PredType &&
1299 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1300 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1301 NeedsBitcast = true;
1302 }
1303 if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1304 auto *Load = CGF.Builder.CreateLoad(Src);
1305 auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1306 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1307 llvm::Value *Result = CGF.Builder.CreateInsertVector(
1308 ScalableDst, UndefVec, Load, Zero, "castScalableSve");
1309 if (NeedsBitcast)
1310 Result = CGF.Builder.CreateBitCast(Result, OrigType);
1311 return Result;
1312 }
1313 }
1314 }
1315
1316 // Otherwise do coercion through memory. This is stupid, but simple.
1317 Address Tmp =
1318 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1319 CGF.Builder.CreateMemCpy(
1320 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1321 Src.getAlignment().getAsAlign(),
1322 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1323 return CGF.Builder.CreateLoad(Tmp);
1324 }
1325
1326 // Function to store a first-class aggregate into memory. We prefer to
1327 // store the elements rather than the aggregate to be more friendly to
1328 // fast-isel.
1329 // FIXME: Do we need to recurse here?
EmitAggregateStore(llvm::Value * Val,Address Dest,bool DestIsVolatile)1330 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1331 bool DestIsVolatile) {
1332 // Prefer scalar stores to first-class aggregate stores.
1333 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1334 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1335 Address EltPtr = Builder.CreateStructGEP(Dest, i);
1336 llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1337 Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1338 }
1339 } else {
1340 Builder.CreateStore(Val, Dest, DestIsVolatile);
1341 }
1342 }
1343
1344 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1345 /// where the source and destination may have different types. The
1346 /// destination is known to be aligned to \arg DstAlign bytes.
1347 ///
1348 /// This safely handles the case when the src type is larger than the
1349 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,Address Dst,bool DstIsVolatile,CodeGenFunction & CGF)1350 static void CreateCoercedStore(llvm::Value *Src,
1351 Address Dst,
1352 bool DstIsVolatile,
1353 CodeGenFunction &CGF) {
1354 llvm::Type *SrcTy = Src->getType();
1355 llvm::Type *DstTy = Dst.getElementType();
1356 if (SrcTy == DstTy) {
1357 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1358 return;
1359 }
1360
1361 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1362
1363 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1364 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1365 SrcSize.getFixedSize(), CGF);
1366 DstTy = Dst.getElementType();
1367 }
1368
1369 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1370 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1371 if (SrcPtrTy && DstPtrTy &&
1372 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1373 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1374 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1375 return;
1376 }
1377
1378 // If the source and destination are integer or pointer types, just do an
1379 // extension or truncation to the desired type.
1380 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1381 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1382 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1383 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1384 return;
1385 }
1386
1387 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1388
1389 // If store is legal, just bitcast the src pointer.
1390 if (isa<llvm::ScalableVectorType>(SrcTy) ||
1391 isa<llvm::ScalableVectorType>(DstTy) ||
1392 SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1393 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1394 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1395 } else {
1396 // Otherwise do coercion through memory. This is stupid, but
1397 // simple.
1398
1399 // Generally SrcSize is never greater than DstSize, since this means we are
1400 // losing bits. However, this can happen in cases where the structure has
1401 // additional padding, for example due to a user specified alignment.
1402 //
1403 // FIXME: Assert that we aren't truncating non-padding bits when have access
1404 // to that information.
1405 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1406 CGF.Builder.CreateStore(Src, Tmp);
1407 CGF.Builder.CreateMemCpy(
1408 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1409 Tmp.getAlignment().getAsAlign(),
1410 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1411 }
1412 }
1413
emitAddressAtOffset(CodeGenFunction & CGF,Address addr,const ABIArgInfo & info)1414 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1415 const ABIArgInfo &info) {
1416 if (unsigned offset = info.getDirectOffset()) {
1417 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1418 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1419 CharUnits::fromQuantity(offset));
1420 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1421 }
1422 return addr;
1423 }
1424
1425 namespace {
1426
1427 /// Encapsulates information about the way function arguments from
1428 /// CGFunctionInfo should be passed to actual LLVM IR function.
1429 class ClangToLLVMArgMapping {
1430 static const unsigned InvalidIndex = ~0U;
1431 unsigned InallocaArgNo;
1432 unsigned SRetArgNo;
1433 unsigned TotalIRArgs;
1434
1435 /// Arguments of LLVM IR function corresponding to single Clang argument.
1436 struct IRArgs {
1437 unsigned PaddingArgIndex;
1438 // Argument is expanded to IR arguments at positions
1439 // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1440 unsigned FirstArgIndex;
1441 unsigned NumberOfArgs;
1442
IRArgs__anon4a6f99940511::ClangToLLVMArgMapping::IRArgs1443 IRArgs()
1444 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1445 NumberOfArgs(0) {}
1446 };
1447
1448 SmallVector<IRArgs, 8> ArgInfo;
1449
1450 public:
ClangToLLVMArgMapping(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs=false)1451 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1452 bool OnlyRequiredArgs = false)
1453 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1454 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1455 construct(Context, FI, OnlyRequiredArgs);
1456 }
1457
hasInallocaArg() const1458 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
getInallocaArgNo() const1459 unsigned getInallocaArgNo() const {
1460 assert(hasInallocaArg());
1461 return InallocaArgNo;
1462 }
1463
hasSRetArg() const1464 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
getSRetArgNo() const1465 unsigned getSRetArgNo() const {
1466 assert(hasSRetArg());
1467 return SRetArgNo;
1468 }
1469
totalIRArgs() const1470 unsigned totalIRArgs() const { return TotalIRArgs; }
1471
hasPaddingArg(unsigned ArgNo) const1472 bool hasPaddingArg(unsigned ArgNo) const {
1473 assert(ArgNo < ArgInfo.size());
1474 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1475 }
getPaddingArgNo(unsigned ArgNo) const1476 unsigned getPaddingArgNo(unsigned ArgNo) const {
1477 assert(hasPaddingArg(ArgNo));
1478 return ArgInfo[ArgNo].PaddingArgIndex;
1479 }
1480
1481 /// Returns index of first IR argument corresponding to ArgNo, and their
1482 /// quantity.
getIRArgs(unsigned ArgNo) const1483 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1484 assert(ArgNo < ArgInfo.size());
1485 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1486 ArgInfo[ArgNo].NumberOfArgs);
1487 }
1488
1489 private:
1490 void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1491 bool OnlyRequiredArgs);
1492 };
1493
construct(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs)1494 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1495 const CGFunctionInfo &FI,
1496 bool OnlyRequiredArgs) {
1497 unsigned IRArgNo = 0;
1498 bool SwapThisWithSRet = false;
1499 const ABIArgInfo &RetAI = FI.getReturnInfo();
1500
1501 if (RetAI.getKind() == ABIArgInfo::Indirect) {
1502 SwapThisWithSRet = RetAI.isSRetAfterThis();
1503 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1504 }
1505
1506 unsigned ArgNo = 0;
1507 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1508 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1509 ++I, ++ArgNo) {
1510 assert(I != FI.arg_end());
1511 QualType ArgType = I->type;
1512 const ABIArgInfo &AI = I->info;
1513 // Collect data about IR arguments corresponding to Clang argument ArgNo.
1514 auto &IRArgs = ArgInfo[ArgNo];
1515
1516 if (AI.getPaddingType())
1517 IRArgs.PaddingArgIndex = IRArgNo++;
1518
1519 switch (AI.getKind()) {
1520 case ABIArgInfo::Extend:
1521 case ABIArgInfo::Direct: {
1522 // FIXME: handle sseregparm someday...
1523 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1524 if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1525 IRArgs.NumberOfArgs = STy->getNumElements();
1526 } else {
1527 IRArgs.NumberOfArgs = 1;
1528 }
1529 break;
1530 }
1531 case ABIArgInfo::Indirect:
1532 case ABIArgInfo::IndirectAliased:
1533 IRArgs.NumberOfArgs = 1;
1534 break;
1535 case ABIArgInfo::Ignore:
1536 case ABIArgInfo::InAlloca:
1537 // ignore and inalloca doesn't have matching LLVM parameters.
1538 IRArgs.NumberOfArgs = 0;
1539 break;
1540 case ABIArgInfo::CoerceAndExpand:
1541 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1542 break;
1543 case ABIArgInfo::Expand:
1544 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1545 break;
1546 }
1547
1548 if (IRArgs.NumberOfArgs > 0) {
1549 IRArgs.FirstArgIndex = IRArgNo;
1550 IRArgNo += IRArgs.NumberOfArgs;
1551 }
1552
1553 // Skip over the sret parameter when it comes second. We already handled it
1554 // above.
1555 if (IRArgNo == 1 && SwapThisWithSRet)
1556 IRArgNo++;
1557 }
1558 assert(ArgNo == ArgInfo.size());
1559
1560 if (FI.usesInAlloca())
1561 InallocaArgNo = IRArgNo++;
1562
1563 TotalIRArgs = IRArgNo;
1564 }
1565 } // namespace
1566
1567 /***/
1568
ReturnTypeUsesSRet(const CGFunctionInfo & FI)1569 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1570 const auto &RI = FI.getReturnInfo();
1571 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1572 }
1573
ReturnSlotInterferesWithArgs(const CGFunctionInfo & FI)1574 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1575 return ReturnTypeUsesSRet(FI) &&
1576 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1577 }
1578
ReturnTypeUsesFPRet(QualType ResultType)1579 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1580 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1581 switch (BT->getKind()) {
1582 default:
1583 return false;
1584 case BuiltinType::Float:
1585 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1586 case BuiltinType::Double:
1587 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1588 case BuiltinType::LongDouble:
1589 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1590 }
1591 }
1592
1593 return false;
1594 }
1595
ReturnTypeUsesFP2Ret(QualType ResultType)1596 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1597 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1598 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1599 if (BT->getKind() == BuiltinType::LongDouble)
1600 return getTarget().useObjCFP2RetForComplexLongDouble();
1601 }
1602 }
1603
1604 return false;
1605 }
1606
GetFunctionType(GlobalDecl GD)1607 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1608 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1609 return GetFunctionType(FI);
1610 }
1611
1612 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI)1613 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1614
1615 bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1616 (void)Inserted;
1617 assert(Inserted && "Recursively being processed?");
1618
1619 llvm::Type *resultType = nullptr;
1620 const ABIArgInfo &retAI = FI.getReturnInfo();
1621 switch (retAI.getKind()) {
1622 case ABIArgInfo::Expand:
1623 case ABIArgInfo::IndirectAliased:
1624 llvm_unreachable("Invalid ABI kind for return argument");
1625
1626 case ABIArgInfo::Extend:
1627 case ABIArgInfo::Direct:
1628 resultType = retAI.getCoerceToType();
1629 break;
1630
1631 case ABIArgInfo::InAlloca:
1632 if (retAI.getInAllocaSRet()) {
1633 // sret things on win32 aren't void, they return the sret pointer.
1634 QualType ret = FI.getReturnType();
1635 llvm::Type *ty = ConvertType(ret);
1636 unsigned addressSpace = Context.getTargetAddressSpace(ret);
1637 resultType = llvm::PointerType::get(ty, addressSpace);
1638 } else {
1639 resultType = llvm::Type::getVoidTy(getLLVMContext());
1640 }
1641 break;
1642
1643 case ABIArgInfo::Indirect:
1644 case ABIArgInfo::Ignore:
1645 resultType = llvm::Type::getVoidTy(getLLVMContext());
1646 break;
1647
1648 case ABIArgInfo::CoerceAndExpand:
1649 resultType = retAI.getUnpaddedCoerceAndExpandType();
1650 break;
1651 }
1652
1653 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1654 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1655
1656 // Add type for sret argument.
1657 if (IRFunctionArgs.hasSRetArg()) {
1658 QualType Ret = FI.getReturnType();
1659 llvm::Type *Ty = ConvertType(Ret);
1660 unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1661 ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1662 llvm::PointerType::get(Ty, AddressSpace);
1663 }
1664
1665 // Add type for inalloca argument.
1666 if (IRFunctionArgs.hasInallocaArg()) {
1667 auto ArgStruct = FI.getArgStruct();
1668 assert(ArgStruct);
1669 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1670 }
1671
1672 // Add in all of the required arguments.
1673 unsigned ArgNo = 0;
1674 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1675 ie = it + FI.getNumRequiredArgs();
1676 for (; it != ie; ++it, ++ArgNo) {
1677 const ABIArgInfo &ArgInfo = it->info;
1678
1679 // Insert a padding type to ensure proper alignment.
1680 if (IRFunctionArgs.hasPaddingArg(ArgNo))
1681 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1682 ArgInfo.getPaddingType();
1683
1684 unsigned FirstIRArg, NumIRArgs;
1685 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1686
1687 switch (ArgInfo.getKind()) {
1688 case ABIArgInfo::Ignore:
1689 case ABIArgInfo::InAlloca:
1690 assert(NumIRArgs == 0);
1691 break;
1692
1693 case ABIArgInfo::Indirect: {
1694 assert(NumIRArgs == 1);
1695 // indirect arguments are always on the stack, which is alloca addr space.
1696 llvm::Type *LTy = ConvertTypeForMem(it->type);
1697 ArgTypes[FirstIRArg] = LTy->getPointerTo(
1698 CGM.getDataLayout().getAllocaAddrSpace());
1699 break;
1700 }
1701 case ABIArgInfo::IndirectAliased: {
1702 assert(NumIRArgs == 1);
1703 llvm::Type *LTy = ConvertTypeForMem(it->type);
1704 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1705 break;
1706 }
1707 case ABIArgInfo::Extend:
1708 case ABIArgInfo::Direct: {
1709 // Fast-isel and the optimizer generally like scalar values better than
1710 // FCAs, so we flatten them if this is safe to do for this argument.
1711 llvm::Type *argType = ArgInfo.getCoerceToType();
1712 llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1713 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1714 assert(NumIRArgs == st->getNumElements());
1715 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1716 ArgTypes[FirstIRArg + i] = st->getElementType(i);
1717 } else {
1718 assert(NumIRArgs == 1);
1719 ArgTypes[FirstIRArg] = argType;
1720 }
1721 break;
1722 }
1723
1724 case ABIArgInfo::CoerceAndExpand: {
1725 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1726 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1727 *ArgTypesIter++ = EltTy;
1728 }
1729 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1730 break;
1731 }
1732
1733 case ABIArgInfo::Expand:
1734 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1735 getExpandedTypes(it->type, ArgTypesIter);
1736 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1737 break;
1738 }
1739 }
1740
1741 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1742 assert(Erased && "Not in set?");
1743
1744 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1745 }
1746
GetFunctionTypeForVTable(GlobalDecl GD)1747 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1748 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1749 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1750
1751 if (!isFuncTypeConvertible(FPT))
1752 return llvm::StructType::get(getLLVMContext());
1753
1754 return GetFunctionType(GD);
1755 }
1756
AddAttributesFromFunctionProtoType(ASTContext & Ctx,llvm::AttrBuilder & FuncAttrs,const FunctionProtoType * FPT)1757 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1758 llvm::AttrBuilder &FuncAttrs,
1759 const FunctionProtoType *FPT) {
1760 if (!FPT)
1761 return;
1762
1763 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1764 FPT->isNothrow())
1765 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1766 }
1767
AddAttributesFromAssumes(llvm::AttrBuilder & FuncAttrs,const Decl * Callee)1768 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
1769 const Decl *Callee) {
1770 if (!Callee)
1771 return;
1772
1773 SmallVector<StringRef, 4> Attrs;
1774
1775 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
1776 AA->getAssumption().split(Attrs, ",");
1777
1778 if (!Attrs.empty())
1779 FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1780 llvm::join(Attrs.begin(), Attrs.end(), ","));
1781 }
1782
MayDropFunctionReturn(const ASTContext & Context,QualType ReturnType)1783 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1784 QualType ReturnType) {
1785 // We can't just discard the return value for a record type with a
1786 // complex destructor or a non-trivially copyable type.
1787 if (const RecordType *RT =
1788 ReturnType.getCanonicalType()->getAs<RecordType>()) {
1789 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1790 return ClassDecl->hasTrivialDestructor();
1791 }
1792 return ReturnType.isTriviallyCopyableType(Context);
1793 }
1794
getDefaultFunctionAttributes(StringRef Name,bool HasOptnone,bool AttrOnCallSite,llvm::AttrBuilder & FuncAttrs)1795 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1796 bool HasOptnone,
1797 bool AttrOnCallSite,
1798 llvm::AttrBuilder &FuncAttrs) {
1799 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1800 if (!HasOptnone) {
1801 if (CodeGenOpts.OptimizeSize)
1802 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1803 if (CodeGenOpts.OptimizeSize == 2)
1804 FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1805 }
1806
1807 if (CodeGenOpts.DisableRedZone)
1808 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1809 if (CodeGenOpts.IndirectTlsSegRefs)
1810 FuncAttrs.addAttribute("indirect-tls-seg-refs");
1811 if (CodeGenOpts.NoImplicitFloat)
1812 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1813
1814 if (AttrOnCallSite) {
1815 // Attributes that should go on the call site only.
1816 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
1817 // the -fno-builtin-foo list.
1818 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1819 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1820 if (!CodeGenOpts.TrapFuncName.empty())
1821 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1822 } else {
1823 StringRef FpKind;
1824 switch (CodeGenOpts.getFramePointer()) {
1825 case CodeGenOptions::FramePointerKind::None:
1826 FpKind = "none";
1827 break;
1828 case CodeGenOptions::FramePointerKind::NonLeaf:
1829 FpKind = "non-leaf";
1830 break;
1831 case CodeGenOptions::FramePointerKind::All:
1832 FpKind = "all";
1833 break;
1834 }
1835 FuncAttrs.addAttribute("frame-pointer", FpKind);
1836
1837 if (CodeGenOpts.LessPreciseFPMAD)
1838 FuncAttrs.addAttribute("less-precise-fpmad", "true");
1839
1840 if (CodeGenOpts.NullPointerIsValid)
1841 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1842
1843 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1844 FuncAttrs.addAttribute("denormal-fp-math",
1845 CodeGenOpts.FPDenormalMode.str());
1846 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1847 FuncAttrs.addAttribute(
1848 "denormal-fp-math-f32",
1849 CodeGenOpts.FP32DenormalMode.str());
1850 }
1851
1852 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore)
1853 FuncAttrs.addAttribute("no-trapping-math", "true");
1854
1855 // TODO: Are these all needed?
