1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 using namespace clang; 35 using namespace CodeGen; 36 37 /***/ 38 39 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 40 switch (CC) { 41 default: return llvm::CallingConv::C; 42 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 43 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 44 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 45 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 46 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 47 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 48 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 49 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 50 // TODO: add support for CC_X86Pascal to llvm 51 } 52 } 53 54 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 55 /// qualification. 56 /// FIXME: address space qualification? 57 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 58 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 59 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 60 } 61 62 /// Returns the canonical formal type of the given C++ method. 63 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 64 return MD->getType()->getCanonicalTypeUnqualified() 65 .getAs<FunctionProtoType>(); 66 } 67 68 /// Returns the "extra-canonicalized" return type, which discards 69 /// qualifiers on the return type. Codegen doesn't care about them, 70 /// and it makes ABI code a little easier to be able to assume that 71 /// all parameter and return types are top-level unqualified. 72 static CanQualType GetReturnType(QualType RetTy) { 73 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 74 } 75 76 /// Arrange the argument and result information for a value of the given 77 /// unprototyped freestanding function type. 78 const CGFunctionInfo & 79 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 80 // When translating an unprototyped function type, always use a 81 // variadic type. 82 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 83 false, None, FTNP->getExtInfo(), 84 RequiredArgs(0)); 85 } 86 87 /// Arrange the LLVM function layout for a value of the given function 88 /// type, on top of any implicit parameters already stored. Use the 89 /// given ExtInfo instead of the ExtInfo from the function type. 90 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT, 91 bool IsInstanceMethod, 92 SmallVectorImpl<CanQualType> &prefix, 93 CanQual<FunctionProtoType> FTP, 94 FunctionType::ExtInfo extInfo) { 95 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 96 // FIXME: Kill copy. 97 for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i) 98 prefix.push_back(FTP->getParamType(i)); 99 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 100 return CGT.arrangeLLVMFunctionInfo(resultType, IsInstanceMethod, prefix, 101 extInfo, required); 102 } 103 104 /// Arrange the argument and result information for a free function (i.e. 105 /// not a C++ or ObjC instance method) of the given type. 106 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT, 107 SmallVectorImpl<CanQualType> &prefix, 108 CanQual<FunctionProtoType> FTP) { 109 return arrangeLLVMFunctionInfo(CGT, false, prefix, FTP, FTP->getExtInfo()); 110 } 111 112 /// Arrange the argument and result information for a free function (i.e. 113 /// not a C++ or ObjC instance method) of the given type. 114 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT, 115 SmallVectorImpl<CanQualType> &prefix, 116 CanQual<FunctionProtoType> FTP) { 117 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 118 return arrangeLLVMFunctionInfo(CGT, true, prefix, FTP, extInfo); 119 } 120 121 /// Arrange the argument and result information for a value of the 122 /// given freestanding function type. 123 const CGFunctionInfo & 124 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 125 SmallVector<CanQualType, 16> argTypes; 126 return ::arrangeFreeFunctionType(*this, argTypes, FTP); 127 } 128 129 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 130 // Set the appropriate calling convention for the Function. 131 if (D->hasAttr<StdCallAttr>()) 132 return CC_X86StdCall; 133 134 if (D->hasAttr<FastCallAttr>()) 135 return CC_X86FastCall; 136 137 if (D->hasAttr<ThisCallAttr>()) 138 return CC_X86ThisCall; 139 140 if (D->hasAttr<PascalAttr>()) 141 return CC_X86Pascal; 142 143 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 144 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 145 146 if (D->hasAttr<PnaclCallAttr>()) 147 return CC_PnaclCall; 148 149 if (D->hasAttr<IntelOclBiccAttr>()) 150 return CC_IntelOclBicc; 151 152 if (D->hasAttr<MSABIAttr>()) 153 return IsWindows ? CC_C : CC_X86_64Win64; 154 155 if (D->hasAttr<SysVABIAttr>()) 156 return IsWindows ? CC_X86_64SysV : CC_C; 157 158 return CC_C; 159 } 160 161 static bool isAAPCSVFP(const CGFunctionInfo &FI, const TargetInfo &Target) { 162 switch (FI.getEffectiveCallingConvention()) { 163 case llvm::CallingConv::C: 164 switch (Target.getTriple().getEnvironment()) { 165 case llvm::Triple::EABIHF: 166 case llvm::Triple::GNUEABIHF: 167 return true; 168 default: 169 return false; 170 } 171 case llvm::CallingConv::ARM_AAPCS_VFP: 172 return true; 173 default: 174 return false; 175 } 176 } 177 178 /// Arrange the argument and result information for a call to an 179 /// unknown C++ non-static member function of the given abstract type. 180 /// (Zero value of RD means we don't have any meaningful "this" argument type, 181 /// so fall back to a generic pointer type). 182 /// The member function must be an ordinary function, i.e. not a 183 /// constructor or destructor. 184 const CGFunctionInfo & 185 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 186 const FunctionProtoType *FTP) { 187 SmallVector<CanQualType, 16> argTypes; 188 189 // Add the 'this' pointer. 190 if (RD) 191 argTypes.push_back(GetThisType(Context, RD)); 192 else 193 argTypes.push_back(Context.VoidPtrTy); 194 195 return ::arrangeCXXMethodType(*this, argTypes, 196 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 197 } 198 199 /// Arrange the argument and result information for a declaration or 200 /// definition of the given C++ non-static member function. The 201 /// member function must be an ordinary function, i.e. not a 202 /// constructor or destructor. 203 const CGFunctionInfo & 204 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 205 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 206 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 207 208 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 209 210 if (MD->isInstance()) { 211 // The abstract case is perfectly fine. 212 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 213 return arrangeCXXMethodType(ThisType, prototype.getTypePtr()); 214 } 215 216 return arrangeFreeFunctionType(prototype); 217 } 218 219 /// Arrange the argument and result information for a declaration 220 /// or definition to the given constructor variant. 221 const CGFunctionInfo & 222 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D, 223 CXXCtorType ctorKind) { 224 SmallVector<CanQualType, 16> argTypes; 225 argTypes.push_back(GetThisType(Context, D->getParent())); 226 227 GlobalDecl GD(D, ctorKind); 228 CanQualType resultType = 229 TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy; 230 231 CanQual<FunctionProtoType> FTP = GetFormalType(D); 232 233 // Add the formal parameters. 234 for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i) 235 argTypes.push_back(FTP->getParamType(i)); 236 237 TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes); 238 239 RequiredArgs required = 240 (D->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All); 241 242 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 243 return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo, required); 244 } 245 246 /// Arrange a call to a C++ method, passing the given arguments. 247 const CGFunctionInfo & 248 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 249 const CXXConstructorDecl *D, 250 CXXCtorType CtorKind, 251 unsigned ExtraArgs) { 252 // FIXME: Kill copy. 253 SmallVector<CanQualType, 16> ArgTypes; 254 for (CallArgList::const_iterator i = args.begin(), e = args.end(); i != e; 255 ++i) 256 ArgTypes.push_back(Context.getCanonicalParamType(i->Ty)); 257 258 CanQual<FunctionProtoType> FPT = GetFormalType(D); 259 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs); 260 GlobalDecl GD(D, CtorKind); 261 CanQualType ResultType = 262 TheCXXABI.HasThisReturn(GD) ? ArgTypes.front() : Context.VoidTy; 263 264 FunctionType::ExtInfo Info = FPT->getExtInfo(); 265 return arrangeLLVMFunctionInfo(ResultType, true, ArgTypes, Info, Required); 266 } 267 268 /// Arrange the argument and result information for a declaration, 269 /// definition, or call to the given destructor variant. It so 270 /// happens that all three cases produce the same information. 271 const CGFunctionInfo & 272 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D, 273 CXXDtorType dtorKind) { 274 SmallVector<CanQualType, 2> argTypes; 275 argTypes.push_back(GetThisType(Context, D->getParent())); 276 277 GlobalDecl GD(D, dtorKind); 278 CanQualType resultType = 279 TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy; 280 281 TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes); 282 283 CanQual<FunctionProtoType> FTP = GetFormalType(D); 284 assert(FTP->getNumParams() == 0 && "dtor with formal parameters"); 285 assert(FTP->isVariadic() == 0 && "dtor with formal parameters"); 286 287 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 288 return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo, 289 RequiredArgs::All); 290 } 291 292 /// Arrange the argument and result information for the declaration or 293 /// definition of the given function. 294 const CGFunctionInfo & 295 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 296 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 297 if (MD->isInstance()) 298 return arrangeCXXMethodDeclaration(MD); 299 300 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 301 302 assert(isa<FunctionType>(FTy)); 303 304 // When declaring a function without a prototype, always use a 305 // non-variadic type. 306 if (isa<FunctionNoProtoType>(FTy)) { 307 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 308 return arrangeLLVMFunctionInfo(noProto->getReturnType(), false, None, 309 noProto->getExtInfo(), RequiredArgs::All); 310 } 311 312 assert(isa<FunctionProtoType>(FTy)); 313 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 314 } 315 316 /// Arrange the argument and result information for the declaration or 317 /// definition of an Objective-C method. 318 const CGFunctionInfo & 319 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 320 // It happens that this is the same as a call with no optional 321 // arguments, except also using the formal 'self' type. 322 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 323 } 324 325 /// Arrange the argument and result information for the function type 326 /// through which to perform a send to the given Objective-C method, 327 /// using the given receiver type. The receiver type is not always 328 /// the 'self' type of the method or even an Objective-C pointer type. 329 /// This is *not* the right method for actually performing such a 330 /// message send, due to the possibility of optional arguments. 331 const CGFunctionInfo & 332 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 333 QualType receiverType) { 334 SmallVector<CanQualType, 16> argTys; 335 argTys.push_back(Context.getCanonicalParamType(receiverType)); 336 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 337 // FIXME: Kill copy? 338 for (const auto *I : MD->params()) { 339 argTys.push_back(Context.getCanonicalParamType(I->getType())); 340 } 341 342 FunctionType::ExtInfo einfo; 343 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 344 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 345 346 if (getContext().getLangOpts().ObjCAutoRefCount && 347 MD->hasAttr<NSReturnsRetainedAttr>()) 348 einfo = einfo.withProducesResult(true); 349 350 RequiredArgs required = 351 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 352 353 return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), false, 354 argTys, einfo, required); 355 } 356 357 const CGFunctionInfo & 358 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 359 // FIXME: Do we need to handle ObjCMethodDecl? 360 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 361 362 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 363 return arrangeCXXConstructorDeclaration(CD, GD.getCtorType()); 364 365 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 366 return arrangeCXXDestructor(DD, GD.getDtorType()); 367 368 return arrangeFunctionDeclaration(FD); 369 } 370 371 /// Arrange a call as unto a free function, except possibly with an 372 /// additional number of formal parameters considered required. 373 static const CGFunctionInfo & 374 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 375 CodeGenModule &CGM, 376 const CallArgList &args, 377 const FunctionType *fnType, 378 unsigned numExtraRequiredArgs) { 379 assert(args.size() >= numExtraRequiredArgs); 380 381 // In most cases, there are no optional arguments. 382 RequiredArgs required = RequiredArgs::All; 383 384 // If we have a variadic prototype, the required arguments are the 385 // extra prefix plus the arguments in the prototype. 386 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 387 if (proto->isVariadic()) 388 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 389 390 // If we don't have a prototype at all, but we're supposed to 391 // explicitly use the variadic convention for unprototyped calls, 392 // treat all of the arguments as required but preserve the nominal 393 // possibility of variadics. 