1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 using namespace clang; 35 using namespace CodeGen; 36 37 /***/ 38 39 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 40 switch (CC) { 41 default: return llvm::CallingConv::C; 42 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 43 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 44 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 45 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 46 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 47 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 48 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 49 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 50 // TODO: Add support for __pascal to LLVM. 51 case CC_X86Pascal: return llvm::CallingConv::C; 52 // TODO: Add support for __vectorcall to LLVM. 53 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 54 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 55 case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL; 56 } 57 } 58 59 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 60 /// qualification. 61 /// FIXME: address space qualification? 62 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 63 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 64 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 65 } 66 67 /// Returns the canonical formal type of the given C++ method. 68 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 69 return MD->getType()->getCanonicalTypeUnqualified() 70 .getAs<FunctionProtoType>(); 71 } 72 73 /// Returns the "extra-canonicalized" return type, which discards 74 /// qualifiers on the return type. Codegen doesn't care about them, 75 /// and it makes ABI code a little easier to be able to assume that 76 /// all parameter and return types are top-level unqualified. 77 static CanQualType GetReturnType(QualType RetTy) { 78 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 79 } 80 81 /// Arrange the argument and result information for a value of the given 82 /// unprototyped freestanding function type. 83 const CGFunctionInfo & 84 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 85 // When translating an unprototyped function type, always use a 86 // variadic type. 87 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 88 /*instanceMethod=*/false, 89 /*chainCall=*/false, None, 90 FTNP->getExtInfo(), RequiredArgs(0)); 91 } 92 93 /// Arrange the LLVM function layout for a value of the given function 94 /// type, on top of any implicit parameters already stored. 95 static const CGFunctionInfo & 96 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 97 SmallVectorImpl<CanQualType> &prefix, 98 CanQual<FunctionProtoType> FTP) { 99 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 100 // FIXME: Kill copy. 101 prefix.append(FTP->param_type_begin(), FTP->param_type_end()); 102 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 103 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 104 /*chainCall=*/false, prefix, 105 FTP->getExtInfo(), required); 106 } 107 108 /// Arrange the argument and result information for a value of the 109 /// given freestanding function type. 110 const CGFunctionInfo & 111 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 112 SmallVector<CanQualType, 16> argTypes; 113 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 114 FTP); 115 } 116 117 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 118 // Set the appropriate calling convention for the Function. 119 if (D->hasAttr<StdCallAttr>()) 120 return CC_X86StdCall; 121 122 if (D->hasAttr<FastCallAttr>()) 123 return CC_X86FastCall; 124 125 if (D->hasAttr<ThisCallAttr>()) 126 return CC_X86ThisCall; 127 128 if (D->hasAttr<VectorCallAttr>()) 129 return CC_X86VectorCall; 130 131 if (D->hasAttr<PascalAttr>()) 132 return CC_X86Pascal; 133 134 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 135 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 136 137 if (D->hasAttr<IntelOclBiccAttr>()) 138 return CC_IntelOclBicc; 139 140 if (D->hasAttr<MSABIAttr>()) 141 return IsWindows ? CC_C : CC_X86_64Win64; 142 143 if (D->hasAttr<SysVABIAttr>()) 144 return IsWindows ? CC_X86_64SysV : CC_C; 145 146 return CC_C; 147 } 148 149 /// Arrange the argument and result information for a call to an 150 /// unknown C++ non-static member function of the given abstract type. 151 /// (Zero value of RD means we don't have any meaningful "this" argument type, 152 /// so fall back to a generic pointer type). 153 /// The member function must be an ordinary function, i.e. not a 154 /// constructor or destructor. 155 const CGFunctionInfo & 156 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 157 const FunctionProtoType *FTP) { 158 SmallVector<CanQualType, 16> argTypes; 159 160 // Add the 'this' pointer. 161 if (RD) 162 argTypes.push_back(GetThisType(Context, RD)); 163 else 164 argTypes.push_back(Context.VoidPtrTy); 165 166 return ::arrangeLLVMFunctionInfo( 167 *this, true, argTypes, 168 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 169 } 170 171 /// Arrange the argument and result information for a declaration or 172 /// definition of the given C++ non-static member function. The 173 /// member function must be an ordinary function, i.e. not a 174 /// constructor or destructor. 175 const CGFunctionInfo & 176 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 177 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 178 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 179 180 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 181 182 if (MD->isInstance()) { 183 // The abstract case is perfectly fine. 184 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 185 return arrangeCXXMethodType(ThisType, prototype.getTypePtr()); 186 } 187 188 return arrangeFreeFunctionType(prototype); 189 } 190 191 const CGFunctionInfo & 192 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 193 StructorType Type) { 194 195 SmallVector<CanQualType, 16> argTypes; 196 argTypes.push_back(GetThisType(Context, MD->getParent())); 197 198 GlobalDecl GD; 199 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 200 GD = GlobalDecl(CD, toCXXCtorType(Type)); 201 } else { 202 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 203 GD = GlobalDecl(DD, toCXXDtorType(Type)); 204 } 205 206 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 207 208 // Add the formal parameters. 209 argTypes.append(FTP->param_type_begin(), FTP->param_type_end()); 210 211 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 212 213 RequiredArgs required = 214 (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All); 215 216 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 217 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 218 ? argTypes.front() 219 : TheCXXABI.hasMostDerivedReturn(GD) 220 ? CGM.getContext().VoidPtrTy 221 : Context.VoidTy; 222 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 223 /*chainCall=*/false, argTypes, extInfo, 224 required); 225 } 226 227 /// Arrange a call to a C++ method, passing the given arguments. 228 const CGFunctionInfo & 229 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 230 const CXXConstructorDecl *D, 231 CXXCtorType CtorKind, 232 unsigned ExtraArgs) { 233 // FIXME: Kill copy. 234 SmallVector<CanQualType, 16> ArgTypes; 235 for (const auto &Arg : args) 236 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 237 238 CanQual<FunctionProtoType> FPT = GetFormalType(D); 239 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs); 240 GlobalDecl GD(D, CtorKind); 241 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 242 ? ArgTypes.front() 243 : TheCXXABI.hasMostDerivedReturn(GD) 244 ? CGM.getContext().VoidPtrTy 245 : Context.VoidTy; 246 247 FunctionType::ExtInfo Info = FPT->getExtInfo(); 248 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 249 /*chainCall=*/false, ArgTypes, Info, 250 Required); 251 } 252 253 /// Arrange the argument and result information for the declaration or 254 /// definition of the given function. 255 const CGFunctionInfo & 256 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 257 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 258 if (MD->isInstance()) 259 return arrangeCXXMethodDeclaration(MD); 260 261 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 262 263 assert(isa<FunctionType>(FTy)); 264 265 // When declaring a function without a prototype, always use a 266 // non-variadic type. 267 if (isa<FunctionNoProtoType>(FTy)) { 268 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 269 return arrangeLLVMFunctionInfo( 270 noProto->getReturnType(), /*instanceMethod=*/false, 271 /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All); 272 } 273 274 assert(isa<FunctionProtoType>(FTy)); 275 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 276 } 277 278 /// Arrange the argument and result information for the declaration or 279 /// definition of an Objective-C method. 280 const CGFunctionInfo & 281 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 282 // It happens that this is the same as a call with no optional 283 // arguments, except also using the formal 'self' type. 284 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 285 } 286 287 /// Arrange the argument and result information for the function type 288 /// through which to perform a send to the given Objective-C method, 289 /// using the given receiver type. The receiver type is not always 290 /// the 'self' type of the method or even an Objective-C pointer type. 291 /// This is *not* the right method for actually performing such a 292 /// message send, due to the possibility of optional arguments. 293 const CGFunctionInfo & 294 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 295 QualType receiverType) { 296 SmallVector<CanQualType, 16> argTys; 297 argTys.push_back(Context.getCanonicalParamType(receiverType)); 298 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 299 // FIXME: Kill copy? 300 for (const auto *I : MD->params()) { 301 argTys.push_back(Context.getCanonicalParamType(I->getType())); 302 } 303 304 FunctionType::ExtInfo einfo; 305 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 306 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 307 308 if (getContext().getLangOpts().ObjCAutoRefCount && 309 MD->hasAttr<NSReturnsRetainedAttr>()) 310 einfo = einfo.withProducesResult(true); 311 312 RequiredArgs required = 313 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 314 315 return arrangeLLVMFunctionInfo( 316 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 317 /*chainCall=*/false, argTys, einfo, required); 318 } 319 320 const CGFunctionInfo & 321 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 322 // FIXME: Do we need to handle ObjCMethodDecl? 323 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 324 325 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 326 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 327 328 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 329 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 330 331 return arrangeFunctionDeclaration(FD); 332 } 333 334 /// Arrange a thunk that takes 'this' as the first parameter followed by 335 /// varargs. Return a void pointer, regardless of the actual return type. 336 /// The body of the thunk will end in a musttail call to a function of the 337 /// correct type, and the caller will bitcast the function to the correct 338 /// prototype. 339 const CGFunctionInfo & 340 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 341 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 342 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 343 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 344 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 345 /*chainCall=*/false, ArgTys, 346 FTP->getExtInfo(), RequiredArgs(1)); 347 } 348 349 /// Arrange a call as unto a free function, except possibly with an 350 /// additional number of formal parameters considered required. 351 static const CGFunctionInfo & 352 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 353 CodeGenModule &CGM, 354 const CallArgList &args, 355 const FunctionType *fnType, 356 unsigned numExtraRequiredArgs, 357 bool chainCall) { 358 assert(args.size() >= numExtraRequiredArgs); 359 360 // In most cases, there are no optional arguments. 361 RequiredArgs required = RequiredArgs::All; 362 363 // If we have a variadic prototype, the required arguments are the 364 // extra prefix plus the arguments in the prototype. 365 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 366 if (proto->isVariadic()) 367 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 368 369 // If we don't have a prototype at all, but we're supposed to 370 // explicitly use the variadic convention for unprototyped calls, 371 // treat all of the arguments as required but preserve the nominal 372 // possibility of variadics. 373 } else if (CGM.getTargetCodeGenInfo() 374 .isNoProtoCallVariadic(args, 375 cast<FunctionNoProtoType>(fnType))) { 376 required = RequiredArgs(args.size()); 377 } 378 379 // FIXME: Kill copy. 380 SmallVector<CanQualType, 16> argTypes; 381 for (const auto &arg : args) 382 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 383 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 384 /*instanceMethod=*/false, chainCall, 385 argTypes, fnType->getExtInfo(), required); 386 } 387 388 /// Figure out the rules for calling a function with the given formal 389 /// type using the given arguments. The arguments are necessary 390 /// because the function might be unprototyped, in which case it's 391 /// target-dependent in crazy ways. 392 const CGFunctionInfo & 393 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 394 const FunctionType *fnType, 395 bool chainCall) { 396 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 397 chainCall ? 1 : 0, chainCall); 398 } 399 400 /// A block function call is essentially a free-function call with an 401 /// extra implicit argument. 402 const CGFunctionInfo & 403 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 404 const FunctionType *fnType) { 405 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 406 /*chainCall=*/false); 407 } 408 409 const CGFunctionInfo & 410 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 411 const CallArgList &args, 412 FunctionType::ExtInfo info, 413 RequiredArgs required) { 414 // FIXME: Kill copy. 415 SmallVector<CanQualType, 16> argTypes; 416 for (const auto &Arg : args) 417 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 418 return arrangeLLVMFunctionInfo( 419 GetReturnType(resultType), /*instanceMethod=*/false, 420 /*chainCall=*/false, argTypes, info, required); 421 } 422 423 /// Arrange a call to a C++ method, passing the given arguments. 