1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 using namespace clang;
35 using namespace CodeGen;
36 
37 /***/
38 
39 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
40   switch (CC) {
41   default: return llvm::CallingConv::C;
42   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
43   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
44   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
45   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
46   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
47   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
48   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
49   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
50   // TODO: add support for CC_X86Pascal to llvm
51   }
52 }
53 
54 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
55 /// qualification.
56 /// FIXME: address space qualification?
57 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
58   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
59   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
60 }
61 
62 /// Returns the canonical formal type of the given C++ method.
63 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
64   return MD->getType()->getCanonicalTypeUnqualified()
65            .getAs<FunctionProtoType>();
66 }
67 
68 /// Returns the "extra-canonicalized" return type, which discards
69 /// qualifiers on the return type.  Codegen doesn't care about them,
70 /// and it makes ABI code a little easier to be able to assume that
71 /// all parameter and return types are top-level unqualified.
72 static CanQualType GetReturnType(QualType RetTy) {
73   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
74 }
75 
76 /// Arrange the argument and result information for a value of the given
77 /// unprototyped freestanding function type.
78 const CGFunctionInfo &
79 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
80   // When translating an unprototyped function type, always use a
81   // variadic type.
82   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
83                                  false, None, FTNP->getExtInfo(),
84                                  RequiredArgs(0));
85 }
86 
87 /// Arrange the LLVM function layout for a value of the given function
88 /// type, on top of any implicit parameters already stored.
89 static const CGFunctionInfo &
90 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool IsInstanceMethod,
91                         SmallVectorImpl<CanQualType> &prefix,
92                         CanQual<FunctionProtoType> FTP) {
93   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
94   // FIXME: Kill copy.
95   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
96     prefix.push_back(FTP->getParamType(i));
97   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
98   return CGT.arrangeLLVMFunctionInfo(resultType, IsInstanceMethod, prefix,
99                                      FTP->getExtInfo(), required);
100 }
101 
102 /// Arrange the argument and result information for a value of the
103 /// given freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
106   SmallVector<CanQualType, 16> argTypes;
107   return ::arrangeLLVMFunctionInfo(*this, false, argTypes, FTP);
108 }
109 
110 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
111   // Set the appropriate calling convention for the Function.
112   if (D->hasAttr<StdCallAttr>())
113     return CC_X86StdCall;
114 
115   if (D->hasAttr<FastCallAttr>())
116     return CC_X86FastCall;
117 
118   if (D->hasAttr<ThisCallAttr>())
119     return CC_X86ThisCall;
120 
121   if (D->hasAttr<PascalAttr>())
122     return CC_X86Pascal;
123 
124   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
125     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
126 
127   if (D->hasAttr<PnaclCallAttr>())
128     return CC_PnaclCall;
129 
130   if (D->hasAttr<IntelOclBiccAttr>())
131     return CC_IntelOclBicc;
132 
133   if (D->hasAttr<MSABIAttr>())
134     return IsWindows ? CC_C : CC_X86_64Win64;
135 
136   if (D->hasAttr<SysVABIAttr>())
137     return IsWindows ? CC_X86_64SysV : CC_C;
138 
139   return CC_C;
140 }
141 
142 static bool isAAPCSVFP(const CGFunctionInfo &FI, const TargetInfo &Target) {
143   switch (FI.getEffectiveCallingConvention()) {
144   case llvm::CallingConv::C:
145     switch (Target.getTriple().getEnvironment()) {
146     case llvm::Triple::EABIHF:
147     case llvm::Triple::GNUEABIHF:
148       return true;
149     default:
150       return false;
151     }
152   case llvm::CallingConv::ARM_AAPCS_VFP:
153     return true;
154   default:
155     return false;
156   }
157 }
158 
159 /// Arrange the argument and result information for a call to an
160 /// unknown C++ non-static member function of the given abstract type.
161 /// (Zero value of RD means we don't have any meaningful "this" argument type,
162 ///  so fall back to a generic pointer type).
163 /// The member function must be an ordinary function, i.e. not a
164 /// constructor or destructor.
165 const CGFunctionInfo &
166 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
167                                    const FunctionProtoType *FTP) {
168   SmallVector<CanQualType, 16> argTypes;
169 
170   // Add the 'this' pointer.
171   if (RD)
172     argTypes.push_back(GetThisType(Context, RD));
173   else
174     argTypes.push_back(Context.VoidPtrTy);
175 
176   return ::arrangeLLVMFunctionInfo(
177       *this, true, argTypes,
178       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
179 }
180 
181 /// Arrange the argument and result information for a declaration or
182 /// definition of the given C++ non-static member function.  The
183 /// member function must be an ordinary function, i.e. not a
184 /// constructor or destructor.
185 const CGFunctionInfo &
186 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
187   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
188   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
189 
190   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
191 
192   if (MD->isInstance()) {
193     // The abstract case is perfectly fine.
194     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
195     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
196   }
197 
198   return arrangeFreeFunctionType(prototype);
199 }
200 
201 /// Arrange the argument and result information for a declaration
202 /// or definition to the given constructor variant.
203 const CGFunctionInfo &
204 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
205                                                CXXCtorType ctorKind) {
206   SmallVector<CanQualType, 16> argTypes;
207   argTypes.push_back(GetThisType(Context, D->getParent()));
208 
209   GlobalDecl GD(D, ctorKind);
210   CanQualType resultType =
211     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
212 
213   CanQual<FunctionProtoType> FTP = GetFormalType(D);
214 
215   // Add the formal parameters.
216   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
217     argTypes.push_back(FTP->getParamType(i));
218 
219   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
220 
221   RequiredArgs required =
222       (D->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
223 
224   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
225   return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo, required);
226 }
227 
228 /// Arrange a call to a C++ method, passing the given arguments.
229 const CGFunctionInfo &
230 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
231                                         const CXXConstructorDecl *D,
232                                         CXXCtorType CtorKind,
233                                         unsigned ExtraArgs) {
234   // FIXME: Kill copy.
235   SmallVector<CanQualType, 16> ArgTypes;
236   for (const auto &Arg : args)
237     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
238 
239   CanQual<FunctionProtoType> FPT = GetFormalType(D);
240   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
241   GlobalDecl GD(D, CtorKind);
242   CanQualType ResultType =
243       TheCXXABI.HasThisReturn(GD) ? ArgTypes.front() : Context.VoidTy;
244 
245   FunctionType::ExtInfo Info = FPT->getExtInfo();
246   return arrangeLLVMFunctionInfo(ResultType, true, ArgTypes, Info, Required);
247 }
248 
249 /// Arrange the argument and result information for a declaration,
250 /// definition, or call to the given destructor variant.  It so
251 /// happens that all three cases produce the same information.
252 const CGFunctionInfo &
253 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
254                                    CXXDtorType dtorKind) {
255   SmallVector<CanQualType, 2> argTypes;
256   argTypes.push_back(GetThisType(Context, D->getParent()));
257 
258   GlobalDecl GD(D, dtorKind);
259   CanQualType resultType =
260     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
261 
262   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
263 
264   CanQual<FunctionProtoType> FTP = GetFormalType(D);
265   assert(FTP->getNumParams() == 0 && "dtor with formal parameters");
266   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
267 
268   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
269   return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo,
270                                  RequiredArgs::All);
271 }
272 
273 /// Arrange the argument and result information for the declaration or
274 /// definition of the given function.
275 const CGFunctionInfo &
276 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
277   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
278     if (MD->isInstance())
279       return arrangeCXXMethodDeclaration(MD);
280 
281   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
282 
283   assert(isa<FunctionType>(FTy));
284 
285   // When declaring a function without a prototype, always use a
286   // non-variadic type.
287   if (isa<FunctionNoProtoType>(FTy)) {
288     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
289     return arrangeLLVMFunctionInfo(noProto->getReturnType(), false, None,
290                                    noProto->getExtInfo(), RequiredArgs::All);
291   }
292 
293   assert(isa<FunctionProtoType>(FTy));
294   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
295 }
296 
297 /// Arrange the argument and result information for the declaration or
298 /// definition of an Objective-C method.
299 const CGFunctionInfo &
300 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
301   // It happens that this is the same as a call with no optional
302   // arguments, except also using the formal 'self' type.
303   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
304 }
305 
306 /// Arrange the argument and result information for the function type
307 /// through which to perform a send to the given Objective-C method,
308 /// using the given receiver type.  The receiver type is not always
309 /// the 'self' type of the method or even an Objective-C pointer type.
310 /// This is *not* the right method for actually performing such a
311 /// message send, due to the possibility of optional arguments.
312 const CGFunctionInfo &
313 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
314                                               QualType receiverType) {
315   SmallVector<CanQualType, 16> argTys;
316   argTys.push_back(Context.getCanonicalParamType(receiverType));
317   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
318   // FIXME: Kill copy?
319   for (const auto *I : MD->params()) {
320     argTys.push_back(Context.getCanonicalParamType(I->getType()));
321   }
322 
323   FunctionType::ExtInfo einfo;
324   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
325   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
326 
327   if (getContext().getLangOpts().ObjCAutoRefCount &&
328       MD->hasAttr<NSReturnsRetainedAttr>())
329     einfo = einfo.withProducesResult(true);
330 
331   RequiredArgs required =
332     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
333 
334   return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), false,
335                                  argTys, einfo, required);
336 }
337 
338 const CGFunctionInfo &
339 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
340   // FIXME: Do we need to handle ObjCMethodDecl?
341   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
342 
343   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
344     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
345 
346   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
347     return arrangeCXXDestructor(DD, GD.getDtorType());
348 
349   return arrangeFunctionDeclaration(FD);
350 }
351 
352 /// Arrange a call as unto a free function, except possibly with an
353 /// additional number of formal parameters considered required.
354 static const CGFunctionInfo &
355 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
356                             CodeGenModule &CGM,
357                             const CallArgList &args,
358                             const FunctionType *fnType,
359                             unsigned numExtraRequiredArgs) {
360   assert(args.size() >= numExtraRequiredArgs);
361 
362   // In most cases, there are no optional arguments.
363   RequiredArgs required = RequiredArgs::All;
364 
365   // If we have a variadic prototype, the required arguments are the
366   // extra prefix plus the arguments in the prototype.
367   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
368     if (proto->isVariadic())
369       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
370 
371   // If we don't have a prototype at all, but we're supposed to
372   // explicitly use the variadic convention for unprototyped calls,
373   // treat all of the arguments as required but preserve the nominal
374   // possibility of variadics.
375   } else if (CGM.getTargetCodeGenInfo()
376                 .isNoProtoCallVariadic(args,
377                                        cast<FunctionNoProtoType>(fnType))) {
378     required = RequiredArgs(args.size());
379   }
380 
381   return CGT.arrangeFreeFunctionCall(fnType->getReturnType(), args,
382                                      fnType->getExtInfo(), required);
383 }
384 
385 /// Figure out the rules for calling a function with the given formal
386 /// type using the given arguments.  The arguments are necessary
387 /// because the function might be unprototyped, in which case it's
388 /// target-dependent in crazy ways.
389 const CGFunctionInfo &
390 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
391                                       const FunctionType *fnType) {
392   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 0);
393 }
394 
395 /// A block function call is essentially a free-function call with an
396 /// extra implicit argument.
397 const CGFunctionInfo &
398 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
399                                        const FunctionType *fnType) {
400   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1);
401 }
402 
403 const CGFunctionInfo &
404 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
405                                       const CallArgList &args,
406                                       FunctionType::ExtInfo info,
407                                       RequiredArgs required) {
408   // FIXME: Kill copy.
409   SmallVector<CanQualType, 16> argTypes;
410   for (const auto &Arg : args)
411     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
412   return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes,
413                                  info, required);
414 }
415 
416 /// Arrange a call to a C++ method, passing the given arguments.
417 const CGFunctionInfo &
418 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
419                                    const FunctionProtoType *FPT,
420                                    RequiredArgs required) {
421   // FIXME: Kill copy.
422   SmallVector<CanQualType, 16> argTypes;
423   for (const auto &Arg : args)
424     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
425 
426   FunctionType::ExtInfo info = FPT->getExtInfo();
427   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getReturnType()), true,
428                                  argTypes, info, required);
429 }
430 
431 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
432     QualType resultType, const FunctionArgList &args,
433     const FunctionType::ExtInfo &info, bool isVariadic) {
434   // FIXME: Kill copy.
