1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 using namespace clang;
43 using namespace CodeGen;
44 
45 /***/
46 
47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
48   switch (CC) {
49   default: return llvm::CallingConv::C;
50   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
51   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
52   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
53   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
54   case CC_Win64: return llvm::CallingConv::Win64;
55   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
56   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
57   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
58   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
59   // TODO: Add support for __pascal to LLVM.
60   case CC_X86Pascal: return llvm::CallingConv::C;
61   // TODO: Add support for __vectorcall to LLVM.
62   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
63   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
64   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
65   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
66   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
67   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
68   case CC_Swift: return llvm::CallingConv::Swift;
69   case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
70   }
71 }
72 
73 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
74 /// qualification. Either or both of RD and MD may be null. A null RD indicates
75 /// that there is no meaningful 'this' type, and a null MD can occur when
76 /// calling a method pointer.
77 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
78                                          const CXXMethodDecl *MD) {
79   QualType RecTy;
80   if (RD)
81     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
82   else
83     RecTy = Context.VoidTy;
84 
85   if (MD)
86     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
87   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
88 }
89 
90 /// Returns the canonical formal type of the given C++ method.
91 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
92   return MD->getType()->getCanonicalTypeUnqualified()
93            .getAs<FunctionProtoType>();
94 }
95 
96 /// Returns the "extra-canonicalized" return type, which discards
97 /// qualifiers on the return type.  Codegen doesn't care about them,
98 /// and it makes ABI code a little easier to be able to assume that
99 /// all parameter and return types are top-level unqualified.
100 static CanQualType GetReturnType(QualType RetTy) {
101   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
102 }
103 
104 /// Arrange the argument and result information for a value of the given
105 /// unprototyped freestanding function type.
106 const CGFunctionInfo &
107 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
108   // When translating an unprototyped function type, always use a
109   // variadic type.
110   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
111                                  /*instanceMethod=*/false,
112                                  /*chainCall=*/false, None,
113                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
114 }
115 
116 static void addExtParameterInfosForCall(
117          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
118                                         const FunctionProtoType *proto,
119                                         unsigned prefixArgs,
120                                         unsigned totalArgs) {
121   assert(proto->hasExtParameterInfos());
122   assert(paramInfos.size() <= prefixArgs);
123   assert(proto->getNumParams() + prefixArgs <= totalArgs);
124 
125   paramInfos.reserve(totalArgs);
126 
127   // Add default infos for any prefix args that don't already have infos.
128   paramInfos.resize(prefixArgs);
129 
130   // Add infos for the prototype.
131   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
132     paramInfos.push_back(ParamInfo);
133     // pass_object_size params have no parameter info.
134     if (ParamInfo.hasPassObjectSize())
135       paramInfos.emplace_back();
136   }
137 
138   assert(paramInfos.size() <= totalArgs &&
139          "Did we forget to insert pass_object_size args?");
140   // Add default infos for the variadic and/or suffix arguments.
141   paramInfos.resize(totalArgs);
142 }
143 
144 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
145 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
146 static void appendParameterTypes(const CodeGenTypes &CGT,
147                                  SmallVectorImpl<CanQualType> &prefix,
148               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
149                                  CanQual<FunctionProtoType> FPT) {
150   // Fast path: don't touch param info if we don't need to.
151   if (!FPT->hasExtParameterInfos()) {
152     assert(paramInfos.empty() &&
153            "We have paramInfos, but the prototype doesn't?");
154     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
155     return;
156   }
157 
158   unsigned PrefixSize = prefix.size();
159   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
160   // parameters; the only thing that can change this is the presence of
161   // pass_object_size. So, we preallocate for the common case.
162   prefix.reserve(prefix.size() + FPT->getNumParams());
163 
164   auto ExtInfos = FPT->getExtParameterInfos();
165   assert(ExtInfos.size() == FPT->getNumParams());
166   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
167     prefix.push_back(FPT->getParamType(I));
168     if (ExtInfos[I].hasPassObjectSize())
169       prefix.push_back(CGT.getContext().getSizeType());
170   }
171 
172   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
173                               prefix.size());
174 }
175 
176 /// Arrange the LLVM function layout for a value of the given function
177 /// type, on top of any implicit parameters already stored.
178 static const CGFunctionInfo &
179 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
180                         SmallVectorImpl<CanQualType> &prefix,
181                         CanQual<FunctionProtoType> FTP) {
182   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
183   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
184   // FIXME: Kill copy.
185   appendParameterTypes(CGT, prefix, paramInfos, FTP);
186   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
187 
188   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
189                                      /*chainCall=*/false, prefix,
190                                      FTP->getExtInfo(), paramInfos,
191                                      Required);
192 }
193 
194 /// Arrange the argument and result information for a value of the
195 /// given freestanding function type.
196 const CGFunctionInfo &
197 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
198   SmallVector<CanQualType, 16> argTypes;
199   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
200                                    FTP);
201 }
202 
203 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
204                                                bool IsWindows) {
205   // Set the appropriate calling convention for the Function.
206   if (D->hasAttr<StdCallAttr>())
207     return CC_X86StdCall;
208 
209   if (D->hasAttr<FastCallAttr>())
210     return CC_X86FastCall;
211 
212   if (D->hasAttr<RegCallAttr>())
213     return CC_X86RegCall;
214 
215   if (D->hasAttr<ThisCallAttr>())
216     return CC_X86ThisCall;
217 
218   if (D->hasAttr<VectorCallAttr>())
219     return CC_X86VectorCall;
220 
221   if (D->hasAttr<PascalAttr>())
222     return CC_X86Pascal;
223 
224   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
225     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
226 
227   if (D->hasAttr<AArch64VectorPcsAttr>())
228     return CC_AArch64VectorCall;
229 
230   if (D->hasAttr<IntelOclBiccAttr>())
231     return CC_IntelOclBicc;
232 
233   if (D->hasAttr<MSABIAttr>())
234     return IsWindows ? CC_C : CC_Win64;
235 
236   if (D->hasAttr<SysVABIAttr>())
237     return IsWindows ? CC_X86_64SysV : CC_C;
238 
239   if (D->hasAttr<PreserveMostAttr>())
240     return CC_PreserveMost;
241 
242   if (D->hasAttr<PreserveAllAttr>())
243     return CC_PreserveAll;
244 
245   return CC_C;
246 }
247 
248 /// Arrange the argument and result information for a call to an
249 /// unknown C++ non-static member function of the given abstract type.
250 /// (A null RD means we don't have any meaningful "this" argument type,
251 ///  so fall back to a generic pointer type).
252 /// The member function must be an ordinary function, i.e. not a
253 /// constructor or destructor.
254 const CGFunctionInfo &
255 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
256                                    const FunctionProtoType *FTP,
257                                    const CXXMethodDecl *MD) {
258   SmallVector<CanQualType, 16> argTypes;
259 
260   // Add the 'this' pointer.
261   argTypes.push_back(DeriveThisType(RD, MD));
262 
263   return ::arrangeLLVMFunctionInfo(
264       *this, true, argTypes,
265       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
266 }
267 
268 /// Set calling convention for CUDA/HIP kernel.
269 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
270                                            const FunctionDecl *FD) {
271   if (FD->hasAttr<CUDAGlobalAttr>()) {
272     const FunctionType *FT = FTy->getAs<FunctionType>();
273     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
274     FTy = FT->getCanonicalTypeUnqualified();
275   }
276 }
277 
278 /// Arrange the argument and result information for a declaration or
279 /// definition of the given C++ non-static member function.  The
280 /// member function must be an ordinary function, i.e. not a
281 /// constructor or destructor.
282 const CGFunctionInfo &
283 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
284   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
285   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
286 
287   CanQualType FT = GetFormalType(MD).getAs<Type>();
288   setCUDAKernelCallingConvention(FT, CGM, MD);
289   auto prototype = FT.getAs<FunctionProtoType>();
290 
291   if (MD->isInstance()) {
292     // The abstract case is perfectly fine.
293     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
294     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
295   }
296 
297   return arrangeFreeFunctionType(prototype);
298 }
299 
300 bool CodeGenTypes::inheritingCtorHasParams(
301     const InheritedConstructor &Inherited, CXXCtorType Type) {
302   // Parameters are unnecessary if we're constructing a base class subobject
303   // and the inherited constructor lives in a virtual base.
304   return Type == Ctor_Complete ||
305          !Inherited.getShadowDecl()->constructsVirtualBase() ||
306          !Target.getCXXABI().hasConstructorVariants();
307 }
308 
309 const CGFunctionInfo &
310 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
311   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
312 
313   SmallVector<CanQualType, 16> argTypes;
314   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
315   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
316 
317   bool PassParams = true;
318 
319   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
320     // A base class inheriting constructor doesn't get forwarded arguments
321     // needed to construct a virtual base (or base class thereof).
322     if (auto Inherited = CD->getInheritedConstructor())
323       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
324   }
325 
326   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
327 
328   // Add the formal parameters.
329   if (PassParams)
330     appendParameterTypes(*this, argTypes, paramInfos, FTP);
331 
332   CGCXXABI::AddedStructorArgCounts AddedArgs =
333       TheCXXABI.buildStructorSignature(GD, argTypes);
334   if (!paramInfos.empty()) {
335     // Note: prefix implies after the first param.
336     if (AddedArgs.Prefix)
337       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
338                         FunctionProtoType::ExtParameterInfo{});
339     if (AddedArgs.Suffix)
340       paramInfos.append(AddedArgs.Suffix,
341                         FunctionProtoType::ExtParameterInfo{});
342   }
343 
344   RequiredArgs required =
345       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
346                                       : RequiredArgs::All);
347 
348   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
349   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
350                                ? argTypes.front()
351                                : TheCXXABI.hasMostDerivedReturn(GD)
352                                      ? CGM.getContext().VoidPtrTy
353                                      : Context.VoidTy;
354   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
355                                  /*chainCall=*/false, argTypes, extInfo,
356                                  paramInfos, required);
357 }
358 
359 static SmallVector<CanQualType, 16>
360 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
361   SmallVector<CanQualType, 16> argTypes;
362   for (auto &arg : args)
363     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
364   return argTypes;
365 }
366 
367 static SmallVector<CanQualType, 16>
368 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
369   SmallVector<CanQualType, 16> argTypes;
370   for (auto &arg : args)
371     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
372   return argTypes;
373 }
374 
375 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
376 getExtParameterInfosForCall(const FunctionProtoType *proto,
377                             unsigned prefixArgs, unsigned totalArgs) {
378   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
379   if (proto->hasExtParameterInfos()) {
380     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
381   }
382   return result;
383 }
384 
385 /// Arrange a call to a C++ method, passing the given arguments.
386 ///
387 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
388 /// parameter.
389 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
390 /// args.
391 /// PassProtoArgs indicates whether `args` has args for the parameters in the
392 /// given CXXConstructorDecl.
393 const CGFunctionInfo &
394 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
395                                         const CXXConstructorDecl *D,
396                                         CXXCtorType CtorKind,
397                                         unsigned ExtraPrefixArgs,
398                                         unsigned ExtraSuffixArgs,
399                                         bool PassProtoArgs) {
400   // FIXME: Kill copy.
401   SmallVector<CanQualType, 16> ArgTypes;
402   for (const auto &Arg : args)
403     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
404 
405   // +1 for implicit this, which should always be args[0].
406   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
407 
408   CanQual<FunctionProtoType> FPT = GetFormalType(D);
409   RequiredArgs Required = PassProtoArgs
410                               ? RequiredArgs::forPrototypePlus(
411                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
412                               : RequiredArgs::All;
413 
414   GlobalDecl GD(D, CtorKind);
415   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
416                                ? ArgTypes.front()
417                                : TheCXXABI.hasMostDerivedReturn(GD)
418                                      ? CGM.getContext().VoidPtrTy
419                                      : Context.VoidTy;
420 
421   FunctionType::ExtInfo Info = FPT->getExtInfo();
422   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
423   // If the prototype args are elided, we should only have ABI-specific args,
424   // which never have param info.
425   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
426     // ABI-specific suffix arguments are treated the same as variadic arguments.
427     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
428                                 ArgTypes.size());
429   }
430   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
431                                  /*chainCall=*/false, ArgTypes, Info,
432                                  ParamInfos, Required);
433 }
434 
435 /// Arrange the argument and result information for the declaration or
436 /// definition of the given function.
437 const CGFunctionInfo &
438 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
439   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
440     if (MD->isInstance())
441       return arrangeCXXMethodDeclaration(MD);
442 
443   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
444 
445   assert(isa<FunctionType>(FTy));
446   setCUDAKernelCallingConvention(FTy, CGM, FD);
447 
448   // When declaring a function without a prototype, always use a
449   // non-variadic type.
450   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
451     return arrangeLLVMFunctionInfo(
452         noProto->getReturnType(), /*instanceMethod=*/false,
453         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
454   }
455 
456   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
457 }
458 
459 /// Arrange the argument and result information for the declaration or
460 /// definition of an Objective-C method.
461 const CGFunctionInfo &
462 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
463   // It happens that this is the same as a call with no optional
464   // arguments, except also using the formal 'self' type.
465   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
466 }
467 
468 /// Arrange the argument and result information for the function type
469 /// through which to perform a send to the given Objective-C method,
470 /// using the given receiver type.  The receiver type is not always
471 /// the 'self' type of the method or even an Objective-C pointer type.
472 /// This is *not* the right method for actually performing such a
473 /// message send, due to the possibility of optional arguments.
474 const CGFunctionInfo &
475 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
476                                               QualType receiverType) {
477   SmallVector<CanQualType, 16> argTys;
478   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
479   argTys.push_back(Context.getCanonicalParamType(receiverType));
480   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
481   // FIXME: Kill copy?
482   for (const auto *I : MD->parameters()) {
483     argTys.push_back(Context.getCanonicalParamType(I->getType()));
484     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
485         I->hasAttr<NoEscapeAttr>());
486     extParamInfos.push_back(extParamInfo);
487   }
488 
489   FunctionType::ExtInfo einfo;
490   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
491   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
492 
493   if (getContext().getLangOpts().ObjCAutoRefCount &&
494       MD->hasAttr<NSReturnsRetainedAttr>())
495     einfo = einfo.withProducesResult(true);
496 
497   RequiredArgs required =
498     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
499 
500   return arrangeLLVMFunctionInfo(
501       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
502       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
503 }
504 
505 const CGFunctionInfo &
506 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
507                                                  const CallArgList &args) {
508   auto argTypes = getArgTypesForCall(Context, args);
509   FunctionType::ExtInfo einfo;
510 
511   return arrangeLLVMFunctionInfo(
512       GetReturnType(returnType), /*instanceMethod=*/false,
513       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
514 }
515 
516 const CGFunctionInfo &
517 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
518   // FIXME: Do we need to handle ObjCMethodDecl?
519   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
520 
521   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
522       isa<CXXDestructorDecl>(GD.getDecl()))
523     return arrangeCXXStructorDeclaration(GD);
524 
525   return arrangeFunctionDeclaration(FD);
526 }
527 
528 /// Arrange a thunk that takes 'this' as the first parameter followed by
529 /// varargs.  Return a void pointer, regardless of the actual return type.
530 /// The body of the thunk will end in a musttail call to a function of the
531 /// correct type, and the caller will bitcast the function to the correct
532 /// prototype.
533 const CGFunctionInfo &
534 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
535   assert(MD->isVirtual() && "only methods have thunks");
536   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
537   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
538   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
539                                  /*chainCall=*/false, ArgTys,
540                                  FTP->getExtInfo(), {}, RequiredArgs(1));
541 }
542 
543 const CGFunctionInfo &
544 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
545                                    CXXCtorType CT) {
546   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
547 
548   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
549   SmallVector<CanQualType, 2> ArgTys;
550   const CXXRecordDecl *RD = CD->getParent();
551   ArgTys.push_back(DeriveThisType(RD, CD));
552   if (CT == Ctor_CopyingClosure)
553     ArgTys.push_back(*FTP->param_type_begin());
554   if (RD->getNumVBases() > 0)
555     ArgTys.push_back(Context.IntTy);
556   CallingConv CC = Context.getDefaultCallingConvention(
557       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
558   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
559                                  /*chainCall=*/false, ArgTys,
560                                  FunctionType::ExtInfo(CC), {},
561                                  RequiredArgs::All);
562 }
563 
564 /// Arrange a call as unto a free function, except possibly with an
565 /// additional number of formal parameters considered required.
566 static const CGFunctionInfo &
567 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
568                             CodeGenModule &CGM,
569                             const CallArgList &args,
570                             const FunctionType *fnType,
571                             unsigned numExtraRequiredArgs,
572                             bool chainCall) {
573   assert(args.size() >= numExtraRequiredArgs);
574 
575   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
576 
577   // In most cases, there are no optional arguments.
578   RequiredArgs required = RequiredArgs::All;
579 
580   // If we have a variadic prototype, the required arguments are the
581   // extra prefix plus the arguments in the prototype.
582   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
583     if (proto->isVariadic())
584       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
585 
586     if (proto->hasExtParameterInfos())
587       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
588                                   args.size());
589 
590   // If we don't have a prototype at all, but we're supposed to
591   // explicitly use the variadic convention for unprototyped calls,
592   // treat all of the arguments as required but preserve the nominal
593   // possibility of variadics.
594   } else if (CGM.getTargetCodeGenInfo()
595                 .isNoProtoCallVariadic(args,
596                                        cast<FunctionNoProtoType>(fnType))) {
597     required = RequiredArgs(args.size());
598   }
599 
600   // FIXME: Kill copy.
601   SmallVector<CanQualType, 16> argTypes;
602   for (const auto &arg : args)
603     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
604   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
605                                      /*instanceMethod=*/false, chainCall,
606                                      argTypes, fnType->getExtInfo(), paramInfos,
607                                      required);
608 }
609 
610 /// Figure out the rules for calling a function with the given formal
611 /// type using the given arguments.  The arguments are necessary
612 /// because the function might be unprototyped, in which case it's
613 /// target-dependent in crazy ways.
614 const CGFunctionInfo &
615 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
616                                       const FunctionType *fnType,
617                                       bool chainCall) {
618   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
619                                      chainCall ? 1 : 0, chainCall);
620 }
621 
622 /// A block function is essentially a free function with an
623 /// extra implicit argument.
624 const CGFunctionInfo &
625 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
626                                        const FunctionType *fnType) {
627   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
628                                      /*chainCall=*/false);
629 }
630 
631 const CGFunctionInfo &
632 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
633                                               const FunctionArgList &params) {
634   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
635   auto argTypes = getArgTypesForDeclaration(Context, params);
636 
637   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
638                                  /*instanceMethod*/ false, /*chainCall*/ false,
639                                  argTypes, proto->getExtInfo(), paramInfos,
640                                  RequiredArgs::forPrototypePlus(proto, 1));
641 }
642 
643 const CGFunctionInfo &
644 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
645                                          const CallArgList &args) {
646   // FIXME: Kill copy.
647   SmallVector<CanQualType, 16> argTypes;
648   for (const auto &Arg : args)
649     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
650   return arrangeLLVMFunctionInfo(
651       GetReturnType(resultType), /*instanceMethod=*/false,
652       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
653       /*paramInfos=*/ {}, RequiredArgs::All);
654 }
655 
656 const CGFunctionInfo &
657 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
658                                                 const FunctionArgList &args) {
659   auto argTypes = getArgTypesForDeclaration(Context, args);
660 
661   return arrangeLLVMFunctionInfo(
662       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
663       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
664 }
665 
666 const CGFunctionInfo &
667 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
668                                               ArrayRef<CanQualType> argTypes) {
669   return arrangeLLVMFunctionInfo(
670       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
671       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
672 }
673 
674 /// Arrange a call to a C++ method, passing the given arguments.
675 ///
676 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
677 /// does not count `this`.
678 const CGFunctionInfo &
679 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
680                                    const FunctionProtoType *proto,
681                                    RequiredArgs required,
682                                    unsigned numPrefixArgs) {
683   assert(numPrefixArgs + 1 <= args.size() &&
684          "Emitting a call with less args than the required prefix?");
685   // Add one to account for `this`. It's a bit awkward here, but we don't count
686   // `this` in similar places elsewhere.
687   auto paramInfos =
688     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
689 
690   // FIXME: Kill copy.
691   auto argTypes = getArgTypesForCall(Context, args);
692 
693   FunctionType::ExtInfo info = proto->getExtInfo();
694   return arrangeLLVMFunctionInfo(
695       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
696       /*chainCall=*/false, argTypes, info, paramInfos, required);
697 }
698 
699 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
700   return arrangeLLVMFunctionInfo(
701       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
702       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
703 }
704 
705 const CGFunctionInfo &
706 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
707                           const CallArgList &args) {
708   assert(signature.arg_size() <= args.size());
709   if (signature.arg_size() == args.size())
710     return signature;
711 
712   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
713   auto sigParamInfos = signature.getExtParameterInfos();
714   if (!sigParamInfos.empty()) {
715     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
716     paramInfos.resize(args.size());
717   }
718 
719   auto argTypes = getArgTypesForCall(Context, args);
720 
721   assert(signature.getRequiredArgs().allowsOptionalArgs());
722   return arrangeLLVMFunctionInfo(signature.getReturnType(),
723                                  signature.isInstanceMethod(),
724                                  signature.isChainCall(),
725                                  argTypes,
726                                  signature.getExtInfo(),
727                                  paramInfos,
728                                  signature.getRequiredArgs());
729 }
730 
731 namespace clang {
732 namespace CodeGen {
733 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
734 }
735 }
736 
737 /// Arrange the argument and result information for an abstract value
738 /// of a given function type.  This is the method which all of the
739 /// above functions ultimately defer to.