394 } else if (CGM.getTargetCodeGenInfo() 395 .isNoProtoCallVariadic(args, 396 cast<FunctionNoProtoType>(fnType))) { 397 required = RequiredArgs(args.size()); 398 } 399 400 return CGT.arrangeFreeFunctionCall(fnType->getReturnType(), args, 401 fnType->getExtInfo(), required); 402 } 403 404 /// Figure out the rules for calling a function with the given formal 405 /// type using the given arguments. The arguments are necessary 406 /// because the function might be unprototyped, in which case it's 407 /// target-dependent in crazy ways. 408 const CGFunctionInfo & 409 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 410 const FunctionType *fnType) { 411 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 0); 412 } 413 414 /// A block function call is essentially a free-function call with an 415 /// extra implicit argument. 416 const CGFunctionInfo & 417 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 418 const FunctionType *fnType) { 419 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1); 420 } 421 422 const CGFunctionInfo & 423 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 424 const CallArgList &args, 425 FunctionType::ExtInfo info, 426 RequiredArgs required) { 427 // FIXME: Kill copy. 428 SmallVector<CanQualType, 16> argTypes; 429 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 430 i != e; ++i) 431 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 432 return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes, 433 info, required); 434 } 435 436 /// Arrange a call to a C++ method, passing the given arguments. 437 const CGFunctionInfo & 438 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 439 const FunctionProtoType *FPT, 440 RequiredArgs required) { 441 // FIXME: Kill copy. 442 SmallVector<CanQualType, 16> argTypes; 443 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 444 i != e; ++i) 445 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 446 447 FunctionType::ExtInfo info = FPT->getExtInfo(); 448 return arrangeLLVMFunctionInfo(GetReturnType(FPT->getReturnType()), true, 449 argTypes, info, required); 450 } 451 452 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration( 453 QualType resultType, const FunctionArgList &args, 454 const FunctionType::ExtInfo &info, bool isVariadic) { 455 // FIXME: Kill copy. 456 SmallVector<CanQualType, 16> argTypes; 457 for (FunctionArgList::const_iterator i = args.begin(), e = args.end(); 458 i != e; ++i) 459 argTypes.push_back(Context.getCanonicalParamType((*i)->getType())); 460 461 RequiredArgs required = 462 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 463 return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes, info, 464 required); 465 } 466 467 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 468 return arrangeLLVMFunctionInfo(getContext().VoidTy, false, None, 469 FunctionType::ExtInfo(), RequiredArgs::All); 470 } 471 472 /// Arrange the argument and result information for an abstract value 473 /// of a given function type. This is the method which all of the 474 /// above functions ultimately defer to. 475 const CGFunctionInfo & 476 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 477 bool IsInstanceMethod, 478 ArrayRef<CanQualType> argTypes, 479 FunctionType::ExtInfo info, 480 RequiredArgs required) { 481 #ifndef NDEBUG 482 for (ArrayRef<CanQualType>::const_iterator 483 I = argTypes.begin(), E = argTypes.end(); I != E; ++I) 484 assert(I->isCanonicalAsParam()); 485 #endif 486 487 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 488 489 // Lookup or create unique function info. 490 llvm::FoldingSetNodeID ID; 491 CGFunctionInfo::Profile(ID, IsInstanceMethod, info, required, resultType, 492 argTypes); 493 494 void *insertPos = 0; 495 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 496 if (FI) 497 return *FI; 498 499 // Construct the function info. We co-allocate the ArgInfos. 500 FI = CGFunctionInfo::create(CC, IsInstanceMethod, info, resultType, argTypes, 501 required); 502 FunctionInfos.InsertNode(FI, insertPos); 503 504 bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted; 505 assert(inserted && "Recursively being processed?"); 506 507 // Compute ABI information. 508 getABIInfo().computeInfo(*FI); 509 510 // Loop over all of the computed argument and return value info. If any of 511 // them are direct or extend without a specified coerce type, specify the 512 // default now. 513 ABIArgInfo &retInfo = FI->getReturnInfo(); 514 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0) 515 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 516 517 for (auto &I : FI->arguments()) 518 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == 0) 519 I.info.setCoerceToType(ConvertType(I.type)); 520 521 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 522 assert(erased && "Not in set?"); 523 524 return *FI; 525 } 526 527 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 528 bool IsInstanceMethod, 529 const FunctionType::ExtInfo &info, 530 CanQualType resultType, 531 ArrayRef<CanQualType> argTypes, 532 RequiredArgs required) { 533 void *buffer = operator new(sizeof(CGFunctionInfo) + 534 sizeof(ArgInfo) * (argTypes.size() + 1)); 535 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 536 FI->CallingConvention = llvmCC; 537 FI->EffectiveCallingConvention = llvmCC; 538 FI->ASTCallingConvention = info.getCC(); 539 FI->InstanceMethod = IsInstanceMethod; 540 FI->NoReturn = info.getNoReturn(); 541 FI->ReturnsRetained = info.getProducesResult(); 542 FI->Required = required; 543 FI->HasRegParm = info.getHasRegParm(); 544 FI->RegParm = info.getRegParm(); 545 FI->ArgStruct = 0; 546 FI->NumArgs = argTypes.size(); 547 FI->getArgsBuffer()[0].type = resultType; 548 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 549 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 550 return FI; 551 } 552 553 /***/ 554 555 void CodeGenTypes::GetExpandedTypes(QualType type, 556 SmallVectorImpl<llvm::Type*> &expandedTypes) { 557 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { 558 uint64_t NumElts = AT->getSize().getZExtValue(); 559 for (uint64_t Elt = 0; Elt < NumElts; ++Elt) 560 GetExpandedTypes(AT->getElementType(), expandedTypes); 561 } else if (const RecordType *RT = type->getAs<RecordType>()) { 562 const RecordDecl *RD = RT->getDecl(); 563 assert(!RD->hasFlexibleArrayMember() && 564 "Cannot expand structure with flexible array."); 565 if (RD->isUnion()) { 566 // Unions can be here only in degenerative cases - all the fields are same 567 // after flattening. Thus we have to use the "largest" field. 568 const FieldDecl *LargestFD = 0; 569 CharUnits UnionSize = CharUnits::Zero(); 570 571 for (const auto *FD : RD->fields()) { 572 assert(!FD->isBitField() && 573 "Cannot expand structure with bit-field members."); 574 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 575 if (UnionSize < FieldSize) { 576 UnionSize = FieldSize; 577 LargestFD = FD; 578 } 579 } 580 if (LargestFD) 581 GetExpandedTypes(LargestFD->getType(), expandedTypes); 582 } else { 583 for (const auto *I : RD->fields()) { 584 assert(!I->isBitField() && 585 "Cannot expand structure with bit-field members."); 586 GetExpandedTypes(I->getType(), expandedTypes); 587 } 588 } 589 } else if (const ComplexType *CT = type->getAs<ComplexType>()) { 590 llvm::Type *EltTy = ConvertType(CT->getElementType()); 591 expandedTypes.push_back(EltTy); 592 expandedTypes.push_back(EltTy); 593 } else 594 expandedTypes.push_back(ConvertType(type)); 595 } 596 597 llvm::Function::arg_iterator 598 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 599 llvm::Function::arg_iterator AI) { 600 assert(LV.isSimple() && 601 "Unexpected non-simple lvalue during struct expansion."); 602 603 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 604 unsigned NumElts = AT->getSize().getZExtValue(); 605 QualType EltTy = AT->getElementType(); 606 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 607 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt); 608 LValue LV = MakeAddrLValue(EltAddr, EltTy); 609 AI = ExpandTypeFromArgs(EltTy, LV, AI); 610 } 611 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 612 RecordDecl *RD = RT->getDecl(); 613 if (RD->isUnion()) { 614 // Unions can be here only in degenerative cases - all the fields are same 615 // after flattening. Thus we have to use the "largest" field. 616 const FieldDecl *LargestFD = 0; 617 CharUnits UnionSize = CharUnits::Zero(); 618 619 for (const auto *FD : RD->fields()) { 620 assert(!FD->isBitField() && 621 "Cannot expand structure with bit-field members."); 622 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 623 if (UnionSize < FieldSize) { 624 UnionSize = FieldSize; 625 LargestFD = FD; 626 } 627 } 628 if (LargestFD) { 629 // FIXME: What are the right qualifiers here? 630 LValue SubLV = EmitLValueForField(LV, LargestFD); 631 AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI); 632 } 633 } else { 634 for (const auto *FD : RD->fields()) { 635 QualType FT = FD->getType(); 636 637 // FIXME: What are the right qualifiers here? 638 LValue SubLV = EmitLValueForField(LV, FD); 639 AI = ExpandTypeFromArgs(FT, SubLV, AI); 640 } 641 } 642 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 643 QualType EltTy = CT->getElementType(); 644 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real"); 645 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); 646 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag"); 647 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); 648 } else { 649 EmitStoreThroughLValue(RValue::get(AI), LV); 650 ++AI; 651 } 652 653 return AI; 654 } 655 656 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 657 /// accessing some number of bytes out of it, try to gep into the struct to get 658 /// at its inner goodness. Dive as deep as possible without entering an element 659 /// with an in-memory size smaller than DstSize. 660 static llvm::Value * 661 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 662 llvm::StructType *SrcSTy, 663 uint64_t DstSize, CodeGenFunction &CGF) { 664 // We can't dive into a zero-element struct. 665 if (SrcSTy->getNumElements() == 0) return SrcPtr; 666 667 llvm::Type *FirstElt = SrcSTy->getElementType(0); 668 669 // If the first elt is at least as large as what we're looking for, or if the 670 // first element is the same size as the whole struct, we can enter it. 671 uint64_t FirstEltSize = 672 CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt); 673 if (FirstEltSize < DstSize && 674 FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy)) 675 return SrcPtr; 676 677 // GEP into the first element. 678 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 679 680 // If the first element is a struct, recurse. 681 llvm::Type *SrcTy = 682 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 683 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 684 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 685 686 return SrcPtr; 687 } 688 689 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 690 /// are either integers or pointers. This does a truncation of the value if it 691 /// is too large or a zero extension if it is too small. 692 /// 693 /// This behaves as if the value were coerced through memory, so on big-endian 694 /// targets the high bits are preserved in a truncation, while little-endian 695 /// targets preserve the low bits. 696 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 697 llvm::Type *Ty, 698 CodeGenFunction &CGF) { 699 if (Val->getType() == Ty) 700 return Val; 701 702 if (isa<llvm::PointerType>(Val->getType())) { 703 // If this is Pointer->Pointer avoid conversion to and from int. 704 if (isa<llvm::PointerType>(Ty)) 705 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 706 707 // Convert the pointer to an integer so we can play with its width. 708 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 709 } 710 711 llvm::Type *DestIntTy = Ty; 712 if (isa<llvm::PointerType>(DestIntTy)) 713 DestIntTy = CGF.IntPtrTy; 714 715 if (Val->getType() != DestIntTy) { 716 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 717 if (DL.isBigEndian()) { 718 // Preserve the high bits on big-endian targets. 719 // That is what memory coercion does. 720 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 721 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 722 723 if (SrcSize > DstSize) { 724 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 725 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 726 } else { 727 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 728 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 729 } 730 } else { 731 // Little-endian targets preserve the low bits. No shifts required. 732 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 733 } 734 } 735 736 if (isa<llvm::PointerType>(Ty)) 737 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 738 return Val; 739 } 740 741 742 743 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 744 /// a pointer to an object of type \arg Ty. 745 /// 746 /// This safely handles the case when the src type is smaller than the 747 /// destination type; in this situation the values of bits which not 748 /// present in the src are undefined. 749 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 750 llvm::Type *Ty, 751 CodeGenFunction &CGF) { 752 llvm::Type *SrcTy = 753 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 754 755 // If SrcTy and Ty are the same, just do a load. 756 if (SrcTy == Ty) 757 return CGF.Builder.CreateLoad(SrcPtr); 758 759 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 760 761 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 762 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 763 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 764 } 765 766 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 767 768 // If the source and destination are integer or pointer types, just do an 769 // extension or truncation to the desired type. 770 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 771 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 772 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 773 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 774 } 775 776 // If load is legal, just bitcast the src pointer. 