424 const CGFunctionInfo & 425 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 426 const FunctionProtoType *FPT, 427 RequiredArgs required) { 428 // FIXME: Kill copy. 429 SmallVector<CanQualType, 16> argTypes; 430 for (const auto &Arg : args) 431 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 432 433 FunctionType::ExtInfo info = FPT->getExtInfo(); 434 return arrangeLLVMFunctionInfo( 435 GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true, 436 /*chainCall=*/false, argTypes, info, required); 437 } 438 439 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration( 440 QualType resultType, const FunctionArgList &args, 441 const FunctionType::ExtInfo &info, bool isVariadic) { 442 // FIXME: Kill copy. 443 SmallVector<CanQualType, 16> argTypes; 444 for (auto Arg : args) 445 argTypes.push_back(Context.getCanonicalParamType(Arg->getType())); 446 447 RequiredArgs required = 448 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 449 return arrangeLLVMFunctionInfo( 450 GetReturnType(resultType), /*instanceMethod=*/false, 451 /*chainCall=*/false, argTypes, info, required); 452 } 453 454 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 455 return arrangeLLVMFunctionInfo( 456 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 457 None, FunctionType::ExtInfo(), RequiredArgs::All); 458 } 459 460 /// Arrange the argument and result information for an abstract value 461 /// of a given function type. This is the method which all of the 462 /// above functions ultimately defer to. 463 const CGFunctionInfo & 464 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 465 bool instanceMethod, 466 bool chainCall, 467 ArrayRef<CanQualType> argTypes, 468 FunctionType::ExtInfo info, 469 RequiredArgs required) { 470 assert(std::all_of(argTypes.begin(), argTypes.end(), 471 std::mem_fun_ref(&CanQualType::isCanonicalAsParam))); 472 473 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 474 475 // Lookup or create unique function info. 476 llvm::FoldingSetNodeID ID; 477 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required, 478 resultType, argTypes); 479 480 void *insertPos = nullptr; 481 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 482 if (FI) 483 return *FI; 484 485 // Construct the function info. We co-allocate the ArgInfos. 486 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 487 resultType, argTypes, required); 488 FunctionInfos.InsertNode(FI, insertPos); 489 490 bool inserted = FunctionsBeingProcessed.insert(FI).second; 491 (void)inserted; 492 assert(inserted && "Recursively being processed?"); 493 494 // Compute ABI information. 495 getABIInfo().computeInfo(*FI); 496 497 // Loop over all of the computed argument and return value info. If any of 498 // them are direct or extend without a specified coerce type, specify the 499 // default now. 500 ABIArgInfo &retInfo = FI->getReturnInfo(); 501 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 502 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 503 504 for (auto &I : FI->arguments()) 505 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 506 I.info.setCoerceToType(ConvertType(I.type)); 507 508 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 509 assert(erased && "Not in set?"); 510 511 return *FI; 512 } 513 514 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 515 bool instanceMethod, 516 bool chainCall, 517 const FunctionType::ExtInfo &info, 518 CanQualType resultType, 519 ArrayRef<CanQualType> argTypes, 520 RequiredArgs required) { 521 void *buffer = operator new(sizeof(CGFunctionInfo) + 522 sizeof(ArgInfo) * (argTypes.size() + 1)); 523 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 524 FI->CallingConvention = llvmCC; 525 FI->EffectiveCallingConvention = llvmCC; 526 FI->ASTCallingConvention = info.getCC(); 527 FI->InstanceMethod = instanceMethod; 528 FI->ChainCall = chainCall; 529 FI->NoReturn = info.getNoReturn(); 530 FI->ReturnsRetained = info.getProducesResult(); 531 FI->Required = required; 532 FI->HasRegParm = info.getHasRegParm(); 533 FI->RegParm = info.getRegParm(); 534 FI->ArgStruct = nullptr; 535 FI->NumArgs = argTypes.size(); 536 FI->getArgsBuffer()[0].type = resultType; 537 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 538 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 539 return FI; 540 } 541 542 /***/ 543 544 namespace { 545 // ABIArgInfo::Expand implementation. 546 547 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 548 struct TypeExpansion { 549 enum TypeExpansionKind { 550 // Elements of constant arrays are expanded recursively. 551 TEK_ConstantArray, 552 // Record fields are expanded recursively (but if record is a union, only 553 // the field with the largest size is expanded). 554 TEK_Record, 555 // For complex types, real and imaginary parts are expanded recursively. 556 TEK_Complex, 557 // All other types are not expandable. 558 TEK_None 559 }; 560 561 const TypeExpansionKind Kind; 562 563 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 564 virtual ~TypeExpansion() {} 565 }; 566 567 struct ConstantArrayExpansion : TypeExpansion { 568 QualType EltTy; 569 uint64_t NumElts; 570 571 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 572 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 573 static bool classof(const TypeExpansion *TE) { 574 return TE->Kind == TEK_ConstantArray; 575 } 576 }; 577 578 struct RecordExpansion : TypeExpansion { 579 SmallVector<const CXXBaseSpecifier *, 1> Bases; 580 581 SmallVector<const FieldDecl *, 1> Fields; 582 583 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 584 SmallVector<const FieldDecl *, 1> &&Fields) 585 : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {} 586 static bool classof(const TypeExpansion *TE) { 587 return TE->Kind == TEK_Record; 588 } 589 }; 590 591 struct ComplexExpansion : TypeExpansion { 592 QualType EltTy; 593 594 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 595 static bool classof(const TypeExpansion *TE) { 596 return TE->Kind == TEK_Complex; 597 } 598 }; 599 600 struct NoExpansion : TypeExpansion { 601 NoExpansion() : TypeExpansion(TEK_None) {} 602 static bool classof(const TypeExpansion *TE) { 603 return TE->Kind == TEK_None; 604 } 605 }; 606 } // namespace 607 608 static std::unique_ptr<TypeExpansion> 609 getTypeExpansion(QualType Ty, const ASTContext &Context) { 610 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 611 return llvm::make_unique<ConstantArrayExpansion>( 612 AT->getElementType(), AT->getSize().getZExtValue()); 613 } 614 if (const RecordType *RT = Ty->getAs<RecordType>()) { 615 SmallVector<const CXXBaseSpecifier *, 1> Bases; 616 SmallVector<const FieldDecl *, 1> Fields; 617 const RecordDecl *RD = RT->getDecl(); 618 assert(!RD->hasFlexibleArrayMember() && 619 "Cannot expand structure with flexible array."); 620 if (RD->isUnion()) { 621 // Unions can be here only in degenerative cases - all the fields are same 622 // after flattening. Thus we have to use the "largest" field. 623 const FieldDecl *LargestFD = nullptr; 624 CharUnits UnionSize = CharUnits::Zero(); 625 626 for (const auto *FD : RD->fields()) { 627 // Skip zero length bitfields. 628 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 629 continue; 630 assert(!FD->isBitField() && 631 "Cannot expand structure with bit-field members."); 632 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 633 if (UnionSize < FieldSize) { 634 UnionSize = FieldSize; 635 LargestFD = FD; 636 } 637 } 638 if (LargestFD) 639 Fields.push_back(LargestFD); 640 } else { 641 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 642 assert(!CXXRD->isDynamicClass() && 643 "cannot expand vtable pointers in dynamic classes"); 644 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 645 Bases.push_back(&BS); 646 } 647 648 for (const auto *FD : RD->fields()) { 649 // Skip zero length bitfields. 650 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 651 continue; 652 assert(!FD->isBitField() && 653 "Cannot expand structure with bit-field members."); 654 Fields.push_back(FD); 655 } 656 } 657 return llvm::make_unique<RecordExpansion>(std::move(Bases), 658 std::move(Fields)); 659 } 660 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 661 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 662 } 663 return llvm::make_unique<NoExpansion>(); 664 } 665 666 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 667 auto Exp = getTypeExpansion(Ty, Context); 668 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 669 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 670 } 671 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 672 int Res = 0; 673 for (auto BS : RExp->Bases) 674 Res += getExpansionSize(BS->getType(), Context); 675 for (auto FD : RExp->Fields) 676 Res += getExpansionSize(FD->getType(), Context); 677 return Res; 678 } 679 if (isa<ComplexExpansion>(Exp.get())) 680 return 2; 681 assert(isa<NoExpansion>(Exp.get())); 682 return 1; 683 } 684 685 void 686 CodeGenTypes::getExpandedTypes(QualType Ty, 687 SmallVectorImpl<llvm::Type *>::iterator &TI) { 688 auto Exp = getTypeExpansion(Ty, Context); 689 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 690 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 691 getExpandedTypes(CAExp->EltTy, TI); 692 } 693 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 694 for (auto BS : RExp->Bases) 695 getExpandedTypes(BS->getType(), TI); 696 for (auto FD : RExp->Fields) 697 getExpandedTypes(FD->getType(), TI); 698 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 699 llvm::Type *EltTy = ConvertType(CExp->EltTy); 700 *TI++ = EltTy; 701 *TI++ = EltTy; 702 } else { 703 assert(isa<NoExpansion>(Exp.get())); 704 *TI++ = ConvertType(Ty); 705 } 706 } 707 708 void CodeGenFunction::ExpandTypeFromArgs( 709 QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) { 710 assert(LV.isSimple() && 711 "Unexpected non-simple lvalue during struct expansion."); 712 713 auto Exp = getTypeExpansion(Ty, getContext()); 714 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 715 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 716 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, i); 717 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 718 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 719 } 720 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 721 llvm::Value *This = LV.getAddress(); 722 for (const CXXBaseSpecifier *BS : RExp->Bases) { 723 // Perform a single step derived-to-base conversion. 724 llvm::Value *Base = 725 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 726 /*NullCheckValue=*/false, SourceLocation()); 727 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 728 729 // Recurse onto bases. 730 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 731 } 732 for (auto FD : RExp->Fields) { 733 // FIXME: What are the right qualifiers here? 734 LValue SubLV = EmitLValueForField(LV, FD); 735 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 736 } 737 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 738 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real"); 739 EmitStoreThroughLValue(RValue::get(*AI++), 740 MakeAddrLValue(RealAddr, CExp->EltTy)); 741 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag"); 742 EmitStoreThroughLValue(RValue::get(*AI++), 743 MakeAddrLValue(ImagAddr, CExp->EltTy)); 744 } else { 745 assert(isa<NoExpansion>(Exp.get())); 746 EmitStoreThroughLValue(RValue::get(*AI++), LV); 747 } 748 } 749 750 void CodeGenFunction::ExpandTypeToArgs( 751 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 752 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 753 auto Exp = getTypeExpansion(Ty, getContext()); 754 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 755 llvm::Value *Addr = RV.getAggregateAddr(); 756 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 757 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, i); 758 RValue EltRV = 759 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 760 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 761 } 762 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 763 llvm::Value *This = RV.getAggregateAddr(); 764 for (const CXXBaseSpecifier *BS : RExp->Bases) { 765 // Perform a single step derived-to-base conversion. 766 llvm::Value *Base = 767 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 768 /*NullCheckValue=*/false, SourceLocation()); 769 RValue BaseRV = RValue::getAggregate(Base); 770 771 // Recurse onto bases. 772 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 773 IRCallArgPos); 774 } 775 776 LValue LV = MakeAddrLValue(This, Ty); 777 for (auto FD : RExp->Fields) { 778 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 779 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 780 IRCallArgPos); 781 } 782 } else if (isa<ComplexExpansion>(Exp.get())) { 783 ComplexPairTy CV = RV.getComplexVal(); 784 IRCallArgs[IRCallArgPos++] = CV.first; 785 IRCallArgs[IRCallArgPos++] = CV.second; 786 } else { 787 assert(isa<NoExpansion>(Exp.get())); 788 assert(RV.isScalar() && 789 "Unexpected non-scalar rvalue during struct expansion."); 790 791 // Insert a bitcast as needed. 792 llvm::Value *V = RV.getScalarVal(); 793 if (IRCallArgPos < IRFuncTy->getNumParams() && 794 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 795 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 796 797 IRCallArgs[IRCallArgPos++] = V; 798 } 799 } 800 801 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 802 /// accessing some number of bytes out of it, try to gep into the struct to get 803 /// at its inner goodness. Dive as deep as possible without entering an element 804 /// with an in-memory size smaller than DstSize. 805 static llvm::Value * 806 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 807 llvm::StructType *SrcSTy, 808 uint64_t DstSize, CodeGenFunction &CGF) { 809 // We can't dive into a zero-element struct. 810 if (SrcSTy->getNumElements() == 0) return SrcPtr; 811 812 llvm::Type *FirstElt = SrcSTy->getElementType(0); 813 814 // If the first elt is at least as large as what we're looking for, or if the 815 // first element is the same size as the whole struct, we can enter it. The 816 // comparison must be made on the store size and not the alloca size. Using 817 // the alloca size may overstate the size of the load. 818 uint64_t FirstEltSize = 819 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 820 if (FirstEltSize < DstSize && 821 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 822 return SrcPtr; 823 824 // GEP into the first element. 825 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 826 827 // If the first element is a struct, recurse. 828 llvm::Type *SrcTy = 829 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 830 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 831 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 832 833 return SrcPtr; 834 } 835 836 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 837 /// are either integers or pointers. This does a truncation of the value if it 838 /// is too large or a zero extension if it is too small. 839 /// 840 /// This behaves as if the value were coerced through memory, so on big-endian 841 /// targets the high bits are preserved in a truncation, while little-endian 842 /// targets preserve the low bits. 843 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 844 llvm::Type *Ty, 845 CodeGenFunction &CGF) { 846 if (Val->getType() == Ty) 847 return Val; 848 849 if (isa<llvm::PointerType>(Val->getType())) { 850 // If this is Pointer->Pointer avoid conversion to and from int. 851 if (isa<llvm::PointerType>(Ty)) 852 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 853 854 // Convert the pointer to an integer so we can play with its width. 855 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 856 } 857 858 llvm::Type *DestIntTy = Ty; 859 if (isa<llvm::PointerType>(DestIntTy)) 860 DestIntTy = CGF.IntPtrTy; 861 862 if (Val->getType() != DestIntTy) { 863 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 864 if (DL.isBigEndian()) { 865 // Preserve the high bits on big-endian targets. 866 // That is what memory coercion does. 867 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 868 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 869 870 if (SrcSize > DstSize) { 871 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 872 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 873 } else { 874 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 875 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 876 } 877 } else { 878 // Little-endian targets preserve the low bits. No shifts required. 