740 const CGFunctionInfo &
741 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
742                                       bool instanceMethod,
743                                       bool chainCall,
744                                       ArrayRef<CanQualType> argTypes,
745                                       FunctionType::ExtInfo info,
746                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
747                                       RequiredArgs required) {
748   assert(llvm::all_of(argTypes,
749                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
750 
751   // Lookup or create unique function info.
752   llvm::FoldingSetNodeID ID;
753   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
754                           required, resultType, argTypes);
755 
756   void *insertPos = nullptr;
757   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
758   if (FI)
759     return *FI;
760 
761   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
762 
763   // Construct the function info.  We co-allocate the ArgInfos.
764   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
765                               paramInfos, resultType, argTypes, required);
766   FunctionInfos.InsertNode(FI, insertPos);
767 
768   bool inserted = FunctionsBeingProcessed.insert(FI).second;
769   (void)inserted;
770   assert(inserted && "Recursively being processed?");
771 
772   // Compute ABI information.
773   if (CC == llvm::CallingConv::SPIR_KERNEL) {
774     // Force target independent argument handling for the host visible
775     // kernel functions.
776     computeSPIRKernelABIInfo(CGM, *FI);
777   } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
778     swiftcall::computeABIInfo(CGM, *FI);
779   } else {
780     getABIInfo().computeInfo(*FI);
781   }
782 
783   // Loop over all of the computed argument and return value info.  If any of
784   // them are direct or extend without a specified coerce type, specify the
785   // default now.
786   ABIArgInfo &retInfo = FI->getReturnInfo();
787   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
788     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
789 
790   for (auto &I : FI->arguments())
791     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
792       I.info.setCoerceToType(ConvertType(I.type));
793 
794   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
795   assert(erased && "Not in set?");
796 
797   return *FI;
798 }
799 
800 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
801                                        bool instanceMethod,
802                                        bool chainCall,
803                                        const FunctionType::ExtInfo &info,
804                                        ArrayRef<ExtParameterInfo> paramInfos,
805                                        CanQualType resultType,
806                                        ArrayRef<CanQualType> argTypes,
807                                        RequiredArgs required) {
808   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
809   assert(!required.allowsOptionalArgs() ||
810          required.getNumRequiredArgs() <= argTypes.size());
811 
812   void *buffer =
813     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
814                                   argTypes.size() + 1, paramInfos.size()));
815 
816   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
817   FI->CallingConvention = llvmCC;
818   FI->EffectiveCallingConvention = llvmCC;
819   FI->ASTCallingConvention = info.getCC();
820   FI->InstanceMethod = instanceMethod;
821   FI->ChainCall = chainCall;
822   FI->CmseNSCall = info.getCmseNSCall();
823   FI->NoReturn = info.getNoReturn();
824   FI->ReturnsRetained = info.getProducesResult();
825   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
826   FI->NoCfCheck = info.getNoCfCheck();
827   FI->Required = required;
828   FI->HasRegParm = info.getHasRegParm();
829   FI->RegParm = info.getRegParm();
830   FI->ArgStruct = nullptr;
831   FI->ArgStructAlign = 0;
832   FI->NumArgs = argTypes.size();
833   FI->HasExtParameterInfos = !paramInfos.empty();
834   FI->getArgsBuffer()[0].type = resultType;
835   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
836     FI->getArgsBuffer()[i + 1].type = argTypes[i];
837   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
838     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
839   return FI;
840 }
841 
842 /***/
843 
844 namespace {
845 // ABIArgInfo::Expand implementation.
846 
847 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
848 struct TypeExpansion {
849   enum TypeExpansionKind {
850     // Elements of constant arrays are expanded recursively.
851     TEK_ConstantArray,
852     // Record fields are expanded recursively (but if record is a union, only
853     // the field with the largest size is expanded).
854     TEK_Record,
855     // For complex types, real and imaginary parts are expanded recursively.
856     TEK_Complex,
857     // All other types are not expandable.
858     TEK_None
859   };
860 
861   const TypeExpansionKind Kind;
862 
863   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
864   virtual ~TypeExpansion() {}
865 };
866 
867 struct ConstantArrayExpansion : TypeExpansion {
868   QualType EltTy;
869   uint64_t NumElts;
870 
871   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
872       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
873   static bool classof(const TypeExpansion *TE) {
874     return TE->Kind == TEK_ConstantArray;
875   }
876 };
877 
878 struct RecordExpansion : TypeExpansion {
879   SmallVector<const CXXBaseSpecifier *, 1> Bases;
880 
881   SmallVector<const FieldDecl *, 1> Fields;
882 
883   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
884                   SmallVector<const FieldDecl *, 1> &&Fields)
885       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
886         Fields(std::move(Fields)) {}
887   static bool classof(const TypeExpansion *TE) {
888     return TE->Kind == TEK_Record;
889   }
890 };
891 
892 struct ComplexExpansion : TypeExpansion {
893   QualType EltTy;
894 
895   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
896   static bool classof(const TypeExpansion *TE) {
897     return TE->Kind == TEK_Complex;
898   }
899 };
900 
901 struct NoExpansion : TypeExpansion {
902   NoExpansion() : TypeExpansion(TEK_None) {}
903   static bool classof(const TypeExpansion *TE) {
904     return TE->Kind == TEK_None;
905   }
906 };
907 }  // namespace
908 
909 static std::unique_ptr<TypeExpansion>
910 getTypeExpansion(QualType Ty, const ASTContext &Context) {
911   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
912     return std::make_unique<ConstantArrayExpansion>(
913         AT->getElementType(), AT->getSize().getZExtValue());
914   }
915   if (const RecordType *RT = Ty->getAs<RecordType>()) {
916     SmallVector<const CXXBaseSpecifier *, 1> Bases;
917     SmallVector<const FieldDecl *, 1> Fields;
918     const RecordDecl *RD = RT->getDecl();
919     assert(!RD->hasFlexibleArrayMember() &&
920            "Cannot expand structure with flexible array.");
921     if (RD->isUnion()) {
922       // Unions can be here only in degenerative cases - all the fields are same
923       // after flattening. Thus we have to use the "largest" field.
924       const FieldDecl *LargestFD = nullptr;
925       CharUnits UnionSize = CharUnits::Zero();
926 
927       for (const auto *FD : RD->fields()) {
928         if (FD->isZeroLengthBitField(Context))
929           continue;
930         assert(!FD->isBitField() &&
931                "Cannot expand structure with bit-field members.");
932         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
933         if (UnionSize < FieldSize) {
934           UnionSize = FieldSize;
935           LargestFD = FD;
936         }
937       }
938       if (LargestFD)
939         Fields.push_back(LargestFD);
940     } else {
941       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
942         assert(!CXXRD->isDynamicClass() &&
943                "cannot expand vtable pointers in dynamic classes");
944         for (const CXXBaseSpecifier &BS : CXXRD->bases())
945           Bases.push_back(&BS);
946       }
947 
948       for (const auto *FD : RD->fields()) {
949         if (FD->isZeroLengthBitField(Context))
950           continue;
951         assert(!FD->isBitField() &&
952                "Cannot expand structure with bit-field members.");
953         Fields.push_back(FD);
954       }
955     }
956     return std::make_unique<RecordExpansion>(std::move(Bases),
957                                               std::move(Fields));
958   }
959   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
960     return std::make_unique<ComplexExpansion>(CT->getElementType());
961   }
962   return std::make_unique<NoExpansion>();
963 }
964 
965 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
966   auto Exp = getTypeExpansion(Ty, Context);
967   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
968     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
969   }
970   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
971     int Res = 0;
972     for (auto BS : RExp->Bases)
973       Res += getExpansionSize(BS->getType(), Context);
974     for (auto FD : RExp->Fields)
975       Res += getExpansionSize(FD->getType(), Context);
976     return Res;
977   }
978   if (isa<ComplexExpansion>(Exp.get()))
979     return 2;
980   assert(isa<NoExpansion>(Exp.get()));
981   return 1;
982 }
983 
984 void
985 CodeGenTypes::getExpandedTypes(QualType Ty,
986                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
987   auto Exp = getTypeExpansion(Ty, Context);
988   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
989     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
990       getExpandedTypes(CAExp->EltTy, TI);
991     }
992   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
993     for (auto BS : RExp->Bases)
994       getExpandedTypes(BS->getType(), TI);
995     for (auto FD : RExp->Fields)
996       getExpandedTypes(FD->getType(), TI);
997   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
998     llvm::Type *EltTy = ConvertType(CExp->EltTy);
999     *TI++ = EltTy;
1000     *TI++ = EltTy;
1001   } else {
1002     assert(isa<NoExpansion>(Exp.get()));
1003     *TI++ = ConvertType(Ty);
1004   }
1005 }
1006 
1007 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1008                                       ConstantArrayExpansion *CAE,
1009                                       Address BaseAddr,
1010                                       llvm::function_ref<void(Address)> Fn) {
1011   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1012   CharUnits EltAlign =
1013     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1014 
1015   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1016     llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1017         BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1018     Fn(Address(EltAddr, EltAlign));
1019   }
1020 }
1021 
1022 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1023                                          llvm::Function::arg_iterator &AI) {
1024   assert(LV.isSimple() &&
1025          "Unexpected non-simple lvalue during struct expansion.");
1026 
1027   auto Exp = getTypeExpansion(Ty, getContext());
1028   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1029     forConstantArrayExpansion(
1030         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1031           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1032           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1033         });
1034   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1035     Address This = LV.getAddress(*this);
1036     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1037       // Perform a single step derived-to-base conversion.
1038       Address Base =
1039           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1040                                 /*NullCheckValue=*/false, SourceLocation());
1041       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1042 
1043       // Recurse onto bases.
1044       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1045     }
1046     for (auto FD : RExp->Fields) {
1047       // FIXME: What are the right qualifiers here?
1048       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1049       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1050     }
1051   } else if (isa<ComplexExpansion>(Exp.get())) {
1052     auto realValue = &*AI++;
1053     auto imagValue = &*AI++;
1054     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1055   } else {
1056     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1057     // primitive store.
1058     assert(isa<NoExpansion>(Exp.get()));
1059     if (LV.isBitField())
1060       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1061     else
1062       EmitStoreOfScalar(&*AI++, LV);
1063   }
1064 }
1065 
1066 void CodeGenFunction::ExpandTypeToArgs(
1067     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1068     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1069   auto Exp = getTypeExpansion(Ty, getContext());
1070   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1071     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1072                                    : Arg.getKnownRValue().getAggregateAddress();
1073     forConstantArrayExpansion(
1074         *this, CAExp, Addr, [&](Address EltAddr) {
1075           CallArg EltArg = CallArg(
1076               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1077               CAExp->EltTy);
1078           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1079                            IRCallArgPos);
1080         });
1081   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1082     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1083                                    : Arg.getKnownRValue().getAggregateAddress();
1084     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1085       // Perform a single step derived-to-base conversion.
1086       Address Base =
1087           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1088                                 /*NullCheckValue=*/false, SourceLocation());
1089       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1090 
1091       // Recurse onto bases.
1092       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1093                        IRCallArgPos);
1094     }
1095 
1096     LValue LV = MakeAddrLValue(This, Ty);
1097     for (auto FD : RExp->Fields) {
1098       CallArg FldArg =
1099           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1100       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1101                        IRCallArgPos);
1102     }
1103   } else if (isa<ComplexExpansion>(Exp.get())) {
1104     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1105     IRCallArgs[IRCallArgPos++] = CV.first;
1106     IRCallArgs[IRCallArgPos++] = CV.second;
1107   } else {
1108     assert(isa<NoExpansion>(Exp.get()));
1109     auto RV = Arg.getKnownRValue();
1110     assert(RV.isScalar() &&
1111            "Unexpected non-scalar rvalue during struct expansion.");
1112 
1113     // Insert a bitcast as needed.
1114     llvm::Value *V = RV.getScalarVal();
1115     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1116         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1117       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1118 
1119     IRCallArgs[IRCallArgPos++] = V;
1120   }
1121 }
1122 
1123 /// Create a temporary allocation for the purposes of coercion.
1124 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1125                                            CharUnits MinAlign,
1126                                            const Twine &Name = "tmp") {
1127   // Don't use an alignment that's worse than what LLVM would prefer.
1128   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1129   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1130 
1131   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1132 }
1133 
1134 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1135 /// accessing some number of bytes out of it, try to gep into the struct to get
1136 /// at its inner goodness.  Dive as deep as possible without entering an element
1137 /// with an in-memory size smaller than DstSize.
1138 static Address
1139 EnterStructPointerForCoercedAccess(Address SrcPtr,
1140                                    llvm::StructType *SrcSTy,
1141                                    uint64_t DstSize, CodeGenFunction &CGF) {
1142   // We can't dive into a zero-element struct.
1143   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1144 
1145   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1146 
1147   // If the first elt is at least as large as what we're looking for, or if the
1148   // first element is the same size as the whole struct, we can enter it. The
1149   // comparison must be made on the store size and not the alloca size. Using
1150   // the alloca size may overstate the size of the load.
1151   uint64_t FirstEltSize =
1152     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1153   if (FirstEltSize < DstSize &&
1154       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1155     return SrcPtr;
1156 
1157   // GEP into the first element.
1158   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1159 
1160   // If the first element is a struct, recurse.
1161   llvm::Type *SrcTy = SrcPtr.getElementType();
1162   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1163     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1164 
1165   return SrcPtr;
1166 }
1167 
1168 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1169 /// are either integers or pointers.  This does a truncation of the value if it
1170 /// is too large or a zero extension if it is too small.
1171 ///
1172 /// This behaves as if the value were coerced through memory, so on big-endian
1173 /// targets the high bits are preserved in a truncation, while little-endian
1174 /// targets preserve the low bits.
1175 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1176                                              llvm::Type *Ty,
1177                                              CodeGenFunction &CGF) {
1178   if (Val->getType() == Ty)
1179     return Val;
1180 
1181   if (isa<llvm::PointerType>(Val->getType())) {
1182     // If this is Pointer->Pointer avoid conversion to and from int.
1183     if (isa<llvm::PointerType>(Ty))
1184       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1185 
1186     // Convert the pointer to an integer so we can play with its width.
1187     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1188   }
1189 
1190   llvm::Type *DestIntTy = Ty;
1191   if (isa<llvm::PointerType>(DestIntTy))
1192     DestIntTy = CGF.IntPtrTy;
1193 
1194   if (Val->getType() != DestIntTy) {
1195     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1196     if (DL.isBigEndian()) {
1197       // Preserve the high bits on big-endian targets.
1198       // That is what memory coercion does.
1199       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1200       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1201 
1202       if (SrcSize > DstSize) {
1203         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1204         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1205       } else {
1206         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1207         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1208       }
1209     } else {
1210       // Little-endian targets preserve the low bits. No shifts required.
1211       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1212     }
1213   }
1214 
1215   if (isa<llvm::PointerType>(Ty))
1216     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1217   return Val;
1218 }
1219 
1220 
1221 
1222 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1223 /// a pointer to an object of type \arg Ty, known to be aligned to
1224 /// \arg SrcAlign bytes.
1225 ///
1226 /// This safely handles the case when the src type is smaller than the
1227 /// destination type; in this situation the values of bits which not
1228 /// present in the src are undefined.
1229 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1230                                       CodeGenFunction &CGF) {
1231   llvm::Type *SrcTy = Src.getElementType();
1232 
1233   // If SrcTy and Ty are the same, just do a load.
1234   if (SrcTy == Ty)
1235     return CGF.Builder.CreateLoad(Src);
1236 
1237   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1238 
1239   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1240     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1241                                              DstSize.getFixedSize(), CGF);
1242     SrcTy = Src.getElementType();
1243   }
1244 
1245   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1246 
1247   // If the source and destination are integer or pointer types, just do an
1248   // extension or truncation to the desired type.
1249   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1250       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1251     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1252     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1253   }
1254 
1255   // If load is legal, just bitcast the src pointer.
1256   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1257       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1258     // Generally SrcSize is never greater than DstSize, since this means we are
1259     // losing bits. However, this can happen in cases where the structure has
1260     // additional padding, for example due to a user specified alignment.
1261     //
1262     // FIXME: Assert that we aren't truncating non-padding bits when have access
1263     // to that information.
1264     Src = CGF.Builder.CreateBitCast(Src,
1265                                     Ty->getPointerTo(Src.getAddressSpace()));
1266     return CGF.Builder.CreateLoad(Src);
1267   }
1268 
1269   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1270   // the types match, use the llvm.experimental.vector.insert intrinsic to
1271   // perform the conversion.
1272   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1273     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1274       // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1275       // vector, use a vector insert and bitcast the result.
1276       bool NeedsBitcast = false;
1277       auto PredType =
1278           llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1279       llvm::Type *OrigType = Ty;
1280       if (ScalableDst == PredType &&
1281           FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1282         ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1283         NeedsBitcast = true;
1284       }
1285       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1286         auto *Load = CGF.Builder.CreateLoad(Src);
1287         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1288         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1289         llvm::Value *Result = CGF.Builder.CreateInsertVector(
1290             ScalableDst, UndefVec, Load, Zero, "castScalableSve");
1291         if (NeedsBitcast)
1292           Result = CGF.Builder.CreateBitCast(Result, OrigType);
1293         return Result;
1294       }
1295     }
1296   }
1297 
1298   // Otherwise do coercion through memory. This is stupid, but simple.
1299   Address Tmp =
1300       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1301   CGF.Builder.CreateMemCpy(
1302       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1303       Src.getAlignment().getAsAlign(),
1304       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1305   return CGF.Builder.CreateLoad(Tmp);
1306 }
1307 
1308 // Function to store a first-class aggregate into memory.  We prefer to
1309 // store the elements rather than the aggregate to be more friendly to
1310 // fast-isel.
1311 // FIXME: Do we need to recurse here?
1312 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1313                                          bool DestIsVolatile) {
1314   // Prefer scalar stores to first-class aggregate stores.
1315   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1316     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1317       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1318       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1319       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1320     }
1321   } else {
1322     Builder.CreateStore(Val, Dest, DestIsVolatile);
1323   }
1324 }
1325 
1326 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1327 /// where the source and destination may have different types.  The
1328 /// destination is known to be aligned to \arg DstAlign bytes.
1329 ///
1330 /// This safely handles the case when the src type is larger than the
1331 /// destination type; the upper bits of the src will be lost.
1332 static void CreateCoercedStore(llvm::Value *Src,
1333                                Address Dst,
1334                                bool DstIsVolatile,
1335                                CodeGenFunction &CGF) {
1336   llvm::Type *SrcTy = Src->getType();
1337   llvm::Type *DstTy = Dst.getElementType();
1338   if (SrcTy == DstTy) {
1339     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1340     return;
1341   }
1342 
1343   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1344 
1345   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1346     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1347                                              SrcSize.getFixedSize(), CGF);
1348     DstTy = Dst.getElementType();
1349   }
1350 
1351   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1352   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1353   if (SrcPtrTy && DstPtrTy &&
1354       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1355     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1356     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1357     return;
1358   }
1359 
1360   // If the source and destination are integer or pointer types, just do an
1361   // extension or truncation to the desired type.
1362   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1363       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1364     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1365     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1366     return;
1367   }
1368 
1369   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1370 
1371   // If store is legal, just bitcast the src pointer.
1372   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1373       isa<llvm::ScalableVectorType>(DstTy) ||
1374       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1375     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1376     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1377   } else {
1378     // Otherwise do coercion through memory. This is stupid, but
1379     // simple.
1380 
1381     // Generally SrcSize is never greater than DstSize, since this means we are
1382     // losing bits. However, this can happen in cases where the structure has
1383     // additional padding, for example due to a user specified alignment.
1384     //
1385     // FIXME: Assert that we aren't truncating non-padding bits when have access
1386     // to that information.
1387     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1388     CGF.Builder.CreateStore(Src, Tmp);
1389     CGF.Builder.CreateMemCpy(
1390         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1391         Tmp.getAlignment().getAsAlign(),
1392         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1393   }
1394 }
1395 
1396 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1397                                    const ABIArgInfo &info) {
1398   if (unsigned offset = info.getDirectOffset()) {
1399     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1400     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1401                                              CharUnits::fromQuantity(offset));
1402     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1403   }
1404   return addr;
1405 }
1406 
1407 namespace {
1408 
1409 /// Encapsulates information about the way function arguments from
1410 /// CGFunctionInfo should be passed to actual LLVM IR function.
1411 class ClangToLLVMArgMapping {
1412   static const unsigned InvalidIndex = ~0U;
1413   unsigned InallocaArgNo;
1414   unsigned SRetArgNo;
1415   unsigned TotalIRArgs;
1416 
1417   /// Arguments of LLVM IR function corresponding to single Clang argument.
1418   struct IRArgs {
1419     unsigned PaddingArgIndex;
1420     // Argument is expanded to IR arguments at positions
1421     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1422     unsigned FirstArgIndex;
1423     unsigned NumberOfArgs;
1424 
1425     IRArgs()
1426         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1427           NumberOfArgs(0) {}
1428   };
1429 
1430   SmallVector<IRArgs, 8> ArgInfo;
1431 
1432 public:
1433   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1434                         bool OnlyRequiredArgs = false)
1435       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1436         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1437     construct(Context, FI, OnlyRequiredArgs);
1438   }
1439 
1440   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1441   unsigned getInallocaArgNo() const {
1442     assert(hasInallocaArg());
1443     return InallocaArgNo;
1444   }
1445 
1446   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1447   unsigned getSRetArgNo() const {
1448     assert(hasSRetArg());
1449     return SRetArgNo;
1450   }
1451 
1452   unsigned totalIRArgs() const { return TotalIRArgs; }
1453 
1454   bool hasPaddingArg(unsigned ArgNo) const {
1455     assert(ArgNo < ArgInfo.size());
1456     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1457   }
1458   unsigned getPaddingArgNo(unsigned ArgNo) const {
1459     assert(hasPaddingArg(ArgNo));
1460     return ArgInfo[ArgNo].PaddingArgIndex;
1461   }
1462 
1463   /// Returns index of first IR argument corresponding to ArgNo, and their
1464   /// quantity.