435   SmallVector<CanQualType, 16> argTypes;
436   for (auto Arg : args)
437     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
438 
439   RequiredArgs required =
440     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
441   return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes, info,
442                                  required);
443 }
444 
445 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
446   return arrangeLLVMFunctionInfo(getContext().VoidTy, false, None,
447                                  FunctionType::ExtInfo(), RequiredArgs::All);
448 }
449 
450 /// Arrange the argument and result information for an abstract value
451 /// of a given function type.  This is the method which all of the
452 /// above functions ultimately defer to.
453 const CGFunctionInfo &
454 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
455                                       bool IsInstanceMethod,
456                                       ArrayRef<CanQualType> argTypes,
457                                       FunctionType::ExtInfo info,
458                                       RequiredArgs required) {
459 #ifndef NDEBUG
460   for (ArrayRef<CanQualType>::const_iterator
461          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
462     assert(I->isCanonicalAsParam());
463 #endif
464 
465   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
466 
467   // Lookup or create unique function info.
468   llvm::FoldingSetNodeID ID;
469   CGFunctionInfo::Profile(ID, IsInstanceMethod, info, required, resultType,
470                           argTypes);
471 
472   void *insertPos = nullptr;
473   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
474   if (FI)
475     return *FI;
476 
477   // Construct the function info.  We co-allocate the ArgInfos.
478   FI = CGFunctionInfo::create(CC, IsInstanceMethod, info, resultType, argTypes,
479                               required);
480   FunctionInfos.InsertNode(FI, insertPos);
481 
482   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
483   assert(inserted && "Recursively being processed?");
484 
485   // Compute ABI information.
486   getABIInfo().computeInfo(*FI);
487 
488   // Loop over all of the computed argument and return value info.  If any of
489   // them are direct or extend without a specified coerce type, specify the
490   // default now.
491   ABIArgInfo &retInfo = FI->getReturnInfo();
492   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
493     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
494 
495   for (auto &I : FI->arguments())
496     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
497       I.info.setCoerceToType(ConvertType(I.type));
498 
499   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
500   assert(erased && "Not in set?");
501 
502   return *FI;
503 }
504 
505 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
506                                        bool IsInstanceMethod,
507                                        const FunctionType::ExtInfo &info,
508                                        CanQualType resultType,
509                                        ArrayRef<CanQualType> argTypes,
510                                        RequiredArgs required) {
511   void *buffer = operator new(sizeof(CGFunctionInfo) +
512                               sizeof(ArgInfo) * (argTypes.size() + 1));
513   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
514   FI->CallingConvention = llvmCC;
515   FI->EffectiveCallingConvention = llvmCC;
516   FI->ASTCallingConvention = info.getCC();
517   FI->InstanceMethod = IsInstanceMethod;
518   FI->NoReturn = info.getNoReturn();
519   FI->ReturnsRetained = info.getProducesResult();
520   FI->Required = required;
521   FI->HasRegParm = info.getHasRegParm();
522   FI->RegParm = info.getRegParm();
523   FI->ArgStruct = nullptr;
524   FI->NumArgs = argTypes.size();
525   FI->getArgsBuffer()[0].type = resultType;
526   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
527     FI->getArgsBuffer()[i + 1].type = argTypes[i];
528   return FI;
529 }
530 
531 /***/
532 
533 void CodeGenTypes::GetExpandedTypes(QualType type,
534                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
535   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
536     uint64_t NumElts = AT->getSize().getZExtValue();
537     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
538       GetExpandedTypes(AT->getElementType(), expandedTypes);
539   } else if (const RecordType *RT = type->getAs<RecordType>()) {
540     const RecordDecl *RD = RT->getDecl();
541     assert(!RD->hasFlexibleArrayMember() &&
542            "Cannot expand structure with flexible array.");
543     if (RD->isUnion()) {
544       // Unions can be here only in degenerative cases - all the fields are same
545       // after flattening. Thus we have to use the "largest" field.
546       const FieldDecl *LargestFD = nullptr;
547       CharUnits UnionSize = CharUnits::Zero();
548 
549       for (const auto *FD : RD->fields()) {
550         assert(!FD->isBitField() &&
551                "Cannot expand structure with bit-field members.");
552         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
553         if (UnionSize < FieldSize) {
554           UnionSize = FieldSize;
555           LargestFD = FD;
556         }
557       }
558       if (LargestFD)
559         GetExpandedTypes(LargestFD->getType(), expandedTypes);
560     } else {
561       for (const auto *I : RD->fields()) {
562         assert(!I->isBitField() &&
563                "Cannot expand structure with bit-field members.");
564         GetExpandedTypes(I->getType(), expandedTypes);
565       }
566     }
567   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
568     llvm::Type *EltTy = ConvertType(CT->getElementType());
569     expandedTypes.push_back(EltTy);
570     expandedTypes.push_back(EltTy);
571   } else
572     expandedTypes.push_back(ConvertType(type));
573 }
574 
575 llvm::Function::arg_iterator
576 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
577                                     llvm::Function::arg_iterator AI) {
578   assert(LV.isSimple() &&
579          "Unexpected non-simple lvalue during struct expansion.");
580 
581   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
582     unsigned NumElts = AT->getSize().getZExtValue();
583     QualType EltTy = AT->getElementType();
584     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
585       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
586       LValue LV = MakeAddrLValue(EltAddr, EltTy);
587       AI = ExpandTypeFromArgs(EltTy, LV, AI);
588     }
589   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
590     RecordDecl *RD = RT->getDecl();
591     if (RD->isUnion()) {
592       // Unions can be here only in degenerative cases - all the fields are same
593       // after flattening. Thus we have to use the "largest" field.
594       const FieldDecl *LargestFD = nullptr;
595       CharUnits UnionSize = CharUnits::Zero();
596 
597       for (const auto *FD : RD->fields()) {
598         assert(!FD->isBitField() &&
599                "Cannot expand structure with bit-field members.");
600         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
601         if (UnionSize < FieldSize) {
602           UnionSize = FieldSize;
603           LargestFD = FD;
604         }
605       }
606       if (LargestFD) {
607         // FIXME: What are the right qualifiers here?
608         LValue SubLV = EmitLValueForField(LV, LargestFD);
609         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
610       }
611     } else {
612       for (const auto *FD : RD->fields()) {
613         QualType FT = FD->getType();
614 
615         // FIXME: What are the right qualifiers here?
616         LValue SubLV = EmitLValueForField(LV, FD);
617         AI = ExpandTypeFromArgs(FT, SubLV, AI);
618       }
619     }
620   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
621     QualType EltTy = CT->getElementType();
622     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
623     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
624     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
625     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
626   } else {
627     EmitStoreThroughLValue(RValue::get(AI), LV);
628     ++AI;
629   }
630 
631   return AI;
632 }
633 
634 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
635 /// accessing some number of bytes out of it, try to gep into the struct to get
636 /// at its inner goodness.  Dive as deep as possible without entering an element
637 /// with an in-memory size smaller than DstSize.
638 static llvm::Value *
639 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
640                                    llvm::StructType *SrcSTy,
641                                    uint64_t DstSize, CodeGenFunction &CGF) {
642   // We can't dive into a zero-element struct.
643   if (SrcSTy->getNumElements() == 0) return SrcPtr;
644 
645   llvm::Type *FirstElt = SrcSTy->getElementType(0);
646 
647   // If the first elt is at least as large as what we're looking for, or if the
648   // first element is the same size as the whole struct, we can enter it.
649   uint64_t FirstEltSize =
650     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
651   if (FirstEltSize < DstSize &&
652       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
653     return SrcPtr;
654 
655   // GEP into the first element.
656   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
657 
658   // If the first element is a struct, recurse.
659   llvm::Type *SrcTy =
660     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
661   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
662     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
663 
664   return SrcPtr;
665 }
666 
667 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
668 /// are either integers or pointers.  This does a truncation of the value if it
669 /// is too large or a zero extension if it is too small.
670 ///
671 /// This behaves as if the value were coerced through memory, so on big-endian
672 /// targets the high bits are preserved in a truncation, while little-endian
673 /// targets preserve the low bits.
674 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
675                                              llvm::Type *Ty,
676                                              CodeGenFunction &CGF) {
677   if (Val->getType() == Ty)
678     return Val;
679 
680   if (isa<llvm::PointerType>(Val->getType())) {
681     // If this is Pointer->Pointer avoid conversion to and from int.
682     if (isa<llvm::PointerType>(Ty))
683       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
684 
685     // Convert the pointer to an integer so we can play with its width.
686     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
687   }
688 
689   llvm::Type *DestIntTy = Ty;
690   if (isa<llvm::PointerType>(DestIntTy))
691     DestIntTy = CGF.IntPtrTy;
692 
693   if (Val->getType() != DestIntTy) {
694     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
695     if (DL.isBigEndian()) {
696       // Preserve the high bits on big-endian targets.
697       // That is what memory coercion does.
698       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
699       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
700 
701       if (SrcSize > DstSize) {
702         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
703         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
704       } else {
705         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
706         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
707       }
708     } else {
709       // Little-endian targets preserve the low bits. No shifts required.
710       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
711     }
712   }
713 
714   if (isa<llvm::PointerType>(Ty))
715     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
716   return Val;
717 }
718 
719 
720 
721 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
722 /// a pointer to an object of type \arg Ty.
723 ///
724 /// This safely handles the case when the src type is smaller than the
725 /// destination type; in this situation the values of bits which not
726 /// present in the src are undefined.
727 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
728                                       llvm::Type *Ty,
729                                       CodeGenFunction &CGF) {
730   llvm::Type *SrcTy =
731     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
732 
733   // If SrcTy and Ty are the same, just do a load.
734   if (SrcTy == Ty)
735     return CGF.Builder.CreateLoad(SrcPtr);
736 
737   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
738 
739   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
740     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
741     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
742   }
743 
744   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
745 
746   // If the source and destination are integer or pointer types, just do an
747   // extension or truncation to the desired type.
748   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
749       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
750     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
751     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
752   }
753 
754   // If load is legal, just bitcast the src pointer.
755   if (SrcSize >= DstSize) {
756     // Generally SrcSize is never greater than DstSize, since this means we are
757     // losing bits. However, this can happen in cases where the structure has
758     // additional padding, for example due to a user specified alignment.
759     //
760     // FIXME: Assert that we aren't truncating non-padding bits when have access
761     // to that information.
762     llvm::Value *Casted =
763       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
764     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
765     // FIXME: Use better alignment / avoid requiring aligned load.
766     Load->setAlignment(1);
767     return Load;
768   }
769 
770   // Otherwise do coercion through memory. This is stupid, but
771   // simple.
772   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
773   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
774   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
775   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
776   // FIXME: Use better alignment.
777   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
778       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
779       1, false);
780   return CGF.Builder.CreateLoad(Tmp);
781 }
782 
783 // Function to store a first-class aggregate into memory.  We prefer to
784 // store the elements rather than the aggregate to be more friendly to
785 // fast-isel.
786 // FIXME: Do we need to recurse here?
787 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
788                           llvm::Value *DestPtr, bool DestIsVolatile,
789                           bool LowAlignment) {
790   // Prefer scalar stores to first-class aggregate stores.
791   if (llvm::StructType *STy =
792         dyn_cast<llvm::StructType>(Val->getType())) {
793     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
794       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
795       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
796       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
797                                                     DestIsVolatile);
798       if (LowAlignment)
799         SI->setAlignment(1);
800     }
801   } else {
802     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
803     if (LowAlignment)
804       SI->setAlignment(1);
805   }
806 }
807 
808 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
809 /// where the source and destination may have different types.
810 ///
811 /// This safely handles the case when the src type is larger than the
812 /// destination type; the upper bits of the src will be lost.
813 static void CreateCoercedStore(llvm::Value *Src,
814                                llvm::Value *DstPtr,
815                                bool DstIsVolatile,
816                                CodeGenFunction &CGF) {
817   llvm::Type *SrcTy = Src->getType();
818   llvm::Type *DstTy =
819     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
820   if (SrcTy == DstTy) {
821     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
822     return;
823   }
824 
825   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
826 
827   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
828     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
829     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
830   }
831 
832   // If the source and destination are integer or pointer types, just do an
833   // extension or truncation to the desired type.
834   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
835       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
836     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
837     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
838     return;
839   }
840 
841   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
842 
843   // If store is legal, just bitcast the src pointer.
844   if (SrcSize <= DstSize) {
845     llvm::Value *Casted =
846       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
847     // FIXME: Use better alignment / avoid requiring aligned store.