1856 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1857 if (LangOpts.NoHonorInfs)
1858 FuncAttrs.addAttribute("no-infs-fp-math", "true");
1859 if (LangOpts.NoHonorNaNs)
1860 FuncAttrs.addAttribute("no-nans-fp-math", "true");
1861 if (LangOpts.ApproxFunc)
1862 FuncAttrs.addAttribute("approx-func-fp-math", "true");
1863 if (LangOpts.UnsafeFPMath)
1864 FuncAttrs.addAttribute("unsafe-fp-math", "true");
1865 if (CodeGenOpts.SoftFloat)
1866 FuncAttrs.addAttribute("use-soft-float", "true");
1867 FuncAttrs.addAttribute("stack-protector-buffer-size",
1868 llvm::utostr(CodeGenOpts.SSPBufferSize));
1869 if (LangOpts.NoSignedZero)
1870 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1871
1872 // TODO: Reciprocal estimate codegen options should apply to instructions?
1873 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1874 if (!Recips.empty())
1875 FuncAttrs.addAttribute("reciprocal-estimates",
1876 llvm::join(Recips, ","));
1877
1878 if (!CodeGenOpts.PreferVectorWidth.empty() &&
1879 CodeGenOpts.PreferVectorWidth != "none")
1880 FuncAttrs.addAttribute("prefer-vector-width",
1881 CodeGenOpts.PreferVectorWidth);
1882
1883 if (CodeGenOpts.StackRealignment)
1884 FuncAttrs.addAttribute("stackrealign");
1885 if (CodeGenOpts.Backchain)
1886 FuncAttrs.addAttribute("backchain");
1887 if (CodeGenOpts.EnableSegmentedStacks)
1888 FuncAttrs.addAttribute("split-stack");
1889
1890 if (CodeGenOpts.SpeculativeLoadHardening)
1891 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1892
1893 // Add zero-call-used-regs attribute.
1894 switch (CodeGenOpts.getZeroCallUsedRegs()) {
1895 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
1896 FuncAttrs.removeAttribute("zero-call-used-regs");
1897 break;
1898 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
1899 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg");
1900 break;
1901 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
1902 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr");
1903 break;
1904 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
1905 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg");
1906 break;
1907 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
1908 FuncAttrs.addAttribute("zero-call-used-regs", "used");
1909 break;
1910 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
1911 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg");
1912 break;
1913 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
1914 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr");
1915 break;
1916 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
1917 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg");
1918 break;
1919 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
1920 FuncAttrs.addAttribute("zero-call-used-regs", "all");
1921 break;
1922 }
1923 }
1924
1925 if (getLangOpts().assumeFunctionsAreConvergent()) {
1926 // Conservatively, mark all functions and calls in CUDA and OpenCL as
1927 // convergent (meaning, they may call an intrinsically convergent op, such
1928 // as __syncthreads() / barrier(), and so can't have certain optimizations
1929 // applied around them). LLVM will remove this attribute where it safely
1930 // can.
1931 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1932 }
1933
1934 // TODO: NoUnwind attribute should be added for other GPU modes OpenCL, HIP,
1935 // SYCL, OpenMP offload. AFAIK, none of them support exceptions in device
1936 // code.
1937 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1938 // Exceptions aren't supported in CUDA device code.
1939 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1940 }
1941
1942 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1943 StringRef Var, Value;
1944 std::tie(Var, Value) = Attr.split('=');
1945 FuncAttrs.addAttribute(Var, Value);
1946 }
1947 }
1948
addDefaultFunctionDefinitionAttributes(llvm::Function & F)1949 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1950 llvm::AttrBuilder FuncAttrs(F.getContext());
1951 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1952 /* AttrOnCallSite = */ false, FuncAttrs);
1953 // TODO: call GetCPUAndFeaturesAttributes?
1954 F.addFnAttrs(FuncAttrs);
1955 }
1956
addDefaultFunctionDefinitionAttributes(llvm::AttrBuilder & attrs)1957 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1958 llvm::AttrBuilder &attrs) {
1959 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1960 /*for call*/ false, attrs);
1961 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1962 }
1963
addNoBuiltinAttributes(llvm::AttrBuilder & FuncAttrs,const LangOptions & LangOpts,const NoBuiltinAttr * NBA=nullptr)1964 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1965 const LangOptions &LangOpts,
1966 const NoBuiltinAttr *NBA = nullptr) {
1967 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1968 SmallString<32> AttributeName;
1969 AttributeName += "no-builtin-";
1970 AttributeName += BuiltinName;
1971 FuncAttrs.addAttribute(AttributeName);
1972 };
1973
1974 // First, handle the language options passed through -fno-builtin.
1975 if (LangOpts.NoBuiltin) {
1976 // -fno-builtin disables them all.
1977 FuncAttrs.addAttribute("no-builtins");
1978 return;
1979 }
1980
1981 // Then, add attributes for builtins specified through -fno-builtin-<name>.
1982 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1983
1984 // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1985 // the source.
1986 if (!NBA)
1987 return;
1988
1989 // If there is a wildcard in the builtin names specified through the
1990 // attribute, disable them all.
1991 if (llvm::is_contained(NBA->builtinNames(), "*")) {
1992 FuncAttrs.addAttribute("no-builtins");
1993 return;
1994 }
1995
1996 // And last, add the rest of the builtin names.
1997 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1998 }
1999
DetermineNoUndef(QualType QTy,CodeGenTypes & Types,const llvm::DataLayout & DL,const ABIArgInfo & AI,bool CheckCoerce=true)2000 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
2001 const llvm::DataLayout &DL, const ABIArgInfo &AI,
2002 bool CheckCoerce = true) {
2003 llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
2004 if (AI.getKind() == ABIArgInfo::Indirect)
2005 return true;
2006 if (AI.getKind() == ABIArgInfo::Extend)
2007 return true;
2008 if (!DL.typeSizeEqualsStoreSize(Ty))
2009 // TODO: This will result in a modest amount of values not marked noundef
2010 // when they could be. We care about values that *invisibly* contain undef
2011 // bits from the perspective of LLVM IR.
2012 return false;
2013 if (CheckCoerce && AI.canHaveCoerceToType()) {
2014 llvm::Type *CoerceTy = AI.getCoerceToType();
2015 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
2016 DL.getTypeSizeInBits(Ty)))
2017 // If we're coercing to a type with a greater size than the canonical one,
2018 // we're introducing new undef bits.
2019 // Coercing to a type of smaller or equal size is ok, as we know that
2020 // there's no internal padding (typeSizeEqualsStoreSize).
2021 return false;
2022 }
2023 if (QTy->isBitIntType())
2024 return true;
2025 if (QTy->isReferenceType())
2026 return true;
2027 if (QTy->isNullPtrType())
2028 return false;
2029 if (QTy->isMemberPointerType())
2030 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2031 // now, never mark them.
2032 return false;
2033 if (QTy->isScalarType()) {
2034 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
2035 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
2036 return true;
2037 }
2038 if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
2039 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
2040 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
2041 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
2042 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
2043 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
2044
2045 // TODO: Some structs may be `noundef`, in specific situations.
2046 return false;
2047 }
2048
2049 /// Construct the IR attribute list of a function or call.
2050 ///
2051 /// When adding an attribute, please consider where it should be handled:
2052 ///
2053 /// - getDefaultFunctionAttributes is for attributes that are essentially
2054 /// part of the global target configuration (but perhaps can be
2055 /// overridden on a per-function basis). Adding attributes there
2056 /// will cause them to also be set in frontends that build on Clang's
2057 /// target-configuration logic, as well as for code defined in library
2058 /// modules such as CUDA's libdevice.
2059 ///
2060 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2061 /// and adds declaration-specific, convention-specific, and
2062 /// frontend-specific logic. The last is of particular importance:
2063 /// attributes that restrict how the frontend generates code must be
2064 /// added here rather than getDefaultFunctionAttributes.
2065 ///
ConstructAttributeList(StringRef Name,const CGFunctionInfo & FI,CGCalleeInfo CalleeInfo,llvm::AttributeList & AttrList,unsigned & CallingConv,bool AttrOnCallSite,bool IsThunk)2066 void CodeGenModule::ConstructAttributeList(StringRef Name,
2067 const CGFunctionInfo &FI,
2068 CGCalleeInfo CalleeInfo,
2069 llvm::AttributeList &AttrList,
2070 unsigned &CallingConv,
2071 bool AttrOnCallSite, bool IsThunk) {
2072 llvm::AttrBuilder FuncAttrs(getLLVMContext());
2073 llvm::AttrBuilder RetAttrs(getLLVMContext());
2074
2075 // Collect function IR attributes from the CC lowering.
2076 // We'll collect the paramete and result attributes later.
2077 CallingConv = FI.getEffectiveCallingConvention();
2078 if (FI.isNoReturn())
2079 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2080 if (FI.isCmseNSCall())
2081 FuncAttrs.addAttribute("cmse_nonsecure_call");
2082
2083 // Collect function IR attributes from the callee prototype if we have one.
2084 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2085 CalleeInfo.getCalleeFunctionProtoType());
2086
2087 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2088
2089 // Attach assumption attributes to the declaration. If this is a call
2090 // site, attach assumptions from the caller to the call as well.
2091 AddAttributesFromAssumes(FuncAttrs, TargetDecl);
2092
2093 bool HasOptnone = false;
2094 // The NoBuiltinAttr attached to the target FunctionDecl.
2095 const NoBuiltinAttr *NBA = nullptr;
2096
2097 // Collect function IR attributes based on declaration-specific
2098 // information.
2099 // FIXME: handle sseregparm someday...
2100 if (TargetDecl) {
2101 if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2102 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2103 if (TargetDecl->hasAttr<NoThrowAttr>())
2104 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2105 if (TargetDecl->hasAttr<NoReturnAttr>())
2106 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2107 if (TargetDecl->hasAttr<ColdAttr>())
2108 FuncAttrs.addAttribute(llvm::Attribute::Cold);
2109 if (TargetDecl->hasAttr<HotAttr>())
2110 FuncAttrs.addAttribute(llvm::Attribute::Hot);
2111 if (TargetDecl->hasAttr<NoDuplicateAttr>())
2112 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2113 if (TargetDecl->hasAttr<ConvergentAttr>())
2114 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2115
2116 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2117 AddAttributesFromFunctionProtoType(
2118 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2119 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2120 // A sane operator new returns a non-aliasing pointer.
2121 auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2122 if (getCodeGenOpts().AssumeSaneOperatorNew &&
2123 (Kind == OO_New || Kind == OO_Array_New))
2124 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2125 }
2126 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2127 const bool IsVirtualCall = MD && MD->isVirtual();
2128 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2129 // virtual function. These attributes are not inherited by overloads.
2130 if (!(AttrOnCallSite && IsVirtualCall)) {
2131 if (Fn->isNoReturn())
2132 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2133 NBA = Fn->getAttr<NoBuiltinAttr>();
2134 }
2135 // Only place nomerge attribute on call sites, never functions. This
2136 // allows it to work on indirect virtual function calls.
2137 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2138 FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2139 }
2140
2141 // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2142 if (TargetDecl->hasAttr<ConstAttr>()) {
2143 FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2144 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2145 // gcc specifies that 'const' functions have greater restrictions than
2146 // 'pure' functions, so they also cannot have infinite loops.
2147 FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2148 } else if (TargetDecl->hasAttr<PureAttr>()) {
2149 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2150 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2151 // gcc specifies that 'pure' functions cannot have infinite loops.
2152 FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2153 } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2154 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2155 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2156 }
2157 if (TargetDecl->hasAttr<RestrictAttr>())
2158 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2159 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2160 !CodeGenOpts.NullPointerIsValid)
2161 RetAttrs.addAttribute(llvm::Attribute::NonNull);
2162 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2163 FuncAttrs.addAttribute("no_caller_saved_registers");
2164 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2165 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2166 if (TargetDecl->hasAttr<LeafAttr>())
2167 FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2168
2169 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2170 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2171 Optional<unsigned> NumElemsParam;
2172 if (AllocSize->getNumElemsParam().isValid())
2173 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2174 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2175 NumElemsParam);
2176 }
2177
2178 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2179 if (getLangOpts().OpenCLVersion <= 120) {
2180 // OpenCL v1.2 Work groups are always uniform
2181 FuncAttrs.addAttribute("uniform-work-group-size", "true");
2182 } else {
2183 // OpenCL v2.0 Work groups may be whether uniform or not.
2184 // '-cl-uniform-work-group-size' compile option gets a hint
2185 // to the compiler that the global work-size be a multiple of
2186 // the work-group size specified to clEnqueueNDRangeKernel
2187 // (i.e. work groups are uniform).
2188 FuncAttrs.addAttribute("uniform-work-group-size",
2189 llvm::toStringRef(CodeGenOpts.UniformWGSize));
2190 }
2191 }
2192 }
2193
2194 // Attach "no-builtins" attributes to:
2195 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2196 // * definitions: "no-builtins" or "no-builtin-<name>" only.
2197 // The attributes can come from:
2198 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2199 // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2200 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2201
2202 // Collect function IR attributes based on global settiings.
2203 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2204
2205 // Override some default IR attributes based on declaration-specific
2206 // information.
2207 if (TargetDecl) {
2208 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2209 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2210 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2211 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2212 if (TargetDecl->hasAttr<NoSplitStackAttr>())
2213 FuncAttrs.removeAttribute("split-stack");
2214 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
2215 // A function "__attribute__((...))" overrides the command-line flag.
2216 auto Kind =
2217 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
2218 FuncAttrs.removeAttribute("zero-call-used-regs");
2219 FuncAttrs.addAttribute(
2220 "zero-call-used-regs",
2221 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind));
2222 }
2223
2224 // Add NonLazyBind attribute to function declarations when -fno-plt
2225 // is used.
2226 // FIXME: what if we just haven't processed the function definition
2227 // yet, or if it's an external definition like C99 inline?
2228 if (CodeGenOpts.NoPLT) {
2229 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2230 if (!Fn->isDefined() && !AttrOnCallSite) {
2231 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2232 }
2233 }
2234 }
2235 }
2236
2237 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2238 // functions with -funique-internal-linkage-names.
2239 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2240 if (isa<FunctionDecl>(TargetDecl)) {
2241 if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) ==
2242 llvm::GlobalValue::InternalLinkage)
2243 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2244 "selected");
2245 }
2246 }
2247
2248 // Collect non-call-site function IR attributes from declaration-specific
2249 // information.
2250 if (!AttrOnCallSite) {
2251 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2252 FuncAttrs.addAttribute("cmse_nonsecure_entry");
2253
2254 // Whether tail calls are enabled.
2255 auto shouldDisableTailCalls = [&] {
2256 // Should this be honored in getDefaultFunctionAttributes?
2257 if (CodeGenOpts.DisableTailCalls)
2258 return true;
2259
2260 if (!TargetDecl)
2261 return false;
2262
2263 if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2264 TargetDecl->hasAttr<AnyX86InterruptAttr>())
2265 return true;
2266
2267 if (CodeGenOpts.NoEscapingBlockTailCalls) {
2268 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2269 if (!BD->doesNotEscape())
2270 return true;
2271 }
2272
2273 return false;
2274 };
2275 if (shouldDisableTailCalls())
2276 FuncAttrs.addAttribute("disable-tail-calls", "true");
2277
2278 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes
2279 // handles these separately to set them based on the global defaults.
2280 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2281 }
2282
2283 // Collect attributes from arguments and return values.
2284 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2285
2286 QualType RetTy = FI.getReturnType();
2287 const ABIArgInfo &RetAI = FI.getReturnInfo();
2288 const llvm::DataLayout &DL = getDataLayout();
2289
2290 // C++ explicitly makes returning undefined values UB. C's rule only applies
2291 // to used values, so we never mark them noundef for now.
2292 bool HasStrictReturn = getLangOpts().CPlusPlus;
2293 if (TargetDecl && HasStrictReturn) {
2294 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2295 HasStrictReturn &= !FDecl->isExternC();
2296 else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2297 // Function pointer
2298 HasStrictReturn &= !VDecl->isExternC();
2299 }
2300
2301 // We don't want to be too aggressive with the return checking, unless
2302 // it's explicit in the code opts or we're using an appropriate sanitizer.
2303 // Try to respect what the programmer intended.
2304 HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2305 !MayDropFunctionReturn(getContext(), RetTy) ||
2306 getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2307 getLangOpts().Sanitize.has(SanitizerKind::Return);
2308
2309 // Determine if the return type could be partially undef
2310 if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2311 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2312 DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2313 RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2314 }
2315
2316 switch (RetAI.getKind()) {
2317 case ABIArgInfo::Extend:
2318 if (RetAI.isSignExt())
2319 RetAttrs.addAttribute(llvm::Attribute::SExt);
2320 else
2321 RetAttrs.addAttribute(llvm::Attribute::ZExt);
2322 LLVM_FALLTHROUGH;
2323 case ABIArgInfo::Direct:
2324 if (RetAI.getInReg())
2325 RetAttrs.addAttribute(llvm::Attribute::InReg);
2326 break;
2327 case ABIArgInfo::Ignore:
2328 break;
2329
2330 case ABIArgInfo::InAlloca:
2331 case ABIArgInfo::Indirect: {
2332 // inalloca and sret disable readnone and readonly
2333 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2334 .removeAttribute(llvm::Attribute::ReadNone);
2335 break;
2336 }
2337
2338 case ABIArgInfo::CoerceAndExpand:
2339 break;
2340
2341 case ABIArgInfo::Expand:
2342 case ABIArgInfo::IndirectAliased:
2343 llvm_unreachable("Invalid ABI kind for return argument");
2344 }
2345
2346 if (!IsThunk) {
2347 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2348 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2349 QualType PTy = RefTy->getPointeeType();
2350 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2351 RetAttrs.addDereferenceableAttr(
2352 getMinimumObjectSize(PTy).getQuantity());
2353 if (getContext().getTargetAddressSpace(PTy) == 0 &&
2354 !CodeGenOpts.NullPointerIsValid)
2355 RetAttrs.addAttribute(llvm::Attribute::NonNull);
2356 if (PTy->isObjectType()) {
2357 llvm::Align Alignment =
2358 getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2359 RetAttrs.addAlignmentAttr(Alignment);
2360 }
2361 }
2362 }
2363
2364 bool hasUsedSRet = false;
2365 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2366
2367 // Attach attributes to sret.
2368 if (IRFunctionArgs.hasSRetArg()) {
2369 llvm::AttrBuilder SRETAttrs(getLLVMContext());
2370 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2371 hasUsedSRet = true;
2372 if (RetAI.getInReg())
2373 SRETAttrs.addAttribute(llvm::Attribute::InReg);
2374 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2375 ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2376 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2377 }
2378
2379 // Attach attributes to inalloca argument.
