1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/MC/SubtargetFeature.h" 31 #include "llvm/Support/CallSite.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 /***/ 37 38 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 39 switch (CC) { 40 default: return llvm::CallingConv::C; 41 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 42 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 43 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 44 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 45 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 46 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 47 // TODO: add support for CC_X86Pascal to llvm 48 } 49 } 50 51 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 52 /// qualification. 53 /// FIXME: address space qualification? 54 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 55 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 56 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 57 } 58 59 /// Returns the canonical formal type of the given C++ method. 60 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 61 return MD->getType()->getCanonicalTypeUnqualified() 62 .getAs<FunctionProtoType>(); 63 } 64 65 /// Returns the "extra-canonicalized" return type, which discards 66 /// qualifiers on the return type. Codegen doesn't care about them, 67 /// and it makes ABI code a little easier to be able to assume that 68 /// all parameter and return types are top-level unqualified. 69 static CanQualType GetReturnType(QualType RetTy) { 70 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 71 } 72 73 /// Arrange the argument and result information for a value of the given 74 /// unprototyped freestanding function type. 75 const CGFunctionInfo & 76 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 77 // When translating an unprototyped function type, always use a 78 // variadic type. 79 return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(), 80 None, FTNP->getExtInfo(), RequiredArgs(0)); 81 } 82 83 /// Arrange the LLVM function layout for a value of the given function 84 /// type, on top of any implicit parameters already stored. Use the 85 /// given ExtInfo instead of the ExtInfo from the function type. 86 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT, 87 SmallVectorImpl<CanQualType> &prefix, 88 CanQual<FunctionProtoType> FTP, 89 FunctionType::ExtInfo extInfo) { 90 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 91 // FIXME: Kill copy. 92 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 93 prefix.push_back(FTP->getArgType(i)); 94 CanQualType resultType = FTP->getResultType().getUnqualifiedType(); 95 return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required); 96 } 97 98 /// Arrange the argument and result information for a free function (i.e. 99 /// not a C++ or ObjC instance method) of the given type. 100 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT, 101 SmallVectorImpl<CanQualType> &prefix, 102 CanQual<FunctionProtoType> FTP) { 103 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo()); 104 } 105 106 /// Given the formal ext-info of a C++ instance method, adjust it 107 /// according to the C++ ABI in effect. 108 static void adjustCXXMethodInfo(CodeGenTypes &CGT, 109 FunctionType::ExtInfo &extInfo, 110 bool isVariadic) { 111 if (extInfo.getCC() == CC_Default) { 112 CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic); 113 extInfo = extInfo.withCallingConv(CC); 114 } 115 } 116 117 /// Arrange the argument and result information for a free function (i.e. 118 /// not a C++ or ObjC instance method) of the given type. 119 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT, 120 SmallVectorImpl<CanQualType> &prefix, 121 CanQual<FunctionProtoType> FTP) { 122 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 123 adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic()); 124 return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo); 125 } 126 127 /// Arrange the argument and result information for a value of the 128 /// given freestanding function type. 129 const CGFunctionInfo & 130 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 131 SmallVector<CanQualType, 16> argTypes; 132 return ::arrangeFreeFunctionType(*this, argTypes, FTP); 133 } 134 135 static CallingConv getCallingConventionForDecl(const Decl *D) { 136 // Set the appropriate calling convention for the Function. 137 if (D->hasAttr<StdCallAttr>()) 138 return CC_X86StdCall; 139 140 if (D->hasAttr<FastCallAttr>()) 141 return CC_X86FastCall; 142 143 if (D->hasAttr<ThisCallAttr>()) 144 return CC_X86ThisCall; 145 146 if (D->hasAttr<PascalAttr>()) 147 return CC_X86Pascal; 148 149 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 150 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 151 152 if (D->hasAttr<PnaclCallAttr>()) 153 return CC_PnaclCall; 154 155 if (D->hasAttr<IntelOclBiccAttr>()) 156 return CC_IntelOclBicc; 157 158 return CC_C; 159 } 160 161 /// Arrange the argument and result information for a call to an 162 /// unknown C++ non-static member function of the given abstract type. 163 /// The member function must be an ordinary function, i.e. not a 164 /// constructor or destructor. 165 const CGFunctionInfo & 166 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 167 const FunctionProtoType *FTP) { 168 SmallVector<CanQualType, 16> argTypes; 169 170 // Add the 'this' pointer. 171 argTypes.push_back(GetThisType(Context, RD)); 172 173 return ::arrangeCXXMethodType(*this, argTypes, 174 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 175 } 176 177 /// Arrange the argument and result information for a declaration or 178 /// definition of the given C++ non-static member function. The 179 /// member function must be an ordinary function, i.e. not a 180 /// constructor or destructor. 181 const CGFunctionInfo & 182 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 183 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); 184 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 185 186 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 187 188 if (MD->isInstance()) { 189 // The abstract case is perfectly fine. 190 return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr()); 191 } 192 193 return arrangeFreeFunctionType(prototype); 194 } 195 196 /// Arrange the argument and result information for a declaration 197 /// or definition to the given constructor variant. 198 const CGFunctionInfo & 199 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D, 200 CXXCtorType ctorKind) { 201 SmallVector<CanQualType, 16> argTypes; 202 argTypes.push_back(GetThisType(Context, D->getParent())); 203 CanQualType resultType = Context.VoidTy; 204 205 TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes); 206 207 CanQual<FunctionProtoType> FTP = GetFormalType(D); 208 209 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size()); 210 211 // Add the formal parameters. 212 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 213 argTypes.push_back(FTP->getArgType(i)); 214 215 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 216 adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic()); 217 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required); 218 } 219 220 /// Arrange the argument and result information for a declaration, 221 /// definition, or call to the given destructor variant. It so 222 /// happens that all three cases produce the same information. 223 const CGFunctionInfo & 224 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D, 225 CXXDtorType dtorKind) { 226 SmallVector<CanQualType, 2> argTypes; 227 argTypes.push_back(GetThisType(Context, D->getParent())); 228 CanQualType resultType = Context.VoidTy; 229 230 TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes); 231 232 CanQual<FunctionProtoType> FTP = GetFormalType(D); 233 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); 234 assert(FTP->isVariadic() == 0 && "dtor with formal parameters"); 235 236 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 237 adjustCXXMethodInfo(*this, extInfo, false); 238 return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, 239 RequiredArgs::All); 240 } 241 242 /// Arrange the argument and result information for the declaration or 243 /// definition of the given function. 244 const CGFunctionInfo & 245 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 246 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 247 if (MD->isInstance()) 248 return arrangeCXXMethodDeclaration(MD); 249 250 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 251 252 assert(isa<FunctionType>(FTy)); 253 254 // When declaring a function without a prototype, always use a 255 // non-variadic type. 256 if (isa<FunctionNoProtoType>(FTy)) { 257 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 258 return arrangeLLVMFunctionInfo(noProto->getResultType(), None, 259 noProto->getExtInfo(), RequiredArgs::All); 260 } 261 262 assert(isa<FunctionProtoType>(FTy)); 263 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 264 } 265 266 /// Arrange the argument and result information for the declaration or 267 /// definition of an Objective-C method. 268 const CGFunctionInfo & 269 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 270 // It happens that this is the same as a call with no optional 271 // arguments, except also using the formal 'self' type. 272 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 273 } 274 275 /// Arrange the argument and result information for the function type 276 /// through which to perform a send to the given Objective-C method, 277 /// using the given receiver type. The receiver type is not always 278 /// the 'self' type of the method or even an Objective-C pointer type. 279 /// This is *not* the right method for actually performing such a 280 /// message send, due to the possibility of optional arguments. 281 const CGFunctionInfo & 282 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 283 QualType receiverType) { 284 SmallVector<CanQualType, 16> argTys; 285 argTys.push_back(Context.getCanonicalParamType(receiverType)); 286 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 287 // FIXME: Kill copy? 288 for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), 289 e = MD->param_end(); i != e; ++i) { 290 argTys.push_back(Context.getCanonicalParamType((*i)->getType())); 291 } 292 293 FunctionType::ExtInfo einfo; 294 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); 295 296 if (getContext().getLangOpts().ObjCAutoRefCount && 297 MD->hasAttr<NSReturnsRetainedAttr>()) 298 einfo = einfo.withProducesResult(true); 299 300 RequiredArgs required = 301 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 302 303 return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys, 304 einfo, required); 305 } 306 307 const CGFunctionInfo & 308 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 309 // FIXME: Do we need to handle ObjCMethodDecl? 310 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 311 312 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 313 return arrangeCXXConstructorDeclaration(CD, GD.getCtorType()); 314 315 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 316 return arrangeCXXDestructor(DD, GD.getDtorType()); 317 318 return arrangeFunctionDeclaration(FD); 319 } 320 321 /// Arrange a call as unto a free function, except possibly with an 322 /// additional number of formal parameters considered required. 323 static const CGFunctionInfo & 324 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 325 const CallArgList &args, 326 const FunctionType *fnType, 327 unsigned numExtraRequiredArgs) { 328 assert(args.size() >= numExtraRequiredArgs); 329 330 // In most cases, there are no optional arguments. 331 RequiredArgs required = RequiredArgs::All; 332 333 // If we have a variadic prototype, the required arguments are the 334 // extra prefix plus the arguments in the prototype. 