777 if (SrcSize >= DstSize) { 778 // Generally SrcSize is never greater than DstSize, since this means we are 779 // losing bits. However, this can happen in cases where the structure has 780 // additional padding, for example due to a user specified alignment. 781 // 782 // FIXME: Assert that we aren't truncating non-padding bits when have access 783 // to that information. 784 llvm::Value *Casted = 785 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 786 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 787 // FIXME: Use better alignment / avoid requiring aligned load. 788 Load->setAlignment(1); 789 return Load; 790 } 791 792 // Otherwise do coercion through memory. This is stupid, but 793 // simple. 794 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 795 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 796 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 797 llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy); 798 // FIXME: Use better alignment. 799 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 800 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 801 1, false); 802 return CGF.Builder.CreateLoad(Tmp); 803 } 804 805 // Function to store a first-class aggregate into memory. We prefer to 806 // store the elements rather than the aggregate to be more friendly to 807 // fast-isel. 808 // FIXME: Do we need to recurse here? 809 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 810 llvm::Value *DestPtr, bool DestIsVolatile, 811 bool LowAlignment) { 812 // Prefer scalar stores to first-class aggregate stores. 813 if (llvm::StructType *STy = 814 dyn_cast<llvm::StructType>(Val->getType())) { 815 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 816 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 817 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 818 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 819 DestIsVolatile); 820 if (LowAlignment) 821 SI->setAlignment(1); 822 } 823 } else { 824 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 825 if (LowAlignment) 826 SI->setAlignment(1); 827 } 828 } 829 830 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 831 /// where the source and destination may have different types. 832 /// 833 /// This safely handles the case when the src type is larger than the 834 /// destination type; the upper bits of the src will be lost. 835 static void CreateCoercedStore(llvm::Value *Src, 836 llvm::Value *DstPtr, 837 bool DstIsVolatile, 838 CodeGenFunction &CGF) { 839 llvm::Type *SrcTy = Src->getType(); 840 llvm::Type *DstTy = 841 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 842 if (SrcTy == DstTy) { 843 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 844 return; 845 } 846 847 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 848 849 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 850 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 851 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 852 } 853 854 // If the source and destination are integer or pointer types, just do an 855 // extension or truncation to the desired type. 856 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 857 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 858 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 859 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 860 return; 861 } 862 863 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 864 865 // If store is legal, just bitcast the src pointer. 866 if (SrcSize <= DstSize) { 867 llvm::Value *Casted = 868 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 869 // FIXME: Use better alignment / avoid requiring aligned store. 870 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 871 } else { 872 // Otherwise do coercion through memory. This is stupid, but 873 // simple. 874 875 // Generally SrcSize is never greater than DstSize, since this means we are 876 // losing bits. However, this can happen in cases where the structure has 877 // additional padding, for example due to a user specified alignment. 878 // 879 // FIXME: Assert that we aren't truncating non-padding bits when have access 880 // to that information. 881 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 882 CGF.Builder.CreateStore(Src, Tmp); 883 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 884 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 885 llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy); 886 // FIXME: Use better alignment. 887 CGF.Builder.CreateMemCpy(DstCasted, Casted, 888 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 889 1, false); 890 } 891 } 892 893 /***/ 894 895 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 896 return FI.getReturnInfo().isIndirect(); 897 } 898 899 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 900 return ReturnTypeUsesSRet(FI) && 901 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 902 } 903 904 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 905 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 906 switch (BT->getKind()) { 907 default: 908 return false; 909 case BuiltinType::Float: 910 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 911 case BuiltinType::Double: 912 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 913 case BuiltinType::LongDouble: 914 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 915 } 916 } 917 918 return false; 919 } 920 921 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 922 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 923 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 924 if (BT->getKind() == BuiltinType::LongDouble) 925 return getTarget().useObjCFP2RetForComplexLongDouble(); 926 } 927 } 928 929 return false; 930 } 931 932 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 933 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 934 return GetFunctionType(FI); 935 } 936 937 llvm::FunctionType * 938 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 939 940 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; 941 assert(Inserted && "Recursively being processed?"); 942 943 bool SwapThisWithSRet = false; 944 SmallVector<llvm::Type*, 8> argTypes; 945 llvm::Type *resultType = 0; 946 947 const ABIArgInfo &retAI = FI.getReturnInfo(); 948 switch (retAI.getKind()) { 949 case ABIArgInfo::Expand: 950 llvm_unreachable("Invalid ABI kind for return argument"); 951 952 case ABIArgInfo::Extend: 953 case ABIArgInfo::Direct: 954 resultType = retAI.getCoerceToType(); 955 break; 956 957 case ABIArgInfo::InAlloca: 958 if (retAI.getInAllocaSRet()) { 959 // sret things on win32 aren't void, they return the sret pointer. 960 QualType ret = FI.getReturnType(); 961 llvm::Type *ty = ConvertType(ret); 962 unsigned addressSpace = Context.getTargetAddressSpace(ret); 963 resultType = llvm::PointerType::get(ty, addressSpace); 964 } else { 965 resultType = llvm::Type::getVoidTy(getLLVMContext()); 966 } 967 break; 968 969 case ABIArgInfo::Indirect: { 970 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 971 resultType = llvm::Type::getVoidTy(getLLVMContext()); 972 973 QualType ret = FI.getReturnType(); 974 llvm::Type *ty = ConvertType(ret); 975 unsigned addressSpace = Context.getTargetAddressSpace(ret); 976 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 977 978 SwapThisWithSRet = retAI.isSRetAfterThis(); 979 break; 980 } 981 982 case ABIArgInfo::Ignore: 983 resultType = llvm::Type::getVoidTy(getLLVMContext()); 984 break; 985 } 986 987 // Add in all of the required arguments. 988 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie; 989 if (FI.isVariadic()) { 990 ie = it + FI.getRequiredArgs().getNumRequiredArgs(); 991 } else { 992 ie = FI.arg_end(); 993 } 994 for (; it != ie; ++it) { 995 const ABIArgInfo &argAI = it->info; 996 997 // Insert a padding type to ensure proper alignment. 998 if (llvm::Type *PaddingType = argAI.getPaddingType()) 999 argTypes.push_back(PaddingType); 1000 1001 switch (argAI.getKind()) { 1002 case ABIArgInfo::Ignore: 1003 case ABIArgInfo::InAlloca: 1004 break; 1005 1006 case ABIArgInfo::Indirect: { 1007 // indirect arguments are always on the stack, which is addr space #0. 1008 llvm::Type *LTy = ConvertTypeForMem(it->type); 1009 argTypes.push_back(LTy->getPointerTo()); 1010 break; 1011 } 1012 1013 case ABIArgInfo::Extend: 1014 case ABIArgInfo::Direct: { 1015 // If the coerce-to type is a first class aggregate, flatten it. Either 1016 // way is semantically identical, but fast-isel and the optimizer 1017 // generally likes scalar values better than FCAs. 1018 // We cannot do this for functions using the AAPCS calling convention, 1019 // as structures are treated differently by that calling convention. 1020 llvm::Type *argType = argAI.getCoerceToType(); 1021 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1022 if (st && !isAAPCSVFP(FI, getTarget())) { 1023 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1024 argTypes.push_back(st->getElementType(i)); 1025 } else { 1026 argTypes.push_back(argType); 1027 } 1028 break; 1029 } 1030 1031 case ABIArgInfo::Expand: 1032 GetExpandedTypes(it->type, argTypes); 1033 break; 1034 } 1035 } 1036 1037 // Add the inalloca struct as the last parameter type. 1038 if (llvm::StructType *ArgStruct = FI.getArgStruct()) 1039 argTypes.push_back(ArgStruct->getPointerTo()); 1040 1041 if (SwapThisWithSRet) 1042 std::swap(argTypes[0], argTypes[1]); 1043 1044 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1045 assert(Erased && "Not in set?"); 1046 1047 return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic()); 1048 } 1049 1050 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1051 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1052 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1053 1054 if (!isFuncTypeConvertible(FPT)) 1055 return llvm::StructType::get(getLLVMContext()); 1056 1057 const CGFunctionInfo *Info; 1058 if (isa<CXXDestructorDecl>(MD)) 1059 Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 1060 else 1061 Info = &arrangeCXXMethodDeclaration(MD); 1062 return GetFunctionType(*Info); 1063 } 1064 1065 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 1066 const Decl *TargetDecl, 1067 AttributeListType &PAL, 1068 unsigned &CallingConv, 1069 bool AttrOnCallSite) { 1070 llvm::AttrBuilder FuncAttrs; 1071 llvm::AttrBuilder RetAttrs; 1072 1073 CallingConv = FI.getEffectiveCallingConvention(); 1074 1075 if (FI.isNoReturn()) 1076 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1077 1078 // FIXME: handle sseregparm someday... 1079 if (TargetDecl) { 1080 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1081 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1082 if (TargetDecl->hasAttr<NoThrowAttr>()) 1083 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1084 if (TargetDecl->hasAttr<NoReturnAttr>()) 1085 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1086 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1087 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1088 1089 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1090 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 1091 if (FPT && FPT->isNothrow(getContext())) 1092 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1093 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1094 // These attributes are not inherited by overloads. 1095 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1096 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1097 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1098 } 1099 1100 // 'const' and 'pure' attribute functions are also nounwind. 1101 if (TargetDecl->hasAttr<ConstAttr>()) { 1102 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1103 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1104 } else if (TargetDecl->hasAttr<PureAttr>()) { 1105 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1106 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1107 } 1108 if (TargetDecl->hasAttr<MallocAttr>()) 1109 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1110 } 1111 1112 if (CodeGenOpts.OptimizeSize) 1113 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1114 if (CodeGenOpts.OptimizeSize == 2) 1115 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1116 if (CodeGenOpts.DisableRedZone) 1117 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1118 if (CodeGenOpts.NoImplicitFloat) 1119 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1120 if (CodeGenOpts.EnableSegmentedStacks) 1121 FuncAttrs.addAttribute("split-stack"); 1122 1123 if (AttrOnCallSite) { 1124 // Attributes that should go on the call site only. 1125 if (!CodeGenOpts.SimplifyLibCalls) 1126 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1127 } else { 1128 // Attributes that should go on the function, but not the call site. 1129 if (!CodeGenOpts.DisableFPElim) { 1130 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1131 } else if (CodeGenOpts.OmitLeafFramePointer) { 1132 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1133 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1134 } else { 1135 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1136 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1137 } 1138 1139 FuncAttrs.addAttribute("less-precise-fpmad", 1140 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1141 FuncAttrs.addAttribute("no-infs-fp-math", 1142 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1143 FuncAttrs.addAttribute("no-nans-fp-math", 1144 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1145 FuncAttrs.addAttribute("unsafe-fp-math", 1146 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1147 FuncAttrs.addAttribute("use-soft-float", 1148 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1149 FuncAttrs.addAttribute("stack-protector-buffer-size", 1150 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1151 1152 if (!CodeGenOpts.StackRealignment) 1153 FuncAttrs.addAttribute("no-realign-stack"); 1154 } 1155 1156 QualType RetTy = FI.getReturnType(); 1157 unsigned Index = 1; 1158 bool SwapThisWithSRet = false; 1159 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1160 switch (RetAI.getKind()) { 1161 case ABIArgInfo::Extend: 1162 if (RetTy->hasSignedIntegerRepresentation()) 1163 RetAttrs.addAttribute(llvm::Attribute::SExt); 1164 else if (RetTy->hasUnsignedIntegerRepresentation()) 1165 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1166 // FALL THROUGH 1167 case ABIArgInfo::Direct: 1168 if (RetAI.getInReg()) 1169 RetAttrs.addAttribute(llvm::Attribute::InReg); 1170 break; 1171 case ABIArgInfo::Ignore: 1172 break; 1173 1174 case ABIArgInfo::InAlloca: { 1175 // inalloca disables readnone and readonly 1176 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1177 .removeAttribute(llvm::Attribute::ReadNone); 1178 break; 1179 } 1180 1181 case ABIArgInfo::Indirect: { 1182 llvm::AttrBuilder SRETAttrs; 1183 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1184 if (RetAI.getInReg()) 1185 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1186 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1187 PAL.push_back(llvm::AttributeSet::get( 1188 getLLVMContext(), SwapThisWithSRet ? 