1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 using namespace clang;
43 using namespace CodeGen;
44 
45 /***/
46 
47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
48   switch (CC) {
49   default: return llvm::CallingConv::C;
50   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
51   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
52   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
53   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
54   case CC_Win64: return llvm::CallingConv::Win64;
55   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
56   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
57   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
58   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
59   // TODO: Add support for __pascal to LLVM.
60   case CC_X86Pascal: return llvm::CallingConv::C;
61   // TODO: Add support for __vectorcall to LLVM.
62   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
63   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
64   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
65   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
66   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
67   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
68   case CC_Swift: return llvm::CallingConv::Swift;
69   }
70 }
71 
72 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
73 /// qualification. Either or both of RD and MD may be null. A null RD indicates
74 /// that there is no meaningful 'this' type, and a null MD can occur when
75 /// calling a method pointer.
76 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
77                                          const CXXMethodDecl *MD) {
78   QualType RecTy;
79   if (RD)
80     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
81   else
82     RecTy = Context.VoidTy;
83 
84   if (MD)
85     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
86   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
87 }
88 
89 /// Returns the canonical formal type of the given C++ method.
90 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
91   return MD->getType()->getCanonicalTypeUnqualified()
92            .getAs<FunctionProtoType>();
93 }
94 
95 /// Returns the "extra-canonicalized" return type, which discards
96 /// qualifiers on the return type.  Codegen doesn't care about them,
97 /// and it makes ABI code a little easier to be able to assume that
98 /// all parameter and return types are top-level unqualified.
99 static CanQualType GetReturnType(QualType RetTy) {
100   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
101 }
102 
103 /// Arrange the argument and result information for a value of the given
104 /// unprototyped freestanding function type.
105 const CGFunctionInfo &
106 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
107   // When translating an unprototyped function type, always use a
108   // variadic type.
109   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
110                                  /*instanceMethod=*/false,
111                                  /*chainCall=*/false, None,
112                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
113 }
114 
115 static void addExtParameterInfosForCall(
116          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
117                                         const FunctionProtoType *proto,
118                                         unsigned prefixArgs,
119                                         unsigned totalArgs) {
120   assert(proto->hasExtParameterInfos());
121   assert(paramInfos.size() <= prefixArgs);
122   assert(proto->getNumParams() + prefixArgs <= totalArgs);
123 
124   paramInfos.reserve(totalArgs);
125 
126   // Add default infos for any prefix args that don't already have infos.
127   paramInfos.resize(prefixArgs);
128 
129   // Add infos for the prototype.
130   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
131     paramInfos.push_back(ParamInfo);
132     // pass_object_size params have no parameter info.
133     if (ParamInfo.hasPassObjectSize())
134       paramInfos.emplace_back();
135   }
136 
137   assert(paramInfos.size() <= totalArgs &&
138          "Did we forget to insert pass_object_size args?");
139   // Add default infos for the variadic and/or suffix arguments.
140   paramInfos.resize(totalArgs);
141 }
142 
143 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
144 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
145 static void appendParameterTypes(const CodeGenTypes &CGT,
146                                  SmallVectorImpl<CanQualType> &prefix,
147               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
148                                  CanQual<FunctionProtoType> FPT) {
149   // Fast path: don't touch param info if we don't need to.
150   if (!FPT->hasExtParameterInfos()) {
151     assert(paramInfos.empty() &&
152            "We have paramInfos, but the prototype doesn't?");
153     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
154     return;
155   }
156 
157   unsigned PrefixSize = prefix.size();
158   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
159   // parameters; the only thing that can change this is the presence of
160   // pass_object_size. So, we preallocate for the common case.
161   prefix.reserve(prefix.size() + FPT->getNumParams());
162 
163   auto ExtInfos = FPT->getExtParameterInfos();
164   assert(ExtInfos.size() == FPT->getNumParams());
165   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
166     prefix.push_back(FPT->getParamType(I));
167     if (ExtInfos[I].hasPassObjectSize())
168       prefix.push_back(CGT.getContext().getSizeType());
169   }
170 
171   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
172                               prefix.size());
173 }
174 
175 /// Arrange the LLVM function layout for a value of the given function
176 /// type, on top of any implicit parameters already stored.
177 static const CGFunctionInfo &
178 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
179                         SmallVectorImpl<CanQualType> &prefix,
180                         CanQual<FunctionProtoType> FTP) {
181   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
182   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
183   // FIXME: Kill copy.
184   appendParameterTypes(CGT, prefix, paramInfos, FTP);
185   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
186 
187   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
188                                      /*chainCall=*/false, prefix,
189                                      FTP->getExtInfo(), paramInfos,
190                                      Required);
191 }
192 
193 /// Arrange the argument and result information for a value of the
194 /// given freestanding function type.
195 const CGFunctionInfo &
196 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
197   SmallVector<CanQualType, 16> argTypes;
198   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
199                                    FTP);
200 }
201 
202 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
203                                                bool IsWindows) {
204   // Set the appropriate calling convention for the Function.
205   if (D->hasAttr<StdCallAttr>())
206     return CC_X86StdCall;
207 
208   if (D->hasAttr<FastCallAttr>())
209     return CC_X86FastCall;
210 
211   if (D->hasAttr<RegCallAttr>())
212     return CC_X86RegCall;
213 
214   if (D->hasAttr<ThisCallAttr>())
215     return CC_X86ThisCall;
216 
217   if (D->hasAttr<VectorCallAttr>())
218     return CC_X86VectorCall;
219 
220   if (D->hasAttr<PascalAttr>())
221     return CC_X86Pascal;
222 
223   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
224     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
225 
226   if (D->hasAttr<AArch64VectorPcsAttr>())
227     return CC_AArch64VectorCall;
228 
229   if (D->hasAttr<IntelOclBiccAttr>())
230     return CC_IntelOclBicc;
231 
232   if (D->hasAttr<MSABIAttr>())
233     return IsWindows ? CC_C : CC_Win64;
234 
235   if (D->hasAttr<SysVABIAttr>())
236     return IsWindows ? CC_X86_64SysV : CC_C;
237 
238   if (D->hasAttr<PreserveMostAttr>())
239     return CC_PreserveMost;
240 
241   if (D->hasAttr<PreserveAllAttr>())
242     return CC_PreserveAll;
243 
244   return CC_C;
245 }
246 
247 /// Arrange the argument and result information for a call to an
248 /// unknown C++ non-static member function of the given abstract type.
249 /// (A null RD means we don't have any meaningful "this" argument type,
250 ///  so fall back to a generic pointer type).
251 /// The member function must be an ordinary function, i.e. not a
252 /// constructor or destructor.
253 const CGFunctionInfo &
254 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
255                                    const FunctionProtoType *FTP,
256                                    const CXXMethodDecl *MD) {
257   SmallVector<CanQualType, 16> argTypes;
258 
259   // Add the 'this' pointer.
260   argTypes.push_back(DeriveThisType(RD, MD));
261 
262   return ::arrangeLLVMFunctionInfo(
263       *this, true, argTypes,
264       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
265 }
266 
267 /// Set calling convention for CUDA/HIP kernel.
268 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
269                                            const FunctionDecl *FD) {
270   if (FD->hasAttr<CUDAGlobalAttr>()) {
271     const FunctionType *FT = FTy->getAs<FunctionType>();
272     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
273     FTy = FT->getCanonicalTypeUnqualified();
274   }
275 }
276 
277 /// Arrange the argument and result information for a declaration or
278 /// definition of the given C++ non-static member function.  The
279 /// member function must be an ordinary function, i.e. not a
280 /// constructor or destructor.
281 const CGFunctionInfo &
282 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
283   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
284   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
285 
286   CanQualType FT = GetFormalType(MD).getAs<Type>();
287   setCUDAKernelCallingConvention(FT, CGM, MD);
288   auto prototype = FT.getAs<FunctionProtoType>();
289 
290   if (MD->isInstance()) {
291     // The abstract case is perfectly fine.
292     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
293     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
294   }
295 
296   return arrangeFreeFunctionType(prototype);
297 }
298 
299 bool CodeGenTypes::inheritingCtorHasParams(
300     const InheritedConstructor &Inherited, CXXCtorType Type) {
301   // Parameters are unnecessary if we're constructing a base class subobject
302   // and the inherited constructor lives in a virtual base.
303   return Type == Ctor_Complete ||
304          !Inherited.getShadowDecl()->constructsVirtualBase() ||
305          !Target.getCXXABI().hasConstructorVariants();
306 }
307 
308 const CGFunctionInfo &
309 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
310   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
311 
312   SmallVector<CanQualType, 16> argTypes;
313   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
314   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
315 
316   bool PassParams = true;
317 
318   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
319     // A base class inheriting constructor doesn't get forwarded arguments
320     // needed to construct a virtual base (or base class thereof).
321     if (auto Inherited = CD->getInheritedConstructor())
322       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
323   }
324 
325   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
326 
327   // Add the formal parameters.
328   if (PassParams)
329     appendParameterTypes(*this, argTypes, paramInfos, FTP);
330 
331   CGCXXABI::AddedStructorArgCounts AddedArgs =
332       TheCXXABI.buildStructorSignature(GD, argTypes);
333   if (!paramInfos.empty()) {
334     // Note: prefix implies after the first param.
335     if (AddedArgs.Prefix)
336       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
337                         FunctionProtoType::ExtParameterInfo{});
338     if (AddedArgs.Suffix)
339       paramInfos.append(AddedArgs.Suffix,
340                         FunctionProtoType::ExtParameterInfo{});
341   }
342 
343   RequiredArgs required =
344       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
345                                       : RequiredArgs::All);
346 
347   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
348   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
349                                ? argTypes.front()
350                                : TheCXXABI.hasMostDerivedReturn(GD)
351                                      ? CGM.getContext().VoidPtrTy
352                                      : Context.VoidTy;
353   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
354                                  /*chainCall=*/false, argTypes, extInfo,
355                                  paramInfos, required);
356 }
357 
358 static SmallVector<CanQualType, 16>
359 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
360   SmallVector<CanQualType, 16> argTypes;
361   for (auto &arg : args)
362     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
363   return argTypes;
364 }
365 
366 static SmallVector<CanQualType, 16>
367 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
368   SmallVector<CanQualType, 16> argTypes;
369   for (auto &arg : args)
370     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
371   return argTypes;
372 }
373 
374 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
375 getExtParameterInfosForCall(const FunctionProtoType *proto,
376                             unsigned prefixArgs, unsigned totalArgs) {
377   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
378   if (proto->hasExtParameterInfos()) {
379     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
380   }
381   return result;
382 }
383 
384 /// Arrange a call to a C++ method, passing the given arguments.
385 ///
386 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
387 /// parameter.
388 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
389 /// args.
390 /// PassProtoArgs indicates whether `args` has args for the parameters in the
391 /// given CXXConstructorDecl.
392 const CGFunctionInfo &
393 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
394                                         const CXXConstructorDecl *D,
395                                         CXXCtorType CtorKind,
396                                         unsigned ExtraPrefixArgs,
397                                         unsigned ExtraSuffixArgs,
398                                         bool PassProtoArgs) {
399   // FIXME: Kill copy.
400   SmallVector<CanQualType, 16> ArgTypes;
401   for (const auto &Arg : args)
402     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
403 
404   // +1 for implicit this, which should always be args[0].
405   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
406 
407   CanQual<FunctionProtoType> FPT = GetFormalType(D);
408   RequiredArgs Required = PassProtoArgs
409                               ? RequiredArgs::forPrototypePlus(
410                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
411                               : RequiredArgs::All;
412 
413   GlobalDecl GD(D, CtorKind);
414   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
415                                ? ArgTypes.front()
416                                : TheCXXABI.hasMostDerivedReturn(GD)
417                                      ? CGM.getContext().VoidPtrTy
418                                      : Context.VoidTy;
419 
420   FunctionType::ExtInfo Info = FPT->getExtInfo();
421   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
422   // If the prototype args are elided, we should only have ABI-specific args,
423   // which never have param info.
424   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
425     // ABI-specific suffix arguments are treated the same as variadic arguments.
426     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
427                                 ArgTypes.size());
428   }
429   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
430                                  /*chainCall=*/false, ArgTypes, Info,
431                                  ParamInfos, Required);
432 }
433 
434 /// Arrange the argument and result information for the declaration or
435 /// definition of the given function.
436 const CGFunctionInfo &
437 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
438   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
439     if (MD->isInstance())
440       return arrangeCXXMethodDeclaration(MD);
441 
442   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
443 
444   assert(isa<FunctionType>(FTy));
445   setCUDAKernelCallingConvention(FTy, CGM, FD);
446 
447   // When declaring a function without a prototype, always use a
448   // non-variadic type.
449   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
450     return arrangeLLVMFunctionInfo(
451         noProto->getReturnType(), /*instanceMethod=*/false,
452         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
453   }
454 
455   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
456 }
457 
458 /// Arrange the argument and result information for the declaration or
459 /// definition of an Objective-C method.
460 const CGFunctionInfo &
461 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
462   // It happens that this is the same as a call with no optional
463   // arguments, except also using the formal 'self' type.
464   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
465 }
466 
467 /// Arrange the argument and result information for the function type
468 /// through which to perform a send to the given Objective-C method,
469 /// using the given receiver type.  The receiver type is not always
470 /// the 'self' type of the method or even an Objective-C pointer type.
471 /// This is *not* the right method for actually performing such a
472 /// message send, due to the possibility of optional arguments.
473 const CGFunctionInfo &
474 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
475                                               QualType receiverType) {
476   SmallVector<CanQualType, 16> argTys;
477   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
478   argTys.push_back(Context.getCanonicalParamType(receiverType));
479   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
480   // FIXME: Kill copy?
481   for (const auto *I : MD->parameters()) {
482     argTys.push_back(Context.getCanonicalParamType(I->getType()));
483     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
484         I->hasAttr<NoEscapeAttr>());
485     extParamInfos.push_back(extParamInfo);
486   }
487 
488   FunctionType::ExtInfo einfo;
489   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
490   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
491 
492   if (getContext().getLangOpts().ObjCAutoRefCount &&
493       MD->hasAttr<NSReturnsRetainedAttr>())
494     einfo = einfo.withProducesResult(true);
495 
496   RequiredArgs required =
497     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
498 
499   return arrangeLLVMFunctionInfo(
500       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
501       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
502 }
503 
504 const CGFunctionInfo &
505 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
506                                                  const CallArgList &args) {
507   auto argTypes = getArgTypesForCall(Context, args);
508   FunctionType::ExtInfo einfo;
509 
510   return arrangeLLVMFunctionInfo(
511       GetReturnType(returnType), /*instanceMethod=*/false,
512       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
513 }
514 
515 const CGFunctionInfo &
516 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
517   // FIXME: Do we need to handle ObjCMethodDecl?
518   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
519 
520   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
521       isa<CXXDestructorDecl>(GD.getDecl()))
522     return arrangeCXXStructorDeclaration(GD);
523 
524   return arrangeFunctionDeclaration(FD);
525 }
526 
527 /// Arrange a thunk that takes 'this' as the first parameter followed by
528 /// varargs.  Return a void pointer, regardless of the actual return type.
529 /// The body of the thunk will end in a musttail call to a function of the
530 /// correct type, and the caller will bitcast the function to the correct
531 /// prototype.
532 const CGFunctionInfo &
533 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
534   assert(MD->isVirtual() && "only methods have thunks");
535   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
536   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
537   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
538                                  /*chainCall=*/false, ArgTys,
539                                  FTP->getExtInfo(), {}, RequiredArgs(1));
540 }
541 
542 const CGFunctionInfo &
543 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
544                                    CXXCtorType CT) {
545   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
546 
547   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
548   SmallVector<CanQualType, 2> ArgTys;
549   const CXXRecordDecl *RD = CD->getParent();
550   ArgTys.push_back(DeriveThisType(RD, CD));
551   if (CT == Ctor_CopyingClosure)
552     ArgTys.push_back(*FTP->param_type_begin());
553   if (RD->getNumVBases() > 0)
554     ArgTys.push_back(Context.IntTy);
555   CallingConv CC = Context.getDefaultCallingConvention(
556       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
557   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
558                                  /*chainCall=*/false, ArgTys,
559                                  FunctionType::ExtInfo(CC), {},
560                                  RequiredArgs::All);
561 }
562 
563 /// Arrange a call as unto a free function, except possibly with an
564 /// additional number of formal parameters considered required.
565 static const CGFunctionInfo &
566 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
567                             CodeGenModule &CGM,
568                             const CallArgList &args,
569                             const FunctionType *fnType,
570                             unsigned numExtraRequiredArgs,
571                             bool chainCall) {
572   assert(args.size() >= numExtraRequiredArgs);
573 
574   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
575 
576   // In most cases, there are no optional arguments.
577   RequiredArgs required = RequiredArgs::All;
578 
579   // If we have a variadic prototype, the required arguments are the
580   // extra prefix plus the arguments in the prototype.
581   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
582     if (proto->isVariadic())
583       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
584 
585     if (proto->hasExtParameterInfos())
586       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
587                                   args.size());
588 
589   // If we don't have a prototype at all, but we're supposed to
590   // explicitly use the variadic convention for unprototyped calls,
591   // treat all of the arguments as required but preserve the nominal
592   // possibility of variadics.
593   } else if (CGM.getTargetCodeGenInfo()
594                 .isNoProtoCallVariadic(args,
595                                        cast<FunctionNoProtoType>(fnType))) {
596     required = RequiredArgs(args.size());
597   }
598 
599   // FIXME: Kill copy.
600   SmallVector<CanQualType, 16> argTypes;
601   for (const auto &arg : args)
602     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
603   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
604                                      /*instanceMethod=*/false, chainCall,
605                                      argTypes, fnType->getExtInfo(), paramInfos,
606                                      required);
607 }
608 
609 /// Figure out the rules for calling a function with the given formal
610 /// type using the given arguments.  The arguments are necessary
611 /// because the function might be unprototyped, in which case it's
612 /// target-dependent in crazy ways.
613 const CGFunctionInfo &
614 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
615                                       const FunctionType *fnType,
616                                       bool chainCall) {
617   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
618                                      chainCall ? 1 : 0, chainCall);
619 }
620 
621 /// A block function is essentially a free function with an
622 /// extra implicit argument.
623 const CGFunctionInfo &
624 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
625                                        const FunctionType *fnType) {
626   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
627                                      /*chainCall=*/false);
628 }
629 
630 const CGFunctionInfo &
631 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
632                                               const FunctionArgList &params) {
633   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
634   auto argTypes = getArgTypesForDeclaration(Context, params);
635 
636   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
637                                  /*instanceMethod*/ false, /*chainCall*/ false,
638                                  argTypes, proto->getExtInfo(), paramInfos,
639                                  RequiredArgs::forPrototypePlus(proto, 1));
640 }
641 
642 const CGFunctionInfo &
643 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
644                                          const CallArgList &args) {
645   // FIXME: Kill copy.
646   SmallVector<CanQualType, 16> argTypes;
647   for (const auto &Arg : args)
648     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
649   return arrangeLLVMFunctionInfo(
650       GetReturnType(resultType), /*instanceMethod=*/false,
651       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
652       /*paramInfos=*/ {}, RequiredArgs::All);
653 }
654 
655 const CGFunctionInfo &
656 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
657                                                 const FunctionArgList &args) {
658   auto argTypes = getArgTypesForDeclaration(Context, args);
659 
660   return arrangeLLVMFunctionInfo(
661       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
662       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
663 }
664 
665 const CGFunctionInfo &
666 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
667                                               ArrayRef<CanQualType> argTypes) {
668   return arrangeLLVMFunctionInfo(
669       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
670       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
671 }
672 
673 /// Arrange a call to a C++ method, passing the given arguments.
674 ///
675 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
676 /// does not count `this`.
677 const CGFunctionInfo &
678 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
679                                    const FunctionProtoType *proto,
680                                    RequiredArgs required,
681                                    unsigned numPrefixArgs) {
682   assert(numPrefixArgs + 1 <= args.size() &&
683          "Emitting a call with less args than the required prefix?");
684   // Add one to account for `this`. It's a bit awkward here, but we don't count
685   // `this` in similar places elsewhere.
686   auto paramInfos =
687     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
688 
689   // FIXME: Kill copy.
690   auto argTypes = getArgTypesForCall(Context, args);
691 
692   FunctionType::ExtInfo info = proto->getExtInfo();
693   return arrangeLLVMFunctionInfo(
694       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
695       /*chainCall=*/false, argTypes, info, paramInfos, required);
696 }
697 
698 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
699   return arrangeLLVMFunctionInfo(
700       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
701       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
702 }
703 
704 const CGFunctionInfo &
705 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
706                           const CallArgList &args) {
707   assert(signature.arg_size() <= args.size());
708   if (signature.arg_size() == args.size())
709     return signature;
710 
711   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
712   auto sigParamInfos = signature.getExtParameterInfos();
713   if (!sigParamInfos.empty()) {
714     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
715     paramInfos.resize(args.size());
716   }
717 
718   auto argTypes = getArgTypesForCall(Context, args);
719 
720   assert(signature.getRequiredArgs().allowsOptionalArgs());
721   return arrangeLLVMFunctionInfo(signature.getReturnType(),
722                                  signature.isInstanceMethod(),
723                                  signature.isChainCall(),
724                                  argTypes,
725                                  signature.getExtInfo(),
726                                  paramInfos,
727                                  signature.getRequiredArgs());
728 }
729 
730 namespace clang {
731 namespace CodeGen {
732 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
733 }
734 }
735 
736 /// Arrange the argument and result information for an abstract value
737 /// of a given function type.  This is the method which all of the
738 /// above functions ultimately defer to.