335 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 336 if (proto->isVariadic()) 337 required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs); 338 339 // If we don't have a prototype at all, but we're supposed to 340 // explicitly use the variadic convention for unprototyped calls, 341 // treat all of the arguments as required but preserve the nominal 342 // possibility of variadics. 343 } else if (CGT.CGM.getTargetCodeGenInfo() 344 .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) { 345 required = RequiredArgs(args.size()); 346 } 347 348 return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args, 349 fnType->getExtInfo(), required); 350 } 351 352 /// Figure out the rules for calling a function with the given formal 353 /// type using the given arguments. The arguments are necessary 354 /// because the function might be unprototyped, in which case it's 355 /// target-dependent in crazy ways. 356 const CGFunctionInfo & 357 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 358 const FunctionType *fnType) { 359 return arrangeFreeFunctionLikeCall(*this, args, fnType, 0); 360 } 361 362 /// A block function call is essentially a free-function call with an 363 /// extra implicit argument. 364 const CGFunctionInfo & 365 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 366 const FunctionType *fnType) { 367 return arrangeFreeFunctionLikeCall(*this, args, fnType, 1); 368 } 369 370 const CGFunctionInfo & 371 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 372 const CallArgList &args, 373 FunctionType::ExtInfo info, 374 RequiredArgs required) { 375 // FIXME: Kill copy. 376 SmallVector<CanQualType, 16> argTypes; 377 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 378 i != e; ++i) 379 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 380 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 381 required); 382 } 383 384 /// Arrange a call to a C++ method, passing the given arguments. 385 const CGFunctionInfo & 386 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 387 const FunctionProtoType *FPT, 388 RequiredArgs required) { 389 // FIXME: Kill copy. 390 SmallVector<CanQualType, 16> argTypes; 391 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 392 i != e; ++i) 393 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 394 395 FunctionType::ExtInfo info = FPT->getExtInfo(); 396 adjustCXXMethodInfo(*this, info, FPT->isVariadic()); 397 return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()), 398 argTypes, info, required); 399 } 400 401 const CGFunctionInfo & 402 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType, 403 const FunctionArgList &args, 404 const FunctionType::ExtInfo &info, 405 bool isVariadic) { 406 // FIXME: Kill copy. 407 SmallVector<CanQualType, 16> argTypes; 408 for (FunctionArgList::const_iterator i = args.begin(), e = args.end(); 409 i != e; ++i) 410 argTypes.push_back(Context.getCanonicalParamType((*i)->getType())); 411 412 RequiredArgs required = 413 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 414 return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info, 415 required); 416 } 417 418 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 419 return arrangeLLVMFunctionInfo(getContext().VoidTy, None, 420 FunctionType::ExtInfo(), RequiredArgs::All); 421 } 422 423 /// Arrange the argument and result information for an abstract value 424 /// of a given function type. This is the method which all of the 425 /// above functions ultimately defer to. 426 const CGFunctionInfo & 427 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 428 ArrayRef<CanQualType> argTypes, 429 FunctionType::ExtInfo info, 430 RequiredArgs required) { 431 #ifndef NDEBUG 432 for (ArrayRef<CanQualType>::const_iterator 433 I = argTypes.begin(), E = argTypes.end(); I != E; ++I) 434 assert(I->isCanonicalAsParam()); 435 #endif 436 437 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 438 439 // Lookup or create unique function info. 440 llvm::FoldingSetNodeID ID; 441 CGFunctionInfo::Profile(ID, info, required, resultType, argTypes); 442 443 void *insertPos = 0; 444 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 445 if (FI) 446 return *FI; 447 448 // Construct the function info. We co-allocate the ArgInfos. 449 FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required); 450 FunctionInfos.InsertNode(FI, insertPos); 451 452 bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted; 453 assert(inserted && "Recursively being processed?"); 454 455 // Compute ABI information. 456 getABIInfo().computeInfo(*FI); 457 458 // Loop over all of the computed argument and return value info. If any of 459 // them are direct or extend without a specified coerce type, specify the 460 // default now. 461 ABIArgInfo &retInfo = FI->getReturnInfo(); 462 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0) 463 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 464 465 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); 466 I != E; ++I) 467 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) 468 I->info.setCoerceToType(ConvertType(I->type)); 469 470 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 471 assert(erased && "Not in set?"); 472 473 return *FI; 474 } 475 476 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 477 const FunctionType::ExtInfo &info, 478 CanQualType resultType, 479 ArrayRef<CanQualType> argTypes, 480 RequiredArgs required) { 481 void *buffer = operator new(sizeof(CGFunctionInfo) + 482 sizeof(ArgInfo) * (argTypes.size() + 1)); 483 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 484 FI->CallingConvention = llvmCC; 485 FI->EffectiveCallingConvention = llvmCC; 486 FI->ASTCallingConvention = info.getCC(); 487 FI->NoReturn = info.getNoReturn(); 488 FI->ReturnsRetained = info.getProducesResult(); 489 FI->Required = required; 490 FI->HasRegParm = info.getHasRegParm(); 491 FI->RegParm = info.getRegParm(); 492 FI->NumArgs = argTypes.size(); 493 FI->getArgsBuffer()[0].type = resultType; 494 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 495 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 496 return FI; 497 } 498 499 /***/ 500 501 void CodeGenTypes::GetExpandedTypes(QualType type, 502 SmallVectorImpl<llvm::Type*> &expandedTypes) { 503 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { 504 uint64_t NumElts = AT->getSize().getZExtValue(); 505 for (uint64_t Elt = 0; Elt < NumElts; ++Elt) 506 GetExpandedTypes(AT->getElementType(), expandedTypes); 507 } else if (const RecordType *RT = type->getAs<RecordType>()) { 508 const RecordDecl *RD = RT->getDecl(); 509 assert(!RD->hasFlexibleArrayMember() && 510 "Cannot expand structure with flexible array."); 511 if (RD->isUnion()) { 512 // Unions can be here only in degenerative cases - all the fields are same 513 // after flattening. Thus we have to use the "largest" field. 514 const FieldDecl *LargestFD = 0; 515 CharUnits UnionSize = CharUnits::Zero(); 516 517 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 518 i != e; ++i) { 519 const FieldDecl *FD = *i; 520 assert(!FD->isBitField() && 521 "Cannot expand structure with bit-field members."); 522 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 523 if (UnionSize < FieldSize) { 524 UnionSize = FieldSize; 525 LargestFD = FD; 526 } 527 } 528 if (LargestFD) 529 GetExpandedTypes(LargestFD->getType(), expandedTypes); 530 } else { 531 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 532 i != e; ++i) { 533 assert(!i->isBitField() && 534 "Cannot expand structure with bit-field members."); 535 GetExpandedTypes(i->getType(), expandedTypes); 536 } 537 } 538 } else if (const ComplexType *CT = type->getAs<ComplexType>()) { 539 llvm::Type *EltTy = ConvertType(CT->getElementType()); 540 expandedTypes.push_back(EltTy); 541 expandedTypes.push_back(EltTy); 542 } else 543 expandedTypes.push_back(ConvertType(type)); 544 } 545 546 llvm::Function::arg_iterator 547 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 548 llvm::Function::arg_iterator AI) { 549 assert(LV.isSimple() && 550 "Unexpected non-simple lvalue during struct expansion."); 551 552 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 553 unsigned NumElts = AT->getSize().getZExtValue(); 554 QualType EltTy = AT->getElementType(); 555 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 556 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt); 557 LValue LV = MakeAddrLValue(EltAddr, EltTy); 558 AI = ExpandTypeFromArgs(EltTy, LV, AI); 559 } 560 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 561 RecordDecl *RD = RT->getDecl(); 562 if (RD->isUnion()) { 563 // Unions can be here only in degenerative cases - all the fields are same 564 // after flattening. Thus we have to use the "largest" field. 565 const FieldDecl *LargestFD = 0; 566 CharUnits UnionSize = CharUnits::Zero(); 567 568 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 569 i != e; ++i) { 570 const FieldDecl *FD = *i; 571 assert(!FD->isBitField() && 572 "Cannot expand structure with bit-field members."); 573 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 574 if (UnionSize < FieldSize) { 575 UnionSize = FieldSize; 576 LargestFD = FD; 577 } 578 } 579 if (LargestFD) { 580 // FIXME: What are the right qualifiers here? 581 LValue SubLV = EmitLValueForField(LV, LargestFD); 582 AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI); 583 } 584 } else { 585 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 586 i != e; ++i) { 587 FieldDecl *FD = *i; 588 QualType FT = FD->getType(); 589 590 // FIXME: What are the right qualifiers here? 591 LValue SubLV = EmitLValueForField(LV, FD); 592 AI = ExpandTypeFromArgs(FT, SubLV, AI); 593 } 594 } 595 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 596 QualType EltTy = CT->getElementType(); 597 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real"); 598 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); 599 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag"); 600 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); 601 } else { 602 EmitStoreThroughLValue(RValue::get(AI), LV); 603 ++AI; 604 } 605 606 return AI; 607 } 608 609 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 610 /// accessing some number of bytes out of it, try to gep into the struct to get 611 /// at its inner goodness. Dive as deep as possible without entering an element 612 /// with an in-memory size smaller than DstSize. 613 static llvm::Value * 614 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 615 llvm::StructType *SrcSTy, 616 uint64_t DstSize, CodeGenFunction &CGF) { 617 // We can't dive into a zero-element struct. 618 if (SrcSTy->getNumElements() == 0) return SrcPtr; 619 620 llvm::Type *FirstElt = SrcSTy->getElementType(0); 621 622 // If the first elt is at least as large as what we're looking for, or if the 623 // first element is the same size as the whole struct, we can enter it. 624 uint64_t FirstEltSize = 625 CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt); 626 if (FirstEltSize < DstSize && 627 FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy)) 628 return SrcPtr; 629 630 // GEP into the first element. 631 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 632 633 // If the first element is a struct, recurse. 634 llvm::Type *SrcTy = 635 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 636 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 637 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 638 639 return SrcPtr; 640 } 641 642 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 643 /// are either integers or pointers. This does a truncation of the value if it 644 /// is too large or a zero extension if it is too small. 645 /// 646 /// This behaves as if the value were coerced through memory, so on big-endian 647 /// targets the high bits are preserved in a truncation, while little-endian 648 /// targets preserve the low bits. 649 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 650 llvm::Type *Ty, 651 CodeGenFunction &CGF) { 652 if (Val->getType() == Ty) 653 return Val; 654 655 if (isa<llvm::PointerType>(Val->getType())) { 656 // If this is Pointer->Pointer avoid conversion to and from int. 657 if (isa<llvm::PointerType>(Ty)) 658 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 659 660 // Convert the pointer to an integer so we can play with its width. 