1465   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1466     assert(ArgNo < ArgInfo.size());
1467     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1468                           ArgInfo[ArgNo].NumberOfArgs);
1469   }
1470 
1471 private:
1472   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1473                  bool OnlyRequiredArgs);
1474 };
1475 
1476 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1477                                       const CGFunctionInfo &FI,
1478                                       bool OnlyRequiredArgs) {
1479   unsigned IRArgNo = 0;
1480   bool SwapThisWithSRet = false;
1481   const ABIArgInfo &RetAI = FI.getReturnInfo();
1482 
1483   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1484     SwapThisWithSRet = RetAI.isSRetAfterThis();
1485     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1486   }
1487 
1488   unsigned ArgNo = 0;
1489   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1490   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1491        ++I, ++ArgNo) {
1492     assert(I != FI.arg_end());
1493     QualType ArgType = I->type;
1494     const ABIArgInfo &AI = I->info;
1495     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1496     auto &IRArgs = ArgInfo[ArgNo];
1497 
1498     if (AI.getPaddingType())
1499       IRArgs.PaddingArgIndex = IRArgNo++;
1500 
1501     switch (AI.getKind()) {
1502     case ABIArgInfo::Extend:
1503     case ABIArgInfo::Direct: {
1504       // FIXME: handle sseregparm someday...
1505       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1506       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1507         IRArgs.NumberOfArgs = STy->getNumElements();
1508       } else {
1509         IRArgs.NumberOfArgs = 1;
1510       }
1511       break;
1512     }
1513     case ABIArgInfo::Indirect:
1514     case ABIArgInfo::IndirectAliased:
1515       IRArgs.NumberOfArgs = 1;
1516       break;
1517     case ABIArgInfo::Ignore:
1518     case ABIArgInfo::InAlloca:
1519       // ignore and inalloca doesn't have matching LLVM parameters.
1520       IRArgs.NumberOfArgs = 0;
1521       break;
1522     case ABIArgInfo::CoerceAndExpand:
1523       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1524       break;
1525     case ABIArgInfo::Expand:
1526       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1527       break;
1528     }
1529 
1530     if (IRArgs.NumberOfArgs > 0) {
1531       IRArgs.FirstArgIndex = IRArgNo;
1532       IRArgNo += IRArgs.NumberOfArgs;
1533     }
1534 
1535     // Skip over the sret parameter when it comes second.  We already handled it
1536     // above.
1537     if (IRArgNo == 1 && SwapThisWithSRet)
1538       IRArgNo++;
1539   }
1540   assert(ArgNo == ArgInfo.size());
1541 
1542   if (FI.usesInAlloca())
1543     InallocaArgNo = IRArgNo++;
1544 
1545   TotalIRArgs = IRArgNo;
1546 }
1547 }  // namespace
1548 
1549 /***/
1550 
1551 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1552   const auto &RI = FI.getReturnInfo();
1553   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1554 }
1555 
1556 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1557   return ReturnTypeUsesSRet(FI) &&
1558          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1559 }
1560 
1561 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1562   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1563     switch (BT->getKind()) {
1564     default:
1565       return false;
1566     case BuiltinType::Float:
1567       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1568     case BuiltinType::Double:
1569       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1570     case BuiltinType::LongDouble:
1571       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1572     }
1573   }
1574 
1575   return false;
1576 }
1577 
1578 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1579   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1580     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1581       if (BT->getKind() == BuiltinType::LongDouble)
1582         return getTarget().useObjCFP2RetForComplexLongDouble();
1583     }
1584   }
1585 
1586   return false;
1587 }
1588 
1589 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1590   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1591   return GetFunctionType(FI);
1592 }
1593 
1594 llvm::FunctionType *
1595 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1596 
1597   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1598   (void)Inserted;
1599   assert(Inserted && "Recursively being processed?");
1600 
1601   llvm::Type *resultType = nullptr;
1602   const ABIArgInfo &retAI = FI.getReturnInfo();
1603   switch (retAI.getKind()) {
1604   case ABIArgInfo::Expand:
1605   case ABIArgInfo::IndirectAliased:
1606     llvm_unreachable("Invalid ABI kind for return argument");
1607 
1608   case ABIArgInfo::Extend:
1609   case ABIArgInfo::Direct:
1610     resultType = retAI.getCoerceToType();
1611     break;
1612 
1613   case ABIArgInfo::InAlloca:
1614     if (retAI.getInAllocaSRet()) {
1615       // sret things on win32 aren't void, they return the sret pointer.
1616       QualType ret = FI.getReturnType();
1617       llvm::Type *ty = ConvertType(ret);
1618       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1619       resultType = llvm::PointerType::get(ty, addressSpace);
1620     } else {
1621       resultType = llvm::Type::getVoidTy(getLLVMContext());
1622     }
1623     break;
1624 
1625   case ABIArgInfo::Indirect:
1626   case ABIArgInfo::Ignore:
1627     resultType = llvm::Type::getVoidTy(getLLVMContext());
1628     break;
1629 
1630   case ABIArgInfo::CoerceAndExpand:
1631     resultType = retAI.getUnpaddedCoerceAndExpandType();
1632     break;
1633   }
1634 
1635   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1636   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1637 
1638   // Add type for sret argument.
1639   if (IRFunctionArgs.hasSRetArg()) {
1640     QualType Ret = FI.getReturnType();
1641     llvm::Type *Ty = ConvertType(Ret);
1642     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1643     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1644         llvm::PointerType::get(Ty, AddressSpace);
1645   }
1646 
1647   // Add type for inalloca argument.
1648   if (IRFunctionArgs.hasInallocaArg()) {
1649     auto ArgStruct = FI.getArgStruct();
1650     assert(ArgStruct);
1651     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1652   }
1653 
1654   // Add in all of the required arguments.
1655   unsigned ArgNo = 0;
1656   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1657                                      ie = it + FI.getNumRequiredArgs();
1658   for (; it != ie; ++it, ++ArgNo) {
1659     const ABIArgInfo &ArgInfo = it->info;
1660 
1661     // Insert a padding type to ensure proper alignment.
1662     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1663       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1664           ArgInfo.getPaddingType();
1665 
1666     unsigned FirstIRArg, NumIRArgs;
1667     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1668 
1669     switch (ArgInfo.getKind()) {
1670     case ABIArgInfo::Ignore:
1671     case ABIArgInfo::InAlloca:
1672       assert(NumIRArgs == 0);
1673       break;
1674 
1675     case ABIArgInfo::Indirect: {
1676       assert(NumIRArgs == 1);
1677       // indirect arguments are always on the stack, which is alloca addr space.
1678       llvm::Type *LTy = ConvertTypeForMem(it->type);
1679       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1680           CGM.getDataLayout().getAllocaAddrSpace());
1681       break;
1682     }
1683     case ABIArgInfo::IndirectAliased: {
1684       assert(NumIRArgs == 1);
1685       llvm::Type *LTy = ConvertTypeForMem(it->type);
1686       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1687       break;
1688     }
1689     case ABIArgInfo::Extend:
1690     case ABIArgInfo::Direct: {
1691       // Fast-isel and the optimizer generally like scalar values better than
1692       // FCAs, so we flatten them if this is safe to do for this argument.
1693       llvm::Type *argType = ArgInfo.getCoerceToType();
1694       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1695       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1696         assert(NumIRArgs == st->getNumElements());
1697         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1698           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1699       } else {
1700         assert(NumIRArgs == 1);
1701         ArgTypes[FirstIRArg] = argType;
1702       }
1703       break;
1704     }
1705 
1706     case ABIArgInfo::CoerceAndExpand: {
1707       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1708       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1709         *ArgTypesIter++ = EltTy;
1710       }
1711       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1712       break;
1713     }
1714 
1715     case ABIArgInfo::Expand:
1716       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1717       getExpandedTypes(it->type, ArgTypesIter);
1718       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1719       break;
1720     }
1721   }
1722 
1723   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1724   assert(Erased && "Not in set?");
1725 
1726   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1727 }
1728 
1729 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1730   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1731   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1732 
1733   if (!isFuncTypeConvertible(FPT))
1734     return llvm::StructType::get(getLLVMContext());
1735 
1736   return GetFunctionType(GD);
1737 }
1738 
1739 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1740                                                llvm::AttrBuilder &FuncAttrs,
1741                                                const FunctionProtoType *FPT) {
1742   if (!FPT)
1743     return;
1744 
1745   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1746       FPT->isNothrow())
1747     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1748 }
1749 
1750 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1751                                           QualType ReturnType) {
1752   // We can't just discard the return value for a record type with a
1753   // complex destructor or a non-trivially copyable type.
1754   if (const RecordType *RT =
1755           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1756     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1757       return ClassDecl->hasTrivialDestructor();
1758   }
1759   return ReturnType.isTriviallyCopyableType(Context);
1760 }
1761 
1762 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1763                                                  bool HasOptnone,
1764                                                  bool AttrOnCallSite,
1765                                                llvm::AttrBuilder &FuncAttrs) {
1766   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1767   if (!HasOptnone) {
1768     if (CodeGenOpts.OptimizeSize)
1769       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1770     if (CodeGenOpts.OptimizeSize == 2)
1771       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1772   }
1773 
1774   if (CodeGenOpts.DisableRedZone)
1775     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1776   if (CodeGenOpts.IndirectTlsSegRefs)
1777     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1778   if (CodeGenOpts.NoImplicitFloat)
1779     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1780 
1781   if (AttrOnCallSite) {
1782     // Attributes that should go on the call site only.
1783     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1784       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1785     if (!CodeGenOpts.TrapFuncName.empty())
1786       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1787   } else {
1788     StringRef FpKind;
1789     switch (CodeGenOpts.getFramePointer()) {
1790     case CodeGenOptions::FramePointerKind::None:
1791       FpKind = "none";
1792       break;
1793     case CodeGenOptions::FramePointerKind::NonLeaf:
1794       FpKind = "non-leaf";
1795       break;
1796     case CodeGenOptions::FramePointerKind::All:
1797       FpKind = "all";
1798       break;
1799     }
1800     FuncAttrs.addAttribute("frame-pointer", FpKind);
1801 
1802     if (CodeGenOpts.LessPreciseFPMAD)
1803       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1804 
1805     if (CodeGenOpts.NullPointerIsValid)
1806       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1807 
1808     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1809       FuncAttrs.addAttribute("denormal-fp-math",
1810                              CodeGenOpts.FPDenormalMode.str());
1811     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1812       FuncAttrs.addAttribute(
1813           "denormal-fp-math-f32",
1814           CodeGenOpts.FP32DenormalMode.str());
1815     }
1816 
1817     if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1818       FuncAttrs.addAttribute("no-trapping-math", "true");
1819 
1820     // Strict (compliant) code is the default, so only add this attribute to
1821     // indicate that we are trying to workaround a problem case.
1822     if (!CodeGenOpts.StrictFloatCastOverflow)
1823       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1824 
1825     // TODO: Are these all needed?
1826     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1827     if (LangOpts.NoHonorInfs)
1828       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1829     if (LangOpts.NoHonorNaNs)
1830       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1831     if (LangOpts.UnsafeFPMath)
1832       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1833     if (CodeGenOpts.SoftFloat)
1834       FuncAttrs.addAttribute("use-soft-float", "true");
1835     FuncAttrs.addAttribute("stack-protector-buffer-size",
1836                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1837     if (LangOpts.NoSignedZero)
1838       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1839 
1840     // TODO: Reciprocal estimate codegen options should apply to instructions?
1841     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1842     if (!Recips.empty())
1843       FuncAttrs.addAttribute("reciprocal-estimates",
1844                              llvm::join(Recips, ","));
1845 
1846     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1847         CodeGenOpts.PreferVectorWidth != "none")
1848       FuncAttrs.addAttribute("prefer-vector-width",
1849                              CodeGenOpts.PreferVectorWidth);
1850 
1851     if (CodeGenOpts.StackRealignment)
1852       FuncAttrs.addAttribute("stackrealign");
1853     if (CodeGenOpts.Backchain)
1854       FuncAttrs.addAttribute("backchain");
1855     if (CodeGenOpts.EnableSegmentedStacks)
1856       FuncAttrs.addAttribute("split-stack");
1857 
1858     if (CodeGenOpts.SpeculativeLoadHardening)
1859       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1860   }
1861 
1862   if (getLangOpts().assumeFunctionsAreConvergent()) {
1863     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1864     // convergent (meaning, they may call an intrinsically convergent op, such
1865     // as __syncthreads() / barrier(), and so can't have certain optimizations
1866     // applied around them).  LLVM will remove this attribute where it safely
1867     // can.
1868     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1869   }
1870 
1871   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1872     // Exceptions aren't supported in CUDA device code.
1873     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1874   }
1875 
1876   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1877     StringRef Var, Value;
1878     std::tie(Var, Value) = Attr.split('=');
1879     FuncAttrs.addAttribute(Var, Value);
1880   }
1881 }
1882 
1883 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1884   llvm::AttrBuilder FuncAttrs;
1885   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1886                                /* AttrOnCallSite = */ false, FuncAttrs);
1887   // TODO: call GetCPUAndFeaturesAttributes?
1888   F.addFnAttrs(FuncAttrs);
1889 }
1890 
1891 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1892                                                    llvm::AttrBuilder &attrs) {
1893   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1894                                /*for call*/ false, attrs);
1895   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1896 }
1897 
1898 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1899                                    const LangOptions &LangOpts,
1900                                    const NoBuiltinAttr *NBA = nullptr) {
1901   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1902     SmallString<32> AttributeName;
1903     AttributeName += "no-builtin-";
1904     AttributeName += BuiltinName;
1905     FuncAttrs.addAttribute(AttributeName);
1906   };
1907 
1908   // First, handle the language options passed through -fno-builtin.
1909   if (LangOpts.NoBuiltin) {
1910     // -fno-builtin disables them all.
1911     FuncAttrs.addAttribute("no-builtins");
1912     return;
1913   }
1914 
1915   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1916   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1917 
1918   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1919   // the source.
1920   if (!NBA)
1921     return;
1922 
1923   // If there is a wildcard in the builtin names specified through the
1924   // attribute, disable them all.
1925   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1926     FuncAttrs.addAttribute("no-builtins");
1927     return;
1928   }
1929 
1930   // And last, add the rest of the builtin names.
1931   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1932 }
1933 
1934 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
1935                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
1936                              bool CheckCoerce = true) {
1937   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
1938   if (AI.getKind() == ABIArgInfo::Indirect)
1939     return true;
1940   if (AI.getKind() == ABIArgInfo::Extend)
1941     return true;
1942   if (!DL.typeSizeEqualsStoreSize(Ty))
1943     // TODO: This will result in a modest amount of values not marked noundef
1944     // when they could be. We care about values that *invisibly* contain undef
1945     // bits from the perspective of LLVM IR.
1946     return false;
1947   if (CheckCoerce && AI.canHaveCoerceToType()) {
1948     llvm::Type *CoerceTy = AI.getCoerceToType();
1949     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
1950                                   DL.getTypeSizeInBits(Ty)))
1951       // If we're coercing to a type with a greater size than the canonical one,
1952       // we're introducing new undef bits.
1953       // Coercing to a type of smaller or equal size is ok, as we know that
1954       // there's no internal padding (typeSizeEqualsStoreSize).
1955       return false;
1956   }
1957   if (QTy->isExtIntType())
1958     return true;
1959   if (QTy->isReferenceType())
1960     return true;
1961   if (QTy->isNullPtrType())
1962     return false;
1963   if (QTy->isMemberPointerType())
1964     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
1965     // now, never mark them.
1966     return false;
1967   if (QTy->isScalarType()) {
1968     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
1969       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
1970     return true;
1971   }
1972   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
1973     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
1974   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
1975     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
1976   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
1977     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
1978 
1979   // TODO: Some structs may be `noundef`, in specific situations.
1980   return false;
1981 }
1982 
1983 /// Construct the IR attribute list of a function or call.
1984 ///
1985 /// When adding an attribute, please consider where it should be handled:
1986 ///
1987 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1988 ///     part of the global target configuration (but perhaps can be
1989 ///     overridden on a per-function basis).  Adding attributes there
1990 ///     will cause them to also be set in frontends that build on Clang's
1991 ///     target-configuration logic, as well as for code defined in library
1992 ///     modules such as CUDA's libdevice.
1993 ///
1994 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1995 ///     and adds declaration-specific, convention-specific, and
1996 ///     frontend-specific logic.  The last is of particular importance:
1997 ///     attributes that restrict how the frontend generates code must be
1998 ///     added here rather than getDefaultFunctionAttributes.
1999 ///
2000 void CodeGenModule::ConstructAttributeList(StringRef Name,
2001                                            const CGFunctionInfo &FI,
2002                                            CGCalleeInfo CalleeInfo,
2003                                            llvm::AttributeList &AttrList,
2004                                            unsigned &CallingConv,
2005                                            bool AttrOnCallSite, bool IsThunk) {
2006   llvm::AttrBuilder FuncAttrs;
2007   llvm::AttrBuilder RetAttrs;
2008 
2009   // Collect function IR attributes from the CC lowering.
2010   // We'll collect the paramete and result attributes later.
2011   CallingConv = FI.getEffectiveCallingConvention();
2012   if (FI.isNoReturn())
2013     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2014   if (FI.isCmseNSCall())
2015     FuncAttrs.addAttribute("cmse_nonsecure_call");
2016 
2017   // Collect function IR attributes from the callee prototype if we have one.
2018   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2019                                      CalleeInfo.getCalleeFunctionProtoType());
2020 
2021   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2022 
2023   bool HasOptnone = false;
2024   // The NoBuiltinAttr attached to the target FunctionDecl.
2025   const NoBuiltinAttr *NBA = nullptr;
2026 
2027   // Collect function IR attributes based on declaration-specific
2028   // information.
2029   // FIXME: handle sseregparm someday...
2030   if (TargetDecl) {
2031     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2032       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2033     if (TargetDecl->hasAttr<NoThrowAttr>())
2034       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2035     if (TargetDecl->hasAttr<NoReturnAttr>())
2036       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2037     if (TargetDecl->hasAttr<ColdAttr>())
2038       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2039     if (TargetDecl->hasAttr<HotAttr>())
2040       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2041     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2042       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2043     if (TargetDecl->hasAttr<ConvergentAttr>())
2044       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2045 
2046     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2047       AddAttributesFromFunctionProtoType(
2048           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2049       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2050         // A sane operator new returns a non-aliasing pointer.
2051         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2052         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2053             (Kind == OO_New || Kind == OO_Array_New))
2054           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2055       }
2056       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2057       const bool IsVirtualCall = MD && MD->isVirtual();
2058       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2059       // virtual function. These attributes are not inherited by overloads.
2060       if (!(AttrOnCallSite && IsVirtualCall)) {
2061         if (Fn->isNoReturn())
2062           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2063         NBA = Fn->getAttr<NoBuiltinAttr>();
2064       }
2065       // Only place nomerge attribute on call sites, never functions. This
2066       // allows it to work on indirect virtual function calls.
2067       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2068         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2069 
2070       // Add known guaranteed alignment for allocation functions.
2071       if (unsigned BuiltinID = Fn->getBuiltinID()) {
2072         switch (BuiltinID) {
2073         case Builtin::BIaligned_alloc:
2074         case Builtin::BIcalloc:
2075         case Builtin::BImalloc:
2076         case Builtin::BImemalign:
2077         case Builtin::BIrealloc:
2078         case Builtin::BIstrdup:
2079         case Builtin::BIstrndup:
2080           RetAttrs.addAlignmentAttr(Context.getTargetInfo().getNewAlign() /
2081                                     Context.getTargetInfo().getCharWidth());
2082           break;
2083         default:
2084           break;
2085         }
2086       }
2087     }
2088 
2089     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2090     if (TargetDecl->hasAttr<ConstAttr>()) {
2091       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2092       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2093       // gcc specifies that 'const' functions have greater restrictions than
2094       // 'pure' functions, so they also cannot have infinite loops.
2095       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2096     } else if (TargetDecl->hasAttr<PureAttr>()) {
2097       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2098       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2099       // gcc specifies that 'pure' functions cannot have infinite loops.
2100       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2101     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2102       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2103       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2104     }
2105     if (TargetDecl->hasAttr<RestrictAttr>())
2106       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2107     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2108         !CodeGenOpts.NullPointerIsValid)
2109       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2110     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2111       FuncAttrs.addAttribute("no_caller_saved_registers");
2112     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2113       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2114     if (TargetDecl->hasAttr<LeafAttr>())
2115       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2116 
2117     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2118     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2119       Optional<unsigned> NumElemsParam;
2120       if (AllocSize->getNumElemsParam().isValid())
2121         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2122       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2123                                  NumElemsParam);
2124     }
2125 
2126     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2127       if (getLangOpts().OpenCLVersion <= 120) {
2128         // OpenCL v1.2 Work groups are always uniform
2129         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2130       } else {
2131         // OpenCL v2.0 Work groups may be whether uniform or not.
2132         // '-cl-uniform-work-group-size' compile option gets a hint
2133         // to the compiler that the global work-size be a multiple of
2134         // the work-group size specified to clEnqueueNDRangeKernel
2135         // (i.e. work groups are uniform).