879 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 880 } 881 } 882 883 if (isa<llvm::PointerType>(Ty)) 884 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 885 return Val; 886 } 887 888 889 890 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 891 /// a pointer to an object of type \arg Ty. 892 /// 893 /// This safely handles the case when the src type is smaller than the 894 /// destination type; in this situation the values of bits which not 895 /// present in the src are undefined. 896 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 897 llvm::Type *Ty, 898 CodeGenFunction &CGF) { 899 llvm::Type *SrcTy = 900 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 901 902 // If SrcTy and Ty are the same, just do a load. 903 if (SrcTy == Ty) 904 return CGF.Builder.CreateLoad(SrcPtr); 905 906 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 907 908 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 909 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 910 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 911 } 912 913 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 914 915 // If the source and destination are integer or pointer types, just do an 916 // extension or truncation to the desired type. 917 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 918 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 919 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 920 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 921 } 922 923 // If load is legal, just bitcast the src pointer. 924 if (SrcSize >= DstSize) { 925 // Generally SrcSize is never greater than DstSize, since this means we are 926 // losing bits. However, this can happen in cases where the structure has 927 // additional padding, for example due to a user specified alignment. 928 // 929 // FIXME: Assert that we aren't truncating non-padding bits when have access 930 // to that information. 931 llvm::Value *Casted = 932 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 933 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 934 // FIXME: Use better alignment / avoid requiring aligned load. 935 Load->setAlignment(1); 936 return Load; 937 } 938 939 // Otherwise do coercion through memory. This is stupid, but 940 // simple. 941 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 942 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 943 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 944 llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy); 945 // FIXME: Use better alignment. 946 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 947 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 948 1, false); 949 return CGF.Builder.CreateLoad(Tmp); 950 } 951 952 // Function to store a first-class aggregate into memory. We prefer to 953 // store the elements rather than the aggregate to be more friendly to 954 // fast-isel. 955 // FIXME: Do we need to recurse here? 956 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 957 llvm::Value *DestPtr, bool DestIsVolatile, 958 bool LowAlignment) { 959 // Prefer scalar stores to first-class aggregate stores. 960 if (llvm::StructType *STy = 961 dyn_cast<llvm::StructType>(Val->getType())) { 962 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 963 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 964 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 965 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 966 DestIsVolatile); 967 if (LowAlignment) 968 SI->setAlignment(1); 969 } 970 } else { 971 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 972 if (LowAlignment) 973 SI->setAlignment(1); 974 } 975 } 976 977 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 978 /// where the source and destination may have different types. 979 /// 980 /// This safely handles the case when the src type is larger than the 981 /// destination type; the upper bits of the src will be lost. 982 static void CreateCoercedStore(llvm::Value *Src, 983 llvm::Value *DstPtr, 984 bool DstIsVolatile, 985 CodeGenFunction &CGF) { 986 llvm::Type *SrcTy = Src->getType(); 987 llvm::Type *DstTy = 988 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 989 if (SrcTy == DstTy) { 990 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 991 return; 992 } 993 994 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 995 996 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 997 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 998 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 999 } 1000 1001 // If the source and destination are integer or pointer types, just do an 1002 // extension or truncation to the desired type. 1003 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1004 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1005 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1006 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 1007 return; 1008 } 1009 1010 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1011 1012 // If store is legal, just bitcast the src pointer. 1013 if (SrcSize <= DstSize) { 1014 llvm::Value *Casted = 1015 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 1016 // FIXME: Use better alignment / avoid requiring aligned store. 1017 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 1018 } else { 1019 // Otherwise do coercion through memory. This is stupid, but 1020 // simple. 1021 1022 // Generally SrcSize is never greater than DstSize, since this means we are 1023 // losing bits. However, this can happen in cases where the structure has 1024 // additional padding, for example due to a user specified alignment. 1025 // 1026 // FIXME: Assert that we aren't truncating non-padding bits when have access 1027 // to that information. 1028 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 1029 CGF.Builder.CreateStore(Src, Tmp); 1030 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 1031 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 1032 llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy); 1033 // FIXME: Use better alignment. 1034 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1035 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1036 1, false); 1037 } 1038 } 1039 1040 namespace { 1041 1042 /// Encapsulates information about the way function arguments from 1043 /// CGFunctionInfo should be passed to actual LLVM IR function. 1044 class ClangToLLVMArgMapping { 1045 static const unsigned InvalidIndex = ~0U; 1046 unsigned InallocaArgNo; 1047 unsigned SRetArgNo; 1048 unsigned TotalIRArgs; 1049 1050 /// Arguments of LLVM IR function corresponding to single Clang argument. 1051 struct IRArgs { 1052 unsigned PaddingArgIndex; 1053 // Argument is expanded to IR arguments at positions 1054 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1055 unsigned FirstArgIndex; 1056 unsigned NumberOfArgs; 1057 1058 IRArgs() 1059 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1060 NumberOfArgs(0) {} 1061 }; 1062 1063 SmallVector<IRArgs, 8> ArgInfo; 1064 1065 public: 1066 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1067 bool OnlyRequiredArgs = false) 1068 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1069 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1070 construct(Context, FI, OnlyRequiredArgs); 1071 } 1072 1073 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1074 unsigned getInallocaArgNo() const { 1075 assert(hasInallocaArg()); 1076 return InallocaArgNo; 1077 } 1078 1079 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1080 unsigned getSRetArgNo() const { 1081 assert(hasSRetArg()); 1082 return SRetArgNo; 1083 } 1084 1085 unsigned totalIRArgs() const { return TotalIRArgs; } 1086 1087 bool hasPaddingArg(unsigned ArgNo) const { 1088 assert(ArgNo < ArgInfo.size()); 1089 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1090 } 1091 unsigned getPaddingArgNo(unsigned ArgNo) const { 1092 assert(hasPaddingArg(ArgNo)); 1093 return ArgInfo[ArgNo].PaddingArgIndex; 1094 } 1095 1096 /// Returns index of first IR argument corresponding to ArgNo, and their 1097 /// quantity. 1098 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1099 assert(ArgNo < ArgInfo.size()); 1100 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1101 ArgInfo[ArgNo].NumberOfArgs); 1102 } 1103 1104 private: 1105 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1106 bool OnlyRequiredArgs); 1107 }; 1108 1109 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1110 const CGFunctionInfo &FI, 1111 bool OnlyRequiredArgs) { 1112 unsigned IRArgNo = 0; 1113 bool SwapThisWithSRet = false; 1114 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1115 1116 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1117 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1118 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1119 } 1120 1121 unsigned ArgNo = 0; 1122 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1123 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1124 ++I, ++ArgNo) { 1125 assert(I != FI.arg_end()); 1126 QualType ArgType = I->type; 1127 const ABIArgInfo &AI = I->info; 1128 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1129 auto &IRArgs = ArgInfo[ArgNo]; 1130 1131 if (AI.getPaddingType()) 1132 IRArgs.PaddingArgIndex = IRArgNo++; 1133 1134 switch (AI.getKind()) { 1135 case ABIArgInfo::Extend: 1136 case ABIArgInfo::Direct: { 1137 // FIXME: handle sseregparm someday... 1138 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1139 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1140 IRArgs.NumberOfArgs = STy->getNumElements(); 1141 } else { 1142 IRArgs.NumberOfArgs = 1; 1143 } 1144 break; 1145 } 1146 case ABIArgInfo::Indirect: 1147 IRArgs.NumberOfArgs = 1; 1148 break; 1149 case ABIArgInfo::Ignore: 1150 case ABIArgInfo::InAlloca: 1151 // ignore and inalloca doesn't have matching LLVM parameters. 1152 IRArgs.NumberOfArgs = 0; 1153 break; 1154 case ABIArgInfo::Expand: { 1155 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1156 break; 1157 } 1158 } 1159 1160 if (IRArgs.NumberOfArgs > 0) { 1161 IRArgs.FirstArgIndex = IRArgNo; 1162 IRArgNo += IRArgs.NumberOfArgs; 1163 } 1164 1165 // Skip over the sret parameter when it comes second. We already handled it 1166 // above. 1167 if (IRArgNo == 1 && SwapThisWithSRet) 1168 IRArgNo++; 1169 } 1170 assert(ArgNo == ArgInfo.size()); 1171 1172 if (FI.usesInAlloca()) 1173 InallocaArgNo = IRArgNo++; 1174 1175 TotalIRArgs = IRArgNo; 1176 } 1177 } // namespace 1178 1179 /***/ 1180 1181 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1182 return FI.getReturnInfo().isIndirect(); 1183 } 1184 1185 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1186 return ReturnTypeUsesSRet(FI) && 1187 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1188 } 1189 1190 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1191 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1192 switch (BT->getKind()) { 1193 default: 1194 return false; 1195 case BuiltinType::Float: 1196 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1197 case BuiltinType::Double: 1198 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1199 case BuiltinType::LongDouble: 1200 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1201 } 1202 } 1203 1204 return false; 1205 } 1206 1207 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1208 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1209 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1210 if (BT->getKind() == BuiltinType::LongDouble) 1211 return getTarget().useObjCFP2RetForComplexLongDouble(); 1212 } 1213 } 1214 1215 return false; 1216 } 1217 1218 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1219 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1220 return GetFunctionType(FI); 1221 } 1222 1223 llvm::FunctionType * 1224 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1225 1226 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1227 (void)Inserted; 1228 assert(Inserted && "Recursively being processed?"); 1229 1230 llvm::Type *resultType = nullptr; 1231 const ABIArgInfo &retAI = FI.getReturnInfo(); 1232 switch (retAI.getKind()) { 1233 case ABIArgInfo::Expand: 1234 llvm_unreachable("Invalid ABI kind for return argument"); 1235 1236 case ABIArgInfo::Extend: 1237 case ABIArgInfo::Direct: 1238 resultType = retAI.getCoerceToType(); 1239 break; 1240 1241 case ABIArgInfo::InAlloca: 1242 if (retAI.getInAllocaSRet()) { 1243 // sret things on win32 aren't void, they return the sret pointer. 1244 QualType ret = FI.getReturnType(); 1245 llvm::Type *ty = ConvertType(ret); 1246 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1247 resultType = llvm::PointerType::get(ty, addressSpace); 1248 } else { 1249 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1250 } 1251 break; 1252 1253 case ABIArgInfo::Indirect: { 1254 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 1255 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1256 break; 1257 } 1258 1259 case ABIArgInfo::Ignore: 1260 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1261 break; 1262 } 1263 1264 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1265 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1266 1267 // Add type for sret argument. 1268 if (IRFunctionArgs.hasSRetArg()) { 1269 QualType Ret = FI.getReturnType(); 1270 llvm::Type *Ty = ConvertType(Ret); 1271 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1272 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1273 llvm::PointerType::get(Ty, AddressSpace); 1274 } 1275 1276 // Add type for inalloca argument. 1277 if (IRFunctionArgs.hasInallocaArg()) { 1278 auto ArgStruct = FI.getArgStruct(); 1279 assert(ArgStruct); 1280 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1281 } 1282 1283 // Add in all of the required arguments. 1284 unsigned ArgNo = 0; 1285 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1286 ie = it + FI.getNumRequiredArgs(); 1287 for (; it != ie; ++it, ++ArgNo) { 1288 const ABIArgInfo &ArgInfo = it->info; 1289 1290 // Insert a padding type to ensure proper alignment. 1291 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1292 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1293 ArgInfo.getPaddingType(); 1294 1295 unsigned FirstIRArg, NumIRArgs; 1296 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1297 1298 switch (ArgInfo.getKind()) { 1299 case ABIArgInfo::Ignore: 1300 case ABIArgInfo::InAlloca: 1301 assert(NumIRArgs == 0); 1302 break; 1303 1304 case ABIArgInfo::Indirect: { 1305 assert(NumIRArgs == 1); 1306 // indirect arguments are always on the stack, which is addr space #0. 1307 llvm::Type *LTy = ConvertTypeForMem(it->type); 1308 ArgTypes[FirstIRArg] = LTy->getPointerTo(); 1309 break; 1310 } 1311 1312 case ABIArgInfo::Extend: 1313 case ABIArgInfo::Direct: { 1314 // Fast-isel and the optimizer generally like scalar values better than 1315 // FCAs, so we flatten them if this is safe to do for this argument. 1316 llvm::Type *argType = ArgInfo.getCoerceToType(); 1317 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1318 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1319 assert(NumIRArgs == st->getNumElements()); 1320 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1321 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1322 } else { 1323 assert(NumIRArgs == 1); 1324 ArgTypes[FirstIRArg] = argType; 1325 } 1326 break; 1327 } 1328 1329 case ABIArgInfo::Expand: 1330 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1331 getExpandedTypes(it->type, ArgTypesIter); 1332 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1333 break; 1334 } 1335 } 1336 1337 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1338 assert(Erased && "Not in set?"); 1339 1340 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1341 } 1342 1343 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1344 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1345 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1346 1347 if (!isFuncTypeConvertible(FPT)) 1348 return llvm::StructType::get(getLLVMContext()); 1349 1350 const CGFunctionInfo *Info; 1351 if (isa<CXXDestructorDecl>(MD)) 1352 Info = 1353 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1354 else 1355 Info = &arrangeCXXMethodDeclaration(MD); 1356 return GetFunctionType(*Info); 1357 } 1358 1359 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 1360 const Decl *TargetDecl, 1361 AttributeListType &PAL, 1362 unsigned &CallingConv, 1363 bool AttrOnCallSite) { 1364 llvm::AttrBuilder FuncAttrs; 1365 llvm::AttrBuilder RetAttrs; 1366 bool HasOptnone = false; 1367 1368 CallingConv = FI.getEffectiveCallingConvention(); 1369 1370 if (FI.isNoReturn()) 1371 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1372 1373 // FIXME: handle sseregparm someday... 