661 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 662 } 663 664 llvm::Type *DestIntTy = Ty; 665 if (isa<llvm::PointerType>(DestIntTy)) 666 DestIntTy = CGF.IntPtrTy; 667 668 if (Val->getType() != DestIntTy) { 669 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 670 if (DL.isBigEndian()) { 671 // Preserve the high bits on big-endian targets. 672 // That is what memory coercion does. 673 uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType()); 674 uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy); 675 if (SrcSize > DstSize) { 676 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 677 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 678 } else { 679 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 680 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 681 } 682 } else { 683 // Little-endian targets preserve the low bits. No shifts required. 684 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 685 } 686 } 687 688 if (isa<llvm::PointerType>(Ty)) 689 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 690 return Val; 691 } 692 693 694 695 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 696 /// a pointer to an object of type \arg Ty. 697 /// 698 /// This safely handles the case when the src type is smaller than the 699 /// destination type; in this situation the values of bits which not 700 /// present in the src are undefined. 701 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 702 llvm::Type *Ty, 703 CodeGenFunction &CGF) { 704 llvm::Type *SrcTy = 705 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 706 707 // If SrcTy and Ty are the same, just do a load. 708 if (SrcTy == Ty) 709 return CGF.Builder.CreateLoad(SrcPtr); 710 711 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 712 713 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 714 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 715 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 716 } 717 718 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 719 720 // If the source and destination are integer or pointer types, just do an 721 // extension or truncation to the desired type. 722 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 723 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 724 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 725 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 726 } 727 728 // If load is legal, just bitcast the src pointer. 729 if (SrcSize >= DstSize) { 730 // Generally SrcSize is never greater than DstSize, since this means we are 731 // losing bits. However, this can happen in cases where the structure has 732 // additional padding, for example due to a user specified alignment. 733 // 734 // FIXME: Assert that we aren't truncating non-padding bits when have access 735 // to that information. 736 llvm::Value *Casted = 737 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 738 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 739 // FIXME: Use better alignment / avoid requiring aligned load. 740 Load->setAlignment(1); 741 return Load; 742 } 743 744 // Otherwise do coercion through memory. This is stupid, but 745 // simple. 746 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 747 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 748 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 749 llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy); 750 // FIXME: Use better alignment. 751 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 752 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 753 1, false); 754 return CGF.Builder.CreateLoad(Tmp); 755 } 756 757 // Function to store a first-class aggregate into memory. We prefer to 758 // store the elements rather than the aggregate to be more friendly to 759 // fast-isel. 760 // FIXME: Do we need to recurse here? 761 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 762 llvm::Value *DestPtr, bool DestIsVolatile, 763 bool LowAlignment) { 764 // Prefer scalar stores to first-class aggregate stores. 765 if (llvm::StructType *STy = 766 dyn_cast<llvm::StructType>(Val->getType())) { 767 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 768 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 769 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 770 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 771 DestIsVolatile); 772 if (LowAlignment) 773 SI->setAlignment(1); 774 } 775 } else { 776 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 777 if (LowAlignment) 778 SI->setAlignment(1); 779 } 780 } 781 782 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 783 /// where the source and destination may have different types. 784 /// 785 /// This safely handles the case when the src type is larger than the 786 /// destination type; the upper bits of the src will be lost. 787 static void CreateCoercedStore(llvm::Value *Src, 788 llvm::Value *DstPtr, 789 bool DstIsVolatile, 790 CodeGenFunction &CGF) { 791 llvm::Type *SrcTy = Src->getType(); 792 llvm::Type *DstTy = 793 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 794 if (SrcTy == DstTy) { 795 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 796 return; 797 } 798 799 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 800 801 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 802 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 803 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 804 } 805 806 // If the source and destination are integer or pointer types, just do an 807 // extension or truncation to the desired type. 808 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 809 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 810 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 811 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 812 return; 813 } 814 815 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 816 817 // If store is legal, just bitcast the src pointer. 818 if (SrcSize <= DstSize) { 819 llvm::Value *Casted = 820 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 821 // FIXME: Use better alignment / avoid requiring aligned store. 822 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 823 } else { 824 // Otherwise do coercion through memory. This is stupid, but 825 // simple. 826 827 // Generally SrcSize is never greater than DstSize, since this means we are 828 // losing bits. However, this can happen in cases where the structure has 829 // additional padding, for example due to a user specified alignment. 830 // 831 // FIXME: Assert that we aren't truncating non-padding bits when have access 832 // to that information. 833 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 834 CGF.Builder.CreateStore(Src, Tmp); 835 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy(); 836 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy); 837 llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy); 838 // FIXME: Use better alignment. 839 CGF.Builder.CreateMemCpy(DstCasted, Casted, 840 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 841 1, false); 842 } 843 } 844 845 /***/ 846 847 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 848 return FI.getReturnInfo().isIndirect(); 849 } 850 851 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 852 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 853 switch (BT->getKind()) { 854 default: 855 return false; 856 case BuiltinType::Float: 857 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 858 case BuiltinType::Double: 859 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 860 case BuiltinType::LongDouble: 861 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 862 } 863 } 864 865 return false; 866 } 867 868 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 869 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 870 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 871 if (BT->getKind() == BuiltinType::LongDouble) 872 return getTarget().useObjCFP2RetForComplexLongDouble(); 873 } 874 } 875 876 return false; 877 } 878 879 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 880 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 881 return GetFunctionType(FI); 882 } 883 884 llvm::FunctionType * 885 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 886 887 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; 888 assert(Inserted && "Recursively being processed?"); 889 890 SmallVector<llvm::Type*, 8> argTypes; 891 llvm::Type *resultType = 0; 892 893 const ABIArgInfo &retAI = FI.getReturnInfo(); 894 switch (retAI.getKind()) { 895 case ABIArgInfo::Expand: 896 llvm_unreachable("Invalid ABI kind for return argument"); 897 898 case ABIArgInfo::Extend: 899 case ABIArgInfo::Direct: 900 resultType = retAI.getCoerceToType(); 901 break; 902 903 case ABIArgInfo::Indirect: { 904 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 905 resultType = llvm::Type::getVoidTy(getLLVMContext()); 906 907 QualType ret = FI.getReturnType(); 908 llvm::Type *ty = ConvertType(ret); 909 unsigned addressSpace = Context.getTargetAddressSpace(ret); 910 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 911 break; 912 } 913 914 case ABIArgInfo::Ignore: 915 resultType = llvm::Type::getVoidTy(getLLVMContext()); 916 break; 917 } 918 919 // Add in all of the required arguments. 920 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie; 921 if (FI.isVariadic()) { 922 ie = it + FI.getRequiredArgs().getNumRequiredArgs(); 923 } else { 924 ie = FI.arg_end(); 925 } 926 for (; it != ie; ++it) { 927 const ABIArgInfo &argAI = it->info; 928 929 // Insert a padding type to ensure proper alignment. 930 if (llvm::Type *PaddingType = argAI.getPaddingType()) 931 argTypes.push_back(PaddingType); 932 933 switch (argAI.getKind()) { 934 case ABIArgInfo::Ignore: 935 break; 936 937 case ABIArgInfo::Indirect: { 938 // indirect arguments are always on the stack, which is addr space #0. 939 llvm::Type *LTy = ConvertTypeForMem(it->type); 940 argTypes.push_back(LTy->getPointerTo()); 941 break; 942 } 943 944 case ABIArgInfo::Extend: 945 case ABIArgInfo::Direct: { 946 // If the coerce-to type is a first class aggregate, flatten it. Either 947 // way is semantically identical, but fast-isel and the optimizer 948 // generally likes scalar values better than FCAs. 949 llvm::Type *argType = argAI.getCoerceToType(); 950 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { 951 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 952 argTypes.push_back(st->getElementType(i)); 953 } else { 954 argTypes.push_back(argType); 955 } 956 break; 957 } 958 959 case ABIArgInfo::Expand: 960 GetExpandedTypes(it->type, argTypes); 961 break; 962 } 963 } 964 965 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 966 assert(Erased && "Not in set?"); 967 968 return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic()); 969 } 970 971 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 972 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 973 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 974 975 if (!isFuncTypeConvertible(FPT)) 976 return llvm::StructType::get(getLLVMContext()); 977 978 const CGFunctionInfo *Info; 979 if (isa<CXXDestructorDecl>(MD)) 980 Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 981 else 982 Info = &arrangeCXXMethodDeclaration(MD); 983 return GetFunctionType(*Info); 984 } 985 986 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 987 const Decl *TargetDecl, 988 AttributeListType &PAL, 989 unsigned &CallingConv, 990 bool AttrOnCallSite) { 991 llvm::AttrBuilder FuncAttrs; 992 llvm::AttrBuilder RetAttrs; 993 994 CallingConv = FI.getEffectiveCallingConvention(); 995 996 if (FI.isNoReturn()) 997 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 998 999 // FIXME: handle sseregparm someday... 