2136         FuncAttrs.addAttribute("uniform-work-group-size",
2137                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2138       }
2139     }
2140 
2141     std::string AssumptionValueStr;
2142     for (AssumptionAttr *AssumptionA :
2143          TargetDecl->specific_attrs<AssumptionAttr>()) {
2144       std::string AS = AssumptionA->getAssumption().str();
2145       if (!AS.empty() && !AssumptionValueStr.empty())
2146         AssumptionValueStr += ",";
2147       AssumptionValueStr += AS;
2148     }
2149 
2150     if (!AssumptionValueStr.empty())
2151       FuncAttrs.addAttribute(llvm::AssumptionAttrKey, AssumptionValueStr);
2152   }
2153 
2154   // Attach "no-builtins" attributes to:
2155   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2156   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2157   // The attributes can come from:
2158   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2159   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2160   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2161 
2162   // Collect function IR attributes based on global settiings.
2163   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2164 
2165   // Override some default IR attributes based on declaration-specific
2166   // information.
2167   if (TargetDecl) {
2168     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2169       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2170     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2171       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2172     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2173       FuncAttrs.removeAttribute("split-stack");
2174 
2175     // Add NonLazyBind attribute to function declarations when -fno-plt
2176     // is used.
2177     // FIXME: what if we just haven't processed the function definition
2178     // yet, or if it's an external definition like C99 inline?
2179     if (CodeGenOpts.NoPLT) {
2180       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2181         if (!Fn->isDefined() && !AttrOnCallSite) {
2182           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2183         }
2184       }
2185     }
2186   }
2187 
2188   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2189   // functions with -funique-internal-linkage-names.
2190   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2191     if (isa<FunctionDecl>(TargetDecl)) {
2192       if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) ==
2193           llvm::GlobalValue::InternalLinkage)
2194         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2195                                "selected");
2196     }
2197   }
2198 
2199   // Collect non-call-site function IR attributes from declaration-specific
2200   // information.
2201   if (!AttrOnCallSite) {
2202     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2203       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2204 
2205     // Whether tail calls are enabled.
2206     auto shouldDisableTailCalls = [&] {
2207       // Should this be honored in getDefaultFunctionAttributes?
2208       if (CodeGenOpts.DisableTailCalls)
2209         return true;
2210 
2211       if (!TargetDecl)
2212         return false;
2213 
2214       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2215           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2216         return true;
2217 
2218       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2219         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2220           if (!BD->doesNotEscape())
2221             return true;
2222       }
2223 
2224       return false;
2225     };
2226     if (shouldDisableTailCalls())
2227       FuncAttrs.addAttribute("disable-tail-calls", "true");
2228 
2229     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2230     // handles these separately to set them based on the global defaults.
2231     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2232   }
2233 
2234   // Collect attributes from arguments and return values.
2235   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2236 
2237   QualType RetTy = FI.getReturnType();
2238   const ABIArgInfo &RetAI = FI.getReturnInfo();
2239   const llvm::DataLayout &DL = getDataLayout();
2240 
2241   // C++ explicitly makes returning undefined values UB. C's rule only applies
2242   // to used values, so we never mark them noundef for now.
2243   bool HasStrictReturn = getLangOpts().CPlusPlus;
2244   if (TargetDecl && HasStrictReturn) {
2245     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2246       HasStrictReturn &= !FDecl->isExternC();
2247     else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2248       // Function pointer
2249       HasStrictReturn &= !VDecl->isExternC();
2250   }
2251 
2252   // We don't want to be too aggressive with the return checking, unless
2253   // it's explicit in the code opts or we're using an appropriate sanitizer.
2254   // Try to respect what the programmer intended.
2255   HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2256                      !MayDropFunctionReturn(getContext(), RetTy) ||
2257                      getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2258                      getLangOpts().Sanitize.has(SanitizerKind::Return);
2259 
2260   // Determine if the return type could be partially undef
2261   if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2262     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2263         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2264       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2265   }
2266 
2267   switch (RetAI.getKind()) {
2268   case ABIArgInfo::Extend:
2269     if (RetAI.isSignExt())
2270       RetAttrs.addAttribute(llvm::Attribute::SExt);
2271     else
2272       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2273     LLVM_FALLTHROUGH;
2274   case ABIArgInfo::Direct:
2275     if (RetAI.getInReg())
2276       RetAttrs.addAttribute(llvm::Attribute::InReg);
2277     break;
2278   case ABIArgInfo::Ignore:
2279     break;
2280 
2281   case ABIArgInfo::InAlloca:
2282   case ABIArgInfo::Indirect: {
2283     // inalloca and sret disable readnone and readonly
2284     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2285       .removeAttribute(llvm::Attribute::ReadNone);
2286     break;
2287   }
2288 
2289   case ABIArgInfo::CoerceAndExpand:
2290     break;
2291 
2292   case ABIArgInfo::Expand:
2293   case ABIArgInfo::IndirectAliased:
2294     llvm_unreachable("Invalid ABI kind for return argument");
2295   }
2296 
2297   if (!IsThunk) {
2298     // FIXME: fix this properly, https://reviews.llvm.org/D100388
2299     if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2300       QualType PTy = RefTy->getPointeeType();
2301       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2302         RetAttrs.addDereferenceableAttr(
2303             getMinimumObjectSize(PTy).getQuantity());
2304       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2305           !CodeGenOpts.NullPointerIsValid)
2306         RetAttrs.addAttribute(llvm::Attribute::NonNull);
2307       if (PTy->isObjectType()) {
2308         llvm::Align Alignment =
2309             getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2310         RetAttrs.addAlignmentAttr(Alignment);
2311       }
2312     }
2313   }
2314 
2315   bool hasUsedSRet = false;
2316   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2317 
2318   // Attach attributes to sret.
2319   if (IRFunctionArgs.hasSRetArg()) {
2320     llvm::AttrBuilder SRETAttrs;
2321     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2322     hasUsedSRet = true;
2323     if (RetAI.getInReg())
2324       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2325     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2326     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2327         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2328   }
2329 
2330   // Attach attributes to inalloca argument.
2331   if (IRFunctionArgs.hasInallocaArg()) {
2332     llvm::AttrBuilder Attrs;
2333     Attrs.addInAllocaAttr(FI.getArgStruct());
2334     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2335         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2336   }
2337 
2338   // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2339   // unless this is a thunk function.
2340   // FIXME: fix this properly, https://reviews.llvm.org/D100388
2341   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2342       !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2343     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2344 
2345     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2346 
2347     llvm::AttrBuilder Attrs;
2348 
2349     QualType ThisTy =
2350         FI.arg_begin()->type.castAs<PointerType>()->getPointeeType();
2351 
2352     if (!CodeGenOpts.NullPointerIsValid &&
2353         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2354       Attrs.addAttribute(llvm::Attribute::NonNull);
2355       Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2356     } else {
2357       // FIXME dereferenceable should be correct here, regardless of
2358       // NullPointerIsValid. However, dereferenceable currently does not always
2359       // respect NullPointerIsValid and may imply nonnull and break the program.
2360       // See https://reviews.llvm.org/D66618 for discussions.
2361       Attrs.addDereferenceableOrNullAttr(
2362           getMinimumObjectSize(
2363               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2364               .getQuantity());
2365     }
2366 
2367     llvm::Align Alignment =
2368         getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2369                                 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2370             .getAsAlign();
2371     Attrs.addAlignmentAttr(Alignment);
2372 
2373     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2374   }
2375 
2376   unsigned ArgNo = 0;
2377   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2378                                           E = FI.arg_end();
2379        I != E; ++I, ++ArgNo) {
2380     QualType ParamType = I->type;
2381     const ABIArgInfo &AI = I->info;
2382     llvm::AttrBuilder Attrs;
2383 
2384     // Add attribute for padding argument, if necessary.
2385     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2386       if (AI.getPaddingInReg()) {
2387         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2388             llvm::AttributeSet::get(
2389                 getLLVMContext(),
2390                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2391       }
2392     }
2393 
2394     // Decide whether the argument we're handling could be partially undef
2395     bool ArgNoUndef = DetermineNoUndef(ParamType, getTypes(), DL, AI);
2396     if (CodeGenOpts.EnableNoundefAttrs && ArgNoUndef)
2397       Attrs.addAttribute(llvm::Attribute::NoUndef);
2398 
2399     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2400     // have the corresponding parameter variable.  It doesn't make
2401     // sense to do it here because parameters are so messed up.
2402     switch (AI.getKind()) {
2403     case ABIArgInfo::Extend:
2404       if (AI.isSignExt())
2405         Attrs.addAttribute(llvm::Attribute::SExt);
2406       else
2407         Attrs.addAttribute(llvm::Attribute::ZExt);
2408       LLVM_FALLTHROUGH;
2409     case ABIArgInfo::Direct:
2410       if (ArgNo == 0 && FI.isChainCall())
2411         Attrs.addAttribute(llvm::Attribute::Nest);
2412       else if (AI.getInReg())
2413         Attrs.addAttribute(llvm::Attribute::InReg);
2414       Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2415       break;
2416 
2417     case ABIArgInfo::Indirect: {
2418       if (AI.getInReg())
2419         Attrs.addAttribute(llvm::Attribute::InReg);
2420 
2421       if (AI.getIndirectByVal())
2422         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2423 
2424       auto *Decl = ParamType->getAsRecordDecl();
2425       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2426           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2427         // When calling the function, the pointer passed in will be the only
2428         // reference to the underlying object. Mark it accordingly.
2429         Attrs.addAttribute(llvm::Attribute::NoAlias);
2430 
2431       // TODO: We could add the byref attribute if not byval, but it would
2432       // require updating many testcases.
2433 
2434       CharUnits Align = AI.getIndirectAlign();
2435 
2436       // In a byval argument, it is important that the required
2437       // alignment of the type is honored, as LLVM might be creating a
2438       // *new* stack object, and needs to know what alignment to give
2439       // it. (Sometimes it can deduce a sensible alignment on its own,
2440       // but not if clang decides it must emit a packed struct, or the
2441       // user specifies increased alignment requirements.)
2442       //
2443       // This is different from indirect *not* byval, where the object
2444       // exists already, and the align attribute is purely
2445       // informative.
2446       assert(!Align.isZero());
2447 
2448       // For now, only add this when we have a byval argument.
2449       // TODO: be less lazy about updating test cases.
2450       if (AI.getIndirectByVal())
2451         Attrs.addAlignmentAttr(Align.getQuantity());
2452 
2453       // byval disables readnone and readonly.
2454       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2455         .removeAttribute(llvm::Attribute::ReadNone);
2456 
2457       break;
2458     }
2459     case ABIArgInfo::IndirectAliased: {
2460       CharUnits Align = AI.getIndirectAlign();
2461       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2462       Attrs.addAlignmentAttr(Align.getQuantity());
2463       break;
2464     }
2465     case ABIArgInfo::Ignore:
2466     case ABIArgInfo::Expand:
2467     case ABIArgInfo::CoerceAndExpand:
2468       break;
2469 
2470     case ABIArgInfo::InAlloca:
2471       // inalloca disables readnone and readonly.
2472       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2473           .removeAttribute(llvm::Attribute::ReadNone);
2474       continue;
2475     }
2476 
2477     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2478       QualType PTy = RefTy->getPointeeType();
2479       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2480         Attrs.addDereferenceableAttr(
2481             getMinimumObjectSize(PTy).getQuantity());
2482       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2483           !CodeGenOpts.NullPointerIsValid)
2484         Attrs.addAttribute(llvm::Attribute::NonNull);
2485       if (PTy->isObjectType()) {
2486         llvm::Align Alignment =
2487             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2488         Attrs.addAlignmentAttr(Alignment);
2489       }
2490     }
2491 
2492     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2493     case ParameterABI::Ordinary:
2494       break;
2495 
2496     case ParameterABI::SwiftIndirectResult: {
2497       // Add 'sret' if we haven't already used it for something, but
2498       // only if the result is void.
2499       if (!hasUsedSRet && RetTy->isVoidType()) {
2500         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2501         hasUsedSRet = true;
2502       }
2503 
2504       // Add 'noalias' in either case.
2505       Attrs.addAttribute(llvm::Attribute::NoAlias);
2506 
2507       // Add 'dereferenceable' and 'alignment'.
2508       auto PTy = ParamType->getPointeeType();
2509       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2510         auto info = getContext().getTypeInfoInChars(PTy);
2511         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2512         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2513       }
2514       break;
2515     }
2516 
2517     case ParameterABI::SwiftErrorResult:
2518       Attrs.addAttribute(llvm::Attribute::SwiftError);
2519       break;
2520 
2521     case ParameterABI::SwiftContext:
2522       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2523       break;
2524 
2525     case ParameterABI::SwiftAsyncContext:
2526       Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2527       break;
2528     }
2529 
2530     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2531       Attrs.addAttribute(llvm::Attribute::NoCapture);
2532 
2533     if (Attrs.hasAttributes()) {
2534       unsigned FirstIRArg, NumIRArgs;
2535       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2536       for (unsigned i = 0; i < NumIRArgs; i++)
2537         ArgAttrs[FirstIRArg + i] =
2538             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2539     }
2540   }
2541   assert(ArgNo == FI.arg_size());
2542 
2543   AttrList = llvm::AttributeList::get(
2544       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2545       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2546 }
2547 
2548 /// An argument came in as a promoted argument; demote it back to its
2549 /// declared type.
2550 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2551                                          const VarDecl *var,
2552                                          llvm::Value *value) {
2553   llvm::Type *varType = CGF.ConvertType(var->getType());
2554 
2555   // This can happen with promotions that actually don't change the
2556   // underlying type, like the enum promotions.
2557   if (value->getType() == varType) return value;
2558 
2559   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2560          && "unexpected promotion type");
2561 
2562   if (isa<llvm::IntegerType>(varType))
2563     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2564 
2565   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2566 }
2567 
2568 /// Returns the attribute (either parameter attribute, or function
2569 /// attribute), which declares argument ArgNo to be non-null.
2570 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2571                                          QualType ArgType, unsigned ArgNo) {
2572   // FIXME: __attribute__((nonnull)) can also be applied to:
2573   //   - references to pointers, where the pointee is known to be
2574   //     nonnull (apparently a Clang extension)
2575   //   - transparent unions containing pointers
2576   // In the former case, LLVM IR cannot represent the constraint. In
2577   // the latter case, we have no guarantee that the transparent union
2578   // is in fact passed as a pointer.
2579   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2580     return nullptr;
2581   // First, check attribute on parameter itself.
2582   if (PVD) {
2583     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2584       return ParmNNAttr;
2585   }
2586   // Check function attributes.
2587   if (!FD)
2588     return nullptr;
2589   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2590     if (NNAttr->isNonNull(ArgNo))
2591       return NNAttr;
2592   }
2593   return nullptr;
2594 }
2595 
2596 namespace {
2597   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2598     Address Temp;
2599     Address Arg;
2600     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2601     void Emit(CodeGenFunction &CGF, Flags flags) override {
2602       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2603       CGF.Builder.CreateStore(errorValue, Arg);
2604     }
2605   };
2606 }
2607 
2608 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2609                                          llvm::Function *Fn,
2610                                          const FunctionArgList &Args) {
2611   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2612     // Naked functions don't have prologues.
2613     return;
2614 
2615   // If this is an implicit-return-zero function, go ahead and
2616   // initialize the return value.  TODO: it might be nice to have
2617   // a more general mechanism for this that didn't require synthesized
2618   // return statements.
2619   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2620     if (FD->hasImplicitReturnZero()) {
2621       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2622       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2623       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2624       Builder.CreateStore(Zero, ReturnValue);
2625     }
2626   }
2627 
2628   // FIXME: We no longer need the types from FunctionArgList; lift up and
2629   // simplify.
2630 
2631   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2632   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2633 
2634   // If we're using inalloca, all the memory arguments are GEPs off of the last
2635   // parameter, which is a pointer to the complete memory area.
2636   Address ArgStruct = Address::invalid();
2637   if (IRFunctionArgs.hasInallocaArg()) {
2638     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2639                         FI.getArgStructAlignment());
2640 
2641     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2642   }
2643 
2644   // Name the struct return parameter.
2645   if (IRFunctionArgs.hasSRetArg()) {
2646     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2647     AI->setName("agg.result");
2648     AI->addAttr(llvm::Attribute::NoAlias);
2649   }
2650 
2651   // Track if we received the parameter as a pointer (indirect, byval, or
2652   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2653   // into a local alloca for us.
2654   SmallVector<ParamValue, 16> ArgVals;
2655   ArgVals.reserve(Args.size());
2656 
2657   // Create a pointer value for every parameter declaration.  This usually
2658   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2659   // any cleanups or do anything that might unwind.  We do that separately, so
2660   // we can push the cleanups in the correct order for the ABI.
2661   assert(FI.arg_size() == Args.size() &&
2662          "Mismatch between function signature & arguments.");
2663   unsigned ArgNo = 0;
2664   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2665   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2666        i != e; ++i, ++info_it, ++ArgNo) {
2667     const VarDecl *Arg = *i;
2668     const ABIArgInfo &ArgI = info_it->info;
2669 
2670     bool isPromoted =
2671       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2672     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2673     // the parameter is promoted. In this case we convert to
2674     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2675     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2676     assert(hasScalarEvaluationKind(Ty) ==
2677            hasScalarEvaluationKind(Arg->getType()));
2678 
2679     unsigned FirstIRArg, NumIRArgs;
2680     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2681 
2682     switch (ArgI.getKind()) {
2683     case ABIArgInfo::InAlloca: {
2684       assert(NumIRArgs == 0);
2685       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2686       Address V =
2687           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2688       if (ArgI.getInAllocaIndirect())
2689         V = Address(Builder.CreateLoad(V),
2690                     getContext().getTypeAlignInChars(Ty));
2691       ArgVals.push_back(ParamValue::forIndirect(V));
2692       break;
2693     }
2694 
2695     case ABIArgInfo::Indirect:
2696     case ABIArgInfo::IndirectAliased: {
2697       assert(NumIRArgs == 1);
2698       Address ParamAddr =
2699           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2700 
2701       if (!hasScalarEvaluationKind(Ty)) {
2702         // Aggregates and complex variables are accessed by reference. All we
2703         // need to do is realign the value, if requested. Also, if the address
2704         // may be aliased, copy it to ensure that the parameter variable is
2705         // mutable and has a unique adress, as C requires.
2706         Address V = ParamAddr;
2707         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2708           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2709 
2710           // Copy from the incoming argument pointer to the temporary with the
2711           // appropriate alignment.
2712           //
2713           // FIXME: We should have a common utility for generating an aggregate
2714           // copy.
2715           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2716           Builder.CreateMemCpy(
2717               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2718               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2719               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2720           V = AlignedTemp;
2721         }
2722         ArgVals.push_back(ParamValue::forIndirect(V));
2723       } else {
2724         // Load scalar value from indirect argument.
2725         llvm::Value *V =
2726             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2727 
2728         if (isPromoted)
2729           V = emitArgumentDemotion(*this, Arg, V);
2730         ArgVals.push_back(ParamValue::forDirect(V));
2731       }
2732       break;
2733     }
2734 
2735     case ABIArgInfo::Extend:
2736     case ABIArgInfo::Direct: {
2737       auto AI = Fn->getArg(FirstIRArg);
2738       llvm::Type *LTy = ConvertType(Arg->getType());
2739 
2740       // Prepare parameter attributes. So far, only attributes for pointer
2741       // parameters are prepared. See
2742       // http://llvm.org/docs/LangRef.html#paramattrs.
2743       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2744           ArgI.getCoerceToType()->isPointerTy()) {
2745         assert(NumIRArgs == 1);
2746 
2747         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2748           // Set `nonnull` attribute if any.
2749           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2750                              PVD->getFunctionScopeIndex()) &&
2751               !CGM.getCodeGenOpts().NullPointerIsValid)
2752             AI->addAttr(llvm::Attribute::NonNull);
2753 
2754           QualType OTy = PVD->getOriginalType();
2755           if (const auto *ArrTy =
2756               getContext().getAsConstantArrayType(OTy)) {
2757             // A C99 array parameter declaration with the static keyword also
2758             // indicates dereferenceability, and if the size is constant we can
2759             // use the dereferenceable attribute (which requires the size in
2760             // bytes).
2761             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2762               QualType ETy = ArrTy->getElementType();
2763               llvm::Align Alignment =
2764                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2765               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2766               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2767               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2768                   ArrSize) {
2769                 llvm::AttrBuilder Attrs;
2770                 Attrs.addDereferenceableAttr(
2771                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2772                     ArrSize);
2773                 AI->addAttrs(Attrs);
2774               } else if (getContext().getTargetInfo().getNullPointerValue(
2775                              ETy.getAddressSpace()) == 0 &&
2776                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2777                 AI->addAttr(llvm::Attribute::NonNull);
2778               }
2779             }
2780           } else if (const auto *ArrTy =
2781                      getContext().getAsVariableArrayType(OTy)) {
2782             // For C99 VLAs with the static keyword, we don't know the size so
2783             // we can't use the dereferenceable attribute, but in addrspace(0)
2784             // we know that it must be nonnull.
2785             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2786               QualType ETy = ArrTy->getElementType();
2787               llvm::Align Alignment =
2788                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2789               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2790               if (!getContext().getTargetAddressSpace(ETy) &&
2791                   !CGM.getCodeGenOpts().NullPointerIsValid)
2792                 AI->addAttr(llvm::Attribute::NonNull);
2793             }
2794           }
2795 
2796           // Set `align` attribute if any.
2797           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2798           if (!AVAttr)
2799             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2800               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2801           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2802             // If alignment-assumption sanitizer is enabled, we do *not* add
2803             // alignment attribute here, but emit normal alignment assumption,
2804             // so the UBSAN check could function.
2805             llvm::ConstantInt *AlignmentCI =
2806                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2807             unsigned AlignmentInt =
2808                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2809             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2810               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2811               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2812                   llvm::Align(AlignmentInt)));
2813             }
2814           }
2815         }
2816 
2817         // Set 'noalias' if an argument type has the `restrict` qualifier.
