1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 /***/
44 
45 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
46   switch (CC) {
47   default: return llvm::CallingConv::C;
48   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
49   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
50   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
51   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
52   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
53   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
54   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
55   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
56   // TODO: Add support for __pascal to LLVM.
57   case CC_X86Pascal: return llvm::CallingConv::C;
58   // TODO: Add support for __vectorcall to LLVM.
59   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
60   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
61   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
62   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
63   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
64   case CC_Swift: return llvm::CallingConv::Swift;
65   }
66 }
67 
68 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
69 /// qualification.
70 /// FIXME: address space qualification?
71 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
72   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
73   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
74 }
75 
76 /// Returns the canonical formal type of the given C++ method.
77 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
78   return MD->getType()->getCanonicalTypeUnqualified()
79            .getAs<FunctionProtoType>();
80 }
81 
82 /// Returns the "extra-canonicalized" return type, which discards
83 /// qualifiers on the return type.  Codegen doesn't care about them,
84 /// and it makes ABI code a little easier to be able to assume that
85 /// all parameter and return types are top-level unqualified.
86 static CanQualType GetReturnType(QualType RetTy) {
87   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
88 }
89 
90 /// Arrange the argument and result information for a value of the given
91 /// unprototyped freestanding function type.
92 const CGFunctionInfo &
93 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
94   // When translating an unprototyped function type, always use a
95   // variadic type.
96   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
97                                  /*instanceMethod=*/false,
98                                  /*chainCall=*/false, None,
99                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
100 }
101 
102 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in
103 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
104 static void appendParameterTypes(const CodeGenTypes &CGT,
105                                  SmallVectorImpl<CanQualType> &prefix,
106               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
107                                  CanQual<FunctionProtoType> FPT,
108                                  const FunctionDecl *FD) {
109   // Fill out paramInfos.
110   if (FPT->hasExtParameterInfos() || !paramInfos.empty()) {
111     assert(paramInfos.size() <= prefix.size());
112     auto protoParamInfos = FPT->getExtParameterInfos();
113     paramInfos.reserve(prefix.size() + protoParamInfos.size());
114     paramInfos.resize(prefix.size());
115     paramInfos.append(protoParamInfos.begin(), protoParamInfos.end());
116   }
117 
118   // Fast path: unknown target.
119   if (FD == nullptr) {
120     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
121     return;
122   }
123 
124   // In the vast majority cases, we'll have precisely FPT->getNumParams()
125   // parameters; the only thing that can change this is the presence of
126   // pass_object_size. So, we preallocate for the common case.
127   prefix.reserve(prefix.size() + FPT->getNumParams());
128 
129   assert(FD->getNumParams() == FPT->getNumParams());
130   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
131     prefix.push_back(FPT->getParamType(I));
132     if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>())
133       prefix.push_back(CGT.getContext().getSizeType());
134   }
135 }
136 
137 /// Arrange the LLVM function layout for a value of the given function
138 /// type, on top of any implicit parameters already stored.
139 static const CGFunctionInfo &
140 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
141                         SmallVectorImpl<CanQualType> &prefix,
142                         CanQual<FunctionProtoType> FTP,
143                         const FunctionDecl *FD) {
144   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
145   RequiredArgs Required =
146       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
147   // FIXME: Kill copy.
148   appendParameterTypes(CGT, prefix, paramInfos, FTP, FD);
149   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
150 
151   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
152                                      /*chainCall=*/false, prefix,
153                                      FTP->getExtInfo(), paramInfos,
154                                      Required);
155 }
156 
157 /// Arrange the argument and result information for a value of the
158 /// given freestanding function type.
159 const CGFunctionInfo &
160 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
161                                       const FunctionDecl *FD) {
162   SmallVector<CanQualType, 16> argTypes;
163   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
164                                    FTP, FD);
165 }
166 
167 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
168   // Set the appropriate calling convention for the Function.
169   if (D->hasAttr<StdCallAttr>())
170     return CC_X86StdCall;
171 
172   if (D->hasAttr<FastCallAttr>())
173     return CC_X86FastCall;
174 
175   if (D->hasAttr<ThisCallAttr>())
176     return CC_X86ThisCall;
177 
178   if (D->hasAttr<VectorCallAttr>())
179     return CC_X86VectorCall;
180 
181   if (D->hasAttr<PascalAttr>())
182     return CC_X86Pascal;
183 
184   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
185     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
186 
187   if (D->hasAttr<IntelOclBiccAttr>())
188     return CC_IntelOclBicc;
189 
190   if (D->hasAttr<MSABIAttr>())
191     return IsWindows ? CC_C : CC_X86_64Win64;
192 
193   if (D->hasAttr<SysVABIAttr>())
194     return IsWindows ? CC_X86_64SysV : CC_C;
195 
196   if (D->hasAttr<PreserveMostAttr>())
197     return CC_PreserveMost;
198 
199   if (D->hasAttr<PreserveAllAttr>())
200     return CC_PreserveAll;
201 
202   return CC_C;
203 }
204 
205 /// Arrange the argument and result information for a call to an
206 /// unknown C++ non-static member function of the given abstract type.
207 /// (Zero value of RD means we don't have any meaningful "this" argument type,
208 ///  so fall back to a generic pointer type).
209 /// The member function must be an ordinary function, i.e. not a
210 /// constructor or destructor.
211 const CGFunctionInfo &
212 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
213                                    const FunctionProtoType *FTP,
214                                    const CXXMethodDecl *MD) {
215   SmallVector<CanQualType, 16> argTypes;
216 
217   // Add the 'this' pointer.
218   if (RD)
219     argTypes.push_back(GetThisType(Context, RD));
220   else
221     argTypes.push_back(Context.VoidPtrTy);
222 
223   return ::arrangeLLVMFunctionInfo(
224       *this, true, argTypes,
225       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
226 }
227 
228 /// Arrange the argument and result information for a declaration or
229 /// definition of the given C++ non-static member function.  The
230 /// member function must be an ordinary function, i.e. not a
231 /// constructor or destructor.
232 const CGFunctionInfo &
233 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
234   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
235   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
236 
237   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
238 
239   if (MD->isInstance()) {
240     // The abstract case is perfectly fine.
241     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
242     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
243   }
244 
245   return arrangeFreeFunctionType(prototype, MD);
246 }
247 
248 bool CodeGenTypes::inheritingCtorHasParams(
249     const InheritedConstructor &Inherited, CXXCtorType Type) {
250   // Parameters are unnecessary if we're constructing a base class subobject
251   // and the inherited constructor lives in a virtual base.
252   return Type == Ctor_Complete ||
253          !Inherited.getShadowDecl()->constructsVirtualBase() ||
254          !Target.getCXXABI().hasConstructorVariants();
255   }
256 
257 const CGFunctionInfo &
258 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
259                                             StructorType Type) {
260 
261   SmallVector<CanQualType, 16> argTypes;
262   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
263   argTypes.push_back(GetThisType(Context, MD->getParent()));
264 
265   bool PassParams = true;
266 
267   GlobalDecl GD;
268   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
269     GD = GlobalDecl(CD, toCXXCtorType(Type));
270 
271     // A base class inheriting constructor doesn't get forwarded arguments
272     // needed to construct a virtual base (or base class thereof).
273     if (auto Inherited = CD->getInheritedConstructor())
274       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
275   } else {
276     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
277     GD = GlobalDecl(DD, toCXXDtorType(Type));
278   }
279 
280   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
281 
282   // Add the formal parameters.
283   if (PassParams)
284     appendParameterTypes(*this, argTypes, paramInfos, FTP, MD);
285 
286   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
287 
288   RequiredArgs required =
289       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
290                                       : RequiredArgs::All);
291 
292   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
293   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
294                                ? argTypes.front()
295                                : TheCXXABI.hasMostDerivedReturn(GD)
296                                      ? CGM.getContext().VoidPtrTy
297                                      : Context.VoidTy;
298   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
299                                  /*chainCall=*/false, argTypes, extInfo,
300                                  paramInfos, required);
301 }
302 
303 static SmallVector<CanQualType, 16>
304 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
305   SmallVector<CanQualType, 16> argTypes;
306   for (auto &arg : args)
307     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
308   return argTypes;
309 }
310 
311 static SmallVector<CanQualType, 16>
312 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
313   SmallVector<CanQualType, 16> argTypes;
314   for (auto &arg : args)
315     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
316   return argTypes;
317 }
318 
319 static void addExtParameterInfosForCall(
320          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
321                                         const FunctionProtoType *proto,
322                                         unsigned prefixArgs,
323                                         unsigned totalArgs) {
324   assert(proto->hasExtParameterInfos());
325   assert(paramInfos.size() <= prefixArgs);
326   assert(proto->getNumParams() + prefixArgs <= totalArgs);
327 
328   // Add default infos for any prefix args that don't already have infos.
329   paramInfos.resize(prefixArgs);
330 
331   // Add infos for the prototype.
332   auto protoInfos = proto->getExtParameterInfos();
333   paramInfos.append(protoInfos.begin(), protoInfos.end());
334 
335   // Add default infos for the variadic arguments.
336   paramInfos.resize(totalArgs);
337 }
338 
339 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
340 getExtParameterInfosForCall(const FunctionProtoType *proto,
341                             unsigned prefixArgs, unsigned totalArgs) {
342   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
343   if (proto->hasExtParameterInfos()) {
344     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
345   }
346   return result;
347 }
348 
349 /// Arrange a call to a C++ method, passing the given arguments.
350 const CGFunctionInfo &
351 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
352                                         const CXXConstructorDecl *D,
353                                         CXXCtorType CtorKind,
354                                         unsigned ExtraArgs) {
355   // FIXME: Kill copy.
356   SmallVector<CanQualType, 16> ArgTypes;
357   for (const auto &Arg : args)
358     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
359 
360   CanQual<FunctionProtoType> FPT = GetFormalType(D);
361   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs, D);
362   GlobalDecl GD(D, CtorKind);
363   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
364                                ? ArgTypes.front()
365                                : TheCXXABI.hasMostDerivedReturn(GD)
366                                      ? CGM.getContext().VoidPtrTy
367                                      : Context.VoidTy;
368 
369   FunctionType::ExtInfo Info = FPT->getExtInfo();
370   auto ParamInfos = getExtParameterInfosForCall(FPT.getTypePtr(), 1 + ExtraArgs,
371                                                 ArgTypes.size());
372   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
373                                  /*chainCall=*/false, ArgTypes, Info,
374                                  ParamInfos, Required);
375 }
376 
377 /// Arrange the argument and result information for the declaration or
378 /// definition of the given function.
379 const CGFunctionInfo &
380 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
381   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
382     if (MD->isInstance())
383       return arrangeCXXMethodDeclaration(MD);
384 
385   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
386 
387   assert(isa<FunctionType>(FTy));
388 
389   // When declaring a function without a prototype, always use a
390   // non-variadic type.
391   if (isa<FunctionNoProtoType>(FTy)) {
392     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
393     return arrangeLLVMFunctionInfo(
394         noProto->getReturnType(), /*instanceMethod=*/false,
395         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
396   }
397 
398   assert(isa<FunctionProtoType>(FTy));
399   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD);
400 }
401 
402 /// Arrange the argument and result information for the declaration or
403 /// definition of an Objective-C method.
404 const CGFunctionInfo &
405 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
406   // It happens that this is the same as a call with no optional
407   // arguments, except also using the formal 'self' type.
408   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
409 }
410 
411 /// Arrange the argument and result information for the function type
412 /// through which to perform a send to the given Objective-C method,
413 /// using the given receiver type.  The receiver type is not always
414 /// the 'self' type of the method or even an Objective-C pointer type.
415 /// This is *not* the right method for actually performing such a
416 /// message send, due to the possibility of optional arguments.
417 const CGFunctionInfo &
418 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
419                                               QualType receiverType) {
420   SmallVector<CanQualType, 16> argTys;
421   argTys.push_back(Context.getCanonicalParamType(receiverType));
422   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
423   // FIXME: Kill copy?
424   for (const auto *I : MD->parameters()) {
425     argTys.push_back(Context.getCanonicalParamType(I->getType()));
426   }
427 
428   FunctionType::ExtInfo einfo;
429   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
430   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
431 
432   if (getContext().getLangOpts().ObjCAutoRefCount &&
433       MD->hasAttr<NSReturnsRetainedAttr>())
434     einfo = einfo.withProducesResult(true);
435 
436   RequiredArgs required =
437     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
438 
439   return arrangeLLVMFunctionInfo(
440       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
441       /*chainCall=*/false, argTys, einfo, {}, required);
442 }
443 
444 const CGFunctionInfo &
445 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
446                                                  const CallArgList &args) {
447   auto argTypes = getArgTypesForCall(Context, args);
448   FunctionType::ExtInfo einfo;
449 
450   return arrangeLLVMFunctionInfo(
451       GetReturnType(returnType), /*instanceMethod=*/false,
452       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
453 }
454 
455 const CGFunctionInfo &
456 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
457   // FIXME: Do we need to handle ObjCMethodDecl?
458   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
459 
460   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
461     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
462 
463   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
464     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
465 
466   return arrangeFunctionDeclaration(FD);
467 }
468 
469 /// Arrange a thunk that takes 'this' as the first parameter followed by
470 /// varargs.  Return a void pointer, regardless of the actual return type.
471 /// The body of the thunk will end in a musttail call to a function of the
472 /// correct type, and the caller will bitcast the function to the correct
473 /// prototype.
474 const CGFunctionInfo &
475 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
476   assert(MD->isVirtual() && "only virtual memptrs have thunks");
477   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
478   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
479   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
480                                  /*chainCall=*/false, ArgTys,
481                                  FTP->getExtInfo(), {}, RequiredArgs(1));
482 }
483 
484 const CGFunctionInfo &
485 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
486                                    CXXCtorType CT) {
487   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
488 
489   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
490   SmallVector<CanQualType, 2> ArgTys;
491   const CXXRecordDecl *RD = CD->getParent();
492   ArgTys.push_back(GetThisType(Context, RD));
493   if (CT == Ctor_CopyingClosure)
494     ArgTys.push_back(*FTP->param_type_begin());
495   if (RD->getNumVBases() > 0)
496     ArgTys.push_back(Context.IntTy);
497   CallingConv CC = Context.getDefaultCallingConvention(
498       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
499   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
500                                  /*chainCall=*/false, ArgTys,
501                                  FunctionType::ExtInfo(CC), {},
502                                  RequiredArgs::All);
503 }
504 
505 /// Arrange a call as unto a free function, except possibly with an
506 /// additional number of formal parameters considered required.
507 static const CGFunctionInfo &
508 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
509                             CodeGenModule &CGM,
510                             const CallArgList &args,
511                             const FunctionType *fnType,
512                             unsigned numExtraRequiredArgs,
513                             bool chainCall) {
514   assert(args.size() >= numExtraRequiredArgs);
515 
516   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
517 
518   // In most cases, there are no optional arguments.
519   RequiredArgs required = RequiredArgs::All;
520 
521   // If we have a variadic prototype, the required arguments are the
522   // extra prefix plus the arguments in the prototype.
523   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
524     if (proto->isVariadic())
525       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
526 
527     if (proto->hasExtParameterInfos())
528       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
529                                   args.size());
530 
531   // If we don't have a prototype at all, but we're supposed to
532   // explicitly use the variadic convention for unprototyped calls,
533   // treat all of the arguments as required but preserve the nominal
534   // possibility of variadics.
535   } else if (CGM.getTargetCodeGenInfo()
536                 .isNoProtoCallVariadic(args,
537                                        cast<FunctionNoProtoType>(fnType))) {
538     required = RequiredArgs(args.size());
539   }
540 
541   // FIXME: Kill copy.
542   SmallVector<CanQualType, 16> argTypes;
543   for (const auto &arg : args)
544     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
545   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
546                                      /*instanceMethod=*/false, chainCall,
547                                      argTypes, fnType->getExtInfo(), paramInfos,
548                                      required);
549 }
550 
551 /// Figure out the rules for calling a function with the given formal
552 /// type using the given arguments.  The arguments are necessary
553 /// because the function might be unprototyped, in which case it's
554 /// target-dependent in crazy ways.