848     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
849   } else {
850     // Otherwise do coercion through memory. This is stupid, but
851     // simple.
852 
853     // Generally SrcSize is never greater than DstSize, since this means we are
854     // losing bits. However, this can happen in cases where the structure has
855     // additional padding, for example due to a user specified alignment.
856     //
857     // FIXME: Assert that we aren't truncating non-padding bits when have access
858     // to that information.
859     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
860     CGF.Builder.CreateStore(Src, Tmp);
861     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
862     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
863     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
864     // FIXME: Use better alignment.
865     CGF.Builder.CreateMemCpy(DstCasted, Casted,
866         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
867         1, false);
868   }
869 }
870 
871 /***/
872 
873 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
874   return FI.getReturnInfo().isIndirect();
875 }
876 
877 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
878   return ReturnTypeUsesSRet(FI) &&
879          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
880 }
881 
882 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
883   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
884     switch (BT->getKind()) {
885     default:
886       return false;
887     case BuiltinType::Float:
888       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
889     case BuiltinType::Double:
890       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
891     case BuiltinType::LongDouble:
892       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
893     }
894   }
895 
896   return false;
897 }
898 
899 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
900   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
901     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
902       if (BT->getKind() == BuiltinType::LongDouble)
903         return getTarget().useObjCFP2RetForComplexLongDouble();
904     }
905   }
906 
907   return false;
908 }
909 
910 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
911   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
912   return GetFunctionType(FI);
913 }
914 
915 llvm::FunctionType *
916 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
917 
918   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
919   assert(Inserted && "Recursively being processed?");
920 
921   bool SwapThisWithSRet = false;
922   SmallVector<llvm::Type*, 8> argTypes;
923   llvm::Type *resultType = nullptr;
924 
925   const ABIArgInfo &retAI = FI.getReturnInfo();
926   switch (retAI.getKind()) {
927   case ABIArgInfo::Expand:
928     llvm_unreachable("Invalid ABI kind for return argument");
929 
930   case ABIArgInfo::Extend:
931   case ABIArgInfo::Direct:
932     resultType = retAI.getCoerceToType();
933     break;
934 
935   case ABIArgInfo::InAlloca:
936     if (retAI.getInAllocaSRet()) {
937       // sret things on win32 aren't void, they return the sret pointer.
938       QualType ret = FI.getReturnType();
939       llvm::Type *ty = ConvertType(ret);
940       unsigned addressSpace = Context.getTargetAddressSpace(ret);
941       resultType = llvm::PointerType::get(ty, addressSpace);
942     } else {
943       resultType = llvm::Type::getVoidTy(getLLVMContext());
944     }
945     break;
946 
947   case ABIArgInfo::Indirect: {
948     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
949     resultType = llvm::Type::getVoidTy(getLLVMContext());
950 
951     QualType ret = FI.getReturnType();
952     llvm::Type *ty = ConvertType(ret);
953     unsigned addressSpace = Context.getTargetAddressSpace(ret);
954     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
955 
956     SwapThisWithSRet = retAI.isSRetAfterThis();
957     break;
958   }
959 
960   case ABIArgInfo::Ignore:
961     resultType = llvm::Type::getVoidTy(getLLVMContext());
962     break;
963   }
964 
965   // Add in all of the required arguments.
966   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
967   if (FI.isVariadic()) {
968     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
969   } else {
970     ie = FI.arg_end();
971   }
972   for (; it != ie; ++it) {
973     const ABIArgInfo &argAI = it->info;
974 
975     // Insert a padding type to ensure proper alignment.
976     if (llvm::Type *PaddingType = argAI.getPaddingType())
977       argTypes.push_back(PaddingType);
978 
979     switch (argAI.getKind()) {
980     case ABIArgInfo::Ignore:
981     case ABIArgInfo::InAlloca:
982       break;
983 
984     case ABIArgInfo::Indirect: {
985       // indirect arguments are always on the stack, which is addr space #0.
986       llvm::Type *LTy = ConvertTypeForMem(it->type);
987       argTypes.push_back(LTy->getPointerTo());
988       break;
989     }
990 
991     case ABIArgInfo::Extend:
992     case ABIArgInfo::Direct: {
993       // If the coerce-to type is a first class aggregate, flatten it.  Either
994       // way is semantically identical, but fast-isel and the optimizer
995       // generally likes scalar values better than FCAs.
996       // We cannot do this for functions using the AAPCS calling convention,
997       // as structures are treated differently by that calling convention.
998       llvm::Type *argType = argAI.getCoerceToType();
999       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1000       if (st && !isAAPCSVFP(FI, getTarget())) {
1001         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1002           argTypes.push_back(st->getElementType(i));
1003       } else {
1004         argTypes.push_back(argType);
1005       }
1006       break;
1007     }
1008 
1009     case ABIArgInfo::Expand:
1010       GetExpandedTypes(it->type, argTypes);
1011       break;
1012     }
1013   }
1014 
1015   // Add the inalloca struct as the last parameter type.
1016   if (llvm::StructType *ArgStruct = FI.getArgStruct())
1017     argTypes.push_back(ArgStruct->getPointerTo());
1018 
1019   if (SwapThisWithSRet)
1020     std::swap(argTypes[0], argTypes[1]);
1021 
1022   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1023   assert(Erased && "Not in set?");
1024 
1025   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
1026 }
1027 
1028 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1029   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1030   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1031 
1032   if (!isFuncTypeConvertible(FPT))
1033     return llvm::StructType::get(getLLVMContext());
1034 
1035   const CGFunctionInfo *Info;
1036   if (isa<CXXDestructorDecl>(MD))
1037     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
1038   else
1039     Info = &arrangeCXXMethodDeclaration(MD);
1040   return GetFunctionType(*Info);
1041 }
1042 
1043 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1044                                            const Decl *TargetDecl,
1045                                            AttributeListType &PAL,
1046                                            unsigned &CallingConv,
1047                                            bool AttrOnCallSite) {
1048   llvm::AttrBuilder FuncAttrs;
1049   llvm::AttrBuilder RetAttrs;
1050 
1051   CallingConv = FI.getEffectiveCallingConvention();
1052 
1053   if (FI.isNoReturn())
1054     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1055 
1056   // FIXME: handle sseregparm someday...
1057   if (TargetDecl) {
1058     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1059       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1060     if (TargetDecl->hasAttr<NoThrowAttr>())
1061       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1062     if (TargetDecl->hasAttr<NoReturnAttr>())
1063       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1064     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1065       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1066 
1067     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1068       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1069       if (FPT && FPT->isNothrow(getContext()))
1070         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1071       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1072       // These attributes are not inherited by overloads.
1073       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1074       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1075         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1076     }
1077 
1078     // 'const' and 'pure' attribute functions are also nounwind.
1079     if (TargetDecl->hasAttr<ConstAttr>()) {
1080       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1081       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1082     } else if (TargetDecl->hasAttr<PureAttr>()) {
1083       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1084       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1085     }
1086     if (TargetDecl->hasAttr<MallocAttr>())
1087       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1088     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1089       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1090   }
1091 
1092   if (CodeGenOpts.OptimizeSize)
1093     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1094   if (CodeGenOpts.OptimizeSize == 2)
1095     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1096   if (CodeGenOpts.DisableRedZone)
1097     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1098   if (CodeGenOpts.NoImplicitFloat)
1099     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1100   if (CodeGenOpts.EnableSegmentedStacks &&
1101       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1102     FuncAttrs.addAttribute("split-stack");
1103 
1104   if (AttrOnCallSite) {
1105     // Attributes that should go on the call site only.
1106     if (!CodeGenOpts.SimplifyLibCalls)
1107       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1108   } else {
1109     // Attributes that should go on the function, but not the call site.
1110     if (!CodeGenOpts.DisableFPElim) {
1111       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1112     } else if (CodeGenOpts.OmitLeafFramePointer) {
1113       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1114       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1115     } else {
1116       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1117       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1118     }
1119 
1120     FuncAttrs.addAttribute("less-precise-fpmad",
1121                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1122     FuncAttrs.addAttribute("no-infs-fp-math",
1123                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1124     FuncAttrs.addAttribute("no-nans-fp-math",
1125                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1126     FuncAttrs.addAttribute("unsafe-fp-math",
1127                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1128     FuncAttrs.addAttribute("use-soft-float",
1129                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1130     FuncAttrs.addAttribute("stack-protector-buffer-size",
1131                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1132 
1133     if (!CodeGenOpts.StackRealignment)
1134       FuncAttrs.addAttribute("no-realign-stack");
1135   }
1136 
1137   QualType RetTy = FI.getReturnType();
1138   unsigned Index = 1;
1139   bool SwapThisWithSRet = false;
1140   const ABIArgInfo &RetAI = FI.getReturnInfo();
1141   switch (RetAI.getKind()) {
1142   case ABIArgInfo::Extend:
1143     if (RetTy->hasSignedIntegerRepresentation())
1144       RetAttrs.addAttribute(llvm::Attribute::SExt);
1145     else if (RetTy->hasUnsignedIntegerRepresentation())
1146       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1147     // FALL THROUGH
1148   case ABIArgInfo::Direct:
1149     if (RetAI.getInReg())
1150       RetAttrs.addAttribute(llvm::Attribute::InReg);
1151     break;
1152   case ABIArgInfo::Ignore:
1153     break;
1154 
1155   case ABIArgInfo::InAlloca: {
1156     // inalloca disables readnone and readonly
1157     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1158       .removeAttribute(llvm::Attribute::ReadNone);
1159     break;
1160   }
1161 
1162   case ABIArgInfo::Indirect: {
1163     llvm::AttrBuilder SRETAttrs;
1164     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1165     if (RetAI.getInReg())
1166       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1167     SwapThisWithSRet = RetAI.isSRetAfterThis();
1168     PAL.push_back(llvm::AttributeSet::get(
1169         getLLVMContext(), SwapThisWithSRet ? 2 : Index, SRETAttrs));
1170 
1171     if (!SwapThisWithSRet)
1172       ++Index;
1173     // sret disables readnone and readonly
1174     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1175       .removeAttribute(llvm::Attribute::ReadNone);
1176     break;
1177   }
1178 
1179   case ABIArgInfo::Expand:
1180     llvm_unreachable("Invalid ABI kind for return argument");
1181   }
1182 
1183   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1184     QualType PTy = RefTy->getPointeeType();
1185     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1186       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1187                                         .getQuantity());
1188     else if (getContext().getTargetAddressSpace(PTy) == 0)
1189       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1190   }
1191 
1192   if (RetAttrs.hasAttributes())
1193     PAL.push_back(llvm::
1194                   AttributeSet::get(getLLVMContext(),
1195                                     llvm::AttributeSet::ReturnIndex,
1196                                     RetAttrs));
1197 
1198   for (const auto &I : FI.arguments()) {
1199     QualType ParamType = I.type;
1200     const ABIArgInfo &AI = I.info;
1201     llvm::AttrBuilder Attrs;
1202 
1203     // Skip over the sret parameter when it comes second.  We already handled it
1204     // above.
1205     if (Index == 2 && SwapThisWithSRet)
1206       ++Index;
1207 
1208     if (AI.getPaddingType()) {
1209       if (AI.getPaddingInReg())
1210         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1211                                               llvm::Attribute::InReg));
1212       // Increment Index if there is padding.
1213       ++Index;
1214     }
1215 
1216     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1217     // have the corresponding parameter variable.  It doesn't make
1218     // sense to do it here because parameters are so messed up.
1219     switch (AI.getKind()) {
1220     case ABIArgInfo::Extend:
1221       if (ParamType->isSignedIntegerOrEnumerationType())
1222         Attrs.addAttribute(llvm::Attribute::SExt);
1223       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1224         Attrs.addAttribute(llvm::Attribute::ZExt);
1225       // FALL THROUGH
1226     case ABIArgInfo::Direct: {
1227       if (AI.getInReg())
1228         Attrs.addAttribute(llvm::Attribute::InReg);
1229 
1230       // FIXME: handle sseregparm someday...