2380 if (IRFunctionArgs.hasInallocaArg()) {
2381 llvm::AttrBuilder Attrs(getLLVMContext());
2382 Attrs.addInAllocaAttr(FI.getArgStruct());
2383 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2384 llvm::AttributeSet::get(getLLVMContext(), Attrs);
2385 }
2386
2387 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2388 // unless this is a thunk function.
2389 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2390 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2391 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2392 auto IRArgs = IRFunctionArgs.getIRArgs(0);
2393
2394 assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2395
2396 llvm::AttrBuilder Attrs(getLLVMContext());
2397
2398 QualType ThisTy =
2399 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType();
2400
2401 if (!CodeGenOpts.NullPointerIsValid &&
2402 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2403 Attrs.addAttribute(llvm::Attribute::NonNull);
2404 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2405 } else {
2406 // FIXME dereferenceable should be correct here, regardless of
2407 // NullPointerIsValid. However, dereferenceable currently does not always
2408 // respect NullPointerIsValid and may imply nonnull and break the program.
2409 // See https://reviews.llvm.org/D66618 for discussions.
2410 Attrs.addDereferenceableOrNullAttr(
2411 getMinimumObjectSize(
2412 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2413 .getQuantity());
2414 }
2415
2416 llvm::Align Alignment =
2417 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2418 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2419 .getAsAlign();
2420 Attrs.addAlignmentAttr(Alignment);
2421
2422 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2423 }
2424
2425 unsigned ArgNo = 0;
2426 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2427 E = FI.arg_end();
2428 I != E; ++I, ++ArgNo) {
2429 QualType ParamType = I->type;
2430 const ABIArgInfo &AI = I->info;
2431 llvm::AttrBuilder Attrs(getLLVMContext());
2432
2433 // Add attribute for padding argument, if necessary.
2434 if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2435 if (AI.getPaddingInReg()) {
2436 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2437 llvm::AttributeSet::get(
2438 getLLVMContext(),
2439 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg));
2440 }
2441 }
2442
2443 // Decide whether the argument we're handling could be partially undef
2444 if (CodeGenOpts.EnableNoundefAttrs &&
2445 DetermineNoUndef(ParamType, getTypes(), DL, AI)) {
2446 Attrs.addAttribute(llvm::Attribute::NoUndef);
2447 }
2448
2449 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2450 // have the corresponding parameter variable. It doesn't make
2451 // sense to do it here because parameters are so messed up.
2452 switch (AI.getKind()) {
2453 case ABIArgInfo::Extend:
2454 if (AI.isSignExt())
2455 Attrs.addAttribute(llvm::Attribute::SExt);
2456 else
2457 Attrs.addAttribute(llvm::Attribute::ZExt);
2458 LLVM_FALLTHROUGH;
2459 case ABIArgInfo::Direct:
2460 if (ArgNo == 0 && FI.isChainCall())
2461 Attrs.addAttribute(llvm::Attribute::Nest);
2462 else if (AI.getInReg())
2463 Attrs.addAttribute(llvm::Attribute::InReg);
2464 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2465 break;
2466
2467 case ABIArgInfo::Indirect: {
2468 if (AI.getInReg())
2469 Attrs.addAttribute(llvm::Attribute::InReg);
2470
2471 if (AI.getIndirectByVal())
2472 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2473
2474 auto *Decl = ParamType->getAsRecordDecl();
2475 if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2476 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2477 // When calling the function, the pointer passed in will be the only
2478 // reference to the underlying object. Mark it accordingly.
2479 Attrs.addAttribute(llvm::Attribute::NoAlias);
2480
2481 // TODO: We could add the byref attribute if not byval, but it would
2482 // require updating many testcases.
2483
2484 CharUnits Align = AI.getIndirectAlign();
2485
2486 // In a byval argument, it is important that the required
2487 // alignment of the type is honored, as LLVM might be creating a
2488 // *new* stack object, and needs to know what alignment to give
2489 // it. (Sometimes it can deduce a sensible alignment on its own,
2490 // but not if clang decides it must emit a packed struct, or the
2491 // user specifies increased alignment requirements.)
2492 //
2493 // This is different from indirect *not* byval, where the object
2494 // exists already, and the align attribute is purely
2495 // informative.
2496 assert(!Align.isZero());
2497
2498 // For now, only add this when we have a byval argument.
2499 // TODO: be less lazy about updating test cases.
2500 if (AI.getIndirectByVal())
2501 Attrs.addAlignmentAttr(Align.getQuantity());
2502
2503 // byval disables readnone and readonly.
2504 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2505 .removeAttribute(llvm::Attribute::ReadNone);
2506
2507 break;
2508 }
2509 case ABIArgInfo::IndirectAliased: {
2510 CharUnits Align = AI.getIndirectAlign();
2511 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2512 Attrs.addAlignmentAttr(Align.getQuantity());
2513 break;
2514 }
2515 case ABIArgInfo::Ignore:
2516 case ABIArgInfo::Expand:
2517 case ABIArgInfo::CoerceAndExpand:
2518 break;
2519
2520 case ABIArgInfo::InAlloca:
2521 // inalloca disables readnone and readonly.
2522 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2523 .removeAttribute(llvm::Attribute::ReadNone);
2524 continue;
2525 }
2526
2527 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2528 QualType PTy = RefTy->getPointeeType();
2529 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2530 Attrs.addDereferenceableAttr(
2531 getMinimumObjectSize(PTy).getQuantity());
2532 if (getContext().getTargetAddressSpace(PTy) == 0 &&
2533 !CodeGenOpts.NullPointerIsValid)
2534 Attrs.addAttribute(llvm::Attribute::NonNull);
2535 if (PTy->isObjectType()) {
2536 llvm::Align Alignment =
2537 getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2538 Attrs.addAlignmentAttr(Alignment);
2539 }
2540 }
2541
2542 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2543 // > For arguments to a __kernel function declared to be a pointer to a
2544 // > data type, the OpenCL compiler can assume that the pointee is always
2545 // > appropriately aligned as required by the data type.
2546 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
2547 ParamType->isPointerType()) {
2548 QualType PTy = ParamType->getPointeeType();
2549 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2550 llvm::Align Alignment =
2551 getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2552 Attrs.addAlignmentAttr(Alignment);
2553 }
2554 }
2555
2556 switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2557 case ParameterABI::Ordinary:
2558 break;
2559
2560 case ParameterABI::SwiftIndirectResult: {
2561 // Add 'sret' if we haven't already used it for something, but
2562 // only if the result is void.
2563 if (!hasUsedSRet && RetTy->isVoidType()) {
2564 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2565 hasUsedSRet = true;
2566 }
2567
2568 // Add 'noalias' in either case.
2569 Attrs.addAttribute(llvm::Attribute::NoAlias);
2570
2571 // Add 'dereferenceable' and 'alignment'.
2572 auto PTy = ParamType->getPointeeType();
2573 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2574 auto info = getContext().getTypeInfoInChars(PTy);
2575 Attrs.addDereferenceableAttr(info.Width.getQuantity());
2576 Attrs.addAlignmentAttr(info.Align.getAsAlign());
2577 }
2578 break;
2579 }
2580
2581 case ParameterABI::SwiftErrorResult:
2582 Attrs.addAttribute(llvm::Attribute::SwiftError);
2583 break;
2584
2585 case ParameterABI::SwiftContext:
2586 Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2587 break;
2588
2589 case ParameterABI::SwiftAsyncContext:
2590 Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2591 break;
2592 }
2593
2594 if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2595 Attrs.addAttribute(llvm::Attribute::NoCapture);
2596
2597 if (Attrs.hasAttributes()) {
2598 unsigned FirstIRArg, NumIRArgs;
2599 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2600 for (unsigned i = 0; i < NumIRArgs; i++)
2601 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
2602 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs));
2603 }
2604 }
2605 assert(ArgNo == FI.arg_size());
2606
2607 AttrList = llvm::AttributeList::get(
2608 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2609 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2610 }
2611
2612 /// An argument came in as a promoted argument; demote it back to its
2613 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)2614 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2615 const VarDecl *var,
2616 llvm::Value *value) {
2617 llvm::Type *varType = CGF.ConvertType(var->getType());
2618
2619 // This can happen with promotions that actually don't change the
2620 // underlying type, like the enum promotions.
2621 if (value->getType() == varType) return value;
2622
2623 assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2624 && "unexpected promotion type");
2625
2626 if (isa<llvm::IntegerType>(varType))
2627 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2628
2629 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2630 }
2631
2632 /// Returns the attribute (either parameter attribute, or function
2633 /// attribute), which declares argument ArgNo to be non-null.
getNonNullAttr(const Decl * FD,const ParmVarDecl * PVD,QualType ArgType,unsigned ArgNo)2634 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2635 QualType ArgType, unsigned ArgNo) {
2636 // FIXME: __attribute__((nonnull)) can also be applied to:
2637 // - references to pointers, where the pointee is known to be
2638 // nonnull (apparently a Clang extension)
2639 // - transparent unions containing pointers
2640 // In the former case, LLVM IR cannot represent the constraint. In
2641 // the latter case, we have no guarantee that the transparent union
2642 // is in fact passed as a pointer.
2643 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2644 return nullptr;
2645 // First, check attribute on parameter itself.
2646 if (PVD) {
2647 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2648 return ParmNNAttr;
2649 }
2650 // Check function attributes.
2651 if (!FD)
2652 return nullptr;
2653 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2654 if (NNAttr->isNonNull(ArgNo))
2655 return NNAttr;
2656 }
2657 return nullptr;
2658 }
2659
2660 namespace {
2661 struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2662 Address Temp;
2663 Address Arg;
CopyBackSwiftError__anon4a6f99940811::CopyBackSwiftError2664 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
Emit__anon4a6f99940811::CopyBackSwiftError2665 void Emit(CodeGenFunction &CGF, Flags flags) override {
2666 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2667 CGF.Builder.CreateStore(errorValue, Arg);
2668 }
2669 };
2670 }
2671
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)2672 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2673 llvm::Function *Fn,
2674 const FunctionArgList &Args) {
2675 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2676 // Naked functions don't have prologues.
2677 return;
2678
2679 // If this is an implicit-return-zero function, go ahead and
2680 // initialize the return value. TODO: it might be nice to have
2681 // a more general mechanism for this that didn't require synthesized
2682 // return statements.
2683 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2684 if (FD->hasImplicitReturnZero()) {
2685 QualType RetTy = FD->getReturnType().getUnqualifiedType();
2686 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2687 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2688 Builder.CreateStore(Zero, ReturnValue);
2689 }
2690 }
2691
2692 // FIXME: We no longer need the types from FunctionArgList; lift up and
2693 // simplify.
2694
2695 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2696 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2697
2698 // If we're using inalloca, all the memory arguments are GEPs off of the last
2699 // parameter, which is a pointer to the complete memory area.
2700 Address ArgStruct = Address::invalid();
2701 if (IRFunctionArgs.hasInallocaArg()) {
2702 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2703 FI.getArgStruct(), FI.getArgStructAlignment());
2704
2705 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2706 }
2707
2708 // Name the struct return parameter.
2709 if (IRFunctionArgs.hasSRetArg()) {
2710 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2711 AI->setName("agg.result");
2712 AI->addAttr(llvm::Attribute::NoAlias);
2713 }
2714
2715 // Track if we received the parameter as a pointer (indirect, byval, or
2716 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
2717 // into a local alloca for us.
2718 SmallVector<ParamValue, 16> ArgVals;
2719 ArgVals.reserve(Args.size());
2720
2721 // Create a pointer value for every parameter declaration. This usually
2722 // entails copying one or more LLVM IR arguments into an alloca. Don't push
2723 // any cleanups or do anything that might unwind. We do that separately, so
2724 // we can push the cleanups in the correct order for the ABI.
2725 assert(FI.arg_size() == Args.size() &&
2726 "Mismatch between function signature & arguments.");
2727 unsigned ArgNo = 0;
2728 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2729 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2730 i != e; ++i, ++info_it, ++ArgNo) {
2731 const VarDecl *Arg = *i;
2732 const ABIArgInfo &ArgI = info_it->info;
2733
2734 bool isPromoted =
2735 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2736 // We are converting from ABIArgInfo type to VarDecl type directly, unless
2737 // the parameter is promoted. In this case we convert to
2738 // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2739 QualType Ty = isPromoted ? info_it->type : Arg->getType();
2740 assert(hasScalarEvaluationKind(Ty) ==
2741 hasScalarEvaluationKind(Arg->getType()));
2742
2743 unsigned FirstIRArg, NumIRArgs;
2744 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2745
2746 switch (ArgI.getKind()) {
2747 case ABIArgInfo::InAlloca: {
2748 assert(NumIRArgs == 0);
2749 auto FieldIndex = ArgI.getInAllocaFieldIndex();
2750 Address V =
2751 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2752 if (ArgI.getInAllocaIndirect())
2753 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty),
2754 getContext().getTypeAlignInChars(Ty));
2755 ArgVals.push_back(ParamValue::forIndirect(V));
2756 break;
2757 }
2758
2759 case ABIArgInfo::Indirect:
2760 case ABIArgInfo::IndirectAliased: {
2761 assert(NumIRArgs == 1);
2762 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty),
2763 ArgI.getIndirectAlign());
2764
2765 if (!hasScalarEvaluationKind(Ty)) {
2766 // Aggregates and complex variables are accessed by reference. All we
2767 // need to do is realign the value, if requested. Also, if the address
2768 // may be aliased, copy it to ensure that the parameter variable is
2769 // mutable and has a unique adress, as C requires.
2770 Address V = ParamAddr;
2771 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2772 Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2773
2774 // Copy from the incoming argument pointer to the temporary with the
2775 // appropriate alignment.
2776 //
2777 // FIXME: We should have a common utility for generating an aggregate
2778 // copy.
2779 CharUnits Size = getContext().getTypeSizeInChars(Ty);
2780 Builder.CreateMemCpy(
2781 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2782 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2783 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2784 V = AlignedTemp;
2785 }
2786 ArgVals.push_back(ParamValue::forIndirect(V));
2787 } else {
2788 // Load scalar value from indirect argument.
2789 llvm::Value *V =
2790 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2791
2792 if (isPromoted)
2793 V = emitArgumentDemotion(*this, Arg, V);
2794 ArgVals.push_back(ParamValue::forDirect(V));
2795 }
2796 break;
2797 }
2798
2799 case ABIArgInfo::Extend:
2800 case ABIArgInfo::Direct: {
2801 auto AI = Fn->getArg(FirstIRArg);
2802 llvm::Type *LTy = ConvertType(Arg->getType());
2803
2804 // Prepare parameter attributes. So far, only attributes for pointer
2805 // parameters are prepared. See
2806 // http://llvm.org/docs/LangRef.html#paramattrs.
2807 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2808 ArgI.getCoerceToType()->isPointerTy()) {
2809 assert(NumIRArgs == 1);
2810
2811 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2812 // Set `nonnull` attribute if any.
2813 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2814 PVD->getFunctionScopeIndex()) &&
2815 !CGM.getCodeGenOpts().NullPointerIsValid)
2816 AI->addAttr(llvm::Attribute::NonNull);
2817
2818 QualType OTy = PVD->getOriginalType();
2819 if (const auto *ArrTy =
2820 getContext().getAsConstantArrayType(OTy)) {
2821 // A C99 array parameter declaration with the static keyword also
2822 // indicates dereferenceability, and if the size is constant we can
2823 // use the dereferenceable attribute (which requires the size in
2824 // bytes).
2825 if (ArrTy->getSizeModifier() == ArrayType::Static) {
2826 QualType ETy = ArrTy->getElementType();
2827 llvm::Align Alignment =
2828 CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2829 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
2830 uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2831 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2832 ArrSize) {
2833 llvm::AttrBuilder Attrs(getLLVMContext());
2834 Attrs.addDereferenceableAttr(
2835 getContext().getTypeSizeInChars(ETy).getQuantity() *
2836 ArrSize);
2837 AI->addAttrs(Attrs);
2838 } else if (getContext().getTargetInfo().getNullPointerValue(
2839 ETy.getAddressSpace()) == 0 &&
2840 !CGM.getCodeGenOpts().NullPointerIsValid) {
2841 AI->addAttr(llvm::Attribute::NonNull);
2842 }
2843 }
2844 } else if (const auto *ArrTy =
2845 getContext().getAsVariableArrayType(OTy)) {
2846 // For C99 VLAs with the static keyword, we don't know the size so
2847 // we can't use the dereferenceable attribute, but in addrspace(0)
2848 // we know that it must be nonnull.
2849 if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2850 QualType ETy = ArrTy->getElementType();
2851 llvm::Align Alignment =
2852 CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2853 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
2854 if (!getContext().getTargetAddressSpace(ETy) &&
2855 !CGM.getCodeGenOpts().NullPointerIsValid)
2856 AI->addAttr(llvm::Attribute::NonNull);
2857 }
2858 }
2859
2860 // Set `align` attribute if any.
2861 const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2862 if (!AVAttr)
2863 if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2864 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2865 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2866 // If alignment-assumption sanitizer is enabled, we do *not* add
2867 // alignment attribute here, but emit normal alignment assumption,
2868 // so the UBSAN check could function.
2869 llvm::ConstantInt *AlignmentCI =
2870 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2871 uint64_t AlignmentInt =
2872 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2873 if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2874 AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2875 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
2876 llvm::Align(AlignmentInt)));
2877 }
2878 }
2879 }
2880
2881 // Set 'noalias' if an argument type has the `restrict` qualifier.
2882 if (Arg->getType().isRestrictQualified())
2883 AI->addAttr(llvm::Attribute::NoAlias);
2884 }
2885
2886 // Prepare the argument value. If we have the trivial case, handle it
2887 // with no muss and fuss.
2888 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2889 ArgI.getCoerceToType() == ConvertType(Ty) &&
2890 ArgI.getDirectOffset() == 0) {
2891 assert(NumIRArgs == 1);
2892
2893 // LLVM expects swifterror parameters to be used in very restricted
2894 // ways. Copy the value into a less-restricted temporary.
2895 llvm::Value *V = AI;
2896 if (FI.getExtParameterInfo(ArgNo).getABI()
2897 == ParameterABI::SwiftErrorResult) {
2898 QualType pointeeTy = Ty->getPointeeType();
2899 assert(pointeeTy->isPointerType());
2900 Address temp =
2901 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2902 Address arg(V, ConvertTypeForMem(pointeeTy),
2903 getContext().getTypeAlignInChars(pointeeTy));
2904 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2905 Builder.CreateStore(incomingErrorValue, temp);
2906 V = temp.getPointer();
2907
2908 // Push a cleanup to copy the value back at the end of the function.
2909 // The convention does not guarantee that the value will be written
2910 // back if the function exits with an unwind exception.
