1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/Support/CallSite.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 using namespace clang; 32 using namespace CodeGen; 33 34 /***/ 35 36 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 37 switch (CC) { 38 default: return llvm::CallingConv::C; 39 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 40 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 41 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 42 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 43 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 44 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 45 // TODO: add support for CC_X86Pascal to llvm 46 } 47 } 48 49 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 50 /// qualification. 51 /// FIXME: address space qualification? 52 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 53 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 54 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 55 } 56 57 /// Returns the canonical formal type of the given C++ method. 58 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 59 return MD->getType()->getCanonicalTypeUnqualified() 60 .getAs<FunctionProtoType>(); 61 } 62 63 /// Returns the "extra-canonicalized" return type, which discards 64 /// qualifiers on the return type. Codegen doesn't care about them, 65 /// and it makes ABI code a little easier to be able to assume that 66 /// all parameter and return types are top-level unqualified. 67 static CanQualType GetReturnType(QualType RetTy) { 68 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 69 } 70 71 /// Arrange the argument and result information for a value of the given 72 /// unprototyped freestanding function type. 73 const CGFunctionInfo & 74 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 75 // When translating an unprototyped function type, always use a 76 // variadic type. 77 return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(), 78 ArrayRef<CanQualType>(), 79 FTNP->getExtInfo(), 80 RequiredArgs(0)); 81 } 82 83 /// Arrange the LLVM function layout for a value of the given function 84 /// type, on top of any implicit parameters already stored. Use the 85 /// given ExtInfo instead of the ExtInfo from the function type. 86 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT, 87 SmallVectorImpl<CanQualType> &prefix, 88 CanQual<FunctionProtoType> FTP, 89 FunctionType::ExtInfo extInfo) { 90 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 91 // FIXME: Kill copy. 92 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 93 prefix.push_back(FTP->getArgType(i)); 94 CanQualType resultType = FTP->getResultType().getUnqualifiedType(); 95 return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required); 96 } 97 98 /// Arrange the argument and result information for a free function (i.e. 99 /// not a C++ or ObjC instance method) of the given type. 100 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT, 101 SmallVectorImpl<CanQualType> &prefix, 102 CanQual<FunctionProtoType> FTP) { 103 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo()); 104 } 105 106 /// Given the formal ext-info of a C++ instance method, adjust it 107 /// according to the C++ ABI in effect. 108 static void adjustCXXMethodInfo(CodeGenTypes &CGT, 109 FunctionType::ExtInfo &extInfo, 110 bool isVariadic) { 111 if (extInfo.getCC() == CC_Default) { 112 CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic); 113 extInfo = extInfo.withCallingConv(CC); 114 } 115 } 116 117 /// Arrange the argument and result information for a free function (i.e. 118 /// not a C++ or ObjC instance method) of the given type. 119 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT, 120 SmallVectorImpl<CanQualType> &prefix, 121 CanQual<FunctionProtoType> FTP) { 122 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 123 adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic()); 124 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo); 125 } 126 127 /// Arrange the argument and result information for a value of the 128 /// given freestanding function type. 129 const CGFunctionInfo & 130 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 131 SmallVector<CanQualType, 16> argTypes; 132 return ::arrangeFreeFunctionType(*this, argTypes, FTP); 133 } 134 135 static CallingConv getCallingConventionForDecl(const Decl *D) { 136 // Set the appropriate calling convention for the Function. 137 if (D->hasAttr<StdCallAttr>()) 138 return CC_X86StdCall; 139 140 if (D->hasAttr<FastCallAttr>()) 141 return CC_X86FastCall; 142 143 if (D->hasAttr<ThisCallAttr>()) 144 return CC_X86ThisCall; 145 146 if (D->hasAttr<PascalAttr>()) 147 return CC_X86Pascal; 148 149 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 150 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 151 152 if (D->hasAttr<PnaclCallAttr>()) 153 return CC_PnaclCall; 154 155 if (D->hasAttr<IntelOclBiccAttr>()) 156 return CC_IntelOclBicc; 157 158 return CC_C; 159 } 160 161 /// Arrange the argument and result information for a call to an 162 /// unknown C++ non-static member function of the given abstract type. 163 /// The member function must be an ordinary function, i.e. not a 164 /// constructor or destructor. 165 const CGFunctionInfo & 166 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 167 const FunctionProtoType *FTP) { 168 SmallVector<CanQualType, 16> argTypes; 169 170 // Add the 'this' pointer. 171 argTypes.push_back(GetThisType(Context, RD)); 172 173 return ::arrangeCXXMethodType(*this, argTypes, 174 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 175 } 176 177 /// Arrange the argument and result information for a declaration or 178 /// definition of the given C++ non-static member function. The 179 /// member function must be an ordinary function, i.e. not a 180 /// constructor or destructor. 181 const CGFunctionInfo & 182 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 183 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); 184 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 185 186 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 187 188 if (MD->isInstance()) { 189 // The abstract case is perfectly fine. 190 return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr()); 191 } 192 193 return arrangeFreeFunctionType(prototype); 194 } 195 196 /// Arrange the argument and result information for a declaration 197 /// or definition to the given constructor variant. 198 const CGFunctionInfo & 199 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D, 200 CXXCtorType ctorKind) { 201 SmallVector<CanQualType, 16> argTypes; 202 argTypes.push_back(GetThisType(Context, D->getParent())); 203 CanQualType resultType = Context.VoidTy; 204 205 TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes); 206 207 CanQual<FunctionProtoType> FTP = GetFormalType(D); 208 209 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size()); 210 211 // Add the formal parameters. 212 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 213 argTypes.push_back(FTP->getArgType(i)); 214 215 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 216 adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic()); 217 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required); 218 } 219 220 /// Arrange the argument and result information for a declaration, 221 /// definition, or call to the given destructor variant. It so 222 /// happens that all three cases produce the same information. 223 const CGFunctionInfo & 224 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D, 225 CXXDtorType dtorKind) { 226 SmallVector<CanQualType, 2> argTypes; 227 argTypes.push_back(GetThisType(Context, D->getParent())); 228 CanQualType resultType = Context.VoidTy; 229 230 TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes); 231 232 CanQual<FunctionProtoType> FTP = GetFormalType(D); 233 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); 234 assert(FTP->isVariadic() == 0 && "dtor with formal parameters"); 235 236 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 237 adjustCXXMethodInfo(*this, extInfo, false); 238 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, 239 RequiredArgs::All); 240 } 241 242 /// Arrange the argument and result information for the declaration or 243 /// definition of the given function. 244 const CGFunctionInfo & 245 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 246 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 247 if (MD->isInstance()) 248 return arrangeCXXMethodDeclaration(MD); 249 250 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 251 252 assert(isa<FunctionType>(FTy)); 253 254 // When declaring a function without a prototype, always use a 255 // non-variadic type. 256 if (isa<FunctionNoProtoType>(FTy)) { 257 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 258 return arrangeLLVMFunctionInfo(noProto->getResultType(), 259 ArrayRef<CanQualType>(), 260 noProto->getExtInfo(), 261 RequiredArgs::All); 262 } 263 264 assert(isa<FunctionProtoType>(FTy)); 265 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 266 } 267 268 /// Arrange the argument and result information for the declaration or 269 /// definition of an Objective-C method. 270 const CGFunctionInfo & 271 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 272 // It happens that this is the same as a call with no optional 273 // arguments, except also using the formal 'self' type. 274 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 275 } 276 277 /// Arrange the argument and result information for the function type 278 /// through which to perform a send to the given Objective-C method, 279 /// using the given receiver type. The receiver type is not always 280 /// the 'self' type of the method or even an Objective-C pointer type. 281 /// This is *not* the right method for actually performing such a 282 /// message send, due to the possibility of optional arguments. 283 const CGFunctionInfo & 284 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 285 QualType receiverType) { 286 SmallVector<CanQualType, 16> argTys; 287 argTys.push_back(Context.getCanonicalParamType(receiverType)); 288 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 289 // FIXME: Kill copy? 290 for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), 291 e = MD->param_end(); i != e; ++i) { 292 argTys.push_back(Context.getCanonicalParamType((*i)->getType())); 293 } 294 295 FunctionType::ExtInfo einfo; 296 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); 297 298 if (getContext().getLangOpts().ObjCAutoRefCount && 299 MD->hasAttr<NSReturnsRetainedAttr>()) 300 einfo = einfo.withProducesResult(true); 301 302 RequiredArgs required = 303 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 304 305 return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys, 306 einfo, required); 307 } 308 309 const CGFunctionInfo & 310 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 311 // FIXME: Do we need to handle ObjCMethodDecl? 