555 const CGFunctionInfo &
556 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
557                                       const FunctionType *fnType,
558                                       bool chainCall) {
559   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
560                                      chainCall ? 1 : 0, chainCall);
561 }
562 
563 /// A block function is essentially a free function with an
564 /// extra implicit argument.
565 const CGFunctionInfo &
566 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
567                                        const FunctionType *fnType) {
568   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
569                                      /*chainCall=*/false);
570 }
571 
572 const CGFunctionInfo &
573 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
574                                               const FunctionArgList &params) {
575   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
576   auto argTypes = getArgTypesForDeclaration(Context, params);
577 
578   return arrangeLLVMFunctionInfo(
579       GetReturnType(proto->getReturnType()),
580       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
581       proto->getExtInfo(), paramInfos,
582       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
583 }
584 
585 const CGFunctionInfo &
586 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
587                                          const CallArgList &args) {
588   // FIXME: Kill copy.
589   SmallVector<CanQualType, 16> argTypes;
590   for (const auto &Arg : args)
591     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
592   return arrangeLLVMFunctionInfo(
593       GetReturnType(resultType), /*instanceMethod=*/false,
594       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
595       /*paramInfos=*/ {}, RequiredArgs::All);
596 }
597 
598 const CGFunctionInfo &
599 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
600                                                 const FunctionArgList &args) {
601   auto argTypes = getArgTypesForDeclaration(Context, args);
602 
603   return arrangeLLVMFunctionInfo(
604       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
605       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
606 }
607 
608 const CGFunctionInfo &
609 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
610                                               ArrayRef<CanQualType> argTypes) {
611   return arrangeLLVMFunctionInfo(
612       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
613       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
614 }
615 
616 /// Arrange a call to a C++ method, passing the given arguments.
617 const CGFunctionInfo &
618 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
619                                    const FunctionProtoType *proto,
620                                    RequiredArgs required) {
621   unsigned numRequiredArgs =
622     (proto->isVariadic() ? required.getNumRequiredArgs() : args.size());
623   unsigned numPrefixArgs = numRequiredArgs - proto->getNumParams();
624   auto paramInfos =
625     getExtParameterInfosForCall(proto, numPrefixArgs, args.size());
626 
627   // FIXME: Kill copy.
628   auto argTypes = getArgTypesForCall(Context, args);
629 
630   FunctionType::ExtInfo info = proto->getExtInfo();
631   return arrangeLLVMFunctionInfo(
632       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
633       /*chainCall=*/false, argTypes, info, paramInfos, required);
634 }
635 
636 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
637   return arrangeLLVMFunctionInfo(
638       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
639       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
640 }
641 
642 const CGFunctionInfo &
643 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
644                           const CallArgList &args) {
645   assert(signature.arg_size() <= args.size());
646   if (signature.arg_size() == args.size())
647     return signature;
648 
649   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
650   auto sigParamInfos = signature.getExtParameterInfos();
651   if (!sigParamInfos.empty()) {
652     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
653     paramInfos.resize(args.size());
654   }
655 
656   auto argTypes = getArgTypesForCall(Context, args);
657 
658   assert(signature.getRequiredArgs().allowsOptionalArgs());
659   return arrangeLLVMFunctionInfo(signature.getReturnType(),
660                                  signature.isInstanceMethod(),
661                                  signature.isChainCall(),
662                                  argTypes,
663                                  signature.getExtInfo(),
664                                  paramInfos,
665                                  signature.getRequiredArgs());
666 }
667 
668 /// Arrange the argument and result information for an abstract value
669 /// of a given function type.  This is the method which all of the
670 /// above functions ultimately defer to.
671 const CGFunctionInfo &
672 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
673                                       bool instanceMethod,
674                                       bool chainCall,
675                                       ArrayRef<CanQualType> argTypes,
676                                       FunctionType::ExtInfo info,
677                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
678                                       RequiredArgs required) {
679   assert(std::all_of(argTypes.begin(), argTypes.end(),
680                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
681 
682   // Lookup or create unique function info.
683   llvm::FoldingSetNodeID ID;
684   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
685                           required, resultType, argTypes);
686 
687   void *insertPos = nullptr;
688   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
689   if (FI)
690     return *FI;
691 
692   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
693 
694   // Construct the function info.  We co-allocate the ArgInfos.
695   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
696                               paramInfos, resultType, argTypes, required);
697   FunctionInfos.InsertNode(FI, insertPos);
698 
699   bool inserted = FunctionsBeingProcessed.insert(FI).second;
700   (void)inserted;
701   assert(inserted && "Recursively being processed?");
702 
703   // Compute ABI information.
704   if (info.getCC() != CC_Swift) {
705     getABIInfo().computeInfo(*FI);
706   } else {
707     swiftcall::computeABIInfo(CGM, *FI);
708   }
709 
710   // Loop over all of the computed argument and return value info.  If any of
711   // them are direct or extend without a specified coerce type, specify the
712   // default now.
713   ABIArgInfo &retInfo = FI->getReturnInfo();
714   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
715     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
716 
717   for (auto &I : FI->arguments())
718     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
719       I.info.setCoerceToType(ConvertType(I.type));
720 
721   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
722   assert(erased && "Not in set?");
723 
724   return *FI;
725 }
726 
727 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
728                                        bool instanceMethod,
729                                        bool chainCall,
730                                        const FunctionType::ExtInfo &info,
731                                        ArrayRef<ExtParameterInfo> paramInfos,
732                                        CanQualType resultType,
733                                        ArrayRef<CanQualType> argTypes,
734                                        RequiredArgs required) {
735   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
736 
737   void *buffer =
738     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
739                                   argTypes.size() + 1, paramInfos.size()));
740 
741   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
742   FI->CallingConvention = llvmCC;
743   FI->EffectiveCallingConvention = llvmCC;
744   FI->ASTCallingConvention = info.getCC();
745   FI->InstanceMethod = instanceMethod;
746   FI->ChainCall = chainCall;
747   FI->NoReturn = info.getNoReturn();
748   FI->ReturnsRetained = info.getProducesResult();
749   FI->Required = required;
750   FI->HasRegParm = info.getHasRegParm();
751   FI->RegParm = info.getRegParm();
752   FI->ArgStruct = nullptr;
753   FI->ArgStructAlign = 0;
754   FI->NumArgs = argTypes.size();
755   FI->HasExtParameterInfos = !paramInfos.empty();
756   FI->getArgsBuffer()[0].type = resultType;
757   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
758     FI->getArgsBuffer()[i + 1].type = argTypes[i];
759   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
760     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
761   return FI;
762 }
763 
764 /***/
765 
766 namespace {
767 // ABIArgInfo::Expand implementation.
768 
769 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
770 struct TypeExpansion {
771   enum TypeExpansionKind {
772     // Elements of constant arrays are expanded recursively.
773     TEK_ConstantArray,
774     // Record fields are expanded recursively (but if record is a union, only
775     // the field with the largest size is expanded).
776     TEK_Record,
777     // For complex types, real and imaginary parts are expanded recursively.
778     TEK_Complex,
779     // All other types are not expandable.
780     TEK_None
781   };
782 
783   const TypeExpansionKind Kind;
784 
785   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
786   virtual ~TypeExpansion() {}
787 };
788 
789 struct ConstantArrayExpansion : TypeExpansion {
790   QualType EltTy;
791   uint64_t NumElts;
792 
793   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
794       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
795   static bool classof(const TypeExpansion *TE) {
796     return TE->Kind == TEK_ConstantArray;
797   }
798 };
799 
800 struct RecordExpansion : TypeExpansion {
801   SmallVector<const CXXBaseSpecifier *, 1> Bases;
802 
803   SmallVector<const FieldDecl *, 1> Fields;
804 
805   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
806                   SmallVector<const FieldDecl *, 1> &&Fields)
807       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
808         Fields(std::move(Fields)) {}
809   static bool classof(const TypeExpansion *TE) {
810     return TE->Kind == TEK_Record;
811   }
812 };
813 
814 struct ComplexExpansion : TypeExpansion {
815   QualType EltTy;
816 
817   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
818   static bool classof(const TypeExpansion *TE) {
819     return TE->Kind == TEK_Complex;
820   }
821 };
822 
823 struct NoExpansion : TypeExpansion {
824   NoExpansion() : TypeExpansion(TEK_None) {}
825   static bool classof(const TypeExpansion *TE) {
826     return TE->Kind == TEK_None;
827   }
828 };
829 }  // namespace
830 
831 static std::unique_ptr<TypeExpansion>
832 getTypeExpansion(QualType Ty, const ASTContext &Context) {
833   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
834     return llvm::make_unique<ConstantArrayExpansion>(
835         AT->getElementType(), AT->getSize().getZExtValue());
836   }
837   if (const RecordType *RT = Ty->getAs<RecordType>()) {
838     SmallVector<const CXXBaseSpecifier *, 1> Bases;
839     SmallVector<const FieldDecl *, 1> Fields;
840     const RecordDecl *RD = RT->getDecl();
841     assert(!RD->hasFlexibleArrayMember() &&
842            "Cannot expand structure with flexible array.");
843     if (RD->isUnion()) {
844       // Unions can be here only in degenerative cases - all the fields are same
845       // after flattening. Thus we have to use the "largest" field.
846       const FieldDecl *LargestFD = nullptr;
847       CharUnits UnionSize = CharUnits::Zero();
848 
849       for (const auto *FD : RD->fields()) {
850         // Skip zero length bitfields.
851         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
852           continue;
853         assert(!FD->isBitField() &&
854                "Cannot expand structure with bit-field members.");
855         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
856         if (UnionSize < FieldSize) {
857           UnionSize = FieldSize;
858           LargestFD = FD;
859         }
860       }
861       if (LargestFD)
862         Fields.push_back(LargestFD);
863     } else {
864       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
865         assert(!CXXRD->isDynamicClass() &&
866                "cannot expand vtable pointers in dynamic classes");
867         for (const CXXBaseSpecifier &BS : CXXRD->bases())
868           Bases.push_back(&BS);
869       }
870 
871       for (const auto *FD : RD->fields()) {
872         // Skip zero length bitfields.
873         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
874           continue;
875         assert(!FD->isBitField() &&
876                "Cannot expand structure with bit-field members.");
877         Fields.push_back(FD);
878       }
879     }
880     return llvm::make_unique<RecordExpansion>(std::move(Bases),
881                                               std::move(Fields));
882   }
883   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
884     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
885   }
886   return llvm::make_unique<NoExpansion>();
887 }
888 
889 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
890   auto Exp = getTypeExpansion(Ty, Context);
891   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
892     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
893   }
894   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
895     int Res = 0;
896     for (auto BS : RExp->Bases)
897       Res += getExpansionSize(BS->getType(), Context);
898     for (auto FD : RExp->Fields)
899       Res += getExpansionSize(FD->getType(), Context);
900     return Res;
901   }
902   if (isa<ComplexExpansion>(Exp.get()))
903     return 2;
904   assert(isa<NoExpansion>(Exp.get()));
905   return 1;
906 }
907 
908 void
909 CodeGenTypes::getExpandedTypes(QualType Ty,
910                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
911   auto Exp = getTypeExpansion(Ty, Context);
912   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
913     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
914       getExpandedTypes(CAExp->EltTy, TI);
915     }
916   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
917     for (auto BS : RExp->Bases)
918       getExpandedTypes(BS->getType(), TI);
919     for (auto FD : RExp->Fields)
920       getExpandedTypes(FD->getType(), TI);
921   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
922     llvm::Type *EltTy = ConvertType(CExp->EltTy);
923     *TI++ = EltTy;
924     *TI++ = EltTy;
925   } else {
926     assert(isa<NoExpansion>(Exp.get()));
927     *TI++ = ConvertType(Ty);
928   }
929 }
930 
931 static void forConstantArrayExpansion(CodeGenFunction &CGF,
932                                       ConstantArrayExpansion *CAE,
933                                       Address BaseAddr,
934                                       llvm::function_ref<void(Address)> Fn) {
935   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
936   CharUnits EltAlign =
937     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
938 
939   for (int i = 0, n = CAE->NumElts; i < n; i++) {
940     llvm::Value *EltAddr =
941       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
942     Fn(Address(EltAddr, EltAlign));
943   }
944 }
945 
946 void CodeGenFunction::ExpandTypeFromArgs(
947     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
948   assert(LV.isSimple() &&
949          "Unexpected non-simple lvalue during struct expansion.");
950 
951   auto Exp = getTypeExpansion(Ty, getContext());
952   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
953     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
954                               [&](Address EltAddr) {
955       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
956       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
957     });
958   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
959     Address This = LV.getAddress();
960     for (const CXXBaseSpecifier *BS : RExp->Bases) {
961       // Perform a single step derived-to-base conversion.
962       Address Base =
963           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
964                                 /*NullCheckValue=*/false, SourceLocation());
965       LValue SubLV = MakeAddrLValue(Base, BS->getType());
966 
967       // Recurse onto bases.
968       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
969     }
970     for (auto FD : RExp->Fields) {
971       // FIXME: What are the right qualifiers here?
972       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
973       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
974     }
975   } else if (isa<ComplexExpansion>(Exp.get())) {
976     auto realValue = *AI++;
977     auto imagValue = *AI++;
978     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
979   } else {
980     assert(isa<NoExpansion>(Exp.get()));
981     EmitStoreThroughLValue(RValue::get(*AI++), LV);
982   }
983 }
984 
985 void CodeGenFunction::ExpandTypeToArgs(
986     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
987     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
988   auto Exp = getTypeExpansion(Ty, getContext());
989   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
990     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
991                               [&](Address EltAddr) {
992       RValue EltRV =
993           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
994       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
995     });
996   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
997     Address This = RV.getAggregateAddress();
998     for (const CXXBaseSpecifier *BS : RExp->Bases) {
999       // Perform a single step derived-to-base conversion.
1000       Address Base =
1001           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1002                                 /*NullCheckValue=*/false, SourceLocation());
1003       RValue BaseRV = RValue::getAggregate(Base);
1004 
1005       // Recurse onto bases.
1006       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
1007                        IRCallArgPos);
1008     }
1009 
1010     LValue LV = MakeAddrLValue(This, Ty);
1011     for (auto FD : RExp->Fields) {
1012       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
1013       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
1014                        IRCallArgPos);
1015     }
1016   } else if (isa<ComplexExpansion>(Exp.get())) {
1017     ComplexPairTy CV = RV.getComplexVal();
1018     IRCallArgs[IRCallArgPos++] = CV.first;
1019     IRCallArgs[IRCallArgPos++] = CV.second;
1020   } else {
1021     assert(isa<NoExpansion>(Exp.get()));
1022     assert(RV.isScalar() &&
1023            "Unexpected non-scalar rvalue during struct expansion.");
1024 
1025     // Insert a bitcast as needed.
1026     llvm::Value *V = RV.getScalarVal();
1027     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1028         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1029       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1030 
1031     IRCallArgs[IRCallArgPos++] = V;
1032   }
1033 }
1034 
1035 /// Create a temporary allocation for the purposes of coercion.
1036 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1037                                            CharUnits MinAlign) {
1038   // Don't use an alignment that's worse than what LLVM would prefer.
1039   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1040   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1041 
1042   return CGF.CreateTempAlloca(Ty, Align);
1043 }
1044 
1045 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1046 /// accessing some number of bytes out of it, try to gep into the struct to get
1047 /// at its inner goodness.  Dive as deep as possible without entering an element
1048 /// with an in-memory size smaller than DstSize.
1049 static Address
1050 EnterStructPointerForCoercedAccess(Address SrcPtr,
1051                                    llvm::StructType *SrcSTy,
1052                                    uint64_t DstSize, CodeGenFunction &CGF) {
1053   // We can't dive into a zero-element struct.
1054   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1055 
1056   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1057 
1058   // If the first elt is at least as large as what we're looking for, or if the
1059   // first element is the same size as the whole struct, we can enter it. The
1060   // comparison must be made on the store size and not the alloca size. Using
1061   // the alloca size may overstate the size of the load.