2 : Index, SRETAttrs)); 1189 1190 if (!SwapThisWithSRet) 1191 ++Index; 1192 // sret disables readnone and readonly 1193 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1194 .removeAttribute(llvm::Attribute::ReadNone); 1195 break; 1196 } 1197 1198 case ABIArgInfo::Expand: 1199 llvm_unreachable("Invalid ABI kind for return argument"); 1200 } 1201 1202 if (RetAttrs.hasAttributes()) 1203 PAL.push_back(llvm:: 1204 AttributeSet::get(getLLVMContext(), 1205 llvm::AttributeSet::ReturnIndex, 1206 RetAttrs)); 1207 1208 for (const auto &I : FI.arguments()) { 1209 QualType ParamType = I.type; 1210 const ABIArgInfo &AI = I.info; 1211 llvm::AttrBuilder Attrs; 1212 1213 // Skip over the sret parameter when it comes second. We already handled it 1214 // above. 1215 if (Index == 2 && SwapThisWithSRet) 1216 ++Index; 1217 1218 if (AI.getPaddingType()) { 1219 if (AI.getPaddingInReg()) 1220 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, 1221 llvm::Attribute::InReg)); 1222 // Increment Index if there is padding. 1223 ++Index; 1224 } 1225 1226 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1227 // have the corresponding parameter variable. It doesn't make 1228 // sense to do it here because parameters are so messed up. 1229 switch (AI.getKind()) { 1230 case ABIArgInfo::Extend: 1231 if (ParamType->isSignedIntegerOrEnumerationType()) 1232 Attrs.addAttribute(llvm::Attribute::SExt); 1233 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 1234 Attrs.addAttribute(llvm::Attribute::ZExt); 1235 // FALL THROUGH 1236 case ABIArgInfo::Direct: { 1237 if (AI.getInReg()) 1238 Attrs.addAttribute(llvm::Attribute::InReg); 1239 1240 // FIXME: handle sseregparm someday... 1241 1242 llvm::StructType *STy = 1243 dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1244 if (!isAAPCSVFP(FI, getTarget()) && STy) { 1245 unsigned Extra = STy->getNumElements()-1; // 1 will be added below. 1246 if (Attrs.hasAttributes()) 1247 for (unsigned I = 0; I < Extra; ++I) 1248 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I, 1249 Attrs)); 1250 Index += Extra; 1251 } 1252 break; 1253 } 1254 case ABIArgInfo::Indirect: 1255 if (AI.getInReg()) 1256 Attrs.addAttribute(llvm::Attribute::InReg); 1257 1258 if (AI.getIndirectByVal()) 1259 Attrs.addAttribute(llvm::Attribute::ByVal); 1260 1261 Attrs.addAlignmentAttr(AI.getIndirectAlign()); 1262 1263 // byval disables readnone and readonly. 1264 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1265 .removeAttribute(llvm::Attribute::ReadNone); 1266 break; 1267 1268 case ABIArgInfo::Ignore: 1269 // Skip increment, no matching LLVM parameter. 1270 continue; 1271 1272 case ABIArgInfo::InAlloca: 1273 // inalloca disables readnone and readonly. 1274 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1275 .removeAttribute(llvm::Attribute::ReadNone); 1276 // Skip increment, no matching LLVM parameter. 1277 continue; 1278 1279 case ABIArgInfo::Expand: { 1280 SmallVector<llvm::Type*, 8> types; 1281 // FIXME: This is rather inefficient. Do we ever actually need to do 1282 // anything here? The result should be just reconstructed on the other 1283 // side, so extension should be a non-issue. 1284 getTypes().GetExpandedTypes(ParamType, types); 1285 Index += types.size(); 1286 continue; 1287 } 1288 } 1289 1290 if (Attrs.hasAttributes()) 1291 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs)); 1292 ++Index; 1293 } 1294 1295 // Add the inalloca attribute to the trailing inalloca parameter if present. 1296 if (FI.usesInAlloca()) { 1297 llvm::AttrBuilder Attrs; 1298 Attrs.addAttribute(llvm::Attribute::InAlloca); 1299 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs)); 1300 } 1301 1302 if (FuncAttrs.hasAttributes()) 1303 PAL.push_back(llvm:: 1304 AttributeSet::get(getLLVMContext(), 1305 llvm::AttributeSet::FunctionIndex, 1306 FuncAttrs)); 1307 } 1308 1309 /// An argument came in as a promoted argument; demote it back to its 1310 /// declared type. 1311 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1312 const VarDecl *var, 1313 llvm::Value *value) { 1314 llvm::Type *varType = CGF.ConvertType(var->getType()); 1315 1316 // This can happen with promotions that actually don't change the 1317 // underlying type, like the enum promotions. 1318 if (value->getType() == varType) return value; 1319 1320 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1321 && "unexpected promotion type"); 1322 1323 if (isa<llvm::IntegerType>(varType)) 1324 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1325 1326 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1327 } 1328 1329 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1330 llvm::Function *Fn, 1331 const FunctionArgList &Args) { 1332 // If this is an implicit-return-zero function, go ahead and 1333 // initialize the return value. TODO: it might be nice to have 1334 // a more general mechanism for this that didn't require synthesized 1335 // return statements. 1336 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 1337 if (FD->hasImplicitReturnZero()) { 1338 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 1339 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1340 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1341 Builder.CreateStore(Zero, ReturnValue); 1342 } 1343 } 1344 1345 // FIXME: We no longer need the types from FunctionArgList; lift up and 1346 // simplify. 1347 1348 // Emit allocs for param decls. Give the LLVM Argument nodes names. 1349 llvm::Function::arg_iterator AI = Fn->arg_begin(); 1350 1351 // If we're using inalloca, all the memory arguments are GEPs off of the last 1352 // parameter, which is a pointer to the complete memory area. 1353 llvm::Value *ArgStruct = 0; 1354 if (FI.usesInAlloca()) { 1355 llvm::Function::arg_iterator EI = Fn->arg_end(); 1356 --EI; 1357 ArgStruct = EI; 1358 assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo()); 1359 } 1360 1361 // Name the struct return parameter, which can come first or second. 1362 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1363 bool SwapThisWithSRet = false; 1364 if (RetAI.isIndirect()) { 1365 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1366 if (SwapThisWithSRet) 1367 ++AI; 1368 AI->setName("agg.result"); 1369 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1, 1370 llvm::Attribute::NoAlias)); 1371 if (SwapThisWithSRet) 1372 --AI; // Go back to the beginning for 'this'. 1373 else 1374 ++AI; // Skip the sret parameter. 1375 } 1376 1377 // Track if we received the parameter as a pointer (indirect, byval, or 1378 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 1379 // into a local alloca for us. 1380 enum ValOrPointer { HaveValue = 0, HavePointer = 1 }; 1381 typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr; 1382 SmallVector<ValueAndIsPtr, 16> ArgVals; 1383 ArgVals.reserve(Args.size()); 1384 1385 // Create a pointer value for every parameter declaration. This usually 1386 // entails copying one or more LLVM IR arguments into an alloca. Don't push 1387 // any cleanups or do anything that might unwind. We do that separately, so 1388 // we can push the cleanups in the correct order for the ABI. 1389 assert(FI.arg_size() == Args.size() && 1390 "Mismatch between function signature & arguments."); 1391 unsigned ArgNo = 1; 1392 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1393 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1394 i != e; ++i, ++info_it, ++ArgNo) { 1395 const VarDecl *Arg = *i; 1396 QualType Ty = info_it->type; 1397 const ABIArgInfo &ArgI = info_it->info; 1398 1399 bool isPromoted = 1400 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1401 1402 // Skip the dummy padding argument. 1403 if (ArgI.getPaddingType()) 1404 ++AI; 1405 1406 switch (ArgI.getKind()) { 1407 case ABIArgInfo::InAlloca: { 1408 llvm::Value *V = Builder.CreateStructGEP( 1409 ArgStruct, ArgI.getInAllocaFieldIndex(), Arg->getName()); 1410 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 1411 continue; // Don't increment AI! 1412 } 1413 1414 case ABIArgInfo::Indirect: { 1415 llvm::Value *V = AI; 1416 1417 if (!hasScalarEvaluationKind(Ty)) { 1418 // Aggregates and complex variables are accessed by reference. All we 1419 // need to do is realign the value, if requested 1420 if (ArgI.getIndirectRealign()) { 1421 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 1422 1423 // Copy from the incoming argument pointer to the temporary with the 1424 // appropriate alignment. 1425 // 1426 // FIXME: We should have a common utility for generating an aggregate 1427 // copy. 1428 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 1429 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1430 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 1431 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 1432 Builder.CreateMemCpy(Dst, 1433 Src, 1434 llvm::ConstantInt::get(IntPtrTy, 1435 Size.getQuantity()), 1436 ArgI.getIndirectAlign(), 1437 false); 1438 V = AlignedTemp; 1439 } 1440 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 1441 } else { 1442 // Load scalar value from indirect argument. 1443 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1444 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty, 1445 Arg->getLocStart()); 1446 1447 if (isPromoted) 1448 V = emitArgumentDemotion(*this, Arg, V); 1449 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 1450 } 1451 break; 1452 } 1453 1454 case ABIArgInfo::Extend: 1455 case ABIArgInfo::Direct: { 1456 1457 // If we have the trivial case, handle it with no muss and fuss. 1458 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1459 ArgI.getCoerceToType() == ConvertType(Ty) && 1460 ArgI.getDirectOffset() == 0) { 1461 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1462 llvm::Value *V = AI; 1463 1464 if (Arg->getType().isRestrictQualified()) 1465 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1466 AI->getArgNo() + 1, 1467 llvm::Attribute::NoAlias)); 1468 1469 // Ensure the argument is the correct type. 1470 if (V->getType() != ArgI.getCoerceToType()) 1471 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1472 1473 if (isPromoted) 1474 V = emitArgumentDemotion(*this, Arg, V); 1475 1476 if (const CXXMethodDecl *MD = 1477 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 1478 if (MD->isVirtual() && Arg == CXXABIThisDecl) 1479 V = CGM.getCXXABI(). 1480 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V); 1481 } 1482 1483 // Because of merging of function types from multiple decls it is 1484 // possible for the type of an argument to not match the corresponding 1485 // type in the function type. Since we are codegening the callee 1486 // in here, add a cast to the argument type. 1487 llvm::Type *LTy = ConvertType(Arg->getType()); 1488 if (V->getType() != LTy) 1489 V = Builder.CreateBitCast(V, LTy); 1490 1491 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 1492 break; 1493 } 1494 1495 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); 1496 1497 // The alignment we need to use is the max of the requested alignment for 1498 // the argument plus the alignment required by our access code below. 1499 unsigned AlignmentToUse = 1500 CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType()); 1501 AlignmentToUse = std::max(AlignmentToUse, 1502 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1503 1504 Alloca->setAlignment(AlignmentToUse); 1505 llvm::Value *V = Alloca; 1506 llvm::Value *Ptr = V; // Pointer to store into. 1507 1508 // If the value is offset in memory, apply the offset now. 1509 if (unsigned Offs = ArgI.getDirectOffset()) { 1510 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1511 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1512 Ptr = Builder.CreateBitCast(Ptr, 1513 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1514 } 1515 1516 // If the coerce-to type is a first class aggregate, we flatten it and 1517 // pass the elements. Either way is semantically identical, but fast-isel 1518 // and the optimizer generally likes scalar values better than FCAs. 1519 // We cannot do this for functions using the AAPCS calling convention, 1520 // as structures are treated differently by that calling convention. 