1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "ABIInfo.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Attributes.h"
26 #include "llvm/Support/CallSite.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/InlineAsm.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 /***/
34 
35 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
36   switch (CC) {
37   default: return llvm::CallingConv::C;
38   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
39   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
40   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
41   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
42   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
43   // TODO: add support for CC_X86Pascal to llvm
44   }
45 }
46 
47 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
48 /// qualification.
49 /// FIXME: address space qualification?
50 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
51   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
52   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
53 }
54 
55 /// Returns the canonical formal type of the given C++ method.
56 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
57   return MD->getType()->getCanonicalTypeUnqualified()
58            .getAs<FunctionProtoType>();
59 }
60 
61 /// Returns the "extra-canonicalized" return type, which discards
62 /// qualifiers on the return type.  Codegen doesn't care about them,
63 /// and it makes ABI code a little easier to be able to assume that
64 /// all parameter and return types are top-level unqualified.
65 static CanQualType GetReturnType(QualType RetTy) {
66   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
67 }
68 
69 const CGFunctionInfo &
70 CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP) {
71   return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
72                          SmallVector<CanQualType, 16>(),
73                          FTNP->getExtInfo());
74 }
75 
76 /// \param Args - contains any initial parameters besides those
77 ///   in the formal type
78 static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT,
79                                   SmallVectorImpl<CanQualType> &ArgTys,
80                                              CanQual<FunctionProtoType> FTP) {
81   // FIXME: Kill copy.
82   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
83     ArgTys.push_back(FTP->getArgType(i));
84   CanQualType ResTy = FTP->getResultType().getUnqualifiedType();
85   return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
86 }
87 
88 const CGFunctionInfo &
89 CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP) {
90   SmallVector<CanQualType, 16> ArgTys;
91   return ::getFunctionInfo(*this, ArgTys, FTP);
92 }
93 
94 static CallingConv getCallingConventionForDecl(const Decl *D) {
95   // Set the appropriate calling convention for the Function.
96   if (D->hasAttr<StdCallAttr>())
97     return CC_X86StdCall;
98 
99   if (D->hasAttr<FastCallAttr>())
100     return CC_X86FastCall;
101 
102   if (D->hasAttr<ThisCallAttr>())
103     return CC_X86ThisCall;
104 
105   if (D->hasAttr<PascalAttr>())
106     return CC_X86Pascal;
107 
108   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
109     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
110 
111   return CC_C;
112 }
113 
114 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD,
115                                                  const FunctionProtoType *FTP) {
116   SmallVector<CanQualType, 16> ArgTys;
117 
118   // Add the 'this' pointer.
119   ArgTys.push_back(GetThisType(Context, RD));
120 
121   return ::getFunctionInfo(*this, ArgTys,
122               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
123 }
124 
125 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
126   SmallVector<CanQualType, 16> ArgTys;
127 
128   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
129   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
130 
131   // Add the 'this' pointer unless this is a static method.
132   if (MD->isInstance())
133     ArgTys.push_back(GetThisType(Context, MD->getParent()));
134 
135   return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD));
136 }
137 
138 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D,
139                                                     CXXCtorType Type) {
140   SmallVector<CanQualType, 16> ArgTys;
141   ArgTys.push_back(GetThisType(Context, D->getParent()));
142   CanQualType ResTy = Context.VoidTy;
143 
144   TheCXXABI.BuildConstructorSignature(D, Type, ResTy, ArgTys);
145 
146   CanQual<FunctionProtoType> FTP = GetFormalType(D);
147 
148   // Add the formal parameters.
149   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
150     ArgTys.push_back(FTP->getArgType(i));
151 
152   return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
153 }
154 
155 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D,
156                                                     CXXDtorType Type) {
157   SmallVector<CanQualType, 2> ArgTys;
158   ArgTys.push_back(GetThisType(Context, D->getParent()));
159   CanQualType ResTy = Context.VoidTy;
160 
161   TheCXXABI.BuildDestructorSignature(D, Type, ResTy, ArgTys);
162 
163   CanQual<FunctionProtoType> FTP = GetFormalType(D);
164   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
165 
166   return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
167 }
168 
169 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
170   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
171     if (MD->isInstance())
172       return getFunctionInfo(MD);
173 
174   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
175   assert(isa<FunctionType>(FTy));
176   if (isa<FunctionNoProtoType>(FTy))
177     return getFunctionInfo(FTy.getAs<FunctionNoProtoType>());
178   assert(isa<FunctionProtoType>(FTy));
179   return getFunctionInfo(FTy.getAs<FunctionProtoType>());
180 }
181 
182 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
183   SmallVector<CanQualType, 16> ArgTys;
184   ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType()));
185   ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
186   // FIXME: Kill copy?
187   for (ObjCMethodDecl::param_iterator i = MD->param_begin(),
188          e = MD->param_end(); i != e; ++i) {
189     ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
190   }
191 
192   FunctionType::ExtInfo einfo;
193   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
194 
195   if (getContext().getLangOptions().ObjCAutoRefCount &&
196       MD->hasAttr<NSReturnsRetainedAttr>())
197     einfo = einfo.withProducesResult(true);
198 
199   return getFunctionInfo(GetReturnType(MD->getResultType()), ArgTys, einfo);
200 }
201 
202 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) {
203   // FIXME: Do we need to handle ObjCMethodDecl?
204   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
205 
206   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
207     return getFunctionInfo(CD, GD.getCtorType());
208 
209   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
210     return getFunctionInfo(DD, GD.getDtorType());
211 
212   return getFunctionInfo(FD);
213 }
214 
215 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
216                                                     const CallArgList &Args,
217                                             const FunctionType::ExtInfo &Info) {
218   // FIXME: Kill copy.
219   SmallVector<CanQualType, 16> ArgTys;
220   for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
221        i != e; ++i)
222     ArgTys.push_back(Context.getCanonicalParamType(i->Ty));
223   return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
224 }
225 
226 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
227                                                     const FunctionArgList &Args,
228                                             const FunctionType::ExtInfo &Info) {
229   // FIXME: Kill copy.
230   SmallVector<CanQualType, 16> ArgTys;
231   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
232        i != e; ++i)
233     ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
234   return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
235 }
236 
237 const CGFunctionInfo &CodeGenTypes::getNullaryFunctionInfo() {
238   SmallVector<CanQualType, 1> args;
239   return getFunctionInfo(getContext().VoidTy, args, FunctionType::ExtInfo());
240 }
241 
242 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
243                            const SmallVectorImpl<CanQualType> &ArgTys,
244                                             const FunctionType::ExtInfo &Info) {
245 #ifndef NDEBUG
246   for (SmallVectorImpl<CanQualType>::const_iterator
247          I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I)
248     assert(I->isCanonicalAsParam());
249 #endif
250 
251   unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC());
252 
253   // Lookup or create unique function info.
254   llvm::FoldingSetNodeID ID;
255   CGFunctionInfo::Profile(ID, Info, ResTy, ArgTys.begin(), ArgTys.end());
256 
257   void *InsertPos = 0;
258   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
259   if (FI)
260     return *FI;
261 
262   // Construct the function info.
263   FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getProducesResult(),
264                           Info.getHasRegParm(), Info.getRegParm(), ResTy,
265                           ArgTys.data(), ArgTys.size());
266   FunctionInfos.InsertNode(FI, InsertPos);
267 
268   bool Inserted = FunctionsBeingProcessed.insert(FI); (void)Inserted;
269   assert(Inserted && "Recursively being processed?");
270 
271   // Compute ABI information.
272   getABIInfo().computeInfo(*FI);
273 
274   // Loop over all of the computed argument and return value info.  If any of
275   // them are direct or extend without a specified coerce type, specify the
276   // default now.