1231 
1232       llvm::StructType *STy =
1233           dyn_cast<llvm::StructType>(AI.getCoerceToType());
1234       if (!isAAPCSVFP(FI, getTarget()) && STy) {
1235         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1236         if (Attrs.hasAttributes())
1237           for (unsigned I = 0; I < Extra; ++I)
1238             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1239                                                   Attrs));
1240         Index += Extra;
1241       }
1242       break;
1243     }
1244     case ABIArgInfo::Indirect:
1245       if (AI.getInReg())
1246         Attrs.addAttribute(llvm::Attribute::InReg);
1247 
1248       if (AI.getIndirectByVal())
1249         Attrs.addAttribute(llvm::Attribute::ByVal);
1250 
1251       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1252 
1253       // byval disables readnone and readonly.
1254       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1255         .removeAttribute(llvm::Attribute::ReadNone);
1256       break;
1257 
1258     case ABIArgInfo::Ignore:
1259       // Skip increment, no matching LLVM parameter.
1260       continue;
1261 
1262     case ABIArgInfo::InAlloca:
1263       // inalloca disables readnone and readonly.
1264       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1265           .removeAttribute(llvm::Attribute::ReadNone);
1266       // Skip increment, no matching LLVM parameter.
1267       continue;
1268 
1269     case ABIArgInfo::Expand: {
1270       SmallVector<llvm::Type*, 8> types;
1271       // FIXME: This is rather inefficient. Do we ever actually need to do
1272       // anything here? The result should be just reconstructed on the other
1273       // side, so extension should be a non-issue.
1274       getTypes().GetExpandedTypes(ParamType, types);
1275       Index += types.size();
1276       continue;
1277     }
1278     }
1279 
1280     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1281       QualType PTy = RefTy->getPointeeType();
1282       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1283         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1284                                        .getQuantity());
1285       else if (getContext().getTargetAddressSpace(PTy) == 0)
1286         Attrs.addAttribute(llvm::Attribute::NonNull);
1287     }
1288 
1289     if (Attrs.hasAttributes())
1290       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1291     ++Index;
1292   }
1293 
1294   // Add the inalloca attribute to the trailing inalloca parameter if present.
1295   if (FI.usesInAlloca()) {
1296     llvm::AttrBuilder Attrs;
1297     Attrs.addAttribute(llvm::Attribute::InAlloca);
1298     PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1299   }
1300 
1301   if (FuncAttrs.hasAttributes())
1302     PAL.push_back(llvm::
1303                   AttributeSet::get(getLLVMContext(),
1304                                     llvm::AttributeSet::FunctionIndex,
1305                                     FuncAttrs));
1306 }
1307 
1308 /// An argument came in as a promoted argument; demote it back to its
1309 /// declared type.
1310 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1311                                          const VarDecl *var,
1312                                          llvm::Value *value) {
1313   llvm::Type *varType = CGF.ConvertType(var->getType());
1314 
1315   // This can happen with promotions that actually don't change the
1316   // underlying type, like the enum promotions.
1317   if (value->getType() == varType) return value;
1318 
1319   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1320          && "unexpected promotion type");
1321 
1322   if (isa<llvm::IntegerType>(varType))
1323     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1324 
1325   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1326 }
1327 
1328 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1329                                          llvm::Function *Fn,
1330                                          const FunctionArgList &Args) {
1331   // If this is an implicit-return-zero function, go ahead and
1332   // initialize the return value.  TODO: it might be nice to have
1333   // a more general mechanism for this that didn't require synthesized
1334   // return statements.
1335   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1336     if (FD->hasImplicitReturnZero()) {
1337       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1338       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1339       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1340       Builder.CreateStore(Zero, ReturnValue);
1341     }
1342   }
1343 
1344   // FIXME: We no longer need the types from FunctionArgList; lift up and
1345   // simplify.
1346 
1347   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1348   llvm::Function::arg_iterator AI = Fn->arg_begin();
1349 
1350   // If we're using inalloca, all the memory arguments are GEPs off of the last
1351   // parameter, which is a pointer to the complete memory area.
1352   llvm::Value *ArgStruct = nullptr;
1353   if (FI.usesInAlloca()) {
1354     llvm::Function::arg_iterator EI = Fn->arg_end();
1355     --EI;
1356     ArgStruct = EI;
1357     assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1358   }
1359 
1360   // Name the struct return parameter, which can come first or second.
1361   const ABIArgInfo &RetAI = FI.getReturnInfo();
1362   bool SwapThisWithSRet = false;
1363   if (RetAI.isIndirect()) {
1364     SwapThisWithSRet = RetAI.isSRetAfterThis();
1365     if (SwapThisWithSRet)
1366       ++AI;
1367     AI->setName("agg.result");
1368     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1369                                         llvm::Attribute::NoAlias));
1370     if (SwapThisWithSRet)
1371       --AI;  // Go back to the beginning for 'this'.
1372     else
1373       ++AI;  // Skip the sret parameter.
1374   }
1375 
1376   // Get the function-level nonnull attribute if it exists.
1377   const NonNullAttr *NNAtt =
1378     CurCodeDecl ? CurCodeDecl->getAttr<NonNullAttr>() : nullptr;
1379 
1380   // Track if we received the parameter as a pointer (indirect, byval, or
1381   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1382   // into a local alloca for us.
1383   enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1384   typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1385   SmallVector<ValueAndIsPtr, 16> ArgVals;
1386   ArgVals.reserve(Args.size());
1387 
1388   // Create a pointer value for every parameter declaration.  This usually
1389   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1390   // any cleanups or do anything that might unwind.  We do that separately, so
1391   // we can push the cleanups in the correct order for the ABI.
1392   assert(FI.arg_size() == Args.size() &&
1393          "Mismatch between function signature & arguments.");
1394   unsigned ArgNo = 1;
1395   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1396   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1397        i != e; ++i, ++info_it, ++ArgNo) {
1398     const VarDecl *Arg = *i;
1399     QualType Ty = info_it->type;
1400     const ABIArgInfo &ArgI = info_it->info;
1401 
1402     bool isPromoted =
1403       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1404 
1405     // Skip the dummy padding argument.
1406     if (ArgI.getPaddingType())
1407       ++AI;
1408 
1409     switch (ArgI.getKind()) {
1410     case ABIArgInfo::InAlloca: {
1411       llvm::Value *V = Builder.CreateStructGEP(
1412           ArgStruct, ArgI.getInAllocaFieldIndex(), Arg->getName());
1413       ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1414       continue;  // Don't increment AI!
1415     }
1416 
1417     case ABIArgInfo::Indirect: {
1418       llvm::Value *V = AI;
1419 
1420       if (!hasScalarEvaluationKind(Ty)) {
1421         // Aggregates and complex variables are accessed by reference.  All we
1422         // need to do is realign the value, if requested
1423         if (ArgI.getIndirectRealign()) {
1424           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1425 
1426           // Copy from the incoming argument pointer to the temporary with the
1427           // appropriate alignment.
1428           //
1429           // FIXME: We should have a common utility for generating an aggregate
1430           // copy.
1431           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1432           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1433           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1434           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1435           Builder.CreateMemCpy(Dst,
1436                                Src,
1437                                llvm::ConstantInt::get(IntPtrTy,
1438                                                       Size.getQuantity()),
1439                                ArgI.getIndirectAlign(),
1440                                false);
1441           V = AlignedTemp;
1442         }
1443         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1444       } else {
1445         // Load scalar value from indirect argument.
1446         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1447         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1448                              Arg->getLocStart());
1449 
1450         if (isPromoted)
1451           V = emitArgumentDemotion(*this, Arg, V);
1452         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1453       }
1454       break;
1455     }
1456 
1457     case ABIArgInfo::Extend:
1458     case ABIArgInfo::Direct: {
1459 
1460       // If we have the trivial case, handle it with no muss and fuss.
1461       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1462           ArgI.getCoerceToType() == ConvertType(Ty) &&
1463           ArgI.getDirectOffset() == 0) {
1464         assert(AI != Fn->arg_end() && "Argument mismatch!");
1465         llvm::Value *V = AI;
1466 
1467         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1468           if ((NNAtt && NNAtt->isNonNull(PVD->getFunctionScopeIndex())) ||
1469               PVD->hasAttr<NonNullAttr>())
1470             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1471                                                 AI->getArgNo() + 1,
1472                                                 llvm::Attribute::NonNull));
1473 
1474           QualType OTy = PVD->getOriginalType();
1475           if (const auto *ArrTy =
1476               getContext().getAsConstantArrayType(OTy)) {
1477             // A C99 array parameter declaration with the static keyword also
1478             // indicates dereferenceability, and if the size is constant we can
1479             // use the dereferenceable attribute (which requires the size in
1480             // bytes).
1481             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1482               QualType ETy = ArrTy->getElementType();
1483               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1484               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1485                   ArrSize) {
1486                 llvm::AttrBuilder Attrs;
1487                 Attrs.addDereferenceableAttr(
1488                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1489                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1490                                                     AI->getArgNo() + 1, Attrs));
1491               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1492                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1493                                                     AI->getArgNo() + 1,
1494                                                     llvm::Attribute::NonNull));
1495               }
1496             }
1497           } else if (const auto *ArrTy =
1498                      getContext().getAsVariableArrayType(OTy)) {
1499             // For C99 VLAs with the static keyword, we don't know the size so
1500             // we can't use the dereferenceable attribute, but in addrspace(0)
1501             // we know that it must be nonnull.
1502             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1503                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1504               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1505                                                   AI->getArgNo() + 1,
1506                                                   llvm::Attribute::NonNull));
1507           }
1508         }
1509 
1510         if (Arg->getType().isRestrictQualified())
1511           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1512                                               AI->getArgNo() + 1,
1513                                               llvm::Attribute::NoAlias));
1514 
1515         // Ensure the argument is the correct type.
1516         if (V->getType() != ArgI.getCoerceToType())
1517           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1518 
1519         if (isPromoted)
1520           V = emitArgumentDemotion(*this, Arg, V);
1521 
1522         if (const CXXMethodDecl *MD =
1523             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1524           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1525             V = CGM.getCXXABI().
1526                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1527         }
1528 
1529         // Because of merging of function types from multiple decls it is
1530         // possible for the type of an argument to not match the corresponding
1531         // type in the function type. Since we are codegening the callee
1532         // in here, add a cast to the argument type.
1533         llvm::Type *LTy = ConvertType(Arg->getType());
1534         if (V->getType() != LTy)
1535           V = Builder.CreateBitCast(V, LTy);
1536 
1537         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1538         break;
1539       }
1540 
1541       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1542 
1543       // The alignment we need to use is the max of the requested alignment for
1544       // the argument plus the alignment required by our access code below.
1545       unsigned AlignmentToUse =
1546         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1547       AlignmentToUse = std::max(AlignmentToUse,
1548                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1549 
1550       Alloca->setAlignment(AlignmentToUse);
1551       llvm::Value *V = Alloca;
1552       llvm::Value *Ptr = V;    // Pointer to store into.
1553 
1554       // If the value is offset in memory, apply the offset now.
1555       if (unsigned Offs = ArgI.getDirectOffset()) {
1556         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1557         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1558         Ptr = Builder.CreateBitCast(Ptr,
1559                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1560       }
1561 
1562       // If the coerce-to type is a first class aggregate, we flatten it and
1563       // pass the elements. Either way is semantically identical, but fast-isel
1564       // and the optimizer generally likes scalar values better than FCAs.
1565       // We cannot do this for functions using the AAPCS calling convention,
1566       // as structures are treated differently by that calling convention.
1567       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1568       if (!isAAPCSVFP(FI, getTarget()) && STy && STy->getNumElements() > 1) {
1569         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1570         llvm::Type *DstTy =
1571           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1572         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1573 
1574         if (SrcSize <= DstSize) {
1575           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1576 
1577           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1578             assert(AI != Fn->arg_end() && "Argument mismatch!");
1579             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1580             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1581             Builder.CreateStore(AI++, EltPtr);
1582           }
1583         } else {
1584           llvm::AllocaInst *TempAlloca =
1585             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1586           TempAlloca->setAlignment(AlignmentToUse);
1587           llvm::Value *TempV = TempAlloca;
1588 
1589           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1590             assert(AI != Fn->arg_end() && "Argument mismatch!");
1591             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1592             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1593             Builder.CreateStore(AI++, EltPtr);
1594           }
1595 
1596           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1597         }
1598       } else {
1599         // Simple case, just do a coerced store of the argument into the alloca.
1600         assert(AI != Fn->arg_end() && "Argument mismatch!");
1601         AI->setName(Arg->getName() + ".coerce");
1602         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1603       }
1604 
1605 
1606       // Match to what EmitParmDecl is expecting for this type.