739 const CGFunctionInfo &
740 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
741                                       bool instanceMethod,
742                                       bool chainCall,
743                                       ArrayRef<CanQualType> argTypes,
744                                       FunctionType::ExtInfo info,
745                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
746                                       RequiredArgs required) {
747   assert(llvm::all_of(argTypes,
748                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
749 
750   // Lookup or create unique function info.
751   llvm::FoldingSetNodeID ID;
752   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
753                           required, resultType, argTypes);
754 
755   void *insertPos = nullptr;
756   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
757   if (FI)
758     return *FI;
759 
760   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
761 
762   // Construct the function info.  We co-allocate the ArgInfos.
763   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
764                               paramInfos, resultType, argTypes, required);
765   FunctionInfos.InsertNode(FI, insertPos);
766 
767   bool inserted = FunctionsBeingProcessed.insert(FI).second;
768   (void)inserted;
769   assert(inserted && "Recursively being processed?");
770 
771   // Compute ABI information.
772   if (CC == llvm::CallingConv::SPIR_KERNEL) {
773     // Force target independent argument handling for the host visible
774     // kernel functions.
775     computeSPIRKernelABIInfo(CGM, *FI);
776   } else if (info.getCC() == CC_Swift) {
777     swiftcall::computeABIInfo(CGM, *FI);
778   } else {
779     getABIInfo().computeInfo(*FI);
780   }
781 
782   // Loop over all of the computed argument and return value info.  If any of
783   // them are direct or extend without a specified coerce type, specify the
784   // default now.
785   ABIArgInfo &retInfo = FI->getReturnInfo();
786   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
787     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
788 
789   for (auto &I : FI->arguments())
790     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
791       I.info.setCoerceToType(ConvertType(I.type));
792 
793   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
794   assert(erased && "Not in set?");
795 
796   return *FI;
797 }
798 
799 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
800                                        bool instanceMethod,
801                                        bool chainCall,
802                                        const FunctionType::ExtInfo &info,
803                                        ArrayRef<ExtParameterInfo> paramInfos,
804                                        CanQualType resultType,
805                                        ArrayRef<CanQualType> argTypes,
806                                        RequiredArgs required) {
807   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
808   assert(!required.allowsOptionalArgs() ||
809          required.getNumRequiredArgs() <= argTypes.size());
810 
811   void *buffer =
812     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
813                                   argTypes.size() + 1, paramInfos.size()));
814 
815   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
816   FI->CallingConvention = llvmCC;
817   FI->EffectiveCallingConvention = llvmCC;
818   FI->ASTCallingConvention = info.getCC();
819   FI->InstanceMethod = instanceMethod;
820   FI->ChainCall = chainCall;
821   FI->CmseNSCall = info.getCmseNSCall();
822   FI->NoReturn = info.getNoReturn();
823   FI->ReturnsRetained = info.getProducesResult();
824   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
825   FI->NoCfCheck = info.getNoCfCheck();
826   FI->Required = required;
827   FI->HasRegParm = info.getHasRegParm();
828   FI->RegParm = info.getRegParm();
829   FI->ArgStruct = nullptr;
830   FI->ArgStructAlign = 0;
831   FI->NumArgs = argTypes.size();
832   FI->HasExtParameterInfos = !paramInfos.empty();
833   FI->getArgsBuffer()[0].type = resultType;
834   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
835     FI->getArgsBuffer()[i + 1].type = argTypes[i];
836   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
837     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
838   return FI;
839 }
840 
841 /***/
842 
843 namespace {
844 // ABIArgInfo::Expand implementation.
845 
846 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
847 struct TypeExpansion {
848   enum TypeExpansionKind {
849     // Elements of constant arrays are expanded recursively.
850     TEK_ConstantArray,
851     // Record fields are expanded recursively (but if record is a union, only
852     // the field with the largest size is expanded).
853     TEK_Record,
854     // For complex types, real and imaginary parts are expanded recursively.
855     TEK_Complex,
856     // All other types are not expandable.
857     TEK_None
858   };
859 
860   const TypeExpansionKind Kind;
861 
862   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
863   virtual ~TypeExpansion() {}
864 };
865 
866 struct ConstantArrayExpansion : TypeExpansion {
867   QualType EltTy;
868   uint64_t NumElts;
869 
870   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
871       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
872   static bool classof(const TypeExpansion *TE) {
873     return TE->Kind == TEK_ConstantArray;
874   }
875 };
876 
877 struct RecordExpansion : TypeExpansion {
878   SmallVector<const CXXBaseSpecifier *, 1> Bases;
879 
880   SmallVector<const FieldDecl *, 1> Fields;
881 
882   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
883                   SmallVector<const FieldDecl *, 1> &&Fields)
884       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
885         Fields(std::move(Fields)) {}
886   static bool classof(const TypeExpansion *TE) {
887     return TE->Kind == TEK_Record;
888   }
889 };
890 
891 struct ComplexExpansion : TypeExpansion {
892   QualType EltTy;
893 
894   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
895   static bool classof(const TypeExpansion *TE) {
896     return TE->Kind == TEK_Complex;
897   }
898 };
899 
900 struct NoExpansion : TypeExpansion {
901   NoExpansion() : TypeExpansion(TEK_None) {}
902   static bool classof(const TypeExpansion *TE) {
903     return TE->Kind == TEK_None;
904   }
905 };
906 }  // namespace
907 
908 static std::unique_ptr<TypeExpansion>
909 getTypeExpansion(QualType Ty, const ASTContext &Context) {
910   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
911     return std::make_unique<ConstantArrayExpansion>(
912         AT->getElementType(), AT->getSize().getZExtValue());
913   }
914   if (const RecordType *RT = Ty->getAs<RecordType>()) {
915     SmallVector<const CXXBaseSpecifier *, 1> Bases;
916     SmallVector<const FieldDecl *, 1> Fields;
917     const RecordDecl *RD = RT->getDecl();
918     assert(!RD->hasFlexibleArrayMember() &&
919            "Cannot expand structure with flexible array.");
920     if (RD->isUnion()) {
921       // Unions can be here only in degenerative cases - all the fields are same
922       // after flattening. Thus we have to use the "largest" field.
923       const FieldDecl *LargestFD = nullptr;
924       CharUnits UnionSize = CharUnits::Zero();
925 
926       for (const auto *FD : RD->fields()) {
927         if (FD->isZeroLengthBitField(Context))
928           continue;
929         assert(!FD->isBitField() &&
930                "Cannot expand structure with bit-field members.");
931         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
932         if (UnionSize < FieldSize) {
933           UnionSize = FieldSize;
934           LargestFD = FD;
935         }
936       }
937       if (LargestFD)
938         Fields.push_back(LargestFD);
939     } else {
940       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
941         assert(!CXXRD->isDynamicClass() &&
942                "cannot expand vtable pointers in dynamic classes");
943         for (const CXXBaseSpecifier &BS : CXXRD->bases())
944           Bases.push_back(&BS);
945       }
946 
947       for (const auto *FD : RD->fields()) {
948         if (FD->isZeroLengthBitField(Context))
949           continue;
950         assert(!FD->isBitField() &&
951                "Cannot expand structure with bit-field members.");
952         Fields.push_back(FD);
953       }
954     }
955     return std::make_unique<RecordExpansion>(std::move(Bases),
956                                               std::move(Fields));
957   }
958   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
959     return std::make_unique<ComplexExpansion>(CT->getElementType());
960   }
961   return std::make_unique<NoExpansion>();
962 }
963 
964 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
965   auto Exp = getTypeExpansion(Ty, Context);
966   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
967     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
968   }
969   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
970     int Res = 0;
971     for (auto BS : RExp->Bases)
972       Res += getExpansionSize(BS->getType(), Context);
973     for (auto FD : RExp->Fields)
974       Res += getExpansionSize(FD->getType(), Context);
975     return Res;
976   }
977   if (isa<ComplexExpansion>(Exp.get()))
978     return 2;
979   assert(isa<NoExpansion>(Exp.get()));
980   return 1;
981 }
982 
983 void
984 CodeGenTypes::getExpandedTypes(QualType Ty,
985                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
986   auto Exp = getTypeExpansion(Ty, Context);
987   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
988     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
989       getExpandedTypes(CAExp->EltTy, TI);
990     }
991   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
992     for (auto BS : RExp->Bases)
993       getExpandedTypes(BS->getType(), TI);
994     for (auto FD : RExp->Fields)
995       getExpandedTypes(FD->getType(), TI);
996   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
997     llvm::Type *EltTy = ConvertType(CExp->EltTy);
998     *TI++ = EltTy;
999     *TI++ = EltTy;
1000   } else {
1001     assert(isa<NoExpansion>(Exp.get()));
1002     *TI++ = ConvertType(Ty);
1003   }
1004 }
1005 
1006 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1007                                       ConstantArrayExpansion *CAE,
1008                                       Address BaseAddr,
1009                                       llvm::function_ref<void(Address)> Fn) {
1010   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1011   CharUnits EltAlign =
1012     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1013 
1014   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1015     llvm::Value *EltAddr =
1016       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1017     Fn(Address(EltAddr, EltAlign));
1018   }
1019 }
1020 
1021 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1022                                          llvm::Function::arg_iterator &AI) {
1023   assert(LV.isSimple() &&
1024          "Unexpected non-simple lvalue during struct expansion.");
1025 
1026   auto Exp = getTypeExpansion(Ty, getContext());
1027   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1028     forConstantArrayExpansion(
1029         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1030           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1031           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1032         });
1033   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1034     Address This = LV.getAddress(*this);
1035     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1036       // Perform a single step derived-to-base conversion.
1037       Address Base =
1038           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1039                                 /*NullCheckValue=*/false, SourceLocation());
1040       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1041 
1042       // Recurse onto bases.
1043       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1044     }
1045     for (auto FD : RExp->Fields) {
1046       // FIXME: What are the right qualifiers here?
1047       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1048       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1049     }
1050   } else if (isa<ComplexExpansion>(Exp.get())) {
1051     auto realValue = &*AI++;
1052     auto imagValue = &*AI++;
1053     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1054   } else {
1055     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1056     // primitive store.
1057     assert(isa<NoExpansion>(Exp.get()));
1058     if (LV.isBitField())
1059       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1060     else
1061       EmitStoreOfScalar(&*AI++, LV);
1062   }
1063 }
1064 
1065 void CodeGenFunction::ExpandTypeToArgs(
1066     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1067     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1068   auto Exp = getTypeExpansion(Ty, getContext());
1069   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1070     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1071                                    : Arg.getKnownRValue().getAggregateAddress();
1072     forConstantArrayExpansion(
1073         *this, CAExp, Addr, [&](Address EltAddr) {
1074           CallArg EltArg = CallArg(
1075               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1076               CAExp->EltTy);
1077           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1078                            IRCallArgPos);
1079         });
1080   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1081     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1082                                    : Arg.getKnownRValue().getAggregateAddress();
1083     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1084       // Perform a single step derived-to-base conversion.
1085       Address Base =
1086           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1087                                 /*NullCheckValue=*/false, SourceLocation());
1088       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1089 
1090       // Recurse onto bases.
1091       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1092                        IRCallArgPos);
1093     }
1094 
1095     LValue LV = MakeAddrLValue(This, Ty);
1096     for (auto FD : RExp->Fields) {
1097       CallArg FldArg =
1098           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1099       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1100                        IRCallArgPos);
1101     }
1102   } else if (isa<ComplexExpansion>(Exp.get())) {
1103     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1104     IRCallArgs[IRCallArgPos++] = CV.first;
1105     IRCallArgs[IRCallArgPos++] = CV.second;
1106   } else {
1107     assert(isa<NoExpansion>(Exp.get()));
1108     auto RV = Arg.getKnownRValue();
1109     assert(RV.isScalar() &&
1110            "Unexpected non-scalar rvalue during struct expansion.");
1111 
1112     // Insert a bitcast as needed.
1113     llvm::Value *V = RV.getScalarVal();
1114     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1115         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1116       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1117 
1118     IRCallArgs[IRCallArgPos++] = V;
1119   }
1120 }
1121 
1122 /// Create a temporary allocation for the purposes of coercion.
1123 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1124                                            CharUnits MinAlign,
1125                                            const Twine &Name = "tmp") {
1126   // Don't use an alignment that's worse than what LLVM would prefer.
1127   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1128   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1129 
1130   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1131 }
1132 
1133 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1134 /// accessing some number of bytes out of it, try to gep into the struct to get
1135 /// at its inner goodness.  Dive as deep as possible without entering an element
1136 /// with an in-memory size smaller than DstSize.
1137 static Address
1138 EnterStructPointerForCoercedAccess(Address SrcPtr,
1139                                    llvm::StructType *SrcSTy,
1140                                    uint64_t DstSize, CodeGenFunction &CGF) {
1141   // We can't dive into a zero-element struct.
1142   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1143 
1144   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1145 
1146   // If the first elt is at least as large as what we're looking for, or if the
1147   // first element is the same size as the whole struct, we can enter it. The
1148   // comparison must be made on the store size and not the alloca size. Using
1149   // the alloca size may overstate the size of the load.
1150   uint64_t FirstEltSize =
1151     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1152   if (FirstEltSize < DstSize &&
1153       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1154     return SrcPtr;
1155 
1156   // GEP into the first element.
1157   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1158 
1159   // If the first element is a struct, recurse.
1160   llvm::Type *SrcTy = SrcPtr.getElementType();
1161   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1162     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1163 
1164   return SrcPtr;
1165 }
1166 
1167 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1168 /// are either integers or pointers.  This does a truncation of the value if it
1169 /// is too large or a zero extension if it is too small.
1170 ///
1171 /// This behaves as if the value were coerced through memory, so on big-endian
1172 /// targets the high bits are preserved in a truncation, while little-endian
1173 /// targets preserve the low bits.
1174 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1175                                              llvm::Type *Ty,
1176                                              CodeGenFunction &CGF) {
1177   if (Val->getType() == Ty)
1178     return Val;
1179 
1180   if (isa<llvm::PointerType>(Val->getType())) {
1181     // If this is Pointer->Pointer avoid conversion to and from int.
1182     if (isa<llvm::PointerType>(Ty))
1183       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1184 
1185     // Convert the pointer to an integer so we can play with its width.
1186     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1187   }
1188 
1189   llvm::Type *DestIntTy = Ty;
1190   if (isa<llvm::PointerType>(DestIntTy))
1191     DestIntTy = CGF.IntPtrTy;
1192 
1193   if (Val->getType() != DestIntTy) {
1194     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1195     if (DL.isBigEndian()) {
1196       // Preserve the high bits on big-endian targets.
1197       // That is what memory coercion does.
1198       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1199       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1200 
1201       if (SrcSize > DstSize) {
1202         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1203         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1204       } else {
1205         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1206         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1207       }
1208     } else {
1209       // Little-endian targets preserve the low bits. No shifts required.
1210       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1211     }
1212   }
1213 
1214   if (isa<llvm::PointerType>(Ty))
1215     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1216   return Val;
1217 }
1218 
1219 
1220 
1221 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1222 /// a pointer to an object of type \arg Ty, known to be aligned to
1223 /// \arg SrcAlign bytes.
1224 ///
1225 /// This safely handles the case when the src type is smaller than the
1226 /// destination type; in this situation the values of bits which not
1227 /// present in the src are undefined.
1228 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1229                                       CodeGenFunction &CGF) {
1230   llvm::Type *SrcTy = Src.getElementType();
1231 
1232   // If SrcTy and Ty are the same, just do a load.
1233   if (SrcTy == Ty)
1234     return CGF.Builder.CreateLoad(Src);
1235 
1236   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1237 
1238   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1239     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1240                                              DstSize.getFixedSize(), CGF);
1241     SrcTy = Src.getElementType();
1242   }
1243 
1244   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1245 
1246   // If the source and destination are integer or pointer types, just do an
1247   // extension or truncation to the desired type.
1248   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1249       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1250     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1251     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1252   }
1253 
1254   // If load is legal, just bitcast the src pointer.
1255   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1256       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1257     // Generally SrcSize is never greater than DstSize, since this means we are
1258     // losing bits. However, this can happen in cases where the structure has
1259     // additional padding, for example due to a user specified alignment.
1260     //
1261     // FIXME: Assert that we aren't truncating non-padding bits when have access
1262     // to that information.
1263     Src = CGF.Builder.CreateBitCast(Src,
1264                                     Ty->getPointerTo(Src.getAddressSpace()));
1265     return CGF.Builder.CreateLoad(Src);
1266   }
1267 
1268   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1269   // the types match, use the llvm.experimental.vector.insert intrinsic to
1270   // perform the conversion.
1271   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1272     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1273       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1274         auto *Load = CGF.Builder.CreateLoad(Src);
1275         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1276         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1277         return CGF.Builder.CreateInsertVector(ScalableDst, UndefVec, Load, Zero,
1278                                               "castScalableSve");
1279       }
1280     }
1281   }
1282 
1283   // Otherwise do coercion through memory. This is stupid, but simple.
1284   Address Tmp =
1285       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1286   CGF.Builder.CreateMemCpy(
1287       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1288       Src.getAlignment().getAsAlign(),
1289       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1290   return CGF.Builder.CreateLoad(Tmp);
1291 }
1292 
1293 // Function to store a first-class aggregate into memory.  We prefer to
1294 // store the elements rather than the aggregate to be more friendly to
1295 // fast-isel.
1296 // FIXME: Do we need to recurse here?
1297 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1298                                          bool DestIsVolatile) {
1299   // Prefer scalar stores to first-class aggregate stores.
1300   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1301     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1302       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1303       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1304       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1305     }
1306   } else {
1307     Builder.CreateStore(Val, Dest, DestIsVolatile);
1308   }
1309 }
1310 
1311 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1312 /// where the source and destination may have different types.  The
1313 /// destination is known to be aligned to \arg DstAlign bytes.
1314 ///
1315 /// This safely handles the case when the src type is larger than the
1316 /// destination type; the upper bits of the src will be lost.
1317 static void CreateCoercedStore(llvm::Value *Src,
1318                                Address Dst,
1319                                bool DstIsVolatile,
1320                                CodeGenFunction &CGF) {
1321   llvm::Type *SrcTy = Src->getType();
1322   llvm::Type *DstTy = Dst.getElementType();
1323   if (SrcTy == DstTy) {
1324     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1325     return;
1326   }
1327 
1328   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1329 
1330   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1331     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1332                                              SrcSize.getFixedSize(), CGF);
1333     DstTy = Dst.getElementType();
1334   }
1335 
1336   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1337   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1338   if (SrcPtrTy && DstPtrTy &&
1339       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1340     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1341     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1342     return;
1343   }
1344 
1345   // If the source and destination are integer or pointer types, just do an
1346   // extension or truncation to the desired type.
1347   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1348       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1349     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1350     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1351     return;
1352   }
1353 
1354   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1355 
1356   // If store is legal, just bitcast the src pointer.
1357   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1358       isa<llvm::ScalableVectorType>(DstTy) ||
1359       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1360     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1361     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1362   } else {
1363     // Otherwise do coercion through memory. This is stupid, but
1364     // simple.
1365 
1366     // Generally SrcSize is never greater than DstSize, since this means we are
1367     // losing bits. However, this can happen in cases where the structure has
1368     // additional padding, for example due to a user specified alignment.
1369     //
1370     // FIXME: Assert that we aren't truncating non-padding bits when have access
1371     // to that information.
1372     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1373     CGF.Builder.CreateStore(Src, Tmp);
1374     CGF.Builder.CreateMemCpy(
1375         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1376         Tmp.getAlignment().getAsAlign(),
1377         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1378   }
1379 }
1380 
1381 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1382                                    const ABIArgInfo &info) {
1383   if (unsigned offset = info.getDirectOffset()) {
1384     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1385     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1386                                              CharUnits::fromQuantity(offset));
1387     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1388   }
1389   return addr;
1390 }
1391 
1392 namespace {
1393 
1394 /// Encapsulates information about the way function arguments from
1395 /// CGFunctionInfo should be passed to actual LLVM IR function.
1396 class ClangToLLVMArgMapping {
1397   static const unsigned InvalidIndex = ~0U;
1398   unsigned InallocaArgNo;
1399   unsigned SRetArgNo;
1400   unsigned TotalIRArgs;
1401 
1402   /// Arguments of LLVM IR function corresponding to single Clang argument.
1403   struct IRArgs {
1404     unsigned PaddingArgIndex;
1405     // Argument is expanded to IR arguments at positions
1406     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1407     unsigned FirstArgIndex;
1408     unsigned NumberOfArgs;
1409 
1410     IRArgs()
1411         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1412           NumberOfArgs(0) {}
1413   };
1414 
1415   SmallVector<IRArgs, 8> ArgInfo;
1416 
1417 public:
1418   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1419                         bool OnlyRequiredArgs = false)
1420       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1421         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1422     construct(Context, FI, OnlyRequiredArgs);
1423   }
1424 
1425   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1426   unsigned getInallocaArgNo() const {
1427     assert(hasInallocaArg());
1428     return InallocaArgNo;
1429   }
1430 
1431   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1432   unsigned getSRetArgNo() const {
1433     assert(hasSRetArg());
1434     return SRetArgNo;
1435   }
1436 
1437   unsigned totalIRArgs() const { return TotalIRArgs; }
1438 
1439   bool hasPaddingArg(unsigned ArgNo) const {
1440     assert(ArgNo < ArgInfo.size());
1441     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1442   }
1443   unsigned getPaddingArgNo(unsigned ArgNo) const {
1444     assert(hasPaddingArg(ArgNo));
1445     return ArgInfo[ArgNo].PaddingArgIndex;
1446   }
1447 
1448   /// Returns index of first IR argument corresponding to ArgNo, and their
1449   /// quantity.