277   ABIArgInfo &RetInfo = FI->getReturnInfo();
278   if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0)
279     RetInfo.setCoerceToType(ConvertType(FI->getReturnType()));
280 
281   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
282        I != E; ++I)
283     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
284       I->info.setCoerceToType(ConvertType(I->type));
285 
286   bool Erased = FunctionsBeingProcessed.erase(FI); (void)Erased;
287   assert(Erased && "Not in set?");
288 
289   return *FI;
290 }
291 
292 CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention,
293                                bool _NoReturn, bool returnsRetained,
294                                bool _HasRegParm, unsigned _RegParm,
295                                CanQualType ResTy,
296                                const CanQualType *ArgTys,
297                                unsigned NumArgTys)
298   : CallingConvention(_CallingConvention),
299     EffectiveCallingConvention(_CallingConvention),
300     NoReturn(_NoReturn), ReturnsRetained(returnsRetained),
301     HasRegParm(_HasRegParm), RegParm(_RegParm)
302 {
303   NumArgs = NumArgTys;
304 
305   // FIXME: Coallocate with the CGFunctionInfo object.
306   Args = new ArgInfo[1 + NumArgTys];
307   Args[0].type = ResTy;
308   for (unsigned i = 0; i != NumArgTys; ++i)
309     Args[1 + i].type = ArgTys[i];
310 }
311 
312 /***/
313 
314 void CodeGenTypes::GetExpandedTypes(QualType type,
315                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
316   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
317     uint64_t NumElts = AT->getSize().getZExtValue();
318     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
319       GetExpandedTypes(AT->getElementType(), expandedTypes);
320   } else if (const RecordType *RT = type->getAsStructureType()) {
321     const RecordDecl *RD = RT->getDecl();
322     assert(!RD->hasFlexibleArrayMember() &&
323            "Cannot expand structure with flexible array.");
324     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
325          i != e; ++i) {
326       const FieldDecl *FD = *i;
327       assert(!FD->isBitField() &&
328              "Cannot expand structure with bit-field members.");
329       GetExpandedTypes(FD->getType(), expandedTypes);
330     }
331   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
332     llvm::Type *EltTy = ConvertType(CT->getElementType());
333     expandedTypes.push_back(EltTy);
334     expandedTypes.push_back(EltTy);
335   } else
336     expandedTypes.push_back(ConvertType(type));
337 }
338 
339 llvm::Function::arg_iterator
340 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
341                                     llvm::Function::arg_iterator AI) {
342   assert(LV.isSimple() &&
343          "Unexpected non-simple lvalue during struct expansion.");
344   llvm::Value *Addr = LV.getAddress();
345 
346   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
347     unsigned NumElts = AT->getSize().getZExtValue();
348     QualType EltTy = AT->getElementType();
349     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
350       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
351       LValue LV = MakeAddrLValue(EltAddr, EltTy);
352       AI = ExpandTypeFromArgs(EltTy, LV, AI);
353     }
354   } else if (const RecordType *RT = Ty->getAsStructureType()) {
355     RecordDecl *RD = RT->getDecl();
356     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
357          i != e; ++i) {
358       FieldDecl *FD = *i;
359       QualType FT = FD->getType();
360 
361       // FIXME: What are the right qualifiers here?
362       LValue LV = EmitLValueForField(Addr, FD, 0);
363       AI = ExpandTypeFromArgs(FT, LV, AI);
364     }
365   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
366     QualType EltTy = CT->getElementType();
367     llvm::Value *RealAddr = Builder.CreateStructGEP(Addr, 0, "real");
368     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
369     llvm::Value *ImagAddr = Builder.CreateStructGEP(Addr, 0, "imag");
370     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
371   } else {
372     EmitStoreThroughLValue(RValue::get(AI), LV);
373     ++AI;
374   }
375 
376   return AI;
377 }
378 
379 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
380 /// accessing some number of bytes out of it, try to gep into the struct to get
381 /// at its inner goodness.  Dive as deep as possible without entering an element
382 /// with an in-memory size smaller than DstSize.
383 static llvm::Value *
384 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
385                                    llvm::StructType *SrcSTy,
386                                    uint64_t DstSize, CodeGenFunction &CGF) {
387   // We can't dive into a zero-element struct.
388   if (SrcSTy->getNumElements() == 0) return SrcPtr;
389 
390   llvm::Type *FirstElt = SrcSTy->getElementType(0);
391 
392   // If the first elt is at least as large as what we're looking for, or if the
393   // first element is the same size as the whole struct, we can enter it.
394   uint64_t FirstEltSize =
395     CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
396   if (FirstEltSize < DstSize &&
397       FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
398     return SrcPtr;
399 
400   // GEP into the first element.
401   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
402 
403   // If the first element is a struct, recurse.
404   llvm::Type *SrcTy =
405     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
406   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
407     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
408 
409   return SrcPtr;
410 }
411 
412 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
413 /// are either integers or pointers.  This does a truncation of the value if it
414 /// is too large or a zero extension if it is too small.
415 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
416                                              llvm::Type *Ty,
417                                              CodeGenFunction &CGF) {
418   if (Val->getType() == Ty)
419     return Val;
420 
421   if (isa<llvm::PointerType>(Val->getType())) {
422     // If this is Pointer->Pointer avoid conversion to and from int.
423     if (isa<llvm::PointerType>(Ty))
424       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
425 
426     // Convert the pointer to an integer so we can play with its width.
427     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
428   }
429 
430   llvm::Type *DestIntTy = Ty;
431   if (isa<llvm::PointerType>(DestIntTy))
432     DestIntTy = CGF.IntPtrTy;
433 
434   if (Val->getType() != DestIntTy)
435     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
436 
437   if (isa<llvm::PointerType>(Ty))
438     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
439   return Val;
440 }
441 
442 
443 
444 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
445 /// a pointer to an object of type \arg Ty.
446 ///
447 /// This safely handles the case when the src type is smaller than the
448 /// destination type; in this situation the values of bits which not
449 /// present in the src are undefined.
450 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
451                                       llvm::Type *Ty,
452                                       CodeGenFunction &CGF) {
453   llvm::Type *SrcTy =
454     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
455 
456   // If SrcTy and Ty are the same, just do a load.
457   if (SrcTy == Ty)
458     return CGF.Builder.CreateLoad(SrcPtr);
459 
460   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
461 
462   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
463     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
464     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
465   }
466 
467   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
468 
469   // If the source and destination are integer or pointer types, just do an
470   // extension or truncation to the desired type.
471   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
472       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
473     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
474     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
475   }
476 
477   // If load is legal, just bitcast the src pointer.
478   if (SrcSize >= DstSize) {
479     // Generally SrcSize is never greater than DstSize, since this means we are
480     // losing bits. However, this can happen in cases where the structure has
481     // additional padding, for example due to a user specified alignment.
482     //
483     // FIXME: Assert that we aren't truncating non-padding bits when have access
484     // to that information.
485     llvm::Value *Casted =
486       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
487     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
488     // FIXME: Use better alignment / avoid requiring aligned load.
489     Load->setAlignment(1);
490     return Load;
491   }
492 
493   // Otherwise do coercion through memory. This is stupid, but
494   // simple.
495   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
496   llvm::Value *Casted =
497     CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
498   llvm::StoreInst *Store =
499     CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
500   // FIXME: Use better alignment / avoid requiring aligned store.
501   Store->setAlignment(1);
502   return CGF.Builder.CreateLoad(Tmp);
503 }
504 
505 // Function to store a first-class aggregate into memory.  We prefer to
506 // store the elements rather than the aggregate to be more friendly to
507 // fast-isel.