1374 if (TargetDecl) { 1375 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1376 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1377 if (TargetDecl->hasAttr<NoThrowAttr>()) 1378 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1379 if (TargetDecl->hasAttr<NoReturnAttr>()) 1380 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1381 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1382 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1383 1384 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1385 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 1386 if (FPT && FPT->isNothrow(getContext())) 1387 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1388 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1389 // These attributes are not inherited by overloads. 1390 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1391 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1392 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1393 } 1394 1395 // 'const' and 'pure' attribute functions are also nounwind. 1396 if (TargetDecl->hasAttr<ConstAttr>()) { 1397 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1398 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1399 } else if (TargetDecl->hasAttr<PureAttr>()) { 1400 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1401 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1402 } 1403 if (TargetDecl->hasAttr<RestrictAttr>()) 1404 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1405 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1406 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1407 1408 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1409 } 1410 1411 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1412 if (!HasOptnone) { 1413 if (CodeGenOpts.OptimizeSize) 1414 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1415 if (CodeGenOpts.OptimizeSize == 2) 1416 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1417 } 1418 1419 if (CodeGenOpts.DisableRedZone) 1420 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1421 if (CodeGenOpts.NoImplicitFloat) 1422 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1423 if (CodeGenOpts.EnableSegmentedStacks && 1424 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1425 FuncAttrs.addAttribute("split-stack"); 1426 1427 if (AttrOnCallSite) { 1428 // Attributes that should go on the call site only. 1429 if (!CodeGenOpts.SimplifyLibCalls) 1430 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1431 } else { 1432 // Attributes that should go on the function, but not the call site. 1433 if (!CodeGenOpts.DisableFPElim) { 1434 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1435 } else if (CodeGenOpts.OmitLeafFramePointer) { 1436 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1437 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1438 } else { 1439 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1440 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1441 } 1442 1443 FuncAttrs.addAttribute("less-precise-fpmad", 1444 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1445 FuncAttrs.addAttribute("no-infs-fp-math", 1446 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1447 FuncAttrs.addAttribute("no-nans-fp-math", 1448 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1449 FuncAttrs.addAttribute("unsafe-fp-math", 1450 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1451 FuncAttrs.addAttribute("use-soft-float", 1452 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1453 FuncAttrs.addAttribute("stack-protector-buffer-size", 1454 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1455 1456 if (!CodeGenOpts.StackRealignment) 1457 FuncAttrs.addAttribute("no-realign-stack"); 1458 } 1459 1460 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1461 1462 QualType RetTy = FI.getReturnType(); 1463 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1464 switch (RetAI.getKind()) { 1465 case ABIArgInfo::Extend: 1466 if (RetTy->hasSignedIntegerRepresentation()) 1467 RetAttrs.addAttribute(llvm::Attribute::SExt); 1468 else if (RetTy->hasUnsignedIntegerRepresentation()) 1469 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1470 // FALL THROUGH 1471 case ABIArgInfo::Direct: 1472 if (RetAI.getInReg()) 1473 RetAttrs.addAttribute(llvm::Attribute::InReg); 1474 break; 1475 case ABIArgInfo::Ignore: 1476 break; 1477 1478 case ABIArgInfo::InAlloca: 1479 case ABIArgInfo::Indirect: { 1480 // inalloca and sret disable readnone and readonly 1481 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1482 .removeAttribute(llvm::Attribute::ReadNone); 1483 break; 1484 } 1485 1486 case ABIArgInfo::Expand: 1487 llvm_unreachable("Invalid ABI kind for return argument"); 1488 } 1489 1490 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1491 QualType PTy = RefTy->getPointeeType(); 1492 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1493 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1494 .getQuantity()); 1495 else if (getContext().getTargetAddressSpace(PTy) == 0) 1496 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1497 } 1498 1499 // Attach return attributes. 1500 if (RetAttrs.hasAttributes()) { 1501 PAL.push_back(llvm::AttributeSet::get( 1502 getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs)); 1503 } 1504 1505 // Attach attributes to sret. 1506 if (IRFunctionArgs.hasSRetArg()) { 1507 llvm::AttrBuilder SRETAttrs; 1508 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1509 if (RetAI.getInReg()) 1510 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1511 PAL.push_back(llvm::AttributeSet::get( 1512 getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs)); 1513 } 1514 1515 // Attach attributes to inalloca argument. 1516 if (IRFunctionArgs.hasInallocaArg()) { 1517 llvm::AttrBuilder Attrs; 1518 Attrs.addAttribute(llvm::Attribute::InAlloca); 1519 PAL.push_back(llvm::AttributeSet::get( 1520 getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs)); 1521 } 1522 1523 unsigned ArgNo = 0; 1524 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1525 E = FI.arg_end(); 1526 I != E; ++I, ++ArgNo) { 1527 QualType ParamType = I->type; 1528 const ABIArgInfo &AI = I->info; 1529 llvm::AttrBuilder Attrs; 1530 1531 // Add attribute for padding argument, if necessary. 1532 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1533 if (AI.getPaddingInReg()) 1534 PAL.push_back(llvm::AttributeSet::get( 1535 getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1, 1536 llvm::Attribute::InReg)); 1537 } 1538 1539 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1540 // have the corresponding parameter variable. It doesn't make 1541 // sense to do it here because parameters are so messed up. 1542 switch (AI.getKind()) { 1543 case ABIArgInfo::Extend: 1544 if (ParamType->isSignedIntegerOrEnumerationType()) 1545 Attrs.addAttribute(llvm::Attribute::SExt); 1546 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 1547 Attrs.addAttribute(llvm::Attribute::ZExt); 1548 // FALL THROUGH 1549 case ABIArgInfo::Direct: 1550 if (ArgNo == 0 && FI.isChainCall()) 1551 Attrs.addAttribute(llvm::Attribute::Nest); 1552 else if (AI.getInReg()) 1553 Attrs.addAttribute(llvm::Attribute::InReg); 1554 break; 1555 1556 case ABIArgInfo::Indirect: 1557 if (AI.getInReg()) 1558 Attrs.addAttribute(llvm::Attribute::InReg); 1559 1560 if (AI.getIndirectByVal()) 1561 Attrs.addAttribute(llvm::Attribute::ByVal); 1562 1563 Attrs.addAlignmentAttr(AI.getIndirectAlign()); 1564 1565 // byval disables readnone and readonly. 1566 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1567 .removeAttribute(llvm::Attribute::ReadNone); 1568 break; 1569 1570 case ABIArgInfo::Ignore: 1571 case ABIArgInfo::Expand: 1572 continue; 1573 1574 case ABIArgInfo::InAlloca: 1575 // inalloca disables readnone and readonly. 1576 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1577 .removeAttribute(llvm::Attribute::ReadNone); 1578 continue; 1579 } 1580 1581 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 1582 QualType PTy = RefTy->getPointeeType(); 1583 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1584 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1585 .getQuantity()); 1586 else if (getContext().getTargetAddressSpace(PTy) == 0) 1587 Attrs.addAttribute(llvm::Attribute::NonNull); 1588 } 1589 1590 if (Attrs.hasAttributes()) { 1591 unsigned FirstIRArg, NumIRArgs; 1592 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1593 for (unsigned i = 0; i < NumIRArgs; i++) 1594 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), 1595 FirstIRArg + i + 1, Attrs)); 1596 } 1597 } 1598 assert(ArgNo == FI.arg_size()); 1599 1600 if (FuncAttrs.hasAttributes()) 1601 PAL.push_back(llvm:: 1602 AttributeSet::get(getLLVMContext(), 1603 llvm::AttributeSet::FunctionIndex, 1604 FuncAttrs)); 1605 } 1606 1607 /// An argument came in as a promoted argument; demote it back to its 1608 /// declared type. 1609 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1610 const VarDecl *var, 1611 llvm::Value *value) { 1612 llvm::Type *varType = CGF.ConvertType(var->getType()); 1613 1614 // This can happen with promotions that actually don't change the 1615 // underlying type, like the enum promotions. 1616 if (value->getType() == varType) return value; 1617 1618 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1619 && "unexpected promotion type"); 1620 1621 if (isa<llvm::IntegerType>(varType)) 1622 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1623 1624 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1625 } 1626 1627 /// Returns the attribute (either parameter attribute, or function 1628 /// attribute), which declares argument ArgNo to be non-null. 1629 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 1630 QualType ArgType, unsigned ArgNo) { 1631 // FIXME: __attribute__((nonnull)) can also be applied to: 1632 // - references to pointers, where the pointee is known to be 1633 // nonnull (apparently a Clang extension) 1634 // - transparent unions containing pointers 1635 // In the former case, LLVM IR cannot represent the constraint. In 1636 // the latter case, we have no guarantee that the transparent union 1637 // is in fact passed as a pointer. 1638 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 1639 return nullptr; 1640 // First, check attribute on parameter itself. 1641 if (PVD) { 1642 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 1643 return ParmNNAttr; 1644 } 1645 // Check function attributes. 1646 if (!FD) 1647 return nullptr; 1648 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 1649 if (NNAttr->isNonNull(ArgNo)) 1650 return NNAttr; 1651 } 1652 return nullptr; 1653 } 1654 1655 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1656 llvm::Function *Fn, 1657 const FunctionArgList &Args) { 1658 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 1659 // Naked functions don't have prologues. 1660 return; 1661 1662 // If this is an implicit-return-zero function, go ahead and 1663 // initialize the return value. TODO: it might be nice to have 1664 // a more general mechanism for this that didn't require synthesized 1665 // return statements. 1666 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 1667 if (FD->hasImplicitReturnZero()) { 1668 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 1669 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1670 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1671 Builder.CreateStore(Zero, ReturnValue); 1672 } 1673 } 1674 1675 // FIXME: We no longer need the types from FunctionArgList; lift up and 1676 // simplify. 1677 1678 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 1679 // Flattened function arguments. 1680 SmallVector<llvm::Argument *, 16> FnArgs; 1681 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 1682 for (auto &Arg : Fn->args()) { 1683 FnArgs.push_back(&Arg); 1684 } 1685 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 1686 1687 // If we're using inalloca, all the memory arguments are GEPs off of the last 1688 // parameter, which is a pointer to the complete memory area. 1689 llvm::Value *ArgStruct = nullptr; 1690 if (IRFunctionArgs.hasInallocaArg()) { 1691 ArgStruct = FnArgs[IRFunctionArgs.getInallocaArgNo()]; 1692 assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo()); 1693 } 1694 1695 // Name the struct return parameter. 1696 if (IRFunctionArgs.hasSRetArg()) { 1697 auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()]; 1698 AI->setName("agg.result"); 1699 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1, 1700 llvm::Attribute::NoAlias)); 1701 } 1702 1703 // Track if we received the parameter as a pointer (indirect, byval, or 1704 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 1705 // into a local alloca for us. 1706 enum ValOrPointer { HaveValue = 0, HavePointer = 1 }; 1707 typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr; 1708 SmallVector<ValueAndIsPtr, 16> ArgVals; 1709 ArgVals.reserve(Args.size()); 1710 1711 // Create a pointer value for every parameter declaration. This usually 1712 // entails copying one or more LLVM IR arguments into an alloca. Don't push 1713 // any cleanups or do anything that might unwind. We do that separately, so 1714 // we can push the cleanups in the correct order for the ABI. 1715 assert(FI.arg_size() == Args.size() && 1716 "Mismatch between function signature & arguments."); 1717 unsigned ArgNo = 0; 1718 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1719 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1720 i != e; ++i, ++info_it, ++ArgNo) { 1721 const VarDecl *Arg = *i; 1722 QualType Ty = info_it->type; 1723 const ABIArgInfo &ArgI = info_it->info; 1724 1725 bool isPromoted = 1726 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1727 1728 unsigned FirstIRArg, NumIRArgs; 1729 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1730 1731 switch (ArgI.getKind()) { 1732 case ABIArgInfo::InAlloca: { 1733 assert(NumIRArgs == 0); 1734 llvm::Value *V = Builder.CreateStructGEP( 1735 ArgStruct, ArgI.getInAllocaFieldIndex(), Arg->getName()); 1736 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 1737 break; 1738 } 1739 1740 case ABIArgInfo::Indirect: { 1741 assert(NumIRArgs == 1); 1742 llvm::Value *V = FnArgs[FirstIRArg]; 1743 1744 if (!hasScalarEvaluationKind(Ty)) { 1745 // Aggregates and complex variables are accessed by reference. All we 1746 // need to do is realign the value, if requested 1747 if (ArgI.getIndirectRealign()) { 1748 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 1749 1750 // Copy from the incoming argument pointer to the temporary with the 1751 // appropriate alignment. 