1450   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1451     assert(ArgNo < ArgInfo.size());
1452     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1453                           ArgInfo[ArgNo].NumberOfArgs);
1454   }
1455 
1456 private:
1457   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1458                  bool OnlyRequiredArgs);
1459 };
1460 
1461 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1462                                       const CGFunctionInfo &FI,
1463                                       bool OnlyRequiredArgs) {
1464   unsigned IRArgNo = 0;
1465   bool SwapThisWithSRet = false;
1466   const ABIArgInfo &RetAI = FI.getReturnInfo();
1467 
1468   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1469     SwapThisWithSRet = RetAI.isSRetAfterThis();
1470     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1471   }
1472 
1473   unsigned ArgNo = 0;
1474   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1475   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1476        ++I, ++ArgNo) {
1477     assert(I != FI.arg_end());
1478     QualType ArgType = I->type;
1479     const ABIArgInfo &AI = I->info;
1480     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1481     auto &IRArgs = ArgInfo[ArgNo];
1482 
1483     if (AI.getPaddingType())
1484       IRArgs.PaddingArgIndex = IRArgNo++;
1485 
1486     switch (AI.getKind()) {
1487     case ABIArgInfo::Extend:
1488     case ABIArgInfo::Direct: {
1489       // FIXME: handle sseregparm someday...
1490       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1491       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1492         IRArgs.NumberOfArgs = STy->getNumElements();
1493       } else {
1494         IRArgs.NumberOfArgs = 1;
1495       }
1496       break;
1497     }
1498     case ABIArgInfo::Indirect:
1499     case ABIArgInfo::IndirectAliased:
1500       IRArgs.NumberOfArgs = 1;
1501       break;
1502     case ABIArgInfo::Ignore:
1503     case ABIArgInfo::InAlloca:
1504       // ignore and inalloca doesn't have matching LLVM parameters.
1505       IRArgs.NumberOfArgs = 0;
1506       break;
1507     case ABIArgInfo::CoerceAndExpand:
1508       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1509       break;
1510     case ABIArgInfo::Expand:
1511       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1512       break;
1513     }
1514 
1515     if (IRArgs.NumberOfArgs > 0) {
1516       IRArgs.FirstArgIndex = IRArgNo;
1517       IRArgNo += IRArgs.NumberOfArgs;
1518     }
1519 
1520     // Skip over the sret parameter when it comes second.  We already handled it
1521     // above.
1522     if (IRArgNo == 1 && SwapThisWithSRet)
1523       IRArgNo++;
1524   }
1525   assert(ArgNo == ArgInfo.size());
1526 
1527   if (FI.usesInAlloca())
1528     InallocaArgNo = IRArgNo++;
1529 
1530   TotalIRArgs = IRArgNo;
1531 }
1532 }  // namespace
1533 
1534 /***/
1535 
1536 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1537   const auto &RI = FI.getReturnInfo();
1538   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1539 }
1540 
1541 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1542   return ReturnTypeUsesSRet(FI) &&
1543          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1544 }
1545 
1546 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1547   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1548     switch (BT->getKind()) {
1549     default:
1550       return false;
1551     case BuiltinType::Float:
1552       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1553     case BuiltinType::Double:
1554       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1555     case BuiltinType::LongDouble:
1556       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1557     }
1558   }
1559 
1560   return false;
1561 }
1562 
1563 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1564   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1565     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1566       if (BT->getKind() == BuiltinType::LongDouble)
1567         return getTarget().useObjCFP2RetForComplexLongDouble();
1568     }
1569   }
1570 
1571   return false;
1572 }
1573 
1574 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1575   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1576   return GetFunctionType(FI);
1577 }
1578 
1579 llvm::FunctionType *
1580 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1581 
1582   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1583   (void)Inserted;
1584   assert(Inserted && "Recursively being processed?");
1585 
1586   llvm::Type *resultType = nullptr;
1587   const ABIArgInfo &retAI = FI.getReturnInfo();
1588   switch (retAI.getKind()) {
1589   case ABIArgInfo::Expand:
1590   case ABIArgInfo::IndirectAliased:
1591     llvm_unreachable("Invalid ABI kind for return argument");
1592 
1593   case ABIArgInfo::Extend:
1594   case ABIArgInfo::Direct:
1595     resultType = retAI.getCoerceToType();
1596     break;
1597 
1598   case ABIArgInfo::InAlloca:
1599     if (retAI.getInAllocaSRet()) {
1600       // sret things on win32 aren't void, they return the sret pointer.
1601       QualType ret = FI.getReturnType();
1602       llvm::Type *ty = ConvertType(ret);
1603       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1604       resultType = llvm::PointerType::get(ty, addressSpace);
1605     } else {
1606       resultType = llvm::Type::getVoidTy(getLLVMContext());
1607     }
1608     break;
1609 
1610   case ABIArgInfo::Indirect:
1611   case ABIArgInfo::Ignore:
1612     resultType = llvm::Type::getVoidTy(getLLVMContext());
1613     break;
1614 
1615   case ABIArgInfo::CoerceAndExpand:
1616     resultType = retAI.getUnpaddedCoerceAndExpandType();
1617     break;
1618   }
1619 
1620   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1621   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1622 
1623   // Add type for sret argument.
1624   if (IRFunctionArgs.hasSRetArg()) {
1625     QualType Ret = FI.getReturnType();
1626     llvm::Type *Ty = ConvertType(Ret);
1627     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1628     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1629         llvm::PointerType::get(Ty, AddressSpace);
1630   }
1631 
1632   // Add type for inalloca argument.
1633   if (IRFunctionArgs.hasInallocaArg()) {
1634     auto ArgStruct = FI.getArgStruct();
1635     assert(ArgStruct);
1636     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1637   }
1638 
1639   // Add in all of the required arguments.
1640   unsigned ArgNo = 0;
1641   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1642                                      ie = it + FI.getNumRequiredArgs();
1643   for (; it != ie; ++it, ++ArgNo) {
1644     const ABIArgInfo &ArgInfo = it->info;
1645 
1646     // Insert a padding type to ensure proper alignment.
1647     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1648       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1649           ArgInfo.getPaddingType();
1650 
1651     unsigned FirstIRArg, NumIRArgs;
1652     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1653 
1654     switch (ArgInfo.getKind()) {
1655     case ABIArgInfo::Ignore:
1656     case ABIArgInfo::InAlloca:
1657       assert(NumIRArgs == 0);
1658       break;
1659 
1660     case ABIArgInfo::Indirect: {
1661       assert(NumIRArgs == 1);
1662       // indirect arguments are always on the stack, which is alloca addr space.
1663       llvm::Type *LTy = ConvertTypeForMem(it->type);
1664       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1665           CGM.getDataLayout().getAllocaAddrSpace());
1666       break;
1667     }
1668     case ABIArgInfo::IndirectAliased: {
1669       assert(NumIRArgs == 1);
1670       llvm::Type *LTy = ConvertTypeForMem(it->type);
1671       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1672       break;
1673     }
1674     case ABIArgInfo::Extend:
1675     case ABIArgInfo::Direct: {
1676       // Fast-isel and the optimizer generally like scalar values better than
1677       // FCAs, so we flatten them if this is safe to do for this argument.
1678       llvm::Type *argType = ArgInfo.getCoerceToType();
1679       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1680       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1681         assert(NumIRArgs == st->getNumElements());
1682         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1683           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1684       } else {
1685         assert(NumIRArgs == 1);
1686         ArgTypes[FirstIRArg] = argType;
1687       }
1688       break;
1689     }
1690 
1691     case ABIArgInfo::CoerceAndExpand: {
1692       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1693       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1694         *ArgTypesIter++ = EltTy;
1695       }
1696       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1697       break;
1698     }
1699 
1700     case ABIArgInfo::Expand:
1701       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1702       getExpandedTypes(it->type, ArgTypesIter);
1703       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1704       break;
1705     }
1706   }
1707 
1708   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1709   assert(Erased && "Not in set?");
1710 
1711   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1712 }
1713 
1714 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1715   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1716   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1717 
1718   if (!isFuncTypeConvertible(FPT))
1719     return llvm::StructType::get(getLLVMContext());
1720 
1721   return GetFunctionType(GD);
1722 }
1723 
1724 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1725                                                llvm::AttrBuilder &FuncAttrs,
1726                                                const FunctionProtoType *FPT) {
1727   if (!FPT)
1728     return;
1729 
1730   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1731       FPT->isNothrow())
1732     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1733 }
1734 
1735 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1736                                           QualType ReturnType) {
1737   // We can't just discard the return value for a record type with a
1738   // complex destructor or a non-trivially copyable type.
1739   if (const RecordType *RT =
1740           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1741     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1742       return ClassDecl->hasTrivialDestructor();
1743   }
1744   return ReturnType.isTriviallyCopyableType(Context);
1745 }
1746 
1747 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1748                                                  bool HasOptnone,
1749                                                  bool AttrOnCallSite,
1750                                                llvm::AttrBuilder &FuncAttrs) {
1751   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1752   if (!HasOptnone) {
1753     if (CodeGenOpts.OptimizeSize)
1754       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1755     if (CodeGenOpts.OptimizeSize == 2)
1756       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1757   }
1758 
1759   if (CodeGenOpts.DisableRedZone)
1760     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1761   if (CodeGenOpts.IndirectTlsSegRefs)
1762     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1763   if (CodeGenOpts.NoImplicitFloat)
1764     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1765 
1766   if (AttrOnCallSite) {
1767     // Attributes that should go on the call site only.
1768     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1769       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1770     if (!CodeGenOpts.TrapFuncName.empty())
1771       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1772   } else {
1773     StringRef FpKind;
1774     switch (CodeGenOpts.getFramePointer()) {
1775     case CodeGenOptions::FramePointerKind::None:
1776       FpKind = "none";
1777       break;
1778     case CodeGenOptions::FramePointerKind::NonLeaf:
1779       FpKind = "non-leaf";
1780       break;
1781     case CodeGenOptions::FramePointerKind::All:
1782       FpKind = "all";
1783       break;
1784     }
1785     FuncAttrs.addAttribute("frame-pointer", FpKind);
1786 
1787     if (CodeGenOpts.LessPreciseFPMAD)
1788       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1789 
1790     if (CodeGenOpts.NullPointerIsValid)
1791       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1792 
1793     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1794       FuncAttrs.addAttribute("denormal-fp-math",
1795                              CodeGenOpts.FPDenormalMode.str());
1796     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1797       FuncAttrs.addAttribute(
1798           "denormal-fp-math-f32",
1799           CodeGenOpts.FP32DenormalMode.str());
1800     }
1801 
1802     if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1803       FuncAttrs.addAttribute("no-trapping-math", "true");
1804 
1805     // Strict (compliant) code is the default, so only add this attribute to
1806     // indicate that we are trying to workaround a problem case.
1807     if (!CodeGenOpts.StrictFloatCastOverflow)
1808       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1809 
1810     // TODO: Are these all needed?
1811     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1812     if (LangOpts.NoHonorInfs)
1813       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1814     if (LangOpts.NoHonorNaNs)
1815       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1816     if (LangOpts.UnsafeFPMath)
1817       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1818     if (CodeGenOpts.SoftFloat)
1819       FuncAttrs.addAttribute("use-soft-float", "true");
1820     FuncAttrs.addAttribute("stack-protector-buffer-size",
1821                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1822     if (LangOpts.NoSignedZero)
1823       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1824 
1825     // TODO: Reciprocal estimate codegen options should apply to instructions?
1826     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1827     if (!Recips.empty())
1828       FuncAttrs.addAttribute("reciprocal-estimates",
1829                              llvm::join(Recips, ","));
1830 
1831     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1832         CodeGenOpts.PreferVectorWidth != "none")
1833       FuncAttrs.addAttribute("prefer-vector-width",
1834                              CodeGenOpts.PreferVectorWidth);
1835 
1836     if (CodeGenOpts.StackRealignment)
1837       FuncAttrs.addAttribute("stackrealign");
1838     if (CodeGenOpts.Backchain)
1839       FuncAttrs.addAttribute("backchain");
1840     if (CodeGenOpts.EnableSegmentedStacks)
1841       FuncAttrs.addAttribute("split-stack");
1842 
1843     if (CodeGenOpts.SpeculativeLoadHardening)
1844       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1845   }
1846 
1847   if (getLangOpts().assumeFunctionsAreConvergent()) {
1848     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1849     // convergent (meaning, they may call an intrinsically convergent op, such
1850     // as __syncthreads() / barrier(), and so can't have certain optimizations
1851     // applied around them).  LLVM will remove this attribute where it safely
1852     // can.
1853     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1854   }
1855 
1856   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1857     // Exceptions aren't supported in CUDA device code.
1858     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1859   }
1860 
1861   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1862     StringRef Var, Value;
1863     std::tie(Var, Value) = Attr.split('=');
1864     FuncAttrs.addAttribute(Var, Value);
1865   }
1866 }
1867 
1868 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1869   llvm::AttrBuilder FuncAttrs;
1870   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1871                                /* AttrOnCallSite = */ false, FuncAttrs);
1872   // TODO: call GetCPUAndFeaturesAttributes?
1873   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1874 }
1875 
1876 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1877                                                    llvm::AttrBuilder &attrs) {
1878   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1879                                /*for call*/ false, attrs);
1880   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1881 }
1882 
1883 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1884                                    const LangOptions &LangOpts,
1885                                    const NoBuiltinAttr *NBA = nullptr) {
1886   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1887     SmallString<32> AttributeName;
1888     AttributeName += "no-builtin-";
1889     AttributeName += BuiltinName;
1890     FuncAttrs.addAttribute(AttributeName);
1891   };
1892 
1893   // First, handle the language options passed through -fno-builtin.
1894   if (LangOpts.NoBuiltin) {
1895     // -fno-builtin disables them all.
1896     FuncAttrs.addAttribute("no-builtins");
1897     return;
1898   }
1899 
1900   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1901   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1902 
1903   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1904   // the source.
1905   if (!NBA)
1906     return;
1907 
1908   // If there is a wildcard in the builtin names specified through the
1909   // attribute, disable them all.
1910   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1911     FuncAttrs.addAttribute("no-builtins");
1912     return;
1913   }
1914 
1915   // And last, add the rest of the builtin names.
1916   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1917 }
1918 
1919 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
1920                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
1921                              bool CheckCoerce = true) {
1922   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
1923   if (AI.getKind() == ABIArgInfo::Indirect)
1924     return true;
1925   if (AI.getKind() == ABIArgInfo::Extend)
1926     return true;
1927   if (!DL.typeSizeEqualsStoreSize(Ty))
1928     // TODO: This will result in a modest amount of values not marked noundef
1929     // when they could be. We care about values that *invisibly* contain undef
1930     // bits from the perspective of LLVM IR.
1931     return false;
1932   if (CheckCoerce && AI.canHaveCoerceToType()) {
1933     llvm::Type *CoerceTy = AI.getCoerceToType();
1934     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
1935                                   DL.getTypeSizeInBits(Ty)))
1936       // If we're coercing to a type with a greater size than the canonical one,
1937       // we're introducing new undef bits.
1938       // Coercing to a type of smaller or equal size is ok, as we know that
1939       // there's no internal padding (typeSizeEqualsStoreSize).
1940       return false;
1941   }
1942   if (QTy->isExtIntType())
1943     return true;
1944   if (QTy->isReferenceType())
1945     return true;
1946   if (QTy->isNullPtrType())
1947     return false;
1948   if (QTy->isMemberPointerType())
1949     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
1950     // now, never mark them.
1951     return false;
1952   if (QTy->isScalarType()) {
1953     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
1954       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
1955     return true;
1956   }
1957   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
1958     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
1959   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
1960     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
1961   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
1962     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
1963 
1964   // TODO: Some structs may be `noundef`, in specific situations.
1965   return false;
1966 }
1967 
1968 /// Construct the IR attribute list of a function or call.
1969 ///
1970 /// When adding an attribute, please consider where it should be handled:
1971 ///
1972 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1973 ///     part of the global target configuration (but perhaps can be
1974 ///     overridden on a per-function basis).  Adding attributes there
1975 ///     will cause them to also be set in frontends that build on Clang's
1976 ///     target-configuration logic, as well as for code defined in library
1977 ///     modules such as CUDA's libdevice.
1978 ///
1979 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1980 ///     and adds declaration-specific, convention-specific, and
1981 ///     frontend-specific logic.  The last is of particular importance:
1982 ///     attributes that restrict how the frontend generates code must be
1983 ///     added here rather than getDefaultFunctionAttributes.
1984 ///
1985 void CodeGenModule::ConstructAttributeList(
1986     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1987     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1988   llvm::AttrBuilder FuncAttrs;
1989   llvm::AttrBuilder RetAttrs;
1990 
1991   // Collect function IR attributes from the CC lowering.
1992   // We'll collect the paramete and result attributes later.
1993   CallingConv = FI.getEffectiveCallingConvention();
1994   if (FI.isNoReturn())
1995     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1996   if (FI.isCmseNSCall())
1997     FuncAttrs.addAttribute("cmse_nonsecure_call");
1998 
1999   // Collect function IR attributes from the callee prototype if we have one.
2000   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2001                                      CalleeInfo.getCalleeFunctionProtoType());
2002 
2003   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2004 
2005   bool HasOptnone = false;
2006   // The NoBuiltinAttr attached to the target FunctionDecl.
2007   const NoBuiltinAttr *NBA = nullptr;
2008 
2009   // Collect function IR attributes based on declaration-specific
2010   // information.
2011   // FIXME: handle sseregparm someday...
2012   if (TargetDecl) {
2013     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2014       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2015     if (TargetDecl->hasAttr<NoThrowAttr>())
2016       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2017     if (TargetDecl->hasAttr<NoReturnAttr>())
2018       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2019     if (TargetDecl->hasAttr<ColdAttr>())
2020       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2021     if (TargetDecl->hasAttr<HotAttr>())
2022       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2023     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2024       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2025     if (TargetDecl->hasAttr<ConvergentAttr>())
2026       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2027 
2028     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2029       AddAttributesFromFunctionProtoType(
2030           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2031       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2032         // A sane operator new returns a non-aliasing pointer.
2033         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2034         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2035             (Kind == OO_New || Kind == OO_Array_New))
2036           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2037       }
2038       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2039       const bool IsVirtualCall = MD && MD->isVirtual();
2040       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2041       // virtual function. These attributes are not inherited by overloads.
2042       if (!(AttrOnCallSite && IsVirtualCall)) {
2043         if (Fn->isNoReturn())
2044           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2045         NBA = Fn->getAttr<NoBuiltinAttr>();
2046       }
2047       // Only place nomerge attribute on call sites, never functions. This
2048       // allows it to work on indirect virtual function calls.
2049       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2050         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2051     }
2052 
2053     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2054     if (TargetDecl->hasAttr<ConstAttr>()) {
2055       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2056       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2057       // gcc specifies that 'const' functions have greater restrictions than
2058       // 'pure' functions, so they also cannot have infinite loops.
2059       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2060     } else if (TargetDecl->hasAttr<PureAttr>()) {
2061       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2062       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2063       // gcc specifies that 'pure' functions cannot have infinite loops.
2064       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2065     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2066       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2067       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2068     }
2069     if (TargetDecl->hasAttr<RestrictAttr>())
2070       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2071     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2072         !CodeGenOpts.NullPointerIsValid)
2073       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2074     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2075       FuncAttrs.addAttribute("no_caller_saved_registers");
2076     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2077       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2078     if (TargetDecl->hasAttr<LeafAttr>())
2079       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2080 
2081     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2082     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2083       Optional<unsigned> NumElemsParam;
2084       if (AllocSize->getNumElemsParam().isValid())
2085         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2086       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2087                                  NumElemsParam);
2088     }
2089 
2090     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2091       if (getLangOpts().OpenCLVersion <= 120) {
2092         // OpenCL v1.2 Work groups are always uniform
2093         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2094       } else {
2095         // OpenCL v2.0 Work groups may be whether uniform or not.
2096         // '-cl-uniform-work-group-size' compile option gets a hint
2097         // to the compiler that the global work-size be a multiple of
2098         // the work-group size specified to clEnqueueNDRangeKernel
2099         // (i.e. work groups are uniform).
2100         FuncAttrs.addAttribute("uniform-work-group-size",
2101                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2102       }
2103     }
2104 
2105     std::string AssumptionValueStr;
2106     for (AssumptionAttr *AssumptionA :
2107          TargetDecl->specific_attrs<AssumptionAttr>()) {
2108       std::string AS = AssumptionA->getAssumption().str();
2109       if (!AS.empty() && !AssumptionValueStr.empty())
2110         AssumptionValueStr += ",";
2111       AssumptionValueStr += AS;
2112     }
2113 
2114     if (!AssumptionValueStr.empty())
2115       FuncAttrs.addAttribute(llvm::AssumptionAttrKey, AssumptionValueStr);
2116   }
2117 
2118   // Attach "no-builtins" attributes to:
2119   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2120   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2121   // The attributes can come from:
2122   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2123   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2124   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2125 
2126   // Collect function IR attributes based on global settiings.