312 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 313 314 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 315 return arrangeCXXConstructorDeclaration(CD, GD.getCtorType()); 316 317 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 318 return arrangeCXXDestructor(DD, GD.getDtorType()); 319 320 return arrangeFunctionDeclaration(FD); 321 } 322 323 /// Arrange a call as unto a free function, except possibly with an 324 /// additional number of formal parameters considered required. 325 static const CGFunctionInfo & 326 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 327 const CallArgList &args, 328 const FunctionType *fnType, 329 unsigned numExtraRequiredArgs) { 330 assert(args.size() >= numExtraRequiredArgs); 331 332 // In most cases, there are no optional arguments. 333 RequiredArgs required = RequiredArgs::All; 334 335 // If we have a variadic prototype, the required arguments are the 336 // extra prefix plus the arguments in the prototype. 337 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 338 if (proto->isVariadic()) 339 required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs); 340 341 // If we don't have a prototype at all, but we're supposed to 342 // explicitly use the variadic convention for unprototyped calls, 343 // treat all of the arguments as required but preserve the nominal 344 // possibility of variadics. 345 } else if (CGT.CGM.getTargetCodeGenInfo() 346 .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) { 347 required = RequiredArgs(args.size()); 348 } 349 350 return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args, 351 fnType->getExtInfo(), required); 352 } 353 354 /// Figure out the rules for calling a function with the given formal 355 /// type using the given arguments. The arguments are necessary 356 /// because the function might be unprototyped, in which case it's 357 /// target-dependent in crazy ways. 358 const CGFunctionInfo & 359 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 360 const FunctionType *fnType) { 361 return arrangeFreeFunctionLikeCall(*this, args, fnType, 0); 362 } 363 364 /// A block function call is essentially a free-function call with an 365 /// extra implicit argument. 366 const CGFunctionInfo & 367 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 368 const FunctionType *fnType) { 369 return arrangeFreeFunctionLikeCall(*this, args, fnType, 1); 370 } 371 372 const CGFunctionInfo & 373 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 374 const CallArgList &args, 375 FunctionType::ExtInfo info, 376 RequiredArgs required) { 377 // FIXME: Kill copy. 378 SmallVector<CanQualType, 16> argTypes; 379 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 380 i != e; ++i) 381 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 382 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 383 required); 384 } 385 386 /// Arrange a call to a C++ method, passing the given arguments. 387 const CGFunctionInfo & 388 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 389 const FunctionProtoType *FPT, 390 RequiredArgs required) { 391 // FIXME: Kill copy. 392 SmallVector<CanQualType, 16> argTypes; 393 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 394 i != e; ++i) 395 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 396 397 FunctionType::ExtInfo info = FPT->getExtInfo(); 398 adjustCXXMethodInfo(*this, info, FPT->isVariadic()); 399 return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()), 400 argTypes, info, required); 401 } 402 403 const CGFunctionInfo & 404 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType, 405 const FunctionArgList &args, 406 const FunctionType::ExtInfo &info, 407 bool isVariadic) { 408 // FIXME: Kill copy. 409 SmallVector<CanQualType, 16> argTypes; 410 for (FunctionArgList::const_iterator i = args.begin(), e = args.end(); 411 i != e; ++i) 412 argTypes.push_back(Context.getCanonicalParamType((*i)->getType())); 413 414 RequiredArgs required = 415 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 416 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 417 required); 418 } 419 420 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 421 return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(), 422 FunctionType::ExtInfo(), RequiredArgs::All); 423 } 424 425 /// Arrange the argument and result information for an abstract value 426 /// of a given function type. This is the method which all of the 427 /// above functions ultimately defer to. 428 const CGFunctionInfo & 429 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 430 ArrayRef<CanQualType> argTypes, 431 FunctionType::ExtInfo info, 432 RequiredArgs required) { 433 #ifndef NDEBUG 434 for (ArrayRef<CanQualType>::const_iterator 435 I = argTypes.begin(), E = argTypes.end(); I != E; ++I) 436 assert(I->isCanonicalAsParam()); 437 #endif 438 439 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 440 441 // Lookup or create unique function info. 442 llvm::FoldingSetNodeID ID; 443 CGFunctionInfo::Profile(ID, info, required, resultType, argTypes); 444 445 void *insertPos = 0; 446 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 447 if (FI) 448 return *FI; 449 450 // Construct the function info. We co-allocate the ArgInfos. 451 FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required); 452 FunctionInfos.InsertNode(FI, insertPos); 453 454 bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted; 455 assert(inserted && "Recursively being processed?"); 456 457 // Compute ABI information. 458 getABIInfo().computeInfo(*FI); 459 460 // Loop over all of the computed argument and return value info. If any of 461 // them are direct or extend without a specified coerce type, specify the 462 // default now. 463 ABIArgInfo &retInfo = FI->getReturnInfo(); 464 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0) 465 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 466 467 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); 468 I != E; ++I) 469 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) 470 I->info.setCoerceToType(ConvertType(I->type)); 471 472 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 473 assert(erased && "Not in set?"); 474 475 return *FI; 476 } 477 478 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 479 const FunctionType::ExtInfo &info, 480 CanQualType resultType, 481 ArrayRef<CanQualType> argTypes, 482 RequiredArgs required) { 483 void *buffer = operator new(sizeof(CGFunctionInfo) + 484 sizeof(ArgInfo) * (argTypes.size() + 1)); 485 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 486 FI->CallingConvention = llvmCC; 487 FI->EffectiveCallingConvention = llvmCC; 488 FI->ASTCallingConvention = info.getCC(); 489 FI->NoReturn = info.getNoReturn(); 490 FI->ReturnsRetained = info.getProducesResult(); 491 FI->Required = required; 492 FI->HasRegParm = info.getHasRegParm(); 493 FI->RegParm = info.getRegParm(); 494 FI->NumArgs = argTypes.size(); 495 FI->getArgsBuffer()[0].type = resultType; 496 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 497 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 498 return FI; 499 } 500 501 /***/ 502 503 void CodeGenTypes::GetExpandedTypes(QualType type, 504 SmallVectorImpl<llvm::Type*> &expandedTypes) { 505 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { 506 uint64_t NumElts = AT->getSize().getZExtValue(); 507 for (uint64_t Elt = 0; Elt < NumElts; ++Elt) 508 GetExpandedTypes(AT->getElementType(), expandedTypes); 509 } else if (const RecordType *RT = type->getAs<RecordType>()) { 510 const RecordDecl *RD = RT->getDecl(); 511 assert(!RD->hasFlexibleArrayMember() && 512 "Cannot expand structure with flexible array."); 513 if (RD->isUnion()) { 514 // Unions can be here only in degenerative cases - all the fields are same 515 // after flattening. Thus we have to use the "largest" field. 516 const FieldDecl *LargestFD = 0; 517 CharUnits UnionSize = CharUnits::Zero(); 518 519 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 520 i != e; ++i) { 521 const FieldDecl *FD = *i; 522 assert(!FD->isBitField() && 523 "Cannot expand structure with bit-field members."); 524 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 525 if (UnionSize < FieldSize) { 526 UnionSize = FieldSize; 527 LargestFD = FD; 528 } 529 } 530 if (LargestFD) 531 GetExpandedTypes(LargestFD->getType(), expandedTypes); 532 } else { 533 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 534 i != e; ++i) { 535 assert(!i->isBitField() && 536 "Cannot expand structure with bit-field members."); 537 GetExpandedTypes(i->getType(), expandedTypes); 538 } 539 } 540 } else if (const ComplexType *CT = type->getAs<ComplexType>()) { 541 llvm::Type *EltTy = ConvertType(CT->getElementType()); 542 expandedTypes.push_back(EltTy); 543 expandedTypes.push_back(EltTy); 544 } else 545 expandedTypes.push_back(ConvertType(type)); 546 } 547 548 llvm::Function::arg_iterator 549 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 550 llvm::Function::arg_iterator AI) { 551 assert(LV.isSimple() && 552 "Unexpected non-simple lvalue during struct expansion."); 553 554 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 555 unsigned NumElts = AT->getSize().getZExtValue(); 556 QualType EltTy = AT->getElementType(); 557 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 558 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt); 559 LValue LV = MakeAddrLValue(EltAddr, EltTy); 560 AI = ExpandTypeFromArgs(EltTy, LV, AI); 561 } 562 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 563 RecordDecl *RD = RT->getDecl(); 564 if (RD->isUnion()) { 565 // Unions can be here only in degenerative cases - all the fields are same 566 // after flattening. Thus we have to use the "largest" field. 