1752 // 1753 // FIXME: We should have a common utility for generating an aggregate 1754 // copy. 1755 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 1756 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1757 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 1758 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 1759 Builder.CreateMemCpy(Dst, 1760 Src, 1761 llvm::ConstantInt::get(IntPtrTy, 1762 Size.getQuantity()), 1763 ArgI.getIndirectAlign(), 1764 false); 1765 V = AlignedTemp; 1766 } 1767 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 1768 } else { 1769 // Load scalar value from indirect argument. 1770 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1771 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty, 1772 Arg->getLocStart()); 1773 1774 if (isPromoted) 1775 V = emitArgumentDemotion(*this, Arg, V); 1776 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 1777 } 1778 break; 1779 } 1780 1781 case ABIArgInfo::Extend: 1782 case ABIArgInfo::Direct: { 1783 1784 // If we have the trivial case, handle it with no muss and fuss. 1785 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1786 ArgI.getCoerceToType() == ConvertType(Ty) && 1787 ArgI.getDirectOffset() == 0) { 1788 assert(NumIRArgs == 1); 1789 auto AI = FnArgs[FirstIRArg]; 1790 llvm::Value *V = AI; 1791 1792 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 1793 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 1794 PVD->getFunctionScopeIndex())) 1795 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1796 AI->getArgNo() + 1, 1797 llvm::Attribute::NonNull)); 1798 1799 QualType OTy = PVD->getOriginalType(); 1800 if (const auto *ArrTy = 1801 getContext().getAsConstantArrayType(OTy)) { 1802 // A C99 array parameter declaration with the static keyword also 1803 // indicates dereferenceability, and if the size is constant we can 1804 // use the dereferenceable attribute (which requires the size in 1805 // bytes). 1806 if (ArrTy->getSizeModifier() == ArrayType::Static) { 1807 QualType ETy = ArrTy->getElementType(); 1808 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 1809 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 1810 ArrSize) { 1811 llvm::AttrBuilder Attrs; 1812 Attrs.addDereferenceableAttr( 1813 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 1814 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1815 AI->getArgNo() + 1, Attrs)); 1816 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 1817 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1818 AI->getArgNo() + 1, 1819 llvm::Attribute::NonNull)); 1820 } 1821 } 1822 } else if (const auto *ArrTy = 1823 getContext().getAsVariableArrayType(OTy)) { 1824 // For C99 VLAs with the static keyword, we don't know the size so 1825 // we can't use the dereferenceable attribute, but in addrspace(0) 1826 // we know that it must be nonnull. 1827 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 1828 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 1829 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1830 AI->getArgNo() + 1, 1831 llvm::Attribute::NonNull)); 1832 } 1833 1834 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 1835 if (!AVAttr) 1836 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 1837 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 1838 if (AVAttr) { 1839 llvm::Value *AlignmentValue = 1840 EmitScalarExpr(AVAttr->getAlignment()); 1841 llvm::ConstantInt *AlignmentCI = 1842 cast<llvm::ConstantInt>(AlignmentValue); 1843 unsigned Alignment = 1844 std::min((unsigned) AlignmentCI->getZExtValue(), 1845 +llvm::Value::MaximumAlignment); 1846 1847 llvm::AttrBuilder Attrs; 1848 Attrs.addAlignmentAttr(Alignment); 1849 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1850 AI->getArgNo() + 1, Attrs)); 1851 } 1852 } 1853 1854 if (Arg->getType().isRestrictQualified()) 1855 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1856 AI->getArgNo() + 1, 1857 llvm::Attribute::NoAlias)); 1858 1859 // Ensure the argument is the correct type. 1860 if (V->getType() != ArgI.getCoerceToType()) 1861 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1862 1863 if (isPromoted) 1864 V = emitArgumentDemotion(*this, Arg, V); 1865 1866 if (const CXXMethodDecl *MD = 1867 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 1868 if (MD->isVirtual() && Arg == CXXABIThisDecl) 1869 V = CGM.getCXXABI(). 1870 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V); 1871 } 1872 1873 // Because of merging of function types from multiple decls it is 1874 // possible for the type of an argument to not match the corresponding 1875 // type in the function type. Since we are codegening the callee 1876 // in here, add a cast to the argument type. 1877 llvm::Type *LTy = ConvertType(Arg->getType()); 1878 if (V->getType() != LTy) 1879 V = Builder.CreateBitCast(V, LTy); 1880 1881 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 1882 break; 1883 } 1884 1885 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); 1886 1887 // The alignment we need to use is the max of the requested alignment for 1888 // the argument plus the alignment required by our access code below. 1889 unsigned AlignmentToUse = 1890 CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType()); 1891 AlignmentToUse = std::max(AlignmentToUse, 1892 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1893 1894 Alloca->setAlignment(AlignmentToUse); 1895 llvm::Value *V = Alloca; 1896 llvm::Value *Ptr = V; // Pointer to store into. 1897 1898 // If the value is offset in memory, apply the offset now. 1899 if (unsigned Offs = ArgI.getDirectOffset()) { 1900 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1901 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1902 Ptr = Builder.CreateBitCast(Ptr, 1903 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1904 } 1905 1906 // Fast-isel and the optimizer generally like scalar values better than 1907 // FCAs, so we flatten them if this is safe to do for this argument. 1908 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 1909 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 1910 STy->getNumElements() > 1) { 1911 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 1912 llvm::Type *DstTy = 1913 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 1914 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 1915 1916 if (SrcSize <= DstSize) { 1917 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1918 1919 assert(STy->getNumElements() == NumIRArgs); 1920 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1921 auto AI = FnArgs[FirstIRArg + i]; 1922 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1923 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1924 Builder.CreateStore(AI, EltPtr); 1925 } 1926 } else { 1927 llvm::AllocaInst *TempAlloca = 1928 CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); 1929 TempAlloca->setAlignment(AlignmentToUse); 1930 llvm::Value *TempV = TempAlloca; 1931 1932 assert(STy->getNumElements() == NumIRArgs); 1933 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1934 auto AI = FnArgs[FirstIRArg + i]; 1935 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1936 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i); 1937 Builder.CreateStore(AI, EltPtr); 1938 } 1939 1940 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); 1941 } 1942 } else { 1943 // Simple case, just do a coerced store of the argument into the alloca. 1944 assert(NumIRArgs == 1); 1945 auto AI = FnArgs[FirstIRArg]; 1946 AI->setName(Arg->getName() + ".coerce"); 1947 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 1948 } 1949 1950 1951 // Match to what EmitParmDecl is expecting for this type. 1952 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 1953 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart()); 1954 if (isPromoted) 1955 V = emitArgumentDemotion(*this, Arg, V); 1956 ArgVals.push_back(ValueAndIsPtr(V, HaveValue)); 1957 } else { 1958 ArgVals.push_back(ValueAndIsPtr(V, HavePointer)); 1959 } 1960 break; 1961 } 1962 1963 case ABIArgInfo::Expand: { 1964 // If this structure was expanded into multiple arguments then 1965 // we need to create a temporary and reconstruct it from the 1966 // arguments. 1967 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1968 CharUnits Align = getContext().getDeclAlign(Arg); 1969 Alloca->setAlignment(Align.getQuantity()); 1970 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1971 ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer)); 1972 1973 auto FnArgIter = FnArgs.begin() + FirstIRArg; 1974 ExpandTypeFromArgs(Ty, LV, FnArgIter); 1975 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 1976 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 1977 auto AI = FnArgs[FirstIRArg + i]; 1978 AI->setName(Arg->getName() + "." + Twine(i)); 1979 } 1980 break; 1981 } 1982 1983 case ABIArgInfo::Ignore: 1984 assert(NumIRArgs == 0); 1985 // Initialize the local variable appropriately. 1986 if (!hasScalarEvaluationKind(Ty)) { 1987 ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer)); 1988 } else { 1989 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 1990 ArgVals.push_back(ValueAndIsPtr(U, HaveValue)); 1991 } 1992 break; 1993 } 1994 } 1995 1996 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1997 for (int I = Args.size() - 1; I >= 0; --I) 1998 EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(), 1999 I + 1); 2000 } else { 2001 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2002 EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(), 2003 I + 1); 2004 } 2005 } 2006 2007 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2008 while (insn->use_empty()) { 2009 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2010 if (!bitcast) return; 2011 2012 // This is "safe" because we would have used a ConstantExpr otherwise. 2013 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2014 bitcast->eraseFromParent(); 2015 } 2016 } 2017 2018 /// Try to emit a fused autorelease of a return result. 2019 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2020 llvm::Value *result) { 2021 // We must be immediately followed the cast. 2022 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2023 if (BB->empty()) return nullptr; 2024 if (&BB->back() != result) return nullptr; 2025 2026 llvm::Type *resultType = result->getType(); 2027 2028 // result is in a BasicBlock and is therefore an Instruction. 2029 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2030 2031 SmallVector<llvm::Instruction*,4> insnsToKill; 2032 2033 // Look for: 2034 // %generator = bitcast %type1* %generator2 to %type2* 2035 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2036 // We would have emitted this as a constant if the operand weren't 2037 // an Instruction. 2038 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2039 2040 // Require the generator to be immediately followed by the cast. 2041 if (generator->getNextNode() != bitcast) 2042 return nullptr; 2043 2044 insnsToKill.push_back(bitcast); 2045 } 2046 2047 // Look for: 2048 // %generator = call i8* @objc_retain(i8* %originalResult) 2049 // or 2050 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2051 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2052 if (!call) return nullptr; 2053 2054 bool doRetainAutorelease; 2055 2056 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 2057 doRetainAutorelease = true; 2058 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 2059 .objc_retainAutoreleasedReturnValue) { 2060 doRetainAutorelease = false; 2061 2062 // If we emitted an assembly marker for this call (and the 2063 // ARCEntrypoints field should have been set if so), go looking 2064 // for that call. If we can't find it, we can't do this 2065 // optimization. But it should always be the immediately previous 2066 // instruction, unless we needed bitcasts around the call. 2067 if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) { 2068 llvm::Instruction *prev = call->getPrevNode(); 2069 assert(prev); 2070 if (isa<llvm::BitCastInst>(prev)) { 2071 prev = prev->getPrevNode(); 2072 assert(prev); 2073 } 2074 assert(isa<llvm::CallInst>(prev)); 2075 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2076 CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker); 2077 insnsToKill.push_back(prev); 2078 } 2079 } else { 2080 return nullptr; 2081 } 2082 2083 result = call->getArgOperand(0); 2084 insnsToKill.push_back(call); 2085 2086 // Keep killing bitcasts, for sanity. Note that we no longer care 2087 // about precise ordering as long as there's exactly one use. 2088 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2089 if (!bitcast->hasOneUse()) break; 2090 insnsToKill.push_back(bitcast); 2091 result = bitcast->getOperand(0); 2092 } 2093 2094 // Delete all the unnecessary instructions, from latest to earliest. 2095 for (SmallVectorImpl<llvm::Instruction*>::iterator 2096 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 2097 (*i)->eraseFromParent(); 2098 2099 // Do the fused retain/autorelease if we were asked to. 2100 if (doRetainAutorelease) 2101 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2102 2103 // Cast back to the result type. 2104 return CGF.Builder.CreateBitCast(result, resultType); 2105 } 2106 2107 /// If this is a +1 of the value of an immutable 'self', remove it. 2108 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2109 llvm::Value *result) { 2110 // This is only applicable to a method with an immutable 'self'. 2111 const ObjCMethodDecl *method = 2112 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2113 if (!method) return nullptr; 2114 const VarDecl *self = method->getSelfDecl(); 2115 if (!self->getType().isConstQualified()) return nullptr; 2116 2117 // Look for a retain call. 2118 llvm::CallInst *retainCall = 2119 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2120 if (!retainCall || 2121 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 2122 return nullptr; 2123 2124 // Look for an ordinary load of 'self'. 2125 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2126 llvm::LoadInst *load = 2127 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2128 if (!load || load->isAtomic() || load->isVolatile() || 2129 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 2130 return nullptr; 2131 2132 // Okay! Burn it all down. This relies for correctness on the 2133 // assumption that the retain is emitted as part of the return and 2134 // that thereafter everything is used "linearly". 2135 llvm::Type *resultType = result->getType(); 2136 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2137 assert(retainCall->use_empty()); 2138 retainCall->eraseFromParent(); 2139 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2140 2141 return CGF.Builder.CreateBitCast(load, resultType); 2142 } 2143 2144 /// Emit an ARC autorelease of the result of a function. 2145 /// 2146 /// \return the value to actually return from the function 2147 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2148 llvm::Value *result) { 2149 // If we're returning 'self', kill the initial retain. This is a 2150 // heuristic attempt to "encourage correctness" in the really unfortunate 2151 // case where we have a return of self during a dealloc and we desperately 2152 // need to avoid the possible autorelease. 2153 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2154 return self; 2155 2156 // At -O0, try to emit a fused retain/autorelease. 2157 if (CGF.shouldUseFusedARCCalls()) 2158 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2159 return fused; 2160 2161 return CGF.EmitARCAutoreleaseReturnValue(result); 2162 } 2163 2164 /// Heuristically search for a dominating store to the return-value slot. 2165 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2166 // If there are multiple uses of the return-value slot, just check 2167 // for something immediately preceding the IP. Sometimes this can 2168 // happen with how we generate implicit-returns; it can also happen 2169 // with noreturn cleanups. 