2127   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2128 
2129   // Override some default IR attributes based on declaration-specific
2130   // information.
2131   if (TargetDecl) {
2132     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2133       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2134     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2135       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2136     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2137       FuncAttrs.removeAttribute("split-stack");
2138 
2139     // Add NonLazyBind attribute to function declarations when -fno-plt
2140     // is used.
2141     // FIXME: what if we just haven't processed the function definition
2142     // yet, or if it's an external definition like C99 inline?
2143     if (CodeGenOpts.NoPLT) {
2144       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2145         if (!Fn->isDefined() && !AttrOnCallSite) {
2146           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2147         }
2148       }
2149     }
2150   }
2151 
2152   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2153   // functions with -funique-internal-linkage-names.
2154   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2155     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2156       if (this->getFunctionLinkage(Fn) == llvm::GlobalValue::InternalLinkage)
2157         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2158                                "selected");
2159     }
2160   }
2161 
2162   // Collect non-call-site function IR attributes from declaration-specific
2163   // information.
2164   if (!AttrOnCallSite) {
2165     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2166       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2167 
2168     // Whether tail calls are enabled.
2169     auto shouldDisableTailCalls = [&] {
2170       // Should this be honored in getDefaultFunctionAttributes?
2171       if (CodeGenOpts.DisableTailCalls)
2172         return true;
2173 
2174       if (!TargetDecl)
2175         return false;
2176 
2177       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2178           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2179         return true;
2180 
2181       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2182         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2183           if (!BD->doesNotEscape())
2184             return true;
2185       }
2186 
2187       return false;
2188     };
2189     if (shouldDisableTailCalls())
2190       FuncAttrs.addAttribute("disable-tail-calls", "true");
2191 
2192     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2193     // handles these separately to set them based on the global defaults.
2194     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2195   }
2196 
2197   // Collect attributes from arguments and return values.
2198   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2199 
2200   QualType RetTy = FI.getReturnType();
2201   const ABIArgInfo &RetAI = FI.getReturnInfo();
2202   const llvm::DataLayout &DL = getDataLayout();
2203 
2204   // C++ explicitly makes returning undefined values UB. C's rule only applies
2205   // to used values, so we never mark them noundef for now.
2206   bool HasStrictReturn = getLangOpts().CPlusPlus;
2207   if (TargetDecl) {
2208     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2209       HasStrictReturn &= !FDecl->isExternC();
2210     else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2211       // Function pointer
2212       HasStrictReturn &= !VDecl->isExternC();
2213   }
2214 
2215   // We don't want to be too aggressive with the return checking, unless
2216   // it's explicit in the code opts or we're using an appropriate sanitizer.
2217   // Try to respect what the programmer intended.
2218   HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2219                      !MayDropFunctionReturn(getContext(), RetTy) ||
2220                      getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2221                      getLangOpts().Sanitize.has(SanitizerKind::Return);
2222 
2223   // Determine if the return type could be partially undef
2224   if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2225     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2226         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2227       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2228   }
2229 
2230   switch (RetAI.getKind()) {
2231   case ABIArgInfo::Extend:
2232     if (RetAI.isSignExt())
2233       RetAttrs.addAttribute(llvm::Attribute::SExt);
2234     else
2235       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2236     LLVM_FALLTHROUGH;
2237   case ABIArgInfo::Direct:
2238     if (RetAI.getInReg())
2239       RetAttrs.addAttribute(llvm::Attribute::InReg);
2240     break;
2241   case ABIArgInfo::Ignore:
2242     break;
2243 
2244   case ABIArgInfo::InAlloca:
2245   case ABIArgInfo::Indirect: {
2246     // inalloca and sret disable readnone and readonly
2247     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2248       .removeAttribute(llvm::Attribute::ReadNone);
2249     break;
2250   }
2251 
2252   case ABIArgInfo::CoerceAndExpand:
2253     break;
2254 
2255   case ABIArgInfo::Expand:
2256   case ABIArgInfo::IndirectAliased:
2257     llvm_unreachable("Invalid ABI kind for return argument");
2258   }
2259 
2260   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2261     QualType PTy = RefTy->getPointeeType();
2262     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2263       RetAttrs.addDereferenceableAttr(
2264           getMinimumObjectSize(PTy).getQuantity());
2265     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2266         !CodeGenOpts.NullPointerIsValid)
2267       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2268     if (PTy->isObjectType()) {
2269       llvm::Align Alignment =
2270           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2271       RetAttrs.addAlignmentAttr(Alignment);
2272     }
2273   }
2274 
2275   bool hasUsedSRet = false;
2276   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2277 
2278   // Attach attributes to sret.
2279   if (IRFunctionArgs.hasSRetArg()) {
2280     llvm::AttrBuilder SRETAttrs;
2281     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2282     hasUsedSRet = true;
2283     if (RetAI.getInReg())
2284       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2285     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2286     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2287         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2288   }
2289 
2290   // Attach attributes to inalloca argument.
2291   if (IRFunctionArgs.hasInallocaArg()) {
2292     llvm::AttrBuilder Attrs;
2293     Attrs.addAttribute(llvm::Attribute::InAlloca);
2294     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2295         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2296   }
2297 
2298   // Apply `nonnull` and `dereferencable(N)` to the `this` argument.
2299   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2300       !FI.arg_begin()->type->isVoidPointerType()) {
2301     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2302 
2303     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2304 
2305     llvm::AttrBuilder Attrs;
2306 
2307     if (!CodeGenOpts.NullPointerIsValid &&
2308         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2309       Attrs.addAttribute(llvm::Attribute::NonNull);
2310       Attrs.addDereferenceableAttr(
2311           getMinimumObjectSize(
2312               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2313               .getQuantity());
2314     } else {
2315       // FIXME dereferenceable should be correct here, regardless of
2316       // NullPointerIsValid. However, dereferenceable currently does not always
2317       // respect NullPointerIsValid and may imply nonnull and break the program.
2318       // See https://reviews.llvm.org/D66618 for discussions.
2319       Attrs.addDereferenceableOrNullAttr(
2320           getMinimumObjectSize(
2321               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2322               .getQuantity());
2323     }
2324 
2325     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2326   }
2327 
2328   unsigned ArgNo = 0;
2329   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2330                                           E = FI.arg_end();
2331        I != E; ++I, ++ArgNo) {
2332     QualType ParamType = I->type;
2333     const ABIArgInfo &AI = I->info;
2334     llvm::AttrBuilder Attrs;
2335 
2336     // Add attribute for padding argument, if necessary.
2337     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2338       if (AI.getPaddingInReg()) {
2339         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2340             llvm::AttributeSet::get(
2341                 getLLVMContext(),
2342                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2343       }
2344     }
2345 
2346     // Decide whether the argument we're handling could be partially undef
2347     bool ArgNoUndef = DetermineNoUndef(ParamType, getTypes(), DL, AI);
2348     if (CodeGenOpts.EnableNoundefAttrs && ArgNoUndef)
2349       Attrs.addAttribute(llvm::Attribute::NoUndef);
2350 
2351     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2352     // have the corresponding parameter variable.  It doesn't make
2353     // sense to do it here because parameters are so messed up.
2354     switch (AI.getKind()) {
2355     case ABIArgInfo::Extend:
2356       if (AI.isSignExt())
2357         Attrs.addAttribute(llvm::Attribute::SExt);
2358       else
2359         Attrs.addAttribute(llvm::Attribute::ZExt);
2360       LLVM_FALLTHROUGH;
2361     case ABIArgInfo::Direct:
2362       if (ArgNo == 0 && FI.isChainCall())
2363         Attrs.addAttribute(llvm::Attribute::Nest);
2364       else if (AI.getInReg())
2365         Attrs.addAttribute(llvm::Attribute::InReg);
2366       break;
2367 
2368     case ABIArgInfo::Indirect: {
2369       if (AI.getInReg())
2370         Attrs.addAttribute(llvm::Attribute::InReg);
2371 
2372       if (AI.getIndirectByVal())
2373         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2374 
2375       auto *Decl = ParamType->getAsRecordDecl();
2376       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2377           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2378         // When calling the function, the pointer passed in will be the only
2379         // reference to the underlying object. Mark it accordingly.
2380         Attrs.addAttribute(llvm::Attribute::NoAlias);
2381 
2382       // TODO: We could add the byref attribute if not byval, but it would
2383       // require updating many testcases.
2384 
2385       CharUnits Align = AI.getIndirectAlign();
2386 
2387       // In a byval argument, it is important that the required
2388       // alignment of the type is honored, as LLVM might be creating a
2389       // *new* stack object, and needs to know what alignment to give
2390       // it. (Sometimes it can deduce a sensible alignment on its own,
2391       // but not if clang decides it must emit a packed struct, or the
2392       // user specifies increased alignment requirements.)
2393       //
2394       // This is different from indirect *not* byval, where the object
2395       // exists already, and the align attribute is purely
2396       // informative.
2397       assert(!Align.isZero());
2398 
2399       // For now, only add this when we have a byval argument.
2400       // TODO: be less lazy about updating test cases.
2401       if (AI.getIndirectByVal())
2402         Attrs.addAlignmentAttr(Align.getQuantity());
2403 
2404       // byval disables readnone and readonly.
2405       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2406         .removeAttribute(llvm::Attribute::ReadNone);
2407 
2408       break;
2409     }
2410     case ABIArgInfo::IndirectAliased: {
2411       CharUnits Align = AI.getIndirectAlign();
2412       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2413       Attrs.addAlignmentAttr(Align.getQuantity());
2414       break;
2415     }
2416     case ABIArgInfo::Ignore:
2417     case ABIArgInfo::Expand:
2418     case ABIArgInfo::CoerceAndExpand:
2419       break;
2420 
2421     case ABIArgInfo::InAlloca:
2422       // inalloca disables readnone and readonly.
2423       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2424           .removeAttribute(llvm::Attribute::ReadNone);
2425       continue;
2426     }
2427 
2428     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2429       QualType PTy = RefTy->getPointeeType();
2430       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2431         Attrs.addDereferenceableAttr(
2432             getMinimumObjectSize(PTy).getQuantity());
2433       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2434           !CodeGenOpts.NullPointerIsValid)
2435         Attrs.addAttribute(llvm::Attribute::NonNull);
2436       if (PTy->isObjectType()) {
2437         llvm::Align Alignment =
2438             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2439         Attrs.addAlignmentAttr(Alignment);
2440       }
2441     }
2442 
2443     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2444     case ParameterABI::Ordinary:
2445       break;
2446 
2447     case ParameterABI::SwiftIndirectResult: {
2448       // Add 'sret' if we haven't already used it for something, but
2449       // only if the result is void.
2450       if (!hasUsedSRet && RetTy->isVoidType()) {
2451         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2452         hasUsedSRet = true;
2453       }
2454 
2455       // Add 'noalias' in either case.
2456       Attrs.addAttribute(llvm::Attribute::NoAlias);
2457 
2458       // Add 'dereferenceable' and 'alignment'.
2459       auto PTy = ParamType->getPointeeType();
2460       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2461         auto info = getContext().getTypeInfoInChars(PTy);
2462         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2463         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2464       }
2465       break;
2466     }
2467 
2468     case ParameterABI::SwiftErrorResult:
2469       Attrs.addAttribute(llvm::Attribute::SwiftError);
2470       break;
2471 
2472     case ParameterABI::SwiftContext:
2473       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2474       break;
2475     }
2476 
2477     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2478       Attrs.addAttribute(llvm::Attribute::NoCapture);
2479 
2480     if (Attrs.hasAttributes()) {
2481       unsigned FirstIRArg, NumIRArgs;
2482       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2483       for (unsigned i = 0; i < NumIRArgs; i++)
2484         ArgAttrs[FirstIRArg + i] =
2485             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2486     }
2487   }
2488   assert(ArgNo == FI.arg_size());
2489 
2490   AttrList = llvm::AttributeList::get(
2491       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2492       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2493 }
2494 
2495 /// An argument came in as a promoted argument; demote it back to its
2496 /// declared type.
2497 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2498                                          const VarDecl *var,
2499                                          llvm::Value *value) {
2500   llvm::Type *varType = CGF.ConvertType(var->getType());
2501 
2502   // This can happen with promotions that actually don't change the
2503   // underlying type, like the enum promotions.
2504   if (value->getType() == varType) return value;
2505 
2506   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2507          && "unexpected promotion type");
2508 
2509   if (isa<llvm::IntegerType>(varType))
2510     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2511 
2512   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2513 }
2514 
2515 /// Returns the attribute (either parameter attribute, or function
2516 /// attribute), which declares argument ArgNo to be non-null.
2517 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2518                                          QualType ArgType, unsigned ArgNo) {
2519   // FIXME: __attribute__((nonnull)) can also be applied to:
2520   //   - references to pointers, where the pointee is known to be
2521   //     nonnull (apparently a Clang extension)
2522   //   - transparent unions containing pointers
2523   // In the former case, LLVM IR cannot represent the constraint. In
2524   // the latter case, we have no guarantee that the transparent union
2525   // is in fact passed as a pointer.
2526   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2527     return nullptr;
2528   // First, check attribute on parameter itself.
2529   if (PVD) {
2530     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2531       return ParmNNAttr;
2532   }
2533   // Check function attributes.
2534   if (!FD)
2535     return nullptr;
2536   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2537     if (NNAttr->isNonNull(ArgNo))
2538       return NNAttr;
2539   }
2540   return nullptr;
2541 }
2542 
2543 namespace {
2544   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2545     Address Temp;
2546     Address Arg;
2547     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2548     void Emit(CodeGenFunction &CGF, Flags flags) override {
2549       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2550       CGF.Builder.CreateStore(errorValue, Arg);
2551     }
2552   };
2553 }
2554 
2555 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2556                                          llvm::Function *Fn,
2557                                          const FunctionArgList &Args) {
2558   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2559     // Naked functions don't have prologues.
2560     return;
2561 
2562   // If this is an implicit-return-zero function, go ahead and
2563   // initialize the return value.  TODO: it might be nice to have
2564   // a more general mechanism for this that didn't require synthesized
2565   // return statements.
2566   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2567     if (FD->hasImplicitReturnZero()) {
2568       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2569       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2570       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2571       Builder.CreateStore(Zero, ReturnValue);
2572     }
2573   }
2574 
2575   // FIXME: We no longer need the types from FunctionArgList; lift up and
2576   // simplify.
2577 
2578   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2579   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2580 
2581   // If we're using inalloca, all the memory arguments are GEPs off of the last
2582   // parameter, which is a pointer to the complete memory area.
2583   Address ArgStruct = Address::invalid();
2584   if (IRFunctionArgs.hasInallocaArg()) {
2585     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2586                         FI.getArgStructAlignment());
2587 
2588     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2589   }
2590 
2591   // Name the struct return parameter.
2592   if (IRFunctionArgs.hasSRetArg()) {
2593     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2594     AI->setName("agg.result");
2595     AI->addAttr(llvm::Attribute::NoAlias);
2596   }
2597 
2598   // Track if we received the parameter as a pointer (indirect, byval, or
2599   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2600   // into a local alloca for us.
2601   SmallVector<ParamValue, 16> ArgVals;
2602   ArgVals.reserve(Args.size());
2603 
2604   // Create a pointer value for every parameter declaration.  This usually
2605   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2606   // any cleanups or do anything that might unwind.  We do that separately, so
2607   // we can push the cleanups in the correct order for the ABI.
2608   assert(FI.arg_size() == Args.size() &&
2609          "Mismatch between function signature & arguments.");
2610   unsigned ArgNo = 0;
2611   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2612   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2613        i != e; ++i, ++info_it, ++ArgNo) {
2614     const VarDecl *Arg = *i;
2615     const ABIArgInfo &ArgI = info_it->info;
2616 
2617     bool isPromoted =
2618       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2619     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2620     // the parameter is promoted. In this case we convert to
2621     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2622     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2623     assert(hasScalarEvaluationKind(Ty) ==
2624            hasScalarEvaluationKind(Arg->getType()));
2625 
2626     unsigned FirstIRArg, NumIRArgs;
2627     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2628 
2629     switch (ArgI.getKind()) {
2630     case ABIArgInfo::InAlloca: {
2631       assert(NumIRArgs == 0);
2632       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2633       Address V =
2634           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2635       if (ArgI.getInAllocaIndirect())
2636         V = Address(Builder.CreateLoad(V),
2637                     getContext().getTypeAlignInChars(Ty));
2638       ArgVals.push_back(ParamValue::forIndirect(V));
2639       break;
2640     }
2641 
2642     case ABIArgInfo::Indirect:
2643     case ABIArgInfo::IndirectAliased: {
2644       assert(NumIRArgs == 1);
2645       Address ParamAddr =
2646           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2647 
2648       if (!hasScalarEvaluationKind(Ty)) {
2649         // Aggregates and complex variables are accessed by reference. All we
2650         // need to do is realign the value, if requested. Also, if the address
2651         // may be aliased, copy it to ensure that the parameter variable is
2652         // mutable and has a unique adress, as C requires.
2653         Address V = ParamAddr;
2654         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2655           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2656 
2657           // Copy from the incoming argument pointer to the temporary with the
2658           // appropriate alignment.
2659           //
2660           // FIXME: We should have a common utility for generating an aggregate
2661           // copy.
2662           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2663           Builder.CreateMemCpy(
2664               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2665               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2666               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2667           V = AlignedTemp;
2668         }
2669         ArgVals.push_back(ParamValue::forIndirect(V));
2670       } else {
2671         // Load scalar value from indirect argument.
2672         llvm::Value *V =
2673             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2674 
2675         if (isPromoted)
2676           V = emitArgumentDemotion(*this, Arg, V);
2677         ArgVals.push_back(ParamValue::forDirect(V));
2678       }
2679       break;
2680     }
2681 
2682     case ABIArgInfo::Extend:
2683     case ABIArgInfo::Direct: {
2684       auto AI = Fn->getArg(FirstIRArg);
2685       llvm::Type *LTy = ConvertType(Arg->getType());
2686 
2687       // Prepare parameter attributes. So far, only attributes for pointer
2688       // parameters are prepared. See
2689       // http://llvm.org/docs/LangRef.html#paramattrs.
2690       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2691           ArgI.getCoerceToType()->isPointerTy()) {
2692         assert(NumIRArgs == 1);
2693 
2694         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2695           // Set `nonnull` attribute if any.
2696           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2697                              PVD->getFunctionScopeIndex()) &&
2698               !CGM.getCodeGenOpts().NullPointerIsValid)
2699             AI->addAttr(llvm::Attribute::NonNull);
2700 
2701           QualType OTy = PVD->getOriginalType();
2702           if (const auto *ArrTy =
2703               getContext().getAsConstantArrayType(OTy)) {
2704             // A C99 array parameter declaration with the static keyword also
2705             // indicates dereferenceability, and if the size is constant we can
2706             // use the dereferenceable attribute (which requires the size in
2707             // bytes).
2708             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2709               QualType ETy = ArrTy->getElementType();
2710               llvm::Align Alignment =
2711                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2712               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2713               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2714               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2715                   ArrSize) {
2716                 llvm::AttrBuilder Attrs;
2717                 Attrs.addDereferenceableAttr(
2718                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2719                     ArrSize);
2720                 AI->addAttrs(Attrs);
2721               } else if (getContext().getTargetInfo().getNullPointerValue(
2722                              ETy.getAddressSpace()) == 0 &&
2723                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2724                 AI->addAttr(llvm::Attribute::NonNull);
2725               }
2726             }
2727           } else if (const auto *ArrTy =
2728                      getContext().getAsVariableArrayType(OTy)) {
2729             // For C99 VLAs with the static keyword, we don't know the size so
2730             // we can't use the dereferenceable attribute, but in addrspace(0)
2731             // we know that it must be nonnull.
2732             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2733               QualType ETy = ArrTy->getElementType();
2734               llvm::Align Alignment =
2735                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2736               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2737               if (!getContext().getTargetAddressSpace(ETy) &&
2738                   !CGM.getCodeGenOpts().NullPointerIsValid)
2739                 AI->addAttr(llvm::Attribute::NonNull);
2740             }
2741           }
2742 
2743           // Set `align` attribute if any.
2744           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2745           if (!AVAttr)
2746             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2747               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2748           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2749             // If alignment-assumption sanitizer is enabled, we do *not* add
2750             // alignment attribute here, but emit normal alignment assumption,
2751             // so the UBSAN check could function.
2752             llvm::ConstantInt *AlignmentCI =
2753                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2754             unsigned AlignmentInt =
2755                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2756             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2757               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2758               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2759                   llvm::Align(AlignmentInt)));
2760             }
2761           }
2762         }
2763 
2764         // Set 'noalias' if an argument type has the `restrict` qualifier.
2765         if (Arg->getType().isRestrictQualified())
2766           AI->addAttr(llvm::Attribute::NoAlias);
2767       }
2768 
2769       // Prepare the argument value. If we have the trivial case, handle it
2770       // with no muss and fuss.
2771       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2772           ArgI.getCoerceToType() == ConvertType(Ty) &&
2773           ArgI.getDirectOffset() == 0) {
2774         assert(NumIRArgs == 1);
2775 
2776         // LLVM expects swifterror parameters to be used in very restricted
2777         // ways.  Copy the value into a less-restricted temporary.