2818         if (Arg->getType().isRestrictQualified())
2819           AI->addAttr(llvm::Attribute::NoAlias);
2820       }
2821 
2822       // Prepare the argument value. If we have the trivial case, handle it
2823       // with no muss and fuss.
2824       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2825           ArgI.getCoerceToType() == ConvertType(Ty) &&
2826           ArgI.getDirectOffset() == 0) {
2827         assert(NumIRArgs == 1);
2828 
2829         // LLVM expects swifterror parameters to be used in very restricted
2830         // ways.  Copy the value into a less-restricted temporary.
2831         llvm::Value *V = AI;
2832         if (FI.getExtParameterInfo(ArgNo).getABI()
2833               == ParameterABI::SwiftErrorResult) {
2834           QualType pointeeTy = Ty->getPointeeType();
2835           assert(pointeeTy->isPointerType());
2836           Address temp =
2837             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2838           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2839           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2840           Builder.CreateStore(incomingErrorValue, temp);
2841           V = temp.getPointer();
2842 
2843           // Push a cleanup to copy the value back at the end of the function.
2844           // The convention does not guarantee that the value will be written
2845           // back if the function exits with an unwind exception.
2846           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2847         }
2848 
2849         // Ensure the argument is the correct type.
2850         if (V->getType() != ArgI.getCoerceToType())
2851           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2852 
2853         if (isPromoted)
2854           V = emitArgumentDemotion(*this, Arg, V);
2855 
2856         // Because of merging of function types from multiple decls it is
2857         // possible for the type of an argument to not match the corresponding
2858         // type in the function type. Since we are codegening the callee
2859         // in here, add a cast to the argument type.
2860         llvm::Type *LTy = ConvertType(Arg->getType());
2861         if (V->getType() != LTy)
2862           V = Builder.CreateBitCast(V, LTy);
2863 
2864         ArgVals.push_back(ParamValue::forDirect(V));
2865         break;
2866       }
2867 
2868       // VLST arguments are coerced to VLATs at the function boundary for
2869       // ABI consistency. If this is a VLST that was coerced to
2870       // a VLAT at the function boundary and the types match up, use
2871       // llvm.experimental.vector.extract to convert back to the original
2872       // VLST.
2873       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2874         llvm::Value *Coerced = Fn->getArg(FirstIRArg);
2875         if (auto *VecTyFrom =
2876                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2877           // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2878           // vector, bitcast the source and use a vector extract.
2879           auto PredType =
2880               llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2881           if (VecTyFrom == PredType &&
2882               VecTyTo->getElementType() == Builder.getInt8Ty()) {
2883             VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2884             Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
2885           }
2886           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2887             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2888 
2889             assert(NumIRArgs == 1);
2890             Coerced->setName(Arg->getName() + ".coerce");
2891             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2892                 VecTyTo, Coerced, Zero, "castFixedSve")));
2893             break;
2894           }
2895         }
2896       }
2897 
2898       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2899                                      Arg->getName());
2900 
2901       // Pointer to store into.
2902       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2903 
2904       // Fast-isel and the optimizer generally like scalar values better than
2905       // FCAs, so we flatten them if this is safe to do for this argument.
2906       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2907       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2908           STy->getNumElements() > 1) {
2909         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2910         llvm::Type *DstTy = Ptr.getElementType();
2911         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2912 
2913         Address AddrToStoreInto = Address::invalid();
2914         if (SrcSize <= DstSize) {
2915           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2916         } else {
2917           AddrToStoreInto =
2918             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2919         }
2920 
2921         assert(STy->getNumElements() == NumIRArgs);
2922         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2923           auto AI = Fn->getArg(FirstIRArg + i);
2924           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2925           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2926           Builder.CreateStore(AI, EltPtr);
2927         }
2928 
2929         if (SrcSize > DstSize) {
2930           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2931         }
2932 
2933       } else {
2934         // Simple case, just do a coerced store of the argument into the alloca.
2935         assert(NumIRArgs == 1);
2936         auto AI = Fn->getArg(FirstIRArg);
2937         AI->setName(Arg->getName() + ".coerce");
2938         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2939       }
2940 
2941       // Match to what EmitParmDecl is expecting for this type.
2942       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2943         llvm::Value *V =
2944             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2945         if (isPromoted)
2946           V = emitArgumentDemotion(*this, Arg, V);
2947         ArgVals.push_back(ParamValue::forDirect(V));
2948       } else {
2949         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2950       }
2951       break;
2952     }
2953 
2954     case ABIArgInfo::CoerceAndExpand: {
2955       // Reconstruct into a temporary.
2956       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2957       ArgVals.push_back(ParamValue::forIndirect(alloca));
2958 
2959       auto coercionType = ArgI.getCoerceAndExpandType();
2960       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2961 
2962       unsigned argIndex = FirstIRArg;
2963       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2964         llvm::Type *eltType = coercionType->getElementType(i);
2965         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2966           continue;
2967 
2968         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2969         auto elt = Fn->getArg(argIndex++);
2970         Builder.CreateStore(elt, eltAddr);
2971       }
2972       assert(argIndex == FirstIRArg + NumIRArgs);
2973       break;
2974     }
2975 
2976     case ABIArgInfo::Expand: {
2977       // If this structure was expanded into multiple arguments then
2978       // we need to create a temporary and reconstruct it from the
2979       // arguments.
2980       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2981       LValue LV = MakeAddrLValue(Alloca, Ty);
2982       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2983 
2984       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2985       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2986       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2987       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2988         auto AI = Fn->getArg(FirstIRArg + i);
2989         AI->setName(Arg->getName() + "." + Twine(i));
2990       }
2991       break;
2992     }
2993 
2994     case ABIArgInfo::Ignore:
2995       assert(NumIRArgs == 0);
2996       // Initialize the local variable appropriately.
2997       if (!hasScalarEvaluationKind(Ty)) {
2998         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2999       } else {
3000         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
3001         ArgVals.push_back(ParamValue::forDirect(U));
3002       }
3003       break;
3004     }
3005   }
3006 
3007   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3008     for (int I = Args.size() - 1; I >= 0; --I)
3009       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3010   } else {
3011     for (unsigned I = 0, E = Args.size(); I != E; ++I)
3012       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3013   }
3014 }
3015 
3016 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3017   while (insn->use_empty()) {
3018     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3019     if (!bitcast) return;
3020 
3021     // This is "safe" because we would have used a ConstantExpr otherwise.
3022     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3023     bitcast->eraseFromParent();
3024   }
3025 }
3026 
3027 /// Try to emit a fused autorelease of a return result.
3028 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3029                                                     llvm::Value *result) {
3030   // We must be immediately followed the cast.
3031   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3032   if (BB->empty()) return nullptr;
3033   if (&BB->back() != result) return nullptr;
3034 
3035   llvm::Type *resultType = result->getType();
3036 
3037   // result is in a BasicBlock and is therefore an Instruction.
3038   llvm::Instruction *generator = cast<llvm::Instruction>(result);
3039 
3040   SmallVector<llvm::Instruction *, 4> InstsToKill;
3041 
3042   // Look for:
3043   //  %generator = bitcast %type1* %generator2 to %type2*
3044   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3045     // We would have emitted this as a constant if the operand weren't
3046     // an Instruction.
3047     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3048 
3049     // Require the generator to be immediately followed by the cast.
3050     if (generator->getNextNode() != bitcast)
3051       return nullptr;
3052 
3053     InstsToKill.push_back(bitcast);
3054   }
3055 
3056   // Look for:
3057   //   %generator = call i8* @objc_retain(i8* %originalResult)
3058   // or
3059   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3060   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3061   if (!call) return nullptr;
3062 
3063   bool doRetainAutorelease;
3064 
3065   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3066     doRetainAutorelease = true;
3067   } else if (call->getCalledOperand() ==
3068              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3069     doRetainAutorelease = false;
3070 
3071     // If we emitted an assembly marker for this call (and the
3072     // ARCEntrypoints field should have been set if so), go looking
3073     // for that call.  If we can't find it, we can't do this
3074     // optimization.  But it should always be the immediately previous
3075     // instruction, unless we needed bitcasts around the call.
3076     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3077       llvm::Instruction *prev = call->getPrevNode();
3078       assert(prev);
3079       if (isa<llvm::BitCastInst>(prev)) {
3080         prev = prev->getPrevNode();
3081         assert(prev);
3082       }
3083       assert(isa<llvm::CallInst>(prev));
3084       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3085              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3086       InstsToKill.push_back(prev);
3087     }
3088   } else {
3089     return nullptr;
3090   }
3091 
3092   result = call->getArgOperand(0);
3093   InstsToKill.push_back(call);
3094 
3095   // Keep killing bitcasts, for sanity.  Note that we no longer care
3096   // about precise ordering as long as there's exactly one use.
3097   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3098     if (!bitcast->hasOneUse()) break;
3099     InstsToKill.push_back(bitcast);
3100     result = bitcast->getOperand(0);
3101   }
3102 
3103   // Delete all the unnecessary instructions, from latest to earliest.
3104   for (auto *I : InstsToKill)
3105     I->eraseFromParent();
3106 
3107   // Do the fused retain/autorelease if we were asked to.
3108   if (doRetainAutorelease)
3109     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3110 
3111   // Cast back to the result type.
3112   return CGF.Builder.CreateBitCast(result, resultType);
3113 }
3114 
3115 /// If this is a +1 of the value of an immutable 'self', remove it.
3116 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3117                                           llvm::Value *result) {
3118   // This is only applicable to a method with an immutable 'self'.
3119   const ObjCMethodDecl *method =
3120     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3121   if (!method) return nullptr;
3122   const VarDecl *self = method->getSelfDecl();
3123   if (!self->getType().isConstQualified()) return nullptr;
3124 
3125   // Look for a retain call.
3126   llvm::CallInst *retainCall =
3127     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3128   if (!retainCall || retainCall->getCalledOperand() !=
3129                          CGF.CGM.getObjCEntrypoints().objc_retain)
3130     return nullptr;
3131 
3132   // Look for an ordinary load of 'self'.
3133   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3134   llvm::LoadInst *load =
3135     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3136   if (!load || load->isAtomic() || load->isVolatile() ||
3137       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3138     return nullptr;
3139 
3140   // Okay!  Burn it all down.  This relies for correctness on the
3141   // assumption that the retain is emitted as part of the return and
3142   // that thereafter everything is used "linearly".
3143   llvm::Type *resultType = result->getType();
3144   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3145   assert(retainCall->use_empty());
3146   retainCall->eraseFromParent();
3147   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3148 
3149   return CGF.Builder.CreateBitCast(load, resultType);
3150 }
3151 
3152 /// Emit an ARC autorelease of the result of a function.
3153 ///
3154 /// \return the value to actually return from the function
3155 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3156                                             llvm::Value *result) {
3157   // If we're returning 'self', kill the initial retain.  This is a
3158   // heuristic attempt to "encourage correctness" in the really unfortunate
3159   // case where we have a return of self during a dealloc and we desperately
3160   // need to avoid the possible autorelease.
3161   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3162     return self;
3163 
3164   // At -O0, try to emit a fused retain/autorelease.
3165   if (CGF.shouldUseFusedARCCalls())
3166     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3167       return fused;
3168 
3169   return CGF.EmitARCAutoreleaseReturnValue(result);
3170 }
3171 
3172 /// Heuristically search for a dominating store to the return-value slot.
3173 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3174   // Check if a User is a store which pointerOperand is the ReturnValue.
3175   // We are looking for stores to the ReturnValue, not for stores of the
3176   // ReturnValue to some other location.
3177   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3178     auto *SI = dyn_cast<llvm::StoreInst>(U);
3179     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
3180       return nullptr;
3181     // These aren't actually possible for non-coerced returns, and we
3182     // only care about non-coerced returns on this code path.
3183     assert(!SI->isAtomic() && !SI->isVolatile());
3184     return SI;
3185   };
3186   // If there are multiple uses of the return-value slot, just check
3187   // for something immediately preceding the IP.  Sometimes this can
3188   // happen with how we generate implicit-returns; it can also happen
3189   // with noreturn cleanups.
3190   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3191     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3192     if (IP->empty()) return nullptr;
3193     llvm::Instruction *I = &IP->back();
3194 
3195     // Skip lifetime markers
3196     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
3197                                             IE = IP->rend();
3198          II != IE; ++II) {
3199       if (llvm::IntrinsicInst *Intrinsic =
3200               dyn_cast<llvm::IntrinsicInst>(&*II)) {
3201         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
3202           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
3203           ++II;
3204           if (II == IE)
3205             break;
3206           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
3207             continue;
3208         }
3209       }
3210       I = &*II;
3211       break;
3212     }
3213 
3214     return GetStoreIfValid(I);
3215   }
3216 
3217   llvm::StoreInst *store =
3218       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3219   if (!store) return nullptr;
3220 
3221   // Now do a first-and-dirty dominance check: just walk up the
3222   // single-predecessors chain from the current insertion point.
3223   llvm::BasicBlock *StoreBB = store->getParent();
3224   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3225   while (IP != StoreBB) {
3226     if (!(IP = IP->getSinglePredecessor()))
3227       return nullptr;
3228   }
3229 
3230   // Okay, the store's basic block dominates the insertion point; we
3231   // can do our thing.
3232   return store;
3233 }
3234 
3235 // Helper functions for EmitCMSEClearRecord
3236 
3237 // Set the bits corresponding to a field having width `BitWidth` and located at
3238 // offset `BitOffset` (from the least significant bit) within a storage unit of
3239 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3240 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3241 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3242                         int BitWidth, int CharWidth) {
3243   assert(CharWidth <= 64);
3244   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3245 
3246   int Pos = 0;
3247   if (BitOffset >= CharWidth) {
3248     Pos += BitOffset / CharWidth;
3249     BitOffset = BitOffset % CharWidth;
3250   }
3251 
3252   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3253   if (BitOffset + BitWidth >= CharWidth) {
3254     Bits[Pos++] |= (Used << BitOffset) & Used;
3255     BitWidth -= CharWidth - BitOffset;
3256     BitOffset = 0;
3257   }
3258 
3259   while (BitWidth >= CharWidth) {
3260     Bits[Pos++] = Used;
3261     BitWidth -= CharWidth;
3262   }
3263 
3264   if (BitWidth > 0)
3265     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3266 }
3267 
3268 // Set the bits corresponding to a field having width `BitWidth` and located at
3269 // offset `BitOffset` (from the least significant bit) within a storage unit of
3270 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3271 // `Bits` corresponds to one target byte. Use target endian layout.
3272 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3273                         int StorageSize, int BitOffset, int BitWidth,
3274                         int CharWidth, bool BigEndian) {
3275 
3276   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3277   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3278 
3279   if (BigEndian)
3280     std::reverse(TmpBits.begin(), TmpBits.end());
3281 
3282   for (uint64_t V : TmpBits)
3283     Bits[StorageOffset++] |= V;
3284 }
3285 
3286 static void setUsedBits(CodeGenModule &, QualType, int,
3287                         SmallVectorImpl<uint64_t> &);
3288 
3289 // Set the bits in `Bits`, which correspond to the value representations of
3290 // the actual members of the record type `RTy`. Note that this function does
3291 // not handle base classes, virtual tables, etc, since they cannot happen in
3292 // CMSE function arguments or return. The bit mask corresponds to the target
3293 // memory layout, i.e. it's endian dependent.
3294 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3295                         SmallVectorImpl<uint64_t> &Bits) {
3296   ASTContext &Context = CGM.getContext();
3297   int CharWidth = Context.getCharWidth();
3298   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3299   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3300   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3301 
3302   int Idx = 0;
3303   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3304     const FieldDecl *F = *I;
3305 
3306     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3307         F->getType()->isIncompleteArrayType())
3308       continue;
3309 
3310     if (F->isBitField()) {
3311       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3312       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3313                   BFI.StorageSize / CharWidth, BFI.Offset,
3314                   BFI.Size, CharWidth,
3315                   CGM.getDataLayout().isBigEndian());
3316       continue;
3317     }
3318 
3319     setUsedBits(CGM, F->getType(),
3320                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3321   }
3322 }
3323 
3324 // Set the bits in `Bits`, which correspond to the value representations of
3325 // the elements of an array type `ATy`.
3326 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3327                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3328   const ASTContext &Context = CGM.getContext();
3329 
3330   QualType ETy = Context.getBaseElementType(ATy);
3331   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3332   SmallVector<uint64_t, 4> TmpBits(Size);
3333   setUsedBits(CGM, ETy, 0, TmpBits);
3334 
3335   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3336     auto Src = TmpBits.begin();
3337     auto Dst = Bits.begin() + Offset + I * Size;
3338     for (int J = 0; J < Size; ++J)
3339       *Dst++ |= *Src++;
3340   }
3341 }
3342 
3343 // Set the bits in `Bits`, which correspond to the value representations of
3344 // the type `QTy`.
3345 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3346                         SmallVectorImpl<uint64_t> &Bits) {
3347   if (const auto *RTy = QTy->getAs<RecordType>())
3348     return setUsedBits(CGM, RTy, Offset, Bits);
3349 
3350   ASTContext &Context = CGM.getContext();
3351   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3352     return setUsedBits(CGM, ATy, Offset, Bits);
3353 
3354   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3355   if (Size <= 0)
3356     return;
3357 
3358   std::fill_n(Bits.begin() + Offset, Size,
3359               (uint64_t(1) << Context.getCharWidth()) - 1);
3360 }
3361 
3362 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3363                                    int Pos, int Size, int CharWidth,
3364                                    bool BigEndian) {
3365   assert(Size > 0);
3366   uint64_t Mask = 0;
3367   if (BigEndian) {
3368     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3369          ++P)
3370       Mask = (Mask << CharWidth) | *P;
3371   } else {
3372     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3373     do
3374       Mask = (Mask << CharWidth) | *--P;
3375     while (P != End);
3376   }
3377   return Mask;
3378 }
3379 
3380 // Emit code to clear the bits in a record, which aren't a part of any user
3381 // declared member, when the record is a function return.
3382 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3383                                                   llvm::IntegerType *ITy,
3384                                                   QualType QTy) {
3385   assert(Src->getType() == ITy);
3386   assert(ITy->getScalarSizeInBits() <= 64);
3387 
3388   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3389   int Size = DataLayout.getTypeStoreSize(ITy);
3390   SmallVector<uint64_t, 4> Bits(Size);
3391   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3392 
3393   int CharWidth = CGM.getContext().getCharWidth();
3394   uint64_t Mask =
3395       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3396 
3397   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3398 }
3399 
3400 // Emit code to clear the bits in a record, which aren't a part of any user
3401 // declared member, when the record is a function argument.
3402 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3403                                                   llvm::ArrayType *ATy,
3404                                                   QualType QTy) {
3405   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3406   int Size = DataLayout.getTypeStoreSize(ATy);
3407   SmallVector<uint64_t, 16> Bits(Size);
3408   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3409 
3410   // Clear each element of the LLVM array.
3411   int CharWidth = CGM.getContext().getCharWidth();
3412   int CharsPerElt =
3413       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3414   int MaskIndex = 0;
3415   llvm::Value *R = llvm::UndefValue::get(ATy);
3416   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3417     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3418                                        DataLayout.isBigEndian());
3419     MaskIndex += CharsPerElt;
3420     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3421     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3422     R = Builder.CreateInsertValue(R, T1, I);
3423   }
3424 
3425   return R;
3426 }
3427 
3428 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3429                                          bool EmitRetDbgLoc,
3430                                          SourceLocation EndLoc) {
3431   if (FI.isNoReturn()) {
3432     // Noreturn functions don't return.
3433     EmitUnreachable(EndLoc);
3434     return;
3435   }
3436 
3437   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3438     // Naked functions don't have epilogues.
3439     Builder.CreateUnreachable();
3440     return;
3441   }
3442 
3443   // Functions with no result always return void.
3444   if (!ReturnValue.isValid()) {
3445     Builder.CreateRetVoid();
3446     return;
3447   }
3448 
3449   llvm::DebugLoc RetDbgLoc;
3450   llvm::Value *RV = nullptr;
3451   QualType RetTy = FI.getReturnType();
3452   const ABIArgInfo &RetAI = FI.getReturnInfo();
3453 
3454   switch (RetAI.getKind()) {
3455   case ABIArgInfo::InAlloca:
3456     // Aggregrates get evaluated directly into the destination.  Sometimes we
3457     // need to return the sret value in a register, though.
3458     assert(hasAggregateEvaluationKind(RetTy));
3459     if (RetAI.getInAllocaSRet()) {
3460       llvm::Function::arg_iterator EI = CurFn->arg_end();
3461       --EI;
3462       llvm::Value *ArgStruct = &*EI;
3463       llvm::Value *SRet = Builder.CreateStructGEP(
3464           EI->getType()->getPointerElementType(), ArgStruct,
3465           RetAI.getInAllocaFieldIndex());
3466       llvm::Type *Ty =
3467           cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3468       RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3469     }
3470     break;
3471 
3472   case ABIArgInfo::Indirect: {
3473     auto AI = CurFn->arg_begin();
3474     if (RetAI.isSRetAfterThis())
3475       ++AI;
3476     switch (getEvaluationKind(RetTy)) {
3477     case TEK_Complex: {
3478       ComplexPairTy RT =
3479         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3480       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3481                          /*isInit*/ true);
3482       break;
3483     }
3484     case TEK_Aggregate:
3485       // Do nothing; aggregrates get evaluated directly into the destination.
3486       break;
3487     case TEK_Scalar:
3488       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3489                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3490                         /*isInit*/ true);
3491       break;
3492     }
3493     break;
3494   }
3495 
3496   case ABIArgInfo::Extend:
3497   case ABIArgInfo::Direct:
3498     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3499         RetAI.getDirectOffset() == 0) {
3500       // The internal return value temp always will have pointer-to-return-type
3501       // type, just do a load.