2911 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2912 }
2913
2914 // Ensure the argument is the correct type.
2915 if (V->getType() != ArgI.getCoerceToType())
2916 V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2917
2918 if (isPromoted)
2919 V = emitArgumentDemotion(*this, Arg, V);
2920
2921 // Because of merging of function types from multiple decls it is
2922 // possible for the type of an argument to not match the corresponding
2923 // type in the function type. Since we are codegening the callee
2924 // in here, add a cast to the argument type.
2925 llvm::Type *LTy = ConvertType(Arg->getType());
2926 if (V->getType() != LTy)
2927 V = Builder.CreateBitCast(V, LTy);
2928
2929 ArgVals.push_back(ParamValue::forDirect(V));
2930 break;
2931 }
2932
2933 // VLST arguments are coerced to VLATs at the function boundary for
2934 // ABI consistency. If this is a VLST that was coerced to
2935 // a VLAT at the function boundary and the types match up, use
2936 // llvm.vector.extract to convert back to the original VLST.
2937 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2938 llvm::Value *Coerced = Fn->getArg(FirstIRArg);
2939 if (auto *VecTyFrom =
2940 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2941 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2942 // vector, bitcast the source and use a vector extract.
2943 auto PredType =
2944 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2945 if (VecTyFrom == PredType &&
2946 VecTyTo->getElementType() == Builder.getInt8Ty()) {
2947 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2948 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
2949 }
2950 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2951 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2952
2953 assert(NumIRArgs == 1);
2954 Coerced->setName(Arg->getName() + ".coerce");
2955 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2956 VecTyTo, Coerced, Zero, "castFixedSve")));
2957 break;
2958 }
2959 }
2960 }
2961
2962 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2963 Arg->getName());
2964
2965 // Pointer to store into.
2966 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2967
2968 // Fast-isel and the optimizer generally like scalar values better than
2969 // FCAs, so we flatten them if this is safe to do for this argument.
2970 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2971 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2972 STy->getNumElements() > 1) {
2973 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2974 llvm::Type *DstTy = Ptr.getElementType();
2975 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2976
2977 Address AddrToStoreInto = Address::invalid();
2978 if (SrcSize <= DstSize) {
2979 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2980 } else {
2981 AddrToStoreInto =
2982 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2983 }
2984
2985 assert(STy->getNumElements() == NumIRArgs);
2986 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2987 auto AI = Fn->getArg(FirstIRArg + i);
2988 AI->setName(Arg->getName() + ".coerce" + Twine(i));
2989 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2990 Builder.CreateStore(AI, EltPtr);
2991 }
2992
2993 if (SrcSize > DstSize) {
2994 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2995 }
2996
2997 } else {
2998 // Simple case, just do a coerced store of the argument into the alloca.
2999 assert(NumIRArgs == 1);
3000 auto AI = Fn->getArg(FirstIRArg);
3001 AI->setName(Arg->getName() + ".coerce");
3002 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
3003 }
3004
3005 // Match to what EmitParmDecl is expecting for this type.
3006 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
3007 llvm::Value *V =
3008 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
3009 if (isPromoted)
3010 V = emitArgumentDemotion(*this, Arg, V);
3011 ArgVals.push_back(ParamValue::forDirect(V));
3012 } else {
3013 ArgVals.push_back(ParamValue::forIndirect(Alloca));
3014 }
3015 break;
3016 }
3017
3018 case ABIArgInfo::CoerceAndExpand: {
3019 // Reconstruct into a temporary.
3020 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3021 ArgVals.push_back(ParamValue::forIndirect(alloca));
3022
3023 auto coercionType = ArgI.getCoerceAndExpandType();
3024 alloca = Builder.CreateElementBitCast(alloca, coercionType);
3025
3026 unsigned argIndex = FirstIRArg;
3027 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3028 llvm::Type *eltType = coercionType->getElementType(i);
3029 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
3030 continue;
3031
3032 auto eltAddr = Builder.CreateStructGEP(alloca, i);
3033 auto elt = Fn->getArg(argIndex++);
3034 Builder.CreateStore(elt, eltAddr);
3035 }
3036 assert(argIndex == FirstIRArg + NumIRArgs);
3037 break;
3038 }
3039
3040 case ABIArgInfo::Expand: {
3041 // If this structure was expanded into multiple arguments then
3042 // we need to create a temporary and reconstruct it from the
3043 // arguments.
3044 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3045 LValue LV = MakeAddrLValue(Alloca, Ty);
3046 ArgVals.push_back(ParamValue::forIndirect(Alloca));
3047
3048 auto FnArgIter = Fn->arg_begin() + FirstIRArg;
3049 ExpandTypeFromArgs(Ty, LV, FnArgIter);
3050 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
3051 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
3052 auto AI = Fn->getArg(FirstIRArg + i);
3053 AI->setName(Arg->getName() + "." + Twine(i));
3054 }
3055 break;
3056 }
3057
3058 case ABIArgInfo::Ignore:
3059 assert(NumIRArgs == 0);
3060 // Initialize the local variable appropriately.
3061 if (!hasScalarEvaluationKind(Ty)) {
3062 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
3063 } else {
3064 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
3065 ArgVals.push_back(ParamValue::forDirect(U));
3066 }
3067 break;
3068 }
3069 }
3070
3071 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3072 for (int I = Args.size() - 1; I >= 0; --I)
3073 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3074 } else {
3075 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3076 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3077 }
3078 }
3079
eraseUnusedBitCasts(llvm::Instruction * insn)3080 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3081 while (insn->use_empty()) {
3082 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3083 if (!bitcast) return;
3084
3085 // This is "safe" because we would have used a ConstantExpr otherwise.
3086 insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3087 bitcast->eraseFromParent();
3088 }
3089 }
3090
3091 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)3092 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3093 llvm::Value *result) {
3094 // We must be immediately followed the cast.
3095 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3096 if (BB->empty()) return nullptr;
3097 if (&BB->back() != result) return nullptr;
3098
3099 llvm::Type *resultType = result->getType();
3100
3101 // result is in a BasicBlock and is therefore an Instruction.
3102 llvm::Instruction *generator = cast<llvm::Instruction>(result);
3103
3104 SmallVector<llvm::Instruction *, 4> InstsToKill;
3105
3106 // Look for:
3107 // %generator = bitcast %type1* %generator2 to %type2*
3108 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3109 // We would have emitted this as a constant if the operand weren't
3110 // an Instruction.
3111 generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3112
3113 // Require the generator to be immediately followed by the cast.
3114 if (generator->getNextNode() != bitcast)
3115 return nullptr;
3116
3117 InstsToKill.push_back(bitcast);
3118 }
3119
3120 // Look for:
3121 // %generator = call i8* @objc_retain(i8* %originalResult)
3122 // or
3123 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3124 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3125 if (!call) return nullptr;
3126
3127 bool doRetainAutorelease;
3128
3129 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3130 doRetainAutorelease = true;
3131 } else if (call->getCalledOperand() ==
3132 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3133 doRetainAutorelease = false;
3134
3135 // If we emitted an assembly marker for this call (and the
3136 // ARCEntrypoints field should have been set if so), go looking
3137 // for that call. If we can't find it, we can't do this
3138 // optimization. But it should always be the immediately previous
3139 // instruction, unless we needed bitcasts around the call.
3140 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3141 llvm::Instruction *prev = call->getPrevNode();
3142 assert(prev);
3143 if (isa<llvm::BitCastInst>(prev)) {
3144 prev = prev->getPrevNode();
3145 assert(prev);
3146 }
3147 assert(isa<llvm::CallInst>(prev));
3148 assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3149 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3150 InstsToKill.push_back(prev);
3151 }
3152 } else {
3153 return nullptr;
3154 }
3155
3156 result = call->getArgOperand(0);
3157 InstsToKill.push_back(call);
3158
3159 // Keep killing bitcasts, for sanity. Note that we no longer care
3160 // about precise ordering as long as there's exactly one use.
3161 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3162 if (!bitcast->hasOneUse()) break;
3163 InstsToKill.push_back(bitcast);
3164 result = bitcast->getOperand(0);
3165 }
3166
3167 // Delete all the unnecessary instructions, from latest to earliest.
3168 for (auto *I : InstsToKill)
3169 I->eraseFromParent();
3170
3171 // Do the fused retain/autorelease if we were asked to.
3172 if (doRetainAutorelease)
3173 result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3174
3175 // Cast back to the result type.
3176 return CGF.Builder.CreateBitCast(result, resultType);
3177 }
3178
3179 /// If this is a +1 of the value of an immutable 'self', remove it.
tryRemoveRetainOfSelf(CodeGenFunction & CGF,llvm::Value * result)3180 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3181 llvm::Value *result) {
3182 // This is only applicable to a method with an immutable 'self'.
3183 const ObjCMethodDecl *method =
3184 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3185 if (!method) return nullptr;
3186 const VarDecl *self = method->getSelfDecl();
3187 if (!self->getType().isConstQualified()) return nullptr;
3188
3189 // Look for a retain call.
3190 llvm::CallInst *retainCall =
3191 dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3192 if (!retainCall || retainCall->getCalledOperand() !=
3193 CGF.CGM.getObjCEntrypoints().objc_retain)
3194 return nullptr;
3195
3196 // Look for an ordinary load of 'self'.
3197 llvm::Value *retainedValue = retainCall->getArgOperand(0);
3198 llvm::LoadInst *load =
3199 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3200 if (!load || load->isAtomic() || load->isVolatile() ||
3201 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3202 return nullptr;
3203
3204 // Okay! Burn it all down. This relies for correctness on the
3205 // assumption that the retain is emitted as part of the return and
3206 // that thereafter everything is used "linearly".
3207 llvm::Type *resultType = result->getType();
3208 eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3209 assert(retainCall->use_empty());
3210 retainCall->eraseFromParent();
3211 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3212
3213 return CGF.Builder.CreateBitCast(load, resultType);
3214 }
3215
3216 /// Emit an ARC autorelease of the result of a function.
3217 ///
3218 /// \return the value to actually return from the function
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)3219 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3220 llvm::Value *result) {
3221 // If we're returning 'self', kill the initial retain. This is a
3222 // heuristic attempt to "encourage correctness" in the really unfortunate
3223 // case where we have a return of self during a dealloc and we desperately
3224 // need to avoid the possible autorelease.
3225 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3226 return self;
3227
3228 // At -O0, try to emit a fused retain/autorelease.
3229 if (CGF.shouldUseFusedARCCalls())
3230 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3231 return fused;
3232
3233 return CGF.EmitARCAutoreleaseReturnValue(result);
3234 }
3235
3236 /// Heuristically search for a dominating store to the return-value slot.
findDominatingStoreToReturnValue(CodeGenFunction & CGF)3237 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3238 // Check if a User is a store which pointerOperand is the ReturnValue.
3239 // We are looking for stores to the ReturnValue, not for stores of the
3240 // ReturnValue to some other location.
3241 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3242 auto *SI = dyn_cast<llvm::StoreInst>(U);
3243 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() ||
3244 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType())
3245 return nullptr;
3246 // These aren't actually possible for non-coerced returns, and we
3247 // only care about non-coerced returns on this code path.
3248 assert(!SI->isAtomic() && !SI->isVolatile());
3249 return SI;
3250 };
3251 // If there are multiple uses of the return-value slot, just check
3252 // for something immediately preceding the IP. Sometimes this can
3253 // happen with how we generate implicit-returns; it can also happen
3254 // with noreturn cleanups.
3255 if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3256 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3257 if (IP->empty()) return nullptr;
3258
3259 // Look at directly preceding instruction, skipping bitcasts and lifetime
3260 // markers.
3261 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) {
3262 if (isa<llvm::BitCastInst>(&I))
3263 continue;
3264 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I))
3265 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end)
3266 continue;
3267
3268 return GetStoreIfValid(&I);
3269 }
3270 return nullptr;
3271 }
3272
3273 llvm::StoreInst *store =
3274 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3275 if (!store) return nullptr;
3276
3277 // Now do a first-and-dirty dominance check: just walk up the
3278 // single-predecessors chain from the current insertion point.
3279 llvm::BasicBlock *StoreBB = store->getParent();
3280 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3281 while (IP != StoreBB) {
3282 if (!(IP = IP->getSinglePredecessor()))
3283 return nullptr;
3284 }
3285
3286 // Okay, the store's basic block dominates the insertion point; we
3287 // can do our thing.
3288 return store;
3289 }
3290
3291 // Helper functions for EmitCMSEClearRecord
3292
3293 // Set the bits corresponding to a field having width `BitWidth` and located at
3294 // offset `BitOffset` (from the least significant bit) within a storage unit of
3295 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3296 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
setBitRange(SmallVectorImpl<uint64_t> & Bits,int BitOffset,int BitWidth,int CharWidth)3297 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3298 int BitWidth, int CharWidth) {
3299 assert(CharWidth <= 64);
3300 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3301
3302 int Pos = 0;
3303 if (BitOffset >= CharWidth) {
3304 Pos += BitOffset / CharWidth;
3305 BitOffset = BitOffset % CharWidth;
3306 }
3307
3308 const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3309 if (BitOffset + BitWidth >= CharWidth) {
3310 Bits[Pos++] |= (Used << BitOffset) & Used;
3311 BitWidth -= CharWidth - BitOffset;
3312 BitOffset = 0;
3313 }
3314
3315 while (BitWidth >= CharWidth) {
3316 Bits[Pos++] = Used;
3317 BitWidth -= CharWidth;
3318 }
3319
3320 if (BitWidth > 0)
3321 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3322 }
3323
3324 // Set the bits corresponding to a field having width `BitWidth` and located at
3325 // offset `BitOffset` (from the least significant bit) within a storage unit of
3326 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3327 // `Bits` corresponds to one target byte. Use target endian layout.
setBitRange(SmallVectorImpl<uint64_t> & Bits,int StorageOffset,int StorageSize,int BitOffset,int BitWidth,int CharWidth,bool BigEndian)3328 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3329 int StorageSize, int BitOffset, int BitWidth,
3330 int CharWidth, bool BigEndian) {
3331
3332 SmallVector<uint64_t, 8> TmpBits(StorageSize);
3333 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3334
3335 if (BigEndian)
3336 std::reverse(TmpBits.begin(), TmpBits.end());
3337
3338 for (uint64_t V : TmpBits)
3339 Bits[StorageOffset++] |= V;
3340 }
3341
3342 static void setUsedBits(CodeGenModule &, QualType, int,
3343 SmallVectorImpl<uint64_t> &);
3344
3345 // Set the bits in `Bits`, which correspond to the value representations of
3346 // the actual members of the record type `RTy`. Note that this function does
3347 // not handle base classes, virtual tables, etc, since they cannot happen in
3348 // CMSE function arguments or return. The bit mask corresponds to the target
3349 // memory layout, i.e. it's endian dependent.
setUsedBits(CodeGenModule & CGM,const RecordType * RTy,int Offset,SmallVectorImpl<uint64_t> & Bits)3350 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3351 SmallVectorImpl<uint64_t> &Bits) {
3352 ASTContext &Context = CGM.getContext();
3353 int CharWidth = Context.getCharWidth();
3354 const RecordDecl *RD = RTy->getDecl()->getDefinition();
3355 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3356 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3357
3358 int Idx = 0;
3359 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3360 const FieldDecl *F = *I;
3361
3362 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3363 F->getType()->isIncompleteArrayType())
3364 continue;
3365
3366 if (F->isBitField()) {
3367 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3368 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3369 BFI.StorageSize / CharWidth, BFI.Offset,
3370 BFI.Size, CharWidth,
3371 CGM.getDataLayout().isBigEndian());
3372 continue;
3373 }
3374
3375 setUsedBits(CGM, F->getType(),
3376 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3377 }
3378 }
3379
3380 // Set the bits in `Bits`, which correspond to the value representations of
3381 // the elements of an array type `ATy`.
setUsedBits(CodeGenModule & CGM,const ConstantArrayType * ATy,int Offset,SmallVectorImpl<uint64_t> & Bits)3382 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3383 int Offset, SmallVectorImpl<uint64_t> &Bits) {
3384 const ASTContext &Context = CGM.getContext();
3385
3386 QualType ETy = Context.getBaseElementType(ATy);
3387 int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3388 SmallVector<uint64_t, 4> TmpBits(Size);
3389 setUsedBits(CGM, ETy, 0, TmpBits);
3390
3391 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3392 auto Src = TmpBits.begin();
3393 auto Dst = Bits.begin() + Offset + I * Size;
3394 for (int J = 0; J < Size; ++J)
3395 *Dst++ |= *Src++;
3396 }
3397 }
3398
3399 // Set the bits in `Bits`, which correspond to the value representations of
3400 // the type `QTy`.
setUsedBits(CodeGenModule & CGM,QualType QTy,int Offset,SmallVectorImpl<uint64_t> & Bits)3401 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3402 SmallVectorImpl<uint64_t> &Bits) {
3403 if (const auto *RTy = QTy->getAs<RecordType>())
3404 return setUsedBits(CGM, RTy, Offset, Bits);
3405
3406 ASTContext &Context = CGM.getContext();
3407 if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3408 return setUsedBits(CGM, ATy, Offset, Bits);
3409
3410 int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3411 if (Size <= 0)
3412 return;
3413
3414 std::fill_n(Bits.begin() + Offset, Size,
3415 (uint64_t(1) << Context.getCharWidth()) - 1);
3416 }
3417
buildMultiCharMask(const SmallVectorImpl<uint64_t> & Bits,int Pos,int Size,int CharWidth,bool BigEndian)3418 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3419 int Pos, int Size, int CharWidth,
3420 bool BigEndian) {
3421 assert(Size > 0);
3422 uint64_t Mask = 0;
3423 if (BigEndian) {
3424 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3425 ++P)
3426 Mask = (Mask << CharWidth) | *P;
3427 } else {
3428 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3429 do
3430 Mask = (Mask << CharWidth) | *--P;
3431 while (P != End);
3432 }
3433 return Mask;
3434 }
3435
3436 // Emit code to clear the bits in a record, which aren't a part of any user
3437 // declared member, when the record is a function return.
EmitCMSEClearRecord(llvm::Value * Src,llvm::IntegerType * ITy,QualType QTy)3438 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3439 llvm::IntegerType *ITy,
3440 QualType QTy) {
3441 assert(Src->getType() == ITy);
3442 assert(ITy->getScalarSizeInBits() <= 64);
3443
3444 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3445 int Size = DataLayout.getTypeStoreSize(ITy);
3446 SmallVector<uint64_t, 4> Bits(Size);
3447 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3448
3449 int CharWidth = CGM.getContext().getCharWidth();
3450 uint64_t Mask =
3451 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3452
3453 return Builder.CreateAnd(Src, Mask, "cmse.clear");
3454 }
3455
3456 // Emit code to clear the bits in a record, which aren't a part of any user
3457 // declared member, when the record is a function argument.