2778         llvm::Value *V = AI;
2779         if (FI.getExtParameterInfo(ArgNo).getABI()
2780               == ParameterABI::SwiftErrorResult) {
2781           QualType pointeeTy = Ty->getPointeeType();
2782           assert(pointeeTy->isPointerType());
2783           Address temp =
2784             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2785           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2786           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2787           Builder.CreateStore(incomingErrorValue, temp);
2788           V = temp.getPointer();
2789 
2790           // Push a cleanup to copy the value back at the end of the function.
2791           // The convention does not guarantee that the value will be written
2792           // back if the function exits with an unwind exception.
2793           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2794         }
2795 
2796         // Ensure the argument is the correct type.
2797         if (V->getType() != ArgI.getCoerceToType())
2798           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2799 
2800         if (isPromoted)
2801           V = emitArgumentDemotion(*this, Arg, V);
2802 
2803         // Because of merging of function types from multiple decls it is
2804         // possible for the type of an argument to not match the corresponding
2805         // type in the function type. Since we are codegening the callee
2806         // in here, add a cast to the argument type.
2807         llvm::Type *LTy = ConvertType(Arg->getType());
2808         if (V->getType() != LTy)
2809           V = Builder.CreateBitCast(V, LTy);
2810 
2811         ArgVals.push_back(ParamValue::forDirect(V));
2812         break;
2813       }
2814 
2815       // VLST arguments are coerced to VLATs at the function boundary for
2816       // ABI consistency. If this is a VLST that was coerced to
2817       // a VLAT at the function boundary and the types match up, use
2818       // llvm.experimental.vector.extract to convert back to the original
2819       // VLST.
2820       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2821         auto *Coerced = Fn->getArg(FirstIRArg);
2822         if (auto *VecTyFrom =
2823                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2824           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2825             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2826 
2827             assert(NumIRArgs == 1);
2828             Coerced->setName(Arg->getName() + ".coerce");
2829             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2830                 VecTyTo, Coerced, Zero, "castFixedSve")));
2831             break;
2832           }
2833         }
2834       }
2835 
2836       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2837                                      Arg->getName());
2838 
2839       // Pointer to store into.
2840       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2841 
2842       // Fast-isel and the optimizer generally like scalar values better than
2843       // FCAs, so we flatten them if this is safe to do for this argument.
2844       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2845       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2846           STy->getNumElements() > 1) {
2847         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2848         llvm::Type *DstTy = Ptr.getElementType();
2849         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2850 
2851         Address AddrToStoreInto = Address::invalid();
2852         if (SrcSize <= DstSize) {
2853           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2854         } else {
2855           AddrToStoreInto =
2856             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2857         }
2858 
2859         assert(STy->getNumElements() == NumIRArgs);
2860         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2861           auto AI = Fn->getArg(FirstIRArg + i);
2862           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2863           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2864           Builder.CreateStore(AI, EltPtr);
2865         }
2866 
2867         if (SrcSize > DstSize) {
2868           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2869         }
2870 
2871       } else {
2872         // Simple case, just do a coerced store of the argument into the alloca.
2873         assert(NumIRArgs == 1);
2874         auto AI = Fn->getArg(FirstIRArg);
2875         AI->setName(Arg->getName() + ".coerce");
2876         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2877       }
2878 
2879       // Match to what EmitParmDecl is expecting for this type.
2880       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2881         llvm::Value *V =
2882             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2883         if (isPromoted)
2884           V = emitArgumentDemotion(*this, Arg, V);
2885         ArgVals.push_back(ParamValue::forDirect(V));
2886       } else {
2887         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2888       }
2889       break;
2890     }
2891 
2892     case ABIArgInfo::CoerceAndExpand: {
2893       // Reconstruct into a temporary.
2894       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2895       ArgVals.push_back(ParamValue::forIndirect(alloca));
2896 
2897       auto coercionType = ArgI.getCoerceAndExpandType();
2898       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2899 
2900       unsigned argIndex = FirstIRArg;
2901       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2902         llvm::Type *eltType = coercionType->getElementType(i);
2903         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2904           continue;
2905 
2906         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2907         auto elt = Fn->getArg(argIndex++);
2908         Builder.CreateStore(elt, eltAddr);
2909       }
2910       assert(argIndex == FirstIRArg + NumIRArgs);
2911       break;
2912     }
2913 
2914     case ABIArgInfo::Expand: {
2915       // If this structure was expanded into multiple arguments then
2916       // we need to create a temporary and reconstruct it from the
2917       // arguments.
2918       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2919       LValue LV = MakeAddrLValue(Alloca, Ty);
2920       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2921 
2922       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2923       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2924       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2925       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2926         auto AI = Fn->getArg(FirstIRArg + i);
2927         AI->setName(Arg->getName() + "." + Twine(i));
2928       }
2929       break;
2930     }
2931 
2932     case ABIArgInfo::Ignore:
2933       assert(NumIRArgs == 0);
2934       // Initialize the local variable appropriately.
2935       if (!hasScalarEvaluationKind(Ty)) {
2936         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2937       } else {
2938         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2939         ArgVals.push_back(ParamValue::forDirect(U));
2940       }
2941       break;
2942     }
2943   }
2944 
2945   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2946     for (int I = Args.size() - 1; I >= 0; --I)
2947       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2948   } else {
2949     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2950       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2951   }
2952 }
2953 
2954 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2955   while (insn->use_empty()) {
2956     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2957     if (!bitcast) return;
2958 
2959     // This is "safe" because we would have used a ConstantExpr otherwise.
2960     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2961     bitcast->eraseFromParent();
2962   }
2963 }
2964 
2965 /// Try to emit a fused autorelease of a return result.
2966 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2967                                                     llvm::Value *result) {
2968   // We must be immediately followed the cast.
2969   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2970   if (BB->empty()) return nullptr;
2971   if (&BB->back() != result) return nullptr;
2972 
2973   llvm::Type *resultType = result->getType();
2974 
2975   // result is in a BasicBlock and is therefore an Instruction.
2976   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2977 
2978   SmallVector<llvm::Instruction *, 4> InstsToKill;
2979 
2980   // Look for:
2981   //  %generator = bitcast %type1* %generator2 to %type2*
2982   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2983     // We would have emitted this as a constant if the operand weren't
2984     // an Instruction.
2985     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2986 
2987     // Require the generator to be immediately followed by the cast.
2988     if (generator->getNextNode() != bitcast)
2989       return nullptr;
2990 
2991     InstsToKill.push_back(bitcast);
2992   }
2993 
2994   // Look for:
2995   //   %generator = call i8* @objc_retain(i8* %originalResult)
2996   // or
2997   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2998   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2999   if (!call) return nullptr;
3000 
3001   bool doRetainAutorelease;
3002 
3003   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3004     doRetainAutorelease = true;
3005   } else if (call->getCalledOperand() ==
3006              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3007     doRetainAutorelease = false;
3008 
3009     // If we emitted an assembly marker for this call (and the
3010     // ARCEntrypoints field should have been set if so), go looking
3011     // for that call.  If we can't find it, we can't do this
3012     // optimization.  But it should always be the immediately previous
3013     // instruction, unless we needed bitcasts around the call.
3014     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3015       llvm::Instruction *prev = call->getPrevNode();
3016       assert(prev);
3017       if (isa<llvm::BitCastInst>(prev)) {
3018         prev = prev->getPrevNode();
3019         assert(prev);
3020       }
3021       assert(isa<llvm::CallInst>(prev));
3022       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3023              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3024       InstsToKill.push_back(prev);
3025     }
3026   } else {
3027     return nullptr;
3028   }
3029 
3030   result = call->getArgOperand(0);
3031   InstsToKill.push_back(call);
3032 
3033   // Keep killing bitcasts, for sanity.  Note that we no longer care
3034   // about precise ordering as long as there's exactly one use.
3035   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3036     if (!bitcast->hasOneUse()) break;
3037     InstsToKill.push_back(bitcast);
3038     result = bitcast->getOperand(0);
3039   }
3040 
3041   // Delete all the unnecessary instructions, from latest to earliest.
3042   for (auto *I : InstsToKill)
3043     I->eraseFromParent();
3044 
3045   // Do the fused retain/autorelease if we were asked to.
3046   if (doRetainAutorelease)
3047     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3048 
3049   // Cast back to the result type.
3050   return CGF.Builder.CreateBitCast(result, resultType);
3051 }
3052 
3053 /// If this is a +1 of the value of an immutable 'self', remove it.
3054 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3055                                           llvm::Value *result) {
3056   // This is only applicable to a method with an immutable 'self'.
3057   const ObjCMethodDecl *method =
3058     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3059   if (!method) return nullptr;
3060   const VarDecl *self = method->getSelfDecl();
3061   if (!self->getType().isConstQualified()) return nullptr;
3062 
3063   // Look for a retain call.
3064   llvm::CallInst *retainCall =
3065     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3066   if (!retainCall || retainCall->getCalledOperand() !=
3067                          CGF.CGM.getObjCEntrypoints().objc_retain)
3068     return nullptr;
3069 
3070   // Look for an ordinary load of 'self'.
3071   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3072   llvm::LoadInst *load =
3073     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3074   if (!load || load->isAtomic() || load->isVolatile() ||
3075       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3076     return nullptr;
3077 
3078   // Okay!  Burn it all down.  This relies for correctness on the
3079   // assumption that the retain is emitted as part of the return and
3080   // that thereafter everything is used "linearly".
3081   llvm::Type *resultType = result->getType();
3082   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3083   assert(retainCall->use_empty());
3084   retainCall->eraseFromParent();
3085   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3086 
3087   return CGF.Builder.CreateBitCast(load, resultType);
3088 }
3089 
3090 /// Emit an ARC autorelease of the result of a function.
3091 ///
3092 /// \return the value to actually return from the function
3093 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3094                                             llvm::Value *result) {
3095   // If we're returning 'self', kill the initial retain.  This is a
3096   // heuristic attempt to "encourage correctness" in the really unfortunate
3097   // case where we have a return of self during a dealloc and we desperately
3098   // need to avoid the possible autorelease.
3099   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3100     return self;
3101 
3102   // At -O0, try to emit a fused retain/autorelease.
3103   if (CGF.shouldUseFusedARCCalls())
3104     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3105       return fused;
3106 
3107   return CGF.EmitARCAutoreleaseReturnValue(result);
3108 }
3109 
3110 /// Heuristically search for a dominating store to the return-value slot.
3111 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3112   // Check if a User is a store which pointerOperand is the ReturnValue.
3113   // We are looking for stores to the ReturnValue, not for stores of the
3114   // ReturnValue to some other location.
3115   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3116     auto *SI = dyn_cast<llvm::StoreInst>(U);
3117     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
3118       return nullptr;
3119     // These aren't actually possible for non-coerced returns, and we
3120     // only care about non-coerced returns on this code path.
3121     assert(!SI->isAtomic() && !SI->isVolatile());
3122     return SI;
3123   };
3124   // If there are multiple uses of the return-value slot, just check
3125   // for something immediately preceding the IP.  Sometimes this can
3126   // happen with how we generate implicit-returns; it can also happen
3127   // with noreturn cleanups.
3128   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3129     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3130     if (IP->empty()) return nullptr;
3131     llvm::Instruction *I = &IP->back();
3132 
3133     // Skip lifetime markers
3134     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
3135                                             IE = IP->rend();
3136          II != IE; ++II) {
3137       if (llvm::IntrinsicInst *Intrinsic =
3138               dyn_cast<llvm::IntrinsicInst>(&*II)) {
3139         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
3140           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
3141           ++II;
3142           if (II == IE)
3143             break;
3144           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
3145             continue;
3146         }
3147       }
3148       I = &*II;
3149       break;
3150     }
3151 
3152     return GetStoreIfValid(I);
3153   }
3154 
3155   llvm::StoreInst *store =
3156       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3157   if (!store) return nullptr;
3158 
3159   // Now do a first-and-dirty dominance check: just walk up the
3160   // single-predecessors chain from the current insertion point.
3161   llvm::BasicBlock *StoreBB = store->getParent();
3162   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3163   while (IP != StoreBB) {
3164     if (!(IP = IP->getSinglePredecessor()))
3165       return nullptr;
3166   }
3167 
3168   // Okay, the store's basic block dominates the insertion point; we
3169   // can do our thing.
3170   return store;
3171 }
3172 
3173 // Helper functions for EmitCMSEClearRecord
3174 
3175 // Set the bits corresponding to a field having width `BitWidth` and located at
3176 // offset `BitOffset` (from the least significant bit) within a storage unit of
3177 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3178 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3179 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3180                         int BitWidth, int CharWidth) {
3181   assert(CharWidth <= 64);
3182   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3183 
3184   int Pos = 0;
3185   if (BitOffset >= CharWidth) {
3186     Pos += BitOffset / CharWidth;
3187     BitOffset = BitOffset % CharWidth;
3188   }
3189 
3190   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3191   if (BitOffset + BitWidth >= CharWidth) {
3192     Bits[Pos++] |= (Used << BitOffset) & Used;
3193     BitWidth -= CharWidth - BitOffset;
3194     BitOffset = 0;
3195   }
3196 
3197   while (BitWidth >= CharWidth) {
3198     Bits[Pos++] = Used;
3199     BitWidth -= CharWidth;
3200   }
3201 
3202   if (BitWidth > 0)
3203     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3204 }
3205 
3206 // Set the bits corresponding to a field having width `BitWidth` and located at
3207 // offset `BitOffset` (from the least significant bit) within a storage unit of
3208 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3209 // `Bits` corresponds to one target byte. Use target endian layout.
3210 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3211                         int StorageSize, int BitOffset, int BitWidth,
3212                         int CharWidth, bool BigEndian) {
3213 
3214   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3215   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3216 
3217   if (BigEndian)
3218     std::reverse(TmpBits.begin(), TmpBits.end());
3219 
3220   for (uint64_t V : TmpBits)
3221     Bits[StorageOffset++] |= V;
3222 }
3223 
3224 static void setUsedBits(CodeGenModule &, QualType, int,
3225                         SmallVectorImpl<uint64_t> &);
3226 
3227 // Set the bits in `Bits`, which correspond to the value representations of
3228 // the actual members of the record type `RTy`. Note that this function does
3229 // not handle base classes, virtual tables, etc, since they cannot happen in
3230 // CMSE function arguments or return. The bit mask corresponds to the target
3231 // memory layout, i.e. it's endian dependent.
3232 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3233                         SmallVectorImpl<uint64_t> &Bits) {
3234   ASTContext &Context = CGM.getContext();
3235   int CharWidth = Context.getCharWidth();
3236   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3237   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3238   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3239 
3240   int Idx = 0;
3241   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3242     const FieldDecl *F = *I;
3243 
3244     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3245         F->getType()->isIncompleteArrayType())
3246       continue;
3247 
3248     if (F->isBitField()) {
3249       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3250       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3251                   BFI.StorageSize / CharWidth, BFI.Offset,
3252                   BFI.Size, CharWidth,
3253                   CGM.getDataLayout().isBigEndian());
3254       continue;
3255     }
3256 
3257     setUsedBits(CGM, F->getType(),
3258                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3259   }
3260 }
3261 
3262 // Set the bits in `Bits`, which correspond to the value representations of
3263 // the elements of an array type `ATy`.
3264 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3265                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3266   const ASTContext &Context = CGM.getContext();
3267 
3268   QualType ETy = Context.getBaseElementType(ATy);
3269   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3270   SmallVector<uint64_t, 4> TmpBits(Size);
3271   setUsedBits(CGM, ETy, 0, TmpBits);
3272 
3273   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3274     auto Src = TmpBits.begin();
3275     auto Dst = Bits.begin() + Offset + I * Size;
3276     for (int J = 0; J < Size; ++J)
3277       *Dst++ |= *Src++;
3278   }
3279 }
3280 
3281 // Set the bits in `Bits`, which correspond to the value representations of
3282 // the type `QTy`.
3283 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3284                         SmallVectorImpl<uint64_t> &Bits) {
3285   if (const auto *RTy = QTy->getAs<RecordType>())
3286     return setUsedBits(CGM, RTy, Offset, Bits);
3287 
3288   ASTContext &Context = CGM.getContext();
3289   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3290     return setUsedBits(CGM, ATy, Offset, Bits);
3291 
3292   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3293   if (Size <= 0)
3294     return;
3295 
3296   std::fill_n(Bits.begin() + Offset, Size,
3297               (uint64_t(1) << Context.getCharWidth()) - 1);
3298 }
3299 
3300 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3301                                    int Pos, int Size, int CharWidth,
3302                                    bool BigEndian) {
3303   assert(Size > 0);
3304   uint64_t Mask = 0;
3305   if (BigEndian) {
3306     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3307          ++P)
3308       Mask = (Mask << CharWidth) | *P;
3309   } else {
3310     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3311     do
3312       Mask = (Mask << CharWidth) | *--P;
3313     while (P != End);
3314   }
3315   return Mask;
3316 }
3317 
3318 // Emit code to clear the bits in a record, which aren't a part of any user
3319 // declared member, when the record is a function return.
3320 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3321                                                   llvm::IntegerType *ITy,
3322                                                   QualType QTy) {
3323   assert(Src->getType() == ITy);
3324   assert(ITy->getScalarSizeInBits() <= 64);
3325 
3326   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3327   int Size = DataLayout.getTypeStoreSize(ITy);
3328   SmallVector<uint64_t, 4> Bits(Size);
3329   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3330 
3331   int CharWidth = CGM.getContext().getCharWidth();
3332   uint64_t Mask =
3333       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3334 
3335   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3336 }
3337 
3338 // Emit code to clear the bits in a record, which aren't a part of any user
3339 // declared member, when the record is a function argument.
3340 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3341                                                   llvm::ArrayType *ATy,
3342                                                   QualType QTy) {
3343   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3344   int Size = DataLayout.getTypeStoreSize(ATy);
3345   SmallVector<uint64_t, 16> Bits(Size);
3346   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3347 
3348   // Clear each element of the LLVM array.
3349   int CharWidth = CGM.getContext().getCharWidth();
3350   int CharsPerElt =
3351       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3352   int MaskIndex = 0;
3353   llvm::Value *R = llvm::UndefValue::get(ATy);
3354   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3355     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3356                                        DataLayout.isBigEndian());
3357     MaskIndex += CharsPerElt;
3358     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3359     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3360     R = Builder.CreateInsertValue(R, T1, I);
3361   }
3362 
3363   return R;
3364 }
3365 
3366 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3367                                          bool EmitRetDbgLoc,
3368                                          SourceLocation EndLoc) {
3369   if (FI.isNoReturn()) {
3370     // Noreturn functions don't return.
3371     EmitUnreachable(EndLoc);
3372     return;
3373   }
3374 
3375   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3376     // Naked functions don't have epilogues.
3377     Builder.CreateUnreachable();
3378     return;
3379   }
3380 
3381   // Functions with no result always return void.
3382   if (!ReturnValue.isValid()) {
3383     Builder.CreateRetVoid();
3384     return;
3385   }
3386 
3387   llvm::DebugLoc RetDbgLoc;
3388   llvm::Value *RV = nullptr;
3389   QualType RetTy = FI.getReturnType();
3390   const ABIArgInfo &RetAI = FI.getReturnInfo();
3391 
3392   switch (RetAI.getKind()) {
3393   case ABIArgInfo::InAlloca:
3394     // Aggregrates get evaluated directly into the destination.  Sometimes we
3395     // need to return the sret value in a register, though.
3396     assert(hasAggregateEvaluationKind(RetTy));
3397     if (RetAI.getInAllocaSRet()) {
3398       llvm::Function::arg_iterator EI = CurFn->arg_end();
3399       --EI;
3400       llvm::Value *ArgStruct = &*EI;
3401       llvm::Value *SRet = Builder.CreateStructGEP(
3402           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3403       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3404     }
3405     break;
3406 
3407   case ABIArgInfo::Indirect: {
3408     auto AI = CurFn->arg_begin();
3409     if (RetAI.isSRetAfterThis())
3410       ++AI;
3411     switch (getEvaluationKind(RetTy)) {
3412     case TEK_Complex: {
3413       ComplexPairTy RT =
3414         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3415       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3416                          /*isInit*/ true);
3417       break;
3418     }
3419     case TEK_Aggregate:
3420       // Do nothing; aggregrates get evaluated directly into the destination.
3421       break;
3422     case TEK_Scalar:
3423       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3424                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3425                         /*isInit*/ true);
3426       break;
3427     }
3428     break;
3429   }
3430 
3431   case ABIArgInfo::Extend:
3432   case ABIArgInfo::Direct:
3433     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3434         RetAI.getDirectOffset() == 0) {
3435       // The internal return value temp always will have pointer-to-return-type
3436       // type, just do a load.
3437 
3438       // If there is a dominating store to ReturnValue, we can elide
3439       // the load, zap the store, and usually zap the alloca.
3440       if (llvm::StoreInst *SI =
3441               findDominatingStoreToReturnValue(*this)) {
3442         // Reuse the debug location from the store unless there is
3443         // cleanup code to be emitted between the store and return
3444         // instruction.
3445         if (EmitRetDbgLoc && !AutoreleaseResult)
3446           RetDbgLoc = SI->getDebugLoc();
3447         // Get the stored value and nuke the now-dead store.