1607       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1608         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
1609         if (isPromoted)
1610           V = emitArgumentDemotion(*this, Arg, V);
1611         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1612       } else {
1613         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1614       }
1615       continue;  // Skip ++AI increment, already done.
1616     }
1617 
1618     case ABIArgInfo::Expand: {
1619       // If this structure was expanded into multiple arguments then
1620       // we need to create a temporary and reconstruct it from the
1621       // arguments.
1622       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1623       CharUnits Align = getContext().getDeclAlign(Arg);
1624       Alloca->setAlignment(Align.getQuantity());
1625       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1626       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1627       ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
1628 
1629       // Name the arguments used in expansion and increment AI.
1630       unsigned Index = 0;
1631       for (; AI != End; ++AI, ++Index)
1632         AI->setName(Arg->getName() + "." + Twine(Index));
1633       continue;
1634     }
1635 
1636     case ABIArgInfo::Ignore:
1637       // Initialize the local variable appropriately.
1638       if (!hasScalarEvaluationKind(Ty)) {
1639         ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
1640       } else {
1641         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
1642         ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
1643       }
1644 
1645       // Skip increment, no matching LLVM parameter.
1646       continue;
1647     }
1648 
1649     ++AI;
1650 
1651     if (ArgNo == 1 && SwapThisWithSRet)
1652       ++AI;  // Skip the sret parameter.
1653   }
1654 
1655   if (FI.usesInAlloca())
1656     ++AI;
1657   assert(AI == Fn->arg_end() && "Argument mismatch!");
1658 
1659   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1660     for (int I = Args.size() - 1; I >= 0; --I)
1661       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1662                    I + 1);
1663   } else {
1664     for (unsigned I = 0, E = Args.size(); I != E; ++I)
1665       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1666                    I + 1);
1667   }
1668 }
1669 
1670 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1671   while (insn->use_empty()) {
1672     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1673     if (!bitcast) return;
1674 
1675     // This is "safe" because we would have used a ConstantExpr otherwise.
1676     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1677     bitcast->eraseFromParent();
1678   }
1679 }
1680 
1681 /// Try to emit a fused autorelease of a return result.
1682 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1683                                                     llvm::Value *result) {
1684   // We must be immediately followed the cast.
1685   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1686   if (BB->empty()) return nullptr;
1687   if (&BB->back() != result) return nullptr;
1688 
1689   llvm::Type *resultType = result->getType();
1690 
1691   // result is in a BasicBlock and is therefore an Instruction.
1692   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1693 
1694   SmallVector<llvm::Instruction*,4> insnsToKill;
1695 
1696   // Look for:
1697   //  %generator = bitcast %type1* %generator2 to %type2*
1698   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1699     // We would have emitted this as a constant if the operand weren't
1700     // an Instruction.
1701     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1702 
1703     // Require the generator to be immediately followed by the cast.
1704     if (generator->getNextNode() != bitcast)
1705       return nullptr;
1706 
1707     insnsToKill.push_back(bitcast);
1708   }
1709 
1710   // Look for:
1711   //   %generator = call i8* @objc_retain(i8* %originalResult)
1712   // or
1713   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1714   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1715   if (!call) return nullptr;
1716 
1717   bool doRetainAutorelease;
1718 
1719   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1720     doRetainAutorelease = true;
1721   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1722                                           .objc_retainAutoreleasedReturnValue) {
1723     doRetainAutorelease = false;
1724 
1725     // If we emitted an assembly marker for this call (and the
1726     // ARCEntrypoints field should have been set if so), go looking
1727     // for that call.  If we can't find it, we can't do this
1728     // optimization.  But it should always be the immediately previous
1729     // instruction, unless we needed bitcasts around the call.
1730     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1731       llvm::Instruction *prev = call->getPrevNode();
1732       assert(prev);
1733       if (isa<llvm::BitCastInst>(prev)) {
1734         prev = prev->getPrevNode();
1735         assert(prev);
1736       }
1737       assert(isa<llvm::CallInst>(prev));
1738       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1739                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1740       insnsToKill.push_back(prev);
1741     }
1742   } else {
1743     return nullptr;
1744   }
1745 
1746   result = call->getArgOperand(0);
1747   insnsToKill.push_back(call);
1748 
1749   // Keep killing bitcasts, for sanity.  Note that we no longer care
1750   // about precise ordering as long as there's exactly one use.
1751   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1752     if (!bitcast->hasOneUse()) break;
1753     insnsToKill.push_back(bitcast);
1754     result = bitcast->getOperand(0);
1755   }
1756 
1757   // Delete all the unnecessary instructions, from latest to earliest.
1758   for (SmallVectorImpl<llvm::Instruction*>::iterator
1759          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1760     (*i)->eraseFromParent();
1761 
1762   // Do the fused retain/autorelease if we were asked to.
1763   if (doRetainAutorelease)
1764     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1765 
1766   // Cast back to the result type.
1767   return CGF.Builder.CreateBitCast(result, resultType);
1768 }
1769 
1770 /// If this is a +1 of the value of an immutable 'self', remove it.
1771 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1772                                           llvm::Value *result) {
1773   // This is only applicable to a method with an immutable 'self'.
1774   const ObjCMethodDecl *method =
1775     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1776   if (!method) return nullptr;
1777   const VarDecl *self = method->getSelfDecl();
1778   if (!self->getType().isConstQualified()) return nullptr;
1779 
1780   // Look for a retain call.
1781   llvm::CallInst *retainCall =
1782     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1783   if (!retainCall ||
1784       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1785     return nullptr;
1786 
1787   // Look for an ordinary load of 'self'.
1788   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1789   llvm::LoadInst *load =
1790     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1791   if (!load || load->isAtomic() || load->isVolatile() ||
1792       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1793     return nullptr;
1794 
1795   // Okay!  Burn it all down.  This relies for correctness on the
1796   // assumption that the retain is emitted as part of the return and
1797   // that thereafter everything is used "linearly".
1798   llvm::Type *resultType = result->getType();
1799   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1800   assert(retainCall->use_empty());
1801   retainCall->eraseFromParent();
1802   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1803 
1804   return CGF.Builder.CreateBitCast(load, resultType);
1805 }
1806 
1807 /// Emit an ARC autorelease of the result of a function.
1808 ///
1809 /// \return the value to actually return from the function
1810 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1811                                             llvm::Value *result) {
1812   // If we're returning 'self', kill the initial retain.  This is a
1813   // heuristic attempt to "encourage correctness" in the really unfortunate
1814   // case where we have a return of self during a dealloc and we desperately
1815   // need to avoid the possible autorelease.
1816   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1817     return self;
1818 
1819   // At -O0, try to emit a fused retain/autorelease.
1820   if (CGF.shouldUseFusedARCCalls())
1821     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1822       return fused;
1823 
1824   return CGF.EmitARCAutoreleaseReturnValue(result);
1825 }
1826 
1827 /// Heuristically search for a dominating store to the return-value slot.
1828 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1829   // If there are multiple uses of the return-value slot, just check
1830   // for something immediately preceding the IP.  Sometimes this can
1831   // happen with how we generate implicit-returns; it can also happen
1832   // with noreturn cleanups.
1833   if (!CGF.ReturnValue->hasOneUse()) {
1834     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1835     if (IP->empty()) return nullptr;
1836     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1837     if (!store) return nullptr;
1838     if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
1839     assert(!store->isAtomic() && !store->isVolatile()); // see below
1840     return store;
1841   }
1842 
1843   llvm::StoreInst *store =
1844     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
1845   if (!store) return nullptr;
1846 
1847   // These aren't actually possible for non-coerced returns, and we
1848   // only care about non-coerced returns on this code path.
1849   assert(!store->isAtomic() && !store->isVolatile());
1850 
1851   // Now do a first-and-dirty dominance check: just walk up the
1852   // single-predecessors chain from the current insertion point.
1853   llvm::BasicBlock *StoreBB = store->getParent();
1854   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1855   while (IP != StoreBB) {
1856     if (!(IP = IP->getSinglePredecessor()))
1857       return nullptr;
1858   }
1859 
1860   // Okay, the store's basic block dominates the insertion point; we
1861   // can do our thing.
1862   return store;
1863 }
1864 
1865 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1866                                          bool EmitRetDbgLoc,
1867                                          SourceLocation EndLoc) {
1868   // Functions with no result always return void.
1869   if (!ReturnValue) {
1870     Builder.CreateRetVoid();
1871     return;
1872   }
1873 
1874   llvm::DebugLoc RetDbgLoc;
1875   llvm::Value *RV = nullptr;
1876   QualType RetTy = FI.getReturnType();
1877   const ABIArgInfo &RetAI = FI.getReturnInfo();
1878 
1879   switch (RetAI.getKind()) {
1880   case ABIArgInfo::InAlloca:
1881     // Aggregrates get evaluated directly into the destination.  Sometimes we
1882     // need to return the sret value in a register, though.
1883     assert(hasAggregateEvaluationKind(RetTy));
1884     if (RetAI.getInAllocaSRet()) {
1885       llvm::Function::arg_iterator EI = CurFn->arg_end();
1886       --EI;
1887       llvm::Value *ArgStruct = EI;
1888       llvm::Value *SRet =
1889           Builder.CreateStructGEP(ArgStruct, RetAI.getInAllocaFieldIndex());
1890       RV = Builder.CreateLoad(SRet, "sret");
1891     }
1892     break;
1893 
1894   case ABIArgInfo::Indirect: {
1895     auto AI = CurFn->arg_begin();
1896     if (RetAI.isSRetAfterThis())
1897       ++AI;
1898     switch (getEvaluationKind(RetTy)) {
1899     case TEK_Complex: {
1900       ComplexPairTy RT =
1901         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
1902                           EndLoc);
1903       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
1904                          /*isInit*/ true);
1905       break;
1906     }
1907     case TEK_Aggregate:
1908       // Do nothing; aggregrates get evaluated directly into the destination.
1909       break;
1910     case TEK_Scalar:
1911       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1912                         MakeNaturalAlignAddrLValue(AI, RetTy),
1913                         /*isInit*/ true);
1914       break;
1915     }
1916     break;
1917   }
1918 
1919   case ABIArgInfo::Extend:
1920   case ABIArgInfo::Direct:
1921     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1922         RetAI.getDirectOffset() == 0) {
1923       // The internal return value temp always will have pointer-to-return-type
1924       // type, just do a load.
1925 
1926       // If there is a dominating store to ReturnValue, we can elide
1927       // the load, zap the store, and usually zap the alloca.
1928       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1929         // Reuse the debug location from the store unless there is
1930         // cleanup code to be emitted between the store and return
1931         // instruction.
1932         if (EmitRetDbgLoc && !AutoreleaseResult)
1933           RetDbgLoc = SI->getDebugLoc();
1934         // Get the stored value and nuke the now-dead store.
1935         RV = SI->getValueOperand();
1936         SI->eraseFromParent();
1937 
1938         // If that was the only use of the return value, nuke it as well now.
1939         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1940           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1941           ReturnValue = nullptr;
1942         }
1943 
1944       // Otherwise, we have to do a simple load.
1945       } else {
1946         RV = Builder.CreateLoad(ReturnValue);
1947       }
1948     } else {
1949       llvm::Value *V = ReturnValue;
1950       // If the value is offset in memory, apply the offset now.
1951       if (unsigned Offs = RetAI.getDirectOffset()) {
1952         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1953         V = Builder.CreateConstGEP1_32(V, Offs);
1954         V = Builder.CreateBitCast(V,
1955                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1956       }
1957 
1958       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1959     }
1960 
1961     // In ARC, end functions that return a retainable type with a call
1962     // to objc_autoreleaseReturnValue.
1963     if (AutoreleaseResult) {
1964       assert(getLangOpts().ObjCAutoRefCount &&
1965              !FI.isReturnsRetained() &&
1966              RetTy->isObjCRetainableType());
1967       RV = emitAutoreleaseOfResult(*this, RV);
1968     }
1969 
1970     break;
1971 
1972   case ABIArgInfo::Ignore:
1973     break;
1974 
1975   case ABIArgInfo::Expand:
1976     llvm_unreachable("Invalid ABI kind for return argument");
1977   }
1978 
1979   llvm::Instruction *Ret;
1980   if (RV) {
1981     if (SanOpts->ReturnsNonnullAttribute &&
1982         CurGD.getDecl()->hasAttr<ReturnsNonNullAttr>()) {
1983       SanitizerScope SanScope(this);
1984       llvm::Value *Cond =
1985           Builder.CreateICmpNE(RV, llvm::Constant::getNullValue(RV->getType()));
1986       llvm::Constant *StaticData[] = {
1987         EmitCheckSourceLocation(EndLoc)
1988       };
1989       EmitCheck(Cond, "nonnull_return", StaticData, ArrayRef<llvm::Value *>(),
1990                 CRK_Recoverable);
1991     }
1992     Ret = Builder.CreateRet(RV);
1993   } else {
1994     Ret = Builder.CreateRetVoid();
1995   }
1996 
1997   if (!RetDbgLoc.isUnknown())
1998     Ret->setDebugLoc(RetDbgLoc);
1999 }
2000 
2001 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2002   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2003   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2004 }
2005 
2006 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
2007   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2008   // placeholders.