EmitCMSEClearRecord(llvm::Value * Src,llvm::ArrayType * ATy,QualType QTy)3458 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3459 llvm::ArrayType *ATy,
3460 QualType QTy) {
3461 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3462 int Size = DataLayout.getTypeStoreSize(ATy);
3463 SmallVector<uint64_t, 16> Bits(Size);
3464 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3465
3466 // Clear each element of the LLVM array.
3467 int CharWidth = CGM.getContext().getCharWidth();
3468 int CharsPerElt =
3469 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3470 int MaskIndex = 0;
3471 llvm::Value *R = llvm::PoisonValue::get(ATy);
3472 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3473 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3474 DataLayout.isBigEndian());
3475 MaskIndex += CharsPerElt;
3476 llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3477 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3478 R = Builder.CreateInsertValue(R, T1, I);
3479 }
3480
3481 return R;
3482 }
3483
EmitFunctionEpilog(const CGFunctionInfo & FI,bool EmitRetDbgLoc,SourceLocation EndLoc)3484 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3485 bool EmitRetDbgLoc,
3486 SourceLocation EndLoc) {
3487 if (FI.isNoReturn()) {
3488 // Noreturn functions don't return.
3489 EmitUnreachable(EndLoc);
3490 return;
3491 }
3492
3493 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3494 // Naked functions don't have epilogues.
3495 Builder.CreateUnreachable();
3496 return;
3497 }
3498
3499 // Functions with no result always return void.
3500 if (!ReturnValue.isValid()) {
3501 Builder.CreateRetVoid();
3502 return;
3503 }
3504
3505 llvm::DebugLoc RetDbgLoc;
3506 llvm::Value *RV = nullptr;
3507 QualType RetTy = FI.getReturnType();
3508 const ABIArgInfo &RetAI = FI.getReturnInfo();
3509
3510 switch (RetAI.getKind()) {
3511 case ABIArgInfo::InAlloca:
3512 // Aggregrates get evaluated directly into the destination. Sometimes we
3513 // need to return the sret value in a register, though.
3514 assert(hasAggregateEvaluationKind(RetTy));
3515 if (RetAI.getInAllocaSRet()) {
3516 llvm::Function::arg_iterator EI = CurFn->arg_end();
3517 --EI;
3518 llvm::Value *ArgStruct = &*EI;
3519 llvm::Value *SRet = Builder.CreateStructGEP(
3520 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex());
3521 llvm::Type *Ty =
3522 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3523 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3524 }
3525 break;
3526
3527 case ABIArgInfo::Indirect: {
3528 auto AI = CurFn->arg_begin();
3529 if (RetAI.isSRetAfterThis())
3530 ++AI;
3531 switch (getEvaluationKind(RetTy)) {
3532 case TEK_Complex: {
3533 ComplexPairTy RT =
3534 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3535 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3536 /*isInit*/ true);
3537 break;
3538 }
3539 case TEK_Aggregate:
3540 // Do nothing; aggregrates get evaluated directly into the destination.
3541 break;
3542 case TEK_Scalar: {
3543 LValueBaseInfo BaseInfo;
3544 TBAAAccessInfo TBAAInfo;
3545 CharUnits Alignment =
3546 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
3547 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
3548 LValue ArgVal =
3549 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
3550 EmitStoreOfScalar(
3551 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true);
3552 break;
3553 }
3554 }
3555 break;
3556 }
3557
3558 case ABIArgInfo::Extend:
3559 case ABIArgInfo::Direct:
3560 if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3561 RetAI.getDirectOffset() == 0) {
3562 // The internal return value temp always will have pointer-to-return-type
3563 // type, just do a load.
3564
3565 // If there is a dominating store to ReturnValue, we can elide
3566 // the load, zap the store, and usually zap the alloca.
3567 if (llvm::StoreInst *SI =
3568 findDominatingStoreToReturnValue(*this)) {
3569 // Reuse the debug location from the store unless there is
3570 // cleanup code to be emitted between the store and return
3571 // instruction.
3572 if (EmitRetDbgLoc && !AutoreleaseResult)
3573 RetDbgLoc = SI->getDebugLoc();
3574 // Get the stored value and nuke the now-dead store.
3575 RV = SI->getValueOperand();
3576 SI->eraseFromParent();
3577
3578 // Otherwise, we have to do a simple load.
3579 } else {
3580 RV = Builder.CreateLoad(ReturnValue);
3581 }
3582 } else {
3583 // If the value is offset in memory, apply the offset now.
3584 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3585
3586 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3587 }
3588
3589 // In ARC, end functions that return a retainable type with a call
3590 // to objc_autoreleaseReturnValue.
3591 if (AutoreleaseResult) {
3592 #ifndef NDEBUG
3593 // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3594 // been stripped of the typedefs, so we cannot use RetTy here. Get the
3595 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3596 // CurCodeDecl or BlockInfo.
3597 QualType RT;
3598
3599 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3600 RT = FD->getReturnType();
3601 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3602 RT = MD->getReturnType();
3603 else if (isa<BlockDecl>(CurCodeDecl))
3604 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3605 else
3606 llvm_unreachable("Unexpected function/method type");
3607
3608 assert(getLangOpts().ObjCAutoRefCount &&
3609 !FI.isReturnsRetained() &&
3610 RT->isObjCRetainableType());
3611 #endif
3612 RV = emitAutoreleaseOfResult(*this, RV);
3613 }
3614
3615 break;
3616
3617 case ABIArgInfo::Ignore:
3618 break;
3619
3620 case ABIArgInfo::CoerceAndExpand: {
3621 auto coercionType = RetAI.getCoerceAndExpandType();
3622
3623 // Load all of the coerced elements out into results.
3624 llvm::SmallVector<llvm::Value*, 4> results;
3625 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3626 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3627 auto coercedEltType = coercionType->getElementType(i);
3628 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3629 continue;
3630
3631 auto eltAddr = Builder.CreateStructGEP(addr, i);
3632 auto elt = Builder.CreateLoad(eltAddr);
3633 results.push_back(elt);
3634 }
3635
3636 // If we have one result, it's the single direct result type.
3637 if (results.size() == 1) {
3638 RV = results[0];
3639
3640 // Otherwise, we need to make a first-class aggregate.
3641 } else {
3642 // Construct a return type that lacks padding elements.
3643 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3644
3645 RV = llvm::PoisonValue::get(returnType);
3646 for (unsigned i = 0, e = results.size(); i != e; ++i) {
3647 RV = Builder.CreateInsertValue(RV, results[i], i);
3648 }
3649 }
3650 break;
3651 }
3652 case ABIArgInfo::Expand:
3653 case ABIArgInfo::IndirectAliased:
3654 llvm_unreachable("Invalid ABI kind for return argument");
3655 }
3656
3657 llvm::Instruction *Ret;
3658 if (RV) {
3659 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3660 // For certain return types, clear padding bits, as they may reveal
3661 // sensitive information.
3662 // Small struct/union types are passed as integers.
3663 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3664 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3665 RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3666 }
3667 EmitReturnValueCheck(RV);
3668 Ret = Builder.CreateRet(RV);
3669 } else {
3670 Ret = Builder.CreateRetVoid();
3671 }
3672
3673 if (RetDbgLoc)
3674 Ret->setDebugLoc(std::move(RetDbgLoc));
3675 }
3676
EmitReturnValueCheck(llvm::Value * RV)3677 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3678 // A current decl may not be available when emitting vtable thunks.
3679 if (!CurCodeDecl)
3680 return;
3681
3682 // If the return block isn't reachable, neither is this check, so don't emit
3683 // it.
3684 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3685 return;
3686
3687 ReturnsNonNullAttr *RetNNAttr = nullptr;
3688 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3689 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3690
3691 if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3692 return;
3693
3694 // Prefer the returns_nonnull attribute if it's present.
3695 SourceLocation AttrLoc;
3696 SanitizerMask CheckKind;
3697 SanitizerHandler Handler;
3698 if (RetNNAttr) {
3699 assert(!requiresReturnValueNullabilityCheck() &&
3700 "Cannot check nullability and the nonnull attribute");
3701 AttrLoc = RetNNAttr->getLocation();
3702 CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3703 Handler = SanitizerHandler::NonnullReturn;
3704 } else {
3705 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3706 if (auto *TSI = DD->getTypeSourceInfo())
3707 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3708 AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3709 CheckKind = SanitizerKind::NullabilityReturn;
3710 Handler = SanitizerHandler::NullabilityReturn;
3711 }
3712
3713 SanitizerScope SanScope(this);
3714
3715 // Make sure the "return" source location is valid. If we're checking a
3716 // nullability annotation, make sure the preconditions for the check are met.
3717 llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3718 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3719 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3720 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3721 if (requiresReturnValueNullabilityCheck())
3722 CanNullCheck =
3723 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3724 Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3725 EmitBlock(Check);
3726
3727 // Now do the null check.
3728 llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3729 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3730 llvm::Value *DynamicData[] = {SLocPtr};
3731 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3732
3733 EmitBlock(NoCheck);
3734
3735 #ifndef NDEBUG
3736 // The return location should not be used after the check has been emitted.
3737 ReturnLocation = Address::invalid();
3738 #endif
3739 }
3740
isInAllocaArgument(CGCXXABI & ABI,QualType type)3741 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3742 const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3743 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3744 }
3745
createPlaceholderSlot(CodeGenFunction & CGF,QualType Ty)3746 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3747 QualType Ty) {
3748 // FIXME: Generate IR in one pass, rather than going back and fixing up these
3749 // placeholders.
3750 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3751 llvm::Type *IRPtrTy = IRTy->getPointerTo();
3752 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy->getPointerTo());
3753
3754 // FIXME: When we generate this IR in one pass, we shouldn't need
3755 // this win32-specific alignment hack.
3756 CharUnits Align = CharUnits::fromQuantity(4);
3757 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3758
3759 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align),
3760 Ty.getQualifiers(),
3761 AggValueSlot::IsNotDestructed,
3762 AggValueSlot::DoesNotNeedGCBarriers,
3763 AggValueSlot::IsNotAliased,
3764 AggValueSlot::DoesNotOverlap);
3765 }
3766
EmitDelegateCallArg(CallArgList & args,const VarDecl * param,SourceLocation loc)3767 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3768 const VarDecl *param,
3769 SourceLocation loc) {
3770 // StartFunction converted the ABI-lowered parameter(s) into a
3771 // local alloca. We need to turn that into an r-value suitable
3772 // for EmitCall.
3773 Address local = GetAddrOfLocalVar(param);
3774
3775 QualType type = param->getType();
3776
3777 if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3778 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3779 }
3780
3781 // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3782 // but the argument needs to be the original pointer.
3783 if (type->isReferenceType()) {
3784 args.add(RValue::get(Builder.CreateLoad(local)), type);
3785
3786 // In ARC, move out of consumed arguments so that the release cleanup
3787 // entered by StartFunction doesn't cause an over-release. This isn't
3788 // optimal -O0 code generation, but it should get cleaned up when
3789 // optimization is enabled. This also assumes that delegate calls are
3790 // performed exactly once for a set of arguments, but that should be safe.
3791 } else if (getLangOpts().ObjCAutoRefCount &&
3792 param->hasAttr<NSConsumedAttr>() &&
3793 type->isObjCRetainableType()) {
3794 llvm::Value *ptr = Builder.CreateLoad(local);
3795 auto null =
3796 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3797 Builder.CreateStore(null, local);
3798 args.add(RValue::get(ptr), type);
3799
3800 // For the most part, we just need to load the alloca, except that
3801 // aggregate r-values are actually pointers to temporaries.
3802 } else {
3803 args.add(convertTempToRValue(local, type, loc), type);
3804 }
3805
3806 // Deactivate the cleanup for the callee-destructed param that was pushed.
3807 if (type->isRecordType() && !CurFuncIsThunk &&
3808 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3809 param->needsDestruction(getContext())) {
3810 EHScopeStack::stable_iterator cleanup =
3811 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3812 assert(cleanup.isValid() &&
3813 "cleanup for callee-destructed param not recorded");
3814 // This unreachable is a temporary marker which will be removed later.
3815 llvm::Instruction *isActive = Builder.CreateUnreachable();
3816 args.addArgCleanupDeactivation(cleanup, isActive);
3817 }
3818 }
3819
isProvablyNull(llvm::Value * addr)3820 static bool isProvablyNull(llvm::Value *addr) {
3821 return isa<llvm::ConstantPointerNull>(addr);
3822 }
3823
3824 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)3825 static void emitWriteback(CodeGenFunction &CGF,
3826 const CallArgList::Writeback &writeback) {
3827 const LValue &srcLV = writeback.Source;
3828 Address srcAddr = srcLV.getAddress(CGF);
3829 assert(!isProvablyNull(srcAddr.getPointer()) &&
3830 "shouldn't have writeback for provably null argument");
3831
3832 llvm::BasicBlock *contBB = nullptr;
3833
3834 // If the argument wasn't provably non-null, we need to null check
3835 // before doing the store.
3836 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3837 CGF.CGM.getDataLayout());
3838 if (!provablyNonNull) {
3839 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3840 contBB = CGF.createBasicBlock("icr.done");
3841
3842 llvm::Value *isNull =
3843 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3844 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3845 CGF.EmitBlock(writebackBB);
3846 }
3847
3848 // Load the value to writeback.
3849 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3850
3851 // Cast it back, in case we're writing an id to a Foo* or something.
3852 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3853 "icr.writeback-cast");
3854
3855 // Perform the writeback.
3856
3857 // If we have a "to use" value, it's something we need to emit a use
3858 // of. This has to be carefully threaded in: if it's done after the
3859 // release it's potentially undefined behavior (and the optimizer
3860 // will ignore it), and if it happens before the retain then the
3861 // optimizer could move the release there.
3862 if (writeback.ToUse) {
3863 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3864
3865 // Retain the new value. No need to block-copy here: the block's
3866 // being passed up the stack.
3867 value = CGF.EmitARCRetainNonBlock(value);
3868
3869 // Emit the intrinsic use here.
3870 CGF.EmitARCIntrinsicUse(writeback.ToUse);
3871
3872 // Load the old value (primitively).
3873 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3874
3875 // Put the new value in place (primitively).
3876 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3877
3878 // Release the old value.
3879 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3880
3881 // Otherwise, we can just do a normal lvalue store.
3882 } else {
3883 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3884 }
3885
3886 // Jump to the continuation block.
3887 if (!provablyNonNull)
3888 CGF.EmitBlock(contBB);
3889 }
3890
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)3891 static void emitWritebacks(CodeGenFunction &CGF,
3892 const CallArgList &args) {
3893 for (const auto &I : args.writebacks())
3894 emitWriteback(CGF, I);
3895 }
3896
deactivateArgCleanupsBeforeCall(CodeGenFunction & CGF,const CallArgList & CallArgs)3897 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3898 const CallArgList &CallArgs) {
3899 ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3900 CallArgs.getCleanupsToDeactivate();
3901 // Iterate in reverse to increase the likelihood of popping the cleanup.
3902 for (const auto &I : llvm::reverse(Cleanups)) {
3903 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3904 I.IsActiveIP->eraseFromParent();
3905 }
3906 }
3907
maybeGetUnaryAddrOfOperand(const Expr * E)3908 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3909 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3910 if (uop->getOpcode() == UO_AddrOf)
3911 return uop->getSubExpr();
3912 return nullptr;
3913 }
3914
3915 /// Emit an argument that's being passed call-by-writeback. That is,
3916 /// we are passing the address of an __autoreleased temporary; it
3917 /// might be copy-initialized with the current value of the given
3918 /// address, but it will definitely be copied out of after the call.
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)3919 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3920 const ObjCIndirectCopyRestoreExpr *CRE) {
3921 LValue srcLV;
3922
3923 // Make an optimistic effort to emit the address as an l-value.
3924 // This can fail if the argument expression is more complicated.
3925 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3926 srcLV = CGF.EmitLValue(lvExpr);
3927
3928 // Otherwise, just emit it as a scalar.
3929 } else {
3930 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3931
3932 QualType srcAddrType =
3933 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3934 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3935 }
3936 Address srcAddr = srcLV.getAddress(CGF);
3937
3938 // The dest and src types don't necessarily match in LLVM terms
3939 // because of the crazy ObjC compatibility rules.
3940
3941 llvm::PointerType *destType =
3942 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3943 llvm::Type *destElemType =
3944 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType());
3945
3946 // If the address is a constant null, just pass the appropriate null.
3947 if (isProvablyNull(srcAddr.getPointer())) {
3948 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3949 CRE->getType());
3950 return;
3951 }
3952
3953 // Create the temporary.
3954 Address temp =
3955 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp");
3956 // Loading an l-value can introduce a cleanup if the l-value is __weak,
3957 // and that cleanup will be conditional if we can't prove that the l-value
3958 // isn't null, so we need to register a dominating point so that the cleanups
3959 // system will make valid IR.
3960 CodeGenFunction::ConditionalEvaluation condEval(CGF);
3961
3962 // Zero-initialize it if we're not doing a copy-initialization.
3963 bool shouldCopy = CRE->shouldCopy();
3964 if (!shouldCopy) {
3965 llvm::Value *null =
3966 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType));
3967 CGF.Builder.CreateStore(null, temp);
3968 }
3969
3970 llvm::BasicBlock *contBB = nullptr;
3971 llvm::BasicBlock *originBB = nullptr;
3972
3973 // If the address is *not* known to be non-null, we need to switch.
3974 llvm::Value *finalArgument;
3975
3976 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3977 CGF.CGM.getDataLayout());
3978 if (provablyNonNull) {
3979 finalArgument = temp.getPointer();
3980 } else {
3981 llvm::Value *isNull =
3982 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3983
3984 finalArgument = CGF.Builder.CreateSelect(isNull,
3985 llvm::ConstantPointerNull::get(destType),
3986 temp.getPointer(), "icr.argument");
3987
3988 // If we need to copy, then the load has to be conditional, which
3989 // means we need control flow.
3990 if (shouldCopy) {
3991 originBB = CGF.Builder.GetInsertBlock();
3992 contBB = CGF.createBasicBlock("icr.cont");
3993 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3994 CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3995 CGF.EmitBlock(copyBB);
3996 condEval.begin(CGF);
3997 }
3998 }
3999
4000 llvm::Value *valueToUse = nullptr;
4001
4002 // Perform a copy if necessary.