567 const FieldDecl *LargestFD = 0; 568 CharUnits UnionSize = CharUnits::Zero(); 569 570 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 571 i != e; ++i) { 572 const FieldDecl *FD = *i; 573 assert(!FD->isBitField() && 574 "Cannot expand structure with bit-field members."); 575 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 576 if (UnionSize < FieldSize) { 577 UnionSize = FieldSize; 578 LargestFD = FD; 579 } 580 } 581 if (LargestFD) { 582 // FIXME: What are the right qualifiers here? 583 LValue SubLV = EmitLValueForField(LV, LargestFD); 584 AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI); 585 } 586 } else { 587 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 588 i != e; ++i) { 589 FieldDecl *FD = *i; 590 QualType FT = FD->getType(); 591 592 // FIXME: What are the right qualifiers here? 593 LValue SubLV = EmitLValueForField(LV, FD); 594 AI = ExpandTypeFromArgs(FT, SubLV, AI); 595 } 596 } 597 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 598 QualType EltTy = CT->getElementType(); 599 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real"); 600 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); 601 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag"); 602 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); 603 } else { 604 EmitStoreThroughLValue(RValue::get(AI), LV); 605 ++AI; 606 } 607 608 return AI; 609 } 610 611 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 612 /// accessing some number of bytes out of it, try to gep into the struct to get 613 /// at its inner goodness. Dive as deep as possible without entering an element 614 /// with an in-memory size smaller than DstSize. 615 static llvm::Value * 616 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 617 llvm::StructType *SrcSTy, 618 uint64_t DstSize, CodeGenFunction &CGF) { 619 // We can't dive into a zero-element struct. 620 if (SrcSTy->getNumElements() == 0) return SrcPtr; 621 622 llvm::Type *FirstElt = SrcSTy->getElementType(0); 623 624 // If the first elt is at least as large as what we're looking for, or if the 625 // first element is the same size as the whole struct, we can enter it. 626 uint64_t FirstEltSize = 627 CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt); 628 if (FirstEltSize < DstSize && 629 FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy)) 630 return SrcPtr; 631 632 // GEP into the first element. 633 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 634 635 // If the first element is a struct, recurse. 636 llvm::Type *SrcTy = 637 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 638 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 639 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 640 641 return SrcPtr; 642 } 643 644 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 645 /// are either integers or pointers. This does a truncation of the value if it 646 /// is too large or a zero extension if it is too small. 647 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 648 llvm::Type *Ty, 649 CodeGenFunction &CGF) { 650 if (Val->getType() == Ty) 651 return Val; 652 653 if (isa<llvm::PointerType>(Val->getType())) { 654 // If this is Pointer->Pointer avoid conversion to and from int. 655 if (isa<llvm::PointerType>(Ty)) 656 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 657 658 // Convert the pointer to an integer so we can play with its width. 659 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 660 } 661 662 llvm::Type *DestIntTy = Ty; 663 if (isa<llvm::PointerType>(DestIntTy)) 664 DestIntTy = CGF.IntPtrTy; 665 666 if (Val->getType() != DestIntTy) 667 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 668 669 if (isa<llvm::PointerType>(Ty)) 670 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 671 return Val; 672 } 673 674 675 676 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 677 /// a pointer to an object of type \arg Ty. 678 /// 679 /// This safely handles the case when the src type is smaller than the 680 /// destination type; in this situation the values of bits which not 681 /// present in the src are undefined. 682 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 683 llvm::Type *Ty, 684 CodeGenFunction &CGF) { 685 llvm::Type *SrcTy = 686 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 687 688 // If SrcTy and Ty are the same, just do a load. 689 if (SrcTy == Ty) 690 return CGF.Builder.CreateLoad(SrcPtr); 691 692 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 693 694 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 695 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 696 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 697 } 698 699 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 700 701 // If the source and destination are integer or pointer types, just do an 702 // extension or truncation to the desired type. 703 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 704 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 705 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 706 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 707 } 708 709 // If load is legal, just bitcast the src pointer. 710 if (SrcSize >= DstSize) { 711 // Generally SrcSize is never greater than DstSize, since this means we are 712 // losing bits. However, this can happen in cases where the structure has 713 // additional padding, for example due to a user specified alignment. 714 // 715 // FIXME: Assert that we aren't truncating non-padding bits when have access 716 // to that information. 717 llvm::Value *Casted = 718 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 719 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 720 // FIXME: Use better alignment / avoid requiring aligned load. 721 Load->setAlignment(1); 722 return Load; 723 } 724 725 // Otherwise do coercion through memory. This is stupid, but 726 // simple. 727 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 728 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 729 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 730 llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy); 731 // FIXME: Use better alignment. 732 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 733 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 734 1, false); 735 return CGF.Builder.CreateLoad(Tmp); 736 } 737 738 // Function to store a first-class aggregate into memory. We prefer to 739 // store the elements rather than the aggregate to be more friendly to 740 // fast-isel. 741 // FIXME: Do we need to recurse here? 742 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 743 llvm::Value *DestPtr, bool DestIsVolatile, 744 bool LowAlignment) { 745 // Prefer scalar stores to first-class aggregate stores. 746 if (llvm::StructType *STy = 747 dyn_cast<llvm::StructType>(Val->getType())) { 748 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 749 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 750 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 751 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 752 DestIsVolatile); 753 if (LowAlignment) 754 SI->setAlignment(1); 755 } 756 } else { 757 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 758 if (LowAlignment) 759 SI->setAlignment(1); 760 } 761 } 762 763 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 764 /// where the source and destination may have different types. 765 /// 766 /// This safely handles the case when the src type is larger than the 767 /// destination type; the upper bits of the src will be lost. 768 static void CreateCoercedStore(llvm::Value *Src, 769 llvm::Value *DstPtr, 770 bool DstIsVolatile, 771 CodeGenFunction &CGF) { 772 llvm::Type *SrcTy = Src->getType(); 773 llvm::Type *DstTy = 774 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 775 if (SrcTy == DstTy) { 776 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 777 return; 778 } 779 780 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 781 782 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 783 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 784 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 785 } 786 787 // If the source and destination are integer or pointer types, just do an 788 // extension or truncation to the desired type. 789 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 790 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 791 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 792 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 793 return; 794 } 795 796 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 797 798 // If store is legal, just bitcast the src pointer. 799 if (SrcSize <= DstSize) { 800 llvm::Value *Casted = 801 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 802 // FIXME: Use better alignment / avoid requiring aligned store. 803 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 804 } else { 805 // Otherwise do coercion through memory. This is stupid, but 806 // simple. 807 808 // Generally SrcSize is never greater than DstSize, since this means we are 809 // losing bits. However, this can happen in cases where the structure has 810 // additional padding, for example due to a user specified alignment. 811 // 812 // FIXME: Assert that we aren't truncating non-padding bits when have access 813 // to that information. 814 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 815 CGF.Builder.CreateStore(Src, Tmp); 816 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 817 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 818 llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy); 819 // FIXME: Use better alignment. 820 CGF.Builder.CreateMemCpy(DstCasted, Casted, 821 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 822 1, false); 823 } 824 } 825 826 /***/ 827 828 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 829 return FI.getReturnInfo().isIndirect(); 830 } 831 832 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 833 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 834 switch (BT->getKind()) { 835 default: 836 return false; 837 case BuiltinType::Float: 838 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float); 839 case BuiltinType::Double: 840 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double); 841 case BuiltinType::LongDouble: 842 return getContext().getTargetInfo().useObjCFPRetForRealType( 843 TargetInfo::LongDouble); 844 } 845 } 846 847 return false; 848 } 849 850 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 851 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 852 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 853 if (BT->getKind() == BuiltinType::LongDouble) 854 return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble(); 855 } 856 } 857 858 return false; 859 } 860 861 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 862 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 863 return GetFunctionType(FI); 864 } 865 866 llvm::FunctionType * 867 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 868 869 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; 870 assert(Inserted && "Recursively being processed?"); 871 872 SmallVector<llvm::Type*, 8> argTypes; 873 llvm::Type *resultType = 0; 874 875 const ABIArgInfo &retAI = FI.getReturnInfo(); 876 switch (retAI.getKind()) { 877 case ABIArgInfo::Expand: 878 llvm_unreachable("Invalid ABI kind for return argument"); 879 880 case ABIArgInfo::Extend: 881 case ABIArgInfo::Direct: 882 resultType = retAI.getCoerceToType(); 883 break; 884 885 case ABIArgInfo::Indirect: { 886 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 887 resultType = llvm::Type::getVoidTy(getLLVMContext()); 888 889 QualType ret = FI.getReturnType(); 890 llvm::Type *ty = ConvertType(ret); 891 unsigned addressSpace = Context.getTargetAddressSpace(ret); 892 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 893 break; 894 } 895 896 case ABIArgInfo::Ignore: 897 resultType = llvm::Type::getVoidTy(getLLVMContext()); 898 break; 899 } 900 901 // Add in all of the required arguments. 