3502 
3503       // If there is a dominating store to ReturnValue, we can elide
3504       // the load, zap the store, and usually zap the alloca.
3505       if (llvm::StoreInst *SI =
3506               findDominatingStoreToReturnValue(*this)) {
3507         // Reuse the debug location from the store unless there is
3508         // cleanup code to be emitted between the store and return
3509         // instruction.
3510         if (EmitRetDbgLoc && !AutoreleaseResult)
3511           RetDbgLoc = SI->getDebugLoc();
3512         // Get the stored value and nuke the now-dead store.
3513         RV = SI->getValueOperand();
3514         SI->eraseFromParent();
3515 
3516       // Otherwise, we have to do a simple load.
3517       } else {
3518         RV = Builder.CreateLoad(ReturnValue);
3519       }
3520     } else {
3521       // If the value is offset in memory, apply the offset now.
3522       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3523 
3524       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3525     }
3526 
3527     // In ARC, end functions that return a retainable type with a call
3528     // to objc_autoreleaseReturnValue.
3529     if (AutoreleaseResult) {
3530 #ifndef NDEBUG
3531       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3532       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3533       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3534       // CurCodeDecl or BlockInfo.
3535       QualType RT;
3536 
3537       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3538         RT = FD->getReturnType();
3539       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3540         RT = MD->getReturnType();
3541       else if (isa<BlockDecl>(CurCodeDecl))
3542         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3543       else
3544         llvm_unreachable("Unexpected function/method type");
3545 
3546       assert(getLangOpts().ObjCAutoRefCount &&
3547              !FI.isReturnsRetained() &&
3548              RT->isObjCRetainableType());
3549 #endif
3550       RV = emitAutoreleaseOfResult(*this, RV);
3551     }
3552 
3553     break;
3554 
3555   case ABIArgInfo::Ignore:
3556     break;
3557 
3558   case ABIArgInfo::CoerceAndExpand: {
3559     auto coercionType = RetAI.getCoerceAndExpandType();
3560 
3561     // Load all of the coerced elements out into results.
3562     llvm::SmallVector<llvm::Value*, 4> results;
3563     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3564     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3565       auto coercedEltType = coercionType->getElementType(i);
3566       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3567         continue;
3568 
3569       auto eltAddr = Builder.CreateStructGEP(addr, i);
3570       auto elt = Builder.CreateLoad(eltAddr);
3571       results.push_back(elt);
3572     }
3573 
3574     // If we have one result, it's the single direct result type.
3575     if (results.size() == 1) {
3576       RV = results[0];
3577 
3578     // Otherwise, we need to make a first-class aggregate.
3579     } else {
3580       // Construct a return type that lacks padding elements.
3581       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3582 
3583       RV = llvm::UndefValue::get(returnType);
3584       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3585         RV = Builder.CreateInsertValue(RV, results[i], i);
3586       }
3587     }
3588     break;
3589   }
3590   case ABIArgInfo::Expand:
3591   case ABIArgInfo::IndirectAliased:
3592     llvm_unreachable("Invalid ABI kind for return argument");
3593   }
3594 
3595   llvm::Instruction *Ret;
3596   if (RV) {
3597     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3598       // For certain return types, clear padding bits, as they may reveal
3599       // sensitive information.
3600       // Small struct/union types are passed as integers.
3601       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3602       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3603         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3604     }
3605     EmitReturnValueCheck(RV);
3606     Ret = Builder.CreateRet(RV);
3607   } else {
3608     Ret = Builder.CreateRetVoid();
3609   }
3610 
3611   if (RetDbgLoc)
3612     Ret->setDebugLoc(std::move(RetDbgLoc));
3613 }
3614 
3615 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3616   // A current decl may not be available when emitting vtable thunks.
3617   if (!CurCodeDecl)
3618     return;
3619 
3620   // If the return block isn't reachable, neither is this check, so don't emit
3621   // it.
3622   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3623     return;
3624 
3625   ReturnsNonNullAttr *RetNNAttr = nullptr;
3626   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3627     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3628 
3629   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3630     return;
3631 
3632   // Prefer the returns_nonnull attribute if it's present.
3633   SourceLocation AttrLoc;
3634   SanitizerMask CheckKind;
3635   SanitizerHandler Handler;
3636   if (RetNNAttr) {
3637     assert(!requiresReturnValueNullabilityCheck() &&
3638            "Cannot check nullability and the nonnull attribute");
3639     AttrLoc = RetNNAttr->getLocation();
3640     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3641     Handler = SanitizerHandler::NonnullReturn;
3642   } else {
3643     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3644       if (auto *TSI = DD->getTypeSourceInfo())
3645         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3646           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3647     CheckKind = SanitizerKind::NullabilityReturn;
3648     Handler = SanitizerHandler::NullabilityReturn;
3649   }
3650 
3651   SanitizerScope SanScope(this);
3652 
3653   // Make sure the "return" source location is valid. If we're checking a
3654   // nullability annotation, make sure the preconditions for the check are met.
3655   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3656   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3657   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3658   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3659   if (requiresReturnValueNullabilityCheck())
3660     CanNullCheck =
3661         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3662   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3663   EmitBlock(Check);
3664 
3665   // Now do the null check.
3666   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3667   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3668   llvm::Value *DynamicData[] = {SLocPtr};
3669   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3670 
3671   EmitBlock(NoCheck);
3672 
3673 #ifndef NDEBUG
3674   // The return location should not be used after the check has been emitted.
3675   ReturnLocation = Address::invalid();
3676 #endif
3677 }
3678 
3679 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3680   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3681   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3682 }
3683 
3684 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3685                                           QualType Ty) {
3686   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3687   // placeholders.
3688   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3689   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3690   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3691 
3692   // FIXME: When we generate this IR in one pass, we shouldn't need
3693   // this win32-specific alignment hack.
3694   CharUnits Align = CharUnits::fromQuantity(4);
3695   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3696 
3697   return AggValueSlot::forAddr(Address(Placeholder, Align),
3698                                Ty.getQualifiers(),
3699                                AggValueSlot::IsNotDestructed,
3700                                AggValueSlot::DoesNotNeedGCBarriers,
3701                                AggValueSlot::IsNotAliased,
3702                                AggValueSlot::DoesNotOverlap);
3703 }
3704 
3705 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3706                                           const VarDecl *param,
3707                                           SourceLocation loc) {
3708   // StartFunction converted the ABI-lowered parameter(s) into a
3709   // local alloca.  We need to turn that into an r-value suitable
3710   // for EmitCall.
3711   Address local = GetAddrOfLocalVar(param);
3712 
3713   QualType type = param->getType();
3714 
3715   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3716     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3717   }
3718 
3719   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3720   // but the argument needs to be the original pointer.
3721   if (type->isReferenceType()) {
3722     args.add(RValue::get(Builder.CreateLoad(local)), type);
3723 
3724   // In ARC, move out of consumed arguments so that the release cleanup
3725   // entered by StartFunction doesn't cause an over-release.  This isn't
3726   // optimal -O0 code generation, but it should get cleaned up when
3727   // optimization is enabled.  This also assumes that delegate calls are
3728   // performed exactly once for a set of arguments, but that should be safe.
3729   } else if (getLangOpts().ObjCAutoRefCount &&
3730              param->hasAttr<NSConsumedAttr>() &&
3731              type->isObjCRetainableType()) {
3732     llvm::Value *ptr = Builder.CreateLoad(local);
3733     auto null =
3734       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3735     Builder.CreateStore(null, local);
3736     args.add(RValue::get(ptr), type);
3737 
3738   // For the most part, we just need to load the alloca, except that
3739   // aggregate r-values are actually pointers to temporaries.
3740   } else {
3741     args.add(convertTempToRValue(local, type, loc), type);
3742   }
3743 
3744   // Deactivate the cleanup for the callee-destructed param that was pushed.
3745   if (type->isRecordType() && !CurFuncIsThunk &&
3746       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3747       param->needsDestruction(getContext())) {
3748     EHScopeStack::stable_iterator cleanup =
3749         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3750     assert(cleanup.isValid() &&
3751            "cleanup for callee-destructed param not recorded");
3752     // This unreachable is a temporary marker which will be removed later.
3753     llvm::Instruction *isActive = Builder.CreateUnreachable();
3754     args.addArgCleanupDeactivation(cleanup, isActive);
3755   }
3756 }
3757 
3758 static bool isProvablyNull(llvm::Value *addr) {
3759   return isa<llvm::ConstantPointerNull>(addr);
3760 }
3761 
3762 /// Emit the actual writing-back of a writeback.
3763 static void emitWriteback(CodeGenFunction &CGF,
3764                           const CallArgList::Writeback &writeback) {
3765   const LValue &srcLV = writeback.Source;
3766   Address srcAddr = srcLV.getAddress(CGF);
3767   assert(!isProvablyNull(srcAddr.getPointer()) &&
3768          "shouldn't have writeback for provably null argument");
3769 
3770   llvm::BasicBlock *contBB = nullptr;
3771 
3772   // If the argument wasn't provably non-null, we need to null check
3773   // before doing the store.
3774   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3775                                               CGF.CGM.getDataLayout());
3776   if (!provablyNonNull) {
3777     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3778     contBB = CGF.createBasicBlock("icr.done");
3779 
3780     llvm::Value *isNull =
3781       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3782     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3783     CGF.EmitBlock(writebackBB);
3784   }
3785 
3786   // Load the value to writeback.
3787   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3788 
3789   // Cast it back, in case we're writing an id to a Foo* or something.
3790   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3791                                     "icr.writeback-cast");
3792 
3793   // Perform the writeback.
3794 
3795   // If we have a "to use" value, it's something we need to emit a use
3796   // of.  This has to be carefully threaded in: if it's done after the
3797   // release it's potentially undefined behavior (and the optimizer
3798   // will ignore it), and if it happens before the retain then the
3799   // optimizer could move the release there.
3800   if (writeback.ToUse) {
3801     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3802 
3803     // Retain the new value.  No need to block-copy here:  the block's
3804     // being passed up the stack.
3805     value = CGF.EmitARCRetainNonBlock(value);
3806 
3807     // Emit the intrinsic use here.
3808     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3809 
3810     // Load the old value (primitively).
3811     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3812 
3813     // Put the new value in place (primitively).
3814     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3815 
3816     // Release the old value.
3817     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3818 
3819   // Otherwise, we can just do a normal lvalue store.
3820   } else {
3821     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3822   }
3823 
3824   // Jump to the continuation block.
3825   if (!provablyNonNull)
3826     CGF.EmitBlock(contBB);
3827 }
3828 
3829 static void emitWritebacks(CodeGenFunction &CGF,
3830                            const CallArgList &args) {
3831   for (const auto &I : args.writebacks())
3832     emitWriteback(CGF, I);
3833 }
3834 
3835 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3836                                             const CallArgList &CallArgs) {
3837   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3838     CallArgs.getCleanupsToDeactivate();
3839   // Iterate in reverse to increase the likelihood of popping the cleanup.
3840   for (const auto &I : llvm::reverse(Cleanups)) {
3841     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3842     I.IsActiveIP->eraseFromParent();
3843   }
3844 }
3845 
3846 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3847   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3848     if (uop->getOpcode() == UO_AddrOf)
3849       return uop->getSubExpr();
3850   return nullptr;
3851 }
3852 
3853 /// Emit an argument that's being passed call-by-writeback.  That is,
3854 /// we are passing the address of an __autoreleased temporary; it
3855 /// might be copy-initialized with the current value of the given
3856 /// address, but it will definitely be copied out of after the call.
3857 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3858                              const ObjCIndirectCopyRestoreExpr *CRE) {
3859   LValue srcLV;
3860 
3861   // Make an optimistic effort to emit the address as an l-value.
3862   // This can fail if the argument expression is more complicated.
3863   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3864     srcLV = CGF.EmitLValue(lvExpr);
3865 
3866   // Otherwise, just emit it as a scalar.
3867   } else {
3868     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3869 
3870     QualType srcAddrType =
3871       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3872     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3873   }
3874   Address srcAddr = srcLV.getAddress(CGF);
3875 
3876   // The dest and src types don't necessarily match in LLVM terms
3877   // because of the crazy ObjC compatibility rules.
3878 
3879   llvm::PointerType *destType =
3880     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3881 
3882   // If the address is a constant null, just pass the appropriate null.
3883   if (isProvablyNull(srcAddr.getPointer())) {
3884     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3885              CRE->getType());
3886     return;
3887   }
3888 
3889   // Create the temporary.
3890   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3891                                       CGF.getPointerAlign(),
3892                                       "icr.temp");
3893   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3894   // and that cleanup will be conditional if we can't prove that the l-value
3895   // isn't null, so we need to register a dominating point so that the cleanups
3896   // system will make valid IR.
3897   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3898 
3899   // Zero-initialize it if we're not doing a copy-initialization.
3900   bool shouldCopy = CRE->shouldCopy();
3901   if (!shouldCopy) {
3902     llvm::Value *null =
3903       llvm::ConstantPointerNull::get(
3904         cast<llvm::PointerType>(destType->getElementType()));
3905     CGF.Builder.CreateStore(null, temp);
3906   }
3907 
3908   llvm::BasicBlock *contBB = nullptr;
3909   llvm::BasicBlock *originBB = nullptr;
3910 
3911   // If the address is *not* known to be non-null, we need to switch.
3912   llvm::Value *finalArgument;
3913 
3914   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3915                                               CGF.CGM.getDataLayout());
3916   if (provablyNonNull) {
3917     finalArgument = temp.getPointer();
3918   } else {
3919     llvm::Value *isNull =
3920       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3921 
3922     finalArgument = CGF.Builder.CreateSelect(isNull,
3923                                    llvm::ConstantPointerNull::get(destType),
3924                                              temp.getPointer(), "icr.argument");
3925 
3926     // If we need to copy, then the load has to be conditional, which
3927     // means we need control flow.
3928     if (shouldCopy) {
3929       originBB = CGF.Builder.GetInsertBlock();
3930       contBB = CGF.createBasicBlock("icr.cont");
3931       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3932       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3933       CGF.EmitBlock(copyBB);
3934       condEval.begin(CGF);
3935     }
3936   }
3937 
3938   llvm::Value *valueToUse = nullptr;
3939 
3940   // Perform a copy if necessary.
3941   if (shouldCopy) {
3942     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3943     assert(srcRV.isScalar());
3944 
3945     llvm::Value *src = srcRV.getScalarVal();
3946     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3947                                     "icr.cast");
3948 
3949     // Use an ordinary store, not a store-to-lvalue.
3950     CGF.Builder.CreateStore(src, temp);
3951 
3952     // If optimization is enabled, and the value was held in a
3953     // __strong variable, we need to tell the optimizer that this
3954     // value has to stay alive until we're doing the store back.
3955     // This is because the temporary is effectively unretained,
3956     // and so otherwise we can violate the high-level semantics.
3957     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3958         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3959       valueToUse = src;
3960     }
3961   }
3962 
3963   // Finish the control flow if we needed it.
3964   if (shouldCopy && !provablyNonNull) {
3965     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3966     CGF.EmitBlock(contBB);
3967 
3968     // Make a phi for the value to intrinsically use.
3969     if (valueToUse) {
3970       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3971                                                       "icr.to-use");
3972       phiToUse->addIncoming(valueToUse, copyBB);
3973       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3974                             originBB);
3975       valueToUse = phiToUse;
3976     }
3977 
3978     condEval.end(CGF);
3979   }
3980 
3981   args.addWriteback(srcLV, temp, valueToUse);
3982   args.add(RValue::get(finalArgument), CRE->getType());
3983 }
3984 
3985 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3986   assert(!StackBase);
3987 
3988   // Save the stack.
3989   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3990   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3991 }
3992 
3993 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3994   if (StackBase) {
3995     // Restore the stack after the call.
3996     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3997     CGF.Builder.CreateCall(F, StackBase);
3998   }
3999 }
4000 
4001 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4002                                           SourceLocation ArgLoc,
4003                                           AbstractCallee AC,
4004                                           unsigned ParmNum) {
4005   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4006                          SanOpts.has(SanitizerKind::NullabilityArg)))
4007     return;
4008 
4009   // The param decl may be missing in a variadic function.
4010   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4011   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4012 
4013   // Prefer the nonnull attribute if it's present.
4014   const NonNullAttr *NNAttr = nullptr;
4015   if (SanOpts.has(SanitizerKind::NonnullAttribute))
4016     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4017 
4018   bool CanCheckNullability = false;
4019   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4020     auto Nullability = PVD->getType()->getNullability(getContext());
4021     CanCheckNullability = Nullability &&
4022                           *Nullability == NullabilityKind::NonNull &&
4023                           PVD->getTypeSourceInfo();
4024   }
4025 
4026   if (!NNAttr && !CanCheckNullability)
4027     return;
4028 
4029   SourceLocation AttrLoc;
4030   SanitizerMask CheckKind;
4031   SanitizerHandler Handler;
4032   if (NNAttr) {
4033     AttrLoc = NNAttr->getLocation();
4034     CheckKind = SanitizerKind::NonnullAttribute;
4035     Handler = SanitizerHandler::NonnullArg;
4036   } else {
4037     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4038     CheckKind = SanitizerKind::NullabilityArg;
4039     Handler = SanitizerHandler::NullabilityArg;
4040   }
4041 
4042   SanitizerScope SanScope(this);
4043   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4044   llvm::Constant *StaticData[] = {
4045       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4046       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4047   };
4048   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
4049 }
4050 
4051 // Check if the call is going to use the inalloca convention. This needs to
4052 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4053 // later, so we can't check it directly.
4054 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4055                             ArrayRef<QualType> ArgTypes) {
4056   // The Swift calling conventions don't go through the target-specific
4057   // argument classification, they never use inalloca.
4058   // TODO: Consider limiting inalloca use to only calling conventions supported
4059   // by MSVC.
4060   if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4061     return false;
4062   if (!CGM.getTarget().getCXXABI().isMicrosoft())
4063     return false;
4064   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4065     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4066   });
4067 }
4068 
4069 #ifndef NDEBUG
4070 // Determine whether the given argument is an Objective-C method
4071 // that may have type parameters in its signature.
4072 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4073   const DeclContext *dc = method->getDeclContext();
4074   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4075     return classDecl->getTypeParamListAsWritten();
4076   }
4077 
4078   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4079     return catDecl->getTypeParamList();
4080   }
4081 
4082   return false;
4083 }
4084 #endif
4085 
4086 /// EmitCallArgs - Emit call arguments for a function.
4087 void CodeGenFunction::EmitCallArgs(
4088     CallArgList &Args, PrototypeWrapper Prototype,
4089     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4090     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4091   SmallVector<QualType, 16> ArgTypes;
4092 
4093   assert((ParamsToSkip == 0 || Prototype.P) &&
4094          "Can't skip parameters if type info is not provided");
4095 
4096   // This variable only captures *explicitly* written conventions, not those
4097   // applied by default via command line flags or target defaults, such as
4098   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4099   // require knowing if this is a C++ instance method or being able to see
4100   // unprototyped FunctionTypes.
4101   CallingConv ExplicitCC = CC_C;
4102 
4103   // First, if a prototype was provided, use those argument types.
4104   bool IsVariadic = false;
4105   if (Prototype.P) {
4106     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4107     if (MD) {
4108       IsVariadic = MD->isVariadic();
4109       ExplicitCC = getCallingConventionForDecl(
4110           MD, CGM.getTarget().getTriple().isOSWindows());
4111       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4112                       MD->param_type_end());
4113     } else {
4114       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4115       IsVariadic = FPT->isVariadic();
4116       ExplicitCC = FPT->getExtInfo().getCC();
4117       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4118                       FPT->param_type_end());
4119     }
4120 
4121 #ifndef NDEBUG
4122     // Check that the prototyped types match the argument expression types.
4123     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4124     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4125     for (QualType Ty : ArgTypes) {
4126       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4127       assert(
4128           (isGenericMethod || Ty->isVariablyModifiedType() ||
4129            Ty.getNonReferenceType()->isObjCRetainableType() ||
4130            getContext()
4131                    .getCanonicalType(Ty.getNonReferenceType())
4132                    .getTypePtr() ==
4133                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4134           "type mismatch in call argument!");
4135       ++Arg;
4136     }
4137 
4138     // Either we've emitted all the call args, or we have a call to variadic
4139     // function.
4140     assert((Arg == ArgRange.end() || IsVariadic) &&
4141            "Extra arguments in non-variadic function!");
4142 #endif
4143   }
4144 
4145   // If we still have any arguments, emit them using the type of the argument.
4146   for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()),
4147                                   ArgRange.end()))
4148     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4149   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4150 
4151   // We must evaluate arguments from right to left in the MS C++ ABI,
4152   // because arguments are destroyed left to right in the callee. As a special
4153   // case, there are certain language constructs that require left-to-right
4154   // evaluation, and in those cases we consider the evaluation order requirement
4155   // to trump the "destruction order is reverse construction order" guarantee.
4156   bool LeftToRight =
4157       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4158           ? Order == EvaluationOrder::ForceLeftToRight
4159           : Order != EvaluationOrder::ForceRightToLeft;
4160 
4161   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4162                                          RValue EmittedArg) {
4163     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4164       return;
4165     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4166     if (PS == nullptr)
4167       return;
4168 
4169     const auto &Context = getContext();
4170     auto SizeTy = Context.getSizeType();
4171     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4172     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4173     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4174                                                      EmittedArg.getScalarVal(),
4175                                                      PS->isDynamic());
4176     Args.add(RValue::get(V), SizeTy);
4177     // If we're emitting args in reverse, be sure to do so with
4178     // pass_object_size, as well.
4179     if (!LeftToRight)
4180       std::swap(Args.back(), *(&Args.back() - 1));
4181   };
4182 
4183   // Insert a stack save if we're going to need any inalloca args.