4003 if (shouldCopy) {
4004 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
4005 assert(srcRV.isScalar());
4006
4007 llvm::Value *src = srcRV.getScalarVal();
4008 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast");
4009
4010 // Use an ordinary store, not a store-to-lvalue.
4011 CGF.Builder.CreateStore(src, temp);
4012
4013 // If optimization is enabled, and the value was held in a
4014 // __strong variable, we need to tell the optimizer that this
4015 // value has to stay alive until we're doing the store back.
4016 // This is because the temporary is effectively unretained,
4017 // and so otherwise we can violate the high-level semantics.
4018 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4019 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
4020 valueToUse = src;
4021 }
4022 }
4023
4024 // Finish the control flow if we needed it.
4025 if (shouldCopy && !provablyNonNull) {
4026 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
4027 CGF.EmitBlock(contBB);
4028
4029 // Make a phi for the value to intrinsically use.
4030 if (valueToUse) {
4031 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
4032 "icr.to-use");
4033 phiToUse->addIncoming(valueToUse, copyBB);
4034 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
4035 originBB);
4036 valueToUse = phiToUse;
4037 }
4038
4039 condEval.end(CGF);
4040 }
4041
4042 args.addWriteback(srcLV, temp, valueToUse);
4043 args.add(RValue::get(finalArgument), CRE->getType());
4044 }
4045
allocateArgumentMemory(CodeGenFunction & CGF)4046 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
4047 assert(!StackBase);
4048
4049 // Save the stack.
4050 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
4051 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
4052 }
4053
freeArgumentMemory(CodeGenFunction & CGF) const4054 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
4055 if (StackBase) {
4056 // Restore the stack after the call.
4057 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
4058 CGF.Builder.CreateCall(F, StackBase);
4059 }
4060 }
4061
EmitNonNullArgCheck(RValue RV,QualType ArgType,SourceLocation ArgLoc,AbstractCallee AC,unsigned ParmNum)4062 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4063 SourceLocation ArgLoc,
4064 AbstractCallee AC,
4065 unsigned ParmNum) {
4066 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4067 SanOpts.has(SanitizerKind::NullabilityArg)))
4068 return;
4069
4070 // The param decl may be missing in a variadic function.
4071 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4072 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4073
4074 // Prefer the nonnull attribute if it's present.
4075 const NonNullAttr *NNAttr = nullptr;
4076 if (SanOpts.has(SanitizerKind::NonnullAttribute))
4077 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4078
4079 bool CanCheckNullability = false;
4080 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4081 auto Nullability = PVD->getType()->getNullability(getContext());
4082 CanCheckNullability = Nullability &&
4083 *Nullability == NullabilityKind::NonNull &&
4084 PVD->getTypeSourceInfo();
4085 }
4086
4087 if (!NNAttr && !CanCheckNullability)
4088 return;
4089
4090 SourceLocation AttrLoc;
4091 SanitizerMask CheckKind;
4092 SanitizerHandler Handler;
4093 if (NNAttr) {
4094 AttrLoc = NNAttr->getLocation();
4095 CheckKind = SanitizerKind::NonnullAttribute;
4096 Handler = SanitizerHandler::NonnullArg;
4097 } else {
4098 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4099 CheckKind = SanitizerKind::NullabilityArg;
4100 Handler = SanitizerHandler::NullabilityArg;
4101 }
4102
4103 SanitizerScope SanScope(this);
4104 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4105 llvm::Constant *StaticData[] = {
4106 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4107 llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4108 };
4109 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
4110 }
4111
4112 // Check if the call is going to use the inalloca convention. This needs to
4113 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4114 // later, so we can't check it directly.
hasInAllocaArgs(CodeGenModule & CGM,CallingConv ExplicitCC,ArrayRef<QualType> ArgTypes)4115 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4116 ArrayRef<QualType> ArgTypes) {
4117 // The Swift calling conventions don't go through the target-specific
4118 // argument classification, they never use inalloca.
4119 // TODO: Consider limiting inalloca use to only calling conventions supported
4120 // by MSVC.
4121 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4122 return false;
4123 if (!CGM.getTarget().getCXXABI().isMicrosoft())
4124 return false;
4125 return llvm::any_of(ArgTypes, [&](QualType Ty) {
4126 return isInAllocaArgument(CGM.getCXXABI(), Ty);
4127 });
4128 }
4129
4130 #ifndef NDEBUG
4131 // Determine whether the given argument is an Objective-C method
4132 // that may have type parameters in its signature.
isObjCMethodWithTypeParams(const ObjCMethodDecl * method)4133 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4134 const DeclContext *dc = method->getDeclContext();
4135 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4136 return classDecl->getTypeParamListAsWritten();
4137 }
4138
4139 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4140 return catDecl->getTypeParamList();
4141 }
4142
4143 return false;
4144 }
4145 #endif
4146
4147 /// EmitCallArgs - Emit call arguments for a function.
EmitCallArgs(CallArgList & Args,PrototypeWrapper Prototype,llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,AbstractCallee AC,unsigned ParamsToSkip,EvaluationOrder Order)4148 void CodeGenFunction::EmitCallArgs(
4149 CallArgList &Args, PrototypeWrapper Prototype,
4150 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4151 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4152 SmallVector<QualType, 16> ArgTypes;
4153
4154 assert((ParamsToSkip == 0 || Prototype.P) &&
4155 "Can't skip parameters if type info is not provided");
4156
4157 // This variable only captures *explicitly* written conventions, not those
4158 // applied by default via command line flags or target defaults, such as
4159 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4160 // require knowing if this is a C++ instance method or being able to see
4161 // unprototyped FunctionTypes.
4162 CallingConv ExplicitCC = CC_C;
4163
4164 // First, if a prototype was provided, use those argument types.
4165 bool IsVariadic = false;
4166 if (Prototype.P) {
4167 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4168 if (MD) {
4169 IsVariadic = MD->isVariadic();
4170 ExplicitCC = getCallingConventionForDecl(
4171 MD, CGM.getTarget().getTriple().isOSWindows());
4172 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4173 MD->param_type_end());
4174 } else {
4175 const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4176 IsVariadic = FPT->isVariadic();
4177 ExplicitCC = FPT->getExtInfo().getCC();
4178 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4179 FPT->param_type_end());
4180 }
4181
4182 #ifndef NDEBUG
4183 // Check that the prototyped types match the argument expression types.
4184 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4185 CallExpr::const_arg_iterator Arg = ArgRange.begin();
4186 for (QualType Ty : ArgTypes) {
4187 assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4188 assert(
4189 (isGenericMethod || Ty->isVariablyModifiedType() ||
4190 Ty.getNonReferenceType()->isObjCRetainableType() ||
4191 getContext()
4192 .getCanonicalType(Ty.getNonReferenceType())
4193 .getTypePtr() ==
4194 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4195 "type mismatch in call argument!");
4196 ++Arg;
4197 }
4198
4199 // Either we've emitted all the call args, or we have a call to variadic
4200 // function.
4201 assert((Arg == ArgRange.end() || IsVariadic) &&
4202 "Extra arguments in non-variadic function!");
4203 #endif
4204 }
4205
4206 // If we still have any arguments, emit them using the type of the argument.
4207 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
4208 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4209 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4210
4211 // We must evaluate arguments from right to left in the MS C++ ABI,
4212 // because arguments are destroyed left to right in the callee. As a special
4213 // case, there are certain language constructs that require left-to-right
4214 // evaluation, and in those cases we consider the evaluation order requirement
4215 // to trump the "destruction order is reverse construction order" guarantee.
4216 bool LeftToRight =
4217 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4218 ? Order == EvaluationOrder::ForceLeftToRight
4219 : Order != EvaluationOrder::ForceRightToLeft;
4220
4221 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4222 RValue EmittedArg) {
4223 if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4224 return;
4225 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4226 if (PS == nullptr)
4227 return;
4228
4229 const auto &Context = getContext();
4230 auto SizeTy = Context.getSizeType();
4231 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4232 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4233 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4234 EmittedArg.getScalarVal(),
4235 PS->isDynamic());
4236 Args.add(RValue::get(V), SizeTy);
4237 // If we're emitting args in reverse, be sure to do so with
4238 // pass_object_size, as well.
4239 if (!LeftToRight)
4240 std::swap(Args.back(), *(&Args.back() - 1));
4241 };
4242
4243 // Insert a stack save if we're going to need any inalloca args.
4244 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4245 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4246 "inalloca only supported on x86");
4247 Args.allocateArgumentMemory(*this);
4248 }
4249
4250 // Evaluate each argument in the appropriate order.
4251 size_t CallArgsStart = Args.size();
4252 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4253 unsigned Idx = LeftToRight ? I : E - I - 1;
4254 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4255 unsigned InitialArgSize = Args.size();
4256 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4257 // the argument and parameter match or the objc method is parameterized.
4258 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4259 getContext().hasSameUnqualifiedType((*Arg)->getType(),
4260 ArgTypes[Idx]) ||
4261 (isa<ObjCMethodDecl>(AC.getDecl()) &&
4262 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4263 "Argument and parameter types don't match");
4264 EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4265 // In particular, we depend on it being the last arg in Args, and the
4266 // objectsize bits depend on there only being one arg if !LeftToRight.
4267 assert(InitialArgSize + 1 == Args.size() &&
4268 "The code below depends on only adding one arg per EmitCallArg");
4269 (void)InitialArgSize;
4270 // Since pointer argument are never emitted as LValue, it is safe to emit
4271 // non-null argument check for r-value only.
4272 if (!Args.back().hasLValue()) {
4273 RValue RVArg = Args.back().getKnownRValue();
4274 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4275 ParamsToSkip + Idx);
4276 // @llvm.objectsize should never have side-effects and shouldn't need
4277 // destruction/cleanups, so we can safely "emit" it after its arg,
4278 // regardless of right-to-leftness
4279 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4280 }
4281 }
4282
4283 if (!LeftToRight) {
4284 // Un-reverse the arguments we just evaluated so they match up with the LLVM
4285 // IR function.
4286 std::reverse(Args.begin() + CallArgsStart, Args.end());
4287 }
4288 }
4289
4290 namespace {
4291
4292 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
DestroyUnpassedArg__anon4a6f99940c11::DestroyUnpassedArg4293 DestroyUnpassedArg(Address Addr, QualType Ty)
4294 : Addr(Addr), Ty(Ty) {}
4295
4296 Address Addr;
4297 QualType Ty;
4298
Emit__anon4a6f99940c11::DestroyUnpassedArg4299 void Emit(CodeGenFunction &CGF, Flags flags) override {
4300 QualType::DestructionKind DtorKind = Ty.isDestructedType();
4301 if (DtorKind == QualType::DK_cxx_destructor) {
4302 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4303 assert(!Dtor->isTrivial());
4304 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4305 /*Delegating=*/false, Addr, Ty);
4306 } else {
4307 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4308 }
4309 }
4310 };
4311
4312 struct DisableDebugLocationUpdates {
4313 CodeGenFunction &CGF;
4314 bool disabledDebugInfo;
DisableDebugLocationUpdates__anon4a6f99940c11::DisableDebugLocationUpdates4315 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4316 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4317 CGF.disableDebugInfo();
4318 }
~DisableDebugLocationUpdates__anon4a6f99940c11::DisableDebugLocationUpdates4319 ~DisableDebugLocationUpdates() {
4320 if (disabledDebugInfo)
4321 CGF.enableDebugInfo();
4322 }
4323 };
4324
4325 } // end anonymous namespace
4326
getRValue(CodeGenFunction & CGF) const4327 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4328 if (!HasLV)
4329 return RV;
4330 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4331 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4332 LV.isVolatile());
4333 IsUsed = true;
4334 return RValue::getAggregate(Copy.getAddress(CGF));
4335 }
4336
copyInto(CodeGenFunction & CGF,Address Addr) const4337 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4338 LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4339 if (!HasLV && RV.isScalar())
4340 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4341 else if (!HasLV && RV.isComplex())
4342 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4343 else {
4344 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4345 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4346 // We assume that call args are never copied into subobjects.
4347 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4348 HasLV ? LV.isVolatileQualified()
4349 : RV.isVolatileQualified());
4350 }
4351 IsUsed = true;
4352 }
4353
EmitCallArg(CallArgList & args,const Expr * E,QualType type)4354 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4355 QualType type) {
4356 DisableDebugLocationUpdates Dis(*this, E);
4357 if (const ObjCIndirectCopyRestoreExpr *CRE
4358 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4359 assert(getLangOpts().ObjCAutoRefCount);
4360 return emitWritebackArg(*this, args, CRE);
4361 }
4362
4363 assert(type->isReferenceType() == E->isGLValue() &&
4364 "reference binding to unmaterialized r-value!");
4365
4366 if (E->isGLValue()) {
4367 assert(E->getObjectKind() == OK_Ordinary);
4368 return args.add(EmitReferenceBindingToExpr(E), type);
4369 }
4370
4371 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4372
4373 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4374 // However, we still have to push an EH-only cleanup in case we unwind before
4375 // we make it to the call.
4376 if (type->isRecordType() &&
4377 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4378 // If we're using inalloca, use the argument memory. Otherwise, use a
4379 // temporary.
4380 AggValueSlot Slot = args.isUsingInAlloca()
4381 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
4382
4383 bool DestroyedInCallee = true, NeedsEHCleanup = true;
4384 if (const auto *RD = type->getAsCXXRecordDecl())
4385 DestroyedInCallee = RD->hasNonTrivialDestructor();
4386 else
4387 NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4388
4389 if (DestroyedInCallee)
4390 Slot.setExternallyDestructed();
4391
4392 EmitAggExpr(E, Slot);
4393 RValue RV = Slot.asRValue();
4394 args.add(RV, type);
4395
4396 if (DestroyedInCallee && NeedsEHCleanup) {
4397 // Create a no-op GEP between the placeholder and the cleanup so we can
4398 // RAUW it successfully. It also serves as a marker of the first
4399 // instruction where the cleanup is active.
4400 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4401 type);
4402 // This unreachable is a temporary marker which will be removed later.
4403 llvm::Instruction *IsActive = Builder.CreateUnreachable();
4404 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive);
4405 }
4406 return;
4407 }
4408
4409 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4410 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4411 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4412 assert(L.isSimple());
4413 args.addUncopiedAggregate(L, type);
4414 return;
4415 }
4416
4417 args.add(EmitAnyExprToTemp(E), type);
4418 }
4419
getVarArgType(const Expr * Arg)4420 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4421 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4422 // implicitly widens null pointer constants that are arguments to varargs
4423 // functions to pointer-sized ints.
4424 if (!getTarget().getTriple().isOSWindows())
4425 return Arg->getType();
4426
4427 if (Arg->getType()->isIntegerType() &&
4428 getContext().getTypeSize(Arg->getType()) <
4429 getContext().getTargetInfo().getPointerWidth(0) &&
4430 Arg->isNullPointerConstant(getContext(),
4431 Expr::NPC_ValueDependentIsNotNull)) {
4432 return getContext().getIntPtrType();
4433 }
4434
4435 return Arg->getType();
4436 }
4437
4438 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4439 // optimizer it can aggressively ignore unwind edges.
4440 void
AddObjCARCExceptionMetadata(llvm::Instruction * Inst)4441 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4442 if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4443 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4444 Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4445 CGM.getNoObjCARCExceptionsMetadata());
4446 }
4447
4448 /// Emits a call to the given no-arguments nounwind runtime function.
4449 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::FunctionCallee callee,const llvm::Twine & name)4450 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4451 const llvm::Twine &name) {
4452 return EmitNounwindRuntimeCall(callee, None, name);
4453 }
4454
4455 /// Emits a call to the given nounwind runtime function.
4456 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)4457 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4458 ArrayRef<llvm::Value *> args,
4459 const llvm::Twine &name) {
4460 llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4461 call->setDoesNotThrow();
4462 return call;
4463 }
4464
4465 /// Emits a simple call (never an invoke) to the given no-arguments
4466 /// runtime function.
EmitRuntimeCall(llvm::FunctionCallee callee,const llvm::Twine & name)4467 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4468 const llvm::Twine &name) {
4469 return EmitRuntimeCall(callee, None, name);
4470 }
4471
4472 // Calls which may throw must have operand bundles indicating which funclet
4473 // they are nested within.
4474 SmallVector<llvm::OperandBundleDef, 1>
getBundlesForFunclet(llvm::Value * Callee)4475 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4476 // There is no need for a funclet operand bundle if we aren't inside a
4477 // funclet.
4478 if (!CurrentFuncletPad)
4479 return (SmallVector<llvm::OperandBundleDef, 1>());
4480
4481 // Skip intrinsics which cannot throw (as long as they don't lower into
4482 // regular function calls in the course of IR transformations).
4483 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) {
4484 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) {
4485 auto IID = CalleeFn->getIntrinsicID();
4486 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID))
4487 return (SmallVector<llvm::OperandBundleDef, 1>());
4488 }
4489 }
4490
4491 SmallVector<llvm::OperandBundleDef, 1> BundleList;
4492 BundleList.emplace_back("funclet", CurrentFuncletPad);
4493 return BundleList;
4494 }
4495
4496 /// Emits a simple call (never an invoke) to the given runtime function.
EmitRuntimeCall(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)4497 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4498 ArrayRef<llvm::Value *> args,
4499 const llvm::Twine &name) {
4500 llvm::CallInst *call = Builder.CreateCall(
4501 callee, args, getBundlesForFunclet(callee.getCallee()), name);
4502 call->setCallingConv(getRuntimeCC());
4503 return call;
4504 }
4505
4506 /// Emits a call or invoke to the given noreturn runtime function.
EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args)4507 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4508 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4509 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4510 getBundlesForFunclet(callee.getCallee());
4511
4512 if (getInvokeDest()) {
4513 llvm::InvokeInst *invoke =
4514 Builder.CreateInvoke(callee,
4515 getUnreachableBlock(),
4516 getInvokeDest(),
4517 args,
4518 BundleList);
4519 invoke->setDoesNotReturn();
4520 invoke->setCallingConv(getRuntimeCC());
4521 } else {
4522 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4523 call->setDoesNotReturn();
4524 call->setCallingConv(getRuntimeCC());
4525 Builder.CreateUnreachable();
4526 }
4527 }
4528
4529 /// Emits a call or invoke instruction to the given nullary runtime function.
4530 llvm::CallBase *
EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,const Twine & name)4531 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4532 const Twine &name) {
4533 return EmitRuntimeCallOrInvoke(callee, None, name);
4534 }
4535
4536 /// Emits a call or invoke instruction to the given runtime function.
4537 llvm::CallBase *
EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const Twine & name)4538 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4539 ArrayRef<llvm::Value *> args,
4540 const Twine &name) {
4541 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4542 call->setCallingConv(getRuntimeCC());
4543 return call;
4544 }
4545
4546 /// Emits a call or invoke instruction to the given function, depending
4547 /// on the current state of the EH stack.