2009   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2010   llvm::Value *Placeholder =
2011       llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2012   Placeholder = CGF.Builder.CreateLoad(Placeholder);
2013   return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
2014                                Ty.getQualifiers(),
2015                                AggValueSlot::IsNotDestructed,
2016                                AggValueSlot::DoesNotNeedGCBarriers,
2017                                AggValueSlot::IsNotAliased);
2018 }
2019 
2020 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2021                                           const VarDecl *param,
2022                                           SourceLocation loc) {
2023   // StartFunction converted the ABI-lowered parameter(s) into a
2024   // local alloca.  We need to turn that into an r-value suitable
2025   // for EmitCall.
2026   llvm::Value *local = GetAddrOfLocalVar(param);
2027 
2028   QualType type = param->getType();
2029 
2030   // For the most part, we just need to load the alloca, except:
2031   // 1) aggregate r-values are actually pointers to temporaries, and
2032   // 2) references to non-scalars are pointers directly to the aggregate.
2033   // I don't know why references to scalars are different here.
2034   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2035     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2036       return args.add(RValue::getAggregate(local), type);
2037 
2038     // Locals which are references to scalars are represented
2039     // with allocas holding the pointer.
2040     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2041   }
2042 
2043   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2044          "cannot emit delegate call arguments for inalloca arguments!");
2045 
2046   args.add(convertTempToRValue(local, type, loc), type);
2047 }
2048 
2049 static bool isProvablyNull(llvm::Value *addr) {
2050   return isa<llvm::ConstantPointerNull>(addr);
2051 }
2052 
2053 static bool isProvablyNonNull(llvm::Value *addr) {
2054   return isa<llvm::AllocaInst>(addr);
2055 }
2056 
2057 /// Emit the actual writing-back of a writeback.
2058 static void emitWriteback(CodeGenFunction &CGF,
2059                           const CallArgList::Writeback &writeback) {
2060   const LValue &srcLV = writeback.Source;
2061   llvm::Value *srcAddr = srcLV.getAddress();
2062   assert(!isProvablyNull(srcAddr) &&
2063          "shouldn't have writeback for provably null argument");
2064 
2065   llvm::BasicBlock *contBB = nullptr;
2066 
2067   // If the argument wasn't provably non-null, we need to null check
2068   // before doing the store.
2069   bool provablyNonNull = isProvablyNonNull(srcAddr);
2070   if (!provablyNonNull) {
2071     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2072     contBB = CGF.createBasicBlock("icr.done");
2073 
2074     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2075     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2076     CGF.EmitBlock(writebackBB);
2077   }
2078 
2079   // Load the value to writeback.
2080   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2081 
2082   // Cast it back, in case we're writing an id to a Foo* or something.
2083   value = CGF.Builder.CreateBitCast(value,
2084                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
2085                             "icr.writeback-cast");
2086 
2087   // Perform the writeback.
2088 
2089   // If we have a "to use" value, it's something we need to emit a use
2090   // of.  This has to be carefully threaded in: if it's done after the
2091   // release it's potentially undefined behavior (and the optimizer
2092   // will ignore it), and if it happens before the retain then the
2093   // optimizer could move the release there.
2094   if (writeback.ToUse) {
2095     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2096 
2097     // Retain the new value.  No need to block-copy here:  the block's
2098     // being passed up the stack.
2099     value = CGF.EmitARCRetainNonBlock(value);
2100 
2101     // Emit the intrinsic use here.
2102     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2103 
2104     // Load the old value (primitively).
2105     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2106 
2107     // Put the new value in place (primitively).
2108     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2109 
2110     // Release the old value.
2111     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2112 
2113   // Otherwise, we can just do a normal lvalue store.
2114   } else {
2115     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2116   }
2117 
2118   // Jump to the continuation block.
2119   if (!provablyNonNull)
2120     CGF.EmitBlock(contBB);
2121 }
2122 
2123 static void emitWritebacks(CodeGenFunction &CGF,
2124                            const CallArgList &args) {
2125   for (const auto &I : args.writebacks())
2126     emitWriteback(CGF, I);
2127 }
2128 
2129 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2130                                             const CallArgList &CallArgs) {
2131   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2132   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2133     CallArgs.getCleanupsToDeactivate();
2134   // Iterate in reverse to increase the likelihood of popping the cleanup.
2135   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2136          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2137     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2138     I->IsActiveIP->eraseFromParent();
2139   }
2140 }
2141 
2142 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2143   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2144     if (uop->getOpcode() == UO_AddrOf)
2145       return uop->getSubExpr();
2146   return nullptr;
2147 }
2148 
2149 /// Emit an argument that's being passed call-by-writeback.  That is,
2150 /// we are passing the address of
2151 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2152                              const ObjCIndirectCopyRestoreExpr *CRE) {
2153   LValue srcLV;
2154 
2155   // Make an optimistic effort to emit the address as an l-value.
2156   // This can fail if the the argument expression is more complicated.
2157   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2158     srcLV = CGF.EmitLValue(lvExpr);
2159 
2160   // Otherwise, just emit it as a scalar.
2161   } else {
2162     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2163 
2164     QualType srcAddrType =
2165       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2166     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2167   }
2168   llvm::Value *srcAddr = srcLV.getAddress();
2169 
2170   // The dest and src types don't necessarily match in LLVM terms
2171   // because of the crazy ObjC compatibility rules.
2172 
2173   llvm::PointerType *destType =
2174     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2175 
2176   // If the address is a constant null, just pass the appropriate null.
2177   if (isProvablyNull(srcAddr)) {
2178     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2179              CRE->getType());
2180     return;
2181   }
2182 
2183   // Create the temporary.
2184   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2185                                            "icr.temp");
2186   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2187   // and that cleanup will be conditional if we can't prove that the l-value
2188   // isn't null, so we need to register a dominating point so that the cleanups
2189   // system will make valid IR.
2190   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2191 
2192   // Zero-initialize it if we're not doing a copy-initialization.
2193   bool shouldCopy = CRE->shouldCopy();
2194   if (!shouldCopy) {
2195     llvm::Value *null =
2196       llvm::ConstantPointerNull::get(
2197         cast<llvm::PointerType>(destType->getElementType()));
2198     CGF.Builder.CreateStore(null, temp);
2199   }
2200 
2201   llvm::BasicBlock *contBB = nullptr;
2202   llvm::BasicBlock *originBB = nullptr;
2203 
2204   // If the address is *not* known to be non-null, we need to switch.
2205   llvm::Value *finalArgument;
2206 
2207   bool provablyNonNull = isProvablyNonNull(srcAddr);
2208   if (provablyNonNull) {
2209     finalArgument = temp;
2210   } else {
2211     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2212 
2213     finalArgument = CGF.Builder.CreateSelect(isNull,
2214                                    llvm::ConstantPointerNull::get(destType),
2215                                              temp, "icr.argument");
2216 
2217     // If we need to copy, then the load has to be conditional, which
2218     // means we need control flow.
2219     if (shouldCopy) {
2220       originBB = CGF.Builder.GetInsertBlock();
2221       contBB = CGF.createBasicBlock("icr.cont");
2222       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2223       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2224       CGF.EmitBlock(copyBB);
2225       condEval.begin(CGF);
2226     }
2227   }
2228 
2229   llvm::Value *valueToUse = nullptr;
2230 
2231   // Perform a copy if necessary.
2232   if (shouldCopy) {
2233     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2234     assert(srcRV.isScalar());
2235 
2236     llvm::Value *src = srcRV.getScalarVal();
2237     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2238                                     "icr.cast");
2239 
2240     // Use an ordinary store, not a store-to-lvalue.
2241     CGF.Builder.CreateStore(src, temp);
2242 
2243     // If optimization is enabled, and the value was held in a
2244     // __strong variable, we need to tell the optimizer that this
2245     // value has to stay alive until we're doing the store back.
2246     // This is because the temporary is effectively unretained,
2247     // and so otherwise we can violate the high-level semantics.
2248     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2249         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2250       valueToUse = src;
2251     }
2252   }
2253 
2254   // Finish the control flow if we needed it.
2255   if (shouldCopy && !provablyNonNull) {
2256     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2257     CGF.EmitBlock(contBB);
2258 
2259     // Make a phi for the value to intrinsically use.
2260     if (valueToUse) {
2261       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2262                                                       "icr.to-use");
2263       phiToUse->addIncoming(valueToUse, copyBB);
2264       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2265                             originBB);
2266       valueToUse = phiToUse;
2267     }
2268 
2269     condEval.end(CGF);
2270   }
2271 
2272   args.addWriteback(srcLV, temp, valueToUse);
2273   args.add(RValue::get(finalArgument), CRE->getType());
2274 }
2275 
2276 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2277   assert(!StackBase && !StackCleanup.isValid());
2278 
2279   // Save the stack.
2280   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2281   StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
2282 
2283   // Control gets really tied up in landing pads, so we have to spill the
2284   // stacksave to an alloca to avoid violating SSA form.
2285   // TODO: This is dead if we never emit the cleanup.  We should create the
2286   // alloca and store lazily on the first cleanup emission.
2287   StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2288   CGF.Builder.CreateStore(StackBase, StackBaseMem);
2289   CGF.pushStackRestore(EHCleanup, StackBaseMem);
2290   StackCleanup = CGF.EHStack.getInnermostEHScope();
2291   assert(StackCleanup.isValid());
2292 }
2293 
2294 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2295   if (StackBase) {
2296     CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2297     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2298     // We could load StackBase from StackBaseMem, but in the non-exceptional
2299     // case we can skip it.
2300     CGF.Builder.CreateCall(F, StackBase);
2301   }
2302 }
2303 
2304 void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2305                                    ArrayRef<QualType> ArgTypes,
2306                                    CallExpr::const_arg_iterator ArgBeg,
2307                                    CallExpr::const_arg_iterator ArgEnd,
2308                                    bool ForceColumnInfo) {
2309   CGDebugInfo *DI = getDebugInfo();
2310   SourceLocation CallLoc;
2311   if (DI) CallLoc = DI->getLocation();
2312 
2313   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2314   // because arguments are destroyed left to right in the callee.
2315   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2316     // Insert a stack save if we're going to need any inalloca args.
2317     bool HasInAllocaArgs = false;
2318     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2319          I != E && !HasInAllocaArgs; ++I)
2320       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2321     if (HasInAllocaArgs) {
2322       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2323       Args.allocateArgumentMemory(*this);
2324     }
2325 
2326     // Evaluate each argument.
2327     size_t CallArgsStart = Args.size();
2328     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2329       CallExpr::const_arg_iterator Arg = ArgBeg + I;
2330       EmitCallArg(Args, *Arg, ArgTypes[I]);
2331       // Restore the debug location.
2332       if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2333     }
2334 
2335     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2336     // IR function.
2337     std::reverse(Args.begin() + CallArgsStart, Args.end());
2338     return;
2339   }
2340 
2341   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2342     CallExpr::const_arg_iterator Arg = ArgBeg + I;
2343     assert(Arg != ArgEnd);
2344     EmitCallArg(Args, *Arg, ArgTypes[I]);
2345     // Restore the debug location.