902 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie; 903 if (FI.isVariadic()) { 904 ie = it + FI.getRequiredArgs().getNumRequiredArgs(); 905 } else { 906 ie = FI.arg_end(); 907 } 908 for (; it != ie; ++it) { 909 const ABIArgInfo &argAI = it->info; 910 911 // Insert a padding type to ensure proper alignment. 912 if (llvm::Type *PaddingType = argAI.getPaddingType()) 913 argTypes.push_back(PaddingType); 914 915 switch (argAI.getKind()) { 916 case ABIArgInfo::Ignore: 917 break; 918 919 case ABIArgInfo::Indirect: { 920 // indirect arguments are always on the stack, which is addr space #0. 921 llvm::Type *LTy = ConvertTypeForMem(it->type); 922 argTypes.push_back(LTy->getPointerTo()); 923 break; 924 } 925 926 case ABIArgInfo::Extend: 927 case ABIArgInfo::Direct: { 928 // If the coerce-to type is a first class aggregate, flatten it. Either 929 // way is semantically identical, but fast-isel and the optimizer 930 // generally likes scalar values better than FCAs. 931 llvm::Type *argType = argAI.getCoerceToType(); 932 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { 933 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 934 argTypes.push_back(st->getElementType(i)); 935 } else { 936 argTypes.push_back(argType); 937 } 938 break; 939 } 940 941 case ABIArgInfo::Expand: 942 GetExpandedTypes(it->type, argTypes); 943 break; 944 } 945 } 946 947 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 948 assert(Erased && "Not in set?"); 949 950 return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic()); 951 } 952 953 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 954 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 955 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 956 957 if (!isFuncTypeConvertible(FPT)) 958 return llvm::StructType::get(getLLVMContext()); 959 960 const CGFunctionInfo *Info; 961 if (isa<CXXDestructorDecl>(MD)) 962 Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 963 else 964 Info = &arrangeCXXMethodDeclaration(MD); 965 return GetFunctionType(*Info); 966 } 967 968 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 969 const Decl *TargetDecl, 970 AttributeListType &PAL, 971 unsigned &CallingConv) { 972 llvm::AttrBuilder FuncAttrs; 973 llvm::AttrBuilder RetAttrs; 974 975 CallingConv = FI.getEffectiveCallingConvention(); 976 977 if (FI.isNoReturn()) 978 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 979 980 // FIXME: handle sseregparm someday... 981 if (TargetDecl) { 982 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 983 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 984 if (TargetDecl->hasAttr<NoThrowAttr>()) 985 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 986 if (TargetDecl->hasAttr<NoReturnAttr>()) 987 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 988 989 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 990 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 991 if (FPT && FPT->isNothrow(getContext())) 992 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 993 if (Fn->isNoReturn()) 994 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 995 } 996 997 // 'const' and 'pure' attribute functions are also nounwind. 998 if (TargetDecl->hasAttr<ConstAttr>()) { 999 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1000 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1001 } else if (TargetDecl->hasAttr<PureAttr>()) { 1002 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1003 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1004 } 1005 if (TargetDecl->hasAttr<MallocAttr>()) 1006 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1007 } 1008 1009 if (CodeGenOpts.OptimizeSize) 1010 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1011 if (CodeGenOpts.OptimizeSize == 2) 1012 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1013 if (CodeGenOpts.DisableRedZone) 1014 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1015 if (CodeGenOpts.NoImplicitFloat) 1016 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1017 1018 QualType RetTy = FI.getReturnType(); 1019 unsigned Index = 1; 1020 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1021 switch (RetAI.getKind()) { 1022 case ABIArgInfo::Extend: 1023 if (RetTy->hasSignedIntegerRepresentation()) 1024 RetAttrs.addAttribute(llvm::Attribute::SExt); 1025 else if (RetTy->hasUnsignedIntegerRepresentation()) 1026 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1027 break; 1028 case ABIArgInfo::Direct: 1029 case ABIArgInfo::Ignore: 1030 break; 1031 1032 case ABIArgInfo::Indirect: { 1033 llvm::AttrBuilder SRETAttrs; 1034 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1035 if (RetAI.getInReg()) 1036 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1037 PAL.push_back(llvm:: 1038 AttributeSet::get(getLLVMContext(), Index, SRETAttrs)); 1039 1040 ++Index; 1041 // sret disables readnone and readonly 1042 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1043 .removeAttribute(llvm::Attribute::ReadNone); 1044 break; 1045 } 1046 1047 case ABIArgInfo::Expand: 1048 llvm_unreachable("Invalid ABI kind for return argument"); 1049 } 1050 1051 if (RetAttrs.hasAttributes()) 1052 PAL.push_back(llvm:: 1053 AttributeSet::get(getLLVMContext(), 1054 llvm::AttributeSet::ReturnIndex, 1055 RetAttrs)); 1056 1057 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1058 ie = FI.arg_end(); it != ie; ++it) { 1059 QualType ParamType = it->type; 1060 const ABIArgInfo &AI = it->info; 1061 llvm::AttrBuilder Attrs; 1062 1063 if (AI.getPaddingType()) { 1064 if (AI.getPaddingInReg()) 1065 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, 1066 llvm::Attribute::InReg)); 1067 // Increment Index if there is padding. 1068 ++Index; 1069 } 1070 1071 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1072 // have the corresponding parameter variable. It doesn't make 1073 // sense to do it here because parameters are so messed up. 1074 switch (AI.getKind()) { 1075 case ABIArgInfo::Extend: 1076 if (ParamType->isSignedIntegerOrEnumerationType()) 1077 Attrs.addAttribute(llvm::Attribute::SExt); 1078 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 1079 Attrs.addAttribute(llvm::Attribute::ZExt); 1080 // FALL THROUGH 1081 case ABIArgInfo::Direct: 1082 if (AI.getInReg()) 1083 Attrs.addAttribute(llvm::Attribute::InReg); 1084 1085 // FIXME: handle sseregparm someday... 1086 1087 if (llvm::StructType *STy = 1088 dyn_cast<llvm::StructType>(AI.getCoerceToType())) { 1089 unsigned Extra = STy->getNumElements()-1; // 1 will be added below. 1090 if (Attrs.hasAttributes()) 1091 for (unsigned I = 0; I < Extra; ++I) 1092 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I, 1093 Attrs)); 1094 Index += Extra; 1095 } 1096 break; 1097 1098 case ABIArgInfo::Indirect: 1099 if (AI.getInReg()) 1100 Attrs.addAttribute(llvm::Attribute::InReg); 1101 1102 if (AI.getIndirectByVal()) 1103 Attrs.addAttribute(llvm::Attribute::ByVal); 1104 1105 Attrs.addAlignmentAttr(AI.getIndirectAlign()); 1106 1107 // byval disables readnone and readonly. 1108 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1109 .removeAttribute(llvm::Attribute::ReadNone); 1110 break; 1111 1112 case ABIArgInfo::Ignore: 1113 // Skip increment, no matching LLVM parameter. 1114 continue; 1115 1116 case ABIArgInfo::Expand: { 1117 SmallVector<llvm::Type*, 8> types; 1118 // FIXME: This is rather inefficient. Do we ever actually need to do 1119 // anything here? The result should be just reconstructed on the other 1120 // side, so extension should be a non-issue. 1121 getTypes().GetExpandedTypes(ParamType, types); 1122 Index += types.size(); 1123 continue; 1124 } 1125 } 1126 1127 if (Attrs.hasAttributes()) 1128 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs)); 1129 ++Index; 1130 } 1131 if (FuncAttrs.hasAttributes()) 1132 PAL.push_back(llvm:: 1133 AttributeSet::get(getLLVMContext(), 1134 llvm::AttributeSet::FunctionIndex, 1135 FuncAttrs)); 1136 } 1137 1138 /// An argument came in as a promoted argument; demote it back to its 1139 /// declared type. 1140 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1141 const VarDecl *var, 1142 llvm::Value *value) { 1143 llvm::Type *varType = CGF.ConvertType(var->getType()); 1144 1145 // This can happen with promotions that actually don't change the 1146 // underlying type, like the enum promotions. 1147 if (value->getType() == varType) return value; 1148 1149 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1150 && "unexpected promotion type"); 1151 1152 if (isa<llvm::IntegerType>(varType)) 1153 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1154 1155 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1156 } 1157 1158 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1159 llvm::Function *Fn, 1160 const FunctionArgList &Args) { 1161 // If this is an implicit-return-zero function, go ahead and 1162 // initialize the return value. TODO: it might be nice to have 1163 // a more general mechanism for this that didn't require synthesized 1164 // return statements. 1165 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 1166 if (FD->hasImplicitReturnZero()) { 1167 QualType RetTy = FD->getResultType().getUnqualifiedType(); 1168 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1169 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1170 Builder.CreateStore(Zero, ReturnValue); 1171 } 1172 } 1173 1174 // FIXME: We no longer need the types from FunctionArgList; lift up and 1175 // simplify. 1176 1177 // Emit allocs for param decls. Give the LLVM Argument nodes names. 1178 llvm::Function::arg_iterator AI = Fn->arg_begin(); 1179 1180 // Name the struct return argument. 1181 if (CGM.ReturnTypeUsesSRet(FI)) { 1182 AI->setName("agg.result"); 1183 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1184 AI->getArgNo() + 1, 1185 llvm::Attribute::NoAlias)); 1186 ++AI; 1187 } 1188 1189 assert(FI.arg_size() == Args.size() && 1190 "Mismatch between function signature & arguments."); 1191 unsigned ArgNo = 1; 1192 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1193 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1194 i != e; ++i, ++info_it, ++ArgNo) { 1195 const VarDecl *Arg = *i; 1196 QualType Ty = info_it->type; 1197 const ABIArgInfo &ArgI = info_it->info; 1198 1199 bool isPromoted = 1200 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1201 1202 // Skip the dummy padding argument. 