508 // FIXME: Do we need to recurse here?
509 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
510                           llvm::Value *DestPtr, bool DestIsVolatile,
511                           bool LowAlignment) {
512   // Prefer scalar stores to first-class aggregate stores.
513   if (llvm::StructType *STy =
514         dyn_cast<llvm::StructType>(Val->getType())) {
515     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
516       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
517       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
518       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
519                                                     DestIsVolatile);
520       if (LowAlignment)
521         SI->setAlignment(1);
522     }
523   } else {
524     CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
525   }
526 }
527 
528 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
529 /// where the source and destination may have different types.
530 ///
531 /// This safely handles the case when the src type is larger than the
532 /// destination type; the upper bits of the src will be lost.
533 static void CreateCoercedStore(llvm::Value *Src,
534                                llvm::Value *DstPtr,
535                                bool DstIsVolatile,
536                                CodeGenFunction &CGF) {
537   llvm::Type *SrcTy = Src->getType();
538   llvm::Type *DstTy =
539     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
540   if (SrcTy == DstTy) {
541     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
542     return;
543   }
544 
545   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
546 
547   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
548     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
549     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
550   }
551 
552   // If the source and destination are integer or pointer types, just do an
553   // extension or truncation to the desired type.
554   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
555       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
556     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
557     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
558     return;
559   }
560 
561   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
562 
563   // If store is legal, just bitcast the src pointer.
564   if (SrcSize <= DstSize) {
565     llvm::Value *Casted =
566       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
567     // FIXME: Use better alignment / avoid requiring aligned store.
568     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
569   } else {
570     // Otherwise do coercion through memory. This is stupid, but
571     // simple.
572 
573     // Generally SrcSize is never greater than DstSize, since this means we are
574     // losing bits. However, this can happen in cases where the structure has
575     // additional padding, for example due to a user specified alignment.
576     //
577     // FIXME: Assert that we aren't truncating non-padding bits when have access
578     // to that information.
579     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
580     CGF.Builder.CreateStore(Src, Tmp);
581     llvm::Value *Casted =
582       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
583     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
584     // FIXME: Use better alignment / avoid requiring aligned load.
585     Load->setAlignment(1);
586     CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
587   }
588 }
589 
590 /***/
591 
592 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
593   return FI.getReturnInfo().isIndirect();
594 }
595 
596 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
597   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
598     switch (BT->getKind()) {
599     default:
600       return false;
601     case BuiltinType::Float:
602       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
603     case BuiltinType::Double:
604       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
605     case BuiltinType::LongDouble:
606       return getContext().getTargetInfo().useObjCFPRetForRealType(
607         TargetInfo::LongDouble);
608     }
609   }
610 
611   return false;
612 }
613 
614 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
615   const CGFunctionInfo &FI = getFunctionInfo(GD);
616 
617   // For definition purposes, don't consider a K&R function variadic.
618   bool Variadic = false;
619   if (const FunctionProtoType *FPT =
620         cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>())
621     Variadic = FPT->isVariadic();
622 
623   return GetFunctionType(FI, Variadic);
624 }
625 
626 llvm::FunctionType *
627 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool isVariadic) {
628 
629   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
630   assert(Inserted && "Recursively being processed?");
631 
632   SmallVector<llvm::Type*, 8> argTypes;
633   llvm::Type *resultType = 0;
634 
635   const ABIArgInfo &retAI = FI.getReturnInfo();
636   switch (retAI.getKind()) {
637   case ABIArgInfo::Expand:
638     llvm_unreachable("Invalid ABI kind for return argument");
639 
640   case ABIArgInfo::Extend:
641   case ABIArgInfo::Direct:
642     resultType = retAI.getCoerceToType();
643     break;
644 
645   case ABIArgInfo::Indirect: {
646     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
647     resultType = llvm::Type::getVoidTy(getLLVMContext());
648 
649     QualType ret = FI.getReturnType();
650     llvm::Type *ty = ConvertType(ret);
651     unsigned addressSpace = Context.getTargetAddressSpace(ret);
652     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
653     break;
654   }
655 
656   case ABIArgInfo::Ignore:
657     resultType = llvm::Type::getVoidTy(getLLVMContext());
658     break;
659   }
660 
661   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
662          ie = FI.arg_end(); it != ie; ++it) {
663     const ABIArgInfo &argAI = it->info;
664 
665     switch (argAI.getKind()) {
666     case ABIArgInfo::Ignore:
667       break;
668 
669     case ABIArgInfo::Indirect: {
670       // indirect arguments are always on the stack, which is addr space #0.
671       llvm::Type *LTy = ConvertTypeForMem(it->type);
672       argTypes.push_back(LTy->getPointerTo());
673       break;
674     }
675 
676     case ABIArgInfo::Extend:
677     case ABIArgInfo::Direct: {
678       // If the coerce-to type is a first class aggregate, flatten it.  Either
679       // way is semantically identical, but fast-isel and the optimizer
680       // generally likes scalar values better than FCAs.
681       llvm::Type *argType = argAI.getCoerceToType();
682       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
683         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
684           argTypes.push_back(st->getElementType(i));
685       } else {
686         argTypes.push_back(argType);
687       }
688       break;
689     }
690 
691     case ABIArgInfo::Expand:
692       GetExpandedTypes(it->type, argTypes);
693       break;
694     }
695   }
696 
697   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
698   assert(Erased && "Not in set?");
699 
700   return llvm::FunctionType::get(resultType, argTypes, isVariadic);
701 }
702 
703 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
704   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
705   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
706 
707   if (!isFuncTypeConvertible(FPT))
708     return llvm::StructType::get(getLLVMContext());
709 
710   const CGFunctionInfo *Info;
711   if (isa<CXXDestructorDecl>(MD))
712     Info = &getFunctionInfo(cast<CXXDestructorDecl>(MD), GD.getDtorType());
713   else
714     Info = &getFunctionInfo(MD);
715   return GetFunctionType(*Info, FPT->isVariadic());
716 }
717 
718 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
719                                            const Decl *TargetDecl,
720                                            AttributeListType &PAL,
721                                            unsigned &CallingConv) {
722   unsigned FuncAttrs = 0;
723   unsigned RetAttrs = 0;
724 
725   CallingConv = FI.getEffectiveCallingConvention();
726 
727   if (FI.isNoReturn())
728     FuncAttrs |= llvm::Attribute::NoReturn;
729 
730   // FIXME: handle sseregparm someday...
731   if (TargetDecl) {
732     if (TargetDecl->hasAttr<NoThrowAttr>())
733       FuncAttrs |= llvm::Attribute::NoUnwind;
734     else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
735       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
736       if (FPT && FPT->isNothrow(getContext()))
737         FuncAttrs |= llvm::Attribute::NoUnwind;
738     }
739 
740     if (TargetDecl->hasAttr<NoReturnAttr>())
741       FuncAttrs |= llvm::Attribute::NoReturn;
742 
743     // 'const' and 'pure' attribute functions are also nounwind.