3448         RV = SI->getValueOperand();
3449         SI->eraseFromParent();
3450 
3451       // Otherwise, we have to do a simple load.
3452       } else {
3453         RV = Builder.CreateLoad(ReturnValue);
3454       }
3455     } else {
3456       // If the value is offset in memory, apply the offset now.
3457       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3458 
3459       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3460     }
3461 
3462     // In ARC, end functions that return a retainable type with a call
3463     // to objc_autoreleaseReturnValue.
3464     if (AutoreleaseResult) {
3465 #ifndef NDEBUG
3466       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3467       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3468       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3469       // CurCodeDecl or BlockInfo.
3470       QualType RT;
3471 
3472       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3473         RT = FD->getReturnType();
3474       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3475         RT = MD->getReturnType();
3476       else if (isa<BlockDecl>(CurCodeDecl))
3477         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3478       else
3479         llvm_unreachable("Unexpected function/method type");
3480 
3481       assert(getLangOpts().ObjCAutoRefCount &&
3482              !FI.isReturnsRetained() &&
3483              RT->isObjCRetainableType());
3484 #endif
3485       RV = emitAutoreleaseOfResult(*this, RV);
3486     }
3487 
3488     break;
3489 
3490   case ABIArgInfo::Ignore:
3491     break;
3492 
3493   case ABIArgInfo::CoerceAndExpand: {
3494     auto coercionType = RetAI.getCoerceAndExpandType();
3495 
3496     // Load all of the coerced elements out into results.
3497     llvm::SmallVector<llvm::Value*, 4> results;
3498     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3499     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3500       auto coercedEltType = coercionType->getElementType(i);
3501       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3502         continue;
3503 
3504       auto eltAddr = Builder.CreateStructGEP(addr, i);
3505       auto elt = Builder.CreateLoad(eltAddr);
3506       results.push_back(elt);
3507     }
3508 
3509     // If we have one result, it's the single direct result type.
3510     if (results.size() == 1) {
3511       RV = results[0];
3512 
3513     // Otherwise, we need to make a first-class aggregate.
3514     } else {
3515       // Construct a return type that lacks padding elements.
3516       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3517 
3518       RV = llvm::UndefValue::get(returnType);
3519       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3520         RV = Builder.CreateInsertValue(RV, results[i], i);
3521       }
3522     }
3523     break;
3524   }
3525   case ABIArgInfo::Expand:
3526   case ABIArgInfo::IndirectAliased:
3527     llvm_unreachable("Invalid ABI kind for return argument");
3528   }
3529 
3530   llvm::Instruction *Ret;
3531   if (RV) {
3532     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3533       // For certain return types, clear padding bits, as they may reveal
3534       // sensitive information.
3535       // Small struct/union types are passed as integers.
3536       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3537       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3538         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3539     }
3540     EmitReturnValueCheck(RV);
3541     Ret = Builder.CreateRet(RV);
3542   } else {
3543     Ret = Builder.CreateRetVoid();
3544   }
3545 
3546   if (RetDbgLoc)
3547     Ret->setDebugLoc(std::move(RetDbgLoc));
3548 }
3549 
3550 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3551   // A current decl may not be available when emitting vtable thunks.
3552   if (!CurCodeDecl)
3553     return;
3554 
3555   // If the return block isn't reachable, neither is this check, so don't emit
3556   // it.
3557   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3558     return;
3559 
3560   ReturnsNonNullAttr *RetNNAttr = nullptr;
3561   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3562     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3563 
3564   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3565     return;
3566 
3567   // Prefer the returns_nonnull attribute if it's present.
3568   SourceLocation AttrLoc;
3569   SanitizerMask CheckKind;
3570   SanitizerHandler Handler;
3571   if (RetNNAttr) {
3572     assert(!requiresReturnValueNullabilityCheck() &&
3573            "Cannot check nullability and the nonnull attribute");
3574     AttrLoc = RetNNAttr->getLocation();
3575     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3576     Handler = SanitizerHandler::NonnullReturn;
3577   } else {
3578     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3579       if (auto *TSI = DD->getTypeSourceInfo())
3580         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3581           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3582     CheckKind = SanitizerKind::NullabilityReturn;
3583     Handler = SanitizerHandler::NullabilityReturn;
3584   }
3585 
3586   SanitizerScope SanScope(this);
3587 
3588   // Make sure the "return" source location is valid. If we're checking a
3589   // nullability annotation, make sure the preconditions for the check are met.
3590   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3591   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3592   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3593   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3594   if (requiresReturnValueNullabilityCheck())
3595     CanNullCheck =
3596         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3597   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3598   EmitBlock(Check);
3599 
3600   // Now do the null check.
3601   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3602   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3603   llvm::Value *DynamicData[] = {SLocPtr};
3604   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3605 
3606   EmitBlock(NoCheck);
3607 
3608 #ifndef NDEBUG
3609   // The return location should not be used after the check has been emitted.
3610   ReturnLocation = Address::invalid();
3611 #endif
3612 }
3613 
3614 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3615   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3616   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3617 }
3618 
3619 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3620                                           QualType Ty) {
3621   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3622   // placeholders.
3623   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3624   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3625   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3626 
3627   // FIXME: When we generate this IR in one pass, we shouldn't need
3628   // this win32-specific alignment hack.
3629   CharUnits Align = CharUnits::fromQuantity(4);
3630   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3631 
3632   return AggValueSlot::forAddr(Address(Placeholder, Align),
3633                                Ty.getQualifiers(),
3634                                AggValueSlot::IsNotDestructed,
3635                                AggValueSlot::DoesNotNeedGCBarriers,
3636                                AggValueSlot::IsNotAliased,
3637                                AggValueSlot::DoesNotOverlap);
3638 }
3639 
3640 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3641                                           const VarDecl *param,
3642                                           SourceLocation loc) {
3643   // StartFunction converted the ABI-lowered parameter(s) into a
3644   // local alloca.  We need to turn that into an r-value suitable
3645   // for EmitCall.
3646   Address local = GetAddrOfLocalVar(param);
3647 
3648   QualType type = param->getType();
3649 
3650   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3651     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3652   }
3653 
3654   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3655   // but the argument needs to be the original pointer.
3656   if (type->isReferenceType()) {
3657     args.add(RValue::get(Builder.CreateLoad(local)), type);
3658 
3659   // In ARC, move out of consumed arguments so that the release cleanup
3660   // entered by StartFunction doesn't cause an over-release.  This isn't
3661   // optimal -O0 code generation, but it should get cleaned up when
3662   // optimization is enabled.  This also assumes that delegate calls are
3663   // performed exactly once for a set of arguments, but that should be safe.
3664   } else if (getLangOpts().ObjCAutoRefCount &&
3665              param->hasAttr<NSConsumedAttr>() &&
3666              type->isObjCRetainableType()) {
3667     llvm::Value *ptr = Builder.CreateLoad(local);
3668     auto null =
3669       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3670     Builder.CreateStore(null, local);
3671     args.add(RValue::get(ptr), type);
3672 
3673   // For the most part, we just need to load the alloca, except that
3674   // aggregate r-values are actually pointers to temporaries.
3675   } else {
3676     args.add(convertTempToRValue(local, type, loc), type);
3677   }
3678 
3679   // Deactivate the cleanup for the callee-destructed param that was pushed.
3680   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3681       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3682       param->needsDestruction(getContext())) {
3683     EHScopeStack::stable_iterator cleanup =
3684         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3685     assert(cleanup.isValid() &&
3686            "cleanup for callee-destructed param not recorded");
3687     // This unreachable is a temporary marker which will be removed later.
3688     llvm::Instruction *isActive = Builder.CreateUnreachable();
3689     args.addArgCleanupDeactivation(cleanup, isActive);
3690   }
3691 }
3692 
3693 static bool isProvablyNull(llvm::Value *addr) {
3694   return isa<llvm::ConstantPointerNull>(addr);
3695 }
3696 
3697 /// Emit the actual writing-back of a writeback.
3698 static void emitWriteback(CodeGenFunction &CGF,
3699                           const CallArgList::Writeback &writeback) {
3700   const LValue &srcLV = writeback.Source;
3701   Address srcAddr = srcLV.getAddress(CGF);
3702   assert(!isProvablyNull(srcAddr.getPointer()) &&
3703          "shouldn't have writeback for provably null argument");
3704 
3705   llvm::BasicBlock *contBB = nullptr;
3706 
3707   // If the argument wasn't provably non-null, we need to null check
3708   // before doing the store.
3709   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3710                                               CGF.CGM.getDataLayout());
3711   if (!provablyNonNull) {
3712     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3713     contBB = CGF.createBasicBlock("icr.done");
3714 
3715     llvm::Value *isNull =
3716       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3717     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3718     CGF.EmitBlock(writebackBB);
3719   }
3720 
3721   // Load the value to writeback.
3722   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3723 
3724   // Cast it back, in case we're writing an id to a Foo* or something.
3725   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3726                                     "icr.writeback-cast");
3727 
3728   // Perform the writeback.
3729 
3730   // If we have a "to use" value, it's something we need to emit a use
3731   // of.  This has to be carefully threaded in: if it's done after the
3732   // release it's potentially undefined behavior (and the optimizer
3733   // will ignore it), and if it happens before the retain then the
3734   // optimizer could move the release there.
3735   if (writeback.ToUse) {
3736     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3737 
3738     // Retain the new value.  No need to block-copy here:  the block's
3739     // being passed up the stack.
3740     value = CGF.EmitARCRetainNonBlock(value);
3741 
3742     // Emit the intrinsic use here.
3743     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3744 
3745     // Load the old value (primitively).
3746     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3747 
3748     // Put the new value in place (primitively).
3749     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3750 
3751     // Release the old value.
3752     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3753 
3754   // Otherwise, we can just do a normal lvalue store.
3755   } else {
3756     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3757   }
3758 
3759   // Jump to the continuation block.
3760   if (!provablyNonNull)
3761     CGF.EmitBlock(contBB);
3762 }
3763 
3764 static void emitWritebacks(CodeGenFunction &CGF,
3765                            const CallArgList &args) {
3766   for (const auto &I : args.writebacks())
3767     emitWriteback(CGF, I);
3768 }
3769 
3770 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3771                                             const CallArgList &CallArgs) {
3772   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3773     CallArgs.getCleanupsToDeactivate();
3774   // Iterate in reverse to increase the likelihood of popping the cleanup.
3775   for (const auto &I : llvm::reverse(Cleanups)) {
3776     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3777     I.IsActiveIP->eraseFromParent();
3778   }
3779 }
3780 
3781 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3782   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3783     if (uop->getOpcode() == UO_AddrOf)
3784       return uop->getSubExpr();
3785   return nullptr;
3786 }
3787 
3788 /// Emit an argument that's being passed call-by-writeback.  That is,
3789 /// we are passing the address of an __autoreleased temporary; it
3790 /// might be copy-initialized with the current value of the given
3791 /// address, but it will definitely be copied out of after the call.
3792 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3793                              const ObjCIndirectCopyRestoreExpr *CRE) {
3794   LValue srcLV;
3795 
3796   // Make an optimistic effort to emit the address as an l-value.
3797   // This can fail if the argument expression is more complicated.
3798   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3799     srcLV = CGF.EmitLValue(lvExpr);
3800 
3801   // Otherwise, just emit it as a scalar.
3802   } else {
3803     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3804 
3805     QualType srcAddrType =
3806       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3807     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3808   }
3809   Address srcAddr = srcLV.getAddress(CGF);
3810 
3811   // The dest and src types don't necessarily match in LLVM terms
3812   // because of the crazy ObjC compatibility rules.
3813 
3814   llvm::PointerType *destType =
3815     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3816 
3817   // If the address is a constant null, just pass the appropriate null.
3818   if (isProvablyNull(srcAddr.getPointer())) {
3819     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3820              CRE->getType());
3821     return;
3822   }
3823 
3824   // Create the temporary.
3825   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3826                                       CGF.getPointerAlign(),
3827                                       "icr.temp");
3828   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3829   // and that cleanup will be conditional if we can't prove that the l-value
3830   // isn't null, so we need to register a dominating point so that the cleanups
3831   // system will make valid IR.
3832   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3833 
3834   // Zero-initialize it if we're not doing a copy-initialization.
3835   bool shouldCopy = CRE->shouldCopy();
3836   if (!shouldCopy) {
3837     llvm::Value *null =
3838       llvm::ConstantPointerNull::get(
3839         cast<llvm::PointerType>(destType->getElementType()));
3840     CGF.Builder.CreateStore(null, temp);
3841   }
3842 
3843   llvm::BasicBlock *contBB = nullptr;
3844   llvm::BasicBlock *originBB = nullptr;
3845 
3846   // If the address is *not* known to be non-null, we need to switch.
3847   llvm::Value *finalArgument;
3848 
3849   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3850                                               CGF.CGM.getDataLayout());
3851   if (provablyNonNull) {
3852     finalArgument = temp.getPointer();
3853   } else {
3854     llvm::Value *isNull =
3855       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3856 
3857     finalArgument = CGF.Builder.CreateSelect(isNull,
3858                                    llvm::ConstantPointerNull::get(destType),
3859                                              temp.getPointer(), "icr.argument");
3860 
3861     // If we need to copy, then the load has to be conditional, which
3862     // means we need control flow.
3863     if (shouldCopy) {
3864       originBB = CGF.Builder.GetInsertBlock();
3865       contBB = CGF.createBasicBlock("icr.cont");
3866       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3867       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3868       CGF.EmitBlock(copyBB);
3869       condEval.begin(CGF);
3870     }
3871   }
3872 
3873   llvm::Value *valueToUse = nullptr;
3874 
3875   // Perform a copy if necessary.
3876   if (shouldCopy) {
3877     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3878     assert(srcRV.isScalar());
3879 
3880     llvm::Value *src = srcRV.getScalarVal();
3881     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3882                                     "icr.cast");
3883 
3884     // Use an ordinary store, not a store-to-lvalue.
3885     CGF.Builder.CreateStore(src, temp);
3886 
3887     // If optimization is enabled, and the value was held in a
3888     // __strong variable, we need to tell the optimizer that this
3889     // value has to stay alive until we're doing the store back.
3890     // This is because the temporary is effectively unretained,
3891     // and so otherwise we can violate the high-level semantics.
3892     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3893         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3894       valueToUse = src;
3895     }
3896   }
3897 
3898   // Finish the control flow if we needed it.
3899   if (shouldCopy && !provablyNonNull) {
3900     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3901     CGF.EmitBlock(contBB);
3902 
3903     // Make a phi for the value to intrinsically use.
3904     if (valueToUse) {
3905       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3906                                                       "icr.to-use");
3907       phiToUse->addIncoming(valueToUse, copyBB);
3908       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3909                             originBB);
3910       valueToUse = phiToUse;
3911     }
3912 
3913     condEval.end(CGF);
3914   }
3915 
3916   args.addWriteback(srcLV, temp, valueToUse);
3917   args.add(RValue::get(finalArgument), CRE->getType());
3918 }
3919 
3920 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3921   assert(!StackBase);
3922 
3923   // Save the stack.
3924   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3925   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3926 }
3927 
3928 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3929   if (StackBase) {
3930     // Restore the stack after the call.
3931     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3932     CGF.Builder.CreateCall(F, StackBase);
3933   }
3934 }
3935 
3936 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3937                                           SourceLocation ArgLoc,
3938                                           AbstractCallee AC,
3939                                           unsigned ParmNum) {
3940   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3941                          SanOpts.has(SanitizerKind::NullabilityArg)))
3942     return;
3943 
3944   // The param decl may be missing in a variadic function.
3945   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3946   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3947 
3948   // Prefer the nonnull attribute if it's present.
3949   const NonNullAttr *NNAttr = nullptr;
3950   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3951     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3952 
3953   bool CanCheckNullability = false;
3954   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3955     auto Nullability = PVD->getType()->getNullability(getContext());
3956     CanCheckNullability = Nullability &&
3957                           *Nullability == NullabilityKind::NonNull &&
3958                           PVD->getTypeSourceInfo();
3959   }
3960 
3961   if (!NNAttr && !CanCheckNullability)
3962     return;
3963 
3964   SourceLocation AttrLoc;
3965   SanitizerMask CheckKind;
3966   SanitizerHandler Handler;
3967   if (NNAttr) {
3968     AttrLoc = NNAttr->getLocation();
3969     CheckKind = SanitizerKind::NonnullAttribute;
3970     Handler = SanitizerHandler::NonnullArg;
3971   } else {
3972     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3973     CheckKind = SanitizerKind::NullabilityArg;
3974     Handler = SanitizerHandler::NullabilityArg;
3975   }
3976 
3977   SanitizerScope SanScope(this);
3978   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
3979   llvm::Constant *StaticData[] = {
3980       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3981       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3982   };
3983   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3984 }
3985 
3986 // Check if the call is going to use the inalloca convention. This needs to
3987 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
3988 // later, so we can't check it directly.
3989 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
3990                             ArrayRef<QualType> ArgTypes) {
3991   // The Swift calling convention doesn't go through the target-specific
3992   // argument classification, so it never uses inalloca.
3993   // TODO: Consider limiting inalloca use to only calling conventions supported
3994   // by MSVC.
3995   if (ExplicitCC == CC_Swift)
3996     return false;
3997   if (!CGM.getTarget().getCXXABI().isMicrosoft())
3998     return false;
3999   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4000     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4001   });
4002 }
4003 
4004 #ifndef NDEBUG
4005 // Determine whether the given argument is an Objective-C method
4006 // that may have type parameters in its signature.
4007 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4008   const DeclContext *dc = method->getDeclContext();
4009   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4010     return classDecl->getTypeParamListAsWritten();
4011   }
4012 
4013   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4014     return catDecl->getTypeParamList();
4015   }
4016 
4017   return false;
4018 }
4019 #endif
4020 
4021 /// EmitCallArgs - Emit call arguments for a function.
4022 void CodeGenFunction::EmitCallArgs(
4023     CallArgList &Args, PrototypeWrapper Prototype,
4024     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4025     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4026   SmallVector<QualType, 16> ArgTypes;
4027 
4028   assert((ParamsToSkip == 0 || Prototype.P) &&
4029          "Can't skip parameters if type info is not provided");
4030 
4031   // This variable only captures *explicitly* written conventions, not those
4032   // applied by default via command line flags or target defaults, such as
4033   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4034   // require knowing if this is a C++ instance method or being able to see
4035   // unprototyped FunctionTypes.
4036   CallingConv ExplicitCC = CC_C;
4037 
4038   // First, if a prototype was provided, use those argument types.
4039   bool IsVariadic = false;
4040   if (Prototype.P) {
4041     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4042     if (MD) {
4043       IsVariadic = MD->isVariadic();
4044       ExplicitCC = getCallingConventionForDecl(
4045           MD, CGM.getTarget().getTriple().isOSWindows());
4046       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4047                       MD->param_type_end());
4048     } else {
4049       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4050       IsVariadic = FPT->isVariadic();
4051       ExplicitCC = FPT->getExtInfo().getCC();
4052       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4053                       FPT->param_type_end());
4054     }
4055 
4056 #ifndef NDEBUG
4057     // Check that the prototyped types match the argument expression types.
4058     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4059     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4060     for (QualType Ty : ArgTypes) {
4061       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4062       assert(
4063           (isGenericMethod || Ty->isVariablyModifiedType() ||
4064            Ty.getNonReferenceType()->isObjCRetainableType() ||
4065            getContext()
4066                    .getCanonicalType(Ty.getNonReferenceType())
4067                    .getTypePtr() ==
4068                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4069           "type mismatch in call argument!");
4070       ++Arg;
4071     }
4072 
4073     // Either we've emitted all the call args, or we have a call to variadic
4074     // function.
4075     assert((Arg == ArgRange.end() || IsVariadic) &&
4076            "Extra arguments in non-variadic function!");
4077 #endif
4078   }
4079 
4080   // If we still have any arguments, emit them using the type of the argument.
4081   for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()),
4082                                   ArgRange.end()))
4083     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4084   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4085 
4086   // We must evaluate arguments from right to left in the MS C++ ABI,
4087   // because arguments are destroyed left to right in the callee. As a special
4088   // case, there are certain language constructs that require left-to-right
4089   // evaluation, and in those cases we consider the evaluation order requirement
4090   // to trump the "destruction order is reverse construction order" guarantee.
4091   bool LeftToRight =
4092       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4093           ? Order == EvaluationOrder::ForceLeftToRight
4094           : Order != EvaluationOrder::ForceRightToLeft;
4095 
4096   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4097                                          RValue EmittedArg) {
4098     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4099       return;
4100     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4101     if (PS == nullptr)
4102       return;
4103 
4104     const auto &Context = getContext();
4105     auto SizeTy = Context.getSizeType();
4106     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4107     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4108     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4109                                                      EmittedArg.getScalarVal(),
4110                                                      PS->isDynamic());
4111     Args.add(RValue::get(V), SizeTy);
4112     // If we're emitting args in reverse, be sure to do so with
4113     // pass_object_size, as well.
4114     if (!LeftToRight)
4115       std::swap(Args.back(), *(&Args.back() - 1));
4116   };
4117 
4118   // Insert a stack save if we're going to need any inalloca args.
4119   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4120     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4121            "inalloca only supported on x86");
4122     Args.allocateArgumentMemory(*this);
4123   }
4124 
4125   // Evaluate each argument in the appropriate order.