1062   uint64_t FirstEltSize =
1063     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1064   if (FirstEltSize < DstSize &&
1065       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1066     return SrcPtr;
1067 
1068   // GEP into the first element.
1069   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1070 
1071   // If the first element is a struct, recurse.
1072   llvm::Type *SrcTy = SrcPtr.getElementType();
1073   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1074     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1075 
1076   return SrcPtr;
1077 }
1078 
1079 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1080 /// are either integers or pointers.  This does a truncation of the value if it
1081 /// is too large or a zero extension if it is too small.
1082 ///
1083 /// This behaves as if the value were coerced through memory, so on big-endian
1084 /// targets the high bits are preserved in a truncation, while little-endian
1085 /// targets preserve the low bits.
1086 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1087                                              llvm::Type *Ty,
1088                                              CodeGenFunction &CGF) {
1089   if (Val->getType() == Ty)
1090     return Val;
1091 
1092   if (isa<llvm::PointerType>(Val->getType())) {
1093     // If this is Pointer->Pointer avoid conversion to and from int.
1094     if (isa<llvm::PointerType>(Ty))
1095       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1096 
1097     // Convert the pointer to an integer so we can play with its width.
1098     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1099   }
1100 
1101   llvm::Type *DestIntTy = Ty;
1102   if (isa<llvm::PointerType>(DestIntTy))
1103     DestIntTy = CGF.IntPtrTy;
1104 
1105   if (Val->getType() != DestIntTy) {
1106     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1107     if (DL.isBigEndian()) {
1108       // Preserve the high bits on big-endian targets.
1109       // That is what memory coercion does.
1110       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1111       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1112 
1113       if (SrcSize > DstSize) {
1114         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1115         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1116       } else {
1117         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1118         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1119       }
1120     } else {
1121       // Little-endian targets preserve the low bits. No shifts required.
1122       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1123     }
1124   }
1125 
1126   if (isa<llvm::PointerType>(Ty))
1127     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1128   return Val;
1129 }
1130 
1131 
1132 
1133 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1134 /// a pointer to an object of type \arg Ty, known to be aligned to
1135 /// \arg SrcAlign bytes.
1136 ///
1137 /// This safely handles the case when the src type is smaller than the
1138 /// destination type; in this situation the values of bits which not
1139 /// present in the src are undefined.
1140 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1141                                       CodeGenFunction &CGF) {
1142   llvm::Type *SrcTy = Src.getElementType();
1143 
1144   // If SrcTy and Ty are the same, just do a load.
1145   if (SrcTy == Ty)
1146     return CGF.Builder.CreateLoad(Src);
1147 
1148   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1149 
1150   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1151     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1152     SrcTy = Src.getType()->getElementType();
1153   }
1154 
1155   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1156 
1157   // If the source and destination are integer or pointer types, just do an
1158   // extension or truncation to the desired type.
1159   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1160       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1161     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1162     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1163   }
1164 
1165   // If load is legal, just bitcast the src pointer.
1166   if (SrcSize >= DstSize) {
1167     // Generally SrcSize is never greater than DstSize, since this means we are
1168     // losing bits. However, this can happen in cases where the structure has
1169     // additional padding, for example due to a user specified alignment.
1170     //
1171     // FIXME: Assert that we aren't truncating non-padding bits when have access
1172     // to that information.
1173     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
1174     return CGF.Builder.CreateLoad(Src);
1175   }
1176 
1177   // Otherwise do coercion through memory. This is stupid, but simple.
1178   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1179   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1180   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
1181   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1182       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1183       false);
1184   return CGF.Builder.CreateLoad(Tmp);
1185 }
1186 
1187 // Function to store a first-class aggregate into memory.  We prefer to
1188 // store the elements rather than the aggregate to be more friendly to
1189 // fast-isel.
1190 // FIXME: Do we need to recurse here?
1191 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1192                           Address Dest, bool DestIsVolatile) {
1193   // Prefer scalar stores to first-class aggregate stores.
1194   if (llvm::StructType *STy =
1195         dyn_cast<llvm::StructType>(Val->getType())) {
1196     const llvm::StructLayout *Layout =
1197       CGF.CGM.getDataLayout().getStructLayout(STy);
1198 
1199     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1200       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1201       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1202       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1203       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1204     }
1205   } else {
1206     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1207   }
1208 }
1209 
1210 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1211 /// where the source and destination may have different types.  The
1212 /// destination is known to be aligned to \arg DstAlign bytes.
1213 ///
1214 /// This safely handles the case when the src type is larger than the
1215 /// destination type; the upper bits of the src will be lost.
1216 static void CreateCoercedStore(llvm::Value *Src,
1217                                Address Dst,
1218                                bool DstIsVolatile,
1219                                CodeGenFunction &CGF) {
1220   llvm::Type *SrcTy = Src->getType();
1221   llvm::Type *DstTy = Dst.getType()->getElementType();
1222   if (SrcTy == DstTy) {
1223     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1224     return;
1225   }
1226 
1227   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1228 
1229   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1230     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1231     DstTy = Dst.getType()->getElementType();
1232   }
1233 
1234   // If the source and destination are integer or pointer types, just do an
1235   // extension or truncation to the desired type.
1236   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1237       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1238     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1239     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1240     return;
1241   }
1242 
1243   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1244 
1245   // If store is legal, just bitcast the src pointer.
1246   if (SrcSize <= DstSize) {
1247     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1248     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1249   } else {
1250     // Otherwise do coercion through memory. This is stupid, but
1251     // simple.
1252 
1253     // Generally SrcSize is never greater than DstSize, since this means we are
1254     // losing bits. However, this can happen in cases where the structure has
1255     // additional padding, for example due to a user specified alignment.
1256     //
1257     // FIXME: Assert that we aren't truncating non-padding bits when have access
1258     // to that information.
1259     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1260     CGF.Builder.CreateStore(Src, Tmp);
1261     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1262     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1263     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1264         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1265         false);
1266   }
1267 }
1268 
1269 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1270                                    const ABIArgInfo &info) {
1271   if (unsigned offset = info.getDirectOffset()) {
1272     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1273     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1274                                              CharUnits::fromQuantity(offset));
1275     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1276   }
1277   return addr;
1278 }
1279 
1280 namespace {
1281 
1282 /// Encapsulates information about the way function arguments from
1283 /// CGFunctionInfo should be passed to actual LLVM IR function.
1284 class ClangToLLVMArgMapping {
1285   static const unsigned InvalidIndex = ~0U;
1286   unsigned InallocaArgNo;
1287   unsigned SRetArgNo;
1288   unsigned TotalIRArgs;
1289 
1290   /// Arguments of LLVM IR function corresponding to single Clang argument.
1291   struct IRArgs {
1292     unsigned PaddingArgIndex;
1293     // Argument is expanded to IR arguments at positions
1294     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1295     unsigned FirstArgIndex;
1296     unsigned NumberOfArgs;
1297 
1298     IRArgs()
1299         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1300           NumberOfArgs(0) {}
1301   };
1302 
1303   SmallVector<IRArgs, 8> ArgInfo;
1304 
1305 public:
1306   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1307                         bool OnlyRequiredArgs = false)
1308       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1309         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1310     construct(Context, FI, OnlyRequiredArgs);
1311   }
1312 
1313   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1314   unsigned getInallocaArgNo() const {
1315     assert(hasInallocaArg());
1316     return InallocaArgNo;
1317   }
1318 
1319   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1320   unsigned getSRetArgNo() const {
1321     assert(hasSRetArg());
1322     return SRetArgNo;
1323   }
1324 
1325   unsigned totalIRArgs() const { return TotalIRArgs; }
1326 
1327   bool hasPaddingArg(unsigned ArgNo) const {
1328     assert(ArgNo < ArgInfo.size());
1329     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1330   }
1331   unsigned getPaddingArgNo(unsigned ArgNo) const {
1332     assert(hasPaddingArg(ArgNo));
1333     return ArgInfo[ArgNo].PaddingArgIndex;
1334   }
1335 
1336   /// Returns index of first IR argument corresponding to ArgNo, and their
1337   /// quantity.
1338   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1339     assert(ArgNo < ArgInfo.size());
1340     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1341                           ArgInfo[ArgNo].NumberOfArgs);
1342   }
1343 
1344 private:
1345   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1346                  bool OnlyRequiredArgs);
1347 };
1348 
1349 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1350                                       const CGFunctionInfo &FI,
1351                                       bool OnlyRequiredArgs) {
1352   unsigned IRArgNo = 0;
1353   bool SwapThisWithSRet = false;
1354   const ABIArgInfo &RetAI = FI.getReturnInfo();
1355 
1356   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1357     SwapThisWithSRet = RetAI.isSRetAfterThis();
1358     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1359   }
1360 
1361   unsigned ArgNo = 0;
1362   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1363   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1364        ++I, ++ArgNo) {
1365     assert(I != FI.arg_end());
1366     QualType ArgType = I->type;
1367     const ABIArgInfo &AI = I->info;
1368     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1369     auto &IRArgs = ArgInfo[ArgNo];
1370 
1371     if (AI.getPaddingType())
1372       IRArgs.PaddingArgIndex = IRArgNo++;
1373 
1374     switch (AI.getKind()) {
1375     case ABIArgInfo::Extend:
1376     case ABIArgInfo::Direct: {
1377       // FIXME: handle sseregparm someday...
1378       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1379       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1380         IRArgs.NumberOfArgs = STy->getNumElements();
1381       } else {
1382         IRArgs.NumberOfArgs = 1;
1383       }
1384       break;
1385     }
1386     case ABIArgInfo::Indirect:
1387       IRArgs.NumberOfArgs = 1;
1388       break;
1389     case ABIArgInfo::Ignore:
1390     case ABIArgInfo::InAlloca:
1391       // ignore and inalloca doesn't have matching LLVM parameters.
1392       IRArgs.NumberOfArgs = 0;
1393       break;
1394     case ABIArgInfo::CoerceAndExpand:
1395       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1396       break;
1397     case ABIArgInfo::Expand:
1398       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1399       break;
1400     }
1401 
1402     if (IRArgs.NumberOfArgs > 0) {
1403       IRArgs.FirstArgIndex = IRArgNo;
1404       IRArgNo += IRArgs.NumberOfArgs;
1405     }
1406 
1407     // Skip over the sret parameter when it comes second.  We already handled it
1408     // above.
1409     if (IRArgNo == 1 && SwapThisWithSRet)
1410       IRArgNo++;
1411   }
1412   assert(ArgNo == ArgInfo.size());
1413 
1414   if (FI.usesInAlloca())
1415     InallocaArgNo = IRArgNo++;
1416 
1417   TotalIRArgs = IRArgNo;
1418 }
1419 }  // namespace
1420 
1421 /***/
1422 
1423 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1424   return FI.getReturnInfo().isIndirect();
1425 }
1426 
1427 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1428   return ReturnTypeUsesSRet(FI) &&
1429          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1430 }
1431 
1432 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1433   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1434     switch (BT->getKind()) {
1435     default:
1436       return false;
1437     case BuiltinType::Float:
1438       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1439     case BuiltinType::Double:
1440       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1441     case BuiltinType::LongDouble:
1442       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1443     }
1444   }
1445 
1446   return false;
1447 }
1448 
1449 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1450   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1451     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1452       if (BT->getKind() == BuiltinType::LongDouble)
1453         return getTarget().useObjCFP2RetForComplexLongDouble();
1454     }
1455   }
1456 
1457   return false;
1458 }
1459 
1460 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1461   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1462   return GetFunctionType(FI);
1463 }
1464 
1465 llvm::FunctionType *
1466 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1467 
1468   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1469   (void)Inserted;
1470   assert(Inserted && "Recursively being processed?");
1471 
1472   llvm::Type *resultType = nullptr;
1473   const ABIArgInfo &retAI = FI.getReturnInfo();
1474   switch (retAI.getKind()) {
1475   case ABIArgInfo::Expand:
1476     llvm_unreachable("Invalid ABI kind for return argument");
1477 
1478   case ABIArgInfo::Extend:
1479   case ABIArgInfo::Direct:
1480     resultType = retAI.getCoerceToType();
1481     break;
1482 
1483   case ABIArgInfo::InAlloca:
1484     if (retAI.getInAllocaSRet()) {
1485       // sret things on win32 aren't void, they return the sret pointer.
1486       QualType ret = FI.getReturnType();
1487       llvm::Type *ty = ConvertType(ret);
1488       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1489       resultType = llvm::PointerType::get(ty, addressSpace);
1490     } else {
1491       resultType = llvm::Type::getVoidTy(getLLVMContext());
1492     }
1493     break;
1494 
1495   case ABIArgInfo::Indirect:
1496   case ABIArgInfo::Ignore:
1497     resultType = llvm::Type::getVoidTy(getLLVMContext());
1498     break;
1499 
1500   case ABIArgInfo::CoerceAndExpand:
1501     resultType = retAI.getUnpaddedCoerceAndExpandType();
1502     break;
1503   }
1504 
1505   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1506   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1507 
1508   // Add type for sret argument.
1509   if (IRFunctionArgs.hasSRetArg()) {
1510     QualType Ret = FI.getReturnType();
1511     llvm::Type *Ty = ConvertType(Ret);
1512     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1513     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1514         llvm::PointerType::get(Ty, AddressSpace);
1515   }
1516 
1517   // Add type for inalloca argument.
1518   if (IRFunctionArgs.hasInallocaArg()) {
1519     auto ArgStruct = FI.getArgStruct();
1520     assert(ArgStruct);
1521     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1522   }
1523 
1524   // Add in all of the required arguments.
1525   unsigned ArgNo = 0;
1526   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1527                                      ie = it + FI.getNumRequiredArgs();
1528   for (; it != ie; ++it, ++ArgNo) {
1529     const ABIArgInfo &ArgInfo = it->info;
1530 
1531     // Insert a padding type to ensure proper alignment.
1532     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1533       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1534           ArgInfo.getPaddingType();
1535 
1536     unsigned FirstIRArg, NumIRArgs;
1537     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1538 
1539     switch (ArgInfo.getKind()) {
1540     case ABIArgInfo::Ignore:
1541     case ABIArgInfo::InAlloca:
1542       assert(NumIRArgs == 0);
1543       break;
1544 
1545     case ABIArgInfo::Indirect: {
1546       assert(NumIRArgs == 1);
1547       // indirect arguments are always on the stack, which is addr space #0.
1548       llvm::Type *LTy = ConvertTypeForMem(it->type);
1549       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1550       break;
1551     }
1552 
1553     case ABIArgInfo::Extend:
1554     case ABIArgInfo::Direct: {
1555       // Fast-isel and the optimizer generally like scalar values better than
1556       // FCAs, so we flatten them if this is safe to do for this argument.
1557       llvm::Type *argType = ArgInfo.getCoerceToType();
1558       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1559       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1560         assert(NumIRArgs == st->getNumElements());
1561         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1562           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1563       } else {
1564         assert(NumIRArgs == 1);
1565         ArgTypes[FirstIRArg] = argType;
1566       }
1567       break;
1568     }
1569 
1570     case ABIArgInfo::CoerceAndExpand: {
1571       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1572       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1573         *ArgTypesIter++ = EltTy;
1574       }
1575       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1576       break;
1577     }
1578 
1579     case ABIArgInfo::Expand:
1580       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1581       getExpandedTypes(it->type, ArgTypesIter);
1582       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1583       break;
1584     }
1585   }
1586 
1587   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1588   assert(Erased && "Not in set?");
1589 
1590   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1591 }
1592 
1593 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1594   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1595   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1596 
1597   if (!isFuncTypeConvertible(FPT))
1598     return llvm::StructType::get(getLLVMContext());
1599 
1600   const CGFunctionInfo *Info;
1601   if (isa<CXXDestructorDecl>(MD))
1602     Info =
1603         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1604   else
1605     Info = &arrangeCXXMethodDeclaration(MD);
1606   return GetFunctionType(*Info);
1607 }
1608 
1609 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1610                                                llvm::AttrBuilder &FuncAttrs,
1611                                                const FunctionProtoType *FPT) {
1612   if (!FPT)
1613     return;
1614 
1615   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1616       FPT->isNothrow(Ctx))
1617     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1618 }
1619 
1620 void CodeGenModule::ConstructAttributeList(
1621     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1622     AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) {
1623   llvm::AttrBuilder FuncAttrs;
1624   llvm::AttrBuilder RetAttrs;
1625   bool HasOptnone = false;
1626 
1627   CallingConv = FI.getEffectiveCallingConvention();
1628 
1629   if (FI.isNoReturn())
1630     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1631 
1632   // If we have information about the function prototype, we can learn
1633   // attributes form there.