1521 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 1522 if (!isAAPCSVFP(FI, getTarget()) && STy && STy->getNumElements() > 1) { 1523 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 1524 llvm::Type *DstTy = 1525 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 1526 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 1527 1528 if (SrcSize <= DstSize) { 1529 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1530 1531 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1532 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1533 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1534 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1535 Builder.CreateStore(AI++, EltPtr); 1536 } 1537 } else { 1538 llvm::AllocaInst *TempAlloca = 1539 CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); 1540 TempAlloca->setAlignment(AlignmentToUse); 1541 llvm::Value *TempV = TempAlloca; 1542 1543 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1544 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1545 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1546 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i); 1547 Builder.CreateStore(AI++, EltPtr); 1548 } 1549 1550 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); 1551 } 1552 } else { 1553 // Simple case, just do a coerced store of the argument into the alloca. 1554 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1555 AI->setName(Arg->getName() + ".coerce"); 1556 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 1557 } 1558 1559 1560 // Match to what EmitParmDecl is expecting for this type. 1561 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 1562 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart()); 1563 if (isPromoted) 1564 V = emitArgumentDemotion(*this, Arg, V); 1565 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 1566 } else { 1567 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 1568 } 1569 continue; // Skip ++AI increment, already done. 1570 } 1571 1572 case ABIArgInfo::Expand: { 1573 // If this structure was expanded into multiple arguments then 1574 // we need to create a temporary and reconstruct it from the 1575 // arguments. 1576 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1577 CharUnits Align = getContext().getDeclAlign(Arg); 1578 Alloca->setAlignment(Align.getQuantity()); 1579 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1580 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); 1581 ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer)); 1582 1583 // Name the arguments used in expansion and increment AI. 1584 unsigned Index = 0; 1585 for (; AI != End; ++AI, ++Index) 1586 AI->setName(Arg->getName() + "." + Twine(Index)); 1587 continue; 1588 } 1589 1590 case ABIArgInfo::Ignore: 1591 // Initialize the local variable appropriately. 1592 if (!hasScalarEvaluationKind(Ty)) { 1593 ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer)); 1594 } else { 1595 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 1596 ArgVals.push_back(ValueAndIsPtr(U, HaveValue)); 1597 } 1598 1599 // Skip increment, no matching LLVM parameter. 1600 continue; 1601 } 1602 1603 ++AI; 1604 1605 if (ArgNo == 1 && SwapThisWithSRet) 1606 ++AI; // Skip the sret parameter. 1607 } 1608 1609 if (FI.usesInAlloca()) 1610 ++AI; 1611 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1612 1613 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1614 for (int I = Args.size() - 1; I >= 0; --I) 1615 EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(), 1616 I + 1); 1617 } else { 1618 for (unsigned I = 0, E = Args.size(); I != E; ++I) 1619 EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(), 1620 I + 1); 1621 } 1622 } 1623 1624 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 1625 while (insn->use_empty()) { 1626 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 1627 if (!bitcast) return; 1628 1629 // This is "safe" because we would have used a ConstantExpr otherwise. 1630 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 1631 bitcast->eraseFromParent(); 1632 } 1633 } 1634 1635 /// Try to emit a fused autorelease of a return result. 1636 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1637 llvm::Value *result) { 1638 // We must be immediately followed the cast. 1639 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1640 if (BB->empty()) return 0; 1641 if (&BB->back() != result) return 0; 1642 1643 llvm::Type *resultType = result->getType(); 1644 1645 // result is in a BasicBlock and is therefore an Instruction. 1646 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1647 1648 SmallVector<llvm::Instruction*,4> insnsToKill; 1649 1650 // Look for: 1651 // %generator = bitcast %type1* %generator2 to %type2* 1652 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1653 // We would have emitted this as a constant if the operand weren't 1654 // an Instruction. 1655 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1656 1657 // Require the generator to be immediately followed by the cast. 1658 if (generator->getNextNode() != bitcast) 1659 return 0; 1660 1661 insnsToKill.push_back(bitcast); 1662 } 1663 1664 // Look for: 1665 // %generator = call i8* @objc_retain(i8* %originalResult) 1666 // or 1667 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1668 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1669 if (!call) return 0; 1670 1671 bool doRetainAutorelease; 1672 1673 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1674 doRetainAutorelease = true; 1675 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1676 .objc_retainAutoreleasedReturnValue) { 1677 doRetainAutorelease = false; 1678 1679 // If we emitted an assembly marker for this call (and the 1680 // ARCEntrypoints field should have been set if so), go looking 1681 // for that call. If we can't find it, we can't do this 1682 // optimization. But it should always be the immediately previous 1683 // instruction, unless we needed bitcasts around the call. 1684 if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) { 1685 llvm::Instruction *prev = call->getPrevNode(); 1686 assert(prev); 1687 if (isa<llvm::BitCastInst>(prev)) { 1688 prev = prev->getPrevNode(); 1689 assert(prev); 1690 } 1691 assert(isa<llvm::CallInst>(prev)); 1692 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 1693 CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker); 1694 insnsToKill.push_back(prev); 1695 } 1696 } else { 1697 return 0; 1698 } 1699 1700 result = call->getArgOperand(0); 1701 insnsToKill.push_back(call); 1702 1703 // Keep killing bitcasts, for sanity. Note that we no longer care 1704 // about precise ordering as long as there's exactly one use. 1705 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1706 if (!bitcast->hasOneUse()) break; 1707 insnsToKill.push_back(bitcast); 1708 result = bitcast->getOperand(0); 1709 } 1710 1711 // Delete all the unnecessary instructions, from latest to earliest. 1712 for (SmallVectorImpl<llvm::Instruction*>::iterator 1713 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1714 (*i)->eraseFromParent(); 1715 1716 // Do the fused retain/autorelease if we were asked to. 1717 if (doRetainAutorelease) 1718 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1719 1720 // Cast back to the result type. 1721 return CGF.Builder.CreateBitCast(result, resultType); 1722 } 1723 1724 /// If this is a +1 of the value of an immutable 'self', remove it. 1725 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 1726 llvm::Value *result) { 1727 // This is only applicable to a method with an immutable 'self'. 1728 const ObjCMethodDecl *method = 1729 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 1730 if (!method) return 0; 1731 const VarDecl *self = method->getSelfDecl(); 1732 if (!self->getType().isConstQualified()) return 0; 1733 1734 // Look for a retain call. 1735 llvm::CallInst *retainCall = 1736 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 1737 if (!retainCall || 1738 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 1739 return 0; 1740 1741 // Look for an ordinary load of 'self'. 1742 llvm::Value *retainedValue = retainCall->getArgOperand(0); 1743 llvm::LoadInst *load = 1744 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 1745 if (!load || load->isAtomic() || load->isVolatile() || 1746 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 1747 return 0; 1748 1749 // Okay! Burn it all down. This relies for correctness on the 1750 // assumption that the retain is emitted as part of the return and 1751 // that thereafter everything is used "linearly". 1752 llvm::Type *resultType = result->getType(); 1753 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 1754 assert(retainCall->use_empty()); 1755 retainCall->eraseFromParent(); 1756 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 1757 1758 return CGF.Builder.CreateBitCast(load, resultType); 1759 } 1760 1761 /// Emit an ARC autorelease of the result of a function. 1762 /// 1763 /// \return the value to actually return from the function 1764 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1765 llvm::Value *result) { 1766 // If we're returning 'self', kill the initial retain. This is a 1767 // heuristic attempt to "encourage correctness" in the really unfortunate 1768 // case where we have a return of self during a dealloc and we desperately 1769 // need to avoid the possible autorelease. 1770 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 1771 return self; 1772 1773 // At -O0, try to emit a fused retain/autorelease. 1774 if (CGF.shouldUseFusedARCCalls()) 1775 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1776 return fused; 1777 1778 return CGF.EmitARCAutoreleaseReturnValue(result); 1779 } 1780 1781 /// Heuristically search for a dominating store to the return-value slot. 1782 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 1783 // If there are multiple uses of the return-value slot, just check 1784 // for something immediately preceding the IP. Sometimes this can 1785 // happen with how we generate implicit-returns; it can also happen 1786 // with noreturn cleanups. 1787 if (!CGF.ReturnValue->hasOneUse()) { 1788 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1789 if (IP->empty()) return 0; 1790 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); 1791 if (!store) return 0; 1792 if (store->getPointerOperand() != CGF.ReturnValue) return 0; 1793 assert(!store->isAtomic() && !store->isVolatile()); // see below 1794 return store; 1795 } 1796 1797 llvm::StoreInst *store = 1798 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back()); 1799 if (!store) return 0; 1800 1801 // These aren't actually possible for non-coerced returns, and we 1802 // only care about non-coerced returns on this code path. 1803 assert(!store->isAtomic() && !store->isVolatile()); 1804 1805 // Now do a first-and-dirty dominance check: just walk up the 1806 // single-predecessors chain from the current insertion point. 1807 llvm::BasicBlock *StoreBB = store->getParent(); 1808 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1809 while (IP != StoreBB) { 1810 if (!(IP = IP->getSinglePredecessor())) 1811 return 0; 1812 } 1813 1814 // Okay, the store's basic block dominates the insertion point; we 1815 // can do our thing. 1816 return store; 1817 } 1818 1819 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 1820 bool EmitRetDbgLoc, 1821 SourceLocation EndLoc) { 1822 // Functions with no result always return void. 1823 if (ReturnValue == 0) { 1824 Builder.CreateRetVoid(); 1825 return; 1826 } 1827 1828 llvm::DebugLoc RetDbgLoc; 1829 llvm::Value *RV = 0; 1830 QualType RetTy = FI.getReturnType(); 1831 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1832 1833 switch (RetAI.getKind()) { 1834 case ABIArgInfo::InAlloca: 1835 // Aggregrates get evaluated directly into the destination. Sometimes we 1836 // need to return the sret value in a register, though. 1837 assert(hasAggregateEvaluationKind(RetTy)); 1838 if (RetAI.getInAllocaSRet()) { 1839 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1840 --EI; 1841 llvm::Value *ArgStruct = EI; 1842 llvm::Value *SRet = 1843 Builder.CreateStructGEP(ArgStruct, RetAI.getInAllocaFieldIndex()); 1844 RV = Builder.CreateLoad(SRet, "sret"); 1845 } 1846 break; 1847 1848 case ABIArgInfo::Indirect: { 1849 auto AI = CurFn->arg_begin(); 1850 if (RetAI.isSRetAfterThis()) 1851 ++AI; 1852 switch (getEvaluationKind(RetTy)) { 1853 case TEK_Complex: { 1854 ComplexPairTy RT = 1855 EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy), 1856 EndLoc); 1857 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy), 1858 /*isInit*/ true); 1859 break; 1860 } 1861 case TEK_Aggregate: 1862 // Do nothing; aggregrates get evaluated directly into the destination. 1863 break; 1864 case TEK_Scalar: 1865 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 1866 MakeNaturalAlignAddrLValue(AI, RetTy), 1867 /*isInit*/ true); 1868 break; 1869 } 1870 break; 1871 } 1872 1873 case ABIArgInfo::Extend: 1874 case ABIArgInfo::Direct: 1875 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1876 RetAI.getDirectOffset() == 0) { 1877 // The internal return value temp always will have pointer-to-return-type 1878 // type, just do a load. 1879 1880 // If there is a dominating store to ReturnValue, we can elide 1881 // the load, zap the store, and usually zap the alloca. 1882 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { 1883 // Reuse the debug location from the store unless there is 1884 // cleanup code to be emitted between the store and return 1885 // instruction. 1886 if (EmitRetDbgLoc && !AutoreleaseResult) 1887 RetDbgLoc = SI->getDebugLoc(); 1888 // Get the stored value and nuke the now-dead store. 1889 RV = SI->getValueOperand(); 1890 SI->eraseFromParent(); 1891 1892 // If that was the only use of the return value, nuke it as well now. 1893 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1894 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1895 ReturnValue = 0; 1896 } 1897 1898 // Otherwise, we have to do a simple load. 1899 } else { 1900 RV = Builder.CreateLoad(ReturnValue); 1901 } 1902 } else { 1903 llvm::Value *V = ReturnValue; 1904 // If the value is offset in memory, apply the offset now. 1905 if (unsigned Offs = RetAI.getDirectOffset()) { 1906 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1907 V = Builder.CreateConstGEP1_32(V, Offs); 1908 V = Builder.CreateBitCast(V, 1909 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1910 } 1911 1912 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1913 } 1914 1915 // In ARC, end functions that return a retainable type with a call 1916 // to objc_autoreleaseReturnValue. 