744     if (TargetDecl->hasAttr<ConstAttr>()) {
745       FuncAttrs |= llvm::Attribute::ReadNone;
746       FuncAttrs |= llvm::Attribute::NoUnwind;
747     } else if (TargetDecl->hasAttr<PureAttr>()) {
748       FuncAttrs |= llvm::Attribute::ReadOnly;
749       FuncAttrs |= llvm::Attribute::NoUnwind;
750     }
751     if (TargetDecl->hasAttr<MallocAttr>())
752       RetAttrs |= llvm::Attribute::NoAlias;
753   }
754 
755   if (CodeGenOpts.OptimizeSize)
756     FuncAttrs |= llvm::Attribute::OptimizeForSize;
757   if (CodeGenOpts.DisableRedZone)
758     FuncAttrs |= llvm::Attribute::NoRedZone;
759   if (CodeGenOpts.NoImplicitFloat)
760     FuncAttrs |= llvm::Attribute::NoImplicitFloat;
761 
762   QualType RetTy = FI.getReturnType();
763   unsigned Index = 1;
764   const ABIArgInfo &RetAI = FI.getReturnInfo();
765   switch (RetAI.getKind()) {
766   case ABIArgInfo::Extend:
767    if (RetTy->hasSignedIntegerRepresentation())
768      RetAttrs |= llvm::Attribute::SExt;
769    else if (RetTy->hasUnsignedIntegerRepresentation())
770      RetAttrs |= llvm::Attribute::ZExt;
771     break;
772   case ABIArgInfo::Direct:
773   case ABIArgInfo::Ignore:
774     break;
775 
776   case ABIArgInfo::Indirect:
777     PAL.push_back(llvm::AttributeWithIndex::get(Index,
778                                                 llvm::Attribute::StructRet));
779     ++Index;
780     // sret disables readnone and readonly
781     FuncAttrs &= ~(llvm::Attribute::ReadOnly |
782                    llvm::Attribute::ReadNone);
783     break;
784 
785   case ABIArgInfo::Expand:
786     assert(0 && "Invalid ABI kind for return argument");
787   }
788 
789   if (RetAttrs)
790     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
791 
792   // FIXME: RegParm should be reduced in case of global register variable.
793   signed RegParm;
794   if (FI.getHasRegParm())
795     RegParm = FI.getRegParm();
796   else
797     RegParm = CodeGenOpts.NumRegisterParameters;
798 
799   unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0);
800   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
801          ie = FI.arg_end(); it != ie; ++it) {
802     QualType ParamType = it->type;
803     const ABIArgInfo &AI = it->info;
804     unsigned Attributes = 0;
805 
806     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
807     // have the corresponding parameter variable.  It doesn't make
808     // sense to do it here because parameters are so messed up.
809     switch (AI.getKind()) {
810     case ABIArgInfo::Extend:
811       if (ParamType->isSignedIntegerOrEnumerationType())
812         Attributes |= llvm::Attribute::SExt;
813       else if (ParamType->isUnsignedIntegerOrEnumerationType())
814         Attributes |= llvm::Attribute::ZExt;
815       // FALL THROUGH
816     case ABIArgInfo::Direct:
817       if (RegParm > 0 &&
818           (ParamType->isIntegerType() || ParamType->isPointerType())) {
819         RegParm -=
820         (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
821         if (RegParm >= 0)
822           Attributes |= llvm::Attribute::InReg;
823       }
824       // FIXME: handle sseregparm someday...
825 
826       if (llvm::StructType *STy =
827             dyn_cast<llvm::StructType>(AI.getCoerceToType()))
828         Index += STy->getNumElements()-1;  // 1 will be added below.
829       break;
830 
831     case ABIArgInfo::Indirect:
832       if (AI.getIndirectByVal())
833         Attributes |= llvm::Attribute::ByVal;
834 
835       Attributes |=
836         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
837       // byval disables readnone and readonly.
838       FuncAttrs &= ~(llvm::Attribute::ReadOnly |
839                      llvm::Attribute::ReadNone);
840       break;
841 
842     case ABIArgInfo::Ignore:
843       // Skip increment, no matching LLVM parameter.
844       continue;
845 
846     case ABIArgInfo::Expand: {
847       SmallVector<llvm::Type*, 8> types;
848       // FIXME: This is rather inefficient. Do we ever actually need to do
849       // anything here? The result should be just reconstructed on the other
850       // side, so extension should be a non-issue.
851       getTypes().GetExpandedTypes(ParamType, types);
852       Index += types.size();
853       continue;
854     }
855     }
856 
857     if (Attributes)
858       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
859     ++Index;
860   }
861   if (FuncAttrs)
862     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
863 }
864 
865 /// An argument came in as a promoted argument; demote it back to its
866 /// declared type.
867 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
868                                          const VarDecl *var,
869                                          llvm::Value *value) {
870   llvm::Type *varType = CGF.ConvertType(var->getType());
871 
872   // This can happen with promotions that actually don't change the
873   // underlying type, like the enum promotions.
874   if (value->getType() == varType) return value;
875 
876   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
877          && "unexpected promotion type");
878 
879   if (isa<llvm::IntegerType>(varType))
880     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
881 
882   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
883 }
884 
885 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
886                                          llvm::Function *Fn,
887                                          const FunctionArgList &Args) {
888   // If this is an implicit-return-zero function, go ahead and
889   // initialize the return value.  TODO: it might be nice to have
890   // a more general mechanism for this that didn't require synthesized
891   // return statements.
892   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
893     if (FD->hasImplicitReturnZero()) {
894       QualType RetTy = FD->getResultType().getUnqualifiedType();
895       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
896       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
897       Builder.CreateStore(Zero, ReturnValue);
898     }
899   }
900 
901   // FIXME: We no longer need the types from FunctionArgList; lift up and
902   // simplify.
903 
904   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
905   llvm::Function::arg_iterator AI = Fn->arg_begin();
906 
907   // Name the struct return argument.
908   if (CGM.ReturnTypeUsesSRet(FI)) {
909     AI->setName("agg.result");
910     AI->addAttr(llvm::Attribute::NoAlias);
911     ++AI;
912   }
913 
914   assert(FI.arg_size() == Args.size() &&
915          "Mismatch between function signature & arguments.");
916   unsigned ArgNo = 1;
917   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
918   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
919        i != e; ++i, ++info_it, ++ArgNo) {
920     const VarDecl *Arg = *i;
921     QualType Ty = info_it->type;
922     const ABIArgInfo &ArgI = info_it->info;
923 
924     bool isPromoted =
925       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
926 
927     switch (ArgI.getKind()) {
928     case ABIArgInfo::Indirect: {
929       llvm::Value *V = AI;
930 
931       if (hasAggregateLLVMType(Ty)) {
932         // Aggregates and complex variables are accessed by reference.  All we
933         // need to do is realign the value, if requested
934         if (ArgI.getIndirectRealign()) {
935           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
936 
937           // Copy from the incoming argument pointer to the temporary with the
938           // appropriate alignment.
939           //
940           // FIXME: We should have a common utility for generating an aggregate
941           // copy.
942           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
943           CharUnits Size = getContext().getTypeSizeInChars(Ty);
944           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
945           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
946           Builder.CreateMemCpy(Dst,
947                                Src,
948                                llvm::ConstantInt::get(IntPtrTy,
949                                                       Size.getQuantity()),
950                                ArgI.getIndirectAlign(),
951                                false);
952           V = AlignedTemp;
953         }
954       } else {
955         // Load scalar value from indirect argument.
956         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
957         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
958 
959         if (isPromoted)
960           V = emitArgumentDemotion(*this, Arg, V);
961       }
962       EmitParmDecl(*Arg, V, ArgNo);
963       break;
964     }
965 
966     case ABIArgInfo::Extend:
967     case ABIArgInfo::Direct: {
968       // If we have the trivial case, handle it with no muss and fuss.
969       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
970           ArgI.getCoerceToType() == ConvertType(Ty) &&
971           ArgI.getDirectOffset() == 0) {
972         assert(AI != Fn->arg_end() && "Argument mismatch!");
973         llvm::Value *V = AI;
974 
975         if (Arg->getType().isRestrictQualified())
976           AI->addAttr(llvm::Attribute::NoAlias);
977 
978         // Ensure the argument is the correct type.