2170 if (!CGF.ReturnValue->hasOneUse()) { 2171 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2172 if (IP->empty()) return nullptr; 2173 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); 2174 if (!store) return nullptr; 2175 if (store->getPointerOperand() != CGF.ReturnValue) return nullptr; 2176 assert(!store->isAtomic() && !store->isVolatile()); // see below 2177 return store; 2178 } 2179 2180 llvm::StoreInst *store = 2181 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back()); 2182 if (!store) return nullptr; 2183 2184 // These aren't actually possible for non-coerced returns, and we 2185 // only care about non-coerced returns on this code path. 2186 assert(!store->isAtomic() && !store->isVolatile()); 2187 2188 // Now do a first-and-dirty dominance check: just walk up the 2189 // single-predecessors chain from the current insertion point. 2190 llvm::BasicBlock *StoreBB = store->getParent(); 2191 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2192 while (IP != StoreBB) { 2193 if (!(IP = IP->getSinglePredecessor())) 2194 return nullptr; 2195 } 2196 2197 // Okay, the store's basic block dominates the insertion point; we 2198 // can do our thing. 2199 return store; 2200 } 2201 2202 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2203 bool EmitRetDbgLoc, 2204 SourceLocation EndLoc) { 2205 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2206 // Naked functions don't have epilogues. 2207 Builder.CreateUnreachable(); 2208 return; 2209 } 2210 2211 // Functions with no result always return void. 2212 if (!ReturnValue) { 2213 Builder.CreateRetVoid(); 2214 return; 2215 } 2216 2217 llvm::DebugLoc RetDbgLoc; 2218 llvm::Value *RV = nullptr; 2219 QualType RetTy = FI.getReturnType(); 2220 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2221 2222 switch (RetAI.getKind()) { 2223 case ABIArgInfo::InAlloca: 2224 // Aggregrates get evaluated directly into the destination. Sometimes we 2225 // need to return the sret value in a register, though. 2226 assert(hasAggregateEvaluationKind(RetTy)); 2227 if (RetAI.getInAllocaSRet()) { 2228 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2229 --EI; 2230 llvm::Value *ArgStruct = EI; 2231 llvm::Value *SRet = 2232 Builder.CreateStructGEP(ArgStruct, RetAI.getInAllocaFieldIndex()); 2233 RV = Builder.CreateLoad(SRet, "sret"); 2234 } 2235 break; 2236 2237 case ABIArgInfo::Indirect: { 2238 auto AI = CurFn->arg_begin(); 2239 if (RetAI.isSRetAfterThis()) 2240 ++AI; 2241 switch (getEvaluationKind(RetTy)) { 2242 case TEK_Complex: { 2243 ComplexPairTy RT = 2244 EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy), 2245 EndLoc); 2246 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy), 2247 /*isInit*/ true); 2248 break; 2249 } 2250 case TEK_Aggregate: 2251 // Do nothing; aggregrates get evaluated directly into the destination. 2252 break; 2253 case TEK_Scalar: 2254 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2255 MakeNaturalAlignAddrLValue(AI, RetTy), 2256 /*isInit*/ true); 2257 break; 2258 } 2259 break; 2260 } 2261 2262 case ABIArgInfo::Extend: 2263 case ABIArgInfo::Direct: 2264 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2265 RetAI.getDirectOffset() == 0) { 2266 // The internal return value temp always will have pointer-to-return-type 2267 // type, just do a load. 2268 2269 // If there is a dominating store to ReturnValue, we can elide 2270 // the load, zap the store, and usually zap the alloca. 2271 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { 2272 // Reuse the debug location from the store unless there is 2273 // cleanup code to be emitted between the store and return 2274 // instruction. 2275 if (EmitRetDbgLoc && !AutoreleaseResult) 2276 RetDbgLoc = SI->getDebugLoc(); 2277 // Get the stored value and nuke the now-dead store. 2278 RV = SI->getValueOperand(); 2279 SI->eraseFromParent(); 2280 2281 // If that was the only use of the return value, nuke it as well now. 2282 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 2283 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 2284 ReturnValue = nullptr; 2285 } 2286 2287 // Otherwise, we have to do a simple load. 2288 } else { 2289 RV = Builder.CreateLoad(ReturnValue); 2290 } 2291 } else { 2292 llvm::Value *V = ReturnValue; 2293 // If the value is offset in memory, apply the offset now. 2294 if (unsigned Offs = RetAI.getDirectOffset()) { 2295 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 2296 V = Builder.CreateConstGEP1_32(V, Offs); 2297 V = Builder.CreateBitCast(V, 2298 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 2299 } 2300 2301 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2302 } 2303 2304 // In ARC, end functions that return a retainable type with a call 2305 // to objc_autoreleaseReturnValue. 2306 if (AutoreleaseResult) { 2307 assert(getLangOpts().ObjCAutoRefCount && 2308 !FI.isReturnsRetained() && 2309 RetTy->isObjCRetainableType()); 2310 RV = emitAutoreleaseOfResult(*this, RV); 2311 } 2312 2313 break; 2314 2315 case ABIArgInfo::Ignore: 2316 break; 2317 2318 case ABIArgInfo::Expand: 2319 llvm_unreachable("Invalid ABI kind for return argument"); 2320 } 2321 2322 llvm::Instruction *Ret; 2323 if (RV) { 2324 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) { 2325 if (auto RetNNAttr = CurGD.getDecl()->getAttr<ReturnsNonNullAttr>()) { 2326 SanitizerScope SanScope(this); 2327 llvm::Value *Cond = Builder.CreateICmpNE( 2328 RV, llvm::Constant::getNullValue(RV->getType())); 2329 llvm::Constant *StaticData[] = { 2330 EmitCheckSourceLocation(EndLoc), 2331 EmitCheckSourceLocation(RetNNAttr->getLocation()), 2332 }; 2333 EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute), 2334 "nonnull_return", StaticData, None); 2335 } 2336 } 2337 Ret = Builder.CreateRet(RV); 2338 } else { 2339 Ret = Builder.CreateRetVoid(); 2340 } 2341 2342 if (!RetDbgLoc.isUnknown()) 2343 Ret->setDebugLoc(std::move(RetDbgLoc)); 2344 } 2345 2346 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2347 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2348 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2349 } 2350 2351 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) { 2352 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2353 // placeholders. 2354 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2355 llvm::Value *Placeholder = 2356 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo()); 2357 Placeholder = CGF.Builder.CreateLoad(Placeholder); 2358 return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(), 2359 Ty.getQualifiers(), 2360 AggValueSlot::IsNotDestructed, 2361 AggValueSlot::DoesNotNeedGCBarriers, 2362 AggValueSlot::IsNotAliased); 2363 } 2364 2365 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 2366 const VarDecl *param, 2367 SourceLocation loc) { 2368 // StartFunction converted the ABI-lowered parameter(s) into a 2369 // local alloca. We need to turn that into an r-value suitable 2370 // for EmitCall. 2371 llvm::Value *local = GetAddrOfLocalVar(param); 2372 2373 QualType type = param->getType(); 2374 2375 // For the most part, we just need to load the alloca, except: 2376 // 1) aggregate r-values are actually pointers to temporaries, and 2377 // 2) references to non-scalars are pointers directly to the aggregate. 2378 // I don't know why references to scalars are different here. 2379 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 2380 if (!hasScalarEvaluationKind(ref->getPointeeType())) 2381 return args.add(RValue::getAggregate(local), type); 2382 2383 // Locals which are references to scalars are represented 2384 // with allocas holding the pointer. 2385 return args.add(RValue::get(Builder.CreateLoad(local)), type); 2386 } 2387 2388 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 2389 "cannot emit delegate call arguments for inalloca arguments!"); 2390 2391 args.add(convertTempToRValue(local, type, loc), type); 2392 } 2393 2394 static bool isProvablyNull(llvm::Value *addr) { 2395 return isa<llvm::ConstantPointerNull>(addr); 2396 } 2397 2398 static bool isProvablyNonNull(llvm::Value *addr) { 2399 return isa<llvm::AllocaInst>(addr); 2400 } 2401 2402 /// Emit the actual writing-back of a writeback. 2403 static void emitWriteback(CodeGenFunction &CGF, 2404 const CallArgList::Writeback &writeback) { 2405 const LValue &srcLV = writeback.Source; 2406 llvm::Value *srcAddr = srcLV.getAddress(); 2407 assert(!isProvablyNull(srcAddr) && 2408 "shouldn't have writeback for provably null argument"); 2409 2410 llvm::BasicBlock *contBB = nullptr; 2411 2412 // If the argument wasn't provably non-null, we need to null check 2413 // before doing the store. 2414 bool provablyNonNull = isProvablyNonNull(srcAddr); 2415 if (!provablyNonNull) { 2416 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 2417 contBB = CGF.createBasicBlock("icr.done"); 2418 2419 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 2420 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 2421 CGF.EmitBlock(writebackBB); 2422 } 2423 2424 // Load the value to writeback. 2425 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 2426 2427 // Cast it back, in case we're writing an id to a Foo* or something. 2428 value = CGF.Builder.CreateBitCast(value, 2429 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 2430 "icr.writeback-cast"); 2431 2432 // Perform the writeback. 2433 2434 // If we have a "to use" value, it's something we need to emit a use 2435 // of. This has to be carefully threaded in: if it's done after the 2436 // release it's potentially undefined behavior (and the optimizer 2437 // will ignore it), and if it happens before the retain then the 2438 // optimizer could move the release there. 2439 if (writeback.ToUse) { 2440 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 2441 2442 // Retain the new value. No need to block-copy here: the block's 2443 // being passed up the stack. 2444 value = CGF.EmitARCRetainNonBlock(value); 2445 2446 // Emit the intrinsic use here. 2447 CGF.EmitARCIntrinsicUse(writeback.ToUse); 2448 2449 // Load the old value (primitively). 2450 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 2451 2452 // Put the new value in place (primitively). 2453 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 2454 2455 // Release the old value. 2456 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 2457 2458 // Otherwise, we can just do a normal lvalue store. 2459 } else { 2460 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 2461 } 2462 2463 // Jump to the continuation block. 2464 if (!provablyNonNull) 2465 CGF.EmitBlock(contBB); 2466 } 2467 2468 static void emitWritebacks(CodeGenFunction &CGF, 2469 const CallArgList &args) { 2470 for (const auto &I : args.writebacks()) 2471 emitWriteback(CGF, I); 2472 } 2473 2474 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 2475 const CallArgList &CallArgs) { 2476 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 2477 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 2478 CallArgs.getCleanupsToDeactivate(); 2479 // Iterate in reverse to increase the likelihood of popping the cleanup. 2480 for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator 2481 I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) { 2482 CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP); 2483 I->IsActiveIP->eraseFromParent(); 2484 } 2485 } 2486 2487 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 2488 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 2489 if (uop->getOpcode() == UO_AddrOf) 2490 return uop->getSubExpr(); 2491 return nullptr; 2492 } 2493 2494 /// Emit an argument that's being passed call-by-writeback. That is, 2495 /// we are passing the address of 2496 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 2497 const ObjCIndirectCopyRestoreExpr *CRE) { 2498 LValue srcLV; 2499 2500 // Make an optimistic effort to emit the address as an l-value. 2501 // This can fail if the the argument expression is more complicated. 2502 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 2503 srcLV = CGF.EmitLValue(lvExpr); 2504 2505 // Otherwise, just emit it as a scalar. 2506 } else { 2507 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 2508 2509 QualType srcAddrType = 2510 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 2511 srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType); 2512 } 2513 llvm::Value *srcAddr = srcLV.getAddress(); 2514 2515 // The dest and src types don't necessarily match in LLVM terms 2516 // because of the crazy ObjC compatibility rules. 2517 2518 llvm::PointerType *destType = 2519 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 2520 2521 // If the address is a constant null, just pass the appropriate null. 2522 if (isProvablyNull(srcAddr)) { 2523 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 2524 CRE->getType()); 2525 return; 2526 } 2527 2528 // Create the temporary. 2529 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 2530 "icr.temp"); 2531 // Loading an l-value can introduce a cleanup if the l-value is __weak, 2532 // and that cleanup will be conditional if we can't prove that the l-value 2533 // isn't null, so we need to register a dominating point so that the cleanups 2534 // system will make valid IR. 2535 CodeGenFunction::ConditionalEvaluation condEval(CGF); 2536 2537 // Zero-initialize it if we're not doing a copy-initialization. 2538 bool shouldCopy = CRE->shouldCopy(); 2539 if (!shouldCopy) { 2540 llvm::Value *null = 2541 llvm::ConstantPointerNull::get( 2542 cast<llvm::PointerType>(destType->getElementType())); 2543 CGF.Builder.CreateStore(null, temp); 2544 } 2545 2546 llvm::BasicBlock *contBB = nullptr; 2547 llvm::BasicBlock *originBB = nullptr; 2548 2549 // If the address is *not* known to be non-null, we need to switch. 2550 llvm::Value *finalArgument; 2551 2552 bool provablyNonNull = isProvablyNonNull(srcAddr); 2553 if (provablyNonNull) { 2554 finalArgument = temp; 2555 } else { 2556 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 2557 2558 finalArgument = CGF.Builder.CreateSelect(isNull, 2559 llvm::ConstantPointerNull::get(destType), 2560 temp, "icr.argument"); 2561 2562 // If we need to copy, then the load has to be conditional, which 2563 // means we need control flow. 2564 if (shouldCopy) { 2565 originBB = CGF.Builder.GetInsertBlock(); 2566 contBB = CGF.createBasicBlock("icr.cont"); 2567 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 2568 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 2569 CGF.EmitBlock(copyBB); 2570 condEval.begin(CGF); 2571 } 2572 } 2573 2574 llvm::Value *valueToUse = nullptr; 2575 2576 // Perform a copy if necessary. 2577 if (shouldCopy) { 2578 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 2579 assert(srcRV.isScalar()); 2580 2581 llvm::Value *src = srcRV.getScalarVal(); 2582 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 2583 "icr.cast"); 2584 2585 // Use an ordinary store, not a store-to-lvalue. 2586 CGF.Builder.CreateStore(src, temp); 2587 2588 // If optimization is enabled, and the value was held in a 2589 // __strong variable, we need to tell the optimizer that this 2590 // value has to stay alive until we're doing the store back. 2591 // This is because the temporary is effectively unretained, 2592 // and so otherwise we can violate the high-level semantics. 2593 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 2594 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 2595 valueToUse = src; 2596 } 2597 } 2598 2599 // Finish the control flow if we needed it. 2600 if (shouldCopy && !provablyNonNull) { 2601 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 2602 CGF.EmitBlock(contBB); 2603 2604 // Make a phi for the value to intrinsically use. 2605 if (valueToUse) { 2606 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 2607 "icr.to-use"); 2608 phiToUse->addIncoming(valueToUse, copyBB); 2609 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 2610 originBB); 2611 valueToUse = phiToUse; 2612 } 2613 2614 condEval.end(CGF); 2615 } 2616 2617 args.addWriteback(srcLV, temp, valueToUse); 2618 args.add(RValue::get(finalArgument), CRE->getType()); 2619 } 2620 2621 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 2622 assert(!StackBase && !StackCleanup.isValid()); 2623 2624 // Save the stack. 