1000 if (TargetDecl) { 1001 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1002 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1003 if (TargetDecl->hasAttr<NoThrowAttr>()) 1004 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1005 if (TargetDecl->hasAttr<NoReturnAttr>()) 1006 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1007 1008 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1009 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 1010 if (FPT && FPT->isNothrow(getContext())) 1011 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1012 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1013 // These attributes are not inherited by overloads. 1014 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1015 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1016 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1017 } 1018 1019 // 'const' and 'pure' attribute functions are also nounwind. 1020 if (TargetDecl->hasAttr<ConstAttr>()) { 1021 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1022 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1023 } else if (TargetDecl->hasAttr<PureAttr>()) { 1024 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1025 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1026 } 1027 if (TargetDecl->hasAttr<MallocAttr>()) 1028 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1029 } 1030 1031 if (CodeGenOpts.OptimizeSize) 1032 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1033 if (CodeGenOpts.OptimizeSize == 2) 1034 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1035 if (CodeGenOpts.DisableRedZone) 1036 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1037 if (CodeGenOpts.NoImplicitFloat) 1038 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1039 1040 if (AttrOnCallSite) { 1041 // Attributes that should go on the call site only. 1042 if (!CodeGenOpts.SimplifyLibCalls) 1043 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1044 } else { 1045 // Attributes that should go on the function, but not the call site. 1046 if (!CodeGenOpts.DisableFPElim) { 1047 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1048 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false"); 1049 } else if (CodeGenOpts.OmitLeafFramePointer) { 1050 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1051 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true"); 1052 } else { 1053 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1054 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true"); 1055 } 1056 1057 FuncAttrs.addAttribute("less-precise-fpmad", 1058 CodeGenOpts.LessPreciseFPMAD ? "true" : "false"); 1059 FuncAttrs.addAttribute("no-infs-fp-math", 1060 CodeGenOpts.NoInfsFPMath ? "true" : "false"); 1061 FuncAttrs.addAttribute("no-nans-fp-math", 1062 CodeGenOpts.NoNaNsFPMath ? "true" : "false"); 1063 FuncAttrs.addAttribute("unsafe-fp-math", 1064 CodeGenOpts.UnsafeFPMath ? "true" : "false"); 1065 FuncAttrs.addAttribute("use-soft-float", 1066 CodeGenOpts.SoftFloat ? "true" : "false"); 1067 } 1068 1069 QualType RetTy = FI.getReturnType(); 1070 unsigned Index = 1; 1071 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1072 switch (RetAI.getKind()) { 1073 case ABIArgInfo::Extend: 1074 if (RetTy->hasSignedIntegerRepresentation()) 1075 RetAttrs.addAttribute(llvm::Attribute::SExt); 1076 else if (RetTy->hasUnsignedIntegerRepresentation()) 1077 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1078 // FALL THROUGH 1079 case ABIArgInfo::Direct: 1080 if (RetAI.getInReg()) 1081 RetAttrs.addAttribute(llvm::Attribute::InReg); 1082 break; 1083 case ABIArgInfo::Ignore: 1084 break; 1085 1086 case ABIArgInfo::Indirect: { 1087 llvm::AttrBuilder SRETAttrs; 1088 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1089 if (RetAI.getInReg()) 1090 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1091 PAL.push_back(llvm:: 1092 AttributeSet::get(getLLVMContext(), Index, SRETAttrs)); 1093 1094 ++Index; 1095 // sret disables readnone and readonly 1096 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1097 .removeAttribute(llvm::Attribute::ReadNone); 1098 break; 1099 } 1100 1101 case ABIArgInfo::Expand: 1102 llvm_unreachable("Invalid ABI kind for return argument"); 1103 } 1104 1105 if (RetAttrs.hasAttributes()) 1106 PAL.push_back(llvm:: 1107 AttributeSet::get(getLLVMContext(), 1108 llvm::AttributeSet::ReturnIndex, 1109 RetAttrs)); 1110 1111 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1112 ie = FI.arg_end(); it != ie; ++it) { 1113 QualType ParamType = it->type; 1114 const ABIArgInfo &AI = it->info; 1115 llvm::AttrBuilder Attrs; 1116 1117 if (AI.getPaddingType()) { 1118 if (AI.getPaddingInReg()) 1119 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, 1120 llvm::Attribute::InReg)); 1121 // Increment Index if there is padding. 1122 ++Index; 1123 } 1124 1125 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1126 // have the corresponding parameter variable. It doesn't make 1127 // sense to do it here because parameters are so messed up. 1128 switch (AI.getKind()) { 1129 case ABIArgInfo::Extend: 1130 if (ParamType->isSignedIntegerOrEnumerationType()) 1131 Attrs.addAttribute(llvm::Attribute::SExt); 1132 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 1133 Attrs.addAttribute(llvm::Attribute::ZExt); 1134 // FALL THROUGH 1135 case ABIArgInfo::Direct: 1136 if (AI.getInReg()) 1137 Attrs.addAttribute(llvm::Attribute::InReg); 1138 1139 // FIXME: handle sseregparm someday... 1140 1141 if (llvm::StructType *STy = 1142 dyn_cast<llvm::StructType>(AI.getCoerceToType())) { 1143 unsigned Extra = STy->getNumElements()-1; // 1 will be added below. 1144 if (Attrs.hasAttributes()) 1145 for (unsigned I = 0; I < Extra; ++I) 1146 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I, 1147 Attrs)); 1148 Index += Extra; 1149 } 1150 break; 1151 1152 case ABIArgInfo::Indirect: 1153 if (AI.getInReg()) 1154 Attrs.addAttribute(llvm::Attribute::InReg); 1155 1156 if (AI.getIndirectByVal()) 1157 Attrs.addAttribute(llvm::Attribute::ByVal); 1158 1159 Attrs.addAlignmentAttr(AI.getIndirectAlign()); 1160 1161 // byval disables readnone and readonly. 1162 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1163 .removeAttribute(llvm::Attribute::ReadNone); 1164 break; 1165 1166 case ABIArgInfo::Ignore: 1167 // Skip increment, no matching LLVM parameter. 1168 continue; 1169 1170 case ABIArgInfo::Expand: { 1171 SmallVector<llvm::Type*, 8> types; 1172 // FIXME: This is rather inefficient. Do we ever actually need to do 1173 // anything here? The result should be just reconstructed on the other 1174 // side, so extension should be a non-issue. 1175 getTypes().GetExpandedTypes(ParamType, types); 1176 Index += types.size(); 1177 continue; 1178 } 1179 } 1180 1181 if (Attrs.hasAttributes()) 1182 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs)); 1183 ++Index; 1184 } 1185 if (FuncAttrs.hasAttributes()) 1186 PAL.push_back(llvm:: 1187 AttributeSet::get(getLLVMContext(), 1188 llvm::AttributeSet::FunctionIndex, 1189 FuncAttrs)); 1190 } 1191 1192 /// An argument came in as a promoted argument; demote it back to its 1193 /// declared type. 1194 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1195 const VarDecl *var, 1196 llvm::Value *value) { 1197 llvm::Type *varType = CGF.ConvertType(var->getType()); 1198 1199 // This can happen with promotions that actually don't change the 1200 // underlying type, like the enum promotions. 1201 if (value->getType() == varType) return value; 1202 1203 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1204 && "unexpected promotion type"); 1205 1206 if (isa<llvm::IntegerType>(varType)) 1207 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1208 1209 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1210 } 1211 1212 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1213 llvm::Function *Fn, 1214 const FunctionArgList &Args) { 1215 // If this is an implicit-return-zero function, go ahead and 1216 // initialize the return value. TODO: it might be nice to have 1217 // a more general mechanism for this that didn't require synthesized 1218 // return statements. 1219 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 1220 if (FD->hasImplicitReturnZero()) { 1221 QualType RetTy = FD->getResultType().getUnqualifiedType(); 1222 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1223 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1224 Builder.CreateStore(Zero, ReturnValue); 1225 } 1226 } 1227 1228 // FIXME: We no longer need the types from FunctionArgList; lift up and 1229 // simplify. 1230 1231 // Emit allocs for param decls. Give the LLVM Argument nodes names. 1232 llvm::Function::arg_iterator AI = Fn->arg_begin(); 1233 1234 // Name the struct return argument. 1235 if (CGM.ReturnTypeUsesSRet(FI)) { 1236 AI->setName("agg.result"); 1237 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1238 AI->getArgNo() + 1, 1239 llvm::Attribute::NoAlias)); 1240 ++AI; 1241 } 1242 1243 assert(FI.arg_size() == Args.size() && 1244 "Mismatch between function signature & arguments."); 1245 unsigned ArgNo = 1; 1246 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1247 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1248 i != e; ++i, ++info_it, ++ArgNo) { 1249 const VarDecl *Arg = *i; 1250 QualType Ty = info_it->type; 1251 const ABIArgInfo &ArgI = info_it->info; 1252 1253 bool isPromoted = 1254 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1255 1256 // Skip the dummy padding argument. 1257 if (ArgI.getPaddingType()) 1258 ++AI; 1259 1260 switch (ArgI.getKind()) { 1261 case ABIArgInfo::Indirect: { 1262 llvm::Value *V = AI; 1263 1264 if (!hasScalarEvaluationKind(Ty)) { 1265 // Aggregates and complex variables are accessed by reference. All we 1266 // need to do is realign the value, if requested 1267 if (ArgI.getIndirectRealign()) { 1268 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 1269 1270 // Copy from the incoming argument pointer to the temporary with the 1271 // appropriate alignment. 1272 // 1273 // FIXME: We should have a common utility for generating an aggregate 1274 // copy. 1275 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 1276 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1277 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 1278 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 1279 Builder.CreateMemCpy(Dst, 1280 Src, 1281 llvm::ConstantInt::get(IntPtrTy, 1282 Size.getQuantity()), 1283 ArgI.getIndirectAlign(), 1284 false); 1285 V = AlignedTemp; 1286 } 1287 } else { 1288 // Load scalar value from indirect argument. 1289 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1290 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); 1291 1292 if (isPromoted) 1293 V = emitArgumentDemotion(*this, Arg, V); 1294 } 1295 EmitParmDecl(*Arg, V, ArgNo); 1296 break; 1297 } 1298 1299 case ABIArgInfo::Extend: 1300 case ABIArgInfo::Direct: { 1301 1302 // If we have the trivial case, handle it with no muss and fuss. 1303 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1304 ArgI.getCoerceToType() == ConvertType(Ty) && 1305 ArgI.getDirectOffset() == 0) { 1306 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1307 llvm::Value *V = AI; 1308 1309 if (Arg->getType().isRestrictQualified()) 1310 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1311 AI->getArgNo() + 1, 1312 llvm::Attribute::NoAlias)); 1313 1314 // Ensure the argument is the correct type. 1315 if (V->getType() != ArgI.getCoerceToType()) 1316 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1317 1318 if (isPromoted) 1319 V = emitArgumentDemotion(*this, Arg, V); 1320 1321 // Because of merging of function types from multiple decls it is 1322 // possible for the type of an argument to not match the corresponding 1323 // type in the function type. Since we are codegening the callee 1324 // in here, add a cast to the argument type. 1325 llvm::Type *LTy = ConvertType(Arg->getType()); 1326 if (V->getType() != LTy) 1327 V = Builder.CreateBitCast(V, LTy); 1328 1329 EmitParmDecl(*Arg, V, ArgNo); 1330 break; 1331 } 1332 1333 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); 1334 1335 // The alignment we need to use is the max of the requested alignment for 1336 // the argument plus the alignment required by our access code below. 