2346     if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2347   }
2348 }
2349 
2350 namespace {
2351 
2352 struct DestroyUnpassedArg : EHScopeStack::Cleanup {
2353   DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2354       : Addr(Addr), Ty(Ty) {}
2355 
2356   llvm::Value *Addr;
2357   QualType Ty;
2358 
2359   void Emit(CodeGenFunction &CGF, Flags flags) override {
2360     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2361     assert(!Dtor->isTrivial());
2362     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2363                               /*Delegating=*/false, Addr);
2364   }
2365 };
2366 
2367 }
2368 
2369 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2370                                   QualType type) {
2371   if (const ObjCIndirectCopyRestoreExpr *CRE
2372         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2373     assert(getLangOpts().ObjCAutoRefCount);
2374     assert(getContext().hasSameType(E->getType(), type));
2375     return emitWritebackArg(*this, args, CRE);
2376   }
2377 
2378   assert(type->isReferenceType() == E->isGLValue() &&
2379          "reference binding to unmaterialized r-value!");
2380 
2381   if (E->isGLValue()) {
2382     assert(E->getObjectKind() == OK_Ordinary);
2383     return args.add(EmitReferenceBindingToExpr(E), type);
2384   }
2385 
2386   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2387 
2388   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2389   // However, we still have to push an EH-only cleanup in case we unwind before
2390   // we make it to the call.
2391   if (HasAggregateEvalKind &&
2392       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2393     // If we're using inalloca, use the argument memory.  Otherwise, use a
2394     // temporary.
2395     AggValueSlot Slot;
2396     if (args.isUsingInAlloca())
2397       Slot = createPlaceholderSlot(*this, type);
2398     else
2399       Slot = CreateAggTemp(type, "agg.tmp");
2400 
2401     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2402     bool DestroyedInCallee =
2403         RD && RD->hasNonTrivialDestructor() &&
2404         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2405     if (DestroyedInCallee)
2406       Slot.setExternallyDestructed();
2407 
2408     EmitAggExpr(E, Slot);
2409     RValue RV = Slot.asRValue();
2410     args.add(RV, type);
2411 
2412     if (DestroyedInCallee) {
2413       // Create a no-op GEP between the placeholder and the cleanup so we can
2414       // RAUW it successfully.  It also serves as a marker of the first
2415       // instruction where the cleanup is active.
2416       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2417       // This unreachable is a temporary marker which will be removed later.
2418       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2419       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2420     }
2421     return;
2422   }
2423 
2424   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2425       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2426     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2427     assert(L.isSimple());
2428     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2429       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2430     } else {
2431       // We can't represent a misaligned lvalue in the CallArgList, so copy
2432       // to an aligned temporary now.
2433       llvm::Value *tmp = CreateMemTemp(type);
2434       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2435                         L.getAlignment());
2436       args.add(RValue::getAggregate(tmp), type);
2437     }
2438     return;
2439   }
2440 
2441   args.add(EmitAnyExprToTemp(E), type);
2442 }
2443 
2444 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2445 // optimizer it can aggressively ignore unwind edges.
2446 void
2447 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2448   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2449       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2450     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2451                       CGM.getNoObjCARCExceptionsMetadata());
2452 }
2453 
2454 /// Emits a call to the given no-arguments nounwind runtime function.
2455 llvm::CallInst *
2456 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2457                                          const llvm::Twine &name) {
2458   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2459 }
2460 
2461 /// Emits a call to the given nounwind runtime function.
2462 llvm::CallInst *
2463 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2464                                          ArrayRef<llvm::Value*> args,
2465                                          const llvm::Twine &name) {
2466   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2467   call->setDoesNotThrow();
2468   return call;
2469 }
2470 
2471 /// Emits a simple call (never an invoke) to the given no-arguments
2472 /// runtime function.
2473 llvm::CallInst *
2474 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2475                                  const llvm::Twine &name) {
2476   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2477 }
2478 
2479 /// Emits a simple call (never an invoke) to the given runtime
2480 /// function.
2481 llvm::CallInst *
2482 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2483                                  ArrayRef<llvm::Value*> args,
2484                                  const llvm::Twine &name) {
2485   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2486   call->setCallingConv(getRuntimeCC());
2487   return call;
2488 }
2489 
2490 /// Emits a call or invoke to the given noreturn runtime function.
2491 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2492                                                ArrayRef<llvm::Value*> args) {
2493   if (getInvokeDest()) {
2494     llvm::InvokeInst *invoke =
2495       Builder.CreateInvoke(callee,
2496                            getUnreachableBlock(),
2497                            getInvokeDest(),
2498                            args);
2499     invoke->setDoesNotReturn();
2500     invoke->setCallingConv(getRuntimeCC());
2501   } else {
2502     llvm::CallInst *call = Builder.CreateCall(callee, args);
2503     call->setDoesNotReturn();
2504     call->setCallingConv(getRuntimeCC());
2505     Builder.CreateUnreachable();
2506   }
2507   PGO.setCurrentRegionUnreachable();
2508 }
2509 
2510 /// Emits a call or invoke instruction to the given nullary runtime
2511 /// function.
2512 llvm::CallSite
2513 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2514                                          const Twine &name) {
2515   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2516 }
2517 
2518 /// Emits a call or invoke instruction to the given runtime function.
2519 llvm::CallSite
2520 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2521                                          ArrayRef<llvm::Value*> args,
2522                                          const Twine &name) {
2523   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2524   callSite.setCallingConv(getRuntimeCC());
2525   return callSite;
2526 }
2527 
2528 llvm::CallSite
2529 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2530                                   const Twine &Name) {
2531   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2532 }
2533 
2534 /// Emits a call or invoke instruction to the given function, depending
2535 /// on the current state of the EH stack.
2536 llvm::CallSite
2537 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2538                                   ArrayRef<llvm::Value *> Args,
2539                                   const Twine &Name) {
2540   llvm::BasicBlock *InvokeDest = getInvokeDest();
2541 
2542   llvm::Instruction *Inst;
2543   if (!InvokeDest)
2544     Inst = Builder.CreateCall(Callee, Args, Name);
2545   else {
2546     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2547     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2548     EmitBlock(ContBB);
2549   }
2550 
2551   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2552   // optimizer it can aggressively ignore unwind edges.
2553   if (CGM.getLangOpts().ObjCAutoRefCount)
2554     AddObjCARCExceptionMetadata(Inst);
2555 
2556   return Inst;
2557 }
2558 
2559 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2560                             llvm::FunctionType *FTy) {
2561   if (ArgNo < FTy->getNumParams())
2562     assert(Elt->getType() == FTy->getParamType(ArgNo));
2563   else
2564     assert(FTy->isVarArg());
2565   ++ArgNo;
2566 }
2567 
2568 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2569                                        SmallVectorImpl<llvm::Value *> &Args,
2570                                        llvm::FunctionType *IRFuncTy) {
2571   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2572     unsigned NumElts = AT->getSize().getZExtValue();
2573     QualType EltTy = AT->getElementType();
2574     llvm::Value *Addr = RV.getAggregateAddr();
2575     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2576       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2577       RValue EltRV = convertTempToRValue(EltAddr, EltTy, SourceLocation());
2578       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2579     }
2580   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2581     RecordDecl *RD = RT->getDecl();
2582     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2583     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2584 
2585     if (RD->isUnion()) {
2586       const FieldDecl *LargestFD = nullptr;
2587       CharUnits UnionSize = CharUnits::Zero();
2588 
2589       for (const auto *FD : RD->fields()) {
2590         assert(!FD->isBitField() &&
2591                "Cannot expand structure with bit-field members.");
2592         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2593         if (UnionSize < FieldSize) {
2594           UnionSize = FieldSize;
2595           LargestFD = FD;
2596         }
2597       }
2598       if (LargestFD) {
2599         RValue FldRV = EmitRValueForField(LV, LargestFD, SourceLocation());
2600         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2601       }
2602     } else {
2603       for (const auto *FD : RD->fields()) {
2604         RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
2605         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2606       }
2607     }
2608   } else if (Ty->isAnyComplexType()) {
2609     ComplexPairTy CV = RV.getComplexVal();
2610     Args.push_back(CV.first);
2611     Args.push_back(CV.second);
2612   } else {
2613     assert(RV.isScalar() &&
2614            "Unexpected non-scalar rvalue during struct expansion.");
2615 
2616     // Insert a bitcast as needed.
2617     llvm::Value *V = RV.getScalarVal();
2618     if (Args.size() < IRFuncTy->getNumParams() &&
2619         V->getType() != IRFuncTy->getParamType(Args.size()))
2620       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2621 
2622     Args.push_back(V);
2623   }
2624 }
2625 
2626 /// \brief Store a non-aggregate value to an address to initialize it.  For
2627 /// initialization, a non-atomic store will be used.
2628 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
2629                                         LValue Dst) {
2630   if (Src.isScalar())
2631     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
2632   else
2633     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
2634 }
2635 
2636 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
2637                                                   llvm::Value *New) {
2638   DeferredReplacements.push_back(std::make_pair(Old, New));
2639 }
2640 
2641 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2642                                  llvm::Value *Callee,
2643                                  ReturnValueSlot ReturnValue,
2644                                  const CallArgList &CallArgs,
2645                                  const Decl *TargetDecl,
2646                                  llvm::Instruction **callOrInvoke) {
2647   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2648   SmallVector<llvm::Value*, 16> Args;
2649 
2650   // Handle struct-return functions by passing a pointer to the
2651   // location that we would like to return into.
2652   QualType RetTy = CallInfo.getReturnType();
2653   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2654 
2655   // IRArgNo - Keep track of the argument number in the callee we're looking at.
2656   unsigned IRArgNo = 0;
2657   llvm::FunctionType *IRFuncTy =
2658     cast<llvm::FunctionType>(
2659                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2660 
2661   // If we're using inalloca, insert the allocation after the stack save.
2662   // FIXME: Do this earlier rather than hacking it in here!
2663   llvm::Value *ArgMemory = nullptr;
2664   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
2665     llvm::Instruction *IP = CallArgs.getStackBase();
2666     llvm::AllocaInst *AI;
2667     if (IP) {
2668       IP = IP->getNextNode();
2669       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
2670     } else {
2671       AI = CreateTempAlloca(ArgStruct, "argmem");
2672     }
2673     AI->setUsedWithInAlloca(true);
2674     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
2675     ArgMemory = AI;
2676   }
2677 
2678   // If the call returns a temporary with struct return, create a temporary
2679   // alloca to hold the result, unless one is given to us.
2680   llvm::Value *SRetPtr = nullptr;
2681   bool SwapThisWithSRet = false;
2682   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
2683     SRetPtr = ReturnValue.getValue();
2684     if (!SRetPtr)
2685       SRetPtr = CreateMemTemp(RetTy);
2686     if (RetAI.isIndirect()) {
2687       Args.push_back(SRetPtr);
2688       SwapThisWithSRet = RetAI.isSRetAfterThis();
2689       if (SwapThisWithSRet)
2690         IRArgNo = 1;
2691       checkArgMatches(SRetPtr, IRArgNo, IRFuncTy);
2692       if (SwapThisWithSRet)
2693         IRArgNo = 0;
2694     } else {
2695       llvm::Value *Addr =
2696           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
2697       Builder.CreateStore(SRetPtr, Addr);
2698     }
2699   }
2700 
2701   assert(CallInfo.arg_size() == CallArgs.size() &&
2702          "Mismatch between function signature & arguments.");
2703   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2704   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2705        I != E; ++I, ++info_it) {
2706     const ABIArgInfo &ArgInfo = info_it->info;
2707     RValue RV = I->RV;
2708 
2709     // Skip 'sret' if it came second.
2710     if (IRArgNo == 1 && SwapThisWithSRet)
2711       ++IRArgNo;
2712 
2713     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2714 
2715     // Insert a padding argument to ensure proper alignment.
2716     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2717       Args.push_back(llvm::UndefValue::get(PaddingType));
2718       ++IRArgNo;
2719     }
2720 
2721     switch (ArgInfo.getKind()) {
2722     case ABIArgInfo::InAlloca: {
2723       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2724       if (RV.isAggregate()) {
2725         // Replace the placeholder with the appropriate argument slot GEP.
2726         llvm::Instruction *Placeholder =
2727             cast<llvm::Instruction>(RV.getAggregateAddr());
2728         CGBuilderTy::InsertPoint IP = Builder.saveIP();
2729         Builder.SetInsertPoint(Placeholder);
2730         llvm::Value *Addr = Builder.CreateStructGEP(
2731             ArgMemory, ArgInfo.getInAllocaFieldIndex());
2732         Builder.restoreIP(IP);
2733         deferPlaceholderReplacement(Placeholder, Addr);
2734       } else {
2735         // Store the RValue into the argument struct.
2736         llvm::Value *Addr =
2737             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
2738         unsigned AS = Addr->getType()->getPointerAddressSpace();
2739         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
2740         // There are some cases where a trivial bitcast is not avoidable.  The
2741         // definition of a type later in a translation unit may change it's type
2742         // from {}* to (%struct.foo*)*.