1917 if (AutoreleaseResult) { 1918 assert(getLangOpts().ObjCAutoRefCount && 1919 !FI.isReturnsRetained() && 1920 RetTy->isObjCRetainableType()); 1921 RV = emitAutoreleaseOfResult(*this, RV); 1922 } 1923 1924 break; 1925 1926 case ABIArgInfo::Ignore: 1927 break; 1928 1929 case ABIArgInfo::Expand: 1930 llvm_unreachable("Invalid ABI kind for return argument"); 1931 } 1932 1933 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1934 if (!RetDbgLoc.isUnknown()) 1935 Ret->setDebugLoc(RetDbgLoc); 1936 } 1937 1938 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 1939 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 1940 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 1941 } 1942 1943 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) { 1944 // FIXME: Generate IR in one pass, rather than going back and fixing up these 1945 // placeholders. 1946 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 1947 llvm::Value *Placeholder = 1948 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo()); 1949 Placeholder = CGF.Builder.CreateLoad(Placeholder); 1950 return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(), 1951 Ty.getQualifiers(), 1952 AggValueSlot::IsNotDestructed, 1953 AggValueSlot::DoesNotNeedGCBarriers, 1954 AggValueSlot::IsNotAliased); 1955 } 1956 1957 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1958 const VarDecl *param, 1959 SourceLocation loc) { 1960 // StartFunction converted the ABI-lowered parameter(s) into a 1961 // local alloca. We need to turn that into an r-value suitable 1962 // for EmitCall. 1963 llvm::Value *local = GetAddrOfLocalVar(param); 1964 1965 QualType type = param->getType(); 1966 1967 // For the most part, we just need to load the alloca, except: 1968 // 1) aggregate r-values are actually pointers to temporaries, and 1969 // 2) references to non-scalars are pointers directly to the aggregate. 1970 // I don't know why references to scalars are different here. 1971 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1972 if (!hasScalarEvaluationKind(ref->getPointeeType())) 1973 return args.add(RValue::getAggregate(local), type); 1974 1975 // Locals which are references to scalars are represented 1976 // with allocas holding the pointer. 1977 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1978 } 1979 1980 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 1981 AggValueSlot Slot = createPlaceholderSlot(*this, type); 1982 Slot.setExternallyDestructed(); 1983 1984 // FIXME: Either emit a copy constructor call, or figure out how to do 1985 // guaranteed tail calls with perfect forwarding in LLVM. 1986 CGM.ErrorUnsupported(param, "non-trivial argument copy for thunk"); 1987 EmitNullInitialization(Slot.getAddr(), type); 1988 1989 RValue RV = Slot.asRValue(); 1990 args.add(RV, type); 1991 return; 1992 } 1993 1994 args.add(convertTempToRValue(local, type, loc), type); 1995 } 1996 1997 static bool isProvablyNull(llvm::Value *addr) { 1998 return isa<llvm::ConstantPointerNull>(addr); 1999 } 2000 2001 static bool isProvablyNonNull(llvm::Value *addr) { 2002 return isa<llvm::AllocaInst>(addr); 2003 } 2004 2005 /// Emit the actual writing-back of a writeback. 2006 static void emitWriteback(CodeGenFunction &CGF, 2007 const CallArgList::Writeback &writeback) { 2008 const LValue &srcLV = writeback.Source; 2009 llvm::Value *srcAddr = srcLV.getAddress(); 2010 assert(!isProvablyNull(srcAddr) && 2011 "shouldn't have writeback for provably null argument"); 2012 2013 llvm::BasicBlock *contBB = 0; 2014 2015 // If the argument wasn't provably non-null, we need to null check 2016 // before doing the store. 2017 bool provablyNonNull = isProvablyNonNull(srcAddr); 2018 if (!provablyNonNull) { 2019 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 2020 contBB = CGF.createBasicBlock("icr.done"); 2021 2022 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 2023 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 2024 CGF.EmitBlock(writebackBB); 2025 } 2026 2027 // Load the value to writeback. 2028 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 2029 2030 // Cast it back, in case we're writing an id to a Foo* or something. 2031 value = CGF.Builder.CreateBitCast(value, 2032 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 2033 "icr.writeback-cast"); 2034 2035 // Perform the writeback. 2036 2037 // If we have a "to use" value, it's something we need to emit a use 2038 // of. This has to be carefully threaded in: if it's done after the 2039 // release it's potentially undefined behavior (and the optimizer 2040 // will ignore it), and if it happens before the retain then the 2041 // optimizer could move the release there. 2042 if (writeback.ToUse) { 2043 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 2044 2045 // Retain the new value. No need to block-copy here: the block's 2046 // being passed up the stack. 2047 value = CGF.EmitARCRetainNonBlock(value); 2048 2049 // Emit the intrinsic use here. 2050 CGF.EmitARCIntrinsicUse(writeback.ToUse); 2051 2052 // Load the old value (primitively). 2053 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 2054 2055 // Put the new value in place (primitively). 2056 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 2057 2058 // Release the old value. 2059 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 2060 2061 // Otherwise, we can just do a normal lvalue store. 2062 } else { 2063 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 2064 } 2065 2066 // Jump to the continuation block. 2067 if (!provablyNonNull) 2068 CGF.EmitBlock(contBB); 2069 } 2070 2071 static void emitWritebacks(CodeGenFunction &CGF, 2072 const CallArgList &args) { 2073 for (const auto &I : args.writebacks()) 2074 emitWriteback(CGF, I); 2075 } 2076 2077 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 2078 const CallArgList &CallArgs) { 2079 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 2080 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 2081 CallArgs.getCleanupsToDeactivate(); 2082 // Iterate in reverse to increase the likelihood of popping the cleanup. 2083 for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator 2084 I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) { 2085 CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP); 2086 I->IsActiveIP->eraseFromParent(); 2087 } 2088 } 2089 2090 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 2091 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 2092 if (uop->getOpcode() == UO_AddrOf) 2093 return uop->getSubExpr(); 2094 return 0; 2095 } 2096 2097 /// Emit an argument that's being passed call-by-writeback. That is, 2098 /// we are passing the address of 2099 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 2100 const ObjCIndirectCopyRestoreExpr *CRE) { 2101 LValue srcLV; 2102 2103 // Make an optimistic effort to emit the address as an l-value. 2104 // This can fail if the the argument expression is more complicated. 2105 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 2106 srcLV = CGF.EmitLValue(lvExpr); 2107 2108 // Otherwise, just emit it as a scalar. 2109 } else { 2110 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 2111 2112 QualType srcAddrType = 2113 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 2114 srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType); 2115 } 2116 llvm::Value *srcAddr = srcLV.getAddress(); 2117 2118 // The dest and src types don't necessarily match in LLVM terms 2119 // because of the crazy ObjC compatibility rules. 2120 2121 llvm::PointerType *destType = 2122 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 2123 2124 // If the address is a constant null, just pass the appropriate null. 2125 if (isProvablyNull(srcAddr)) { 2126 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 2127 CRE->getType()); 2128 return; 2129 } 2130 2131 // Create the temporary. 2132 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 2133 "icr.temp"); 2134 // Loading an l-value can introduce a cleanup if the l-value is __weak, 2135 // and that cleanup will be conditional if we can't prove that the l-value 2136 // isn't null, so we need to register a dominating point so that the cleanups 2137 // system will make valid IR. 2138 CodeGenFunction::ConditionalEvaluation condEval(CGF); 2139 2140 // Zero-initialize it if we're not doing a copy-initialization. 2141 bool shouldCopy = CRE->shouldCopy(); 2142 if (!shouldCopy) { 2143 llvm::Value *null = 2144 llvm::ConstantPointerNull::get( 2145 cast<llvm::PointerType>(destType->getElementType())); 2146 CGF.Builder.CreateStore(null, temp); 2147 } 2148 2149 llvm::BasicBlock *contBB = 0; 2150 llvm::BasicBlock *originBB = 0; 2151 2152 // If the address is *not* known to be non-null, we need to switch. 2153 llvm::Value *finalArgument; 2154 2155 bool provablyNonNull = isProvablyNonNull(srcAddr); 2156 if (provablyNonNull) { 2157 finalArgument = temp; 2158 } else { 2159 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 2160 2161 finalArgument = CGF.Builder.CreateSelect(isNull, 2162 llvm::ConstantPointerNull::get(destType), 2163 temp, "icr.argument"); 2164 2165 // If we need to copy, then the load has to be conditional, which 2166 // means we need control flow. 2167 if (shouldCopy) { 2168 originBB = CGF.Builder.GetInsertBlock(); 2169 contBB = CGF.createBasicBlock("icr.cont"); 2170 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 2171 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 2172 CGF.EmitBlock(copyBB); 2173 condEval.begin(CGF); 2174 } 2175 } 2176 2177 llvm::Value *valueToUse = 0; 2178 2179 // Perform a copy if necessary. 2180 if (shouldCopy) { 2181 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 2182 assert(srcRV.isScalar()); 2183 2184 llvm::Value *src = srcRV.getScalarVal(); 2185 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 2186 "icr.cast"); 2187 2188 // Use an ordinary store, not a store-to-lvalue. 2189 CGF.Builder.CreateStore(src, temp); 2190 2191 // If optimization is enabled, and the value was held in a 2192 // __strong variable, we need to tell the optimizer that this 2193 // value has to stay alive until we're doing the store back. 2194 // This is because the temporary is effectively unretained, 2195 // and so otherwise we can violate the high-level semantics. 2196 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 2197 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 2198 valueToUse = src; 2199 } 2200 } 2201 2202 // Finish the control flow if we needed it. 2203 if (shouldCopy && !provablyNonNull) { 2204 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 2205 CGF.EmitBlock(contBB); 2206 2207 // Make a phi for the value to intrinsically use. 2208 if (valueToUse) { 2209 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 2210 "icr.to-use"); 2211 phiToUse->addIncoming(valueToUse, copyBB); 2212 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 2213 originBB); 2214 valueToUse = phiToUse; 2215 } 2216 2217 condEval.end(CGF); 2218 } 2219 2220 args.addWriteback(srcLV, temp, valueToUse); 2221 args.add(RValue::get(finalArgument), CRE->getType()); 2222 } 2223 2224 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 2225 assert(!StackBase && !StackCleanup.isValid()); 2226 2227 // Save the stack. 2228 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 2229 StackBase = CGF.Builder.CreateCall(F, "inalloca.save"); 2230 2231 // Control gets really tied up in landing pads, so we have to spill the 2232 // stacksave to an alloca to avoid violating SSA form. 2233 // TODO: This is dead if we never emit the cleanup. We should create the 2234 // alloca and store lazily on the first cleanup emission. 2235 StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem"); 2236 CGF.Builder.CreateStore(StackBase, StackBaseMem); 2237 CGF.pushStackRestore(EHCleanup, StackBaseMem); 2238 StackCleanup = CGF.EHStack.getInnermostEHScope(); 2239 assert(StackCleanup.isValid()); 2240 } 2241 2242 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 2243 if (StackBase) { 2244 CGF.DeactivateCleanupBlock(StackCleanup, StackBase); 2245 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 2246 // We could load StackBase from StackBaseMem, but in the non-exceptional 2247 // case we can skip it. 2248 CGF.Builder.CreateCall(F, StackBase); 2249 } 2250 } 2251 2252 void CodeGenFunction::EmitCallArgs(CallArgList &Args, 2253 ArrayRef<QualType> ArgTypes, 2254 CallExpr::const_arg_iterator ArgBeg, 2255 CallExpr::const_arg_iterator ArgEnd, 2256 bool ForceColumnInfo) { 2257 CGDebugInfo *DI = getDebugInfo(); 2258 SourceLocation CallLoc; 2259 if (DI) CallLoc = DI->getLocation(); 2260 2261 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 2262 // because arguments are destroyed left to right in the callee. 2263 if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2264 // Insert a stack save if we're going to need any inalloca args. 2265 bool HasInAllocaArgs = false; 2266 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 2267 I != E && !HasInAllocaArgs; ++I) 2268 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 2269 if (HasInAllocaArgs) { 2270 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 2271 Args.allocateArgumentMemory(*this); 2272 } 2273 2274 // Evaluate each argument. 2275 size_t CallArgsStart = Args.size(); 2276 for (int I = ArgTypes.size() - 1; I >= 0; --I) { 2277 CallExpr::const_arg_iterator Arg = ArgBeg + I; 2278 EmitCallArg(Args, *Arg, ArgTypes[I]); 2279 // Restore the debug location. 2280 if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo); 2281 } 2282 2283 // Un-reverse the arguments we just evaluated so they match up with the LLVM 2284 // IR function. 