1337 unsigned AlignmentToUse = 1338 CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType()); 1339 AlignmentToUse = std::max(AlignmentToUse, 1340 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1341 1342 Alloca->setAlignment(AlignmentToUse); 1343 llvm::Value *V = Alloca; 1344 llvm::Value *Ptr = V; // Pointer to store into. 1345 1346 // If the value is offset in memory, apply the offset now. 1347 if (unsigned Offs = ArgI.getDirectOffset()) { 1348 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1349 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1350 Ptr = Builder.CreateBitCast(Ptr, 1351 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1352 } 1353 1354 // If the coerce-to type is a first class aggregate, we flatten it and 1355 // pass the elements. Either way is semantically identical, but fast-isel 1356 // and the optimizer generally likes scalar values better than FCAs. 1357 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 1358 if (STy && STy->getNumElements() > 1) { 1359 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 1360 llvm::Type *DstTy = 1361 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 1362 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 1363 1364 if (SrcSize <= DstSize) { 1365 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1366 1367 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1368 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1369 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1370 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1371 Builder.CreateStore(AI++, EltPtr); 1372 } 1373 } else { 1374 llvm::AllocaInst *TempAlloca = 1375 CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); 1376 TempAlloca->setAlignment(AlignmentToUse); 1377 llvm::Value *TempV = TempAlloca; 1378 1379 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1380 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1381 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1382 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i); 1383 Builder.CreateStore(AI++, EltPtr); 1384 } 1385 1386 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); 1387 } 1388 } else { 1389 // Simple case, just do a coerced store of the argument into the alloca. 1390 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1391 AI->setName(Arg->getName() + ".coerce"); 1392 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 1393 } 1394 1395 1396 // Match to what EmitParmDecl is expecting for this type. 1397 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 1398 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); 1399 if (isPromoted) 1400 V = emitArgumentDemotion(*this, Arg, V); 1401 } 1402 EmitParmDecl(*Arg, V, ArgNo); 1403 continue; // Skip ++AI increment, already done. 1404 } 1405 1406 case ABIArgInfo::Expand: { 1407 // If this structure was expanded into multiple arguments then 1408 // we need to create a temporary and reconstruct it from the 1409 // arguments. 1410 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1411 CharUnits Align = getContext().getDeclAlign(Arg); 1412 Alloca->setAlignment(Align.getQuantity()); 1413 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1414 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); 1415 EmitParmDecl(*Arg, Alloca, ArgNo); 1416 1417 // Name the arguments used in expansion and increment AI. 1418 unsigned Index = 0; 1419 for (; AI != End; ++AI, ++Index) 1420 AI->setName(Arg->getName() + "." + Twine(Index)); 1421 continue; 1422 } 1423 1424 case ABIArgInfo::Ignore: 1425 // Initialize the local variable appropriately. 1426 if (!hasScalarEvaluationKind(Ty)) 1427 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); 1428 else 1429 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), 1430 ArgNo); 1431 1432 // Skip increment, no matching LLVM parameter. 1433 continue; 1434 } 1435 1436 ++AI; 1437 } 1438 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1439 } 1440 1441 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 1442 while (insn->use_empty()) { 1443 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 1444 if (!bitcast) return; 1445 1446 // This is "safe" because we would have used a ConstantExpr otherwise. 1447 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 1448 bitcast->eraseFromParent(); 1449 } 1450 } 1451 1452 /// Try to emit a fused autorelease of a return result. 1453 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1454 llvm::Value *result) { 1455 // We must be immediately followed the cast. 1456 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1457 if (BB->empty()) return 0; 1458 if (&BB->back() != result) return 0; 1459 1460 llvm::Type *resultType = result->getType(); 1461 1462 // result is in a BasicBlock and is therefore an Instruction. 1463 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1464 1465 SmallVector<llvm::Instruction*,4> insnsToKill; 1466 1467 // Look for: 1468 // %generator = bitcast %type1* %generator2 to %type2* 1469 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1470 // We would have emitted this as a constant if the operand weren't 1471 // an Instruction. 1472 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1473 1474 // Require the generator to be immediately followed by the cast. 1475 if (generator->getNextNode() != bitcast) 1476 return 0; 1477 1478 insnsToKill.push_back(bitcast); 1479 } 1480 1481 // Look for: 1482 // %generator = call i8* @objc_retain(i8* %originalResult) 1483 // or 1484 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1485 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1486 if (!call) return 0; 1487 1488 bool doRetainAutorelease; 1489 1490 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1491 doRetainAutorelease = true; 1492 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1493 .objc_retainAutoreleasedReturnValue) { 1494 doRetainAutorelease = false; 1495 1496 // If we emitted an assembly marker for this call (and the 1497 // ARCEntrypoints field should have been set if so), go looking 1498 // for that call. If we can't find it, we can't do this 1499 // optimization. But it should always be the immediately previous 1500 // instruction, unless we needed bitcasts around the call. 1501 if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) { 1502 llvm::Instruction *prev = call->getPrevNode(); 1503 assert(prev); 1504 if (isa<llvm::BitCastInst>(prev)) { 1505 prev = prev->getPrevNode(); 1506 assert(prev); 1507 } 1508 assert(isa<llvm::CallInst>(prev)); 1509 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 1510 CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker); 1511 insnsToKill.push_back(prev); 1512 } 1513 } else { 1514 return 0; 1515 } 1516 1517 result = call->getArgOperand(0); 1518 insnsToKill.push_back(call); 1519 1520 // Keep killing bitcasts, for sanity. Note that we no longer care 1521 // about precise ordering as long as there's exactly one use. 1522 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1523 if (!bitcast->hasOneUse()) break; 1524 insnsToKill.push_back(bitcast); 1525 result = bitcast->getOperand(0); 1526 } 1527 1528 // Delete all the unnecessary instructions, from latest to earliest. 1529 for (SmallVectorImpl<llvm::Instruction*>::iterator 1530 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1531 (*i)->eraseFromParent(); 1532 1533 // Do the fused retain/autorelease if we were asked to. 1534 if (doRetainAutorelease) 1535 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1536 1537 // Cast back to the result type. 1538 return CGF.Builder.CreateBitCast(result, resultType); 1539 } 1540 1541 /// If this is a +1 of the value of an immutable 'self', remove it. 1542 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 1543 llvm::Value *result) { 1544 // This is only applicable to a method with an immutable 'self'. 1545 const ObjCMethodDecl *method = 1546 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 1547 if (!method) return 0; 1548 const VarDecl *self = method->getSelfDecl(); 1549 if (!self->getType().isConstQualified()) return 0; 1550 1551 // Look for a retain call. 1552 llvm::CallInst *retainCall = 1553 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 1554 if (!retainCall || 1555 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 1556 return 0; 1557 1558 // Look for an ordinary load of 'self'. 1559 llvm::Value *retainedValue = retainCall->getArgOperand(0); 1560 llvm::LoadInst *load = 1561 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 1562 if (!load || load->isAtomic() || load->isVolatile() || 1563 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 1564 return 0; 1565 1566 // Okay! Burn it all down. This relies for correctness on the 1567 // assumption that the retain is emitted as part of the return and 1568 // that thereafter everything is used "linearly". 1569 llvm::Type *resultType = result->getType(); 1570 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 1571 assert(retainCall->use_empty()); 1572 retainCall->eraseFromParent(); 1573 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 1574 1575 return CGF.Builder.CreateBitCast(load, resultType); 1576 } 1577 1578 /// Emit an ARC autorelease of the result of a function. 1579 /// 1580 /// \return the value to actually return from the function 1581 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1582 llvm::Value *result) { 1583 // If we're returning 'self', kill the initial retain. This is a 1584 // heuristic attempt to "encourage correctness" in the really unfortunate 1585 // case where we have a return of self during a dealloc and we desperately 1586 // need to avoid the possible autorelease. 1587 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 1588 return self; 1589 1590 // At -O0, try to emit a fused retain/autorelease. 1591 if (CGF.shouldUseFusedARCCalls()) 1592 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1593 return fused; 1594 1595 return CGF.EmitARCAutoreleaseReturnValue(result); 1596 } 1597 1598 /// Heuristically search for a dominating store to the return-value slot. 1599 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 1600 // If there are multiple uses of the return-value slot, just check 1601 // for something immediately preceding the IP. Sometimes this can 1602 // happen with how we generate implicit-returns; it can also happen 1603 // with noreturn cleanups. 1604 if (!CGF.ReturnValue->hasOneUse()) { 1605 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1606 if (IP->empty()) return 0; 1607 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); 1608 if (!store) return 0; 1609 if (store->getPointerOperand() != CGF.ReturnValue) return 0; 1610 assert(!store->isAtomic() && !store->isVolatile()); // see below 1611 return store; 1612 } 1613 1614 llvm::StoreInst *store = 1615 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back()); 1616 if (!store) return 0; 1617 1618 // These aren't actually possible for non-coerced returns, and we 1619 // only care about non-coerced returns on this code path. 1620 assert(!store->isAtomic() && !store->isVolatile()); 1621 1622 // Now do a first-and-dirty dominance check: just walk up the 1623 // single-predecessors chain from the current insertion point. 1624 llvm::BasicBlock *StoreBB = store->getParent(); 1625 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1626 while (IP != StoreBB) { 1627 if (!(IP = IP->getSinglePredecessor())) 1628 return 0; 1629 } 1630 1631 // Okay, the store's basic block dominates the insertion point; we 1632 // can do our thing. 1633 return store; 1634 } 1635 1636 /// Check whether 'this' argument of a callsite matches 'this' of the caller. 