4126   size_t CallArgsStart = Args.size();
4127   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4128     unsigned Idx = LeftToRight ? I : E - I - 1;
4129     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4130     unsigned InitialArgSize = Args.size();
4131     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4132     // the argument and parameter match or the objc method is parameterized.
4133     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4134             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4135                                                 ArgTypes[Idx]) ||
4136             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4137              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4138            "Argument and parameter types don't match");
4139     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4140     // In particular, we depend on it being the last arg in Args, and the
4141     // objectsize bits depend on there only being one arg if !LeftToRight.
4142     assert(InitialArgSize + 1 == Args.size() &&
4143            "The code below depends on only adding one arg per EmitCallArg");
4144     (void)InitialArgSize;
4145     // Since pointer argument are never emitted as LValue, it is safe to emit
4146     // non-null argument check for r-value only.
4147     if (!Args.back().hasLValue()) {
4148       RValue RVArg = Args.back().getKnownRValue();
4149       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4150                           ParamsToSkip + Idx);
4151       // @llvm.objectsize should never have side-effects and shouldn't need
4152       // destruction/cleanups, so we can safely "emit" it after its arg,
4153       // regardless of right-to-leftness
4154       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4155     }
4156   }
4157 
4158   if (!LeftToRight) {
4159     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4160     // IR function.
4161     std::reverse(Args.begin() + CallArgsStart, Args.end());
4162   }
4163 }
4164 
4165 namespace {
4166 
4167 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4168   DestroyUnpassedArg(Address Addr, QualType Ty)
4169       : Addr(Addr), Ty(Ty) {}
4170 
4171   Address Addr;
4172   QualType Ty;
4173 
4174   void Emit(CodeGenFunction &CGF, Flags flags) override {
4175     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4176     if (DtorKind == QualType::DK_cxx_destructor) {
4177       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4178       assert(!Dtor->isTrivial());
4179       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4180                                 /*Delegating=*/false, Addr, Ty);
4181     } else {
4182       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4183     }
4184   }
4185 };
4186 
4187 struct DisableDebugLocationUpdates {
4188   CodeGenFunction &CGF;
4189   bool disabledDebugInfo;
4190   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4191     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4192       CGF.disableDebugInfo();
4193   }
4194   ~DisableDebugLocationUpdates() {
4195     if (disabledDebugInfo)
4196       CGF.enableDebugInfo();
4197   }
4198 };
4199 
4200 } // end anonymous namespace
4201 
4202 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4203   if (!HasLV)
4204     return RV;
4205   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4206   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4207                         LV.isVolatile());
4208   IsUsed = true;
4209   return RValue::getAggregate(Copy.getAddress(CGF));
4210 }
4211 
4212 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4213   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4214   if (!HasLV && RV.isScalar())
4215     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4216   else if (!HasLV && RV.isComplex())
4217     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4218   else {
4219     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4220     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4221     // We assume that call args are never copied into subobjects.
4222     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4223                           HasLV ? LV.isVolatileQualified()
4224                                 : RV.isVolatileQualified());
4225   }
4226   IsUsed = true;
4227 }
4228 
4229 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4230                                   QualType type) {
4231   DisableDebugLocationUpdates Dis(*this, E);
4232   if (const ObjCIndirectCopyRestoreExpr *CRE
4233         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4234     assert(getLangOpts().ObjCAutoRefCount);
4235     return emitWritebackArg(*this, args, CRE);
4236   }
4237 
4238   assert(type->isReferenceType() == E->isGLValue() &&
4239          "reference binding to unmaterialized r-value!");
4240 
4241   if (E->isGLValue()) {
4242     assert(E->getObjectKind() == OK_Ordinary);
4243     return args.add(EmitReferenceBindingToExpr(E), type);
4244   }
4245 
4246   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4247 
4248   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4249   // However, we still have to push an EH-only cleanup in case we unwind before
4250   // we make it to the call.
4251   if (HasAggregateEvalKind &&
4252       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4253     // If we're using inalloca, use the argument memory.  Otherwise, use a
4254     // temporary.
4255     AggValueSlot Slot;
4256     if (args.isUsingInAlloca())
4257       Slot = createPlaceholderSlot(*this, type);
4258     else
4259       Slot = CreateAggTemp(type, "agg.tmp");
4260 
4261     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4262     if (const auto *RD = type->getAsCXXRecordDecl())
4263       DestroyedInCallee = RD->hasNonTrivialDestructor();
4264     else
4265       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4266 
4267     if (DestroyedInCallee)
4268       Slot.setExternallyDestructed();
4269 
4270     EmitAggExpr(E, Slot);
4271     RValue RV = Slot.asRValue();
4272     args.add(RV, type);
4273 
4274     if (DestroyedInCallee && NeedsEHCleanup) {
4275       // Create a no-op GEP between the placeholder and the cleanup so we can
4276       // RAUW it successfully.  It also serves as a marker of the first
4277       // instruction where the cleanup is active.
4278       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4279                                               type);
4280       // This unreachable is a temporary marker which will be removed later.
4281       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4282       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4283     }
4284     return;
4285   }
4286 
4287   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4288       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4289     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4290     assert(L.isSimple());
4291     args.addUncopiedAggregate(L, type);
4292     return;
4293   }
4294 
4295   args.add(EmitAnyExprToTemp(E), type);
4296 }
4297 
4298 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4299   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4300   // implicitly widens null pointer constants that are arguments to varargs
4301   // functions to pointer-sized ints.
4302   if (!getTarget().getTriple().isOSWindows())
4303     return Arg->getType();
4304 
4305   if (Arg->getType()->isIntegerType() &&
4306       getContext().getTypeSize(Arg->getType()) <
4307           getContext().getTargetInfo().getPointerWidth(0) &&
4308       Arg->isNullPointerConstant(getContext(),
4309                                  Expr::NPC_ValueDependentIsNotNull)) {
4310     return getContext().getIntPtrType();
4311   }
4312 
4313   return Arg->getType();
4314 }
4315 
4316 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4317 // optimizer it can aggressively ignore unwind edges.
4318 void
4319 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4320   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4321       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4322     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4323                       CGM.getNoObjCARCExceptionsMetadata());
4324 }
4325 
4326 /// Emits a call to the given no-arguments nounwind runtime function.
4327 llvm::CallInst *
4328 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4329                                          const llvm::Twine &name) {
4330   return EmitNounwindRuntimeCall(callee, None, name);
4331 }
4332 
4333 /// Emits a call to the given nounwind runtime function.
4334 llvm::CallInst *
4335 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4336                                          ArrayRef<llvm::Value *> args,
4337                                          const llvm::Twine &name) {
4338   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4339   call->setDoesNotThrow();
4340   return call;
4341 }
4342 
4343 /// Emits a simple call (never an invoke) to the given no-arguments
4344 /// runtime function.
4345 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4346                                                  const llvm::Twine &name) {
4347   return EmitRuntimeCall(callee, None, name);
4348 }
4349 
4350 // Calls which may throw must have operand bundles indicating which funclet
4351 // they are nested within.
4352 SmallVector<llvm::OperandBundleDef, 1>
4353 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4354   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4355   // There is no need for a funclet operand bundle if we aren't inside a
4356   // funclet.
4357   if (!CurrentFuncletPad)
4358     return BundleList;
4359 
4360   // Skip intrinsics which cannot throw.
4361   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4362   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4363     return BundleList;
4364 
4365   BundleList.emplace_back("funclet", CurrentFuncletPad);
4366   return BundleList;
4367 }
4368 
4369 /// Emits a simple call (never an invoke) to the given runtime function.
4370 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4371                                                  ArrayRef<llvm::Value *> args,
4372                                                  const llvm::Twine &name) {
4373   llvm::CallInst *call = Builder.CreateCall(
4374       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4375   call->setCallingConv(getRuntimeCC());
4376   return call;
4377 }
4378 
4379 /// Emits a call or invoke to the given noreturn runtime function.
4380 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4381     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4382   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4383       getBundlesForFunclet(callee.getCallee());
4384 
4385   if (getInvokeDest()) {
4386     llvm::InvokeInst *invoke =
4387       Builder.CreateInvoke(callee,
4388                            getUnreachableBlock(),
4389                            getInvokeDest(),
4390                            args,
4391                            BundleList);
4392     invoke->setDoesNotReturn();
4393     invoke->setCallingConv(getRuntimeCC());
4394   } else {
4395     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4396     call->setDoesNotReturn();
4397     call->setCallingConv(getRuntimeCC());
4398     Builder.CreateUnreachable();
4399   }
4400 }
4401 
4402 /// Emits a call or invoke instruction to the given nullary runtime function.
4403 llvm::CallBase *
4404 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4405                                          const Twine &name) {
4406   return EmitRuntimeCallOrInvoke(callee, None, name);
4407 }
4408 
4409 /// Emits a call or invoke instruction to the given runtime function.
4410 llvm::CallBase *
4411 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4412                                          ArrayRef<llvm::Value *> args,
4413                                          const Twine &name) {
4414   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4415   call->setCallingConv(getRuntimeCC());
4416   return call;
4417 }
4418 
4419 /// Emits a call or invoke instruction to the given function, depending
4420 /// on the current state of the EH stack.
4421 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4422                                                   ArrayRef<llvm::Value *> Args,
4423                                                   const Twine &Name) {
4424   llvm::BasicBlock *InvokeDest = getInvokeDest();
4425   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4426       getBundlesForFunclet(Callee.getCallee());
4427 
4428   llvm::CallBase *Inst;
4429   if (!InvokeDest)
4430     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4431   else {
4432     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4433     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4434                                 Name);
4435     EmitBlock(ContBB);
4436   }
4437 
4438   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4439   // optimizer it can aggressively ignore unwind edges.
4440   if (CGM.getLangOpts().ObjCAutoRefCount)
4441     AddObjCARCExceptionMetadata(Inst);
4442 
4443   return Inst;
4444 }
4445 
4446 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4447                                                   llvm::Value *New) {
4448   DeferredReplacements.push_back(
4449       std::make_pair(llvm::WeakTrackingVH(Old), New));
4450 }
4451 
4452 namespace {
4453 
4454 /// Specify given \p NewAlign as the alignment of return value attribute. If
4455 /// such attribute already exists, re-set it to the maximal one of two options.
4456 LLVM_NODISCARD llvm::AttributeList
4457 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4458                                 const llvm::AttributeList &Attrs,
4459                                 llvm::Align NewAlign) {
4460   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4461   if (CurAlign >= NewAlign)
4462     return Attrs;
4463   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4464   return Attrs
4465       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4466                        llvm::Attribute::AttrKind::Alignment)
4467       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4468 }
4469 
4470 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4471 protected:
4472   CodeGenFunction &CGF;
4473 
4474   /// We do nothing if this is, or becomes, nullptr.
4475   const AlignedAttrTy *AA = nullptr;
4476 
4477   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4478   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4479 
4480   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4481       : CGF(CGF_) {
4482     if (!FuncDecl)
4483       return;
4484     AA = FuncDecl->getAttr<AlignedAttrTy>();
4485   }
4486 
4487 public:
4488   /// If we can, materialize the alignment as an attribute on return value.
4489   LLVM_NODISCARD llvm::AttributeList
4490   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4491     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4492       return Attrs;
4493     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4494     if (!AlignmentCI)
4495       return Attrs;
4496     // We may legitimately have non-power-of-2 alignment here.
4497     // If so, this is UB land, emit it via `@llvm.assume` instead.
4498     if (!AlignmentCI->getValue().isPowerOf2())
4499       return Attrs;
4500     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4501         CGF.getLLVMContext(), Attrs,
4502         llvm::Align(
4503             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4504     AA = nullptr; // We're done. Disallow doing anything else.
4505     return NewAttrs;
4506   }
4507 
4508   /// Emit alignment assumption.
4509   /// This is a general fallback that we take if either there is an offset,
4510   /// or the alignment is variable or we are sanitizing for alignment.
4511   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4512     if (!AA)
4513       return;
4514     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4515                                 AA->getLocation(), Alignment, OffsetCI);
4516     AA = nullptr; // We're done. Disallow doing anything else.
4517   }
4518 };
4519 
4520 /// Helper data structure to emit `AssumeAlignedAttr`.
4521 class AssumeAlignedAttrEmitter final
4522     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4523 public:
4524   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4525       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4526     if (!AA)
4527       return;
4528     // It is guaranteed that the alignment/offset are constants.
4529     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4530     if (Expr *Offset = AA->getOffset()) {
4531       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4532       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4533         OffsetCI = nullptr;
4534     }
4535   }
4536 };
4537 
4538 /// Helper data structure to emit `AllocAlignAttr`.
4539 class AllocAlignAttrEmitter final
4540     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4541 public:
4542   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4543                         const CallArgList &CallArgs)
4544       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4545     if (!AA)
4546       return;
4547     // Alignment may or may not be a constant, and that is okay.
4548     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4549                     .getRValue(CGF)
4550                     .getScalarVal();
4551   }
4552 };
4553 
4554 } // namespace
4555 
4556 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4557                                  const CGCallee &Callee,
4558                                  ReturnValueSlot ReturnValue,
4559                                  const CallArgList &CallArgs,
4560                                  llvm::CallBase **callOrInvoke,
4561                                  SourceLocation Loc) {
4562   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4563 
4564   assert(Callee.isOrdinary() || Callee.isVirtual());
4565 
4566   // Handle struct-return functions by passing a pointer to the
4567   // location that we would like to return into.
4568   QualType RetTy = CallInfo.getReturnType();
4569   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4570 
4571   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4572 
4573   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4574   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4575     // We can only guarantee that a function is called from the correct
4576     // context/function based on the appropriate target attributes,
4577     // so only check in the case where we have both always_inline and target
4578     // since otherwise we could be making a conditional call after a check for
4579     // the proper cpu features (and it won't cause code generation issues due to
4580     // function based code generation).
4581     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4582         TargetDecl->hasAttr<TargetAttr>())
4583       checkTargetFeatures(Loc, FD);
4584 
4585     // Some architectures (such as x86-64) have the ABI changed based on
4586     // attribute-target/features. Give them a chance to diagnose.
4587     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4588         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4589   }
4590 
4591 #ifndef NDEBUG
4592   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4593     // For an inalloca varargs function, we don't expect CallInfo to match the
4594     // function pointer's type, because the inalloca struct a will have extra
4595     // fields in it for the varargs parameters.  Code later in this function
4596     // bitcasts the function pointer to the type derived from CallInfo.
4597     //
4598     // In other cases, we assert that the types match up (until pointers stop
4599     // having pointee types).
4600     llvm::Type *TypeFromVal;
4601     if (Callee.isVirtual())
4602       TypeFromVal = Callee.getVirtualFunctionType();
4603     else
4604       TypeFromVal =
4605           Callee.getFunctionPointer()->getType()->getPointerElementType();
4606     assert(IRFuncTy == TypeFromVal);
4607   }
4608 #endif
4609 
4610   // 1. Set up the arguments.
4611 
4612   // If we're using inalloca, insert the allocation after the stack save.
4613   // FIXME: Do this earlier rather than hacking it in here!
4614   Address ArgMemory = Address::invalid();
4615   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4616     const llvm::DataLayout &DL = CGM.getDataLayout();
4617     llvm::Instruction *IP = CallArgs.getStackBase();
4618     llvm::AllocaInst *AI;
4619     if (IP) {
4620       IP = IP->getNextNode();
4621       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4622                                 "argmem", IP);
4623     } else {
4624       AI = CreateTempAlloca(ArgStruct, "argmem");
4625     }
4626     auto Align = CallInfo.getArgStructAlignment();
4627     AI->setAlignment(Align.getAsAlign());
4628     AI->setUsedWithInAlloca(true);
4629     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4630     ArgMemory = Address(AI, Align);
4631   }
4632 
4633   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4634   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4635 
4636   // If the call returns a temporary with struct return, create a temporary
4637   // alloca to hold the result, unless one is given to us.
4638   Address SRetPtr = Address::invalid();
4639   Address SRetAlloca = Address::invalid();
4640   llvm::Value *UnusedReturnSizePtr = nullptr;
4641   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4642     if (!ReturnValue.isNull()) {
4643       SRetPtr = ReturnValue.getValue();
4644     } else {
4645       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4646       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4647         uint64_t size =
4648             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4649         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4650       }
4651     }
4652     if (IRFunctionArgs.hasSRetArg()) {
4653       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4654     } else if (RetAI.isInAlloca()) {
4655       Address Addr =
4656           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4657       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4658     }
4659   }
4660 
4661   Address swiftErrorTemp = Address::invalid();
4662   Address swiftErrorArg = Address::invalid();
4663 
4664   // When passing arguments using temporary allocas, we need to add the
4665   // appropriate lifetime markers. This vector keeps track of all the lifetime
4666   // markers that need to be ended right after the call.
4667   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4668 
4669   // Translate all of the arguments as necessary to match the IR lowering.
4670   assert(CallInfo.arg_size() == CallArgs.size() &&
4671          "Mismatch between function signature & arguments.");
4672   unsigned ArgNo = 0;
4673   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4674   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4675        I != E; ++I, ++info_it, ++ArgNo) {
4676     const ABIArgInfo &ArgInfo = info_it->info;
4677 
4678     // Insert a padding argument to ensure proper alignment.
4679     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4680       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4681           llvm::UndefValue::get(ArgInfo.getPaddingType());
4682 
4683     unsigned FirstIRArg, NumIRArgs;
4684     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4685 
4686     switch (ArgInfo.getKind()) {
4687     case ABIArgInfo::InAlloca: {
4688       assert(NumIRArgs == 0);
4689       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4690       if (I->isAggregate()) {
4691         Address Addr = I->hasLValue()
4692                            ? I->getKnownLValue().getAddress(*this)
4693                            : I->getKnownRValue().getAggregateAddress();
4694         llvm::Instruction *Placeholder =
4695             cast<llvm::Instruction>(Addr.getPointer());
4696 
4697         if (!ArgInfo.getInAllocaIndirect()) {
4698           // Replace the placeholder with the appropriate argument slot GEP.
4699           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4700           Builder.SetInsertPoint(Placeholder);
4701           Addr = Builder.CreateStructGEP(ArgMemory,
4702                                          ArgInfo.getInAllocaFieldIndex());
4703           Builder.restoreIP(IP);
4704         } else {
4705           // For indirect things such as overaligned structs, replace the
4706           // placeholder with a regular aggregate temporary alloca. Store the
4707           // address of this alloca into the struct.
4708           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4709           Address ArgSlot = Builder.CreateStructGEP(
4710               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4711           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4712         }
4713         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4714       } else if (ArgInfo.getInAllocaIndirect()) {
4715         // Make a temporary alloca and store the address of it into the argument
4716         // struct.
4717         Address Addr = CreateMemTempWithoutCast(
4718             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4719             "indirect-arg-temp");
4720         I->copyInto(*this, Addr);
4721         Address ArgSlot =
4722             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4723         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4724       } else {
4725         // Store the RValue into the argument struct.
4726         Address Addr =
4727             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4728         unsigned AS = Addr.getType()->getPointerAddressSpace();
4729         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4730         // There are some cases where a trivial bitcast is not avoidable.  The
4731         // definition of a type later in a translation unit may change it's type
4732         // from {}* to (%struct.foo*)*.
4733         if (Addr.getType() != MemType)
4734           Addr = Builder.CreateBitCast(Addr, MemType);
4735         I->copyInto(*this, Addr);
4736       }
4737       break;
4738     }
4739 
4740     case ABIArgInfo::Indirect:
4741     case ABIArgInfo::IndirectAliased: {
4742       assert(NumIRArgs == 1);
4743       if (!I->isAggregate()) {
4744         // Make a temporary alloca to pass the argument.
4745         Address Addr = CreateMemTempWithoutCast(
4746             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4747         IRCallArgs[FirstIRArg] = Addr.getPointer();
4748 
4749         I->copyInto(*this, Addr);
4750       } else {
4751         // We want to avoid creating an unnecessary temporary+copy here;
4752         // however, we need one in three cases:
4753         // 1. If the argument is not byval, and we are required to copy the
4754         //    source.  (This case doesn't occur on any common architecture.)
4755         // 2. If the argument is byval, RV is not sufficiently aligned, and
4756         //    we cannot force it to be sufficiently aligned.
4757         // 3. If the argument is byval, but RV is not located in default
4758         //    or alloca address space.
4759         Address Addr = I->hasLValue()
4760                            ? I->getKnownLValue().getAddress(*this)
4761                            : I->getKnownRValue().getAggregateAddress();
4762         llvm::Value *V = Addr.getPointer();
4763         CharUnits Align = ArgInfo.getIndirectAlign();
4764         const llvm::DataLayout *TD = &CGM.getDataLayout();
4765 
4766         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4767                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4768                     TD->getAllocaAddrSpace()) &&
4769                "indirect argument must be in alloca address space");
4770 
4771         bool NeedCopy = false;
4772 
4773         if (Addr.getAlignment() < Align &&
4774             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4775                 Align.getAsAlign()) {
4776           NeedCopy = true;
4777         } else if (I->hasLValue()) {
4778           auto LV = I->getKnownLValue();
4779           auto AS = LV.getAddressSpace();
4780 
4781           if (!ArgInfo.getIndirectByVal() ||
4782               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4783             NeedCopy = true;
4784           }
4785           if (!getLangOpts().OpenCL) {
4786             if ((ArgInfo.getIndirectByVal() &&
4787                 (AS != LangAS::Default &&
4788                  AS != CGM.getASTAllocaAddressSpace()))) {
4789               NeedCopy = true;
4790             }
4791           }
4792           // For OpenCL even if RV is located in default or alloca address space
4793           // we don't want to perform address space cast for it.