1634   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1635                                      CalleeInfo.getCalleeFunctionProtoType());
1636 
1637   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1638 
1639   bool HasAnyX86InterruptAttr = false;
1640   // FIXME: handle sseregparm someday...
1641   if (TargetDecl) {
1642     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1643       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1644     if (TargetDecl->hasAttr<NoThrowAttr>())
1645       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1646     if (TargetDecl->hasAttr<NoReturnAttr>())
1647       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1648     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1649       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1650 
1651     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1652       AddAttributesFromFunctionProtoType(
1653           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1654       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1655       // These attributes are not inherited by overloads.
1656       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1657       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1658         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1659     }
1660 
1661     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1662     if (TargetDecl->hasAttr<ConstAttr>()) {
1663       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1664       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1665     } else if (TargetDecl->hasAttr<PureAttr>()) {
1666       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1667       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1668     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1669       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1670       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1671     }
1672     if (TargetDecl->hasAttr<RestrictAttr>())
1673       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1674     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1675       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1676 
1677     HasAnyX86InterruptAttr = TargetDecl->hasAttr<AnyX86InterruptAttr>();
1678     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1679   }
1680 
1681   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1682   if (!HasOptnone) {
1683     if (CodeGenOpts.OptimizeSize)
1684       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1685     if (CodeGenOpts.OptimizeSize == 2)
1686       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1687   }
1688 
1689   if (CodeGenOpts.DisableRedZone)
1690     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1691   if (CodeGenOpts.NoImplicitFloat)
1692     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1693   if (CodeGenOpts.EnableSegmentedStacks &&
1694       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1695     FuncAttrs.addAttribute("split-stack");
1696 
1697   if (AttrOnCallSite) {
1698     // Attributes that should go on the call site only.
1699     if (!CodeGenOpts.SimplifyLibCalls ||
1700         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1701       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1702     if (!CodeGenOpts.TrapFuncName.empty())
1703       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1704   } else {
1705     // Attributes that should go on the function, but not the call site.
1706     if (!CodeGenOpts.DisableFPElim) {
1707       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1708     } else if (CodeGenOpts.OmitLeafFramePointer) {
1709       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1710       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1711     } else {
1712       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1713       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1714     }
1715 
1716     bool DisableTailCalls =
1717         CodeGenOpts.DisableTailCalls || HasAnyX86InterruptAttr ||
1718         (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>());
1719     FuncAttrs.addAttribute(
1720         "disable-tail-calls",
1721         llvm::toStringRef(DisableTailCalls));
1722 
1723     FuncAttrs.addAttribute("less-precise-fpmad",
1724                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1725 
1726     if (!CodeGenOpts.FPDenormalMode.empty())
1727       FuncAttrs.addAttribute("denormal-fp-math",
1728                              CodeGenOpts.FPDenormalMode);
1729 
1730     FuncAttrs.addAttribute("no-trapping-math",
1731                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1732     FuncAttrs.addAttribute("no-infs-fp-math",
1733                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1734     FuncAttrs.addAttribute("no-nans-fp-math",
1735                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1736     FuncAttrs.addAttribute("unsafe-fp-math",
1737                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1738     FuncAttrs.addAttribute("use-soft-float",
1739                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1740     FuncAttrs.addAttribute("stack-protector-buffer-size",
1741                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1742     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1743                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1744     FuncAttrs.addAttribute(
1745         "correctly-rounded-divide-sqrt-fp-math",
1746         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1747 
1748     if (CodeGenOpts.StackRealignment)
1749       FuncAttrs.addAttribute("stackrealign");
1750     if (CodeGenOpts.Backchain)
1751       FuncAttrs.addAttribute("backchain");
1752 
1753     // Add target-cpu and target-features attributes to functions. If
1754     // we have a decl for the function and it has a target attribute then
1755     // parse that and add it to the feature set.
1756     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1757     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1758     if (FD && FD->hasAttr<TargetAttr>()) {
1759       llvm::StringMap<bool> FeatureMap;
1760       getFunctionFeatureMap(FeatureMap, FD);
1761 
1762       // Produce the canonical string for this set of features.
1763       std::vector<std::string> Features;
1764       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1765                                                  ie = FeatureMap.end();
1766            it != ie; ++it)
1767         Features.push_back((it->second ? "+" : "-") + it->first().str());
1768 
1769       // Now add the target-cpu and target-features to the function.
1770       // While we populated the feature map above, we still need to
1771       // get and parse the target attribute so we can get the cpu for
1772       // the function.
1773       const auto *TD = FD->getAttr<TargetAttr>();
1774       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1775       if (ParsedAttr.second != "")
1776         TargetCPU = ParsedAttr.second;
1777       if (TargetCPU != "")
1778         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1779       if (!Features.empty()) {
1780         std::sort(Features.begin(), Features.end());
1781         FuncAttrs.addAttribute(
1782             "target-features",
1783             llvm::join(Features.begin(), Features.end(), ","));
1784       }
1785     } else {
1786       // Otherwise just add the existing target cpu and target features to the
1787       // function.
1788       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1789       if (TargetCPU != "")
1790         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1791       if (!Features.empty()) {
1792         std::sort(Features.begin(), Features.end());
1793         FuncAttrs.addAttribute(
1794             "target-features",
1795             llvm::join(Features.begin(), Features.end(), ","));
1796       }
1797     }
1798   }
1799 
1800   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1801     // Conservatively, mark all functions and calls in CUDA as convergent
1802     // (meaning, they may call an intrinsically convergent op, such as
1803     // __syncthreads(), and so can't have certain optimizations applied around
1804     // them).  LLVM will remove this attribute where it safely can.
1805     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1806 
1807     // Respect -fcuda-flush-denormals-to-zero.
1808     if (getLangOpts().CUDADeviceFlushDenormalsToZero)
1809       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1810   }
1811 
1812   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1813 
1814   QualType RetTy = FI.getReturnType();
1815   const ABIArgInfo &RetAI = FI.getReturnInfo();
1816   switch (RetAI.getKind()) {
1817   case ABIArgInfo::Extend:
1818     if (RetTy->hasSignedIntegerRepresentation())
1819       RetAttrs.addAttribute(llvm::Attribute::SExt);
1820     else if (RetTy->hasUnsignedIntegerRepresentation())
1821       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1822     // FALL THROUGH
1823   case ABIArgInfo::Direct:
1824     if (RetAI.getInReg())
1825       RetAttrs.addAttribute(llvm::Attribute::InReg);
1826     break;
1827   case ABIArgInfo::Ignore:
1828     break;
1829 
1830   case ABIArgInfo::InAlloca:
1831   case ABIArgInfo::Indirect: {
1832     // inalloca and sret disable readnone and readonly
1833     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1834       .removeAttribute(llvm::Attribute::ReadNone);
1835     break;
1836   }
1837 
1838   case ABIArgInfo::CoerceAndExpand:
1839     break;
1840 
1841   case ABIArgInfo::Expand:
1842     llvm_unreachable("Invalid ABI kind for return argument");
1843   }
1844 
1845   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1846     QualType PTy = RefTy->getPointeeType();
1847     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1848       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1849                                         .getQuantity());
1850     else if (getContext().getTargetAddressSpace(PTy) == 0)
1851       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1852   }
1853 
1854   // Attach return attributes.
1855   if (RetAttrs.hasAttributes()) {
1856     PAL.push_back(llvm::AttributeSet::get(
1857         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1858   }
1859 
1860   bool hasUsedSRet = false;
1861 
1862   // Attach attributes to sret.
1863   if (IRFunctionArgs.hasSRetArg()) {
1864     llvm::AttrBuilder SRETAttrs;
1865     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1866     hasUsedSRet = true;
1867     if (RetAI.getInReg())
1868       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1869     PAL.push_back(llvm::AttributeSet::get(
1870         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1871   }
1872 
1873   // Attach attributes to inalloca argument.
1874   if (IRFunctionArgs.hasInallocaArg()) {
1875     llvm::AttrBuilder Attrs;
1876     Attrs.addAttribute(llvm::Attribute::InAlloca);
1877     PAL.push_back(llvm::AttributeSet::get(
1878         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1879   }
1880 
1881   unsigned ArgNo = 0;
1882   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1883                                           E = FI.arg_end();
1884        I != E; ++I, ++ArgNo) {
1885     QualType ParamType = I->type;
1886     const ABIArgInfo &AI = I->info;
1887     llvm::AttrBuilder Attrs;
1888 
1889     // Add attribute for padding argument, if necessary.
1890     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1891       if (AI.getPaddingInReg())
1892         PAL.push_back(llvm::AttributeSet::get(
1893             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1894             llvm::Attribute::InReg));
1895     }
1896 
1897     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1898     // have the corresponding parameter variable.  It doesn't make
1899     // sense to do it here because parameters are so messed up.
1900     switch (AI.getKind()) {
1901     case ABIArgInfo::Extend:
1902       if (ParamType->isSignedIntegerOrEnumerationType())
1903         Attrs.addAttribute(llvm::Attribute::SExt);
1904       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1905         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1906           Attrs.addAttribute(llvm::Attribute::SExt);
1907         else
1908           Attrs.addAttribute(llvm::Attribute::ZExt);
1909       }
1910       // FALL THROUGH
1911     case ABIArgInfo::Direct:
1912       if (ArgNo == 0 && FI.isChainCall())
1913         Attrs.addAttribute(llvm::Attribute::Nest);
1914       else if (AI.getInReg())
1915         Attrs.addAttribute(llvm::Attribute::InReg);
1916       break;
1917 
1918     case ABIArgInfo::Indirect: {
1919       if (AI.getInReg())
1920         Attrs.addAttribute(llvm::Attribute::InReg);
1921 
1922       if (AI.getIndirectByVal())
1923         Attrs.addAttribute(llvm::Attribute::ByVal);
1924 
1925       CharUnits Align = AI.getIndirectAlign();
1926 
1927       // In a byval argument, it is important that the required
1928       // alignment of the type is honored, as LLVM might be creating a
1929       // *new* stack object, and needs to know what alignment to give
1930       // it. (Sometimes it can deduce a sensible alignment on its own,
1931       // but not if clang decides it must emit a packed struct, or the
1932       // user specifies increased alignment requirements.)
1933       //
1934       // This is different from indirect *not* byval, where the object
1935       // exists already, and the align attribute is purely
1936       // informative.
1937       assert(!Align.isZero());
1938 
1939       // For now, only add this when we have a byval argument.
1940       // TODO: be less lazy about updating test cases.
1941       if (AI.getIndirectByVal())
1942         Attrs.addAlignmentAttr(Align.getQuantity());
1943 
1944       // byval disables readnone and readonly.
1945       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1946         .removeAttribute(llvm::Attribute::ReadNone);
1947       break;
1948     }
1949     case ABIArgInfo::Ignore:
1950     case ABIArgInfo::Expand:
1951     case ABIArgInfo::CoerceAndExpand:
1952       break;
1953 
1954     case ABIArgInfo::InAlloca:
1955       // inalloca disables readnone and readonly.
1956       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1957           .removeAttribute(llvm::Attribute::ReadNone);
1958       continue;
1959     }
1960 
1961     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1962       QualType PTy = RefTy->getPointeeType();
1963       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1964         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1965                                        .getQuantity());
1966       else if (getContext().getTargetAddressSpace(PTy) == 0)
1967         Attrs.addAttribute(llvm::Attribute::NonNull);
1968     }
1969 
1970     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
1971     case ParameterABI::Ordinary:
1972       break;
1973 
1974     case ParameterABI::SwiftIndirectResult: {
1975       // Add 'sret' if we haven't already used it for something, but
1976       // only if the result is void.
1977       if (!hasUsedSRet && RetTy->isVoidType()) {
1978         Attrs.addAttribute(llvm::Attribute::StructRet);
1979         hasUsedSRet = true;
1980       }
1981 
1982       // Add 'noalias' in either case.
1983       Attrs.addAttribute(llvm::Attribute::NoAlias);
1984 
1985       // Add 'dereferenceable' and 'alignment'.
1986       auto PTy = ParamType->getPointeeType();
1987       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
1988         auto info = getContext().getTypeInfoInChars(PTy);
1989         Attrs.addDereferenceableAttr(info.first.getQuantity());
1990         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
1991                                                  info.second.getQuantity()));
1992       }
1993       break;
1994     }
1995 
1996     case ParameterABI::SwiftErrorResult:
1997       Attrs.addAttribute(llvm::Attribute::SwiftError);
1998       break;
1999 
2000     case ParameterABI::SwiftContext:
2001       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2002       break;
2003     }
2004 
2005     if (Attrs.hasAttributes()) {
2006       unsigned FirstIRArg, NumIRArgs;
2007       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2008       for (unsigned i = 0; i < NumIRArgs; i++)
2009         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
2010                                               FirstIRArg + i + 1, Attrs));
2011     }
2012   }
2013   assert(ArgNo == FI.arg_size());
2014 
2015   if (FuncAttrs.hasAttributes())
2016     PAL.push_back(llvm::
2017                   AttributeSet::get(getLLVMContext(),
2018                                     llvm::AttributeSet::FunctionIndex,
2019                                     FuncAttrs));
2020 }
2021 
2022 /// An argument came in as a promoted argument; demote it back to its
2023 /// declared type.
2024 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2025                                          const VarDecl *var,
2026                                          llvm::Value *value) {
2027   llvm::Type *varType = CGF.ConvertType(var->getType());
2028 
2029   // This can happen with promotions that actually don't change the
2030   // underlying type, like the enum promotions.
2031   if (value->getType() == varType) return value;
2032 
2033   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2034          && "unexpected promotion type");
2035 
2036   if (isa<llvm::IntegerType>(varType))
2037     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2038 
2039   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2040 }
2041 
2042 /// Returns the attribute (either parameter attribute, or function
2043 /// attribute), which declares argument ArgNo to be non-null.
2044 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2045                                          QualType ArgType, unsigned ArgNo) {
2046   // FIXME: __attribute__((nonnull)) can also be applied to:
2047   //   - references to pointers, where the pointee is known to be
2048   //     nonnull (apparently a Clang extension)
2049   //   - transparent unions containing pointers
2050   // In the former case, LLVM IR cannot represent the constraint. In
2051   // the latter case, we have no guarantee that the transparent union
2052   // is in fact passed as a pointer.
2053   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2054     return nullptr;
2055   // First, check attribute on parameter itself.
2056   if (PVD) {
2057     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2058       return ParmNNAttr;
2059   }
2060   // Check function attributes.
2061   if (!FD)
2062     return nullptr;
2063   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2064     if (NNAttr->isNonNull(ArgNo))
2065       return NNAttr;
2066   }
2067   return nullptr;
2068 }
2069 
2070 namespace {
2071   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2072     Address Temp;
2073     Address Arg;
2074     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2075     void Emit(CodeGenFunction &CGF, Flags flags) override {
2076       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2077       CGF.Builder.CreateStore(errorValue, Arg);
2078     }
2079   };
2080 }
2081 
2082 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2083                                          llvm::Function *Fn,
2084                                          const FunctionArgList &Args) {
2085   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2086     // Naked functions don't have prologues.
2087     return;
2088 
2089   // If this is an implicit-return-zero function, go ahead and
2090   // initialize the return value.  TODO: it might be nice to have
2091   // a more general mechanism for this that didn't require synthesized
2092   // return statements.
2093   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2094     if (FD->hasImplicitReturnZero()) {
2095       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2096       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2097       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2098       Builder.CreateStore(Zero, ReturnValue);
2099     }
2100   }
2101 
2102   // FIXME: We no longer need the types from FunctionArgList; lift up and
2103   // simplify.