2285 std::reverse(Args.begin() + CallArgsStart, Args.end()); 2286 return; 2287 } 2288 2289 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 2290 CallExpr::const_arg_iterator Arg = ArgBeg + I; 2291 assert(Arg != ArgEnd); 2292 EmitCallArg(Args, *Arg, ArgTypes[I]); 2293 // Restore the debug location. 2294 if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo); 2295 } 2296 } 2297 2298 namespace { 2299 2300 struct DestroyUnpassedArg : EHScopeStack::Cleanup { 2301 DestroyUnpassedArg(llvm::Value *Addr, QualType Ty) 2302 : Addr(Addr), Ty(Ty) {} 2303 2304 llvm::Value *Addr; 2305 QualType Ty; 2306 2307 void Emit(CodeGenFunction &CGF, Flags flags) override { 2308 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 2309 assert(!Dtor->isTrivial()); 2310 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 2311 /*Delegating=*/false, Addr); 2312 } 2313 }; 2314 2315 } 2316 2317 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 2318 QualType type) { 2319 if (const ObjCIndirectCopyRestoreExpr *CRE 2320 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 2321 assert(getLangOpts().ObjCAutoRefCount); 2322 assert(getContext().hasSameType(E->getType(), type)); 2323 return emitWritebackArg(*this, args, CRE); 2324 } 2325 2326 assert(type->isReferenceType() == E->isGLValue() && 2327 "reference binding to unmaterialized r-value!"); 2328 2329 if (E->isGLValue()) { 2330 assert(E->getObjectKind() == OK_Ordinary); 2331 return args.add(EmitReferenceBindingToExpr(E), type); 2332 } 2333 2334 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 2335 2336 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 2337 // However, we still have to push an EH-only cleanup in case we unwind before 2338 // we make it to the call. 2339 if (HasAggregateEvalKind && 2340 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2341 // If we're using inalloca, use the argument memory. Otherwise, use a 2342 // temporary. 2343 AggValueSlot Slot; 2344 if (args.isUsingInAlloca()) 2345 Slot = createPlaceholderSlot(*this, type); 2346 else 2347 Slot = CreateAggTemp(type, "agg.tmp"); 2348 2349 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2350 bool DestroyedInCallee = 2351 RD && RD->hasNonTrivialDestructor() && 2352 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 2353 if (DestroyedInCallee) 2354 Slot.setExternallyDestructed(); 2355 2356 EmitAggExpr(E, Slot); 2357 RValue RV = Slot.asRValue(); 2358 args.add(RV, type); 2359 2360 if (DestroyedInCallee) { 2361 // Create a no-op GEP between the placeholder and the cleanup so we can 2362 // RAUW it successfully. It also serves as a marker of the first 2363 // instruction where the cleanup is active. 2364 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type); 2365 // This unreachable is a temporary marker which will be removed later. 2366 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 2367 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 2368 } 2369 return; 2370 } 2371 2372 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 2373 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 2374 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 2375 assert(L.isSimple()); 2376 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 2377 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 2378 } else { 2379 // We can't represent a misaligned lvalue in the CallArgList, so copy 2380 // to an aligned temporary now. 2381 llvm::Value *tmp = CreateMemTemp(type); 2382 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(), 2383 L.getAlignment()); 2384 args.add(RValue::getAggregate(tmp), type); 2385 } 2386 return; 2387 } 2388 2389 args.add(EmitAnyExprToTemp(E), type); 2390 } 2391 2392 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2393 // optimizer it can aggressively ignore unwind edges. 2394 void 2395 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 2396 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 2397 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 2398 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 2399 CGM.getNoObjCARCExceptionsMetadata()); 2400 } 2401 2402 /// Emits a call to the given no-arguments nounwind runtime function. 2403 llvm::CallInst * 2404 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2405 const llvm::Twine &name) { 2406 return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name); 2407 } 2408 2409 /// Emits a call to the given nounwind runtime function. 2410 llvm::CallInst * 2411 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2412 ArrayRef<llvm::Value*> args, 2413 const llvm::Twine &name) { 2414 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 2415 call->setDoesNotThrow(); 2416 return call; 2417 } 2418 2419 /// Emits a simple call (never an invoke) to the given no-arguments 2420 /// runtime function. 2421 llvm::CallInst * 2422 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2423 const llvm::Twine &name) { 2424 return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name); 2425 } 2426 2427 /// Emits a simple call (never an invoke) to the given runtime 2428 /// function. 2429 llvm::CallInst * 2430 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2431 ArrayRef<llvm::Value*> args, 2432 const llvm::Twine &name) { 2433 llvm::CallInst *call = Builder.CreateCall(callee, args, name); 2434 call->setCallingConv(getRuntimeCC()); 2435 return call; 2436 } 2437 2438 /// Emits a call or invoke to the given noreturn runtime function. 2439 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2440 ArrayRef<llvm::Value*> args) { 2441 if (getInvokeDest()) { 2442 llvm::InvokeInst *invoke = 2443 Builder.CreateInvoke(callee, 2444 getUnreachableBlock(), 2445 getInvokeDest(), 2446 args); 2447 invoke->setDoesNotReturn(); 2448 invoke->setCallingConv(getRuntimeCC()); 2449 } else { 2450 llvm::CallInst *call = Builder.CreateCall(callee, args); 2451 call->setDoesNotReturn(); 2452 call->setCallingConv(getRuntimeCC()); 2453 Builder.CreateUnreachable(); 2454 } 2455 PGO.setCurrentRegionUnreachable(); 2456 } 2457 2458 /// Emits a call or invoke instruction to the given nullary runtime 2459 /// function. 2460 llvm::CallSite 2461 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2462 const Twine &name) { 2463 return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name); 2464 } 2465 2466 /// Emits a call or invoke instruction to the given runtime function. 2467 llvm::CallSite 2468 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2469 ArrayRef<llvm::Value*> args, 2470 const Twine &name) { 2471 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 2472 callSite.setCallingConv(getRuntimeCC()); 2473 return callSite; 2474 } 2475 2476 llvm::CallSite 2477 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2478 const Twine &Name) { 2479 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); 2480 } 2481 2482 /// Emits a call or invoke instruction to the given function, depending 2483 /// on the current state of the EH stack. 2484 llvm::CallSite 2485 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2486 ArrayRef<llvm::Value *> Args, 2487 const Twine &Name) { 2488 llvm::BasicBlock *InvokeDest = getInvokeDest(); 2489 2490 llvm::Instruction *Inst; 2491 if (!InvokeDest) 2492 Inst = Builder.CreateCall(Callee, Args, Name); 2493 else { 2494 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 2495 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 2496 EmitBlock(ContBB); 2497 } 2498 2499 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2500 // optimizer it can aggressively ignore unwind edges. 2501 if (CGM.getLangOpts().ObjCAutoRefCount) 2502 AddObjCARCExceptionMetadata(Inst); 2503 2504 return Inst; 2505 } 2506 2507 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 2508 llvm::FunctionType *FTy) { 2509 if (ArgNo < FTy->getNumParams()) 2510 assert(Elt->getType() == FTy->getParamType(ArgNo)); 2511 else 2512 assert(FTy->isVarArg()); 2513 ++ArgNo; 2514 } 2515 2516 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 2517 SmallVectorImpl<llvm::Value *> &Args, 2518 llvm::FunctionType *IRFuncTy) { 2519 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2520 unsigned NumElts = AT->getSize().getZExtValue(); 2521 QualType EltTy = AT->getElementType(); 2522 llvm::Value *Addr = RV.getAggregateAddr(); 2523 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 2524 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 2525 RValue EltRV = convertTempToRValue(EltAddr, EltTy, SourceLocation()); 2526 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); 2527 } 2528 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 2529 RecordDecl *RD = RT->getDecl(); 2530 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 2531 LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty); 2532 2533 if (RD->isUnion()) { 2534 const FieldDecl *LargestFD = 0; 2535 CharUnits UnionSize = CharUnits::Zero(); 2536 2537 for (const auto *FD : RD->fields()) { 2538 assert(!FD->isBitField() && 2539 "Cannot expand structure with bit-field members."); 2540 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 2541 if (UnionSize < FieldSize) { 2542 UnionSize = FieldSize; 2543 LargestFD = FD; 2544 } 2545 } 2546 if (LargestFD) { 2547 RValue FldRV = EmitRValueForField(LV, LargestFD, SourceLocation()); 2548 ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy); 2549 } 2550 } else { 2551 for (const auto *FD : RD->fields()) { 2552 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 2553 ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy); 2554 } 2555 } 2556 } else if (Ty->isAnyComplexType()) { 2557 ComplexPairTy CV = RV.getComplexVal(); 2558 Args.push_back(CV.first); 2559 Args.push_back(CV.second); 2560 } else { 2561 assert(RV.isScalar() && 2562 "Unexpected non-scalar rvalue during struct expansion."); 2563 2564 // Insert a bitcast as needed. 2565 llvm::Value *V = RV.getScalarVal(); 2566 if (Args.size() < IRFuncTy->getNumParams() && 2567 V->getType() != IRFuncTy->getParamType(Args.size())) 2568 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 2569 2570 Args.push_back(V); 2571 } 2572 } 2573 2574 /// \brief Store a non-aggregate value to an address to initialize it. For 2575 /// initialization, a non-atomic store will be used. 2576 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 2577 LValue Dst) { 2578 if (Src.isScalar()) 2579 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 2580 else 2581 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 2582 } 2583 2584 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 2585 llvm::Value *New) { 2586 DeferredReplacements.push_back(std::make_pair(Old, New)); 2587 } 2588 2589 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 2590 llvm::Value *Callee, 2591 ReturnValueSlot ReturnValue, 2592 const CallArgList &CallArgs, 2593 const Decl *TargetDecl, 2594 llvm::Instruction **callOrInvoke) { 2595 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 2596 SmallVector<llvm::Value*, 16> Args; 2597 2598 // Handle struct-return functions by passing a pointer to the 2599 // location that we would like to return into. 2600 QualType RetTy = CallInfo.getReturnType(); 2601 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 2602 2603 // IRArgNo - Keep track of the argument number in the callee we're looking at. 2604 unsigned IRArgNo = 0; 2605 llvm::FunctionType *IRFuncTy = 2606 cast<llvm::FunctionType>( 2607 cast<llvm::PointerType>(Callee->getType())->getElementType()); 2608 2609 // If we're using inalloca, insert the allocation after the stack save. 2610 // FIXME: Do this earlier rather than hacking it in here! 2611 llvm::Value *ArgMemory = 0; 2612 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 2613 llvm::Instruction *IP = CallArgs.getStackBase(); 2614 llvm::AllocaInst *AI; 2615 if (IP) { 2616 IP = IP->getNextNode(); 2617 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP); 2618 } else { 2619 AI = CreateTempAlloca(ArgStruct, "argmem"); 2620 } 2621 AI->setUsedWithInAlloca(true); 2622 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 2623 ArgMemory = AI; 2624 } 2625 2626 // If the call returns a temporary with struct return, create a temporary 2627 // alloca to hold the result, unless one is given to us. 2628 llvm::Value *SRetPtr = 0; 2629 bool SwapThisWithSRet = false; 2630 if (RetAI.isIndirect() || RetAI.isInAlloca()) { 2631 SRetPtr = ReturnValue.getValue(); 2632 if (!SRetPtr) 2633 SRetPtr = CreateMemTemp(RetTy); 2634 if (RetAI.isIndirect()) { 2635 Args.push_back(SRetPtr); 2636 SwapThisWithSRet = RetAI.isSRetAfterThis(); 2637 if (SwapThisWithSRet) 2638 IRArgNo = 1; 2639 checkArgMatches(SRetPtr, IRArgNo, IRFuncTy); 2640 if (SwapThisWithSRet) 2641 IRArgNo = 0; 2642 } else { 2643 llvm::Value *Addr = 2644 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 2645 Builder.CreateStore(SRetPtr, Addr); 2646 } 2647 } 2648 2649 assert(CallInfo.arg_size() == CallArgs.size() && 2650 "Mismatch between function signature & arguments."); 2651 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 2652 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 2653 I != E; ++I, ++info_it) { 2654 const ABIArgInfo &ArgInfo = info_it->info; 2655 RValue RV = I->RV; 2656 2657 // Skip 'sret' if it came second. 2658 if (IRArgNo == 1 && SwapThisWithSRet) 2659 ++IRArgNo; 2660 2661 CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty); 2662 2663 // Insert a padding argument to ensure proper alignment. 2664 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) { 2665 Args.push_back(llvm::UndefValue::get(PaddingType)); 2666 ++IRArgNo; 2667 } 2668 2669 switch (ArgInfo.getKind()) { 2670 case ABIArgInfo::InAlloca: { 2671 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 2672 if (RV.isAggregate()) { 2673 // Replace the placeholder with the appropriate argument slot GEP. 2674 llvm::Instruction *Placeholder = 2675 cast<llvm::Instruction>(RV.getAggregateAddr()); 2676 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 2677 Builder.SetInsertPoint(Placeholder); 2678 llvm::Value *Addr = Builder.CreateStructGEP( 2679 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 2680 Builder.restoreIP(IP); 2681 deferPlaceholderReplacement(Placeholder, Addr); 2682 } else { 2683 // Store the RValue into the argument struct. 