4794           else if ((ArgInfo.getIndirectByVal() &&
4795                     Addr.getType()->getAddressSpace() != IRFuncTy->
4796                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4797             NeedCopy = true;
4798           }
4799         }
4800 
4801         if (NeedCopy) {
4802           // Create an aligned temporary, and copy to it.
4803           Address AI = CreateMemTempWithoutCast(
4804               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4805           IRCallArgs[FirstIRArg] = AI.getPointer();
4806 
4807           // Emit lifetime markers for the temporary alloca.
4808           uint64_t ByvalTempElementSize =
4809               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4810           llvm::Value *LifetimeSize =
4811               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4812 
4813           // Add cleanup code to emit the end lifetime marker after the call.
4814           if (LifetimeSize) // In case we disabled lifetime markers.
4815             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4816 
4817           // Generate the copy.
4818           I->copyInto(*this, AI);
4819         } else {
4820           // Skip the extra memcpy call.
4821           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4822               CGM.getDataLayout().getAllocaAddrSpace());
4823           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4824               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4825               true);
4826         }
4827       }
4828       break;
4829     }
4830 
4831     case ABIArgInfo::Ignore:
4832       assert(NumIRArgs == 0);
4833       break;
4834 
4835     case ABIArgInfo::Extend:
4836     case ABIArgInfo::Direct: {
4837       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4838           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4839           ArgInfo.getDirectOffset() == 0) {
4840         assert(NumIRArgs == 1);
4841         llvm::Value *V;
4842         if (!I->isAggregate())
4843           V = I->getKnownRValue().getScalarVal();
4844         else
4845           V = Builder.CreateLoad(
4846               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4847                              : I->getKnownRValue().getAggregateAddress());
4848 
4849         // Implement swifterror by copying into a new swifterror argument.
4850         // We'll write back in the normal path out of the call.
4851         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4852               == ParameterABI::SwiftErrorResult) {
4853           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4854 
4855           QualType pointeeTy = I->Ty->getPointeeType();
4856           swiftErrorArg =
4857             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4858 
4859           swiftErrorTemp =
4860             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4861           V = swiftErrorTemp.getPointer();
4862           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4863 
4864           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4865           Builder.CreateStore(errorValue, swiftErrorTemp);
4866         }
4867 
4868         // We might have to widen integers, but we should never truncate.
4869         if (ArgInfo.getCoerceToType() != V->getType() &&
4870             V->getType()->isIntegerTy())
4871           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4872 
4873         // If the argument doesn't match, perform a bitcast to coerce it.  This
4874         // can happen due to trivial type mismatches.
4875         if (FirstIRArg < IRFuncTy->getNumParams() &&
4876             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4877           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4878 
4879         IRCallArgs[FirstIRArg] = V;
4880         break;
4881       }
4882 
4883       // FIXME: Avoid the conversion through memory if possible.
4884       Address Src = Address::invalid();
4885       if (!I->isAggregate()) {
4886         Src = CreateMemTemp(I->Ty, "coerce");
4887         I->copyInto(*this, Src);
4888       } else {
4889         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4890                              : I->getKnownRValue().getAggregateAddress();
4891       }
4892 
4893       // If the value is offset in memory, apply the offset now.
4894       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4895 
4896       // Fast-isel and the optimizer generally like scalar values better than
4897       // FCAs, so we flatten them if this is safe to do for this argument.
4898       llvm::StructType *STy =
4899             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4900       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4901         llvm::Type *SrcTy = Src.getElementType();
4902         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4903         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4904 
4905         // If the source type is smaller than the destination type of the
4906         // coerce-to logic, copy the source value into a temp alloca the size
4907         // of the destination type to allow loading all of it. The bits past
4908         // the source value are left undef.
4909         if (SrcSize < DstSize) {
4910           Address TempAlloca
4911             = CreateTempAlloca(STy, Src.getAlignment(),
4912                                Src.getName() + ".coerce");
4913           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4914           Src = TempAlloca;
4915         } else {
4916           Src = Builder.CreateBitCast(Src,
4917                                       STy->getPointerTo(Src.getAddressSpace()));
4918         }
4919 
4920         assert(NumIRArgs == STy->getNumElements());
4921         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4922           Address EltPtr = Builder.CreateStructGEP(Src, i);
4923           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4924           IRCallArgs[FirstIRArg + i] = LI;
4925         }
4926       } else {
4927         // In the simple case, just pass the coerced loaded value.
4928         assert(NumIRArgs == 1);
4929         llvm::Value *Load =
4930             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4931 
4932         if (CallInfo.isCmseNSCall()) {
4933           // For certain parameter types, clear padding bits, as they may reveal
4934           // sensitive information.
4935           // Small struct/union types are passed as integer arrays.
4936           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4937           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4938             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4939         }
4940         IRCallArgs[FirstIRArg] = Load;
4941       }
4942 
4943       break;
4944     }
4945 
4946     case ABIArgInfo::CoerceAndExpand: {
4947       auto coercionType = ArgInfo.getCoerceAndExpandType();
4948       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4949 
4950       llvm::Value *tempSize = nullptr;
4951       Address addr = Address::invalid();
4952       Address AllocaAddr = Address::invalid();
4953       if (I->isAggregate()) {
4954         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4955                               : I->getKnownRValue().getAggregateAddress();
4956 
4957       } else {
4958         RValue RV = I->getKnownRValue();
4959         assert(RV.isScalar()); // complex should always just be direct
4960 
4961         llvm::Type *scalarType = RV.getScalarVal()->getType();
4962         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4963         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4964 
4965         // Materialize to a temporary.
4966         addr = CreateTempAlloca(
4967             RV.getScalarVal()->getType(),
4968             CharUnits::fromQuantity(std::max(
4969                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4970             "tmp",
4971             /*ArraySize=*/nullptr, &AllocaAddr);
4972         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4973 
4974         Builder.CreateStore(RV.getScalarVal(), addr);
4975       }
4976 
4977       addr = Builder.CreateElementBitCast(addr, coercionType);
4978 
4979       unsigned IRArgPos = FirstIRArg;
4980       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4981         llvm::Type *eltType = coercionType->getElementType(i);
4982         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4983         Address eltAddr = Builder.CreateStructGEP(addr, i);
4984         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4985         IRCallArgs[IRArgPos++] = elt;
4986       }
4987       assert(IRArgPos == FirstIRArg + NumIRArgs);
4988 
4989       if (tempSize) {
4990         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4991       }
4992 
4993       break;
4994     }
4995 
4996     case ABIArgInfo::Expand: {
4997       unsigned IRArgPos = FirstIRArg;
4998       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4999       assert(IRArgPos == FirstIRArg + NumIRArgs);
5000       break;
5001     }
5002     }
5003   }
5004 
5005   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5006   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5007 
5008   // If we're using inalloca, set up that argument.
5009   if (ArgMemory.isValid()) {
5010     llvm::Value *Arg = ArgMemory.getPointer();
5011     if (CallInfo.isVariadic()) {
5012       // When passing non-POD arguments by value to variadic functions, we will
5013       // end up with a variadic prototype and an inalloca call site.  In such
5014       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
5015       // the callee.
5016       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5017       CalleePtr =
5018           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5019     } else {
5020       llvm::Type *LastParamTy =
5021           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5022       if (Arg->getType() != LastParamTy) {
5023 #ifndef NDEBUG
5024         // Assert that these structs have equivalent element types.
5025         llvm::StructType *FullTy = CallInfo.getArgStruct();
5026         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5027             cast<llvm::PointerType>(LastParamTy)->getElementType());
5028         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5029         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
5030                                                 DE = DeclaredTy->element_end(),
5031                                                 FI = FullTy->element_begin();
5032              DI != DE; ++DI, ++FI)
5033           assert(*DI == *FI);
5034 #endif
5035         Arg = Builder.CreateBitCast(Arg, LastParamTy);
5036       }
5037     }
5038     assert(IRFunctionArgs.hasInallocaArg());
5039     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5040   }
5041 
5042   // 2. Prepare the function pointer.
5043 
5044   // If the callee is a bitcast of a non-variadic function to have a
5045   // variadic function pointer type, check to see if we can remove the
5046   // bitcast.  This comes up with unprototyped functions.
5047   //
5048   // This makes the IR nicer, but more importantly it ensures that we
5049   // can inline the function at -O0 if it is marked always_inline.
5050   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5051                                    llvm::Value *Ptr) -> llvm::Function * {
5052     if (!CalleeFT->isVarArg())
5053       return nullptr;
5054 
5055     // Get underlying value if it's a bitcast
5056     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5057       if (CE->getOpcode() == llvm::Instruction::BitCast)
5058         Ptr = CE->getOperand(0);
5059     }
5060 
5061     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5062     if (!OrigFn)
5063       return nullptr;
5064 
5065     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5066 
5067     // If the original type is variadic, or if any of the component types
5068     // disagree, we cannot remove the cast.
5069     if (OrigFT->isVarArg() ||
5070         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5071         OrigFT->getReturnType() != CalleeFT->getReturnType())
5072       return nullptr;
5073 
5074     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5075       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5076         return nullptr;
5077 
5078     return OrigFn;
5079   };
5080 
5081   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5082     CalleePtr = OrigFn;
5083     IRFuncTy = OrigFn->getFunctionType();
5084   }
5085 
5086   // 3. Perform the actual call.
5087 
5088   // Deactivate any cleanups that we're supposed to do immediately before
5089   // the call.
5090   if (!CallArgs.getCleanupsToDeactivate().empty())
5091     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5092 
5093   // Assert that the arguments we computed match up.  The IR verifier
5094   // will catch this, but this is a common enough source of problems
5095   // during IRGen changes that it's way better for debugging to catch
5096   // it ourselves here.
5097 #ifndef NDEBUG
5098   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5099   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5100     // Inalloca argument can have different type.
5101     if (IRFunctionArgs.hasInallocaArg() &&
5102         i == IRFunctionArgs.getInallocaArgNo())
5103       continue;
5104     if (i < IRFuncTy->getNumParams())
5105       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5106   }
5107 #endif
5108 
5109   // Update the largest vector width if any arguments have vector types.
5110   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5111     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
5112       LargestVectorWidth =
5113           std::max((uint64_t)LargestVectorWidth,
5114                    VT->getPrimitiveSizeInBits().getKnownMinSize());
5115   }
5116 
5117   // Compute the calling convention and attributes.
5118   unsigned CallingConv;
5119   llvm::AttributeList Attrs;
5120   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5121                              Callee.getAbstractInfo(), Attrs, CallingConv,
5122                              /*AttrOnCallSite=*/true);
5123 
5124   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5125     if (FD->hasAttr<StrictFPAttr>())
5126       // All calls within a strictfp function are marked strictfp
5127       Attrs =
5128         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5129                            llvm::Attribute::StrictFP);
5130 
5131   // Add call-site nomerge attribute if exists.
5132   if (InNoMergeAttributedStmt)
5133     Attrs =
5134         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5135                            llvm::Attribute::NoMerge);
5136 
5137   // Apply some call-site-specific attributes.
5138   // TODO: work this into building the attribute set.
5139 
5140   // Apply always_inline to all calls within flatten functions.
5141   // FIXME: should this really take priority over __try, below?
5142   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5143       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5144     Attrs =
5145         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5146                            llvm::Attribute::AlwaysInline);
5147   }
5148 
5149   // Disable inlining inside SEH __try blocks.
5150   if (isSEHTryScope()) {
5151     Attrs =
5152         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5153                            llvm::Attribute::NoInline);
5154   }
5155 
5156   // Decide whether to use a call or an invoke.
5157   bool CannotThrow;
5158   if (currentFunctionUsesSEHTry()) {
5159     // SEH cares about asynchronous exceptions, so everything can "throw."
5160     CannotThrow = false;
5161   } else if (isCleanupPadScope() &&
5162              EHPersonality::get(*this).isMSVCXXPersonality()) {
5163     // The MSVC++ personality will implicitly terminate the program if an
5164     // exception is thrown during a cleanup outside of a try/catch.
5165     // We don't need to model anything in IR to get this behavior.
5166     CannotThrow = true;
5167   } else {
5168     // Otherwise, nounwind call sites will never throw.
5169     CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
5170 
5171     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5172       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5173         CannotThrow = true;
5174   }
5175 
5176   // If we made a temporary, be sure to clean up after ourselves. Note that we
5177   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5178   // pop this cleanup later on. Being eager about this is OK, since this
5179   // temporary is 'invisible' outside of the callee.
5180   if (UnusedReturnSizePtr)
5181     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5182                                          UnusedReturnSizePtr);
5183 
5184   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5185 
5186   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5187       getBundlesForFunclet(CalleePtr);
5188 
5189   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5190     if (FD->hasAttr<StrictFPAttr>())
5191       // All calls within a strictfp function are marked strictfp
5192       Attrs =
5193         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5194                            llvm::Attribute::StrictFP);
5195 
5196   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5197   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5198 
5199   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5200   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5201 
5202   // Emit the actual call/invoke instruction.
5203   llvm::CallBase *CI;
5204   if (!InvokeDest) {
5205     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5206   } else {
5207     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5208     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5209                               BundleList);
5210     EmitBlock(Cont);
5211   }
5212   if (callOrInvoke)
5213     *callOrInvoke = CI;
5214 
5215   // If this is within a function that has the guard(nocf) attribute and is an
5216   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5217   // Control Flow Guard checks should not be added, even if the call is inlined.
5218   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5219     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5220       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5221         Attrs = Attrs.addAttribute(
5222             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
5223     }
5224   }
5225 
5226   // Apply the attributes and calling convention.
5227   CI->setAttributes(Attrs);
5228   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5229 
5230   // Apply various metadata.
5231 
5232   if (!CI->getType()->isVoidTy())
5233     CI->setName("call");
5234 
5235   // Update largest vector width from the return type.
5236   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
5237     LargestVectorWidth =
5238         std::max((uint64_t)LargestVectorWidth,
5239                  VT->getPrimitiveSizeInBits().getKnownMinSize());
5240 
5241   // Insert instrumentation or attach profile metadata at indirect call sites.
5242   // For more details, see the comment before the definition of
5243   // IPVK_IndirectCallTarget in InstrProfData.inc.
5244   if (!CI->getCalledFunction())
5245     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5246                      CI, CalleePtr);
5247 
5248   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5249   // optimizer it can aggressively ignore unwind edges.
5250   if (CGM.getLangOpts().ObjCAutoRefCount)
5251     AddObjCARCExceptionMetadata(CI);
5252 
5253   // Suppress tail calls if requested.
5254   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5255     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5256       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5257   }
5258 
5259   // Add metadata for calls to MSAllocator functions
5260   if (getDebugInfo() && TargetDecl &&
5261       TargetDecl->hasAttr<MSAllocatorAttr>())
5262     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5263 
5264   // 4. Finish the call.
5265 
5266   // If the call doesn't return, finish the basic block and clear the
5267   // insertion point; this allows the rest of IRGen to discard
5268   // unreachable code.
5269   if (CI->doesNotReturn()) {
5270     if (UnusedReturnSizePtr)
5271       PopCleanupBlock();
5272 
5273     // Strip away the noreturn attribute to better diagnose unreachable UB.
5274     if (SanOpts.has(SanitizerKind::Unreachable)) {
5275       // Also remove from function since CallBase::hasFnAttr additionally checks
5276       // attributes of the called function.
5277       if (auto *F = CI->getCalledFunction())
5278         F->removeFnAttr(llvm::Attribute::NoReturn);
5279       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
5280                           llvm::Attribute::NoReturn);
5281 
5282       // Avoid incompatibility with ASan which relies on the `noreturn`
5283       // attribute to insert handler calls.
5284       if (SanOpts.hasOneOf(SanitizerKind::Address |
5285                            SanitizerKind::KernelAddress)) {
5286         SanitizerScope SanScope(this);
5287         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5288         Builder.SetInsertPoint(CI);
5289         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5290         llvm::FunctionCallee Fn =
5291             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5292         EmitNounwindRuntimeCall(Fn);
5293       }
5294     }
5295 
5296     EmitUnreachable(Loc);
5297     Builder.ClearInsertionPoint();
5298 
5299     // FIXME: For now, emit a dummy basic block because expr emitters in
5300     // generally are not ready to handle emitting expressions at unreachable
5301     // points.
5302     EnsureInsertPoint();
5303 
5304     // Return a reasonable RValue.
5305     return GetUndefRValue(RetTy);
5306   }
5307 
5308   // Perform the swifterror writeback.
5309   if (swiftErrorTemp.isValid()) {
5310     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5311     Builder.CreateStore(errorResult, swiftErrorArg);
5312   }
5313 
5314   // Emit any call-associated writebacks immediately.  Arguably this
5315   // should happen after any return-value munging.
5316   if (CallArgs.hasWritebacks())
5317     emitWritebacks(*this, CallArgs);
5318 
5319   // The stack cleanup for inalloca arguments has to run out of the normal
5320   // lexical order, so deactivate it and run it manually here.
5321   CallArgs.freeArgumentMemory(*this);
5322 
5323   // Extract the return value.
5324   RValue Ret = [&] {
5325     switch (RetAI.getKind()) {
5326     case ABIArgInfo::CoerceAndExpand: {
5327       auto coercionType = RetAI.getCoerceAndExpandType();
5328 
5329       Address addr = SRetPtr;
5330       addr = Builder.CreateElementBitCast(addr, coercionType);
5331 
5332       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5333       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5334 
5335       unsigned unpaddedIndex = 0;
5336       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5337         llvm::Type *eltType = coercionType->getElementType(i);
5338         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5339         Address eltAddr = Builder.CreateStructGEP(addr, i);
5340         llvm::Value *elt = CI;
5341         if (requiresExtract)
5342           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5343         else
5344           assert(unpaddedIndex == 0);
5345         Builder.CreateStore(elt, eltAddr);
5346       }
5347       // FALLTHROUGH
5348       LLVM_FALLTHROUGH;
5349     }
5350 
5351     case ABIArgInfo::InAlloca:
5352     case ABIArgInfo::Indirect: {
5353       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5354       if (UnusedReturnSizePtr)
5355         PopCleanupBlock();
5356       return ret;
5357     }
5358 
5359     case ABIArgInfo::Ignore:
5360       // If we are ignoring an argument that had a result, make sure to
5361       // construct the appropriate return value for our caller.
5362       return GetUndefRValue(RetTy);
5363 
5364     case ABIArgInfo::Extend:
5365     case ABIArgInfo::Direct: {
5366       llvm::Type *RetIRTy = ConvertType(RetTy);
5367       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5368         switch (getEvaluationKind(RetTy)) {
5369         case TEK_Complex: {
5370           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5371           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5372           return RValue::getComplex(std::make_pair(Real, Imag));
5373         }
5374         case TEK_Aggregate: {
5375           Address DestPtr = ReturnValue.getValue();
5376           bool DestIsVolatile = ReturnValue.isVolatile();
5377 
5378           if (!DestPtr.isValid()) {
5379             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5380             DestIsVolatile = false;
5381           }
5382           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5383           return RValue::getAggregate(DestPtr);
5384         }
5385         case TEK_Scalar: {
5386           // If the argument doesn't match, perform a bitcast to coerce it.  This
5387           // can happen due to trivial type mismatches.
5388           llvm::Value *V = CI;
5389           if (V->getType() != RetIRTy)
5390             V = Builder.CreateBitCast(V, RetIRTy);
5391           return RValue::get(V);
5392         }
5393         }
5394         llvm_unreachable("bad evaluation kind");
5395       }
5396 
5397       Address DestPtr = ReturnValue.getValue();
5398       bool DestIsVolatile = ReturnValue.isVolatile();
5399 
5400       if (!DestPtr.isValid()) {
5401         DestPtr = CreateMemTemp(RetTy, "coerce");
5402         DestIsVolatile = false;
5403       }
5404 
5405       // If the value is offset in memory, apply the offset now.
5406       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5407       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5408 
5409       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5410     }
5411 
5412     case ABIArgInfo::Expand:
5413     case ABIArgInfo::IndirectAliased:
5414       llvm_unreachable("Invalid ABI kind for return argument");
5415     }
5416 
5417     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5418   } ();
5419 
5420   // Emit the assume_aligned check on the return value.
5421   if (Ret.isScalar() && TargetDecl) {
5422     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5423     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5424   }
5425 
5426   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5427   // we can't use the full cleanup mechanism.
5428   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5429     LifetimeEnd.Emit(*this, /*Flags=*/{});
5430 
5431   if (!ReturnValue.isExternallyDestructed() &&
5432       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5433     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5434                 RetTy);
5435 
5436   return Ret;
5437 }
5438 
5439 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5440   if (isVirtual()) {
5441     const CallExpr *CE = getVirtualCallExpr();
5442     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5443         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5444         CE ? CE->getBeginLoc() : SourceLocation());
5445   }
5446 
5447   return *this;
5448 }
5449 
5450 /* VarArg handling */
5451 
5452 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5453   VAListAddr = VE->isMicrosoftABI()
5454                  ? EmitMSVAListRef(VE->getSubExpr())
5455                  : EmitVAListRef(VE->getSubExpr());
5456   QualType Ty = VE->getType();
5457   if (VE->isMicrosoftABI())
5458     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5459   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5460 }
5461