1637 static bool checkThisPointer(llvm::Value *ThisArg, llvm::Value *This) { 1638 if (ThisArg == This) 1639 return true; 1640 // Check whether ThisArg is a bitcast of This. 1641 llvm::BitCastInst *Bitcast; 1642 if ((Bitcast = dyn_cast<llvm::BitCastInst>(ThisArg)) && 1643 Bitcast->getOperand(0) == This) 1644 return true; 1645 return false; 1646 } 1647 1648 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 1649 bool EmitRetDbgLoc) { 1650 // Functions with no result always return void. 1651 if (ReturnValue == 0) { 1652 Builder.CreateRetVoid(); 1653 return; 1654 } 1655 1656 llvm::DebugLoc RetDbgLoc; 1657 llvm::Value *RV = 0; 1658 QualType RetTy = FI.getReturnType(); 1659 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1660 1661 switch (RetAI.getKind()) { 1662 case ABIArgInfo::Indirect: { 1663 switch (getEvaluationKind(RetTy)) { 1664 case TEK_Complex: { 1665 ComplexPairTy RT = 1666 EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy)); 1667 EmitStoreOfComplex(RT, 1668 MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy), 1669 /*isInit*/ true); 1670 break; 1671 } 1672 case TEK_Aggregate: 1673 // Do nothing; aggregrates get evaluated directly into the destination. 1674 break; 1675 case TEK_Scalar: 1676 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 1677 MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy), 1678 /*isInit*/ true); 1679 break; 1680 } 1681 break; 1682 } 1683 1684 case ABIArgInfo::Extend: 1685 case ABIArgInfo::Direct: 1686 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1687 RetAI.getDirectOffset() == 0) { 1688 // The internal return value temp always will have pointer-to-return-type 1689 // type, just do a load. 1690 1691 // If there is a dominating store to ReturnValue, we can elide 1692 // the load, zap the store, and usually zap the alloca. 1693 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { 1694 // Reuse the debug location from the store unless there is 1695 // cleanup code to be emitted between the store and return 1696 // instruction. 1697 if (EmitRetDbgLoc && !AutoreleaseResult) 1698 RetDbgLoc = SI->getDebugLoc(); 1699 // Get the stored value and nuke the now-dead store. 1700 RV = SI->getValueOperand(); 1701 SI->eraseFromParent(); 1702 1703 // If that was the only use of the return value, nuke it as well now. 1704 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1705 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1706 ReturnValue = 0; 1707 } 1708 1709 // Otherwise, we have to do a simple load. 1710 } else { 1711 RV = Builder.CreateLoad(ReturnValue); 1712 } 1713 } else { 1714 llvm::Value *V = ReturnValue; 1715 // If the value is offset in memory, apply the offset now. 1716 if (unsigned Offs = RetAI.getDirectOffset()) { 1717 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1718 V = Builder.CreateConstGEP1_32(V, Offs); 1719 V = Builder.CreateBitCast(V, 1720 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1721 } 1722 1723 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1724 } 1725 1726 // In ARC, end functions that return a retainable type with a call 1727 // to objc_autoreleaseReturnValue. 1728 if (AutoreleaseResult) { 1729 assert(getLangOpts().ObjCAutoRefCount && 1730 !FI.isReturnsRetained() && 1731 RetTy->isObjCRetainableType()); 1732 RV = emitAutoreleaseOfResult(*this, RV); 1733 } 1734 1735 break; 1736 1737 case ABIArgInfo::Ignore: 1738 break; 1739 1740 case ABIArgInfo::Expand: 1741 llvm_unreachable("Invalid ABI kind for return argument"); 1742 } 1743 1744 // If this function returns 'this', the last instruction is a CallInst 1745 // that returns 'this', and 'this' argument of the CallInst points to 1746 // the same object as CXXThisValue, use the return value from the CallInst. 1747 // We will not need to keep 'this' alive through the callsite. It also enables 1748 // optimizations in the backend, such as tail call optimization. 1749 if (CalleeWithThisReturn && CGM.getCXXABI().HasThisReturn(CurGD)) { 1750 llvm::BasicBlock *IP = Builder.GetInsertBlock(); 1751 llvm::CallInst *Callsite; 1752 if (!IP->empty() && (Callsite = dyn_cast<llvm::CallInst>(&IP->back())) && 1753 Callsite->getCalledFunction() == CalleeWithThisReturn && 1754 checkThisPointer(Callsite->getOperand(0), CXXThisValue)) 1755 RV = Builder.CreateBitCast(Callsite, RetAI.getCoerceToType()); 1756 } 1757 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1758 if (!RetDbgLoc.isUnknown()) 1759 Ret->setDebugLoc(RetDbgLoc); 1760 } 1761 1762 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1763 const VarDecl *param) { 1764 // StartFunction converted the ABI-lowered parameter(s) into a 1765 // local alloca. We need to turn that into an r-value suitable 1766 // for EmitCall. 1767 llvm::Value *local = GetAddrOfLocalVar(param); 1768 1769 QualType type = param->getType(); 1770 1771 // For the most part, we just need to load the alloca, except: 1772 // 1) aggregate r-values are actually pointers to temporaries, and 1773 // 2) references to non-scalars are pointers directly to the aggregate. 1774 // I don't know why references to scalars are different here. 1775 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1776 if (!hasScalarEvaluationKind(ref->getPointeeType())) 1777 return args.add(RValue::getAggregate(local), type); 1778 1779 // Locals which are references to scalars are represented 1780 // with allocas holding the pointer. 1781 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1782 } 1783 1784 args.add(convertTempToRValue(local, type), type); 1785 } 1786 1787 static bool isProvablyNull(llvm::Value *addr) { 1788 return isa<llvm::ConstantPointerNull>(addr); 1789 } 1790 1791 static bool isProvablyNonNull(llvm::Value *addr) { 1792 return isa<llvm::AllocaInst>(addr); 1793 } 1794 1795 /// Emit the actual writing-back of a writeback. 1796 static void emitWriteback(CodeGenFunction &CGF, 1797 const CallArgList::Writeback &writeback) { 1798 const LValue &srcLV = writeback.Source; 1799 llvm::Value *srcAddr = srcLV.getAddress(); 1800 assert(!isProvablyNull(srcAddr) && 1801 "shouldn't have writeback for provably null argument"); 1802 1803 llvm::BasicBlock *contBB = 0; 1804 1805 // If the argument wasn't provably non-null, we need to null check 1806 // before doing the store. 1807 bool provablyNonNull = isProvablyNonNull(srcAddr); 1808 if (!provablyNonNull) { 1809 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 1810 contBB = CGF.createBasicBlock("icr.done"); 1811 1812 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1813 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 1814 CGF.EmitBlock(writebackBB); 1815 } 1816 1817 // Load the value to writeback. 1818 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 1819 1820 // Cast it back, in case we're writing an id to a Foo* or something. 1821 value = CGF.Builder.CreateBitCast(value, 1822 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 1823 "icr.writeback-cast"); 1824 1825 // Perform the writeback. 1826 1827 // If we have a "to use" value, it's something we need to emit a use 1828 // of. This has to be carefully threaded in: if it's done after the 1829 // release it's potentially undefined behavior (and the optimizer 1830 // will ignore it), and if it happens before the retain then the 1831 // optimizer could move the release there. 1832 if (writeback.ToUse) { 1833 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 1834 1835 // Retain the new value. No need to block-copy here: the block's 1836 // being passed up the stack. 1837 value = CGF.EmitARCRetainNonBlock(value); 1838 1839 // Emit the intrinsic use here. 1840 CGF.EmitARCIntrinsicUse(writeback.ToUse); 1841 1842 // Load the old value (primitively). 1843 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV); 1844 1845 // Put the new value in place (primitively). 1846 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 1847 1848 // Release the old value. 1849 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 1850 1851 // Otherwise, we can just do a normal lvalue store. 1852 } else { 1853 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 1854 } 1855 1856 // Jump to the continuation block. 1857 if (!provablyNonNull) 1858 CGF.EmitBlock(contBB); 1859 } 1860 1861 static void emitWritebacks(CodeGenFunction &CGF, 1862 const CallArgList &args) { 1863 for (CallArgList::writeback_iterator 1864 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) 1865 emitWriteback(CGF, *i); 1866 } 1867 1868 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 1869 const CallArgList &CallArgs) { 1870 assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee()); 1871 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 1872 CallArgs.getCleanupsToDeactivate(); 1873 // Iterate in reverse to increase the likelihood of popping the cleanup. 1874 for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator 1875 I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) { 1876 CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP); 1877 I->IsActiveIP->eraseFromParent(); 1878 } 1879 } 1880 1881 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 1882 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 1883 if (uop->getOpcode() == UO_AddrOf) 1884 return uop->getSubExpr(); 1885 return 0; 1886 } 1887 1888 /// Emit an argument that's being passed call-by-writeback. That is, 1889 /// we are passing the address of 1890 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 1891 const ObjCIndirectCopyRestoreExpr *CRE) { 1892 LValue srcLV; 1893 1894 // Make an optimistic effort to emit the address as an l-value. 1895 // This can fail if the the argument expression is more complicated. 1896 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 1897 srcLV = CGF.EmitLValue(lvExpr); 1898 1899 // Otherwise, just emit it as a scalar. 1900 } else { 1901 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 1902 1903 QualType srcAddrType = 1904 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 1905 srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType); 1906 } 1907 llvm::Value *srcAddr = srcLV.getAddress(); 1908 1909 // The dest and src types don't necessarily match in LLVM terms 1910 // because of the crazy ObjC compatibility rules. 1911 1912 llvm::PointerType *destType = 1913 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 1914 1915 // If the address is a constant null, just pass the appropriate null. 1916 if (isProvablyNull(srcAddr)) { 1917 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 1918 CRE->getType()); 1919 return; 1920 } 1921 1922 // Create the temporary. 1923 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 1924 "icr.temp"); 1925 // Loading an l-value can introduce a cleanup if the l-value is __weak, 1926 // and that cleanup will be conditional if we can't prove that the l-value 1927 // isn't null, so we need to register a dominating point so that the cleanups 1928 // system will make valid IR. 1929 CodeGenFunction::ConditionalEvaluation condEval(CGF); 1930 1931 // Zero-initialize it if we're not doing a copy-initialization. 1932 bool shouldCopy = CRE->shouldCopy(); 1933 if (!shouldCopy) { 1934 llvm::Value *null = 1935 llvm::ConstantPointerNull::get( 1936 cast<llvm::PointerType>(destType->getElementType())); 1937 CGF.Builder.CreateStore(null, temp); 1938 } 1939 1940 llvm::BasicBlock *contBB = 0; 1941 llvm::BasicBlock *originBB = 0; 1942 1943 // If the address is *not* known to be non-null, we need to switch. 1944 llvm::Value *finalArgument; 1945 1946 bool provablyNonNull = isProvablyNonNull(srcAddr); 1947 if (provablyNonNull) { 1948 finalArgument = temp; 1949 } else { 1950 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1951 1952 finalArgument = CGF.Builder.CreateSelect(isNull, 1953 llvm::ConstantPointerNull::get(destType), 1954 temp, "icr.argument"); 1955 1956 // If we need to copy, then the load has to be conditional, which 1957 // means we need control flow. 1958 if (shouldCopy) { 1959 originBB = CGF.Builder.GetInsertBlock(); 1960 contBB = CGF.createBasicBlock("icr.cont"); 1961 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 1962 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 1963 CGF.EmitBlock(copyBB); 1964 condEval.begin(CGF); 1965 } 1966 } 1967 1968 llvm::Value *valueToUse = 0; 1969 1970 // Perform a copy if necessary. 