4184   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4185     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4186            "inalloca only supported on x86");
4187     Args.allocateArgumentMemory(*this);
4188   }
4189 
4190   // Evaluate each argument in the appropriate order.
4191   size_t CallArgsStart = Args.size();
4192   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4193     unsigned Idx = LeftToRight ? I : E - I - 1;
4194     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4195     unsigned InitialArgSize = Args.size();
4196     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4197     // the argument and parameter match or the objc method is parameterized.
4198     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4199             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4200                                                 ArgTypes[Idx]) ||
4201             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4202              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4203            "Argument and parameter types don't match");
4204     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4205     // In particular, we depend on it being the last arg in Args, and the
4206     // objectsize bits depend on there only being one arg if !LeftToRight.
4207     assert(InitialArgSize + 1 == Args.size() &&
4208            "The code below depends on only adding one arg per EmitCallArg");
4209     (void)InitialArgSize;
4210     // Since pointer argument are never emitted as LValue, it is safe to emit
4211     // non-null argument check for r-value only.
4212     if (!Args.back().hasLValue()) {
4213       RValue RVArg = Args.back().getKnownRValue();
4214       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4215                           ParamsToSkip + Idx);
4216       // @llvm.objectsize should never have side-effects and shouldn't need
4217       // destruction/cleanups, so we can safely "emit" it after its arg,
4218       // regardless of right-to-leftness
4219       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4220     }
4221   }
4222 
4223   if (!LeftToRight) {
4224     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4225     // IR function.
4226     std::reverse(Args.begin() + CallArgsStart, Args.end());
4227   }
4228 }
4229 
4230 namespace {
4231 
4232 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4233   DestroyUnpassedArg(Address Addr, QualType Ty)
4234       : Addr(Addr), Ty(Ty) {}
4235 
4236   Address Addr;
4237   QualType Ty;
4238 
4239   void Emit(CodeGenFunction &CGF, Flags flags) override {
4240     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4241     if (DtorKind == QualType::DK_cxx_destructor) {
4242       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4243       assert(!Dtor->isTrivial());
4244       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4245                                 /*Delegating=*/false, Addr, Ty);
4246     } else {
4247       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4248     }
4249   }
4250 };
4251 
4252 struct DisableDebugLocationUpdates {
4253   CodeGenFunction &CGF;
4254   bool disabledDebugInfo;
4255   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4256     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4257       CGF.disableDebugInfo();
4258   }
4259   ~DisableDebugLocationUpdates() {
4260     if (disabledDebugInfo)
4261       CGF.enableDebugInfo();
4262   }
4263 };
4264 
4265 } // end anonymous namespace
4266 
4267 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4268   if (!HasLV)
4269     return RV;
4270   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4271   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4272                         LV.isVolatile());
4273   IsUsed = true;
4274   return RValue::getAggregate(Copy.getAddress(CGF));
4275 }
4276 
4277 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4278   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4279   if (!HasLV && RV.isScalar())
4280     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4281   else if (!HasLV && RV.isComplex())
4282     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4283   else {
4284     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4285     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4286     // We assume that call args are never copied into subobjects.
4287     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4288                           HasLV ? LV.isVolatileQualified()
4289                                 : RV.isVolatileQualified());
4290   }
4291   IsUsed = true;
4292 }
4293 
4294 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4295                                   QualType type) {
4296   DisableDebugLocationUpdates Dis(*this, E);
4297   if (const ObjCIndirectCopyRestoreExpr *CRE
4298         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4299     assert(getLangOpts().ObjCAutoRefCount);
4300     return emitWritebackArg(*this, args, CRE);
4301   }
4302 
4303   assert(type->isReferenceType() == E->isGLValue() &&
4304          "reference binding to unmaterialized r-value!");
4305 
4306   if (E->isGLValue()) {
4307     assert(E->getObjectKind() == OK_Ordinary);
4308     return args.add(EmitReferenceBindingToExpr(E), type);
4309   }
4310 
4311   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4312 
4313   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4314   // However, we still have to push an EH-only cleanup in case we unwind before
4315   // we make it to the call.
4316   if (type->isRecordType() &&
4317       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4318     // If we're using inalloca, use the argument memory.  Otherwise, use a
4319     // temporary.
4320     AggValueSlot Slot;
4321     if (args.isUsingInAlloca())
4322       Slot = createPlaceholderSlot(*this, type);
4323     else
4324       Slot = CreateAggTemp(type, "agg.tmp");
4325 
4326     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4327     if (const auto *RD = type->getAsCXXRecordDecl())
4328       DestroyedInCallee = RD->hasNonTrivialDestructor();
4329     else
4330       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4331 
4332     if (DestroyedInCallee)
4333       Slot.setExternallyDestructed();
4334 
4335     EmitAggExpr(E, Slot);
4336     RValue RV = Slot.asRValue();
4337     args.add(RV, type);
4338 
4339     if (DestroyedInCallee && NeedsEHCleanup) {
4340       // Create a no-op GEP between the placeholder and the cleanup so we can
4341       // RAUW it successfully.  It also serves as a marker of the first
4342       // instruction where the cleanup is active.
4343       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4344                                               type);
4345       // This unreachable is a temporary marker which will be removed later.
4346       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4347       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4348     }
4349     return;
4350   }
4351 
4352   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4353       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4354     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4355     assert(L.isSimple());
4356     args.addUncopiedAggregate(L, type);
4357     return;
4358   }
4359 
4360   args.add(EmitAnyExprToTemp(E), type);
4361 }
4362 
4363 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4364   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4365   // implicitly widens null pointer constants that are arguments to varargs
4366   // functions to pointer-sized ints.
4367   if (!getTarget().getTriple().isOSWindows())
4368     return Arg->getType();
4369 
4370   if (Arg->getType()->isIntegerType() &&
4371       getContext().getTypeSize(Arg->getType()) <
4372           getContext().getTargetInfo().getPointerWidth(0) &&
4373       Arg->isNullPointerConstant(getContext(),
4374                                  Expr::NPC_ValueDependentIsNotNull)) {
4375     return getContext().getIntPtrType();
4376   }
4377 
4378   return Arg->getType();
4379 }
4380 
4381 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4382 // optimizer it can aggressively ignore unwind edges.
4383 void
4384 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4385   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4386       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4387     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4388                       CGM.getNoObjCARCExceptionsMetadata());
4389 }
4390 
4391 /// Emits a call to the given no-arguments nounwind runtime function.
4392 llvm::CallInst *
4393 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4394                                          const llvm::Twine &name) {
4395   return EmitNounwindRuntimeCall(callee, None, name);
4396 }
4397 
4398 /// Emits a call to the given nounwind runtime function.
4399 llvm::CallInst *
4400 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4401                                          ArrayRef<llvm::Value *> args,
4402                                          const llvm::Twine &name) {
4403   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4404   call->setDoesNotThrow();
4405   return call;
4406 }
4407 
4408 /// Emits a simple call (never an invoke) to the given no-arguments
4409 /// runtime function.
4410 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4411                                                  const llvm::Twine &name) {
4412   return EmitRuntimeCall(callee, None, name);
4413 }
4414 
4415 // Calls which may throw must have operand bundles indicating which funclet
4416 // they are nested within.
4417 SmallVector<llvm::OperandBundleDef, 1>
4418 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4419   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4420   // There is no need for a funclet operand bundle if we aren't inside a
4421   // funclet.
4422   if (!CurrentFuncletPad)
4423     return BundleList;
4424 
4425   // Skip intrinsics which cannot throw.
4426   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4427   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4428     return BundleList;
4429 
4430   BundleList.emplace_back("funclet", CurrentFuncletPad);
4431   return BundleList;
4432 }
4433 
4434 /// Emits a simple call (never an invoke) to the given runtime function.
4435 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4436                                                  ArrayRef<llvm::Value *> args,
4437                                                  const llvm::Twine &name) {
4438   llvm::CallInst *call = Builder.CreateCall(
4439       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4440   call->setCallingConv(getRuntimeCC());
4441   return call;
4442 }
4443 
4444 /// Emits a call or invoke to the given noreturn runtime function.
4445 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4446     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4447   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4448       getBundlesForFunclet(callee.getCallee());
4449 
4450   if (getInvokeDest()) {
4451     llvm::InvokeInst *invoke =
4452       Builder.CreateInvoke(callee,
4453                            getUnreachableBlock(),
4454                            getInvokeDest(),
4455                            args,
4456                            BundleList);
4457     invoke->setDoesNotReturn();
4458     invoke->setCallingConv(getRuntimeCC());
4459   } else {
4460     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4461     call->setDoesNotReturn();
4462     call->setCallingConv(getRuntimeCC());
4463     Builder.CreateUnreachable();
4464   }
4465 }
4466 
4467 /// Emits a call or invoke instruction to the given nullary runtime function.
4468 llvm::CallBase *
4469 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4470                                          const Twine &name) {
4471   return EmitRuntimeCallOrInvoke(callee, None, name);
4472 }
4473 
4474 /// Emits a call or invoke instruction to the given runtime function.
4475 llvm::CallBase *
4476 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4477                                          ArrayRef<llvm::Value *> args,
4478                                          const Twine &name) {
4479   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4480   call->setCallingConv(getRuntimeCC());
4481   return call;
4482 }
4483 
4484 /// Emits a call or invoke instruction to the given function, depending
4485 /// on the current state of the EH stack.
4486 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4487                                                   ArrayRef<llvm::Value *> Args,
4488                                                   const Twine &Name) {
4489   llvm::BasicBlock *InvokeDest = getInvokeDest();
4490   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4491       getBundlesForFunclet(Callee.getCallee());
4492 
4493   llvm::CallBase *Inst;
4494   if (!InvokeDest)
4495     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4496   else {
4497     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4498     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4499                                 Name);
4500     EmitBlock(ContBB);
4501   }
4502 
4503   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4504   // optimizer it can aggressively ignore unwind edges.
4505   if (CGM.getLangOpts().ObjCAutoRefCount)
4506     AddObjCARCExceptionMetadata(Inst);
4507 
4508   return Inst;
4509 }
4510 
4511 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4512                                                   llvm::Value *New) {
4513   DeferredReplacements.push_back(
4514       std::make_pair(llvm::WeakTrackingVH(Old), New));
4515 }
4516 
4517 namespace {
4518 
4519 /// Specify given \p NewAlign as the alignment of return value attribute. If
4520 /// such attribute already exists, re-set it to the maximal one of two options.
4521 LLVM_NODISCARD llvm::AttributeList
4522 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4523                                 const llvm::AttributeList &Attrs,
4524                                 llvm::Align NewAlign) {
4525   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4526   if (CurAlign >= NewAlign)
4527     return Attrs;
4528   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4529   return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4530       .addRetAttribute(Ctx, AlignAttr);
4531 }
4532 
4533 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4534 protected:
4535   CodeGenFunction &CGF;
4536 
4537   /// We do nothing if this is, or becomes, nullptr.
4538   const AlignedAttrTy *AA = nullptr;
4539 
4540   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4541   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4542 
4543   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4544       : CGF(CGF_) {
4545     if (!FuncDecl)
4546       return;
4547     AA = FuncDecl->getAttr<AlignedAttrTy>();
4548   }
4549 
4550 public:
4551   /// If we can, materialize the alignment as an attribute on return value.
4552   LLVM_NODISCARD llvm::AttributeList
4553   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4554     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4555       return Attrs;
4556     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4557     if (!AlignmentCI)
4558       return Attrs;
4559     // We may legitimately have non-power-of-2 alignment here.
4560     // If so, this is UB land, emit it via `@llvm.assume` instead.
4561     if (!AlignmentCI->getValue().isPowerOf2())
4562       return Attrs;
4563     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4564         CGF.getLLVMContext(), Attrs,
4565         llvm::Align(
4566             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4567     AA = nullptr; // We're done. Disallow doing anything else.
4568     return NewAttrs;
4569   }
4570 
4571   /// Emit alignment assumption.
4572   /// This is a general fallback that we take if either there is an offset,
4573   /// or the alignment is variable or we are sanitizing for alignment.
4574   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4575     if (!AA)
4576       return;
4577     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4578                                 AA->getLocation(), Alignment, OffsetCI);
4579     AA = nullptr; // We're done. Disallow doing anything else.
4580   }
4581 };
4582 
4583 /// Helper data structure to emit `AssumeAlignedAttr`.
4584 class AssumeAlignedAttrEmitter final
4585     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4586 public:
4587   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4588       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4589     if (!AA)
4590       return;
4591     // It is guaranteed that the alignment/offset are constants.
4592     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4593     if (Expr *Offset = AA->getOffset()) {
4594       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4595       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4596         OffsetCI = nullptr;
4597     }
4598   }
4599 };
4600 
4601 /// Helper data structure to emit `AllocAlignAttr`.
4602 class AllocAlignAttrEmitter final
4603     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4604 public:
4605   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4606                         const CallArgList &CallArgs)
4607       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4608     if (!AA)
4609       return;
4610     // Alignment may or may not be a constant, and that is okay.
4611     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4612                     .getRValue(CGF)
4613                     .getScalarVal();
4614   }
4615 };
4616 
4617 } // namespace
4618 
4619 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4620                                  const CGCallee &Callee,
4621                                  ReturnValueSlot ReturnValue,
4622                                  const CallArgList &CallArgs,
4623                                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4624                                  SourceLocation Loc) {
4625   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4626 
4627   assert(Callee.isOrdinary() || Callee.isVirtual());
4628 
4629   // Handle struct-return functions by passing a pointer to the
4630   // location that we would like to return into.
4631   QualType RetTy = CallInfo.getReturnType();
4632   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4633 
4634   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4635 
4636   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4637   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4638     // We can only guarantee that a function is called from the correct
4639     // context/function based on the appropriate target attributes,
4640     // so only check in the case where we have both always_inline and target
4641     // since otherwise we could be making a conditional call after a check for
4642     // the proper cpu features (and it won't cause code generation issues due to
4643     // function based code generation).
4644     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4645         TargetDecl->hasAttr<TargetAttr>())
4646       checkTargetFeatures(Loc, FD);
4647 
4648     // Some architectures (such as x86-64) have the ABI changed based on
4649     // attribute-target/features. Give them a chance to diagnose.
4650     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4651         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4652   }
4653 
4654 #ifndef NDEBUG
4655   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4656     // For an inalloca varargs function, we don't expect CallInfo to match the
4657     // function pointer's type, because the inalloca struct a will have extra
4658     // fields in it for the varargs parameters.  Code later in this function
4659     // bitcasts the function pointer to the type derived from CallInfo.
4660     //
4661     // In other cases, we assert that the types match up (until pointers stop
4662     // having pointee types).
4663     llvm::Type *TypeFromVal;
4664     if (Callee.isVirtual())
4665       TypeFromVal = Callee.getVirtualFunctionType();
4666     else
4667       TypeFromVal =
4668           Callee.getFunctionPointer()->getType()->getPointerElementType();
4669     assert(IRFuncTy == TypeFromVal);
4670   }
4671 #endif
4672 
4673   // 1. Set up the arguments.
4674 
4675   // If we're using inalloca, insert the allocation after the stack save.
4676   // FIXME: Do this earlier rather than hacking it in here!
4677   Address ArgMemory = Address::invalid();
4678   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4679     const llvm::DataLayout &DL = CGM.getDataLayout();
4680     llvm::Instruction *IP = CallArgs.getStackBase();
4681     llvm::AllocaInst *AI;
4682     if (IP) {
4683       IP = IP->getNextNode();
4684       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4685                                 "argmem", IP);
4686     } else {
4687       AI = CreateTempAlloca(ArgStruct, "argmem");
4688     }
4689     auto Align = CallInfo.getArgStructAlignment();
4690     AI->setAlignment(Align.getAsAlign());
4691     AI->setUsedWithInAlloca(true);
4692     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4693     ArgMemory = Address(AI, Align);
4694   }
4695 
4696   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4697   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4698 
4699   // If the call returns a temporary with struct return, create a temporary
4700   // alloca to hold the result, unless one is given to us.
4701   Address SRetPtr = Address::invalid();
4702   Address SRetAlloca = Address::invalid();
4703   llvm::Value *UnusedReturnSizePtr = nullptr;
4704   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4705     if (!ReturnValue.isNull()) {
4706       SRetPtr = ReturnValue.getValue();
4707     } else {
4708       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4709       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4710         llvm::TypeSize size =
4711             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4712         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4713       }
4714     }
4715     if (IRFunctionArgs.hasSRetArg()) {
4716       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4717     } else if (RetAI.isInAlloca()) {
4718       Address Addr =
4719           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4720       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4721     }
4722   }
4723 
4724   Address swiftErrorTemp = Address::invalid();
4725   Address swiftErrorArg = Address::invalid();
4726 
4727   // When passing arguments using temporary allocas, we need to add the
4728   // appropriate lifetime markers. This vector keeps track of all the lifetime
4729   // markers that need to be ended right after the call.
4730   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4731 
4732   // Translate all of the arguments as necessary to match the IR lowering.
4733   assert(CallInfo.arg_size() == CallArgs.size() &&
4734          "Mismatch between function signature & arguments.");
4735   unsigned ArgNo = 0;
4736   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4737   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4738        I != E; ++I, ++info_it, ++ArgNo) {
4739     const ABIArgInfo &ArgInfo = info_it->info;
4740 
4741     // Insert a padding argument to ensure proper alignment.
4742     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4743       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4744           llvm::UndefValue::get(ArgInfo.getPaddingType());
4745 
4746     unsigned FirstIRArg, NumIRArgs;
4747     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4748 
4749     switch (ArgInfo.getKind()) {
4750     case ABIArgInfo::InAlloca: {
4751       assert(NumIRArgs == 0);
4752       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4753       if (I->isAggregate()) {
4754         Address Addr = I->hasLValue()
4755                            ? I->getKnownLValue().getAddress(*this)
4756                            : I->getKnownRValue().getAggregateAddress();
4757         llvm::Instruction *Placeholder =
4758             cast<llvm::Instruction>(Addr.getPointer());
4759 
4760         if (!ArgInfo.getInAllocaIndirect()) {
4761           // Replace the placeholder with the appropriate argument slot GEP.
4762           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4763           Builder.SetInsertPoint(Placeholder);
4764           Addr = Builder.CreateStructGEP(ArgMemory,
4765                                          ArgInfo.getInAllocaFieldIndex());
4766           Builder.restoreIP(IP);
4767         } else {
4768           // For indirect things such as overaligned structs, replace the
4769           // placeholder with a regular aggregate temporary alloca. Store the
4770           // address of this alloca into the struct.
4771           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4772           Address ArgSlot = Builder.CreateStructGEP(
4773               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4774           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4775         }
4776         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4777       } else if (ArgInfo.getInAllocaIndirect()) {
4778         // Make a temporary alloca and store the address of it into the argument
4779         // struct.
4780         Address Addr = CreateMemTempWithoutCast(
4781             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4782             "indirect-arg-temp");
4783         I->copyInto(*this, Addr);
4784         Address ArgSlot =
4785             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4786         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4787       } else {
4788         // Store the RValue into the argument struct.
4789         Address Addr =
4790             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4791         unsigned AS = Addr.getType()->getPointerAddressSpace();
4792         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4793         // There are some cases where a trivial bitcast is not avoidable.  The
4794         // definition of a type later in a translation unit may change it's type
4795         // from {}* to (%struct.foo*)*.
4796         if (Addr.getType() != MemType)
4797           Addr = Builder.CreateBitCast(Addr, MemType);
4798         I->copyInto(*this, Addr);
4799       }
4800       break;
4801     }
4802 
4803     case ABIArgInfo::Indirect:
4804     case ABIArgInfo::IndirectAliased: {
4805       assert(NumIRArgs == 1);
4806       if (!I->isAggregate()) {
4807         // Make a temporary alloca to pass the argument.
4808         Address Addr = CreateMemTempWithoutCast(
4809             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4810         IRCallArgs[FirstIRArg] = Addr.getPointer();
4811 
4812         I->copyInto(*this, Addr);
4813       } else {
4814         // We want to avoid creating an unnecessary temporary+copy here;
4815         // however, we need one in three cases:
4816         // 1. If the argument is not byval, and we are required to copy the
4817         //    source.  (This case doesn't occur on any common architecture.)
4818         // 2. If the argument is byval, RV is not sufficiently aligned, and
4819         //    we cannot force it to be sufficiently aligned.
4820         // 3. If the argument is byval, but RV is not located in default
4821         //    or alloca address space.
4822         Address Addr = I->hasLValue()
4823                            ? I->getKnownLValue().getAddress(*this)
4824                            : I->getKnownRValue().getAggregateAddress();
4825         llvm::Value *V = Addr.getPointer();
4826         CharUnits Align = ArgInfo.getIndirectAlign();
4827         const llvm::DataLayout *TD = &CGM.getDataLayout();
4828 
4829         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4830                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4831                     TD->getAllocaAddrSpace()) &&
4832                "indirect argument must be in alloca address space");
4833 
4834         bool NeedCopy = false;
4835 
4836         if (Addr.getAlignment() < Align &&
4837             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4838                 Align.getAsAlign()) {
4839           NeedCopy = true;
4840         } else if (I->hasLValue()) {
4841           auto LV = I->getKnownLValue();
4842           auto AS = LV.getAddressSpace();
4843 
4844           if (!ArgInfo.getIndirectByVal() ||
4845               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4846             NeedCopy = true;
4847           }
4848           if (!getLangOpts().OpenCL) {
4849             if ((ArgInfo.getIndirectByVal() &&
4850                 (AS != LangAS::Default &&
4851                  AS != CGM.getASTAllocaAddressSpace()))) {
4852               NeedCopy = true;
4853             }
4854           }
4855           // For OpenCL even if RV is located in default or alloca address space
4856           // we don't want to perform address space cast for it.