2104 
2105   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2106   // Flattened function arguments.
2107   SmallVector<llvm::Value *, 16> FnArgs;
2108   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2109   for (auto &Arg : Fn->args()) {
2110     FnArgs.push_back(&Arg);
2111   }
2112   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2113 
2114   // If we're using inalloca, all the memory arguments are GEPs off of the last
2115   // parameter, which is a pointer to the complete memory area.
2116   Address ArgStruct = Address::invalid();
2117   const llvm::StructLayout *ArgStructLayout = nullptr;
2118   if (IRFunctionArgs.hasInallocaArg()) {
2119     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2120     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2121                         FI.getArgStructAlignment());
2122 
2123     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2124   }
2125 
2126   // Name the struct return parameter.
2127   if (IRFunctionArgs.hasSRetArg()) {
2128     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2129     AI->setName("agg.result");
2130     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
2131                                         llvm::Attribute::NoAlias));
2132   }
2133 
2134   // Track if we received the parameter as a pointer (indirect, byval, or
2135   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2136   // into a local alloca for us.
2137   SmallVector<ParamValue, 16> ArgVals;
2138   ArgVals.reserve(Args.size());
2139 
2140   // Create a pointer value for every parameter declaration.  This usually
2141   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2142   // any cleanups or do anything that might unwind.  We do that separately, so
2143   // we can push the cleanups in the correct order for the ABI.
2144   assert(FI.arg_size() == Args.size() &&
2145          "Mismatch between function signature & arguments.");
2146   unsigned ArgNo = 0;
2147   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2148   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2149        i != e; ++i, ++info_it, ++ArgNo) {
2150     const VarDecl *Arg = *i;
2151     QualType Ty = info_it->type;
2152     const ABIArgInfo &ArgI = info_it->info;
2153 
2154     bool isPromoted =
2155       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2156 
2157     unsigned FirstIRArg, NumIRArgs;
2158     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2159 
2160     switch (ArgI.getKind()) {
2161     case ABIArgInfo::InAlloca: {
2162       assert(NumIRArgs == 0);
2163       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2164       CharUnits FieldOffset =
2165         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2166       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2167                                           Arg->getName());
2168       ArgVals.push_back(ParamValue::forIndirect(V));
2169       break;
2170     }
2171 
2172     case ABIArgInfo::Indirect: {
2173       assert(NumIRArgs == 1);
2174       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2175 
2176       if (!hasScalarEvaluationKind(Ty)) {
2177         // Aggregates and complex variables are accessed by reference.  All we
2178         // need to do is realign the value, if requested.
2179         Address V = ParamAddr;
2180         if (ArgI.getIndirectRealign()) {
2181           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2182 
2183           // Copy from the incoming argument pointer to the temporary with the
2184           // appropriate alignment.
2185           //
2186           // FIXME: We should have a common utility for generating an aggregate
2187           // copy.
2188           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2189           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2190           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2191           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2192           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2193           V = AlignedTemp;
2194         }
2195         ArgVals.push_back(ParamValue::forIndirect(V));
2196       } else {
2197         // Load scalar value from indirect argument.
2198         llvm::Value *V =
2199           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
2200 
2201         if (isPromoted)
2202           V = emitArgumentDemotion(*this, Arg, V);
2203         ArgVals.push_back(ParamValue::forDirect(V));
2204       }
2205       break;
2206     }
2207 
2208     case ABIArgInfo::Extend:
2209     case ABIArgInfo::Direct: {
2210 
2211       // If we have the trivial case, handle it with no muss and fuss.
2212       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2213           ArgI.getCoerceToType() == ConvertType(Ty) &&
2214           ArgI.getDirectOffset() == 0) {
2215         assert(NumIRArgs == 1);
2216         llvm::Value *V = FnArgs[FirstIRArg];
2217         auto AI = cast<llvm::Argument>(V);
2218 
2219         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2220           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2221                              PVD->getFunctionScopeIndex()))
2222             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2223                                                 AI->getArgNo() + 1,
2224                                                 llvm::Attribute::NonNull));
2225 
2226           QualType OTy = PVD->getOriginalType();
2227           if (const auto *ArrTy =
2228               getContext().getAsConstantArrayType(OTy)) {
2229             // A C99 array parameter declaration with the static keyword also
2230             // indicates dereferenceability, and if the size is constant we can
2231             // use the dereferenceable attribute (which requires the size in
2232             // bytes).
2233             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2234               QualType ETy = ArrTy->getElementType();
2235               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2236               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2237                   ArrSize) {
2238                 llvm::AttrBuilder Attrs;
2239                 Attrs.addDereferenceableAttr(
2240                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2241                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2242                                                     AI->getArgNo() + 1, Attrs));
2243               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
2244                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2245                                                     AI->getArgNo() + 1,
2246                                                     llvm::Attribute::NonNull));
2247               }
2248             }
2249           } else if (const auto *ArrTy =
2250                      getContext().getAsVariableArrayType(OTy)) {
2251             // For C99 VLAs with the static keyword, we don't know the size so
2252             // we can't use the dereferenceable attribute, but in addrspace(0)
2253             // we know that it must be nonnull.
2254             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2255                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
2256               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2257                                                   AI->getArgNo() + 1,
2258                                                   llvm::Attribute::NonNull));
2259           }
2260 
2261           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2262           if (!AVAttr)
2263             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2264               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2265           if (AVAttr) {
2266             llvm::Value *AlignmentValue =
2267               EmitScalarExpr(AVAttr->getAlignment());
2268             llvm::ConstantInt *AlignmentCI =
2269               cast<llvm::ConstantInt>(AlignmentValue);
2270             unsigned Alignment =
2271               std::min((unsigned) AlignmentCI->getZExtValue(),
2272                        +llvm::Value::MaximumAlignment);
2273 
2274             llvm::AttrBuilder Attrs;
2275             Attrs.addAlignmentAttr(Alignment);
2276             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2277                                                 AI->getArgNo() + 1, Attrs));
2278           }
2279         }
2280 
2281         if (Arg->getType().isRestrictQualified())
2282           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2283                                               AI->getArgNo() + 1,
2284                                               llvm::Attribute::NoAlias));
2285 
2286         // LLVM expects swifterror parameters to be used in very restricted
2287         // ways.  Copy the value into a less-restricted temporary.
2288         if (FI.getExtParameterInfo(ArgNo).getABI()
2289               == ParameterABI::SwiftErrorResult) {
2290           QualType pointeeTy = Ty->getPointeeType();
2291           assert(pointeeTy->isPointerType());
2292           Address temp =
2293             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2294           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2295           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2296           Builder.CreateStore(incomingErrorValue, temp);
2297           V = temp.getPointer();
2298 
2299           // Push a cleanup to copy the value back at the end of the function.
2300           // The convention does not guarantee that the value will be written
2301           // back if the function exits with an unwind exception.
2302           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2303         }
2304 
2305         // Ensure the argument is the correct type.
2306         if (V->getType() != ArgI.getCoerceToType())
2307           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2308 
2309         if (isPromoted)
2310           V = emitArgumentDemotion(*this, Arg, V);
2311 
2312         // Because of merging of function types from multiple decls it is
2313         // possible for the type of an argument to not match the corresponding
2314         // type in the function type. Since we are codegening the callee
2315         // in here, add a cast to the argument type.
2316         llvm::Type *LTy = ConvertType(Arg->getType());
2317         if (V->getType() != LTy)
2318           V = Builder.CreateBitCast(V, LTy);
2319 
2320         ArgVals.push_back(ParamValue::forDirect(V));
2321         break;
2322       }
2323 
2324       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2325                                      Arg->getName());
2326 
2327       // Pointer to store into.
2328       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2329 
2330       // Fast-isel and the optimizer generally like scalar values better than
2331       // FCAs, so we flatten them if this is safe to do for this argument.
2332       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2333       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2334           STy->getNumElements() > 1) {
2335         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2336         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2337         llvm::Type *DstTy = Ptr.getElementType();
2338         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2339 
2340         Address AddrToStoreInto = Address::invalid();
2341         if (SrcSize <= DstSize) {
2342           AddrToStoreInto =
2343             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2344         } else {
2345           AddrToStoreInto =
2346             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2347         }
2348 
2349         assert(STy->getNumElements() == NumIRArgs);
2350         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2351           auto AI = FnArgs[FirstIRArg + i];
2352           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2353           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2354           Address EltPtr =
2355             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2356           Builder.CreateStore(AI, EltPtr);
2357         }
2358 
2359         if (SrcSize > DstSize) {
2360           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2361         }
2362 
2363       } else {
2364         // Simple case, just do a coerced store of the argument into the alloca.
2365         assert(NumIRArgs == 1);
2366         auto AI = FnArgs[FirstIRArg];
2367         AI->setName(Arg->getName() + ".coerce");
2368         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2369       }
2370 
2371       // Match to what EmitParmDecl is expecting for this type.
2372       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2373         llvm::Value *V =
2374           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2375         if (isPromoted)
2376           V = emitArgumentDemotion(*this, Arg, V);
2377         ArgVals.push_back(ParamValue::forDirect(V));
2378       } else {
2379         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2380       }
2381       break;
2382     }
2383 
2384     case ABIArgInfo::CoerceAndExpand: {
2385       // Reconstruct into a temporary.
2386       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2387       ArgVals.push_back(ParamValue::forIndirect(alloca));
2388 
2389       auto coercionType = ArgI.getCoerceAndExpandType();
2390       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2391       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2392 
2393       unsigned argIndex = FirstIRArg;
2394       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2395         llvm::Type *eltType = coercionType->getElementType(i);
2396         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2397           continue;
2398 
2399         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2400         auto elt = FnArgs[argIndex++];
2401         Builder.CreateStore(elt, eltAddr);
2402       }
2403       assert(argIndex == FirstIRArg + NumIRArgs);
2404       break;
2405     }
2406 
2407     case ABIArgInfo::Expand: {
2408       // If this structure was expanded into multiple arguments then
2409       // we need to create a temporary and reconstruct it from the
2410       // arguments.
2411       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2412       LValue LV = MakeAddrLValue(Alloca, Ty);
2413       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2414 
2415       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2416       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2417       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2418       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2419         auto AI = FnArgs[FirstIRArg + i];
2420         AI->setName(Arg->getName() + "." + Twine(i));
2421       }
2422       break;
2423     }
2424 
2425     case ABIArgInfo::Ignore:
2426       assert(NumIRArgs == 0);
2427       // Initialize the local variable appropriately.
2428       if (!hasScalarEvaluationKind(Ty)) {
2429         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2430       } else {
2431         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2432         ArgVals.push_back(ParamValue::forDirect(U));
2433       }
2434       break;
2435     }
2436   }
2437 
2438   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2439     for (int I = Args.size() - 1; I >= 0; --I)
2440       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2441   } else {
2442     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2443       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2444   }
2445 }
2446 
2447 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2448   while (insn->use_empty()) {
2449     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2450     if (!bitcast) return;
2451 
2452     // This is "safe" because we would have used a ConstantExpr otherwise.
2453     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2454     bitcast->eraseFromParent();
2455   }
2456 }
2457 
2458 /// Try to emit a fused autorelease of a return result.
2459 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2460                                                     llvm::Value *result) {
2461   // We must be immediately followed the cast.
2462   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2463   if (BB->empty()) return nullptr;
2464   if (&BB->back() != result) return nullptr;
2465 
2466   llvm::Type *resultType = result->getType();
2467 
2468   // result is in a BasicBlock and is therefore an Instruction.
2469   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2470 
2471   SmallVector<llvm::Instruction *, 4> InstsToKill;
2472 
2473   // Look for:
2474   //  %generator = bitcast %type1* %generator2 to %type2*
2475   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2476     // We would have emitted this as a constant if the operand weren't
2477     // an Instruction.
2478     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2479 
2480     // Require the generator to be immediately followed by the cast.
2481     if (generator->getNextNode() != bitcast)
2482       return nullptr;
2483 
2484     InstsToKill.push_back(bitcast);
2485   }
2486 
2487   // Look for:
2488   //   %generator = call i8* @objc_retain(i8* %originalResult)
2489   // or
2490   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2491   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2492   if (!call) return nullptr;
2493 
2494   bool doRetainAutorelease;
2495 
2496   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2497     doRetainAutorelease = true;
2498   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2499                                           .objc_retainAutoreleasedReturnValue) {
2500     doRetainAutorelease = false;
2501 
2502     // If we emitted an assembly marker for this call (and the
2503     // ARCEntrypoints field should have been set if so), go looking
2504     // for that call.  If we can't find it, we can't do this
2505     // optimization.  But it should always be the immediately previous
2506     // instruction, unless we needed bitcasts around the call.
2507     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2508       llvm::Instruction *prev = call->getPrevNode();
2509       assert(prev);
2510       if (isa<llvm::BitCastInst>(prev)) {
2511         prev = prev->getPrevNode();
2512         assert(prev);
2513       }
2514       assert(isa<llvm::CallInst>(prev));
2515       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2516                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2517       InstsToKill.push_back(prev);
2518     }
2519   } else {
2520     return nullptr;
2521   }
2522 
2523   result = call->getArgOperand(0);
2524   InstsToKill.push_back(call);
2525 
2526   // Keep killing bitcasts, for sanity.  Note that we no longer care
2527   // about precise ordering as long as there's exactly one use.
2528   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2529     if (!bitcast->hasOneUse()) break;
2530     InstsToKill.push_back(bitcast);
2531     result = bitcast->getOperand(0);
2532   }
2533 
2534   // Delete all the unnecessary instructions, from latest to earliest.
2535   for (auto *I : InstsToKill)
2536     I->eraseFromParent();
2537 
2538   // Do the fused retain/autorelease if we were asked to.
2539   if (doRetainAutorelease)
2540     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2541 
2542   // Cast back to the result type.
2543   return CGF.Builder.CreateBitCast(result, resultType);
2544 }
2545 
2546 /// If this is a +1 of the value of an immutable 'self', remove it.
2547 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2548                                           llvm::Value *result) {
2549   // This is only applicable to a method with an immutable 'self'.
2550   const ObjCMethodDecl *method =
2551     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2552   if (!method) return nullptr;
2553   const VarDecl *self = method->getSelfDecl();
2554   if (!self->getType().isConstQualified()) return nullptr;
2555 
2556   // Look for a retain call.
2557   llvm::CallInst *retainCall =
2558     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2559   if (!retainCall ||
2560       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2561     return nullptr;
2562 
2563   // Look for an ordinary load of 'self'.
2564   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2565   llvm::LoadInst *load =
2566     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2567   if (!load || load->isAtomic() || load->isVolatile() ||
2568       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2569     return nullptr;
2570 
2571   // Okay!  Burn it all down.  This relies for correctness on the
2572   // assumption that the retain is emitted as part of the return and
2573   // that thereafter everything is used "linearly".
2574   llvm::Type *resultType = result->getType();
2575   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2576   assert(retainCall->use_empty());
2577   retainCall->eraseFromParent();
2578   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2579 
2580   return CGF.Builder.CreateBitCast(load, resultType);
2581 }
2582 
2583 /// Emit an ARC autorelease of the result of a function.
2584 ///
2585 /// \return the value to actually return from the function
2586 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2587                                             llvm::Value *result) {
2588   // If we're returning 'self', kill the initial retain.  This is a
2589   // heuristic attempt to "encourage correctness" in the really unfortunate
2590   // case where we have a return of self during a dealloc and we desperately
2591   // need to avoid the possible autorelease.
2592   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2593     return self;
2594 
2595   // At -O0, try to emit a fused retain/autorelease.
2596   if (CGF.shouldUseFusedARCCalls())
2597     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2598       return fused;
2599 
2600   return CGF.EmitARCAutoreleaseReturnValue(result);
2601 }
2602 
2603 /// Heuristically search for a dominating store to the return-value slot.
2604 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2605   // Check if a User is a store which pointerOperand is the ReturnValue.
2606   // We are looking for stores to the ReturnValue, not for stores of the
2607   // ReturnValue to some other location.