1203 if (ArgI.getPaddingType()) 1204 ++AI; 1205 1206 switch (ArgI.getKind()) { 1207 case ABIArgInfo::Indirect: { 1208 llvm::Value *V = AI; 1209 1210 if (hasAggregateLLVMType(Ty)) { 1211 // Aggregates and complex variables are accessed by reference. All we 1212 // need to do is realign the value, if requested 1213 if (ArgI.getIndirectRealign()) { 1214 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 1215 1216 // Copy from the incoming argument pointer to the temporary with the 1217 // appropriate alignment. 1218 // 1219 // FIXME: We should have a common utility for generating an aggregate 1220 // copy. 1221 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 1222 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1223 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 1224 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 1225 Builder.CreateMemCpy(Dst, 1226 Src, 1227 llvm::ConstantInt::get(IntPtrTy, 1228 Size.getQuantity()), 1229 ArgI.getIndirectAlign(), 1230 false); 1231 V = AlignedTemp; 1232 } 1233 } else { 1234 // Load scalar value from indirect argument. 1235 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1236 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); 1237 1238 if (isPromoted) 1239 V = emitArgumentDemotion(*this, Arg, V); 1240 } 1241 EmitParmDecl(*Arg, V, ArgNo); 1242 break; 1243 } 1244 1245 case ABIArgInfo::Extend: 1246 case ABIArgInfo::Direct: { 1247 1248 // If we have the trivial case, handle it with no muss and fuss. 1249 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1250 ArgI.getCoerceToType() == ConvertType(Ty) && 1251 ArgI.getDirectOffset() == 0) { 1252 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1253 llvm::Value *V = AI; 1254 1255 if (Arg->getType().isRestrictQualified()) 1256 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1257 AI->getArgNo() + 1, 1258 llvm::Attribute::NoAlias)); 1259 1260 // Ensure the argument is the correct type. 1261 if (V->getType() != ArgI.getCoerceToType()) 1262 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1263 1264 if (isPromoted) 1265 V = emitArgumentDemotion(*this, Arg, V); 1266 1267 // Because of merging of function types from multiple decls it is 1268 // possible for the type of an argument to not match the corresponding 1269 // type in the function type. Since we are codegening the callee 1270 // in here, add a cast to the argument type. 1271 llvm::Type *LTy = ConvertType(Arg->getType()); 1272 if (V->getType() != LTy) 1273 V = Builder.CreateBitCast(V, LTy); 1274 1275 EmitParmDecl(*Arg, V, ArgNo); 1276 break; 1277 } 1278 1279 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); 1280 1281 // The alignment we need to use is the max of the requested alignment for 1282 // the argument plus the alignment required by our access code below. 1283 unsigned AlignmentToUse = 1284 CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType()); 1285 AlignmentToUse = std::max(AlignmentToUse, 1286 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1287 1288 Alloca->setAlignment(AlignmentToUse); 1289 llvm::Value *V = Alloca; 1290 llvm::Value *Ptr = V; // Pointer to store into. 1291 1292 // If the value is offset in memory, apply the offset now. 1293 if (unsigned Offs = ArgI.getDirectOffset()) { 1294 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1295 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1296 Ptr = Builder.CreateBitCast(Ptr, 1297 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1298 } 1299 1300 // If the coerce-to type is a first class aggregate, we flatten it and 1301 // pass the elements. Either way is semantically identical, but fast-isel 1302 // and the optimizer generally likes scalar values better than FCAs. 1303 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 1304 if (STy && STy->getNumElements() > 1) { 1305 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 1306 llvm::Type *DstTy = 1307 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 1308 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 1309 1310 if (SrcSize <= DstSize) { 1311 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1312 1313 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1314 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1315 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1316 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1317 Builder.CreateStore(AI++, EltPtr); 1318 } 1319 } else { 1320 llvm::AllocaInst *TempAlloca = 1321 CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); 1322 TempAlloca->setAlignment(AlignmentToUse); 1323 llvm::Value *TempV = TempAlloca; 1324 1325 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1326 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1327 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1328 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i); 1329 Builder.CreateStore(AI++, EltPtr); 1330 } 1331 1332 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); 1333 } 1334 } else { 1335 // Simple case, just do a coerced store of the argument into the alloca. 1336 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1337 AI->setName(Arg->getName() + ".coerce"); 1338 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 1339 } 1340 1341 1342 // Match to what EmitParmDecl is expecting for this type. 1343 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 1344 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); 1345 if (isPromoted) 1346 V = emitArgumentDemotion(*this, Arg, V); 1347 } 1348 EmitParmDecl(*Arg, V, ArgNo); 1349 continue; // Skip ++AI increment, already done. 1350 } 1351 1352 case ABIArgInfo::Expand: { 1353 // If this structure was expanded into multiple arguments then 1354 // we need to create a temporary and reconstruct it from the 1355 // arguments. 1356 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1357 CharUnits Align = getContext().getDeclAlign(Arg); 1358 Alloca->setAlignment(Align.getQuantity()); 1359 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1360 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); 1361 EmitParmDecl(*Arg, Alloca, ArgNo); 1362 1363 // Name the arguments used in expansion and increment AI. 1364 unsigned Index = 0; 1365 for (; AI != End; ++AI, ++Index) 1366 AI->setName(Arg->getName() + "." + Twine(Index)); 1367 continue; 1368 } 1369 1370 case ABIArgInfo::Ignore: 1371 // Initialize the local variable appropriately. 1372 if (hasAggregateLLVMType(Ty)) 1373 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); 1374 else 1375 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), 1376 ArgNo); 1377 1378 // Skip increment, no matching LLVM parameter. 1379 continue; 1380 } 1381 1382 ++AI; 1383 } 1384 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1385 } 1386 1387 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 1388 while (insn->use_empty()) { 1389 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 1390 if (!bitcast) return; 1391 1392 // This is "safe" because we would have used a ConstantExpr otherwise. 1393 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 1394 bitcast->eraseFromParent(); 1395 } 1396 } 1397 1398 /// Try to emit a fused autorelease of a return result. 1399 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1400 llvm::Value *result) { 1401 // We must be immediately followed the cast. 1402 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1403 if (BB->empty()) return 0; 1404 if (&BB->back() != result) return 0; 1405 1406 llvm::Type *resultType = result->getType(); 1407 1408 // result is in a BasicBlock and is therefore an Instruction. 1409 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1410 1411 SmallVector<llvm::Instruction*,4> insnsToKill; 1412 1413 // Look for: 1414 // %generator = bitcast %type1* %generator2 to %type2* 1415 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1416 // We would have emitted this as a constant if the operand weren't 1417 // an Instruction. 1418 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1419 1420 // Require the generator to be immediately followed by the cast. 1421 if (generator->getNextNode() != bitcast) 1422 return 0; 1423 1424 insnsToKill.push_back(bitcast); 1425 } 1426 1427 // Look for: 1428 // %generator = call i8* @objc_retain(i8* %originalResult) 1429 // or 1430 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1431 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1432 if (!call) return 0; 1433 1434 bool doRetainAutorelease; 1435 1436 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1437 doRetainAutorelease = true; 1438 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1439 .objc_retainAutoreleasedReturnValue) { 1440 doRetainAutorelease = false; 1441 1442 // If we emitted an assembly marker for this call (and the 1443 // ARCEntrypoints field should have been set if so), go looking 1444 // for that call. If we can't find it, we can't do this 1445 // optimization. But it should always be the immediately previous 1446 // instruction, unless we needed bitcasts around the call. 1447 if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) { 1448 llvm::Instruction *prev = call->getPrevNode(); 1449 assert(prev); 1450 if (isa<llvm::BitCastInst>(prev)) { 1451 prev = prev->getPrevNode(); 1452 assert(prev); 1453 } 1454 assert(isa<llvm::CallInst>(prev)); 1455 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 1456 CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker); 1457 insnsToKill.push_back(prev); 1458 } 1459 } else { 1460 return 0; 1461 } 1462 1463 result = call->getArgOperand(0); 1464 insnsToKill.push_back(call); 1465 1466 // Keep killing bitcasts, for sanity. Note that we no longer care 1467 // about precise ordering as long as there's exactly one use. 1468 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1469 if (!bitcast->hasOneUse()) break; 1470 insnsToKill.push_back(bitcast); 1471 result = bitcast->getOperand(0); 1472 } 1473 1474 // Delete all the unnecessary instructions, from latest to earliest. 1475 for (SmallVectorImpl<llvm::Instruction*>::iterator 1476 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1477 (*i)->eraseFromParent(); 1478 1479 // Do the fused retain/autorelease if we were asked to. 1480 if (doRetainAutorelease) 1481 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1482 1483 // Cast back to the result type. 1484 return CGF.Builder.CreateBitCast(result, resultType); 1485 } 1486 1487 /// If this is a +1 of the value of an immutable 'self', remove it. 1488 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 1489 llvm::Value *result) { 1490 // This is only applicable to a method with an immutable 'self'. 