1971 if (shouldCopy) { 1972 RValue srcRV = CGF.EmitLoadOfLValue(srcLV); 1973 assert(srcRV.isScalar()); 1974 1975 llvm::Value *src = srcRV.getScalarVal(); 1976 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 1977 "icr.cast"); 1978 1979 // Use an ordinary store, not a store-to-lvalue. 1980 CGF.Builder.CreateStore(src, temp); 1981 1982 // If optimization is enabled, and the value was held in a 1983 // __strong variable, we need to tell the optimizer that this 1984 // value has to stay alive until we're doing the store back. 1985 // This is because the temporary is effectively unretained, 1986 // and so otherwise we can violate the high-level semantics. 1987 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 1988 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 1989 valueToUse = src; 1990 } 1991 } 1992 1993 // Finish the control flow if we needed it. 1994 if (shouldCopy && !provablyNonNull) { 1995 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 1996 CGF.EmitBlock(contBB); 1997 1998 // Make a phi for the value to intrinsically use. 1999 if (valueToUse) { 2000 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 2001 "icr.to-use"); 2002 phiToUse->addIncoming(valueToUse, copyBB); 2003 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 2004 originBB); 2005 valueToUse = phiToUse; 2006 } 2007 2008 condEval.end(CGF); 2009 } 2010 2011 args.addWriteback(srcLV, temp, valueToUse); 2012 args.add(RValue::get(finalArgument), CRE->getType()); 2013 } 2014 2015 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 2016 QualType type) { 2017 if (const ObjCIndirectCopyRestoreExpr *CRE 2018 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 2019 assert(getLangOpts().ObjCAutoRefCount); 2020 assert(getContext().hasSameType(E->getType(), type)); 2021 return emitWritebackArg(*this, args, CRE); 2022 } 2023 2024 assert(type->isReferenceType() == E->isGLValue() && 2025 "reference binding to unmaterialized r-value!"); 2026 2027 if (E->isGLValue()) { 2028 assert(E->getObjectKind() == OK_Ordinary); 2029 return args.add(EmitReferenceBindingToExpr(E), type); 2030 } 2031 2032 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 2033 2034 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 2035 // However, we still have to push an EH-only cleanup in case we unwind before 2036 // we make it to the call. 2037 if (HasAggregateEvalKind && 2038 CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) { 2039 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2040 if (RD && RD->hasNonTrivialDestructor()) { 2041 AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp"); 2042 Slot.setExternallyDestructed(); 2043 EmitAggExpr(E, Slot); 2044 RValue RV = Slot.asRValue(); 2045 args.add(RV, type); 2046 2047 pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject, 2048 /*useEHCleanupForArray*/ true); 2049 // This unreachable is a temporary marker which will be removed later. 2050 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 2051 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 2052 return; 2053 } 2054 } 2055 2056 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 2057 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 2058 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 2059 assert(L.isSimple()); 2060 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 2061 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 2062 } else { 2063 // We can't represent a misaligned lvalue in the CallArgList, so copy 2064 // to an aligned temporary now. 2065 llvm::Value *tmp = CreateMemTemp(type); 2066 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(), 2067 L.getAlignment()); 2068 args.add(RValue::getAggregate(tmp), type); 2069 } 2070 return; 2071 } 2072 2073 args.add(EmitAnyExprToTemp(E), type); 2074 } 2075 2076 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2077 // optimizer it can aggressively ignore unwind edges. 2078 void 2079 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 2080 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 2081 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 2082 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 2083 CGM.getNoObjCARCExceptionsMetadata()); 2084 } 2085 2086 /// Emits a call to the given no-arguments nounwind runtime function. 2087 llvm::CallInst * 2088 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2089 const llvm::Twine &name) { 2090 return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name); 2091 } 2092 2093 /// Emits a call to the given nounwind runtime function. 2094 llvm::CallInst * 2095 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2096 ArrayRef<llvm::Value*> args, 2097 const llvm::Twine &name) { 2098 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 2099 call->setDoesNotThrow(); 2100 return call; 2101 } 2102 2103 /// Emits a simple call (never an invoke) to the given no-arguments 2104 /// runtime function. 2105 llvm::CallInst * 2106 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2107 const llvm::Twine &name) { 2108 return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name); 2109 } 2110 2111 /// Emits a simple call (never an invoke) to the given runtime 2112 /// function. 2113 llvm::CallInst * 2114 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 2115 ArrayRef<llvm::Value*> args, 2116 const llvm::Twine &name) { 2117 llvm::CallInst *call = Builder.CreateCall(callee, args, name); 2118 call->setCallingConv(getRuntimeCC()); 2119 return call; 2120 } 2121 2122 /// Emits a call or invoke to the given noreturn runtime function. 2123 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2124 ArrayRef<llvm::Value*> args) { 2125 if (getInvokeDest()) { 2126 llvm::InvokeInst *invoke = 2127 Builder.CreateInvoke(callee, 2128 getUnreachableBlock(), 2129 getInvokeDest(), 2130 args); 2131 invoke->setDoesNotReturn(); 2132 invoke->setCallingConv(getRuntimeCC()); 2133 } else { 2134 llvm::CallInst *call = Builder.CreateCall(callee, args); 2135 call->setDoesNotReturn(); 2136 call->setCallingConv(getRuntimeCC()); 2137 Builder.CreateUnreachable(); 2138 } 2139 } 2140 2141 /// Emits a call or invoke instruction to the given nullary runtime 2142 /// function. 2143 llvm::CallSite 2144 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2145 const Twine &name) { 2146 return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name); 2147 } 2148 2149 /// Emits a call or invoke instruction to the given runtime function. 2150 llvm::CallSite 2151 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 2152 ArrayRef<llvm::Value*> args, 2153 const Twine &name) { 2154 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 2155 callSite.setCallingConv(getRuntimeCC()); 2156 return callSite; 2157 } 2158 2159 llvm::CallSite 2160 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2161 const Twine &Name) { 2162 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); 2163 } 2164 2165 /// Emits a call or invoke instruction to the given function, depending 2166 /// on the current state of the EH stack. 2167 llvm::CallSite 2168 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 2169 ArrayRef<llvm::Value *> Args, 2170 const Twine &Name) { 2171 llvm::BasicBlock *InvokeDest = getInvokeDest(); 2172 2173 llvm::Instruction *Inst; 2174 if (!InvokeDest) 2175 Inst = Builder.CreateCall(Callee, Args, Name); 2176 else { 2177 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 2178 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 2179 EmitBlock(ContBB); 2180 } 2181 2182 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2183 // optimizer it can aggressively ignore unwind edges. 2184 if (CGM.getLangOpts().ObjCAutoRefCount) 2185 AddObjCARCExceptionMetadata(Inst); 2186 2187 return Inst; 2188 } 2189 2190 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 2191 llvm::FunctionType *FTy) { 2192 if (ArgNo < FTy->getNumParams()) 2193 assert(Elt->getType() == FTy->getParamType(ArgNo)); 2194 else 2195 assert(FTy->isVarArg()); 2196 ++ArgNo; 2197 } 2198 2199 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 2200 SmallVector<llvm::Value*,16> &Args, 2201 llvm::FunctionType *IRFuncTy) { 2202 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2203 unsigned NumElts = AT->getSize().getZExtValue(); 2204 QualType EltTy = AT->getElementType(); 2205 llvm::Value *Addr = RV.getAggregateAddr(); 2206 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 2207 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 2208 RValue EltRV = convertTempToRValue(EltAddr, EltTy); 2209 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); 2210 } 2211 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 2212 RecordDecl *RD = RT->getDecl(); 2213 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 2214 LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty); 2215 2216 if (RD->isUnion()) { 2217 const FieldDecl *LargestFD = 0; 2218 CharUnits UnionSize = CharUnits::Zero(); 2219 2220 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2221 i != e; ++i) { 2222 const FieldDecl *FD = *i; 2223 assert(!FD->isBitField() && 2224 "Cannot expand structure with bit-field members."); 2225 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 2226 if (UnionSize < FieldSize) { 2227 UnionSize = FieldSize; 2228 LargestFD = FD; 2229 } 2230 } 2231 if (LargestFD) { 2232 RValue FldRV = EmitRValueForField(LV, LargestFD); 2233 ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy); 2234 } 2235 } else { 2236 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2237 i != e; ++i) { 2238 FieldDecl *FD = *i; 2239 2240 RValue FldRV = EmitRValueForField(LV, FD); 2241 ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy); 2242 } 2243 } 2244 } else if (Ty->isAnyComplexType()) { 2245 ComplexPairTy CV = RV.getComplexVal(); 2246 Args.push_back(CV.first); 2247 Args.push_back(CV.second); 2248 } else { 2249 assert(RV.isScalar() && 2250 "Unexpected non-scalar rvalue during struct expansion."); 2251 2252 // Insert a bitcast as needed. 2253 llvm::Value *V = RV.getScalarVal(); 2254 if (Args.size() < IRFuncTy->getNumParams() && 2255 V->getType() != IRFuncTy->getParamType(Args.size())) 2256 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 2257 2258 Args.push_back(V); 2259 } 2260 } 2261 2262 2263 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 2264 llvm::Value *Callee, 2265 ReturnValueSlot ReturnValue, 2266 const CallArgList &CallArgs, 2267 const Decl *TargetDecl, 2268 llvm::Instruction **callOrInvoke) { 2269 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 2270 SmallVector<llvm::Value*, 16> Args; 2271 2272 // Handle struct-return functions by passing a pointer to the 2273 // location that we would like to return into. 2274 QualType RetTy = CallInfo.getReturnType(); 2275 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 2276 2277 // IRArgNo - Keep track of the argument number in the callee we're looking at. 2278 unsigned IRArgNo = 0; 2279 llvm::FunctionType *IRFuncTy = 2280 cast<llvm::FunctionType>( 2281 cast<llvm::PointerType>(Callee->getType())->getElementType()); 2282 2283 // If the call returns a temporary with struct return, create a temporary 2284 // alloca to hold the result, unless one is given to us. 2285 if (CGM.ReturnTypeUsesSRet(CallInfo)) { 2286 llvm::Value *Value = ReturnValue.getValue(); 2287 if (!Value) 2288 Value = CreateMemTemp(RetTy); 2289 Args.push_back(Value); 2290 checkArgMatches(Value, IRArgNo, IRFuncTy); 2291 } 2292 2293 assert(CallInfo.arg_size() == CallArgs.size() && 2294 "Mismatch between function signature & arguments."); 2295 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 2296 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 2297 I != E; ++I, ++info_it) { 2298 const ABIArgInfo &ArgInfo = info_it->info; 2299 RValue RV = I->RV; 2300 2301 CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty); 2302 2303 // Insert a padding argument to ensure proper alignment. 