979         if (V->getType() != ArgI.getCoerceToType())
980           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
981 
982         if (isPromoted)
983           V = emitArgumentDemotion(*this, Arg, V);
984 
985         EmitParmDecl(*Arg, V, ArgNo);
986         break;
987       }
988 
989       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce");
990 
991       // The alignment we need to use is the max of the requested alignment for
992       // the argument plus the alignment required by our access code below.
993       unsigned AlignmentToUse =
994         CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
995       AlignmentToUse = std::max(AlignmentToUse,
996                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
997 
998       Alloca->setAlignment(AlignmentToUse);
999       llvm::Value *V = Alloca;
1000       llvm::Value *Ptr = V;    // Pointer to store into.
1001 
1002       // If the value is offset in memory, apply the offset now.
1003       if (unsigned Offs = ArgI.getDirectOffset()) {
1004         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1005         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1006         Ptr = Builder.CreateBitCast(Ptr,
1007                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1008       }
1009 
1010       // If the coerce-to type is a first class aggregate, we flatten it and
1011       // pass the elements. Either way is semantically identical, but fast-isel
1012       // and the optimizer generally likes scalar values better than FCAs.
1013       if (llvm::StructType *STy =
1014             dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) {
1015         Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1016 
1017         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1018           assert(AI != Fn->arg_end() && "Argument mismatch!");
1019           AI->setName(Arg->getName() + ".coerce" + Twine(i));
1020           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1021           Builder.CreateStore(AI++, EltPtr);
1022         }
1023       } else {
1024         // Simple case, just do a coerced store of the argument into the alloca.
1025         assert(AI != Fn->arg_end() && "Argument mismatch!");
1026         AI->setName(Arg->getName() + ".coerce");
1027         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1028       }
1029 
1030 
1031       // Match to what EmitParmDecl is expecting for this type.
1032       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1033         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1034         if (isPromoted)
1035           V = emitArgumentDemotion(*this, Arg, V);
1036       }
1037       EmitParmDecl(*Arg, V, ArgNo);
1038       continue;  // Skip ++AI increment, already done.
1039     }
1040 
1041     case ABIArgInfo::Expand: {
1042       // If this structure was expanded into multiple arguments then
1043       // we need to create a temporary and reconstruct it from the
1044       // arguments.
1045       llvm::Value *Temp = CreateMemTemp(Ty, Arg->getName() + ".addr");
1046       llvm::Function::arg_iterator End =
1047         ExpandTypeFromArgs(Ty, MakeAddrLValue(Temp, Ty), AI);
1048       EmitParmDecl(*Arg, Temp, ArgNo);
1049 
1050       // Name the arguments used in expansion and increment AI.
1051       unsigned Index = 0;
1052       for (; AI != End; ++AI, ++Index)
1053         AI->setName(Arg->getName() + "." + Twine(Index));
1054       continue;
1055     }
1056 
1057     case ABIArgInfo::Ignore:
1058       // Initialize the local variable appropriately.
1059       if (hasAggregateLLVMType(Ty))
1060         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1061       else
1062         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1063                      ArgNo);
1064 
1065       // Skip increment, no matching LLVM parameter.
1066       continue;
1067     }
1068 
1069     ++AI;
1070   }
1071   assert(AI == Fn->arg_end() && "Argument mismatch!");
1072 }
1073 
1074 /// Try to emit a fused autorelease of a return result.
1075 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1076                                                     llvm::Value *result) {
1077   // We must be immediately followed the cast.
1078   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1079   if (BB->empty()) return 0;
1080   if (&BB->back() != result) return 0;
1081 
1082   llvm::Type *resultType = result->getType();
1083 
1084   // result is in a BasicBlock and is therefore an Instruction.
1085   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1086 
1087   SmallVector<llvm::Instruction*,4> insnsToKill;
1088 
1089   // Look for:
1090   //  %generator = bitcast %type1* %generator2 to %type2*
1091   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1092     // We would have emitted this as a constant if the operand weren't
1093     // an Instruction.
1094     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1095 
1096     // Require the generator to be immediately followed by the cast.
1097     if (generator->getNextNode() != bitcast)
1098       return 0;
1099 
1100     insnsToKill.push_back(bitcast);
1101   }
1102 
1103   // Look for:
1104   //   %generator = call i8* @objc_retain(i8* %originalResult)
1105   // or
1106   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1107   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1108   if (!call) return 0;
1109 
1110   bool doRetainAutorelease;
1111 
1112   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1113     doRetainAutorelease = true;
1114   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1115                                           .objc_retainAutoreleasedReturnValue) {
1116     doRetainAutorelease = false;
1117 
1118     // Look for an inline asm immediately preceding the call and kill it, too.
1119     llvm::Instruction *prev = call->getPrevNode();
1120     if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev))
1121       if (asmCall->getCalledValue()
1122             == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker)
1123         insnsToKill.push_back(prev);
1124   } else {
1125     return 0;
1126   }
1127 
1128   result = call->getArgOperand(0);
1129   insnsToKill.push_back(call);
1130 
1131   // Keep killing bitcasts, for sanity.  Note that we no longer care
1132   // about precise ordering as long as there's exactly one use.
1133   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1134     if (!bitcast->hasOneUse()) break;
1135     insnsToKill.push_back(bitcast);
1136     result = bitcast->getOperand(0);
1137   }
1138 
1139   // Delete all the unnecessary instructions, from latest to earliest.
1140   for (SmallVectorImpl<llvm::Instruction*>::iterator
1141          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1142     (*i)->eraseFromParent();
1143 
1144   // Do the fused retain/autorelease if we were asked to.
1145   if (doRetainAutorelease)
1146     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1147 
1148   // Cast back to the result type.
1149   return CGF.Builder.CreateBitCast(result, resultType);
1150 }
1151 
1152 /// Emit an ARC autorelease of the result of a function.
1153 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1154                                             llvm::Value *result) {
1155   // At -O0, try to emit a fused retain/autorelease.
1156   if (CGF.shouldUseFusedARCCalls())
1157     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1158       return fused;
1159 
1160   return CGF.EmitARCAutoreleaseReturnValue(result);
1161 }
1162 
1163 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1164   // Functions with no result always return void.
1165   if (ReturnValue == 0) {
1166     Builder.CreateRetVoid();
1167     return;
1168   }
1169 
1170   llvm::DebugLoc RetDbgLoc;
1171   llvm::Value *RV = 0;
1172   QualType RetTy = FI.getReturnType();
1173   const ABIArgInfo &RetAI = FI.getReturnInfo();
1174 
1175   switch (RetAI.getKind()) {
1176   case ABIArgInfo::Indirect: {
1177     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1178     if (RetTy->isAnyComplexType()) {
1179       ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1180       StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1181     } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1182       // Do nothing; aggregrates get evaluated directly into the destination.
1183     } else {
1184       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1185                         false, Alignment, RetTy);
1186     }
1187     break;
1188   }
1189 
1190   case ABIArgInfo::Extend:
1191   case ABIArgInfo::Direct:
1192     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1193         RetAI.getDirectOffset() == 0) {
1194       // The internal return value temp always will have pointer-to-return-type
1195       // type, just do a load.
1196 
1197       // If the instruction right before the insertion point is a store to the
1198       // return value, we can elide the load, zap the store, and usually zap the
1199       // alloca.
1200       llvm::BasicBlock *InsertBB = Builder.GetInsertBlock();
1201       llvm::StoreInst *SI = 0;
1202       if (InsertBB->empty() ||
1203           !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) ||
1204           SI->getPointerOperand() != ReturnValue || SI->isVolatile()) {
1205         RV = Builder.CreateLoad(ReturnValue);
1206       } else {
1207         // Get the stored value and nuke the now-dead store.