4857           else if ((ArgInfo.getIndirectByVal() &&
4858                     Addr.getType()->getAddressSpace() != IRFuncTy->
4859                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4860             NeedCopy = true;
4861           }
4862         }
4863 
4864         if (NeedCopy) {
4865           // Create an aligned temporary, and copy to it.
4866           Address AI = CreateMemTempWithoutCast(
4867               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4868           IRCallArgs[FirstIRArg] = AI.getPointer();
4869 
4870           // Emit lifetime markers for the temporary alloca.
4871           llvm::TypeSize ByvalTempElementSize =
4872               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4873           llvm::Value *LifetimeSize =
4874               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4875 
4876           // Add cleanup code to emit the end lifetime marker after the call.
4877           if (LifetimeSize) // In case we disabled lifetime markers.
4878             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4879 
4880           // Generate the copy.
4881           I->copyInto(*this, AI);
4882         } else {
4883           // Skip the extra memcpy call.
4884           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4885               CGM.getDataLayout().getAllocaAddrSpace());
4886           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4887               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4888               true);
4889         }
4890       }
4891       break;
4892     }
4893 
4894     case ABIArgInfo::Ignore:
4895       assert(NumIRArgs == 0);
4896       break;
4897 
4898     case ABIArgInfo::Extend:
4899     case ABIArgInfo::Direct: {
4900       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4901           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4902           ArgInfo.getDirectOffset() == 0) {
4903         assert(NumIRArgs == 1);
4904         llvm::Value *V;
4905         if (!I->isAggregate())
4906           V = I->getKnownRValue().getScalarVal();
4907         else
4908           V = Builder.CreateLoad(
4909               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4910                              : I->getKnownRValue().getAggregateAddress());
4911 
4912         // Implement swifterror by copying into a new swifterror argument.
4913         // We'll write back in the normal path out of the call.
4914         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4915               == ParameterABI::SwiftErrorResult) {
4916           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4917 
4918           QualType pointeeTy = I->Ty->getPointeeType();
4919           swiftErrorArg =
4920             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4921 
4922           swiftErrorTemp =
4923             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4924           V = swiftErrorTemp.getPointer();
4925           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4926 
4927           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4928           Builder.CreateStore(errorValue, swiftErrorTemp);
4929         }
4930 
4931         // We might have to widen integers, but we should never truncate.
4932         if (ArgInfo.getCoerceToType() != V->getType() &&
4933             V->getType()->isIntegerTy())
4934           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4935 
4936         // If the argument doesn't match, perform a bitcast to coerce it.  This
4937         // can happen due to trivial type mismatches.
4938         if (FirstIRArg < IRFuncTy->getNumParams() &&
4939             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4940           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4941 
4942         IRCallArgs[FirstIRArg] = V;
4943         break;
4944       }
4945 
4946       // FIXME: Avoid the conversion through memory if possible.
4947       Address Src = Address::invalid();
4948       if (!I->isAggregate()) {
4949         Src = CreateMemTemp(I->Ty, "coerce");
4950         I->copyInto(*this, Src);
4951       } else {
4952         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4953                              : I->getKnownRValue().getAggregateAddress();
4954       }
4955 
4956       // If the value is offset in memory, apply the offset now.
4957       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4958 
4959       // Fast-isel and the optimizer generally like scalar values better than
4960       // FCAs, so we flatten them if this is safe to do for this argument.
4961       llvm::StructType *STy =
4962             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4963       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4964         llvm::Type *SrcTy = Src.getElementType();
4965         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4966         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4967 
4968         // If the source type is smaller than the destination type of the
4969         // coerce-to logic, copy the source value into a temp alloca the size
4970         // of the destination type to allow loading all of it. The bits past
4971         // the source value are left undef.
4972         if (SrcSize < DstSize) {
4973           Address TempAlloca
4974             = CreateTempAlloca(STy, Src.getAlignment(),
4975                                Src.getName() + ".coerce");
4976           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4977           Src = TempAlloca;
4978         } else {
4979           Src = Builder.CreateBitCast(Src,
4980                                       STy->getPointerTo(Src.getAddressSpace()));
4981         }
4982 
4983         assert(NumIRArgs == STy->getNumElements());
4984         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4985           Address EltPtr = Builder.CreateStructGEP(Src, i);
4986           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4987           IRCallArgs[FirstIRArg + i] = LI;
4988         }
4989       } else {
4990         // In the simple case, just pass the coerced loaded value.
4991         assert(NumIRArgs == 1);
4992         llvm::Value *Load =
4993             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4994 
4995         if (CallInfo.isCmseNSCall()) {
4996           // For certain parameter types, clear padding bits, as they may reveal
4997           // sensitive information.
4998           // Small struct/union types are passed as integer arrays.
4999           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
5000           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
5001             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
5002         }
5003         IRCallArgs[FirstIRArg] = Load;
5004       }
5005 
5006       break;
5007     }
5008 
5009     case ABIArgInfo::CoerceAndExpand: {
5010       auto coercionType = ArgInfo.getCoerceAndExpandType();
5011       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5012 
5013       llvm::Value *tempSize = nullptr;
5014       Address addr = Address::invalid();
5015       Address AllocaAddr = Address::invalid();
5016       if (I->isAggregate()) {
5017         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5018                               : I->getKnownRValue().getAggregateAddress();
5019 
5020       } else {
5021         RValue RV = I->getKnownRValue();
5022         assert(RV.isScalar()); // complex should always just be direct
5023 
5024         llvm::Type *scalarType = RV.getScalarVal()->getType();
5025         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5026         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
5027 
5028         // Materialize to a temporary.
5029         addr = CreateTempAlloca(
5030             RV.getScalarVal()->getType(),
5031             CharUnits::fromQuantity(std::max(
5032                 (unsigned)layout->getAlignment().value(), scalarAlign)),
5033             "tmp",
5034             /*ArraySize=*/nullptr, &AllocaAddr);
5035         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5036 
5037         Builder.CreateStore(RV.getScalarVal(), addr);
5038       }
5039 
5040       addr = Builder.CreateElementBitCast(addr, coercionType);
5041 
5042       unsigned IRArgPos = FirstIRArg;
5043       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5044         llvm::Type *eltType = coercionType->getElementType(i);
5045         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5046         Address eltAddr = Builder.CreateStructGEP(addr, i);
5047         llvm::Value *elt = Builder.CreateLoad(eltAddr);
5048         IRCallArgs[IRArgPos++] = elt;
5049       }
5050       assert(IRArgPos == FirstIRArg + NumIRArgs);
5051 
5052       if (tempSize) {
5053         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5054       }
5055 
5056       break;
5057     }
5058 
5059     case ABIArgInfo::Expand: {
5060       unsigned IRArgPos = FirstIRArg;
5061       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5062       assert(IRArgPos == FirstIRArg + NumIRArgs);
5063       break;
5064     }
5065     }
5066   }
5067 
5068   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5069   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5070 
5071   // If we're using inalloca, set up that argument.
5072   if (ArgMemory.isValid()) {
5073     llvm::Value *Arg = ArgMemory.getPointer();
5074     if (CallInfo.isVariadic()) {
5075       // When passing non-POD arguments by value to variadic functions, we will
5076       // end up with a variadic prototype and an inalloca call site.  In such
5077       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
5078       // the callee.
5079       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5080       CalleePtr =
5081           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5082     } else {
5083       llvm::Type *LastParamTy =
5084           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5085       if (Arg->getType() != LastParamTy) {
5086 #ifndef NDEBUG
5087         // Assert that these structs have equivalent element types.
5088         llvm::StructType *FullTy = CallInfo.getArgStruct();
5089         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5090             cast<llvm::PointerType>(LastParamTy)->getElementType());
5091         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5092         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
5093                                                 DE = DeclaredTy->element_end(),
5094                                                 FI = FullTy->element_begin();
5095              DI != DE; ++DI, ++FI)
5096           assert(*DI == *FI);
5097 #endif
5098         Arg = Builder.CreateBitCast(Arg, LastParamTy);
5099       }
5100     }
5101     assert(IRFunctionArgs.hasInallocaArg());
5102     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5103   }
5104 
5105   // 2. Prepare the function pointer.
5106 
5107   // If the callee is a bitcast of a non-variadic function to have a
5108   // variadic function pointer type, check to see if we can remove the
5109   // bitcast.  This comes up with unprototyped functions.
5110   //
5111   // This makes the IR nicer, but more importantly it ensures that we
5112   // can inline the function at -O0 if it is marked always_inline.
5113   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5114                                    llvm::Value *Ptr) -> llvm::Function * {
5115     if (!CalleeFT->isVarArg())
5116       return nullptr;
5117 
5118     // Get underlying value if it's a bitcast
5119     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5120       if (CE->getOpcode() == llvm::Instruction::BitCast)
5121         Ptr = CE->getOperand(0);
5122     }
5123 
5124     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5125     if (!OrigFn)
5126       return nullptr;
5127 
5128     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5129 
5130     // If the original type is variadic, or if any of the component types
5131     // disagree, we cannot remove the cast.
5132     if (OrigFT->isVarArg() ||
5133         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5134         OrigFT->getReturnType() != CalleeFT->getReturnType())
5135       return nullptr;
5136 
5137     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5138       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5139         return nullptr;
5140 
5141     return OrigFn;
5142   };
5143 
5144   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5145     CalleePtr = OrigFn;
5146     IRFuncTy = OrigFn->getFunctionType();
5147   }
5148 
5149   // 3. Perform the actual call.
5150 
5151   // Deactivate any cleanups that we're supposed to do immediately before
5152   // the call.
5153   if (!CallArgs.getCleanupsToDeactivate().empty())
5154     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5155 
5156   // Assert that the arguments we computed match up.  The IR verifier
5157   // will catch this, but this is a common enough source of problems
5158   // during IRGen changes that it's way better for debugging to catch
5159   // it ourselves here.
5160 #ifndef NDEBUG
5161   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5162   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5163     // Inalloca argument can have different type.
5164     if (IRFunctionArgs.hasInallocaArg() &&
5165         i == IRFunctionArgs.getInallocaArgNo())
5166       continue;
5167     if (i < IRFuncTy->getNumParams())
5168       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5169   }
5170 #endif
5171 
5172   // Update the largest vector width if any arguments have vector types.
5173   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5174     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
5175       LargestVectorWidth =
5176           std::max((uint64_t)LargestVectorWidth,
5177                    VT->getPrimitiveSizeInBits().getKnownMinSize());
5178   }
5179 
5180   // Compute the calling convention and attributes.
5181   unsigned CallingConv;
5182   llvm::AttributeList Attrs;
5183   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5184                              Callee.getAbstractInfo(), Attrs, CallingConv,
5185                              /*AttrOnCallSite=*/true,
5186                              /*IsThunk=*/false);
5187 
5188   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5189     if (FD->hasAttr<StrictFPAttr>())
5190       // All calls within a strictfp function are marked strictfp
5191       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5192 
5193   // Add call-site nomerge attribute if exists.
5194   if (InNoMergeAttributedStmt)
5195     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5196 
5197   // Apply some call-site-specific attributes.
5198   // TODO: work this into building the attribute set.
5199 
5200   // Apply always_inline to all calls within flatten functions.
5201   // FIXME: should this really take priority over __try, below?
5202   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5203       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5204     Attrs =
5205         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5206   }
5207 
5208   // Disable inlining inside SEH __try blocks.
5209   if (isSEHTryScope()) {
5210     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5211   }
5212 
5213   // Decide whether to use a call or an invoke.
5214   bool CannotThrow;
5215   if (currentFunctionUsesSEHTry()) {
5216     // SEH cares about asynchronous exceptions, so everything can "throw."
5217     CannotThrow = false;
5218   } else if (isCleanupPadScope() &&
5219              EHPersonality::get(*this).isMSVCXXPersonality()) {
5220     // The MSVC++ personality will implicitly terminate the program if an
5221     // exception is thrown during a cleanup outside of a try/catch.
5222     // We don't need to model anything in IR to get this behavior.
5223     CannotThrow = true;
5224   } else {
5225     // Otherwise, nounwind call sites will never throw.
5226     CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5227 
5228     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5229       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5230         CannotThrow = true;
5231   }
5232 
5233   // If we made a temporary, be sure to clean up after ourselves. Note that we
5234   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5235   // pop this cleanup later on. Being eager about this is OK, since this
5236   // temporary is 'invisible' outside of the callee.
5237   if (UnusedReturnSizePtr)
5238     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5239                                          UnusedReturnSizePtr);
5240 
5241   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5242 
5243   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5244       getBundlesForFunclet(CalleePtr);
5245 
5246   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5247     if (FD->hasAttr<StrictFPAttr>())
5248       // All calls within a strictfp function are marked strictfp
5249       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5250 
5251   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5252   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5253 
5254   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5255   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5256 
5257   // Emit the actual call/invoke instruction.
5258   llvm::CallBase *CI;
5259   if (!InvokeDest) {
5260     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5261   } else {
5262     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5263     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5264                               BundleList);
5265     EmitBlock(Cont);
5266   }
5267   if (callOrInvoke)
5268     *callOrInvoke = CI;
5269 
5270   // If this is within a function that has the guard(nocf) attribute and is an
5271   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5272   // Control Flow Guard checks should not be added, even if the call is inlined.
5273   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5274     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5275       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5276         Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5277     }
5278   }
5279 
5280   // Apply the attributes and calling convention.
5281   CI->setAttributes(Attrs);
5282   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5283 
5284   // Apply various metadata.
5285 
5286   if (!CI->getType()->isVoidTy())
5287     CI->setName("call");
5288 
5289   // Update largest vector width from the return type.
5290   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
5291     LargestVectorWidth =
5292         std::max((uint64_t)LargestVectorWidth,
5293                  VT->getPrimitiveSizeInBits().getKnownMinSize());
5294 
5295   // Insert instrumentation or attach profile metadata at indirect call sites.
5296   // For more details, see the comment before the definition of
5297   // IPVK_IndirectCallTarget in InstrProfData.inc.
5298   if (!CI->getCalledFunction())
5299     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5300                      CI, CalleePtr);
5301 
5302   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5303   // optimizer it can aggressively ignore unwind edges.
5304   if (CGM.getLangOpts().ObjCAutoRefCount)
5305     AddObjCARCExceptionMetadata(CI);
5306 
5307   // Set tail call kind if necessary.
5308   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5309     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5310       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5311     else if (IsMustTail)
5312       Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5313   }
5314 
5315   // Add metadata for calls to MSAllocator functions
5316   if (getDebugInfo() && TargetDecl &&
5317       TargetDecl->hasAttr<MSAllocatorAttr>())
5318     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5319 
5320   // Add metadata if calling an __attribute__((error(""))) or warning fn.
5321   if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5322     llvm::ConstantInt *Line =
5323         llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5324     llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5325     llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5326     CI->setMetadata("srcloc", MDT);
5327   }
5328 
5329   // 4. Finish the call.
5330 
5331   // If the call doesn't return, finish the basic block and clear the
5332   // insertion point; this allows the rest of IRGen to discard
5333   // unreachable code.
5334   if (CI->doesNotReturn()) {
5335     if (UnusedReturnSizePtr)
5336       PopCleanupBlock();
5337 
5338     // Strip away the noreturn attribute to better diagnose unreachable UB.
5339     if (SanOpts.has(SanitizerKind::Unreachable)) {
5340       // Also remove from function since CallBase::hasFnAttr additionally checks
5341       // attributes of the called function.
5342       if (auto *F = CI->getCalledFunction())
5343         F->removeFnAttr(llvm::Attribute::NoReturn);
5344       CI->removeFnAttr(llvm::Attribute::NoReturn);
5345 
5346       // Avoid incompatibility with ASan which relies on the `noreturn`
5347       // attribute to insert handler calls.
5348       if (SanOpts.hasOneOf(SanitizerKind::Address |
5349                            SanitizerKind::KernelAddress)) {
5350         SanitizerScope SanScope(this);
5351         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5352         Builder.SetInsertPoint(CI);
5353         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5354         llvm::FunctionCallee Fn =
5355             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5356         EmitNounwindRuntimeCall(Fn);
5357       }
5358     }
5359 
5360     EmitUnreachable(Loc);
5361     Builder.ClearInsertionPoint();
5362 
5363     // FIXME: For now, emit a dummy basic block because expr emitters in
5364     // generally are not ready to handle emitting expressions at unreachable
5365     // points.
5366     EnsureInsertPoint();
5367 
5368     // Return a reasonable RValue.
5369     return GetUndefRValue(RetTy);
5370   }
5371 
5372   // If this is a musttail call, return immediately. We do not branch to the
5373   // epilogue in this case.
5374   if (IsMustTail) {
5375     for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5376          ++it) {
5377       EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5378       if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5379         CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5380     }
5381     if (CI->getType()->isVoidTy())
5382       Builder.CreateRetVoid();
5383     else
5384       Builder.CreateRet(CI);
5385     Builder.ClearInsertionPoint();
5386     EnsureInsertPoint();
5387     return GetUndefRValue(RetTy);
5388   }
5389 
5390   // Perform the swifterror writeback.
5391   if (swiftErrorTemp.isValid()) {
5392     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5393     Builder.CreateStore(errorResult, swiftErrorArg);
5394   }
5395 
5396   // Emit any call-associated writebacks immediately.  Arguably this
5397   // should happen after any return-value munging.
5398   if (CallArgs.hasWritebacks())
5399     emitWritebacks(*this, CallArgs);
5400 
5401   // The stack cleanup for inalloca arguments has to run out of the normal
5402   // lexical order, so deactivate it and run it manually here.
5403   CallArgs.freeArgumentMemory(*this);
5404 
5405   // Extract the return value.
5406   RValue Ret = [&] {
5407     switch (RetAI.getKind()) {
5408     case ABIArgInfo::CoerceAndExpand: {
5409       auto coercionType = RetAI.getCoerceAndExpandType();
5410 
5411       Address addr = SRetPtr;
5412       addr = Builder.CreateElementBitCast(addr, coercionType);
5413 
5414       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5415       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5416 
5417       unsigned unpaddedIndex = 0;
5418       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5419         llvm::Type *eltType = coercionType->getElementType(i);
5420         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5421         Address eltAddr = Builder.CreateStructGEP(addr, i);
5422         llvm::Value *elt = CI;
5423         if (requiresExtract)
5424           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5425         else
5426           assert(unpaddedIndex == 0);
5427         Builder.CreateStore(elt, eltAddr);
5428       }
5429       // FALLTHROUGH
5430       LLVM_FALLTHROUGH;
5431     }
5432 
5433     case ABIArgInfo::InAlloca:
5434     case ABIArgInfo::Indirect: {
5435       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5436       if (UnusedReturnSizePtr)
5437         PopCleanupBlock();
5438       return ret;
5439     }
5440 
5441     case ABIArgInfo::Ignore:
5442       // If we are ignoring an argument that had a result, make sure to
5443       // construct the appropriate return value for our caller.
5444       return GetUndefRValue(RetTy);
5445 
5446     case ABIArgInfo::Extend:
5447     case ABIArgInfo::Direct: {
5448       llvm::Type *RetIRTy = ConvertType(RetTy);
5449       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5450         switch (getEvaluationKind(RetTy)) {
5451         case TEK_Complex: {
5452           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5453           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5454           return RValue::getComplex(std::make_pair(Real, Imag));
5455         }
5456         case TEK_Aggregate: {
5457           Address DestPtr = ReturnValue.getValue();
5458           bool DestIsVolatile = ReturnValue.isVolatile();
5459 
5460           if (!DestPtr.isValid()) {
5461             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5462             DestIsVolatile = false;
5463           }
5464           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5465           return RValue::getAggregate(DestPtr);
5466         }
5467         case TEK_Scalar: {
5468           // If the argument doesn't match, perform a bitcast to coerce it.  This
5469           // can happen due to trivial type mismatches.
5470           llvm::Value *V = CI;
5471           if (V->getType() != RetIRTy)
5472             V = Builder.CreateBitCast(V, RetIRTy);
5473           return RValue::get(V);
5474         }
5475         }
5476         llvm_unreachable("bad evaluation kind");
5477       }
5478 
5479       Address DestPtr = ReturnValue.getValue();
5480       bool DestIsVolatile = ReturnValue.isVolatile();
5481 
5482       if (!DestPtr.isValid()) {
5483         DestPtr = CreateMemTemp(RetTy, "coerce");
5484         DestIsVolatile = false;
5485       }
5486 
5487       // If the value is offset in memory, apply the offset now.
5488       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5489       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5490 
5491       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5492     }
5493 
5494     case ABIArgInfo::Expand:
5495     case ABIArgInfo::IndirectAliased:
5496       llvm_unreachable("Invalid ABI kind for return argument");
5497     }
5498 
5499     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5500   } ();
5501 
5502   // Emit the assume_aligned check on the return value.
5503   if (Ret.isScalar() && TargetDecl) {
5504     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5505     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5506   }
5507 
5508   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5509   // we can't use the full cleanup mechanism.
5510   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5511     LifetimeEnd.Emit(*this, /*Flags=*/{});
5512 
5513   if (!ReturnValue.isExternallyDestructed() &&
5514       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5515     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5516                 RetTy);
5517 
5518   return Ret;
5519 }
5520 
5521 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5522   if (isVirtual()) {
5523     const CallExpr *CE = getVirtualCallExpr();
5524     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5525         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5526         CE ? CE->getBeginLoc() : SourceLocation());
5527   }
5528 
5529   return *this;
5530 }
5531 
5532 /* VarArg handling */
5533 
5534 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5535   VAListAddr = VE->isMicrosoftABI()
5536                  ? EmitMSVAListRef(VE->getSubExpr())
5537                  : EmitVAListRef(VE->getSubExpr());
5538   QualType Ty = VE->getType();
5539   if (VE->isMicrosoftABI())
5540     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5541   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5542 }
5543