1491 const ObjCMethodDecl *method = 1492 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 1493 if (!method) return 0; 1494 const VarDecl *self = method->getSelfDecl(); 1495 if (!self->getType().isConstQualified()) return 0; 1496 1497 // Look for a retain call. 1498 llvm::CallInst *retainCall = 1499 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 1500 if (!retainCall || 1501 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 1502 return 0; 1503 1504 // Look for an ordinary load of 'self'. 1505 llvm::Value *retainedValue = retainCall->getArgOperand(0); 1506 llvm::LoadInst *load = 1507 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 1508 if (!load || load->isAtomic() || load->isVolatile() || 1509 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 1510 return 0; 1511 1512 // Okay! Burn it all down. This relies for correctness on the 1513 // assumption that the retain is emitted as part of the return and 1514 // that thereafter everything is used "linearly". 1515 llvm::Type *resultType = result->getType(); 1516 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 1517 assert(retainCall->use_empty()); 1518 retainCall->eraseFromParent(); 1519 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 1520 1521 return CGF.Builder.CreateBitCast(load, resultType); 1522 } 1523 1524 /// Emit an ARC autorelease of the result of a function. 1525 /// 1526 /// \return the value to actually return from the function 1527 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1528 llvm::Value *result) { 1529 // If we're returning 'self', kill the initial retain. This is a 1530 // heuristic attempt to "encourage correctness" in the really unfortunate 1531 // case where we have a return of self during a dealloc and we desperately 1532 // need to avoid the possible autorelease. 1533 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 1534 return self; 1535 1536 // At -O0, try to emit a fused retain/autorelease. 1537 if (CGF.shouldUseFusedARCCalls()) 1538 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1539 return fused; 1540 1541 return CGF.EmitARCAutoreleaseReturnValue(result); 1542 } 1543 1544 /// Heuristically search for a dominating store to the return-value slot. 1545 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 1546 // If there are multiple uses of the return-value slot, just check 1547 // for something immediately preceding the IP. Sometimes this can 1548 // happen with how we generate implicit-returns; it can also happen 1549 // with noreturn cleanups. 1550 if (!CGF.ReturnValue->hasOneUse()) { 1551 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1552 if (IP->empty()) return 0; 1553 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); 1554 if (!store) return 0; 1555 if (store->getPointerOperand() != CGF.ReturnValue) return 0; 1556 assert(!store->isAtomic() && !store->isVolatile()); // see below 1557 return store; 1558 } 1559 1560 llvm::StoreInst *store = 1561 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back()); 1562 if (!store) return 0; 1563 1564 // These aren't actually possible for non-coerced returns, and we 1565 // only care about non-coerced returns on this code path. 1566 assert(!store->isAtomic() && !store->isVolatile()); 1567 1568 // Now do a first-and-dirty dominance check: just walk up the 1569 // single-predecessors chain from the current insertion point. 1570 llvm::BasicBlock *StoreBB = store->getParent(); 1571 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1572 while (IP != StoreBB) { 1573 if (!(IP = IP->getSinglePredecessor())) 1574 return 0; 1575 } 1576 1577 // Okay, the store's basic block dominates the insertion point; we 1578 // can do our thing. 1579 return store; 1580 } 1581 1582 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) { 1583 // Functions with no result always return void. 1584 if (ReturnValue == 0) { 1585 Builder.CreateRetVoid(); 1586 return; 1587 } 1588 1589 llvm::DebugLoc RetDbgLoc; 1590 llvm::Value *RV = 0; 1591 QualType RetTy = FI.getReturnType(); 1592 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1593 1594 switch (RetAI.getKind()) { 1595 case ABIArgInfo::Indirect: { 1596 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1597 if (RetTy->isAnyComplexType()) { 1598 ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); 1599 StoreComplexToAddr(RT, CurFn->arg_begin(), false); 1600 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1601 // Do nothing; aggregrates get evaluated directly into the destination. 1602 } else { 1603 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), 1604 false, Alignment, RetTy); 1605 } 1606 break; 1607 } 1608 1609 case ABIArgInfo::Extend: 1610 case ABIArgInfo::Direct: 1611 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1612 RetAI.getDirectOffset() == 0) { 1613 // The internal return value temp always will have pointer-to-return-type 1614 // type, just do a load. 1615 1616 // If there is a dominating store to ReturnValue, we can elide 1617 // the load, zap the store, and usually zap the alloca. 1618 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { 1619 // Get the stored value and nuke the now-dead store. 1620 RetDbgLoc = SI->getDebugLoc(); 1621 RV = SI->getValueOperand(); 1622 SI->eraseFromParent(); 1623 1624 // If that was the only use of the return value, nuke it as well now. 1625 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1626 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1627 ReturnValue = 0; 1628 } 1629 1630 // Otherwise, we have to do a simple load. 1631 } else { 1632 RV = Builder.CreateLoad(ReturnValue); 1633 } 1634 } else { 1635 llvm::Value *V = ReturnValue; 1636 // If the value is offset in memory, apply the offset now. 1637 if (unsigned Offs = RetAI.getDirectOffset()) { 1638 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1639 V = Builder.CreateConstGEP1_32(V, Offs); 1640 V = Builder.CreateBitCast(V, 1641 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1642 } 1643 1644 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1645 } 1646 1647 // In ARC, end functions that return a retainable type with a call 1648 // to objc_autoreleaseReturnValue. 1649 if (AutoreleaseResult) { 1650 assert(getLangOpts().ObjCAutoRefCount && 1651 !FI.isReturnsRetained() && 1652 RetTy->isObjCRetainableType()); 1653 RV = emitAutoreleaseOfResult(*this, RV); 1654 } 1655 1656 break; 1657 1658 case ABIArgInfo::Ignore: 1659 break; 1660 1661 case ABIArgInfo::Expand: 1662 llvm_unreachable("Invalid ABI kind for return argument"); 1663 } 1664 1665 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1666 if (!RetDbgLoc.isUnknown()) 1667 Ret->setDebugLoc(RetDbgLoc); 1668 } 1669 1670 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1671 const VarDecl *param) { 1672 // StartFunction converted the ABI-lowered parameter(s) into a 1673 // local alloca. We need to turn that into an r-value suitable 1674 // for EmitCall. 1675 llvm::Value *local = GetAddrOfLocalVar(param); 1676 1677 QualType type = param->getType(); 1678 1679 // For the most part, we just need to load the alloca, except: 1680 // 1) aggregate r-values are actually pointers to temporaries, and 1681 // 2) references to aggregates are pointers directly to the aggregate. 1682 // I don't know why references to non-aggregates are different here. 1683 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1684 if (hasAggregateLLVMType(ref->getPointeeType())) 1685 return args.add(RValue::getAggregate(local), type); 1686 1687 // Locals which are references to scalars are represented 1688 // with allocas holding the pointer. 1689 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1690 } 1691 1692 if (type->isAnyComplexType()) { 1693 ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false); 1694 return args.add(RValue::getComplex(complex), type); 1695 } 1696 1697 if (hasAggregateLLVMType(type)) 1698 return args.add(RValue::getAggregate(local), type); 1699 1700 unsigned alignment = getContext().getDeclAlign(param).getQuantity(); 1701 llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type); 1702 return args.add(RValue::get(value), type); 1703 } 1704 1705 static bool isProvablyNull(llvm::Value *addr) { 1706 return isa<llvm::ConstantPointerNull>(addr); 1707 } 1708 1709 static bool isProvablyNonNull(llvm::Value *addr) { 1710 return isa<llvm::AllocaInst>(addr); 1711 } 1712 1713 /// Emit the actual writing-back of a writeback. 1714 static void emitWriteback(CodeGenFunction &CGF, 1715 const CallArgList::Writeback &writeback) { 1716 llvm::Value *srcAddr = writeback.Address; 1717 assert(!isProvablyNull(srcAddr) && 1718 "shouldn't have writeback for provably null argument"); 1719 1720 llvm::BasicBlock *contBB = 0; 1721 1722 // If the argument wasn't provably non-null, we need to null check 1723 // before doing the store. 1724 bool provablyNonNull = isProvablyNonNull(srcAddr); 1725 if (!provablyNonNull) { 1726 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 1727 contBB = CGF.createBasicBlock("icr.done"); 1728 1729 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1730 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 1731 CGF.EmitBlock(writebackBB); 1732 } 1733 1734 // Load the value to writeback. 1735 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 1736 1737 // Cast it back, in case we're writing an id to a Foo* or something. 1738 value = CGF.Builder.CreateBitCast(value, 1739 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 1740 "icr.writeback-cast"); 1741 1742 // Perform the writeback. 1743 QualType srcAddrType = writeback.AddressType; 1744 CGF.EmitStoreThroughLValue(RValue::get(value), 1745 CGF.MakeAddrLValue(srcAddr, srcAddrType)); 1746 1747 // Jump to the continuation block. 1748 if (!provablyNonNull) 1749 CGF.EmitBlock(contBB); 1750 } 1751 1752 static void emitWritebacks(CodeGenFunction &CGF, 1753 const CallArgList &args) { 1754 for (CallArgList::writeback_iterator 1755 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) 1756 emitWriteback(CGF, *i); 1757 } 1758 1759 /// Emit an argument that's being passed call-by-writeback. That is, 1760 /// we are passing the address of 1761 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 1762 const ObjCIndirectCopyRestoreExpr *CRE) { 1763 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 1764 1765 // The dest and src types don't necessarily match in LLVM terms 1766 // because of the crazy ObjC compatibility rules. 