2625 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 2626 StackBase = CGF.Builder.CreateCall(F, "inalloca.save"); 2627 2628 // Control gets really tied up in landing pads, so we have to spill the 2629 // stacksave to an alloca to avoid violating SSA form. 2630 // TODO: This is dead if we never emit the cleanup. We should create the 2631 // alloca and store lazily on the first cleanup emission. 2632 StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem"); 2633 CGF.Builder.CreateStore(StackBase, StackBaseMem); 2634 CGF.pushStackRestore(EHCleanup, StackBaseMem); 2635 StackCleanup = CGF.EHStack.getInnermostEHScope(); 2636 assert(StackCleanup.isValid()); 2637 } 2638 2639 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 2640 if (StackBase) { 2641 CGF.DeactivateCleanupBlock(StackCleanup, StackBase); 2642 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 2643 // We could load StackBase from StackBaseMem, but in the non-exceptional 2644 // case we can skip it. 2645 CGF.Builder.CreateCall(F, StackBase); 2646 } 2647 } 2648 2649 static void emitNonNullArgCheck(CodeGenFunction &CGF, RValue RV, 2650 QualType ArgType, SourceLocation ArgLoc, 2651 const FunctionDecl *FD, unsigned ParmNum) { 2652 if (!CGF.SanOpts.has(SanitizerKind::NonnullAttribute) || !FD) 2653 return; 2654 auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr; 2655 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 2656 auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo); 2657 if (!NNAttr) 2658 return; 2659 CodeGenFunction::SanitizerScope SanScope(&CGF); 2660 assert(RV.isScalar()); 2661 llvm::Value *V = RV.getScalarVal(); 2662 llvm::Value *Cond = 2663 CGF.Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 2664 llvm::Constant *StaticData[] = { 2665 CGF.EmitCheckSourceLocation(ArgLoc), 2666 CGF.EmitCheckSourceLocation(NNAttr->getLocation()), 2667 llvm::ConstantInt::get(CGF.Int32Ty, ArgNo + 1), 2668 }; 2669 CGF.EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute), 2670 "nonnull_arg", StaticData, None); 2671 } 2672 2673 void CodeGenFunction::EmitCallArgs(CallArgList &Args, 2674 ArrayRef<QualType> ArgTypes, 2675 CallExpr::const_arg_iterator ArgBeg, 2676 CallExpr::const_arg_iterator ArgEnd, 2677 const FunctionDecl *CalleeDecl, 2678 unsigned ParamsToSkip) { 2679 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 2680 // because arguments are destroyed left to right in the callee. 2681 if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2682 // Insert a stack save if we're going to need any inalloca args. 2683 bool HasInAllocaArgs = false; 2684 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 2685 I != E && !HasInAllocaArgs; ++I) 2686 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 2687 if (HasInAllocaArgs) { 2688 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 2689 Args.allocateArgumentMemory(*this); 2690 } 2691 2692 // Evaluate each argument. 2693 size_t CallArgsStart = Args.size(); 2694 for (int I = ArgTypes.size() - 1; I >= 0; --I) { 2695 CallExpr::const_arg_iterator Arg = ArgBeg + I; 2696 EmitCallArg(Args, *Arg, ArgTypes[I]); 2697 emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(), 2698 CalleeDecl, ParamsToSkip + I); 2699 } 2700 2701 // Un-reverse the arguments we just evaluated so they match up with the LLVM 2702 // IR function. 2703 std::reverse(Args.begin() + CallArgsStart, Args.end()); 2704 return; 2705 } 2706 2707 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 2708 CallExpr::const_arg_iterator Arg = ArgBeg + I; 2709 assert(Arg != ArgEnd); 2710 EmitCallArg(Args, *Arg, ArgTypes[I]); 2711 emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(), 2712 CalleeDecl, ParamsToSkip + I); 2713 } 2714 } 2715 2716 namespace { 2717 2718 struct DestroyUnpassedArg : EHScopeStack::Cleanup { 2719 DestroyUnpassedArg(llvm::Value *Addr, QualType Ty) 2720 : Addr(Addr), Ty(Ty) {} 2721 2722 llvm::Value *Addr; 2723 QualType Ty; 2724 2725 void Emit(CodeGenFunction &CGF, Flags flags) override { 2726 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 2727 assert(!Dtor->isTrivial()); 2728 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 2729 /*Delegating=*/false, Addr); 2730 } 2731 }; 2732 2733 } 2734 2735 struct DisableDebugLocationUpdates { 2736 CodeGenFunction &CGF; 2737 bool disabledDebugInfo; 2738 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 2739 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 2740 CGF.disableDebugInfo(); 2741 } 2742 ~DisableDebugLocationUpdates() { 2743 if (disabledDebugInfo) 2744 CGF.enableDebugInfo(); 2745 } 2746 }; 2747 2748 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 2749 QualType type) { 2750 DisableDebugLocationUpdates Dis(*this, E); 2751 if (const ObjCIndirectCopyRestoreExpr *CRE 2752 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 2753 assert(getLangOpts().ObjCAutoRefCount); 2754 assert(getContext().hasSameType(E->getType(), type)); 2755 return emitWritebackArg(*this, args, CRE); 2756 } 2757 2758 assert(type->isReferenceType() == E->isGLValue() && 2759 "reference binding to unmaterialized r-value!"); 2760 2761 if (E->isGLValue()) { 2762 assert(E->getObjectKind() == OK_Ordinary); 2763 return args.add(EmitReferenceBindingToExpr(E), type); 2764 } 2765 2766 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 2767 2768 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 2769 // However, we still have to push an EH-only cleanup in case we unwind before 2770 // we make it to the call. 2771 if (HasAggregateEvalKind && 2772 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2773 // If we're using inalloca, use the argument memory. Otherwise, use a 2774 // temporary. 2775 AggValueSlot Slot; 2776 if (args.isUsingInAlloca()) 2777 Slot = createPlaceholderSlot(*this, type); 2778 else 2779 Slot = CreateAggTemp(type, "agg.tmp"); 2780 2781 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2782 bool DestroyedInCallee = 2783 RD && RD->hasNonTrivialDestructor() && 2784 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 2785 if (DestroyedInCallee) 2786 Slot.setExternallyDestructed(); 2787 2788 EmitAggExpr(E, Slot); 2789 RValue RV = Slot.asRValue(); 2790 args.add(RV, type); 2791 2792 if (DestroyedInCallee) { 2793 // Create a no-op GEP between the placeholder and the cleanup so we can 2794 // RAUW it successfully. It also serves as a marker of the first 2795 // instruction where the cleanup is active. 2796 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type); 2797 // This unreachable is a temporary marker which will be removed later. 2798 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 2799 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 2800 } 2801 return; 2802 } 2803 2804 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 2805 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 2806 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 2807 assert(L.isSimple()); 2808 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 2809 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 2810 } else { 2811 // We can't represent a misaligned lvalue in the CallArgList, so copy 2812 // to an aligned temporary now. 2813 llvm::Value *tmp = CreateMemTemp(type); 2814 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(), 2815 L.getAlignment()); 2816 args.add(RValue::getAggregate(tmp), type); 2817 } 2818 return; 2819 } 2820 2821 args.add(EmitAnyExprToTemp(E), type); 2822 } 2823 2824 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 2825 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 2826 // implicitly widens null pointer constants that are arguments to varargs 2827 // functions to pointer-sized ints. 2828 if (!getTarget().getTriple().isOSWindows()) 2829 return Arg->getType(); 2830 2831 if (Arg->getType()->isIntegerType() && 2832 getContext().getTypeSize(Arg->getType()) < 2833 getContext().getTargetInfo().getPointerWidth(0) && 2834 Arg->isNullPointerConstant(getContext(), 2835 Expr::NPC_ValueDependentIsNotNull)) { 2836 return getContext().getIntPtrType(); 2837 } 2838 2839 return Arg->getType(); 2840 } 2841 2842 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2843 // optimizer it can aggressively ignore unwind edges. 2844 void 2845 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 2846 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 2847 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 2848 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 2849 CGM.getNoObjCARCExceptionsMetadata()); 2850 } 2851 2852 /// Emits a call to the given no-arguments nounwind runtime function. 2853 llvm::CallInst * 2854 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2855 const llvm::Twine &name) { 2856 return EmitNounwindRuntimeCall(callee, None, name); 2857 } 2858 2859 /// Emits a call to the given nounwind runtime function. 2860 llvm::CallInst * 2861 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2862 ArrayRef<llvm::Value*> args, 2863 const llvm::Twine &name) { 2864 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 2865 call->setDoesNotThrow(); 2866 return call; 2867 } 2868 2869 /// Emits a simple call (never an invoke) to the given no-arguments 2870 /// runtime function. 2871 llvm::CallInst * 2872 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2873 const llvm::Twine &name) { 2874 return EmitRuntimeCall(callee, None, name); 2875 } 2876 2877 /// Emits a simple call (never an invoke) to the given runtime 2878 /// function. 2879 llvm::CallInst * 2880 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2881 ArrayRef<llvm::Value*> args, 2882 const llvm::Twine &name) { 2883 llvm::CallInst *call = Builder.CreateCall(callee, args, name); 2884 call->setCallingConv(getRuntimeCC()); 2885 return call; 2886 } 2887 2888 /// Emits a call or invoke to the given noreturn runtime function. 2889 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2890 ArrayRef<llvm::Value*> args) { 2891 if (getInvokeDest()) { 2892 llvm::InvokeInst *invoke = 2893 Builder.CreateInvoke(callee, 2894 getUnreachableBlock(), 2895 getInvokeDest(), 2896 args); 2897 invoke->setDoesNotReturn(); 2898 invoke->setCallingConv(getRuntimeCC()); 2899 } else { 2900 llvm::CallInst *call = Builder.CreateCall(callee, args); 2901 call->setDoesNotReturn(); 2902 call->setCallingConv(getRuntimeCC()); 2903 Builder.CreateUnreachable(); 2904 } 2905 PGO.setCurrentRegionUnreachable(); 2906 } 2907 2908 /// Emits a call or invoke instruction to the given nullary runtime 2909 /// function. 2910 llvm::CallSite 2911 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2912 const Twine &name) { 2913 return EmitRuntimeCallOrInvoke(callee, None, name); 2914 } 2915 2916 /// Emits a call or invoke instruction to the given runtime function. 2917 llvm::CallSite 2918 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2919 ArrayRef<llvm::Value*> args, 2920 const Twine &name) { 2921 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 2922 callSite.setCallingConv(getRuntimeCC()); 2923 return callSite; 2924 } 2925 2926 llvm::CallSite 2927 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2928 const Twine &Name) { 2929 return EmitCallOrInvoke(Callee, None, Name); 2930 } 2931 2932 /// Emits a call or invoke instruction to the given function, depending 2933 /// on the current state of the EH stack. 2934 llvm::CallSite 2935 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2936 ArrayRef<llvm::Value *> Args, 2937 const Twine &Name) { 2938 llvm::BasicBlock *InvokeDest = getInvokeDest(); 2939 2940 llvm::Instruction *Inst; 2941 if (!InvokeDest) 2942 Inst = Builder.CreateCall(Callee, Args, Name); 2943 else { 2944 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 2945 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 2946 EmitBlock(ContBB); 2947 } 2948 2949 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2950 // optimizer it can aggressively ignore unwind edges. 2951 if (CGM.getLangOpts().ObjCAutoRefCount) 2952 AddObjCARCExceptionMetadata(Inst); 2953 2954 return Inst; 2955 } 2956 2957 /// \brief Store a non-aggregate value to an address to initialize it. For 2958 /// initialization, a non-atomic store will be used. 2959 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 2960 LValue Dst) { 2961 if (Src.isScalar()) 2962 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 2963 else 2964 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 2965 } 2966 2967 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 2968 llvm::Value *New) { 2969 DeferredReplacements.push_back(std::make_pair(Old, New)); 2970 } 2971 2972 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 2973 llvm::Value *Callee, 2974 ReturnValueSlot ReturnValue, 2975 const CallArgList &CallArgs, 2976 const Decl *TargetDecl, 2977 llvm::Instruction **callOrInvoke) { 2978 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 2979 2980 // Handle struct-return functions by passing a pointer to the 2981 // location that we would like to return into. 2982 QualType RetTy = CallInfo.getReturnType(); 2983 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 2984 2985 llvm::FunctionType *IRFuncTy = 2986 cast<llvm::FunctionType>( 2987 cast<llvm::PointerType>(Callee->getType())->getElementType()); 2988 2989 // If we're using inalloca, insert the allocation after the stack save. 2990 // FIXME: Do this earlier rather than hacking it in here! 2991 llvm::Value *ArgMemory = nullptr; 2992 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 2993 llvm::Instruction *IP = CallArgs.getStackBase(); 2994 llvm::AllocaInst *AI; 2995 if (IP) { 2996 IP = IP->getNextNode(); 2997 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP); 2998 } else { 2999 AI = CreateTempAlloca(ArgStruct, "argmem"); 3000 } 3001 AI->setUsedWithInAlloca(true); 3002 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3003 ArgMemory = AI; 3004 } 3005 3006 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3007 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3008 3009 // If the call returns a temporary with struct return, create a temporary 3010 // alloca to hold the result, unless one is given to us. 3011 llvm::Value *SRetPtr = nullptr; 3012 if (RetAI.isIndirect() || RetAI.isInAlloca()) { 3013 SRetPtr = ReturnValue.getValue(); 3014 if (!SRetPtr) 3015 SRetPtr = CreateMemTemp(RetTy); 3016 if (IRFunctionArgs.hasSRetArg()) { 3017 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr; 3018 } else { 3019 llvm::Value *Addr = 3020 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 3021 Builder.CreateStore(SRetPtr, Addr); 3022 } 3023 } 3024 3025 assert(CallInfo.arg_size() == CallArgs.size() && 3026 "Mismatch between function signature & arguments."); 3027 unsigned ArgNo = 0; 3028 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3029 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3030 I != E; ++I, ++info_it, ++ArgNo) { 3031 const ABIArgInfo &ArgInfo = info_it->info; 3032 RValue RV = I->RV; 3033 3034 CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty); 3035 3036 // Insert a padding argument to ensure proper alignment. 