1208         RetDbgLoc = SI->getDebugLoc();
1209         RV = SI->getValueOperand();
1210         SI->eraseFromParent();
1211 
1212         // If that was the only use of the return value, nuke it as well now.
1213         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1214           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1215           ReturnValue = 0;
1216         }
1217       }
1218     } else {
1219       llvm::Value *V = ReturnValue;
1220       // If the value is offset in memory, apply the offset now.
1221       if (unsigned Offs = RetAI.getDirectOffset()) {
1222         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1223         V = Builder.CreateConstGEP1_32(V, Offs);
1224         V = Builder.CreateBitCast(V,
1225                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1226       }
1227 
1228       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1229     }
1230 
1231     // In ARC, end functions that return a retainable type with a call
1232     // to objc_autoreleaseReturnValue.
1233     if (AutoreleaseResult) {
1234       assert(getLangOptions().ObjCAutoRefCount &&
1235              !FI.isReturnsRetained() &&
1236              RetTy->isObjCRetainableType());
1237       RV = emitAutoreleaseOfResult(*this, RV);
1238     }
1239 
1240     break;
1241 
1242   case ABIArgInfo::Ignore:
1243     break;
1244 
1245   case ABIArgInfo::Expand:
1246     assert(0 && "Invalid ABI kind for return argument");
1247   }
1248 
1249   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1250   if (!RetDbgLoc.isUnknown())
1251     Ret->setDebugLoc(RetDbgLoc);
1252 }
1253 
1254 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1255                                           const VarDecl *param) {
1256   // StartFunction converted the ABI-lowered parameter(s) into a
1257   // local alloca.  We need to turn that into an r-value suitable
1258   // for EmitCall.
1259   llvm::Value *local = GetAddrOfLocalVar(param);
1260 
1261   QualType type = param->getType();
1262 
1263   // For the most part, we just need to load the alloca, except:
1264   // 1) aggregate r-values are actually pointers to temporaries, and
1265   // 2) references to aggregates are pointers directly to the aggregate.
1266   // I don't know why references to non-aggregates are different here.
1267   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1268     if (hasAggregateLLVMType(ref->getPointeeType()))
1269       return args.add(RValue::getAggregate(local), type);
1270 
1271     // Locals which are references to scalars are represented
1272     // with allocas holding the pointer.
1273     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1274   }
1275 
1276   if (type->isAnyComplexType()) {
1277     ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1278     return args.add(RValue::getComplex(complex), type);
1279   }
1280 
1281   if (hasAggregateLLVMType(type))
1282     return args.add(RValue::getAggregate(local), type);
1283 
1284   unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1285   llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1286   return args.add(RValue::get(value), type);
1287 }
1288 
1289 static bool isProvablyNull(llvm::Value *addr) {
1290   return isa<llvm::ConstantPointerNull>(addr);
1291 }
1292 
1293 static bool isProvablyNonNull(llvm::Value *addr) {
1294   return isa<llvm::AllocaInst>(addr);
1295 }
1296 
1297 /// Emit the actual writing-back of a writeback.
1298 static void emitWriteback(CodeGenFunction &CGF,
1299                           const CallArgList::Writeback &writeback) {
1300   llvm::Value *srcAddr = writeback.Address;
1301   assert(!isProvablyNull(srcAddr) &&
1302          "shouldn't have writeback for provably null argument");
1303 
1304   llvm::BasicBlock *contBB = 0;
1305 
1306   // If the argument wasn't provably non-null, we need to null check
1307   // before doing the store.
1308   bool provablyNonNull = isProvablyNonNull(srcAddr);
1309   if (!provablyNonNull) {
1310     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1311     contBB = CGF.createBasicBlock("icr.done");
1312 
1313     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1314     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1315     CGF.EmitBlock(writebackBB);
1316   }
1317 
1318   // Load the value to writeback.
1319   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1320 
1321   // Cast it back, in case we're writing an id to a Foo* or something.
1322   value = CGF.Builder.CreateBitCast(value,
1323                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1324                             "icr.writeback-cast");
1325 
1326   // Perform the writeback.
1327   QualType srcAddrType = writeback.AddressType;
1328   CGF.EmitStoreThroughLValue(RValue::get(value),
1329                              CGF.MakeAddrLValue(srcAddr, srcAddrType));
1330 
1331   // Jump to the continuation block.
1332   if (!provablyNonNull)
1333     CGF.EmitBlock(contBB);
1334 }
1335 
1336 static void emitWritebacks(CodeGenFunction &CGF,
1337                            const CallArgList &args) {
1338   for (CallArgList::writeback_iterator
1339          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1340     emitWriteback(CGF, *i);
1341 }
1342 
1343 /// Emit an argument that's being passed call-by-writeback.  That is,
1344 /// we are passing the address of
1345 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1346                              const ObjCIndirectCopyRestoreExpr *CRE) {
1347   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1348 
1349   // The dest and src types don't necessarily match in LLVM terms
1350   // because of the crazy ObjC compatibility rules.
1351 
1352   llvm::PointerType *destType =
1353     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1354 
1355   // If the address is a constant null, just pass the appropriate null.
1356   if (isProvablyNull(srcAddr)) {
1357     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1358              CRE->getType());
1359     return;
1360   }
1361 
1362   QualType srcAddrType =
1363     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1364 
1365   // Create the temporary.
1366   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1367                                            "icr.temp");
1368 
1369   // Zero-initialize it if we're not doing a copy-initialization.
1370   bool shouldCopy = CRE->shouldCopy();
1371   if (!shouldCopy) {
1372     llvm::Value *null =
1373       llvm::ConstantPointerNull::get(
1374         cast<llvm::PointerType>(destType->getElementType()));
1375     CGF.Builder.CreateStore(null, temp);
1376   }
1377 
1378   llvm::BasicBlock *contBB = 0;
1379 
1380   // If the address is *not* known to be non-null, we need to switch.
1381   llvm::Value *finalArgument;
1382 
1383   bool provablyNonNull = isProvablyNonNull(srcAddr);
1384   if (provablyNonNull) {
1385     finalArgument = temp;
1386   } else {
1387     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1388 
1389     finalArgument = CGF.Builder.CreateSelect(isNull,
1390                                    llvm::ConstantPointerNull::get(destType),
1391                                              temp, "icr.argument");
1392 
1393     // If we need to copy, then the load has to be conditional, which
1394     // means we need control flow.
1395     if (shouldCopy) {
1396       contBB = CGF.createBasicBlock("icr.cont");
1397       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1398       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1399       CGF.EmitBlock(copyBB);
1400     }
1401   }
1402 
1403   // Perform a copy if necessary.
1404   if (shouldCopy) {
1405     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1406     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1407     assert(srcRV.isScalar());
1408 
1409     llvm::Value *src = srcRV.getScalarVal();
1410     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1411                                     "icr.cast");
1412 
1413     // Use an ordinary store, not a store-to-lvalue.
1414     CGF.Builder.CreateStore(src, temp);
1415   }
1416 
1417   // Finish the control flow if we needed it.