1767 1768 llvm::PointerType *destType = 1769 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 1770 1771 // If the address is a constant null, just pass the appropriate null. 1772 if (isProvablyNull(srcAddr)) { 1773 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 1774 CRE->getType()); 1775 return; 1776 } 1777 1778 QualType srcAddrType = 1779 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 1780 1781 // Create the temporary. 1782 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 1783 "icr.temp"); 1784 // Loading an l-value can introduce a cleanup if the l-value is __weak, 1785 // and that cleanup will be conditional if we can't prove that the l-value 1786 // isn't null, so we need to register a dominating point so that the cleanups 1787 // system will make valid IR. 1788 CodeGenFunction::ConditionalEvaluation condEval(CGF); 1789 1790 // Zero-initialize it if we're not doing a copy-initialization. 1791 bool shouldCopy = CRE->shouldCopy(); 1792 if (!shouldCopy) { 1793 llvm::Value *null = 1794 llvm::ConstantPointerNull::get( 1795 cast<llvm::PointerType>(destType->getElementType())); 1796 CGF.Builder.CreateStore(null, temp); 1797 } 1798 1799 llvm::BasicBlock *contBB = 0; 1800 1801 // If the address is *not* known to be non-null, we need to switch. 1802 llvm::Value *finalArgument; 1803 1804 bool provablyNonNull = isProvablyNonNull(srcAddr); 1805 if (provablyNonNull) { 1806 finalArgument = temp; 1807 } else { 1808 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1809 1810 finalArgument = CGF.Builder.CreateSelect(isNull, 1811 llvm::ConstantPointerNull::get(destType), 1812 temp, "icr.argument"); 1813 1814 // If we need to copy, then the load has to be conditional, which 1815 // means we need control flow. 1816 if (shouldCopy) { 1817 contBB = CGF.createBasicBlock("icr.cont"); 1818 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 1819 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 1820 CGF.EmitBlock(copyBB); 1821 condEval.begin(CGF); 1822 } 1823 } 1824 1825 // Perform a copy if necessary. 1826 if (shouldCopy) { 1827 LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 1828 RValue srcRV = CGF.EmitLoadOfLValue(srcLV); 1829 assert(srcRV.isScalar()); 1830 1831 llvm::Value *src = srcRV.getScalarVal(); 1832 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 1833 "icr.cast"); 1834 1835 // Use an ordinary store, not a store-to-lvalue. 1836 CGF.Builder.CreateStore(src, temp); 1837 } 1838 1839 // Finish the control flow if we needed it. 1840 if (shouldCopy && !provablyNonNull) { 1841 CGF.EmitBlock(contBB); 1842 condEval.end(CGF); 1843 } 1844 1845 args.addWriteback(srcAddr, srcAddrType, temp); 1846 args.add(RValue::get(finalArgument), CRE->getType()); 1847 } 1848 1849 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 1850 QualType type) { 1851 if (const ObjCIndirectCopyRestoreExpr *CRE 1852 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 1853 assert(getLangOpts().ObjCAutoRefCount); 1854 assert(getContext().hasSameType(E->getType(), type)); 1855 return emitWritebackArg(*this, args, CRE); 1856 } 1857 1858 assert(type->isReferenceType() == E->isGLValue() && 1859 "reference binding to unmaterialized r-value!"); 1860 1861 if (E->isGLValue()) { 1862 assert(E->getObjectKind() == OK_Ordinary); 1863 return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0), 1864 type); 1865 } 1866 1867 if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() && 1868 isa<ImplicitCastExpr>(E) && 1869 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 1870 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 1871 assert(L.isSimple()); 1872 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 1873 return; 1874 } 1875 1876 args.add(EmitAnyExprToTemp(E), type); 1877 } 1878 1879 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 1880 // optimizer it can aggressively ignore unwind edges. 1881 void 1882 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 1883 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 1884 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 1885 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 1886 CGM.getNoObjCARCExceptionsMetadata()); 1887 } 1888 1889 /// Emits a call or invoke instruction to the given function, depending 1890 /// on the current state of the EH stack. 1891 llvm::CallSite 1892 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1893 ArrayRef<llvm::Value *> Args, 1894 const Twine &Name) { 1895 llvm::BasicBlock *InvokeDest = getInvokeDest(); 1896 1897 llvm::Instruction *Inst; 1898 if (!InvokeDest) 1899 Inst = Builder.CreateCall(Callee, Args, Name); 1900 else { 1901 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 1902 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 1903 EmitBlock(ContBB); 1904 } 1905 1906 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 1907 // optimizer it can aggressively ignore unwind edges. 1908 if (CGM.getLangOpts().ObjCAutoRefCount) 1909 AddObjCARCExceptionMetadata(Inst); 1910 1911 return Inst; 1912 } 1913 1914 llvm::CallSite 1915 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1916 const Twine &Name) { 1917 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); 1918 } 1919 1920 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 1921 llvm::FunctionType *FTy) { 1922 if (ArgNo < FTy->getNumParams()) 1923 assert(Elt->getType() == FTy->getParamType(ArgNo)); 1924 else 1925 assert(FTy->isVarArg()); 1926 ++ArgNo; 1927 } 1928 1929 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 1930 SmallVector<llvm::Value*,16> &Args, 1931 llvm::FunctionType *IRFuncTy) { 1932 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1933 unsigned NumElts = AT->getSize().getZExtValue(); 1934 QualType EltTy = AT->getElementType(); 1935 llvm::Value *Addr = RV.getAggregateAddr(); 1936 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 1937 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 1938 LValue LV = MakeAddrLValue(EltAddr, EltTy); 1939 RValue EltRV; 1940 if (EltTy->isAnyComplexType()) 1941 // FIXME: Volatile? 1942 EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false)); 1943 else if (CodeGenFunction::hasAggregateLLVMType(EltTy)) 1944 EltRV = LV.asAggregateRValue(); 1945 else 1946 EltRV = EmitLoadOfLValue(LV); 1947 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); 1948 } 1949 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 1950 RecordDecl *RD = RT->getDecl(); 1951 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 1952 LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty); 1953 1954 if (RD->isUnion()) { 1955 const FieldDecl *LargestFD = 0; 1956 CharUnits UnionSize = CharUnits::Zero(); 1957 1958 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1959 i != e; ++i) { 1960 const FieldDecl *FD = *i; 1961 assert(!FD->isBitField() && 1962 "Cannot expand structure with bit-field members."); 1963 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 1964 if (UnionSize < FieldSize) { 1965 UnionSize = FieldSize; 1966 LargestFD = FD; 1967 } 1968 } 1969 if (LargestFD) { 1970 RValue FldRV = EmitRValueForField(LV, LargestFD); 1971 ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy); 1972 } 1973 } else { 1974 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1975 i != e; ++i) { 1976 FieldDecl *FD = *i; 1977 1978 RValue FldRV = EmitRValueForField(LV, FD); 1979 ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy); 1980 } 1981 } 1982 } else if (Ty->isAnyComplexType()) { 1983 ComplexPairTy CV = RV.getComplexVal(); 1984 Args.push_back(CV.first); 1985 Args.push_back(CV.second); 1986 } else { 1987 assert(RV.isScalar() && 1988 "Unexpected non-scalar rvalue during struct expansion."); 1989 1990 // Insert a bitcast as needed. 1991 llvm::Value *V = RV.getScalarVal(); 1992 if (Args.size() < IRFuncTy->getNumParams() && 1993 V->getType() != IRFuncTy->getParamType(Args.size())) 1994 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 1995 1996 Args.push_back(V); 1997 } 1998 } 1999 2000 2001 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 2002 llvm::Value *Callee, 2003 ReturnValueSlot ReturnValue, 2004 const CallArgList &CallArgs, 2005 const Decl *TargetDecl, 2006 llvm::Instruction **callOrInvoke) { 2007 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 2008 SmallVector<llvm::Value*, 16> Args; 2009 2010 // Handle struct-return functions by passing a pointer to the 2011 // location that we would like to return into. 2012 QualType RetTy = CallInfo.getReturnType(); 2013 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 2014 2015 // IRArgNo - Keep track of the argument number in the callee we're looking at. 2016 unsigned IRArgNo = 0; 2017 llvm::FunctionType *IRFuncTy = 2018 cast<llvm::FunctionType>( 2019 cast<llvm::PointerType>(Callee->getType())->getElementType()); 2020 2021 // If the call returns a temporary with struct return, create a temporary 2022 // alloca to hold the result, unless one is given to us. 2023 if (CGM.ReturnTypeUsesSRet(CallInfo)) { 2024 llvm::Value *Value = ReturnValue.getValue(); 2025 if (!Value) 2026 Value = CreateMemTemp(RetTy); 2027 Args.push_back(Value); 2028 checkArgMatches(Value, IRArgNo, IRFuncTy); 2029 } 2030 2031 assert(CallInfo.arg_size() == CallArgs.size() && 2032 "Mismatch between function signature & arguments."); 2033 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 2034 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 2035 I != E; ++I, ++info_it) { 2036 const ABIArgInfo &ArgInfo = info_it->info; 2037 RValue RV = I->RV; 2038 2039 unsigned TypeAlign = 2040 getContext().getTypeAlignInChars(I->Ty).getQuantity(); 2041 2042 // Insert a padding argument to ensure proper alignment. 2043 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) { 2044 Args.push_back(llvm::UndefValue::get(PaddingType)); 2045 ++IRArgNo; 2046 } 2047 2048 switch (ArgInfo.getKind()) { 2049 case ABIArgInfo::Indirect: { 2050 if (RV.isScalar() || RV.isComplex()) { 2051 // Make a temporary alloca to pass the argument. 2052 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2053 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 2054 AI->setAlignment(ArgInfo.getIndirectAlign()); 2055 Args.push_back(AI); 2056 2057 if (RV.isScalar()) 2058 EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, 2059 TypeAlign, I->Ty); 2060 else 2061 StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); 2062 2063 // Validate argument match. 2064 checkArgMatches(AI, IRArgNo, IRFuncTy); 2065 } else { 2066 // We want to avoid creating an unnecessary temporary+copy here; 2067 // however, we need one in two cases: 2068 // 1. If the argument is not byval, and we are required to copy the 2069 // source. (This case doesn't occur on any common architecture.) 