2608   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2609     auto *SI = dyn_cast<llvm::StoreInst>(U);
2610     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2611       return nullptr;
2612     // These aren't actually possible for non-coerced returns, and we
2613     // only care about non-coerced returns on this code path.
2614     assert(!SI->isAtomic() && !SI->isVolatile());
2615     return SI;
2616   };
2617   // If there are multiple uses of the return-value slot, just check
2618   // for something immediately preceding the IP.  Sometimes this can
2619   // happen with how we generate implicit-returns; it can also happen
2620   // with noreturn cleanups.
2621   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2622     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2623     if (IP->empty()) return nullptr;
2624     llvm::Instruction *I = &IP->back();
2625 
2626     // Skip lifetime markers
2627     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2628                                             IE = IP->rend();
2629          II != IE; ++II) {
2630       if (llvm::IntrinsicInst *Intrinsic =
2631               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2632         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2633           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2634           ++II;
2635           if (II == IE)
2636             break;
2637           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2638             continue;
2639         }
2640       }
2641       I = &*II;
2642       break;
2643     }
2644 
2645     return GetStoreIfValid(I);
2646   }
2647 
2648   llvm::StoreInst *store =
2649       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2650   if (!store) return nullptr;
2651 
2652   // Now do a first-and-dirty dominance check: just walk up the
2653   // single-predecessors chain from the current insertion point.
2654   llvm::BasicBlock *StoreBB = store->getParent();
2655   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2656   while (IP != StoreBB) {
2657     if (!(IP = IP->getSinglePredecessor()))
2658       return nullptr;
2659   }
2660 
2661   // Okay, the store's basic block dominates the insertion point; we
2662   // can do our thing.
2663   return store;
2664 }
2665 
2666 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2667                                          bool EmitRetDbgLoc,
2668                                          SourceLocation EndLoc) {
2669   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2670     // Naked functions don't have epilogues.
2671     Builder.CreateUnreachable();
2672     return;
2673   }
2674 
2675   // Functions with no result always return void.
2676   if (!ReturnValue.isValid()) {
2677     Builder.CreateRetVoid();
2678     return;
2679   }
2680 
2681   llvm::DebugLoc RetDbgLoc;
2682   llvm::Value *RV = nullptr;
2683   QualType RetTy = FI.getReturnType();
2684   const ABIArgInfo &RetAI = FI.getReturnInfo();
2685 
2686   switch (RetAI.getKind()) {
2687   case ABIArgInfo::InAlloca:
2688     // Aggregrates get evaluated directly into the destination.  Sometimes we
2689     // need to return the sret value in a register, though.
2690     assert(hasAggregateEvaluationKind(RetTy));
2691     if (RetAI.getInAllocaSRet()) {
2692       llvm::Function::arg_iterator EI = CurFn->arg_end();
2693       --EI;
2694       llvm::Value *ArgStruct = &*EI;
2695       llvm::Value *SRet = Builder.CreateStructGEP(
2696           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2697       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2698     }
2699     break;
2700 
2701   case ABIArgInfo::Indirect: {
2702     auto AI = CurFn->arg_begin();
2703     if (RetAI.isSRetAfterThis())
2704       ++AI;
2705     switch (getEvaluationKind(RetTy)) {
2706     case TEK_Complex: {
2707       ComplexPairTy RT =
2708         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2709       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2710                          /*isInit*/ true);
2711       break;
2712     }
2713     case TEK_Aggregate:
2714       // Do nothing; aggregrates get evaluated directly into the destination.
2715       break;
2716     case TEK_Scalar:
2717       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2718                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2719                         /*isInit*/ true);
2720       break;
2721     }
2722     break;
2723   }
2724 
2725   case ABIArgInfo::Extend:
2726   case ABIArgInfo::Direct:
2727     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2728         RetAI.getDirectOffset() == 0) {
2729       // The internal return value temp always will have pointer-to-return-type
2730       // type, just do a load.
2731 
2732       // If there is a dominating store to ReturnValue, we can elide
2733       // the load, zap the store, and usually zap the alloca.
2734       if (llvm::StoreInst *SI =
2735               findDominatingStoreToReturnValue(*this)) {
2736         // Reuse the debug location from the store unless there is
2737         // cleanup code to be emitted between the store and return
2738         // instruction.
2739         if (EmitRetDbgLoc && !AutoreleaseResult)
2740           RetDbgLoc = SI->getDebugLoc();
2741         // Get the stored value and nuke the now-dead store.
2742         RV = SI->getValueOperand();
2743         SI->eraseFromParent();
2744 
2745         // If that was the only use of the return value, nuke it as well now.
2746         auto returnValueInst = ReturnValue.getPointer();
2747         if (returnValueInst->use_empty()) {
2748           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2749             alloca->eraseFromParent();
2750             ReturnValue = Address::invalid();
2751           }
2752         }
2753 
2754       // Otherwise, we have to do a simple load.
2755       } else {
2756         RV = Builder.CreateLoad(ReturnValue);
2757       }
2758     } else {
2759       // If the value is offset in memory, apply the offset now.
2760       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2761 
2762       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2763     }
2764 
2765     // In ARC, end functions that return a retainable type with a call
2766     // to objc_autoreleaseReturnValue.
2767     if (AutoreleaseResult) {
2768 #ifndef NDEBUG
2769       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2770       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2771       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2772       // CurCodeDecl or BlockInfo.
2773       QualType RT;
2774 
2775       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2776         RT = FD->getReturnType();
2777       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2778         RT = MD->getReturnType();
2779       else if (isa<BlockDecl>(CurCodeDecl))
2780         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2781       else
2782         llvm_unreachable("Unexpected function/method type");
2783 
2784       assert(getLangOpts().ObjCAutoRefCount &&
2785              !FI.isReturnsRetained() &&
2786              RT->isObjCRetainableType());
2787 #endif
2788       RV = emitAutoreleaseOfResult(*this, RV);
2789     }
2790 
2791     break;
2792 
2793   case ABIArgInfo::Ignore:
2794     break;
2795 
2796   case ABIArgInfo::CoerceAndExpand: {
2797     auto coercionType = RetAI.getCoerceAndExpandType();
2798     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2799 
2800     // Load all of the coerced elements out into results.
2801     llvm::SmallVector<llvm::Value*, 4> results;
2802     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2803     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2804       auto coercedEltType = coercionType->getElementType(i);
2805       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2806         continue;
2807 
2808       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2809       auto elt = Builder.CreateLoad(eltAddr);
2810       results.push_back(elt);
2811     }
2812 
2813     // If we have one result, it's the single direct result type.
2814     if (results.size() == 1) {
2815       RV = results[0];
2816 
2817     // Otherwise, we need to make a first-class aggregate.
2818     } else {
2819       // Construct a return type that lacks padding elements.
2820       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2821 
2822       RV = llvm::UndefValue::get(returnType);
2823       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2824         RV = Builder.CreateInsertValue(RV, results[i], i);
2825       }
2826     }
2827     break;
2828   }
2829 
2830   case ABIArgInfo::Expand:
2831     llvm_unreachable("Invalid ABI kind for return argument");
2832   }
2833 
2834   llvm::Instruction *Ret;
2835   if (RV) {
2836     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2837       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
2838         SanitizerScope SanScope(this);
2839         llvm::Value *Cond = Builder.CreateICmpNE(
2840             RV, llvm::Constant::getNullValue(RV->getType()));
2841         llvm::Constant *StaticData[] = {
2842             EmitCheckSourceLocation(EndLoc),
2843             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2844         };
2845         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2846                   "nonnull_return", StaticData, None);
2847       }
2848     }
2849     Ret = Builder.CreateRet(RV);
2850   } else {
2851     Ret = Builder.CreateRetVoid();
2852   }
2853 
2854   if (RetDbgLoc)
2855     Ret->setDebugLoc(std::move(RetDbgLoc));
2856 }
2857 
2858 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2859   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2860   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2861 }
2862 
2863 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2864                                           QualType Ty) {
2865   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2866   // placeholders.
2867   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2868   llvm::Value *Placeholder =
2869     llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2870   Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder);
2871 
2872   // FIXME: When we generate this IR in one pass, we shouldn't need
2873   // this win32-specific alignment hack.
2874   CharUnits Align = CharUnits::fromQuantity(4);
2875 
2876   return AggValueSlot::forAddr(Address(Placeholder, Align),
2877                                Ty.getQualifiers(),
2878                                AggValueSlot::IsNotDestructed,
2879                                AggValueSlot::DoesNotNeedGCBarriers,
2880                                AggValueSlot::IsNotAliased);
2881 }
2882 
2883 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2884                                           const VarDecl *param,
2885                                           SourceLocation loc) {
2886   // StartFunction converted the ABI-lowered parameter(s) into a
2887   // local alloca.  We need to turn that into an r-value suitable
2888   // for EmitCall.
2889   Address local = GetAddrOfLocalVar(param);
2890 
2891   QualType type = param->getType();
2892 
2893   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2894          "cannot emit delegate call arguments for inalloca arguments!");
2895 
2896   // For the most part, we just need to load the alloca, except that
2897   // aggregate r-values are actually pointers to temporaries.
2898   if (type->isReferenceType())
2899     args.add(RValue::get(Builder.CreateLoad(local)), type);
2900   else
2901     args.add(convertTempToRValue(local, type, loc), type);
2902 }
2903 
2904 static bool isProvablyNull(llvm::Value *addr) {
2905   return isa<llvm::ConstantPointerNull>(addr);
2906 }
2907 
2908 static bool isProvablyNonNull(llvm::Value *addr) {
2909   return isa<llvm::AllocaInst>(addr);
2910 }
2911 
2912 /// Emit the actual writing-back of a writeback.
2913 static void emitWriteback(CodeGenFunction &CGF,
2914                           const CallArgList::Writeback &writeback) {
2915   const LValue &srcLV = writeback.Source;
2916   Address srcAddr = srcLV.getAddress();
2917   assert(!isProvablyNull(srcAddr.getPointer()) &&
2918          "shouldn't have writeback for provably null argument");
2919 
2920   llvm::BasicBlock *contBB = nullptr;
2921 
2922   // If the argument wasn't provably non-null, we need to null check
2923   // before doing the store.
2924   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2925   if (!provablyNonNull) {
2926     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2927     contBB = CGF.createBasicBlock("icr.done");
2928 
2929     llvm::Value *isNull =
2930       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2931     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2932     CGF.EmitBlock(writebackBB);
2933   }
2934 
2935   // Load the value to writeback.
2936   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2937 
2938   // Cast it back, in case we're writing an id to a Foo* or something.
2939   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
2940                                     "icr.writeback-cast");
2941 
2942   // Perform the writeback.
2943 
2944   // If we have a "to use" value, it's something we need to emit a use
2945   // of.  This has to be carefully threaded in: if it's done after the
2946   // release it's potentially undefined behavior (and the optimizer
2947   // will ignore it), and if it happens before the retain then the
2948   // optimizer could move the release there.
2949   if (writeback.ToUse) {
2950     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2951 
2952     // Retain the new value.  No need to block-copy here:  the block's
2953     // being passed up the stack.
2954     value = CGF.EmitARCRetainNonBlock(value);
2955 
2956     // Emit the intrinsic use here.
2957     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2958 
2959     // Load the old value (primitively).
2960     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2961 
2962     // Put the new value in place (primitively).
2963     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2964 
2965     // Release the old value.
2966     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2967 
2968   // Otherwise, we can just do a normal lvalue store.
2969   } else {
2970     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2971   }
2972 
2973   // Jump to the continuation block.
2974   if (!provablyNonNull)
2975     CGF.EmitBlock(contBB);
2976 }
2977 
2978 static void emitWritebacks(CodeGenFunction &CGF,
2979                            const CallArgList &args) {
2980   for (const auto &I : args.writebacks())
2981     emitWriteback(CGF, I);
2982 }
2983 
2984 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2985                                             const CallArgList &CallArgs) {
2986   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2987   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2988     CallArgs.getCleanupsToDeactivate();
2989   // Iterate in reverse to increase the likelihood of popping the cleanup.
2990   for (const auto &I : llvm::reverse(Cleanups)) {
2991     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
2992     I.IsActiveIP->eraseFromParent();
2993   }
2994 }
2995 
2996 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2997   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2998     if (uop->getOpcode() == UO_AddrOf)
2999       return uop->getSubExpr();
3000   return nullptr;
3001 }
3002 
3003 /// Emit an argument that's being passed call-by-writeback.  That is,
3004 /// we are passing the address of an __autoreleased temporary; it
3005 /// might be copy-initialized with the current value of the given
3006 /// address, but it will definitely be copied out of after the call.
3007 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3008                              const ObjCIndirectCopyRestoreExpr *CRE) {
3009   LValue srcLV;
3010 
3011   // Make an optimistic effort to emit the address as an l-value.
3012   // This can fail if the argument expression is more complicated.
3013   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3014     srcLV = CGF.EmitLValue(lvExpr);
3015 
3016   // Otherwise, just emit it as a scalar.
3017   } else {
3018     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3019 
3020     QualType srcAddrType =
3021       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3022     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3023   }
3024   Address srcAddr = srcLV.getAddress();
3025 
3026   // The dest and src types don't necessarily match in LLVM terms
3027   // because of the crazy ObjC compatibility rules.
3028 
3029   llvm::PointerType *destType =
3030     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3031 
3032   // If the address is a constant null, just pass the appropriate null.
3033   if (isProvablyNull(srcAddr.getPointer())) {
3034     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3035              CRE->getType());
3036     return;
3037   }
3038 
3039   // Create the temporary.
3040   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3041                                       CGF.getPointerAlign(),
3042                                       "icr.temp");
3043   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3044   // and that cleanup will be conditional if we can't prove that the l-value
3045   // isn't null, so we need to register a dominating point so that the cleanups
3046   // system will make valid IR.
3047   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3048 
3049   // Zero-initialize it if we're not doing a copy-initialization.
3050   bool shouldCopy = CRE->shouldCopy();
3051   if (!shouldCopy) {
3052     llvm::Value *null =
3053       llvm::ConstantPointerNull::get(
3054         cast<llvm::PointerType>(destType->getElementType()));
3055     CGF.Builder.CreateStore(null, temp);
3056   }
3057 
3058   llvm::BasicBlock *contBB = nullptr;
3059   llvm::BasicBlock *originBB = nullptr;
3060 
3061   // If the address is *not* known to be non-null, we need to switch.
3062   llvm::Value *finalArgument;
3063 
3064   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
3065   if (provablyNonNull) {
3066     finalArgument = temp.getPointer();
3067   } else {
3068     llvm::Value *isNull =
3069       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3070 
3071     finalArgument = CGF.Builder.CreateSelect(isNull,
3072                                    llvm::ConstantPointerNull::get(destType),
3073                                              temp.getPointer(), "icr.argument");
3074 
3075     // If we need to copy, then the load has to be conditional, which
3076     // means we need control flow.
3077     if (shouldCopy) {
3078       originBB = CGF.Builder.GetInsertBlock();
3079       contBB = CGF.createBasicBlock("icr.cont");
3080       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3081       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3082       CGF.EmitBlock(copyBB);
3083       condEval.begin(CGF);
3084     }
3085   }
3086 
3087   llvm::Value *valueToUse = nullptr;
3088 
3089   // Perform a copy if necessary.
3090   if (shouldCopy) {
3091     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3092     assert(srcRV.isScalar());
3093 
3094     llvm::Value *src = srcRV.getScalarVal();
3095     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3096                                     "icr.cast");
3097 
3098     // Use an ordinary store, not a store-to-lvalue.
3099     CGF.Builder.CreateStore(src, temp);
3100 
3101     // If optimization is enabled, and the value was held in a
3102     // __strong variable, we need to tell the optimizer that this
3103     // value has to stay alive until we're doing the store back.
3104     // This is because the temporary is effectively unretained,
3105     // and so otherwise we can violate the high-level semantics.
3106     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3107         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3108       valueToUse = src;
3109     }
3110   }
3111 
3112   // Finish the control flow if we needed it.
3113   if (shouldCopy && !provablyNonNull) {
3114     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3115     CGF.EmitBlock(contBB);
3116 
3117     // Make a phi for the value to intrinsically use.