3037 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3038 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3039 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3040 3041 unsigned FirstIRArg, NumIRArgs; 3042 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3043 3044 switch (ArgInfo.getKind()) { 3045 case ABIArgInfo::InAlloca: { 3046 assert(NumIRArgs == 0); 3047 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3048 if (RV.isAggregate()) { 3049 // Replace the placeholder with the appropriate argument slot GEP. 3050 llvm::Instruction *Placeholder = 3051 cast<llvm::Instruction>(RV.getAggregateAddr()); 3052 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3053 Builder.SetInsertPoint(Placeholder); 3054 llvm::Value *Addr = Builder.CreateStructGEP( 3055 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 3056 Builder.restoreIP(IP); 3057 deferPlaceholderReplacement(Placeholder, Addr); 3058 } else { 3059 // Store the RValue into the argument struct. 3060 llvm::Value *Addr = 3061 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 3062 unsigned AS = Addr->getType()->getPointerAddressSpace(); 3063 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3064 // There are some cases where a trivial bitcast is not avoidable. The 3065 // definition of a type later in a translation unit may change it's type 3066 // from {}* to (%struct.foo*)*. 3067 if (Addr->getType() != MemType) 3068 Addr = Builder.CreateBitCast(Addr, MemType); 3069 LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign); 3070 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3071 } 3072 break; 3073 } 3074 3075 case ABIArgInfo::Indirect: { 3076 assert(NumIRArgs == 1); 3077 if (RV.isScalar() || RV.isComplex()) { 3078 // Make a temporary alloca to pass the argument. 3079 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 3080 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 3081 AI->setAlignment(ArgInfo.getIndirectAlign()); 3082 IRCallArgs[FirstIRArg] = AI; 3083 3084 LValue argLV = MakeAddrLValue(AI, I->Ty, TypeAlign); 3085 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3086 } else { 3087 // We want to avoid creating an unnecessary temporary+copy here; 3088 // however, we need one in three cases: 3089 // 1. If the argument is not byval, and we are required to copy the 3090 // source. (This case doesn't occur on any common architecture.) 3091 // 2. If the argument is byval, RV is not sufficiently aligned, and 3092 // we cannot force it to be sufficiently aligned. 3093 // 3. If the argument is byval, but RV is located in an address space 3094 // different than that of the argument (0). 3095 llvm::Value *Addr = RV.getAggregateAddr(); 3096 unsigned Align = ArgInfo.getIndirectAlign(); 3097 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3098 const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace(); 3099 const unsigned ArgAddrSpace = 3100 (FirstIRArg < IRFuncTy->getNumParams() 3101 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3102 : 0); 3103 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3104 (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align && 3105 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) || 3106 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3107 // Create an aligned temporary, and copy to it. 3108 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 3109 if (Align > AI->getAlignment()) 3110 AI->setAlignment(Align); 3111 IRCallArgs[FirstIRArg] = AI; 3112 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3113 } else { 3114 // Skip the extra memcpy call. 3115 IRCallArgs[FirstIRArg] = Addr; 3116 } 3117 } 3118 break; 3119 } 3120 3121 case ABIArgInfo::Ignore: 3122 assert(NumIRArgs == 0); 3123 break; 3124 3125 case ABIArgInfo::Extend: 3126 case ABIArgInfo::Direct: { 3127 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3128 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3129 ArgInfo.getDirectOffset() == 0) { 3130 assert(NumIRArgs == 1); 3131 llvm::Value *V; 3132 if (RV.isScalar()) 3133 V = RV.getScalarVal(); 3134 else 3135 V = Builder.CreateLoad(RV.getAggregateAddr()); 3136 3137 // We might have to widen integers, but we should never truncate. 3138 if (ArgInfo.getCoerceToType() != V->getType() && 3139 V->getType()->isIntegerTy()) 3140 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3141 3142 // If the argument doesn't match, perform a bitcast to coerce it. This 3143 // can happen due to trivial type mismatches. 3144 if (FirstIRArg < IRFuncTy->getNumParams() && 3145 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3146 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3147 IRCallArgs[FirstIRArg] = V; 3148 break; 3149 } 3150 3151 // FIXME: Avoid the conversion through memory if possible. 3152 llvm::Value *SrcPtr; 3153 if (RV.isScalar() || RV.isComplex()) { 3154 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 3155 LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign); 3156 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3157 } else 3158 SrcPtr = RV.getAggregateAddr(); 3159 3160 // If the value is offset in memory, apply the offset now. 3161 if (unsigned Offs = ArgInfo.getDirectOffset()) { 3162 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 3163 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 3164 SrcPtr = Builder.CreateBitCast(SrcPtr, 3165 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 3166 3167 } 3168 3169 // Fast-isel and the optimizer generally like scalar values better than 3170 // FCAs, so we flatten them if this is safe to do for this argument. 3171 llvm::StructType *STy = 3172 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3173 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3174 llvm::Type *SrcTy = 3175 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 3176 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3177 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3178 3179 // If the source type is smaller than the destination type of the 3180 // coerce-to logic, copy the source value into a temp alloca the size 3181 // of the destination type to allow loading all of it. The bits past 3182 // the source value are left undef. 3183 if (SrcSize < DstSize) { 3184 llvm::AllocaInst *TempAlloca 3185 = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce"); 3186 Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0); 3187 SrcPtr = TempAlloca; 3188 } else { 3189 SrcPtr = Builder.CreateBitCast(SrcPtr, 3190 llvm::PointerType::getUnqual(STy)); 3191 } 3192 3193 assert(NumIRArgs == STy->getNumElements()); 3194 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3195 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 3196 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 3197 // We don't know what we're loading from. 3198 LI->setAlignment(1); 3199 IRCallArgs[FirstIRArg + i] = LI; 3200 } 3201 } else { 3202 // In the simple case, just pass the coerced loaded value. 3203 assert(NumIRArgs == 1); 3204 IRCallArgs[FirstIRArg] = 3205 CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), *this); 3206 } 3207 3208 break; 3209 } 3210 3211 case ABIArgInfo::Expand: 3212 unsigned IRArgPos = FirstIRArg; 3213 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 3214 assert(IRArgPos == FirstIRArg + NumIRArgs); 3215 break; 3216 } 3217 } 3218 3219 if (ArgMemory) { 3220 llvm::Value *Arg = ArgMemory; 3221 if (CallInfo.isVariadic()) { 3222 // When passing non-POD arguments by value to variadic functions, we will 3223 // end up with a variadic prototype and an inalloca call site. In such 3224 // cases, we can't do any parameter mismatch checks. Give up and bitcast 3225 // the callee. 3226 unsigned CalleeAS = 3227 cast<llvm::PointerType>(Callee->getType())->getAddressSpace(); 3228 Callee = Builder.CreateBitCast( 3229 Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS)); 3230 } else { 3231 llvm::Type *LastParamTy = 3232 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 3233 if (Arg->getType() != LastParamTy) { 3234 #ifndef NDEBUG 3235 // Assert that these structs have equivalent element types. 3236 llvm::StructType *FullTy = CallInfo.getArgStruct(); 3237 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 3238 cast<llvm::PointerType>(LastParamTy)->getElementType()); 3239 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 3240 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 3241 DE = DeclaredTy->element_end(), 3242 FI = FullTy->element_begin(); 3243 DI != DE; ++DI, ++FI) 3244 assert(*DI == *FI); 3245 #endif 3246 Arg = Builder.CreateBitCast(Arg, LastParamTy); 3247 } 3248 } 3249 assert(IRFunctionArgs.hasInallocaArg()); 3250 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 3251 } 3252 3253 if (!CallArgs.getCleanupsToDeactivate().empty()) 3254 deactivateArgCleanupsBeforeCall(*this, CallArgs); 3255 3256 // If the callee is a bitcast of a function to a varargs pointer to function 3257 // type, check to see if we can remove the bitcast. This handles some cases 3258 // with unprototyped functions. 3259 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 3260 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 3261 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 3262 llvm::FunctionType *CurFT = 3263 cast<llvm::FunctionType>(CurPT->getElementType()); 3264 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 3265 3266 if (CE->getOpcode() == llvm::Instruction::BitCast && 3267 ActualFT->getReturnType() == CurFT->getReturnType() && 3268 ActualFT->getNumParams() == CurFT->getNumParams() && 3269 ActualFT->getNumParams() == IRCallArgs.size() && 3270 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 3271 bool ArgsMatch = true; 3272 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 3273 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 3274 ArgsMatch = false; 3275 break; 3276 } 3277 3278 // Strip the cast if we can get away with it. This is a nice cleanup, 3279 // but also allows us to inline the function at -O0 if it is marked 3280 // always_inline. 3281 if (ArgsMatch) 3282 Callee = CalleeF; 3283 } 3284 } 3285 3286 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 3287 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 3288 // Inalloca argument can have different type. 3289 if (IRFunctionArgs.hasInallocaArg() && 3290 i == IRFunctionArgs.getInallocaArgNo()) 3291 continue; 3292 if (i < IRFuncTy->getNumParams()) 3293 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 3294 } 3295 3296 unsigned CallingConv; 3297 CodeGen::AttributeListType AttributeList; 3298 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, 3299 CallingConv, true); 3300 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 3301 AttributeList); 3302 3303 llvm::BasicBlock *InvokeDest = nullptr; 3304 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 3305 llvm::Attribute::NoUnwind) || 3306 currentFunctionUsesSEHTry()) 3307 InvokeDest = getInvokeDest(); 3308 3309 llvm::CallSite CS; 3310 if (!InvokeDest) { 3311 CS = Builder.CreateCall(Callee, IRCallArgs); 3312 } else { 3313 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 3314 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs); 3315 EmitBlock(Cont); 3316 } 3317 if (callOrInvoke) 3318 *callOrInvoke = CS.getInstruction(); 3319 3320 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 3321 !CS.hasFnAttr(llvm::Attribute::NoInline)) 3322 Attrs = 3323 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3324 llvm::Attribute::AlwaysInline); 3325 3326 // Disable inlining inside SEH __try blocks. 3327 if (isSEHTryScope()) 3328 Attrs = 3329 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3330 llvm::Attribute::NoInline); 3331 3332 CS.setAttributes(Attrs); 3333 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 3334 3335 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3336 // optimizer it can aggressively ignore unwind edges. 3337 if (CGM.getLangOpts().ObjCAutoRefCount) 3338 AddObjCARCExceptionMetadata(CS.getInstruction()); 3339 3340 // If the call doesn't return, finish the basic block and clear the 3341 // insertion point; this allows the rest of IRgen to discard 3342 // unreachable code. 3343 if (CS.doesNotReturn()) { 3344 Builder.CreateUnreachable(); 3345 Builder.ClearInsertionPoint(); 3346 3347 // FIXME: For now, emit a dummy basic block because expr emitters in 3348 // generally are not ready to handle emitting expressions at unreachable 3349 // points. 3350 EnsureInsertPoint(); 3351 3352 // Return a reasonable RValue. 3353 return GetUndefRValue(RetTy); 3354 } 3355 3356 llvm::Instruction *CI = CS.getInstruction(); 3357 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 3358 CI->setName("call"); 3359 3360 // Emit any writebacks immediately. Arguably this should happen 3361 // after any return-value munging. 3362 if (CallArgs.hasWritebacks()) 3363 emitWritebacks(*this, CallArgs); 3364 3365 // The stack cleanup for inalloca arguments has to run out of the normal 3366 // lexical order, so deactivate it and run it manually here. 3367 CallArgs.freeArgumentMemory(*this); 3368 3369 RValue Ret = [&] { 3370 switch (RetAI.getKind()) { 3371 case ABIArgInfo::InAlloca: 3372 case ABIArgInfo::Indirect: 3373 return convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 3374 3375 case ABIArgInfo::Ignore: 3376 // If we are ignoring an argument that had a result, make sure to 3377 // construct the appropriate return value for our caller. 3378 return GetUndefRValue(RetTy); 3379 3380 case ABIArgInfo::Extend: 3381 case ABIArgInfo::Direct: { 3382 llvm::Type *RetIRTy = ConvertType(RetTy); 3383 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 3384 switch (getEvaluationKind(RetTy)) { 3385 case TEK_Complex: { 3386 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 3387 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 3388 return RValue::getComplex(std::make_pair(Real, Imag)); 3389 } 3390 case TEK_Aggregate: { 3391 llvm::Value *DestPtr = ReturnValue.getValue(); 3392 bool DestIsVolatile = ReturnValue.isVolatile(); 3393 3394 if (!DestPtr) { 3395 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 3396 DestIsVolatile = false; 3397 } 3398 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 3399 return RValue::getAggregate(DestPtr); 3400 } 3401 case TEK_Scalar: { 3402 // If the argument doesn't match, perform a bitcast to coerce it. This 3403 // can happen due to trivial type mismatches. 3404 llvm::Value *V = CI; 3405 if (V->getType() != RetIRTy) 3406 V = Builder.CreateBitCast(V, RetIRTy); 3407 return RValue::get(V); 3408 } 3409 } 3410 llvm_unreachable("bad evaluation kind"); 3411 } 3412 3413 llvm::Value *DestPtr = ReturnValue.getValue(); 3414 bool DestIsVolatile = ReturnValue.isVolatile(); 3415 3416 if (!DestPtr) { 3417 DestPtr = CreateMemTemp(RetTy, "coerce"); 3418 DestIsVolatile = false; 3419 } 3420 3421 // If the value is offset in memory, apply the offset now. 3422 llvm::Value *StorePtr = DestPtr; 3423 if (unsigned Offs = RetAI.getDirectOffset()) { 3424 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 3425 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 3426 StorePtr = Builder.CreateBitCast(StorePtr, 3427 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 3428 } 3429 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 3430 3431 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 3432 } 3433 3434 case ABIArgInfo::Expand: 3435 llvm_unreachable("Invalid ABI kind for return argument"); 3436 } 3437 3438 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 3439 } (); 3440 3441 if (Ret.isScalar() && TargetDecl) { 3442 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 3443 llvm::Value *OffsetValue = nullptr; 3444 if (const auto *Offset = AA->getOffset()) 3445 OffsetValue = EmitScalarExpr(Offset); 3446 3447 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 3448 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 3449 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 3450 OffsetValue); 3451 } 3452 } 3453 3454 return Ret; 3455 } 3456 3457 /* VarArg handling */ 3458 3459 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 3460 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 3461 } 3462