EmitCallOrInvoke(llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args,const Twine & Name)4548 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4549 ArrayRef<llvm::Value *> Args,
4550 const Twine &Name) {
4551 llvm::BasicBlock *InvokeDest = getInvokeDest();
4552 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4553 getBundlesForFunclet(Callee.getCallee());
4554
4555 llvm::CallBase *Inst;
4556 if (!InvokeDest)
4557 Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4558 else {
4559 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4560 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4561 Name);
4562 EmitBlock(ContBB);
4563 }
4564
4565 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4566 // optimizer it can aggressively ignore unwind edges.
4567 if (CGM.getLangOpts().ObjCAutoRefCount)
4568 AddObjCARCExceptionMetadata(Inst);
4569
4570 return Inst;
4571 }
4572
deferPlaceholderReplacement(llvm::Instruction * Old,llvm::Value * New)4573 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4574 llvm::Value *New) {
4575 DeferredReplacements.push_back(
4576 std::make_pair(llvm::WeakTrackingVH(Old), New));
4577 }
4578
4579 namespace {
4580
4581 /// Specify given \p NewAlign as the alignment of return value attribute. If
4582 /// such attribute already exists, re-set it to the maximal one of two options.
4583 LLVM_NODISCARD llvm::AttributeList
maybeRaiseRetAlignmentAttribute(llvm::LLVMContext & Ctx,const llvm::AttributeList & Attrs,llvm::Align NewAlign)4584 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4585 const llvm::AttributeList &Attrs,
4586 llvm::Align NewAlign) {
4587 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4588 if (CurAlign >= NewAlign)
4589 return Attrs;
4590 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4591 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4592 .addRetAttribute(Ctx, AlignAttr);
4593 }
4594
4595 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4596 protected:
4597 CodeGenFunction &CGF;
4598
4599 /// We do nothing if this is, or becomes, nullptr.
4600 const AlignedAttrTy *AA = nullptr;
4601
4602 llvm::Value *Alignment = nullptr; // May or may not be a constant.
4603 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4604
AbstractAssumeAlignedAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl)4605 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4606 : CGF(CGF_) {
4607 if (!FuncDecl)
4608 return;
4609 AA = FuncDecl->getAttr<AlignedAttrTy>();
4610 }
4611
4612 public:
4613 /// If we can, materialize the alignment as an attribute on return value.
4614 LLVM_NODISCARD llvm::AttributeList
TryEmitAsCallSiteAttribute(const llvm::AttributeList & Attrs)4615 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4616 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4617 return Attrs;
4618 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4619 if (!AlignmentCI)
4620 return Attrs;
4621 // We may legitimately have non-power-of-2 alignment here.
4622 // If so, this is UB land, emit it via `@llvm.assume` instead.
4623 if (!AlignmentCI->getValue().isPowerOf2())
4624 return Attrs;
4625 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4626 CGF.getLLVMContext(), Attrs,
4627 llvm::Align(
4628 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4629 AA = nullptr; // We're done. Disallow doing anything else.
4630 return NewAttrs;
4631 }
4632
4633 /// Emit alignment assumption.
4634 /// This is a general fallback that we take if either there is an offset,
4635 /// or the alignment is variable or we are sanitizing for alignment.
EmitAsAnAssumption(SourceLocation Loc,QualType RetTy,RValue & Ret)4636 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4637 if (!AA)
4638 return;
4639 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4640 AA->getLocation(), Alignment, OffsetCI);
4641 AA = nullptr; // We're done. Disallow doing anything else.
4642 }
4643 };
4644
4645 /// Helper data structure to emit `AssumeAlignedAttr`.
4646 class AssumeAlignedAttrEmitter final
4647 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4648 public:
AssumeAlignedAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl)4649 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4650 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4651 if (!AA)
4652 return;
4653 // It is guaranteed that the alignment/offset are constants.
4654 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4655 if (Expr *Offset = AA->getOffset()) {
4656 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4657 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4658 OffsetCI = nullptr;
4659 }
4660 }
4661 };
4662
4663 /// Helper data structure to emit `AllocAlignAttr`.
4664 class AllocAlignAttrEmitter final
4665 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4666 public:
AllocAlignAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl,const CallArgList & CallArgs)4667 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4668 const CallArgList &CallArgs)
4669 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4670 if (!AA)
4671 return;
4672 // Alignment may or may not be a constant, and that is okay.
4673 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4674 .getRValue(CGF)
4675 .getScalarVal();
4676 }
4677 };
4678
4679 } // namespace
4680
getMaxVectorWidth(const llvm::Type * Ty)4681 static unsigned getMaxVectorWidth(const llvm::Type *Ty) {
4682 if (auto *VT = dyn_cast<llvm::VectorType>(Ty))
4683 return VT->getPrimitiveSizeInBits().getKnownMinSize();
4684 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty))
4685 return getMaxVectorWidth(AT->getElementType());
4686
4687 unsigned MaxVectorWidth = 0;
4688 if (auto *ST = dyn_cast<llvm::StructType>(Ty))
4689 for (auto *I : ST->elements())
4690 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I));
4691 return MaxVectorWidth;
4692 }
4693
EmitCall(const CGFunctionInfo & CallInfo,const CGCallee & Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,llvm::CallBase ** callOrInvoke,bool IsMustTail,SourceLocation Loc)4694 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4695 const CGCallee &Callee,
4696 ReturnValueSlot ReturnValue,
4697 const CallArgList &CallArgs,
4698 llvm::CallBase **callOrInvoke, bool IsMustTail,
4699 SourceLocation Loc) {
4700 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4701
4702 assert(Callee.isOrdinary() || Callee.isVirtual());
4703
4704 // Handle struct-return functions by passing a pointer to the
4705 // location that we would like to return into.
4706 QualType RetTy = CallInfo.getReturnType();
4707 const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4708
4709 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4710
4711 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4712 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4713 // We can only guarantee that a function is called from the correct
4714 // context/function based on the appropriate target attributes,
4715 // so only check in the case where we have both always_inline and target
4716 // since otherwise we could be making a conditional call after a check for
4717 // the proper cpu features (and it won't cause code generation issues due to
4718 // function based code generation).
4719 if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4720 TargetDecl->hasAttr<TargetAttr>())
4721 checkTargetFeatures(Loc, FD);
4722
4723 // Some architectures (such as x86-64) have the ABI changed based on
4724 // attribute-target/features. Give them a chance to diagnose.
4725 CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4726 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4727 }
4728
4729 #ifndef NDEBUG
4730 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4731 // For an inalloca varargs function, we don't expect CallInfo to match the
4732 // function pointer's type, because the inalloca struct a will have extra
4733 // fields in it for the varargs parameters. Code later in this function
4734 // bitcasts the function pointer to the type derived from CallInfo.
4735 //
4736 // In other cases, we assert that the types match up (until pointers stop
4737 // having pointee types).
4738 if (Callee.isVirtual())
4739 assert(IRFuncTy == Callee.getVirtualFunctionType());
4740 else {
4741 llvm::PointerType *PtrTy =
4742 llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType());
4743 assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy));
4744 }
4745 }
4746 #endif
4747
4748 // 1. Set up the arguments.
4749
4750 // If we're using inalloca, insert the allocation after the stack save.
4751 // FIXME: Do this earlier rather than hacking it in here!
4752 Address ArgMemory = Address::invalid();
4753 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4754 const llvm::DataLayout &DL = CGM.getDataLayout();
4755 llvm::Instruction *IP = CallArgs.getStackBase();
4756 llvm::AllocaInst *AI;
4757 if (IP) {
4758 IP = IP->getNextNode();
4759 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4760 "argmem", IP);
4761 } else {
4762 AI = CreateTempAlloca(ArgStruct, "argmem");
4763 }
4764 auto Align = CallInfo.getArgStructAlignment();
4765 AI->setAlignment(Align.getAsAlign());
4766 AI->setUsedWithInAlloca(true);
4767 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4768 ArgMemory = Address(AI, ArgStruct, Align);
4769 }
4770
4771 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4772 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4773
4774 // If the call returns a temporary with struct return, create a temporary
4775 // alloca to hold the result, unless one is given to us.
4776 Address SRetPtr = Address::invalid();
4777 Address SRetAlloca = Address::invalid();
4778 llvm::Value *UnusedReturnSizePtr = nullptr;
4779 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4780 if (!ReturnValue.isNull()) {
4781 SRetPtr = ReturnValue.getValue();
4782 } else {
4783 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4784 if (HaveInsertPoint() && ReturnValue.isUnused()) {
4785 llvm::TypeSize size =
4786 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4787 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4788 }
4789 }
4790 if (IRFunctionArgs.hasSRetArg()) {
4791 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4792 } else if (RetAI.isInAlloca()) {
4793 Address Addr =
4794 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4795 Builder.CreateStore(SRetPtr.getPointer(), Addr);
4796 }
4797 }
4798
4799 Address swiftErrorTemp = Address::invalid();
4800 Address swiftErrorArg = Address::invalid();
4801
4802 // When passing arguments using temporary allocas, we need to add the
4803 // appropriate lifetime markers. This vector keeps track of all the lifetime
4804 // markers that need to be ended right after the call.
4805 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4806
4807 // Translate all of the arguments as necessary to match the IR lowering.
4808 assert(CallInfo.arg_size() == CallArgs.size() &&
4809 "Mismatch between function signature & arguments.");
4810 unsigned ArgNo = 0;
4811 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4812 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4813 I != E; ++I, ++info_it, ++ArgNo) {
4814 const ABIArgInfo &ArgInfo = info_it->info;
4815
4816 // Insert a padding argument to ensure proper alignment.
4817 if (IRFunctionArgs.hasPaddingArg(ArgNo))
4818 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4819 llvm::UndefValue::get(ArgInfo.getPaddingType());
4820
4821 unsigned FirstIRArg, NumIRArgs;
4822 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4823
4824 switch (ArgInfo.getKind()) {
4825 case ABIArgInfo::InAlloca: {
4826 assert(NumIRArgs == 0);
4827 assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4828 if (I->isAggregate()) {
4829 Address Addr = I->hasLValue()
4830 ? I->getKnownLValue().getAddress(*this)
4831 : I->getKnownRValue().getAggregateAddress();
4832 llvm::Instruction *Placeholder =
4833 cast<llvm::Instruction>(Addr.getPointer());
4834
4835 if (!ArgInfo.getInAllocaIndirect()) {
4836 // Replace the placeholder with the appropriate argument slot GEP.
4837 CGBuilderTy::InsertPoint IP = Builder.saveIP();
4838 Builder.SetInsertPoint(Placeholder);
4839 Addr = Builder.CreateStructGEP(ArgMemory,
4840 ArgInfo.getInAllocaFieldIndex());
4841 Builder.restoreIP(IP);
4842 } else {
4843 // For indirect things such as overaligned structs, replace the
4844 // placeholder with a regular aggregate temporary alloca. Store the
4845 // address of this alloca into the struct.
4846 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4847 Address ArgSlot = Builder.CreateStructGEP(
4848 ArgMemory, ArgInfo.getInAllocaFieldIndex());
4849 Builder.CreateStore(Addr.getPointer(), ArgSlot);
4850 }
4851 deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4852 } else if (ArgInfo.getInAllocaIndirect()) {
4853 // Make a temporary alloca and store the address of it into the argument
4854 // struct.
4855 Address Addr = CreateMemTempWithoutCast(
4856 I->Ty, getContext().getTypeAlignInChars(I->Ty),
4857 "indirect-arg-temp");
4858 I->copyInto(*this, Addr);
4859 Address ArgSlot =
4860 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4861 Builder.CreateStore(Addr.getPointer(), ArgSlot);
4862 } else {
4863 // Store the RValue into the argument struct.
4864 Address Addr =
4865 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4866 // There are some cases where a trivial bitcast is not avoidable. The
4867 // definition of a type later in a translation unit may change it's type
4868 // from {}* to (%struct.foo*)*.
4869 Addr = Builder.CreateElementBitCast(Addr, ConvertTypeForMem(I->Ty));
4870 I->copyInto(*this, Addr);
4871 }
4872 break;
4873 }
4874
4875 case ABIArgInfo::Indirect:
4876 case ABIArgInfo::IndirectAliased: {
4877 assert(NumIRArgs == 1);
4878 if (!I->isAggregate()) {
4879 // Make a temporary alloca to pass the argument.
4880 Address Addr = CreateMemTempWithoutCast(
4881 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4882 IRCallArgs[FirstIRArg] = Addr.getPointer();
4883
4884 I->copyInto(*this, Addr);
4885 } else {
4886 // We want to avoid creating an unnecessary temporary+copy here;
4887 // however, we need one in three cases:
4888 // 1. If the argument is not byval, and we are required to copy the
4889 // source. (This case doesn't occur on any common architecture.)
4890 // 2. If the argument is byval, RV is not sufficiently aligned, and
4891 // we cannot force it to be sufficiently aligned.
4892 // 3. If the argument is byval, but RV is not located in default
4893 // or alloca address space.
4894 Address Addr = I->hasLValue()
4895 ? I->getKnownLValue().getAddress(*this)
4896 : I->getKnownRValue().getAggregateAddress();
4897 llvm::Value *V = Addr.getPointer();
4898 CharUnits Align = ArgInfo.getIndirectAlign();
4899 const llvm::DataLayout *TD = &CGM.getDataLayout();
4900
4901 assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4902 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4903 TD->getAllocaAddrSpace()) &&
4904 "indirect argument must be in alloca address space");
4905
4906 bool NeedCopy = false;
4907
4908 if (Addr.getAlignment() < Align &&
4909 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4910 Align.getAsAlign()) {
4911 NeedCopy = true;
4912 } else if (I->hasLValue()) {
4913 auto LV = I->getKnownLValue();
4914 auto AS = LV.getAddressSpace();
4915
4916 if (!ArgInfo.getIndirectByVal() ||
4917 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4918 NeedCopy = true;
4919 }
4920 if (!getLangOpts().OpenCL) {
4921 if ((ArgInfo.getIndirectByVal() &&
4922 (AS != LangAS::Default &&
4923 AS != CGM.getASTAllocaAddressSpace()))) {
4924 NeedCopy = true;
4925 }
4926 }
4927 // For OpenCL even if RV is located in default or alloca address space
4928 // we don't want to perform address space cast for it.
4929 else if ((ArgInfo.getIndirectByVal() &&
4930 Addr.getType()->getAddressSpace() != IRFuncTy->
4931 getParamType(FirstIRArg)->getPointerAddressSpace())) {
4932 NeedCopy = true;
4933 }
4934 }
4935
4936 if (NeedCopy) {
4937 // Create an aligned temporary, and copy to it.
4938 Address AI = CreateMemTempWithoutCast(
4939 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4940 IRCallArgs[FirstIRArg] = AI.getPointer();
4941
4942 // Emit lifetime markers for the temporary alloca.
4943 llvm::TypeSize ByvalTempElementSize =
4944 CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4945 llvm::Value *LifetimeSize =
4946 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4947
4948 // Add cleanup code to emit the end lifetime marker after the call.
4949 if (LifetimeSize) // In case we disabled lifetime markers.
4950 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4951
4952 // Generate the copy.
4953 I->copyInto(*this, AI);
4954 } else {
4955 // Skip the extra memcpy call.
4956 auto *T = llvm::PointerType::getWithSamePointeeType(
4957 cast<llvm::PointerType>(V->getType()),
4958 CGM.getDataLayout().getAllocaAddrSpace());
4959 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4960 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4961 true);
4962 }
4963 }
4964 break;
4965 }
4966
4967 case ABIArgInfo::Ignore:
4968 assert(NumIRArgs == 0);
4969 break;
4970
4971 case ABIArgInfo::Extend:
4972 case ABIArgInfo::Direct: {
4973 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4974 ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4975 ArgInfo.getDirectOffset() == 0) {
4976 assert(NumIRArgs == 1);
4977 llvm::Value *V;
4978 if (!I->isAggregate())
4979 V = I->getKnownRValue().getScalarVal();
4980 else
4981 V = Builder.CreateLoad(
4982 I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4983 : I->getKnownRValue().getAggregateAddress());
4984
4985 // Implement swifterror by copying into a new swifterror argument.
4986 // We'll write back in the normal path out of the call.
4987 if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4988 == ParameterABI::SwiftErrorResult) {
4989 assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4990
4991 QualType pointeeTy = I->Ty->getPointeeType();
4992 swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy),
4993 getContext().getTypeAlignInChars(pointeeTy));
4994
4995 swiftErrorTemp =
4996 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4997 V = swiftErrorTemp.getPointer();
4998 cast<llvm::AllocaInst>(V)->setSwiftError(true);
4999
5000 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
5001 Builder.CreateStore(errorValue, swiftErrorTemp);
5002 }
5003
5004 // We might have to widen integers, but we should never truncate.
5005 if (ArgInfo.getCoerceToType() != V->getType() &&
5006 V->getType()->isIntegerTy())
5007 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
5008
5009 // If the argument doesn't match, perform a bitcast to coerce it. This
5010 // can happen due to trivial type mismatches.
5011 if (FirstIRArg < IRFuncTy->getNumParams() &&
5012 V->getType() != IRFuncTy->getParamType(FirstIRArg))
5013 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
5014
5015 IRCallArgs[FirstIRArg] = V;
5016 break;
5017 }
5018
5019 // FIXME: Avoid the conversion through memory if possible.
5020 Address Src = Address::invalid();
5021 if (!I->isAggregate()) {
5022 Src = CreateMemTemp(I->Ty, "coerce");
5023 I->copyInto(*this, Src);
5024 } else {
5025 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5026 : I->getKnownRValue().getAggregateAddress();
5027 }
5028
5029 // If the value is offset in memory, apply the offset now.
5030 Src = emitAddressAtOffset(*this, Src, ArgInfo);
5031
5032 // Fast-isel and the optimizer generally like scalar values better than
5033 // FCAs, so we flatten them if this is safe to do for this argument.
5034 llvm::StructType *STy =
5035 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
5036 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
5037 llvm::Type *SrcTy = Src.getElementType();
5038 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
5039 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
5040
5041 // If the source type is smaller than the destination type of the
5042 // coerce-to logic, copy the source value into a temp alloca the size
5043 // of the destination type to allow loading all of it. The bits past
5044 // the source value are left undef.