3118     if (valueToUse) {
3119       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3120                                                       "icr.to-use");
3121       phiToUse->addIncoming(valueToUse, copyBB);
3122       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3123                             originBB);
3124       valueToUse = phiToUse;
3125     }
3126 
3127     condEval.end(CGF);
3128   }
3129 
3130   args.addWriteback(srcLV, temp, valueToUse);
3131   args.add(RValue::get(finalArgument), CRE->getType());
3132 }
3133 
3134 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3135   assert(!StackBase && !StackCleanup.isValid());
3136 
3137   // Save the stack.
3138   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3139   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3140 }
3141 
3142 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3143   if (StackBase) {
3144     // Restore the stack after the call.
3145     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3146     CGF.Builder.CreateCall(F, StackBase);
3147   }
3148 }
3149 
3150 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3151                                           SourceLocation ArgLoc,
3152                                           const FunctionDecl *FD,
3153                                           unsigned ParmNum) {
3154   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
3155     return;
3156   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
3157   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3158   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
3159   if (!NNAttr)
3160     return;
3161   SanitizerScope SanScope(this);
3162   assert(RV.isScalar());
3163   llvm::Value *V = RV.getScalarVal();
3164   llvm::Value *Cond =
3165       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3166   llvm::Constant *StaticData[] = {
3167       EmitCheckSourceLocation(ArgLoc),
3168       EmitCheckSourceLocation(NNAttr->getLocation()),
3169       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3170   };
3171   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
3172                 "nonnull_arg", StaticData, None);
3173 }
3174 
3175 void CodeGenFunction::EmitCallArgs(
3176     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3177     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3178     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) {
3179   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3180 
3181   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) {
3182     if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams())
3183       return;
3184     auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3185     if (PS == nullptr)
3186       return;
3187 
3188     const auto &Context = getContext();
3189     auto SizeTy = Context.getSizeType();
3190     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3191     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T);
3192     Args.add(RValue::get(V), SizeTy);
3193   };
3194 
3195   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3196   // because arguments are destroyed left to right in the callee.
3197   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3198     // Insert a stack save if we're going to need any inalloca args.
3199     bool HasInAllocaArgs = false;
3200     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3201          I != E && !HasInAllocaArgs; ++I)
3202       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3203     if (HasInAllocaArgs) {
3204       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3205       Args.allocateArgumentMemory(*this);
3206     }
3207 
3208     // Evaluate each argument.
3209     size_t CallArgsStart = Args.size();
3210     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
3211       CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
3212       MaybeEmitImplicitObjectSize(I, *Arg);
3213       EmitCallArg(Args, *Arg, ArgTypes[I]);
3214       EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
3215                           CalleeDecl, ParamsToSkip + I);
3216     }
3217 
3218     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3219     // IR function.
3220     std::reverse(Args.begin() + CallArgsStart, Args.end());
3221     return;
3222   }
3223 
3224   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3225     CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
3226     assert(Arg != ArgRange.end());
3227     EmitCallArg(Args, *Arg, ArgTypes[I]);
3228     EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
3229                         CalleeDecl, ParamsToSkip + I);
3230     MaybeEmitImplicitObjectSize(I, *Arg);
3231   }
3232 }
3233 
3234 namespace {
3235 
3236 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3237   DestroyUnpassedArg(Address Addr, QualType Ty)
3238       : Addr(Addr), Ty(Ty) {}
3239 
3240   Address Addr;
3241   QualType Ty;
3242 
3243   void Emit(CodeGenFunction &CGF, Flags flags) override {
3244     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3245     assert(!Dtor->isTrivial());
3246     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3247                               /*Delegating=*/false, Addr);
3248   }
3249 };
3250 
3251 struct DisableDebugLocationUpdates {
3252   CodeGenFunction &CGF;
3253   bool disabledDebugInfo;
3254   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3255     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3256       CGF.disableDebugInfo();
3257   }
3258   ~DisableDebugLocationUpdates() {
3259     if (disabledDebugInfo)
3260       CGF.enableDebugInfo();
3261   }
3262 };
3263 
3264 } // end anonymous namespace
3265 
3266 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3267                                   QualType type) {
3268   DisableDebugLocationUpdates Dis(*this, E);
3269   if (const ObjCIndirectCopyRestoreExpr *CRE
3270         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3271     assert(getLangOpts().ObjCAutoRefCount);
3272     assert(getContext().hasSameType(E->getType(), type));
3273     return emitWritebackArg(*this, args, CRE);
3274   }
3275 
3276   assert(type->isReferenceType() == E->isGLValue() &&
3277          "reference binding to unmaterialized r-value!");
3278 
3279   if (E->isGLValue()) {
3280     assert(E->getObjectKind() == OK_Ordinary);
3281     return args.add(EmitReferenceBindingToExpr(E), type);
3282   }
3283 
3284   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3285 
3286   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3287   // However, we still have to push an EH-only cleanup in case we unwind before
3288   // we make it to the call.
3289   if (HasAggregateEvalKind &&
3290       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3291     // If we're using inalloca, use the argument memory.  Otherwise, use a
3292     // temporary.
3293     AggValueSlot Slot;
3294     if (args.isUsingInAlloca())
3295       Slot = createPlaceholderSlot(*this, type);
3296     else
3297       Slot = CreateAggTemp(type, "agg.tmp");
3298 
3299     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3300     bool DestroyedInCallee =
3301         RD && RD->hasNonTrivialDestructor() &&
3302         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
3303     if (DestroyedInCallee)
3304       Slot.setExternallyDestructed();
3305 
3306     EmitAggExpr(E, Slot);
3307     RValue RV = Slot.asRValue();
3308     args.add(RV, type);
3309 
3310     if (DestroyedInCallee) {
3311       // Create a no-op GEP between the placeholder and the cleanup so we can
3312       // RAUW it successfully.  It also serves as a marker of the first
3313       // instruction where the cleanup is active.
3314       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3315                                               type);
3316       // This unreachable is a temporary marker which will be removed later.
3317       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3318       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3319     }
3320     return;
3321   }
3322 
3323   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3324       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3325     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3326     assert(L.isSimple());
3327     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
3328       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
3329     } else {
3330       // We can't represent a misaligned lvalue in the CallArgList, so copy
3331       // to an aligned temporary now.
3332       Address tmp = CreateMemTemp(type);
3333       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
3334       args.add(RValue::getAggregate(tmp), type);
3335     }
3336     return;
3337   }
3338 
3339   args.add(EmitAnyExprToTemp(E), type);
3340 }
3341 
3342 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3343   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3344   // implicitly widens null pointer constants that are arguments to varargs
3345   // functions to pointer-sized ints.
3346   if (!getTarget().getTriple().isOSWindows())
3347     return Arg->getType();
3348 
3349   if (Arg->getType()->isIntegerType() &&
3350       getContext().getTypeSize(Arg->getType()) <
3351           getContext().getTargetInfo().getPointerWidth(0) &&
3352       Arg->isNullPointerConstant(getContext(),
3353                                  Expr::NPC_ValueDependentIsNotNull)) {
3354     return getContext().getIntPtrType();
3355   }
3356 
3357   return Arg->getType();
3358 }
3359 
3360 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3361 // optimizer it can aggressively ignore unwind edges.
3362 void
3363 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3364   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3365       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3366     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3367                       CGM.getNoObjCARCExceptionsMetadata());
3368 }
3369 
3370 /// Emits a call to the given no-arguments nounwind runtime function.
3371 llvm::CallInst *
3372 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3373                                          const llvm::Twine &name) {
3374   return EmitNounwindRuntimeCall(callee, None, name);
3375 }
3376 
3377 /// Emits a call to the given nounwind runtime function.
3378 llvm::CallInst *
3379 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3380                                          ArrayRef<llvm::Value*> args,
3381                                          const llvm::Twine &name) {
3382   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3383   call->setDoesNotThrow();
3384   return call;
3385 }
3386 
3387 /// Emits a simple call (never an invoke) to the given no-arguments
3388 /// runtime function.
3389 llvm::CallInst *
3390 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3391                                  const llvm::Twine &name) {
3392   return EmitRuntimeCall(callee, None, name);
3393 }
3394 
3395 // Calls which may throw must have operand bundles indicating which funclet
3396 // they are nested within.
3397 static void
3398 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad,
3399                      SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
3400   // There is no need for a funclet operand bundle if we aren't inside a
3401   // funclet.
3402   if (!CurrentFuncletPad)
3403     return;
3404 
3405   // Skip intrinsics which cannot throw.
3406   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3407   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3408     return;
3409 
3410   BundleList.emplace_back("funclet", CurrentFuncletPad);
3411 }
3412 
3413 /// Emits a simple call (never an invoke) to the given runtime function.
3414 llvm::CallInst *
3415 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3416                                  ArrayRef<llvm::Value*> args,
3417                                  const llvm::Twine &name) {
3418   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3419   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3420 
3421   llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name);
3422   call->setCallingConv(getRuntimeCC());
3423   return call;
3424 }
3425 
3426 /// Emits a call or invoke to the given noreturn runtime function.
3427 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3428                                                ArrayRef<llvm::Value*> args) {
3429   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3430   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3431 
3432   if (getInvokeDest()) {
3433     llvm::InvokeInst *invoke =
3434       Builder.CreateInvoke(callee,
3435                            getUnreachableBlock(),
3436                            getInvokeDest(),
3437                            args,
3438                            BundleList);
3439     invoke->setDoesNotReturn();
3440     invoke->setCallingConv(getRuntimeCC());
3441   } else {
3442     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3443     call->setDoesNotReturn();
3444     call->setCallingConv(getRuntimeCC());
3445     Builder.CreateUnreachable();
3446   }
3447 }
3448 
3449 /// Emits a call or invoke instruction to the given nullary runtime function.
3450 llvm::CallSite
3451 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3452                                          const Twine &name) {
3453   return EmitRuntimeCallOrInvoke(callee, None, name);
3454 }
3455 
3456 /// Emits a call or invoke instruction to the given runtime function.
3457 llvm::CallSite
3458 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3459                                          ArrayRef<llvm::Value*> args,
3460                                          const Twine &name) {
3461   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3462   callSite.setCallingConv(getRuntimeCC());
3463   return callSite;
3464 }
3465 
3466 /// Emits a call or invoke instruction to the given function, depending
3467 /// on the current state of the EH stack.
3468 llvm::CallSite
3469 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3470                                   ArrayRef<llvm::Value *> Args,
3471                                   const Twine &Name) {
3472   llvm::BasicBlock *InvokeDest = getInvokeDest();
3473   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3474   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3475 
3476   llvm::Instruction *Inst;
3477   if (!InvokeDest)
3478     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3479   else {
3480     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3481     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3482                                 Name);
3483     EmitBlock(ContBB);
3484   }
3485 
3486   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3487   // optimizer it can aggressively ignore unwind edges.
3488   if (CGM.getLangOpts().ObjCAutoRefCount)
3489     AddObjCARCExceptionMetadata(Inst);
3490 
3491   return llvm::CallSite(Inst);
3492 }
3493 
3494 /// \brief Store a non-aggregate value to an address to initialize it.  For
3495 /// initialization, a non-atomic store will be used.
3496 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3497                                         LValue Dst) {
3498   if (Src.isScalar())
3499     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3500   else
3501     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3502 }
3503 
3504 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3505                                                   llvm::Value *New) {
3506   DeferredReplacements.push_back(std::make_pair(Old, New));
3507 }
3508 
3509 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3510                                  llvm::Value *Callee,
3511                                  ReturnValueSlot ReturnValue,
3512                                  const CallArgList &CallArgs,
3513                                  CGCalleeInfo CalleeInfo,
3514                                  llvm::Instruction **callOrInvoke) {
3515   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3516 
3517   // Handle struct-return functions by passing a pointer to the
3518   // location that we would like to return into.
3519   QualType RetTy = CallInfo.getReturnType();
3520   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3521 
3522   llvm::FunctionType *IRFuncTy =
3523     cast<llvm::FunctionType>(
3524                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3525 
3526   // If we're using inalloca, insert the allocation after the stack save.
3527   // FIXME: Do this earlier rather than hacking it in here!
3528   Address ArgMemory = Address::invalid();
3529   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3530   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3531     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
3532     llvm::Instruction *IP = CallArgs.getStackBase();
3533     llvm::AllocaInst *AI;
3534     if (IP) {
3535       IP = IP->getNextNode();
3536       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3537     } else {
3538       AI = CreateTempAlloca(ArgStruct, "argmem");
3539     }
3540     auto Align = CallInfo.getArgStructAlignment();
3541     AI->setAlignment(Align.getQuantity());
3542     AI->setUsedWithInAlloca(true);
3543     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3544     ArgMemory = Address(AI, Align);
3545   }
3546 
3547   // Helper function to drill into the inalloca allocation.
3548   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3549     auto FieldOffset =
3550       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3551     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3552   };
3553 
3554   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3555   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3556 
3557   // If the call returns a temporary with struct return, create a temporary
3558   // alloca to hold the result, unless one is given to us.
3559   Address SRetPtr = Address::invalid();
3560   size_t UnusedReturnSize = 0;
3561   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3562     if (!ReturnValue.isNull()) {
3563       SRetPtr = ReturnValue.getValue();
3564     } else {
3565       SRetPtr = CreateMemTemp(RetTy);
3566       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3567         uint64_t size =
3568             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3569         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3570           UnusedReturnSize = size;
3571       }
3572     }
3573     if (IRFunctionArgs.hasSRetArg()) {
3574       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3575     } else if (RetAI.isInAlloca()) {
3576       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3577       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3578     }
3579   }
3580 
3581   Address swiftErrorTemp = Address::invalid();
3582   Address swiftErrorArg = Address::invalid();
3583 
3584   assert(CallInfo.arg_size() == CallArgs.size() &&
3585          "Mismatch between function signature & arguments.");
3586   unsigned ArgNo = 0;
3587   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3588   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3589        I != E; ++I, ++info_it, ++ArgNo) {
3590     const ABIArgInfo &ArgInfo = info_it->info;
3591     RValue RV = I->RV;
3592 
3593     // Insert a padding argument to ensure proper alignment.
3594     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3595       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3596           llvm::UndefValue::get(ArgInfo.getPaddingType());
3597 
3598     unsigned FirstIRArg, NumIRArgs;
3599     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3600 
3601     switch (ArgInfo.getKind()) {
3602     case ABIArgInfo::InAlloca: {
3603       assert(NumIRArgs == 0);
3604       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3605       if (RV.isAggregate()) {
3606         // Replace the placeholder with the appropriate argument slot GEP.
3607         llvm::Instruction *Placeholder =
3608             cast<llvm::Instruction>(RV.getAggregatePointer());
3609         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3610         Builder.SetInsertPoint(Placeholder);
3611         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3612         Builder.restoreIP(IP);
3613         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3614       } else {
3615         // Store the RValue into the argument struct.
3616         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3617         unsigned AS = Addr.getType()->getPointerAddressSpace();
3618         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3619         // There are some cases where a trivial bitcast is not avoidable.  The
3620         // definition of a type later in a translation unit may change it's type
3621         // from {}* to (%struct.foo*)*.
3622         if (Addr.getType() != MemType)
3623           Addr = Builder.CreateBitCast(Addr, MemType);
3624         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3625         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3626       }
3627       break;
3628     }
3629 
3630     case ABIArgInfo::Indirect: {
3631       assert(NumIRArgs == 1);
3632       if (RV.isScalar() || RV.isComplex()) {
3633         // Make a temporary alloca to pass the argument.
3634         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3635         IRCallArgs[FirstIRArg] = Addr.getPointer();
3636 
3637         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3638         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3639       } else {
3640         // We want to avoid creating an unnecessary temporary+copy here;
3641         // however, we need one in three cases:
3642         // 1. If the argument is not byval, and we are required to copy the
3643         //    source.  (This case doesn't occur on any common architecture.)
3644         // 2. If the argument is byval, RV is not sufficiently aligned, and
3645         //    we cannot force it to be sufficiently aligned.