2070 // 2. If the argument is byval, RV is not sufficiently aligned, and 2071 // we cannot force it to be sufficiently aligned. 2072 llvm::Value *Addr = RV.getAggregateAddr(); 2073 unsigned Align = ArgInfo.getIndirectAlign(); 2074 const llvm::DataLayout *TD = &CGM.getDataLayout(); 2075 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 2076 (ArgInfo.getIndirectByVal() && TypeAlign < Align && 2077 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) { 2078 // Create an aligned temporary, and copy to it. 2079 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2080 if (Align > AI->getAlignment()) 2081 AI->setAlignment(Align); 2082 Args.push_back(AI); 2083 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 2084 2085 // Validate argument match. 2086 checkArgMatches(AI, IRArgNo, IRFuncTy); 2087 } else { 2088 // Skip the extra memcpy call. 2089 Args.push_back(Addr); 2090 2091 // Validate argument match. 2092 checkArgMatches(Addr, IRArgNo, IRFuncTy); 2093 } 2094 } 2095 break; 2096 } 2097 2098 case ABIArgInfo::Ignore: 2099 break; 2100 2101 case ABIArgInfo::Extend: 2102 case ABIArgInfo::Direct: { 2103 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 2104 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 2105 ArgInfo.getDirectOffset() == 0) { 2106 llvm::Value *V; 2107 if (RV.isScalar()) 2108 V = RV.getScalarVal(); 2109 else 2110 V = Builder.CreateLoad(RV.getAggregateAddr()); 2111 2112 // If the argument doesn't match, perform a bitcast to coerce it. This 2113 // can happen due to trivial type mismatches. 2114 if (IRArgNo < IRFuncTy->getNumParams() && 2115 V->getType() != IRFuncTy->getParamType(IRArgNo)) 2116 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 2117 Args.push_back(V); 2118 2119 checkArgMatches(V, IRArgNo, IRFuncTy); 2120 break; 2121 } 2122 2123 // FIXME: Avoid the conversion through memory if possible. 2124 llvm::Value *SrcPtr; 2125 if (RV.isScalar()) { 2126 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 2127 EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty); 2128 } else if (RV.isComplex()) { 2129 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 2130 StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); 2131 } else 2132 SrcPtr = RV.getAggregateAddr(); 2133 2134 // If the value is offset in memory, apply the offset now. 2135 if (unsigned Offs = ArgInfo.getDirectOffset()) { 2136 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 2137 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 2138 SrcPtr = Builder.CreateBitCast(SrcPtr, 2139 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 2140 2141 } 2142 2143 // If the coerce-to type is a first class aggregate, we flatten it and 2144 // pass the elements. Either way is semantically identical, but fast-isel 2145 // and the optimizer generally likes scalar values better than FCAs. 2146 if (llvm::StructType *STy = 2147 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 2148 llvm::Type *SrcTy = 2149 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 2150 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 2151 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 2152 2153 // If the source type is smaller than the destination type of the 2154 // coerce-to logic, copy the source value into a temp alloca the size 2155 // of the destination type to allow loading all of it. The bits past 2156 // the source value are left undef. 2157 if (SrcSize < DstSize) { 2158 llvm::AllocaInst *TempAlloca 2159 = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce"); 2160 Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0); 2161 SrcPtr = TempAlloca; 2162 } else { 2163 SrcPtr = Builder.CreateBitCast(SrcPtr, 2164 llvm::PointerType::getUnqual(STy)); 2165 } 2166 2167 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2168 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 2169 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 2170 // We don't know what we're loading from. 2171 LI->setAlignment(1); 2172 Args.push_back(LI); 2173 2174 // Validate argument match. 2175 checkArgMatches(LI, IRArgNo, IRFuncTy); 2176 } 2177 } else { 2178 // In the simple case, just pass the coerced loaded value. 2179 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 2180 *this)); 2181 2182 // Validate argument match. 2183 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 2184 } 2185 2186 break; 2187 } 2188 2189 case ABIArgInfo::Expand: 2190 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 2191 IRArgNo = Args.size(); 2192 break; 2193 } 2194 } 2195 2196 // If the callee is a bitcast of a function to a varargs pointer to function 2197 // type, check to see if we can remove the bitcast. This handles some cases 2198 // with unprototyped functions. 2199 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 2200 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 2201 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 2202 llvm::FunctionType *CurFT = 2203 cast<llvm::FunctionType>(CurPT->getElementType()); 2204 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 2205 2206 if (CE->getOpcode() == llvm::Instruction::BitCast && 2207 ActualFT->getReturnType() == CurFT->getReturnType() && 2208 ActualFT->getNumParams() == CurFT->getNumParams() && 2209 ActualFT->getNumParams() == Args.size() && 2210 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 2211 bool ArgsMatch = true; 2212 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 2213 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 2214 ArgsMatch = false; 2215 break; 2216 } 2217 2218 // Strip the cast if we can get away with it. This is a nice cleanup, 2219 // but also allows us to inline the function at -O0 if it is marked 2220 // always_inline. 2221 if (ArgsMatch) 2222 Callee = CalleeF; 2223 } 2224 } 2225 2226 unsigned CallingConv; 2227 CodeGen::AttributeListType AttributeList; 2228 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); 2229 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 2230 AttributeList); 2231 2232 llvm::BasicBlock *InvokeDest = 0; 2233 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 2234 llvm::Attribute::NoUnwind)) 2235 InvokeDest = getInvokeDest(); 2236 2237 llvm::CallSite CS; 2238 if (!InvokeDest) { 2239 CS = Builder.CreateCall(Callee, Args); 2240 } else { 2241 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 2242 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); 2243 EmitBlock(Cont); 2244 } 2245 if (callOrInvoke) 2246 *callOrInvoke = CS.getInstruction(); 2247 2248 CS.setAttributes(Attrs); 2249 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2250 2251 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2252 // optimizer it can aggressively ignore unwind edges. 2253 if (CGM.getLangOpts().ObjCAutoRefCount) 2254 AddObjCARCExceptionMetadata(CS.getInstruction()); 2255 2256 // If the call doesn't return, finish the basic block and clear the 2257 // insertion point; this allows the rest of IRgen to discard 2258 // unreachable code. 2259 if (CS.doesNotReturn()) { 2260 Builder.CreateUnreachable(); 2261 Builder.ClearInsertionPoint(); 2262 2263 // FIXME: For now, emit a dummy basic block because expr emitters in 2264 // generally are not ready to handle emitting expressions at unreachable 2265 // points. 2266 EnsureInsertPoint(); 2267 2268 // Return a reasonable RValue. 2269 return GetUndefRValue(RetTy); 2270 } 2271 2272 llvm::Instruction *CI = CS.getInstruction(); 2273 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 2274 CI->setName("call"); 2275 2276 // Emit any writebacks immediately. Arguably this should happen 2277 // after any return-value munging. 2278 if (CallArgs.hasWritebacks()) 2279 emitWritebacks(*this, CallArgs); 2280 2281 switch (RetAI.getKind()) { 2282 case ABIArgInfo::Indirect: { 2283 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 2284 if (RetTy->isAnyComplexType()) 2285 return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); 2286 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 2287 return RValue::getAggregate(Args[0]); 2288 return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy)); 2289 } 2290 2291 case ABIArgInfo::Ignore: 2292 // If we are ignoring an argument that had a result, make sure to 2293 // construct the appropriate return value for our caller. 2294 return GetUndefRValue(RetTy); 2295 2296 case ABIArgInfo::Extend: 2297 case ABIArgInfo::Direct: { 2298 llvm::Type *RetIRTy = ConvertType(RetTy); 2299 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 2300 if (RetTy->isAnyComplexType()) { 2301 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 2302 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 2303 return RValue::getComplex(std::make_pair(Real, Imag)); 2304 } 2305 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 2306 llvm::Value *DestPtr = ReturnValue.getValue(); 2307 bool DestIsVolatile = ReturnValue.isVolatile(); 2308 2309 if (!DestPtr) { 2310 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 2311 DestIsVolatile = false; 2312 } 2313 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 2314 return RValue::getAggregate(DestPtr); 2315 } 2316 2317 // If the argument doesn't match, perform a bitcast to coerce it. This 2318 // can happen due to trivial type mismatches. 2319 llvm::Value *V = CI; 2320 if (V->getType() != RetIRTy) 2321 V = Builder.CreateBitCast(V, RetIRTy); 2322 return RValue::get(V); 2323 } 2324 2325 llvm::Value *DestPtr = ReturnValue.getValue(); 2326 bool DestIsVolatile = ReturnValue.isVolatile(); 2327 2328 if (!DestPtr) { 2329 DestPtr = CreateMemTemp(RetTy, "coerce"); 2330 DestIsVolatile = false; 2331 } 2332 2333 // If the value is offset in memory, apply the offset now. 2334 llvm::Value *StorePtr = DestPtr; 2335 if (unsigned Offs = RetAI.getDirectOffset()) { 2336 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 2337 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 2338 StorePtr = Builder.CreateBitCast(StorePtr, 2339 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 2340 } 2341 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 2342 2343 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 2344 if (RetTy->isAnyComplexType()) 2345 return RValue::getComplex(LoadComplexFromAddr(DestPtr, false)); 2346 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 2347 return RValue::getAggregate(DestPtr); 2348 return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy)); 2349 } 2350 2351 case ABIArgInfo::Expand: 2352 llvm_unreachable("Invalid ABI kind for return argument"); 2353 } 2354 2355 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 2356 } 2357 2358 /* VarArg handling */ 2359 2360 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 2361 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 2362 } 2363