1418   if (shouldCopy && !provablyNonNull)
1419     CGF.EmitBlock(contBB);
1420 
1421   args.addWriteback(srcAddr, srcAddrType, temp);
1422   args.add(RValue::get(finalArgument), CRE->getType());
1423 }
1424 
1425 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1426                                   QualType type) {
1427   if (const ObjCIndirectCopyRestoreExpr *CRE
1428         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1429     assert(getContext().getLangOptions().ObjCAutoRefCount);
1430     assert(getContext().hasSameType(E->getType(), type));
1431     return emitWritebackArg(*this, args, CRE);
1432   }
1433 
1434   assert(type->isReferenceType() == E->isGLValue() &&
1435          "reference binding to unmaterialized r-value!");
1436 
1437   if (E->isGLValue()) {
1438     assert(E->getObjectKind() == OK_Ordinary);
1439     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1440                     type);
1441   }
1442 
1443   if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1444       isa<ImplicitCastExpr>(E) &&
1445       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1446     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1447     assert(L.isSimple());
1448     args.add(RValue::getAggregate(L.getAddress(), L.isVolatileQualified()),
1449              type, /*NeedsCopy*/true);
1450     return;
1451   }
1452 
1453   args.add(EmitAnyExprToTemp(E), type);
1454 }
1455 
1456 /// Emits a call or invoke instruction to the given function, depending
1457 /// on the current state of the EH stack.
1458 llvm::CallSite
1459 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1460                                   ArrayRef<llvm::Value *> Args,
1461                                   const Twine &Name) {
1462   llvm::BasicBlock *InvokeDest = getInvokeDest();
1463   if (!InvokeDest)
1464     return Builder.CreateCall(Callee, Args, Name);
1465 
1466   llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1467   llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest,
1468                                                   Args, Name);
1469   EmitBlock(ContBB);
1470   return Invoke;
1471 }
1472 
1473 llvm::CallSite
1474 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1475                                   const Twine &Name) {
1476   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1477 }
1478 
1479 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1480                             llvm::FunctionType *FTy) {
1481   if (ArgNo < FTy->getNumParams())
1482     assert(Elt->getType() == FTy->getParamType(ArgNo));
1483   else
1484     assert(FTy->isVarArg());
1485   ++ArgNo;
1486 }
1487 
1488 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1489                                        SmallVector<llvm::Value*,16> &Args,
1490                                        llvm::FunctionType *IRFuncTy) {
1491   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1492     unsigned NumElts = AT->getSize().getZExtValue();
1493     QualType EltTy = AT->getElementType();
1494     llvm::Value *Addr = RV.getAggregateAddr();
1495     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1496       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1497       LValue LV = MakeAddrLValue(EltAddr, EltTy);
1498       RValue EltRV;
1499       if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1500         EltRV = RValue::getAggregate(LV.getAddress());
1501       else
1502         EltRV = EmitLoadOfLValue(LV);
1503       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1504     }
1505   } else if (const RecordType *RT = Ty->getAsStructureType()) {
1506     RecordDecl *RD = RT->getDecl();
1507     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1508     llvm::Value *Addr = RV.getAggregateAddr();
1509     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1510          i != e; ++i) {
1511       FieldDecl *FD = *i;
1512       QualType FT = FD->getType();
1513 
1514       // FIXME: What are the right qualifiers here?
1515       LValue LV = EmitLValueForField(Addr, FD, 0);
1516       RValue FldRV;
1517       if (CodeGenFunction::hasAggregateLLVMType(FT))
1518         FldRV = RValue::getAggregate(LV.getAddress());
1519       else
1520         FldRV = EmitLoadOfLValue(LV);
1521       ExpandTypeToArgs(FT, FldRV, Args, IRFuncTy);
1522     }
1523   } else if (isa<ComplexType>(Ty)) {
1524     ComplexPairTy CV = RV.getComplexVal();
1525     Args.push_back(CV.first);
1526     Args.push_back(CV.second);
1527   } else {
1528     assert(RV.isScalar() &&
1529            "Unexpected non-scalar rvalue during struct expansion.");
1530 
1531     // Insert a bitcast as needed.
1532     llvm::Value *V = RV.getScalarVal();
1533     if (Args.size() < IRFuncTy->getNumParams() &&
1534         V->getType() != IRFuncTy->getParamType(Args.size()))
1535       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1536 
1537     Args.push_back(V);
1538   }
1539 }
1540 
1541 
1542 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1543                                  llvm::Value *Callee,
1544                                  ReturnValueSlot ReturnValue,
1545                                  const CallArgList &CallArgs,
1546                                  const Decl *TargetDecl,
1547                                  llvm::Instruction **callOrInvoke) {
1548   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1549   SmallVector<llvm::Value*, 16> Args;
1550 
1551   // Handle struct-return functions by passing a pointer to the
1552   // location that we would like to return into.
1553   QualType RetTy = CallInfo.getReturnType();
1554   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1555 
1556   // IRArgNo - Keep track of the argument number in the callee we're looking at.
1557   unsigned IRArgNo = 0;
1558   llvm::FunctionType *IRFuncTy =
1559     cast<llvm::FunctionType>(
1560                   cast<llvm::PointerType>(Callee->getType())->getElementType());
1561 
1562   // If the call returns a temporary with struct return, create a temporary
1563   // alloca to hold the result, unless one is given to us.
1564   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1565     llvm::Value *Value = ReturnValue.getValue();
1566     if (!Value)
1567       Value = CreateMemTemp(RetTy);
1568     Args.push_back(Value);
1569     checkArgMatches(Value, IRArgNo, IRFuncTy);
1570   }
1571 
1572   assert(CallInfo.arg_size() == CallArgs.size() &&
1573          "Mismatch between function signature & arguments.");
1574   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1575   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1576        I != E; ++I, ++info_it) {
1577     const ABIArgInfo &ArgInfo = info_it->info;
1578     RValue RV = I->RV;
1579 
1580     unsigned TypeAlign =
1581       getContext().getTypeAlignInChars(I->Ty).getQuantity();
1582     switch (ArgInfo.getKind()) {
1583     case ABIArgInfo::Indirect: {
1584       if (RV.isScalar() || RV.isComplex()) {
1585         // Make a temporary alloca to pass the argument.
1586         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1587         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1588           AI->setAlignment(ArgInfo.getIndirectAlign());
1589         Args.push_back(AI);
1590 
1591         if (RV.isScalar())
1592           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1593                             TypeAlign, I->Ty);
1594         else
1595           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1596 
1597         // Validate argument match.
1598         checkArgMatches(AI, IRArgNo, IRFuncTy);
1599       } else {
1600         // We want to avoid creating an unnecessary temporary+copy here;
1601         // however, we need one in two cases:
1602         // 1. If the argument is not byval, and we are required to copy the
1603         //    source.  (This case doesn't occur on any common architecture.)
1604         // 2. If the argument is byval, RV is not sufficiently aligned, and
1605         //    we cannot force it to be sufficiently aligned.
1606         llvm::Value *Addr = RV.getAggregateAddr();
1607         unsigned Align = ArgInfo.getIndirectAlign();
1608         const llvm::TargetData *TD = &CGM.getTargetData();
1609         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
1610             (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
1611              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
1612           // Create an aligned temporary, and copy to it.
1613           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1614           if (Align > AI->getAlignment())
1615             AI->setAlignment(Align);
1616           Args.push_back(AI);
1617           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
1618 
1619           // Validate argument match.
1620           checkArgMatches(AI, IRArgNo, IRFuncTy);
1621         } else {
1622           // Skip the extra memcpy call.
1623           Args.push_back(Addr);
1624 
1625           // Validate argument match.
1626           checkArgMatches(Addr, IRArgNo, IRFuncTy);
1627         }
1628       }
1629       break;
1630     }
1631 
1632     case ABIArgInfo::Ignore:
1633       break;
1634 
1635     case ABIArgInfo::Extend:
1636     case ABIArgInfo::Direct: {
1637       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
1638           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
1639           ArgInfo.getDirectOffset() == 0) {
1640         llvm::Value *V;
1641         if (RV.isScalar())
1642           V = RV.getScalarVal();
1643         else
1644           V = Builder.CreateLoad(RV.getAggregateAddr());
1645 
1646         // If the argument doesn't match, perform a bitcast to coerce it.  This
1647         // can happen due to trivial type mismatches.