2743         if (Addr->getType() != MemType)
2744           Addr = Builder.CreateBitCast(Addr, MemType);
2745         LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
2746         EmitInitStoreOfNonAggregate(*this, RV, argLV);
2747       }
2748       break; // Don't increment IRArgNo!
2749     }
2750 
2751     case ABIArgInfo::Indirect: {
2752       if (RV.isScalar() || RV.isComplex()) {
2753         // Make a temporary alloca to pass the argument.
2754         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2755         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2756           AI->setAlignment(ArgInfo.getIndirectAlign());
2757         Args.push_back(AI);
2758 
2759         LValue argLV = MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2760         EmitInitStoreOfNonAggregate(*this, RV, argLV);
2761 
2762         // Validate argument match.
2763         checkArgMatches(AI, IRArgNo, IRFuncTy);
2764       } else {
2765         // We want to avoid creating an unnecessary temporary+copy here;
2766         // however, we need one in three cases:
2767         // 1. If the argument is not byval, and we are required to copy the
2768         //    source.  (This case doesn't occur on any common architecture.)
2769         // 2. If the argument is byval, RV is not sufficiently aligned, and
2770         //    we cannot force it to be sufficiently aligned.
2771         // 3. If the argument is byval, but RV is located in an address space
2772         //    different than that of the argument (0).
2773         llvm::Value *Addr = RV.getAggregateAddr();
2774         unsigned Align = ArgInfo.getIndirectAlign();
2775         const llvm::DataLayout *TD = &CGM.getDataLayout();
2776         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2777         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2778           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2779         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2780             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2781              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2782              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2783           // Create an aligned temporary, and copy to it.
2784           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2785           if (Align > AI->getAlignment())
2786             AI->setAlignment(Align);
2787           Args.push_back(AI);
2788           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2789 
2790           // Validate argument match.
2791           checkArgMatches(AI, IRArgNo, IRFuncTy);
2792         } else {
2793           // Skip the extra memcpy call.
2794           Args.push_back(Addr);
2795 
2796           // Validate argument match.
2797           checkArgMatches(Addr, IRArgNo, IRFuncTy);
2798         }
2799       }
2800       break;
2801     }
2802 
2803     case ABIArgInfo::Ignore:
2804       break;
2805 
2806     case ABIArgInfo::Extend:
2807     case ABIArgInfo::Direct: {
2808       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2809           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2810           ArgInfo.getDirectOffset() == 0) {
2811         llvm::Value *V;
2812         if (RV.isScalar())
2813           V = RV.getScalarVal();
2814         else
2815           V = Builder.CreateLoad(RV.getAggregateAddr());
2816 
2817         // If the argument doesn't match, perform a bitcast to coerce it.  This
2818         // can happen due to trivial type mismatches.
2819         if (IRArgNo < IRFuncTy->getNumParams() &&
2820             V->getType() != IRFuncTy->getParamType(IRArgNo))
2821           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2822         Args.push_back(V);
2823 
2824         checkArgMatches(V, IRArgNo, IRFuncTy);
2825         break;
2826       }
2827 
2828       // FIXME: Avoid the conversion through memory if possible.
2829       llvm::Value *SrcPtr;
2830       if (RV.isScalar() || RV.isComplex()) {
2831         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2832         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2833         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
2834       } else
2835         SrcPtr = RV.getAggregateAddr();
2836 
2837       // If the value is offset in memory, apply the offset now.
2838       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2839         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2840         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2841         SrcPtr = Builder.CreateBitCast(SrcPtr,
2842                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2843 
2844       }
2845 
2846       // If the coerce-to type is a first class aggregate, we flatten it and
2847       // pass the elements. Either way is semantically identical, but fast-isel
2848       // and the optimizer generally likes scalar values better than FCAs.
2849       // We cannot do this for functions using the AAPCS calling convention,
2850       // as structures are treated differently by that calling convention.
2851       llvm::StructType *STy =
2852             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
2853       if (STy && !isAAPCSVFP(CallInfo, getTarget())) {
2854         llvm::Type *SrcTy =
2855           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2856         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2857         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2858 
2859         // If the source type is smaller than the destination type of the
2860         // coerce-to logic, copy the source value into a temp alloca the size
2861         // of the destination type to allow loading all of it. The bits past
2862         // the source value are left undef.
2863         if (SrcSize < DstSize) {
2864           llvm::AllocaInst *TempAlloca
2865             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2866           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2867           SrcPtr = TempAlloca;
2868         } else {
2869           SrcPtr = Builder.CreateBitCast(SrcPtr,
2870                                          llvm::PointerType::getUnqual(STy));
2871         }
2872 
2873         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2874           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2875           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2876           // We don't know what we're loading from.
2877           LI->setAlignment(1);
2878           Args.push_back(LI);
2879 
2880           // Validate argument match.
2881           checkArgMatches(LI, IRArgNo, IRFuncTy);
2882         }
2883       } else {
2884         // In the simple case, just pass the coerced loaded value.
2885         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2886                                          *this));
2887 
2888         // Validate argument match.
2889         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2890       }
2891 
2892       break;
2893     }
2894 
2895     case ABIArgInfo::Expand:
2896       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2897       IRArgNo = Args.size();
2898       break;
2899     }
2900   }
2901 
2902   if (SwapThisWithSRet)
2903     std::swap(Args[0], Args[1]);
2904 
2905   if (ArgMemory) {
2906     llvm::Value *Arg = ArgMemory;
2907     if (CallInfo.isVariadic()) {
2908       // When passing non-POD arguments by value to variadic functions, we will
2909       // end up with a variadic prototype and an inalloca call site.  In such
2910       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
2911       // the callee.
2912       unsigned CalleeAS =
2913           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
2914       Callee = Builder.CreateBitCast(
2915           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
2916     } else {
2917       llvm::Type *LastParamTy =
2918           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
2919       if (Arg->getType() != LastParamTy) {
2920 #ifndef NDEBUG
2921         // Assert that these structs have equivalent element types.
2922         llvm::StructType *FullTy = CallInfo.getArgStruct();
2923         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
2924             cast<llvm::PointerType>(LastParamTy)->getElementType());
2925         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
2926         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
2927                                                 DE = DeclaredTy->element_end(),
2928                                                 FI = FullTy->element_begin();
2929              DI != DE; ++DI, ++FI)
2930           assert(*DI == *FI);
2931 #endif
2932         Arg = Builder.CreateBitCast(Arg, LastParamTy);
2933       }
2934     }
2935     Args.push_back(Arg);
2936   }
2937 
2938   if (!CallArgs.getCleanupsToDeactivate().empty())
2939     deactivateArgCleanupsBeforeCall(*this, CallArgs);
2940 
2941   // If the callee is a bitcast of a function to a varargs pointer to function
2942   // type, check to see if we can remove the bitcast.  This handles some cases
2943   // with unprototyped functions.
2944   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2945     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2946       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2947       llvm::FunctionType *CurFT =
2948         cast<llvm::FunctionType>(CurPT->getElementType());
2949       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2950 
2951       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2952           ActualFT->getReturnType() == CurFT->getReturnType() &&
2953           ActualFT->getNumParams() == CurFT->getNumParams() &&
2954           ActualFT->getNumParams() == Args.size() &&
2955           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2956         bool ArgsMatch = true;
2957         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2958           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2959             ArgsMatch = false;
2960             break;
2961           }
2962 
2963         // Strip the cast if we can get away with it.  This is a nice cleanup,
2964         // but also allows us to inline the function at -O0 if it is marked
2965         // always_inline.
2966         if (ArgsMatch)
2967           Callee = CalleeF;
2968       }
2969     }
2970 
2971   unsigned CallingConv;
2972   CodeGen::AttributeListType AttributeList;
2973   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2974                              CallingConv, true);
2975   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2976                                                      AttributeList);
2977 
2978   llvm::BasicBlock *InvokeDest = nullptr;
2979   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2980                           llvm::Attribute::NoUnwind))
2981     InvokeDest = getInvokeDest();
2982 
2983   llvm::CallSite CS;
2984   if (!InvokeDest) {
2985     CS = Builder.CreateCall(Callee, Args);
2986   } else {
2987     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2988     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2989     EmitBlock(Cont);
2990   }
2991   if (callOrInvoke)
2992     *callOrInvoke = CS.getInstruction();
2993 
2994   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
2995       !CS.hasFnAttr(llvm::Attribute::NoInline))
2996     Attrs =
2997         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
2998                            llvm::Attribute::AlwaysInline);
2999 
3000   CS.setAttributes(Attrs);
3001   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3002 
3003   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3004   // optimizer it can aggressively ignore unwind edges.
3005   if (CGM.getLangOpts().ObjCAutoRefCount)
3006     AddObjCARCExceptionMetadata(CS.getInstruction());
3007 
3008   // If the call doesn't return, finish the basic block and clear the
3009   // insertion point; this allows the rest of IRgen to discard
3010   // unreachable code.
3011   if (CS.doesNotReturn()) {
3012     Builder.CreateUnreachable();
3013     Builder.ClearInsertionPoint();
3014 
3015     // FIXME: For now, emit a dummy basic block because expr emitters in
3016     // generally are not ready to handle emitting expressions at unreachable
3017     // points.
3018     EnsureInsertPoint();
3019 
3020     // Return a reasonable RValue.
3021     return GetUndefRValue(RetTy);
3022   }
3023 
3024   llvm::Instruction *CI = CS.getInstruction();
3025   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3026     CI->setName("call");
3027 
3028   // Emit any writebacks immediately.  Arguably this should happen
3029   // after any return-value munging.
3030   if (CallArgs.hasWritebacks())
3031     emitWritebacks(*this, CallArgs);
3032 
3033   // The stack cleanup for inalloca arguments has to run out of the normal
3034   // lexical order, so deactivate it and run it manually here.
3035   CallArgs.freeArgumentMemory(*this);
3036 
3037   switch (RetAI.getKind()) {
3038   case ABIArgInfo::InAlloca:
3039   case ABIArgInfo::Indirect:
3040     return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3041 
3042   case ABIArgInfo::Ignore:
3043     // If we are ignoring an argument that had a result, make sure to
3044     // construct the appropriate return value for our caller.
3045     return GetUndefRValue(RetTy);
3046 
3047   case ABIArgInfo::Extend:
3048   case ABIArgInfo::Direct: {
3049     llvm::Type *RetIRTy = ConvertType(RetTy);
3050     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3051       switch (getEvaluationKind(RetTy)) {
3052       case TEK_Complex: {
3053         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3054         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3055         return RValue::getComplex(std::make_pair(Real, Imag));
3056       }
3057       case TEK_Aggregate: {
3058         llvm::Value *DestPtr = ReturnValue.getValue();
3059         bool DestIsVolatile = ReturnValue.isVolatile();
3060 
3061         if (!DestPtr) {
3062           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3063           DestIsVolatile = false;
3064         }
3065         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
3066         return RValue::getAggregate(DestPtr);
3067       }
3068       case TEK_Scalar: {
3069         // If the argument doesn't match, perform a bitcast to coerce it.  This
3070         // can happen due to trivial type mismatches.
3071         llvm::Value *V = CI;
3072         if (V->getType() != RetIRTy)
3073           V = Builder.CreateBitCast(V, RetIRTy);
3074         return RValue::get(V);
3075       }
3076       }
3077       llvm_unreachable("bad evaluation kind");
3078     }
3079 
3080     llvm::Value *DestPtr = ReturnValue.getValue();
3081     bool DestIsVolatile = ReturnValue.isVolatile();
3082 
3083     if (!DestPtr) {
3084       DestPtr = CreateMemTemp(RetTy, "coerce");
3085       DestIsVolatile = false;
3086     }
3087 
3088     // If the value is offset in memory, apply the offset now.
3089     llvm::Value *StorePtr = DestPtr;
3090     if (unsigned Offs = RetAI.getDirectOffset()) {
3091       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
3092       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
3093       StorePtr = Builder.CreateBitCast(StorePtr,
3094                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
3095     }
3096     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3097 
3098     return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3099   }
3100 
3101   case ABIArgInfo::Expand:
3102     llvm_unreachable("Invalid ABI kind for return argument");
3103   }
3104 
3105   llvm_unreachable("Unhandled ABIArgInfo::Kind");
3106 }
3107 
3108 /* VarArg handling */
3109 
3110 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
3111   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
3112 }
3113