3646         // 3. If the argument is byval, but RV is located in an address space
3647         //    different than that of the argument (0).
3648         Address Addr = RV.getAggregateAddress();
3649         CharUnits Align = ArgInfo.getIndirectAlign();
3650         const llvm::DataLayout *TD = &CGM.getDataLayout();
3651         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3652         const unsigned ArgAddrSpace =
3653             (FirstIRArg < IRFuncTy->getNumParams()
3654                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3655                  : 0);
3656         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3657             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3658              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3659                                               Align.getQuantity(), *TD)
3660                < Align.getQuantity()) ||
3661             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3662           // Create an aligned temporary, and copy to it.
3663           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3664           IRCallArgs[FirstIRArg] = AI.getPointer();
3665           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3666         } else {
3667           // Skip the extra memcpy call.
3668           IRCallArgs[FirstIRArg] = Addr.getPointer();
3669         }
3670       }
3671       break;
3672     }
3673 
3674     case ABIArgInfo::Ignore:
3675       assert(NumIRArgs == 0);
3676       break;
3677 
3678     case ABIArgInfo::Extend:
3679     case ABIArgInfo::Direct: {
3680       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3681           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3682           ArgInfo.getDirectOffset() == 0) {
3683         assert(NumIRArgs == 1);
3684         llvm::Value *V;
3685         if (RV.isScalar())
3686           V = RV.getScalarVal();
3687         else
3688           V = Builder.CreateLoad(RV.getAggregateAddress());
3689 
3690         // Implement swifterror by copying into a new swifterror argument.
3691         // We'll write back in the normal path out of the call.
3692         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
3693               == ParameterABI::SwiftErrorResult) {
3694           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
3695 
3696           QualType pointeeTy = I->Ty->getPointeeType();
3697           swiftErrorArg =
3698             Address(V, getContext().getTypeAlignInChars(pointeeTy));
3699 
3700           swiftErrorTemp =
3701             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3702           V = swiftErrorTemp.getPointer();
3703           cast<llvm::AllocaInst>(V)->setSwiftError(true);
3704 
3705           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
3706           Builder.CreateStore(errorValue, swiftErrorTemp);
3707         }
3708 
3709         // We might have to widen integers, but we should never truncate.
3710         if (ArgInfo.getCoerceToType() != V->getType() &&
3711             V->getType()->isIntegerTy())
3712           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3713 
3714         // If the argument doesn't match, perform a bitcast to coerce it.  This
3715         // can happen due to trivial type mismatches.
3716         if (FirstIRArg < IRFuncTy->getNumParams() &&
3717             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3718           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3719 
3720         IRCallArgs[FirstIRArg] = V;
3721         break;
3722       }
3723 
3724       // FIXME: Avoid the conversion through memory if possible.
3725       Address Src = Address::invalid();
3726       if (RV.isScalar() || RV.isComplex()) {
3727         Src = CreateMemTemp(I->Ty, "coerce");
3728         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3729         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3730       } else {
3731         Src = RV.getAggregateAddress();
3732       }
3733 
3734       // If the value is offset in memory, apply the offset now.
3735       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3736 
3737       // Fast-isel and the optimizer generally like scalar values better than
3738       // FCAs, so we flatten them if this is safe to do for this argument.
3739       llvm::StructType *STy =
3740             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3741       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3742         llvm::Type *SrcTy = Src.getType()->getElementType();
3743         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3744         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3745 
3746         // If the source type is smaller than the destination type of the
3747         // coerce-to logic, copy the source value into a temp alloca the size
3748         // of the destination type to allow loading all of it. The bits past
3749         // the source value are left undef.
3750         if (SrcSize < DstSize) {
3751           Address TempAlloca
3752             = CreateTempAlloca(STy, Src.getAlignment(),
3753                                Src.getName() + ".coerce");
3754           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3755           Src = TempAlloca;
3756         } else {
3757           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3758         }
3759 
3760         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3761         assert(NumIRArgs == STy->getNumElements());
3762         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3763           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3764           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3765           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3766           IRCallArgs[FirstIRArg + i] = LI;
3767         }
3768       } else {
3769         // In the simple case, just pass the coerced loaded value.
3770         assert(NumIRArgs == 1);
3771         IRCallArgs[FirstIRArg] =
3772           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3773       }
3774 
3775       break;
3776     }
3777 
3778     case ABIArgInfo::CoerceAndExpand: {
3779       auto coercionType = ArgInfo.getCoerceAndExpandType();
3780       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
3781 
3782       llvm::Value *tempSize = nullptr;
3783       Address addr = Address::invalid();
3784       if (RV.isAggregate()) {
3785         addr = RV.getAggregateAddress();
3786       } else {
3787         assert(RV.isScalar()); // complex should always just be direct
3788 
3789         llvm::Type *scalarType = RV.getScalarVal()->getType();
3790         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
3791         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
3792 
3793         tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize);
3794 
3795         // Materialize to a temporary.
3796         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
3797                  CharUnits::fromQuantity(std::max(layout->getAlignment(),
3798                                                   scalarAlign)));
3799         EmitLifetimeStart(scalarSize, addr.getPointer());
3800 
3801         Builder.CreateStore(RV.getScalarVal(), addr);
3802       }
3803 
3804       addr = Builder.CreateElementBitCast(addr, coercionType);
3805 
3806       unsigned IRArgPos = FirstIRArg;
3807       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3808         llvm::Type *eltType = coercionType->getElementType(i);
3809         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
3810         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
3811         llvm::Value *elt = Builder.CreateLoad(eltAddr);
3812         IRCallArgs[IRArgPos++] = elt;
3813       }
3814       assert(IRArgPos == FirstIRArg + NumIRArgs);
3815 
3816       if (tempSize) {
3817         EmitLifetimeEnd(tempSize, addr.getPointer());
3818       }
3819 
3820       break;
3821     }
3822 
3823     case ABIArgInfo::Expand:
3824       unsigned IRArgPos = FirstIRArg;
3825       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3826       assert(IRArgPos == FirstIRArg + NumIRArgs);
3827       break;
3828     }
3829   }
3830 
3831   if (ArgMemory.isValid()) {
3832     llvm::Value *Arg = ArgMemory.getPointer();
3833     if (CallInfo.isVariadic()) {
3834       // When passing non-POD arguments by value to variadic functions, we will
3835       // end up with a variadic prototype and an inalloca call site.  In such
3836       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3837       // the callee.
3838       unsigned CalleeAS =
3839           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3840       Callee = Builder.CreateBitCast(
3841           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3842     } else {
3843       llvm::Type *LastParamTy =
3844           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3845       if (Arg->getType() != LastParamTy) {
3846 #ifndef NDEBUG
3847         // Assert that these structs have equivalent element types.
3848         llvm::StructType *FullTy = CallInfo.getArgStruct();
3849         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3850             cast<llvm::PointerType>(LastParamTy)->getElementType());
3851         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3852         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3853                                                 DE = DeclaredTy->element_end(),
3854                                                 FI = FullTy->element_begin();
3855              DI != DE; ++DI, ++FI)
3856           assert(*DI == *FI);
3857 #endif
3858         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3859       }
3860     }
3861     assert(IRFunctionArgs.hasInallocaArg());
3862     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3863   }
3864 
3865   if (!CallArgs.getCleanupsToDeactivate().empty())
3866     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3867 
3868   // If the callee is a bitcast of a function to a varargs pointer to function
3869   // type, check to see if we can remove the bitcast.  This handles some cases
3870   // with unprototyped functions.
3871   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3872     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3873       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3874       llvm::FunctionType *CurFT =
3875         cast<llvm::FunctionType>(CurPT->getElementType());
3876       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3877 
3878       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3879           ActualFT->getReturnType() == CurFT->getReturnType() &&
3880           ActualFT->getNumParams() == CurFT->getNumParams() &&
3881           ActualFT->getNumParams() == IRCallArgs.size() &&
3882           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3883         bool ArgsMatch = true;
3884         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3885           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3886             ArgsMatch = false;
3887             break;
3888           }
3889 
3890         // Strip the cast if we can get away with it.  This is a nice cleanup,
3891         // but also allows us to inline the function at -O0 if it is marked
3892         // always_inline.
3893         if (ArgsMatch)
3894           Callee = CalleeF;
3895       }
3896     }
3897 
3898   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3899   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3900     // Inalloca argument can have different type.
3901     if (IRFunctionArgs.hasInallocaArg() &&
3902         i == IRFunctionArgs.getInallocaArgNo())
3903       continue;
3904     if (i < IRFuncTy->getNumParams())
3905       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3906   }
3907 
3908   unsigned CallingConv;
3909   CodeGen::AttributeListType AttributeList;
3910   CGM.ConstructAttributeList(Callee->getName(), CallInfo, CalleeInfo,
3911                              AttributeList, CallingConv,
3912                              /*AttrOnCallSite=*/true);
3913   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3914                                                      AttributeList);
3915 
3916   bool CannotThrow;
3917   if (currentFunctionUsesSEHTry()) {
3918     // SEH cares about asynchronous exceptions, everything can "throw."
3919     CannotThrow = false;
3920   } else if (isCleanupPadScope() &&
3921              EHPersonality::get(*this).isMSVCXXPersonality()) {
3922     // The MSVC++ personality will implicitly terminate the program if an
3923     // exception is thrown.  An unwind edge cannot be reached.
3924     CannotThrow = true;
3925   } else {
3926     // Otherwise, nowunind callsites will never throw.
3927     CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3928                                      llvm::Attribute::NoUnwind);
3929   }
3930   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
3931 
3932   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3933   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3934 
3935   llvm::CallSite CS;
3936   if (!InvokeDest) {
3937     CS = Builder.CreateCall(Callee, IRCallArgs, BundleList);
3938   } else {
3939     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3940     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs,
3941                               BundleList);
3942     EmitBlock(Cont);
3943   }
3944   if (callOrInvoke)
3945     *callOrInvoke = CS.getInstruction();
3946 
3947   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3948       !CS.hasFnAttr(llvm::Attribute::NoInline))
3949     Attrs =
3950         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3951                            llvm::Attribute::AlwaysInline);
3952 
3953   // Disable inlining inside SEH __try blocks.
3954   if (isSEHTryScope())
3955     Attrs =
3956         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3957                            llvm::Attribute::NoInline);
3958 
3959   CS.setAttributes(Attrs);
3960   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3961 
3962   // Insert instrumentation or attach profile metadata at indirect call sites.
3963   // For more details, see the comment before the definition of
3964   // IPVK_IndirectCallTarget in InstrProfData.inc.
3965   if (!CS.getCalledFunction())
3966     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
3967                      CS.getInstruction(), Callee);
3968 
3969   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3970   // optimizer it can aggressively ignore unwind edges.
3971   if (CGM.getLangOpts().ObjCAutoRefCount)
3972     AddObjCARCExceptionMetadata(CS.getInstruction());
3973 
3974   // If the call doesn't return, finish the basic block and clear the
3975   // insertion point; this allows the rest of IRgen to discard
3976   // unreachable code.
3977   if (CS.doesNotReturn()) {
3978     if (UnusedReturnSize)
3979       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3980                       SRetPtr.getPointer());
3981 
3982     Builder.CreateUnreachable();
3983     Builder.ClearInsertionPoint();
3984 
3985     // FIXME: For now, emit a dummy basic block because expr emitters in
3986     // generally are not ready to handle emitting expressions at unreachable
3987     // points.
3988     EnsureInsertPoint();
3989 
3990     // Return a reasonable RValue.
3991     return GetUndefRValue(RetTy);
3992   }
3993 
3994   llvm::Instruction *CI = CS.getInstruction();
3995   if (!CI->getType()->isVoidTy())
3996     CI->setName("call");
3997 
3998   // Perform the swifterror writeback.
3999   if (swiftErrorTemp.isValid()) {
4000     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4001     Builder.CreateStore(errorResult, swiftErrorArg);
4002   }
4003 
4004   // Emit any writebacks immediately.  Arguably this should happen
4005   // after any return-value munging.
4006   if (CallArgs.hasWritebacks())
4007     emitWritebacks(*this, CallArgs);
4008 
4009   // The stack cleanup for inalloca arguments has to run out of the normal
4010   // lexical order, so deactivate it and run it manually here.
4011   CallArgs.freeArgumentMemory(*this);
4012 
4013   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4014     const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
4015     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4016       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4017   }
4018 
4019   RValue Ret = [&] {
4020     switch (RetAI.getKind()) {
4021     case ABIArgInfo::CoerceAndExpand: {
4022       auto coercionType = RetAI.getCoerceAndExpandType();
4023       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4024 
4025       Address addr = SRetPtr;
4026       addr = Builder.CreateElementBitCast(addr, coercionType);
4027 
4028       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4029       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4030 
4031       unsigned unpaddedIndex = 0;
4032       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4033         llvm::Type *eltType = coercionType->getElementType(i);
4034         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4035         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4036         llvm::Value *elt = CI;
4037         if (requiresExtract)
4038           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4039         else
4040           assert(unpaddedIndex == 0);
4041         Builder.CreateStore(elt, eltAddr);
4042       }
4043       // FALLTHROUGH
4044     }
4045 
4046     case ABIArgInfo::InAlloca:
4047     case ABIArgInfo::Indirect: {
4048       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4049       if (UnusedReturnSize)
4050         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4051                         SRetPtr.getPointer());
4052       return ret;
4053     }
4054 
4055     case ABIArgInfo::Ignore:
4056       // If we are ignoring an argument that had a result, make sure to
4057       // construct the appropriate return value for our caller.
4058       return GetUndefRValue(RetTy);
4059 
4060     case ABIArgInfo::Extend:
4061     case ABIArgInfo::Direct: {
4062       llvm::Type *RetIRTy = ConvertType(RetTy);
4063       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4064         switch (getEvaluationKind(RetTy)) {
4065         case TEK_Complex: {
4066           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4067           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4068           return RValue::getComplex(std::make_pair(Real, Imag));
4069         }
4070         case TEK_Aggregate: {
4071           Address DestPtr = ReturnValue.getValue();
4072           bool DestIsVolatile = ReturnValue.isVolatile();
4073 
4074           if (!DestPtr.isValid()) {
4075             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4076             DestIsVolatile = false;
4077           }
4078           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4079           return RValue::getAggregate(DestPtr);
4080         }
4081         case TEK_Scalar: {
4082           // If the argument doesn't match, perform a bitcast to coerce it.  This
4083           // can happen due to trivial type mismatches.
4084           llvm::Value *V = CI;
4085           if (V->getType() != RetIRTy)
4086             V = Builder.CreateBitCast(V, RetIRTy);
4087           return RValue::get(V);
4088         }
4089         }
4090         llvm_unreachable("bad evaluation kind");
4091       }
4092 
4093       Address DestPtr = ReturnValue.getValue();
4094       bool DestIsVolatile = ReturnValue.isVolatile();
4095 
4096       if (!DestPtr.isValid()) {
4097         DestPtr = CreateMemTemp(RetTy, "coerce");
4098         DestIsVolatile = false;
4099       }
4100 
4101       // If the value is offset in memory, apply the offset now.
4102       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4103       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4104 
4105       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4106     }
4107 
4108     case ABIArgInfo::Expand:
4109       llvm_unreachable("Invalid ABI kind for return argument");
4110     }
4111 
4112     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4113   } ();
4114 
4115   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
4116 
4117   if (Ret.isScalar() && TargetDecl) {
4118     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4119       llvm::Value *OffsetValue = nullptr;
4120       if (const auto *Offset = AA->getOffset())
4121         OffsetValue = EmitScalarExpr(Offset);
4122 
4123       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4124       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4125       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4126                               OffsetValue);
4127     }
4128   }
4129 
4130   return Ret;
4131 }
4132 
4133 /* VarArg handling */
4134 
4135 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4136   VAListAddr = VE->isMicrosoftABI()
4137                  ? EmitMSVAListRef(VE->getSubExpr())
4138                  : EmitVAListRef(VE->getSubExpr());
4139   QualType Ty = VE->getType();
4140   if (VE->isMicrosoftABI())
4141     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4142   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4143 }
4144