5045 if (SrcSize < DstSize) {
5046 Address TempAlloca
5047 = CreateTempAlloca(STy, Src.getAlignment(),
5048 Src.getName() + ".coerce");
5049 Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
5050 Src = TempAlloca;
5051 } else {
5052 Src = Builder.CreateElementBitCast(Src, STy);
5053 }
5054
5055 assert(NumIRArgs == STy->getNumElements());
5056 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5057 Address EltPtr = Builder.CreateStructGEP(Src, i);
5058 llvm::Value *LI = Builder.CreateLoad(EltPtr);
5059 IRCallArgs[FirstIRArg + i] = LI;
5060 }
5061 } else {
5062 // In the simple case, just pass the coerced loaded value.
5063 assert(NumIRArgs == 1);
5064 llvm::Value *Load =
5065 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
5066
5067 if (CallInfo.isCmseNSCall()) {
5068 // For certain parameter types, clear padding bits, as they may reveal
5069 // sensitive information.
5070 // Small struct/union types are passed as integer arrays.
5071 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
5072 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
5073 Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
5074 }
5075 IRCallArgs[FirstIRArg] = Load;
5076 }
5077
5078 break;
5079 }
5080
5081 case ABIArgInfo::CoerceAndExpand: {
5082 auto coercionType = ArgInfo.getCoerceAndExpandType();
5083 auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5084
5085 llvm::Value *tempSize = nullptr;
5086 Address addr = Address::invalid();
5087 Address AllocaAddr = Address::invalid();
5088 if (I->isAggregate()) {
5089 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5090 : I->getKnownRValue().getAggregateAddress();
5091
5092 } else {
5093 RValue RV = I->getKnownRValue();
5094 assert(RV.isScalar()); // complex should always just be direct
5095
5096 llvm::Type *scalarType = RV.getScalarVal()->getType();
5097 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5098 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
5099
5100 // Materialize to a temporary.
5101 addr =
5102 CreateTempAlloca(RV.getScalarVal()->getType(),
5103 CharUnits::fromQuantity(std::max(
5104 layout->getAlignment().value(), scalarAlign)),
5105 "tmp",
5106 /*ArraySize=*/nullptr, &AllocaAddr);
5107 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5108
5109 Builder.CreateStore(RV.getScalarVal(), addr);
5110 }
5111
5112 addr = Builder.CreateElementBitCast(addr, coercionType);
5113
5114 unsigned IRArgPos = FirstIRArg;
5115 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5116 llvm::Type *eltType = coercionType->getElementType(i);
5117 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5118 Address eltAddr = Builder.CreateStructGEP(addr, i);
5119 llvm::Value *elt = Builder.CreateLoad(eltAddr);
5120 IRCallArgs[IRArgPos++] = elt;
5121 }
5122 assert(IRArgPos == FirstIRArg + NumIRArgs);
5123
5124 if (tempSize) {
5125 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5126 }
5127
5128 break;
5129 }
5130
5131 case ABIArgInfo::Expand: {
5132 unsigned IRArgPos = FirstIRArg;
5133 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5134 assert(IRArgPos == FirstIRArg + NumIRArgs);
5135 break;
5136 }
5137 }
5138 }
5139
5140 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5141 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5142
5143 // If we're using inalloca, set up that argument.
5144 if (ArgMemory.isValid()) {
5145 llvm::Value *Arg = ArgMemory.getPointer();
5146 if (CallInfo.isVariadic()) {
5147 // When passing non-POD arguments by value to variadic functions, we will
5148 // end up with a variadic prototype and an inalloca call site. In such
5149 // cases, we can't do any parameter mismatch checks. Give up and bitcast
5150 // the callee.
5151 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5152 CalleePtr =
5153 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5154 } else {
5155 llvm::Type *LastParamTy =
5156 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5157 if (Arg->getType() != LastParamTy) {
5158 #ifndef NDEBUG
5159 // Assert that these structs have equivalent element types.
5160 llvm::StructType *FullTy = CallInfo.getArgStruct();
5161 if (!LastParamTy->isOpaquePointerTy()) {
5162 llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5163 LastParamTy->getNonOpaquePointerElementType());
5164 assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5165 for (auto DI = DeclaredTy->element_begin(),
5166 DE = DeclaredTy->element_end(),
5167 FI = FullTy->element_begin();
5168 DI != DE; ++DI, ++FI)
5169 assert(*DI == *FI);
5170 }
5171 #endif
5172 Arg = Builder.CreateBitCast(Arg, LastParamTy);
5173 }
5174 }
5175 assert(IRFunctionArgs.hasInallocaArg());
5176 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5177 }
5178
5179 // 2. Prepare the function pointer.
5180
5181 // If the callee is a bitcast of a non-variadic function to have a
5182 // variadic function pointer type, check to see if we can remove the
5183 // bitcast. This comes up with unprototyped functions.
5184 //
5185 // This makes the IR nicer, but more importantly it ensures that we
5186 // can inline the function at -O0 if it is marked always_inline.
5187 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5188 llvm::Value *Ptr) -> llvm::Function * {
5189 if (!CalleeFT->isVarArg())
5190 return nullptr;
5191
5192 // Get underlying value if it's a bitcast
5193 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5194 if (CE->getOpcode() == llvm::Instruction::BitCast)
5195 Ptr = CE->getOperand(0);
5196 }
5197
5198 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5199 if (!OrigFn)
5200 return nullptr;
5201
5202 llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5203
5204 // If the original type is variadic, or if any of the component types
5205 // disagree, we cannot remove the cast.
5206 if (OrigFT->isVarArg() ||
5207 OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5208 OrigFT->getReturnType() != CalleeFT->getReturnType())
5209 return nullptr;
5210
5211 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5212 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5213 return nullptr;
5214
5215 return OrigFn;
5216 };
5217
5218 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5219 CalleePtr = OrigFn;
5220 IRFuncTy = OrigFn->getFunctionType();
5221 }
5222
5223 // 3. Perform the actual call.
5224
5225 // Deactivate any cleanups that we're supposed to do immediately before
5226 // the call.
5227 if (!CallArgs.getCleanupsToDeactivate().empty())
5228 deactivateArgCleanupsBeforeCall(*this, CallArgs);
5229
5230 // Assert that the arguments we computed match up. The IR verifier
5231 // will catch this, but this is a common enough source of problems
5232 // during IRGen changes that it's way better for debugging to catch
5233 // it ourselves here.
5234 #ifndef NDEBUG
5235 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5236 for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5237 // Inalloca argument can have different type.
5238 if (IRFunctionArgs.hasInallocaArg() &&
5239 i == IRFunctionArgs.getInallocaArgNo())
5240 continue;
5241 if (i < IRFuncTy->getNumParams())
5242 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5243 }
5244 #endif
5245
5246 // Update the largest vector width if any arguments have vector types.
5247 for (unsigned i = 0; i < IRCallArgs.size(); ++i)
5248 LargestVectorWidth = std::max(LargestVectorWidth,
5249 getMaxVectorWidth(IRCallArgs[i]->getType()));
5250
5251 // Compute the calling convention and attributes.
5252 unsigned CallingConv;
5253 llvm::AttributeList Attrs;
5254 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5255 Callee.getAbstractInfo(), Attrs, CallingConv,
5256 /*AttrOnCallSite=*/true,
5257 /*IsThunk=*/false);
5258
5259 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5260 if (FD->hasAttr<StrictFPAttr>())
5261 // All calls within a strictfp function are marked strictfp
5262 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5263
5264 // Add call-site nomerge attribute if exists.
5265 if (InNoMergeAttributedStmt)
5266 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5267
5268 // Add call-site noinline attribute if exists.
5269 if (InNoInlineAttributedStmt)
5270 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5271
5272 // Add call-site always_inline attribute if exists.
5273 if (InAlwaysInlineAttributedStmt)
5274 Attrs =
5275 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5276
5277 // Apply some call-site-specific attributes.
5278 // TODO: work this into building the attribute set.
5279
5280 // Apply always_inline to all calls within flatten functions.
5281 // FIXME: should this really take priority over __try, below?
5282 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5283 !InNoInlineAttributedStmt &&
5284 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5285 Attrs =
5286 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5287 }
5288
5289 // Disable inlining inside SEH __try blocks.
5290 if (isSEHTryScope()) {
5291 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5292 }
5293
5294 // Decide whether to use a call or an invoke.
5295 bool CannotThrow;
5296 if (currentFunctionUsesSEHTry()) {
5297 // SEH cares about asynchronous exceptions, so everything can "throw."
5298 CannotThrow = false;
5299 } else if (isCleanupPadScope() &&
5300 EHPersonality::get(*this).isMSVCXXPersonality()) {
5301 // The MSVC++ personality will implicitly terminate the program if an
5302 // exception is thrown during a cleanup outside of a try/catch.
5303 // We don't need to model anything in IR to get this behavior.
5304 CannotThrow = true;
5305 } else {
5306 // Otherwise, nounwind call sites will never throw.
5307 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5308
5309 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5310 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5311 CannotThrow = true;
5312 }
5313
5314 // If we made a temporary, be sure to clean up after ourselves. Note that we
5315 // can't depend on being inside of an ExprWithCleanups, so we need to manually
5316 // pop this cleanup later on. Being eager about this is OK, since this
5317 // temporary is 'invisible' outside of the callee.
5318 if (UnusedReturnSizePtr)
5319 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5320 UnusedReturnSizePtr);
5321
5322 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5323
5324 SmallVector<llvm::OperandBundleDef, 1> BundleList =
5325 getBundlesForFunclet(CalleePtr);
5326
5327 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5328 if (FD->hasAttr<StrictFPAttr>())
5329 // All calls within a strictfp function are marked strictfp
5330 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5331
5332 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5333 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5334
5335 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5336 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5337
5338 // Emit the actual call/invoke instruction.
5339 llvm::CallBase *CI;
5340 if (!InvokeDest) {
5341 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5342 } else {
5343 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5344 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5345 BundleList);
5346 EmitBlock(Cont);
5347 }
5348 if (callOrInvoke)
5349 *callOrInvoke = CI;
5350
5351 // If this is within a function that has the guard(nocf) attribute and is an
5352 // indirect call, add the "guard_nocf" attribute to this call to indicate that
5353 // Control Flow Guard checks should not be added, even if the call is inlined.
5354 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5355 if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5356 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5357 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5358 }
5359 }
5360
5361 // Apply the attributes and calling convention.
5362 CI->setAttributes(Attrs);
5363 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5364
5365 // Apply various metadata.
5366
5367 if (!CI->getType()->isVoidTy())
5368 CI->setName("call");
5369
5370 // Update largest vector width from the return type.
5371 LargestVectorWidth =
5372 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType()));
5373
5374 // Insert instrumentation or attach profile metadata at indirect call sites.
5375 // For more details, see the comment before the definition of
5376 // IPVK_IndirectCallTarget in InstrProfData.inc.
5377 if (!CI->getCalledFunction())
5378 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5379 CI, CalleePtr);
5380
5381 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5382 // optimizer it can aggressively ignore unwind edges.
5383 if (CGM.getLangOpts().ObjCAutoRefCount)
5384 AddObjCARCExceptionMetadata(CI);
5385
5386 // Set tail call kind if necessary.
5387 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5388 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5389 Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5390 else if (IsMustTail)
5391 Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5392 }
5393
5394 // Add metadata for calls to MSAllocator functions
5395 if (getDebugInfo() && TargetDecl &&
5396 TargetDecl->hasAttr<MSAllocatorAttr>())
5397 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5398
5399 // Add metadata if calling an __attribute__((error(""))) or warning fn.
5400 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5401 llvm::ConstantInt *Line =
5402 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5403 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5404 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5405 CI->setMetadata("srcloc", MDT);
5406 }
5407
5408 // 4. Finish the call.
5409
5410 // If the call doesn't return, finish the basic block and clear the
5411 // insertion point; this allows the rest of IRGen to discard
5412 // unreachable code.
5413 if (CI->doesNotReturn()) {
5414 if (UnusedReturnSizePtr)
5415 PopCleanupBlock();
5416
5417 // Strip away the noreturn attribute to better diagnose unreachable UB.
5418 if (SanOpts.has(SanitizerKind::Unreachable)) {
5419 // Also remove from function since CallBase::hasFnAttr additionally checks
5420 // attributes of the called function.
5421 if (auto *F = CI->getCalledFunction())
5422 F->removeFnAttr(llvm::Attribute::NoReturn);
5423 CI->removeFnAttr(llvm::Attribute::NoReturn);
5424
5425 // Avoid incompatibility with ASan which relies on the `noreturn`
5426 // attribute to insert handler calls.
5427 if (SanOpts.hasOneOf(SanitizerKind::Address |
5428 SanitizerKind::KernelAddress)) {
5429 SanitizerScope SanScope(this);
5430 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5431 Builder.SetInsertPoint(CI);
5432 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5433 llvm::FunctionCallee Fn =
5434 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5435 EmitNounwindRuntimeCall(Fn);
5436 }
5437 }
5438
5439 EmitUnreachable(Loc);
5440 Builder.ClearInsertionPoint();
5441
5442 // FIXME: For now, emit a dummy basic block because expr emitters in
5443 // generally are not ready to handle emitting expressions at unreachable
5444 // points.
5445 EnsureInsertPoint();
5446
5447 // Return a reasonable RValue.
5448 return GetUndefRValue(RetTy);
5449 }
5450
5451 // If this is a musttail call, return immediately. We do not branch to the
5452 // epilogue in this case.
5453 if (IsMustTail) {
5454 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5455 ++it) {
5456 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5457 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5458 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5459 }
5460 if (CI->getType()->isVoidTy())
5461 Builder.CreateRetVoid();
5462 else
5463 Builder.CreateRet(CI);
5464 Builder.ClearInsertionPoint();
5465 EnsureInsertPoint();
5466 return GetUndefRValue(RetTy);
5467 }
5468
5469 // Perform the swifterror writeback.
5470 if (swiftErrorTemp.isValid()) {
5471 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5472 Builder.CreateStore(errorResult, swiftErrorArg);
5473 }
5474
5475 // Emit any call-associated writebacks immediately. Arguably this
5476 // should happen after any return-value munging.
5477 if (CallArgs.hasWritebacks())
5478 emitWritebacks(*this, CallArgs);
5479
5480 // The stack cleanup for inalloca arguments has to run out of the normal
5481 // lexical order, so deactivate it and run it manually here.
5482 CallArgs.freeArgumentMemory(*this);
5483
5484 // Extract the return value.
5485 RValue Ret = [&] {
5486 switch (RetAI.getKind()) {
5487 case ABIArgInfo::CoerceAndExpand: {
5488 auto coercionType = RetAI.getCoerceAndExpandType();
5489
5490 Address addr = SRetPtr;
5491 addr = Builder.CreateElementBitCast(addr, coercionType);
5492
5493 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5494 bool requiresExtract = isa<llvm::StructType>(CI->getType());
5495
5496 unsigned unpaddedIndex = 0;
5497 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5498 llvm::Type *eltType = coercionType->getElementType(i);
5499 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5500 Address eltAddr = Builder.CreateStructGEP(addr, i);
5501 llvm::Value *elt = CI;
5502 if (requiresExtract)
5503 elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5504 else
5505 assert(unpaddedIndex == 0);
5506 Builder.CreateStore(elt, eltAddr);
5507 }
5508 // FALLTHROUGH
5509 LLVM_FALLTHROUGH;
5510 }
5511
5512 case ABIArgInfo::InAlloca:
5513 case ABIArgInfo::Indirect: {
5514 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5515 if (UnusedReturnSizePtr)
5516 PopCleanupBlock();
5517 return ret;
5518 }
5519
5520 case ABIArgInfo::Ignore:
5521 // If we are ignoring an argument that had a result, make sure to
5522 // construct the appropriate return value for our caller.
5523 return GetUndefRValue(RetTy);
5524
5525 case ABIArgInfo::Extend:
5526 case ABIArgInfo::Direct: {
5527 llvm::Type *RetIRTy = ConvertType(RetTy);
5528 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5529 switch (getEvaluationKind(RetTy)) {
5530 case TEK_Complex: {
5531 llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5532 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5533 return RValue::getComplex(std::make_pair(Real, Imag));
5534 }
5535 case TEK_Aggregate: {
5536 Address DestPtr = ReturnValue.getValue();
5537 bool DestIsVolatile = ReturnValue.isVolatile();
5538
5539 if (!DestPtr.isValid()) {
5540 DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5541 DestIsVolatile = false;
5542 }
5543 EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5544 return RValue::getAggregate(DestPtr);
5545 }
5546 case TEK_Scalar: {
5547 // If the argument doesn't match, perform a bitcast to coerce it. This
5548 // can happen due to trivial type mismatches.
5549 llvm::Value *V = CI;
5550 if (V->getType() != RetIRTy)
5551 V = Builder.CreateBitCast(V, RetIRTy);
5552 return RValue::get(V);
5553 }
5554 }
5555 llvm_unreachable("bad evaluation kind");
5556 }
5557
5558 Address DestPtr = ReturnValue.getValue();
5559 bool DestIsVolatile = ReturnValue.isVolatile();
5560
5561 if (!DestPtr.isValid()) {
5562 DestPtr = CreateMemTemp(RetTy, "coerce");
5563 DestIsVolatile = false;
5564 }
5565
5566 // If the value is offset in memory, apply the offset now.
5567 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5568 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5569
5570 return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5571 }
5572
5573 case ABIArgInfo::Expand:
5574 case ABIArgInfo::IndirectAliased:
5575 llvm_unreachable("Invalid ABI kind for return argument");
5576 }
5577
5578 llvm_unreachable("Unhandled ABIArgInfo::Kind");
5579 } ();
5580
5581 // Emit the assume_aligned check on the return value.
5582 if (Ret.isScalar() && TargetDecl) {
5583 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5584 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5585 }
5586
5587 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5588 // we can't use the full cleanup mechanism.
5589 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5590 LifetimeEnd.Emit(*this, /*Flags=*/{});
5591
5592 if (!ReturnValue.isExternallyDestructed() &&
5593 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5594 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5595 RetTy);
5596
5597 return Ret;
5598 }
5599
prepareConcreteCallee(CodeGenFunction & CGF) const5600 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5601 if (isVirtual()) {
5602 const CallExpr *CE = getVirtualCallExpr();
5603 return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5604 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5605 CE ? CE->getBeginLoc() : SourceLocation());
5606 }
5607
5608 return *this;
5609 }
5610
5611 /* VarArg handling */
5612
EmitVAArg(VAArgExpr * VE,Address & VAListAddr)5613 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5614 VAListAddr = VE->isMicrosoftABI()
5615 ? EmitMSVAListRef(VE->getSubExpr())
5616 : EmitVAListRef(VE->getSubExpr());
5617 QualType Ty = VE->getType();
5618 if (VE->isMicrosoftABI())
5619 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5620 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5621 }
5622