2304 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) { 2305 Args.push_back(llvm::UndefValue::get(PaddingType)); 2306 ++IRArgNo; 2307 } 2308 2309 switch (ArgInfo.getKind()) { 2310 case ABIArgInfo::Indirect: { 2311 if (RV.isScalar() || RV.isComplex()) { 2312 // Make a temporary alloca to pass the argument. 2313 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2314 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 2315 AI->setAlignment(ArgInfo.getIndirectAlign()); 2316 Args.push_back(AI); 2317 2318 LValue argLV = 2319 MakeAddrLValue(Args.back(), I->Ty, TypeAlign); 2320 2321 if (RV.isScalar()) 2322 EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true); 2323 else 2324 EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true); 2325 2326 // Validate argument match. 2327 checkArgMatches(AI, IRArgNo, IRFuncTy); 2328 } else { 2329 // We want to avoid creating an unnecessary temporary+copy here; 2330 // however, we need one in three cases: 2331 // 1. If the argument is not byval, and we are required to copy the 2332 // source. (This case doesn't occur on any common architecture.) 2333 // 2. If the argument is byval, RV is not sufficiently aligned, and 2334 // we cannot force it to be sufficiently aligned. 2335 // 3. If the argument is byval, but RV is located in an address space 2336 // different than that of the argument (0). 2337 llvm::Value *Addr = RV.getAggregateAddr(); 2338 unsigned Align = ArgInfo.getIndirectAlign(); 2339 const llvm::DataLayout *TD = &CGM.getDataLayout(); 2340 const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace(); 2341 const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ? 2342 IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0); 2343 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 2344 (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align && 2345 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) || 2346 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 2347 // Create an aligned temporary, and copy to it. 2348 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 2349 if (Align > AI->getAlignment()) 2350 AI->setAlignment(Align); 2351 Args.push_back(AI); 2352 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 2353 2354 // Validate argument match. 2355 checkArgMatches(AI, IRArgNo, IRFuncTy); 2356 } else { 2357 // Skip the extra memcpy call. 2358 Args.push_back(Addr); 2359 2360 // Validate argument match. 2361 checkArgMatches(Addr, IRArgNo, IRFuncTy); 2362 } 2363 } 2364 break; 2365 } 2366 2367 case ABIArgInfo::Ignore: 2368 break; 2369 2370 case ABIArgInfo::Extend: 2371 case ABIArgInfo::Direct: { 2372 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 2373 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 2374 ArgInfo.getDirectOffset() == 0) { 2375 llvm::Value *V; 2376 if (RV.isScalar()) 2377 V = RV.getScalarVal(); 2378 else 2379 V = Builder.CreateLoad(RV.getAggregateAddr()); 2380 2381 // If the argument doesn't match, perform a bitcast to coerce it. This 2382 // can happen due to trivial type mismatches. 2383 if (IRArgNo < IRFuncTy->getNumParams() && 2384 V->getType() != IRFuncTy->getParamType(IRArgNo)) 2385 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 2386 Args.push_back(V); 2387 2388 checkArgMatches(V, IRArgNo, IRFuncTy); 2389 break; 2390 } 2391 2392 // FIXME: Avoid the conversion through memory if possible. 2393 llvm::Value *SrcPtr; 2394 if (RV.isScalar() || RV.isComplex()) { 2395 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 2396 LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign); 2397 if (RV.isScalar()) { 2398 EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true); 2399 } else { 2400 EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true); 2401 } 2402 } else 2403 SrcPtr = RV.getAggregateAddr(); 2404 2405 // If the value is offset in memory, apply the offset now. 2406 if (unsigned Offs = ArgInfo.getDirectOffset()) { 2407 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 2408 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 2409 SrcPtr = Builder.CreateBitCast(SrcPtr, 2410 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 2411 2412 } 2413 2414 // If the coerce-to type is a first class aggregate, we flatten it and 2415 // pass the elements. Either way is semantically identical, but fast-isel 2416 // and the optimizer generally likes scalar values better than FCAs. 2417 if (llvm::StructType *STy = 2418 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 2419 llvm::Type *SrcTy = 2420 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 2421 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 2422 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 2423 2424 // If the source type is smaller than the destination type of the 2425 // coerce-to logic, copy the source value into a temp alloca the size 2426 // of the destination type to allow loading all of it. The bits past 2427 // the source value are left undef. 2428 if (SrcSize < DstSize) { 2429 llvm::AllocaInst *TempAlloca 2430 = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce"); 2431 Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0); 2432 SrcPtr = TempAlloca; 2433 } else { 2434 SrcPtr = Builder.CreateBitCast(SrcPtr, 2435 llvm::PointerType::getUnqual(STy)); 2436 } 2437 2438 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2439 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 2440 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 2441 // We don't know what we're loading from. 2442 LI->setAlignment(1); 2443 Args.push_back(LI); 2444 2445 // Validate argument match. 2446 checkArgMatches(LI, IRArgNo, IRFuncTy); 2447 } 2448 } else { 2449 // In the simple case, just pass the coerced loaded value. 2450 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 2451 *this)); 2452 2453 // Validate argument match. 2454 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 2455 } 2456 2457 break; 2458 } 2459 2460 case ABIArgInfo::Expand: 2461 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 2462 IRArgNo = Args.size(); 2463 break; 2464 } 2465 } 2466 2467 if (!CallArgs.getCleanupsToDeactivate().empty()) 2468 deactivateArgCleanupsBeforeCall(*this, CallArgs); 2469 2470 // If the callee is a bitcast of a function to a varargs pointer to function 2471 // type, check to see if we can remove the bitcast. This handles some cases 2472 // with unprototyped functions. 2473 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 2474 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 2475 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 2476 llvm::FunctionType *CurFT = 2477 cast<llvm::FunctionType>(CurPT->getElementType()); 2478 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 2479 2480 if (CE->getOpcode() == llvm::Instruction::BitCast && 2481 ActualFT->getReturnType() == CurFT->getReturnType() && 2482 ActualFT->getNumParams() == CurFT->getNumParams() && 2483 ActualFT->getNumParams() == Args.size() && 2484 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 2485 bool ArgsMatch = true; 2486 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 2487 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 2488 ArgsMatch = false; 2489 break; 2490 } 2491 2492 // Strip the cast if we can get away with it. This is a nice cleanup, 2493 // but also allows us to inline the function at -O0 if it is marked 2494 // always_inline. 2495 if (ArgsMatch) 2496 Callee = CalleeF; 2497 } 2498 } 2499 2500 unsigned CallingConv; 2501 CodeGen::AttributeListType AttributeList; 2502 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, 2503 CallingConv, true); 2504 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 2505 AttributeList); 2506 2507 llvm::BasicBlock *InvokeDest = 0; 2508 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 2509 llvm::Attribute::NoUnwind)) 2510 InvokeDest = getInvokeDest(); 2511 2512 llvm::CallSite CS; 2513 if (!InvokeDest) { 2514 CS = Builder.CreateCall(Callee, Args); 2515 } else { 2516 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 2517 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); 2518 EmitBlock(Cont); 2519 } 2520 if (callOrInvoke) 2521 *callOrInvoke = CS.getInstruction(); 2522 2523 CS.setAttributes(Attrs); 2524 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2525 2526 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2527 // optimizer it can aggressively ignore unwind edges. 2528 if (CGM.getLangOpts().ObjCAutoRefCount) 2529 AddObjCARCExceptionMetadata(CS.getInstruction()); 2530 2531 // If the call doesn't return, finish the basic block and clear the 2532 // insertion point; this allows the rest of IRgen to discard 2533 // unreachable code. 2534 if (CS.doesNotReturn()) { 2535 Builder.CreateUnreachable(); 2536 Builder.ClearInsertionPoint(); 2537 2538 // FIXME: For now, emit a dummy basic block because expr emitters in 2539 // generally are not ready to handle emitting expressions at unreachable 2540 // points. 2541 EnsureInsertPoint(); 2542 2543 // Return a reasonable RValue. 2544 return GetUndefRValue(RetTy); 2545 } 2546 2547 llvm::Instruction *CI = CS.getInstruction(); 2548 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 2549 CI->setName("call"); 2550 2551 // Emit any writebacks immediately. Arguably this should happen 2552 // after any return-value munging. 2553 if (CallArgs.hasWritebacks()) 2554 emitWritebacks(*this, CallArgs); 2555 2556 switch (RetAI.getKind()) { 2557 case ABIArgInfo::Indirect: 2558 return convertTempToRValue(Args[0], RetTy); 2559 2560 case ABIArgInfo::Ignore: 2561 // If we are ignoring an argument that had a result, make sure to 2562 // construct the appropriate return value for our caller. 2563 return GetUndefRValue(RetTy); 2564 2565 case ABIArgInfo::Extend: 2566 case ABIArgInfo::Direct: { 2567 llvm::Type *RetIRTy = ConvertType(RetTy); 2568 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 2569 switch (getEvaluationKind(RetTy)) { 2570 case TEK_Complex: { 2571 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 2572 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 2573 return RValue::getComplex(std::make_pair(Real, Imag)); 2574 } 2575 case TEK_Aggregate: { 2576 llvm::Value *DestPtr = ReturnValue.getValue(); 2577 bool DestIsVolatile = ReturnValue.isVolatile(); 2578 2579 if (!DestPtr) { 2580 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 2581 DestIsVolatile = false; 2582 } 2583 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 2584 return RValue::getAggregate(DestPtr); 2585 } 2586 case TEK_Scalar: { 2587 // If the argument doesn't match, perform a bitcast to coerce it. This 2588 // can happen due to trivial type mismatches. 2589 llvm::Value *V = CI; 2590 if (V->getType() != RetIRTy) 2591 V = Builder.CreateBitCast(V, RetIRTy); 2592 return RValue::get(V); 2593 } 2594 } 2595 llvm_unreachable("bad evaluation kind"); 2596 } 2597 2598 llvm::Value *DestPtr = ReturnValue.getValue(); 2599 bool DestIsVolatile = ReturnValue.isVolatile(); 2600 2601 if (!DestPtr) { 2602 DestPtr = CreateMemTemp(RetTy, "coerce"); 2603 DestIsVolatile = false; 2604 } 2605 2606 // If the value is offset in memory, apply the offset now. 2607 llvm::Value *StorePtr = DestPtr; 2608 if (unsigned Offs = RetAI.getDirectOffset()) { 2609 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 2610 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 2611 StorePtr = Builder.CreateBitCast(StorePtr, 2612 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 2613 } 2614 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 2615 2616 return convertTempToRValue(DestPtr, RetTy); 2617 } 2618 2619 case ABIArgInfo::Expand: 2620 llvm_unreachable("Invalid ABI kind for return argument"); 2621 } 2622 2623 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 2624 } 2625 2626 /* VarArg handling */ 2627 2628 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 2629 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 2630 } 2631