2684 llvm::Value *Addr = 2685 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 2686 unsigned AS = Addr->getType()->getPointerAddressSpace(); 2687 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 2688 // There are some cases where a trivial bitcast is not avoidable. The 2689 // definition of a type later in a translation unit may change it's type 2690 // from {}* to (%struct.foo*)*. 2691 if (Addr->getType() != MemType) 2692 Addr = Builder.CreateBitCast(Addr, MemType); 2693 LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign); 2694 EmitInitStoreOfNonAggregate(*this, RV, argLV); 2695 } 2696 break; // Don't increment IRArgNo! 2697 } 2698 2699 case ABIArgInfo::Indirect: { 2700 if (RV.isScalar() || RV.isComplex()) { 2701 // Make a temporary alloca to pass the argument. 2702 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2703 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 2704 AI->setAlignment(ArgInfo.getIndirectAlign()); 2705 Args.push_back(AI); 2706 2707 LValue argLV = MakeAddrLValue(Args.back(), I->Ty, TypeAlign); 2708 EmitInitStoreOfNonAggregate(*this, RV, argLV); 2709 2710 // Validate argument match. 2711 checkArgMatches(AI, IRArgNo, IRFuncTy); 2712 } else { 2713 // We want to avoid creating an unnecessary temporary+copy here; 2714 // however, we need one in three cases: 2715 // 1. If the argument is not byval, and we are required to copy the 2716 // source. (This case doesn't occur on any common architecture.) 2717 // 2. If the argument is byval, RV is not sufficiently aligned, and 2718 // we cannot force it to be sufficiently aligned. 2719 // 3. If the argument is byval, but RV is located in an address space 2720 // different than that of the argument (0). 2721 llvm::Value *Addr = RV.getAggregateAddr(); 2722 unsigned Align = ArgInfo.getIndirectAlign(); 2723 const llvm::DataLayout *TD = &CGM.getDataLayout(); 2724 const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace(); 2725 const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ? 2726 IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0); 2727 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 2728 (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align && 2729 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) || 2730 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 2731 // Create an aligned temporary, and copy to it. 2732 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2733 if (Align > AI->getAlignment()) 2734 AI->setAlignment(Align); 2735 Args.push_back(AI); 2736 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 2737 2738 // Validate argument match. 2739 checkArgMatches(AI, IRArgNo, IRFuncTy); 2740 } else { 2741 // Skip the extra memcpy call. 2742 Args.push_back(Addr); 2743 2744 // Validate argument match. 2745 checkArgMatches(Addr, IRArgNo, IRFuncTy); 2746 } 2747 } 2748 break; 2749 } 2750 2751 case ABIArgInfo::Ignore: 2752 break; 2753 2754 case ABIArgInfo::Extend: 2755 case ABIArgInfo::Direct: { 2756 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 2757 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 2758 ArgInfo.getDirectOffset() == 0) { 2759 llvm::Value *V; 2760 if (RV.isScalar()) 2761 V = RV.getScalarVal(); 2762 else 2763 V = Builder.CreateLoad(RV.getAggregateAddr()); 2764 2765 // If the argument doesn't match, perform a bitcast to coerce it. This 2766 // can happen due to trivial type mismatches. 2767 if (IRArgNo < IRFuncTy->getNumParams() && 2768 V->getType() != IRFuncTy->getParamType(IRArgNo)) 2769 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 2770 Args.push_back(V); 2771 2772 checkArgMatches(V, IRArgNo, IRFuncTy); 2773 break; 2774 } 2775 2776 // FIXME: Avoid the conversion through memory if possible. 2777 llvm::Value *SrcPtr; 2778 if (RV.isScalar() || RV.isComplex()) { 2779 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 2780 LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign); 2781 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 2782 } else 2783 SrcPtr = RV.getAggregateAddr(); 2784 2785 // If the value is offset in memory, apply the offset now. 2786 if (unsigned Offs = ArgInfo.getDirectOffset()) { 2787 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 2788 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 2789 SrcPtr = Builder.CreateBitCast(SrcPtr, 2790 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 2791 2792 } 2793 2794 // If the coerce-to type is a first class aggregate, we flatten it and 2795 // pass the elements. Either way is semantically identical, but fast-isel 2796 // and the optimizer generally likes scalar values better than FCAs. 2797 // We cannot do this for functions using the AAPCS calling convention, 2798 // as structures are treated differently by that calling convention. 2799 llvm::StructType *STy = 2800 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 2801 if (STy && !isAAPCSVFP(CallInfo, getTarget())) { 2802 llvm::Type *SrcTy = 2803 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 2804 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 2805 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 2806 2807 // If the source type is smaller than the destination type of the 2808 // coerce-to logic, copy the source value into a temp alloca the size 2809 // of the destination type to allow loading all of it. The bits past 2810 // the source value are left undef. 2811 if (SrcSize < DstSize) { 2812 llvm::AllocaInst *TempAlloca 2813 = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce"); 2814 Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0); 2815 SrcPtr = TempAlloca; 2816 } else { 2817 SrcPtr = Builder.CreateBitCast(SrcPtr, 2818 llvm::PointerType::getUnqual(STy)); 2819 } 2820 2821 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2822 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 2823 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 2824 // We don't know what we're loading from. 2825 LI->setAlignment(1); 2826 Args.push_back(LI); 2827 2828 // Validate argument match. 2829 checkArgMatches(LI, IRArgNo, IRFuncTy); 2830 } 2831 } else { 2832 // In the simple case, just pass the coerced loaded value. 2833 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 2834 *this)); 2835 2836 // Validate argument match. 2837 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 2838 } 2839 2840 break; 2841 } 2842 2843 case ABIArgInfo::Expand: 2844 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 2845 IRArgNo = Args.size(); 2846 break; 2847 } 2848 } 2849 2850 if (SwapThisWithSRet) 2851 std::swap(Args[0], Args[1]); 2852 2853 if (ArgMemory) { 2854 llvm::Value *Arg = ArgMemory; 2855 llvm::Type *LastParamTy = 2856 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 2857 if (Arg->getType() != LastParamTy) { 2858 #ifndef NDEBUG 2859 // Assert that these structs have equivalent element types. 2860 llvm::StructType *FullTy = CallInfo.getArgStruct(); 2861 llvm::StructType *Prefix = cast<llvm::StructType>( 2862 cast<llvm::PointerType>(LastParamTy)->getElementType()); 2863 2864 // For variadic functions, the caller might supply a larger struct than 2865 // the callee expects, and that's OK. 2866 assert(Prefix->getNumElements() == FullTy->getNumElements() || 2867 (CallInfo.isVariadic() && 2868 Prefix->getNumElements() <= FullTy->getNumElements())); 2869 2870 for (llvm::StructType::element_iterator PI = Prefix->element_begin(), 2871 PE = Prefix->element_end(), 2872 FI = FullTy->element_begin(); 2873 PI != PE; ++PI, ++FI) 2874 assert(*PI == *FI); 2875 #endif 2876 Arg = Builder.CreateBitCast(Arg, LastParamTy); 2877 } 2878 Args.push_back(Arg); 2879 } 2880 2881 if (!CallArgs.getCleanupsToDeactivate().empty()) 2882 deactivateArgCleanupsBeforeCall(*this, CallArgs); 2883 2884 // If the callee is a bitcast of a function to a varargs pointer to function 2885 // type, check to see if we can remove the bitcast. This handles some cases 2886 // with unprototyped functions. 2887 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 2888 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 2889 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 2890 llvm::FunctionType *CurFT = 2891 cast<llvm::FunctionType>(CurPT->getElementType()); 2892 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 2893 2894 if (CE->getOpcode() == llvm::Instruction::BitCast && 2895 ActualFT->getReturnType() == CurFT->getReturnType() && 2896 ActualFT->getNumParams() == CurFT->getNumParams() && 2897 ActualFT->getNumParams() == Args.size() && 2898 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 2899 bool ArgsMatch = true; 2900 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 2901 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 2902 ArgsMatch = false; 2903 break; 2904 } 2905 2906 // Strip the cast if we can get away with it. This is a nice cleanup, 2907 // but also allows us to inline the function at -O0 if it is marked 2908 // always_inline. 2909 if (ArgsMatch) 2910 Callee = CalleeF; 2911 } 2912 } 2913 2914 unsigned CallingConv; 2915 CodeGen::AttributeListType AttributeList; 2916 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, 2917 CallingConv, true); 2918 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 2919 AttributeList); 2920 2921 llvm::BasicBlock *InvokeDest = 0; 2922 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 2923 llvm::Attribute::NoUnwind)) 2924 InvokeDest = getInvokeDest(); 2925 2926 llvm::CallSite CS; 2927 if (!InvokeDest) { 2928 CS = Builder.CreateCall(Callee, Args); 2929 } else { 2930 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 2931 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); 2932 EmitBlock(Cont); 2933 } 2934 if (callOrInvoke) 2935 *callOrInvoke = CS.getInstruction(); 2936 2937 CS.setAttributes(Attrs); 2938 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2939 2940 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2941 // optimizer it can aggressively ignore unwind edges. 2942 if (CGM.getLangOpts().ObjCAutoRefCount) 2943 AddObjCARCExceptionMetadata(CS.getInstruction()); 2944 2945 // If the call doesn't return, finish the basic block and clear the 2946 // insertion point; this allows the rest of IRgen to discard 2947 // unreachable code. 2948 if (CS.doesNotReturn()) { 2949 Builder.CreateUnreachable(); 2950 Builder.ClearInsertionPoint(); 2951 2952 // FIXME: For now, emit a dummy basic block because expr emitters in 2953 // generally are not ready to handle emitting expressions at unreachable 2954 // points. 2955 EnsureInsertPoint(); 2956 2957 // Return a reasonable RValue. 2958 return GetUndefRValue(RetTy); 2959 } 2960 2961 llvm::Instruction *CI = CS.getInstruction(); 2962 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 2963 CI->setName("call"); 2964 2965 // Emit any writebacks immediately. Arguably this should happen 2966 // after any return-value munging. 2967 if (CallArgs.hasWritebacks()) 2968 emitWritebacks(*this, CallArgs); 2969 2970 // The stack cleanup for inalloca arguments has to run out of the normal 2971 // lexical order, so deactivate it and run it manually here. 2972 CallArgs.freeArgumentMemory(*this); 2973 2974 switch (RetAI.getKind()) { 2975 case ABIArgInfo::InAlloca: 2976 case ABIArgInfo::Indirect: 2977 return convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 2978 2979 case ABIArgInfo::Ignore: 2980 // If we are ignoring an argument that had a result, make sure to 2981 // construct the appropriate return value for our caller. 2982 return GetUndefRValue(RetTy); 2983 2984 case ABIArgInfo::Extend: 2985 case ABIArgInfo::Direct: { 2986 llvm::Type *RetIRTy = ConvertType(RetTy); 2987 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 2988 switch (getEvaluationKind(RetTy)) { 2989 case TEK_Complex: { 2990 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 2991 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 2992 return RValue::getComplex(std::make_pair(Real, Imag)); 2993 } 2994 case TEK_Aggregate: { 2995 llvm::Value *DestPtr = ReturnValue.getValue(); 2996 bool DestIsVolatile = ReturnValue.isVolatile(); 2997 2998 if (!DestPtr) { 2999 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 3000 DestIsVolatile = false; 3001 } 3002 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 3003 return RValue::getAggregate(DestPtr); 3004 } 3005 case TEK_Scalar: { 3006 // If the argument doesn't match, perform a bitcast to coerce it. This 3007 // can happen due to trivial type mismatches. 3008 llvm::Value *V = CI; 3009 if (V->getType() != RetIRTy) 3010 V = Builder.CreateBitCast(V, RetIRTy); 3011 return RValue::get(V); 3012 } 3013 } 3014 llvm_unreachable("bad evaluation kind"); 3015 } 3016 3017 llvm::Value *DestPtr = ReturnValue.getValue(); 3018 bool DestIsVolatile = ReturnValue.isVolatile(); 3019 3020 if (!DestPtr) { 3021 DestPtr = CreateMemTemp(RetTy, "coerce"); 3022 DestIsVolatile = false; 3023 } 3024 3025 // If the value is offset in memory, apply the offset now. 3026 llvm::Value *StorePtr = DestPtr; 3027 if (unsigned Offs = RetAI.getDirectOffset()) { 3028 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 3029 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 3030 StorePtr = Builder.CreateBitCast(StorePtr, 3031 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 3032 } 3033 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 3034 3035 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 3036 } 3037 3038 case ABIArgInfo::Expand: 3039 llvm_unreachable("Invalid ABI kind for return argument"); 3040 } 3041 3042 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 3043 } 3044 3045 /* VarArg handling */ 3046 3047 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 3048 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 3049 } 3050