1648         if (IRArgNo < IRFuncTy->getNumParams() &&
1649             V->getType() != IRFuncTy->getParamType(IRArgNo))
1650           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
1651         Args.push_back(V);
1652 
1653         checkArgMatches(V, IRArgNo, IRFuncTy);
1654         break;
1655       }
1656 
1657       // FIXME: Avoid the conversion through memory if possible.
1658       llvm::Value *SrcPtr;
1659       if (RV.isScalar()) {
1660         SrcPtr = CreateMemTemp(I->Ty, "coerce");
1661         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
1662       } else if (RV.isComplex()) {
1663         SrcPtr = CreateMemTemp(I->Ty, "coerce");
1664         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
1665       } else
1666         SrcPtr = RV.getAggregateAddr();
1667 
1668       // If the value is offset in memory, apply the offset now.
1669       if (unsigned Offs = ArgInfo.getDirectOffset()) {
1670         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
1671         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
1672         SrcPtr = Builder.CreateBitCast(SrcPtr,
1673                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
1674 
1675       }
1676 
1677       // If the coerce-to type is a first class aggregate, we flatten it and
1678       // pass the elements. Either way is semantically identical, but fast-isel
1679       // and the optimizer generally likes scalar values better than FCAs.
1680       if (llvm::StructType *STy =
1681             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
1682         SrcPtr = Builder.CreateBitCast(SrcPtr,
1683                                        llvm::PointerType::getUnqual(STy));
1684         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1685           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
1686           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
1687           // We don't know what we're loading from.
1688           LI->setAlignment(1);
1689           Args.push_back(LI);
1690 
1691           // Validate argument match.
1692           checkArgMatches(LI, IRArgNo, IRFuncTy);
1693         }
1694       } else {
1695         // In the simple case, just pass the coerced loaded value.
1696         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
1697                                          *this));
1698 
1699         // Validate argument match.
1700         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
1701       }
1702 
1703       break;
1704     }
1705 
1706     case ABIArgInfo::Expand:
1707       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
1708       IRArgNo = Args.size();
1709       break;
1710     }
1711   }
1712 
1713   // If the callee is a bitcast of a function to a varargs pointer to function
1714   // type, check to see if we can remove the bitcast.  This handles some cases
1715   // with unprototyped functions.
1716   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
1717     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
1718       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
1719       llvm::FunctionType *CurFT =
1720         cast<llvm::FunctionType>(CurPT->getElementType());
1721       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
1722 
1723       if (CE->getOpcode() == llvm::Instruction::BitCast &&
1724           ActualFT->getReturnType() == CurFT->getReturnType() &&
1725           ActualFT->getNumParams() == CurFT->getNumParams() &&
1726           ActualFT->getNumParams() == Args.size() &&
1727           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
1728         bool ArgsMatch = true;
1729         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
1730           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
1731             ArgsMatch = false;
1732             break;
1733           }
1734 
1735         // Strip the cast if we can get away with it.  This is a nice cleanup,
1736         // but also allows us to inline the function at -O0 if it is marked
1737         // always_inline.
1738         if (ArgsMatch)
1739           Callee = CalleeF;
1740       }
1741     }
1742 
1743   unsigned CallingConv;
1744   CodeGen::AttributeListType AttributeList;
1745   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
1746   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
1747                                                    AttributeList.end());
1748 
1749   llvm::BasicBlock *InvokeDest = 0;
1750   if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
1751     InvokeDest = getInvokeDest();
1752 
1753   llvm::CallSite CS;
1754   if (!InvokeDest) {
1755     CS = Builder.CreateCall(Callee, Args);
1756   } else {
1757     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
1758     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
1759     EmitBlock(Cont);
1760   }
1761   if (callOrInvoke)
1762     *callOrInvoke = CS.getInstruction();
1763 
1764   CS.setAttributes(Attrs);
1765   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1766 
1767   // If the call doesn't return, finish the basic block and clear the
1768   // insertion point; this allows the rest of IRgen to discard
1769   // unreachable code.
1770   if (CS.doesNotReturn()) {
1771     Builder.CreateUnreachable();
1772     Builder.ClearInsertionPoint();
1773 
1774     // FIXME: For now, emit a dummy basic block because expr emitters in
1775     // generally are not ready to handle emitting expressions at unreachable
1776     // points.
1777     EnsureInsertPoint();
1778 
1779     // Return a reasonable RValue.
1780     return GetUndefRValue(RetTy);
1781   }
1782 
1783   llvm::Instruction *CI = CS.getInstruction();
1784   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
1785     CI->setName("call");
1786 
1787   // Emit any writebacks immediately.  Arguably this should happen
1788   // after any return-value munging.
1789   if (CallArgs.hasWritebacks())
1790     emitWritebacks(*this, CallArgs);
1791 
1792   switch (RetAI.getKind()) {
1793   case ABIArgInfo::Indirect: {
1794     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1795     if (RetTy->isAnyComplexType())
1796       return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
1797     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
1798       return RValue::getAggregate(Args[0]);
1799     return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
1800   }
1801 
1802   case ABIArgInfo::Ignore:
1803     // If we are ignoring an argument that had a result, make sure to
1804     // construct the appropriate return value for our caller.
1805     return GetUndefRValue(RetTy);
1806 
1807   case ABIArgInfo::Extend:
1808   case ABIArgInfo::Direct: {
1809     llvm::Type *RetIRTy = ConvertType(RetTy);
1810     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
1811       if (RetTy->isAnyComplexType()) {
1812         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
1813         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
1814         return RValue::getComplex(std::make_pair(Real, Imag));
1815       }
1816       if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1817         llvm::Value *DestPtr = ReturnValue.getValue();
1818         bool DestIsVolatile = ReturnValue.isVolatile();
1819 
1820         if (!DestPtr) {
1821           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
1822           DestIsVolatile = false;
1823         }
1824         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
1825         return RValue::getAggregate(DestPtr);
1826       }
1827 
1828       // If the argument doesn't match, perform a bitcast to coerce it.  This
1829       // can happen due to trivial type mismatches.
1830       llvm::Value *V = CI;
1831       if (V->getType() != RetIRTy)
1832         V = Builder.CreateBitCast(V, RetIRTy);
1833       return RValue::get(V);
1834     }
1835 
1836     llvm::Value *DestPtr = ReturnValue.getValue();
1837     bool DestIsVolatile = ReturnValue.isVolatile();
1838 
1839     if (!DestPtr) {
1840       DestPtr = CreateMemTemp(RetTy, "coerce");
1841       DestIsVolatile = false;
1842     }
1843 
1844     // If the value is offset in memory, apply the offset now.
1845     llvm::Value *StorePtr = DestPtr;
1846     if (unsigned Offs = RetAI.getDirectOffset()) {
1847       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
1848       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
1849       StorePtr = Builder.CreateBitCast(StorePtr,
1850                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1851     }
1852     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
1853 
1854     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1855     if (RetTy->isAnyComplexType())
1856       return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
1857     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
1858       return RValue::getAggregate(DestPtr);
1859     return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
1860   }
1861 
1862   case ABIArgInfo::Expand:
1863     assert(0 && "Invalid ABI kind for return argument");
1864   }
1865 
1866   assert(0 && "Unhandled ABIArgInfo::Kind");
1867   return RValue::get(0);
1868 }
1869 
1870 /* VarArg handling */
1871 
1872 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
1873   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
1874 }
1875