1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/MC/SubtargetFeature.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 /***/
37 
38 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
39   switch (CC) {
40   default: return llvm::CallingConv::C;
41   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
42   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
43   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
44   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
45   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
46   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
47   // TODO: add support for CC_X86Pascal to llvm
48   }
49 }
50 
51 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
52 /// qualification.
53 /// FIXME: address space qualification?
54 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
55   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
56   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
57 }
58 
59 /// Returns the canonical formal type of the given C++ method.
60 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
61   return MD->getType()->getCanonicalTypeUnqualified()
62            .getAs<FunctionProtoType>();
63 }
64 
65 /// Returns the "extra-canonicalized" return type, which discards
66 /// qualifiers on the return type.  Codegen doesn't care about them,
67 /// and it makes ABI code a little easier to be able to assume that
68 /// all parameter and return types are top-level unqualified.
69 static CanQualType GetReturnType(QualType RetTy) {
70   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
71 }
72 
73 /// Arrange the argument and result information for a value of the given
74 /// unprototyped freestanding function type.
75 const CGFunctionInfo &
76 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
77   // When translating an unprototyped function type, always use a
78   // variadic type.
79   return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
80                                  None, FTNP->getExtInfo(), RequiredArgs(0));
81 }
82 
83 /// Arrange the LLVM function layout for a value of the given function
84 /// type, on top of any implicit parameters already stored.  Use the
85 /// given ExtInfo instead of the ExtInfo from the function type.
86 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
87                                        SmallVectorImpl<CanQualType> &prefix,
88                                              CanQual<FunctionProtoType> FTP,
89                                               FunctionType::ExtInfo extInfo) {
90   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
91   // FIXME: Kill copy.
92   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
93     prefix.push_back(FTP->getArgType(i));
94   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
95   return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
96 }
97 
98 /// Arrange the argument and result information for a free function (i.e.
99 /// not a C++ or ObjC instance method) of the given type.
100 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
101                                       SmallVectorImpl<CanQualType> &prefix,
102                                             CanQual<FunctionProtoType> FTP) {
103   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
104 }
105 
106 /// Given the formal ext-info of a C++ instance method, adjust it
107 /// according to the C++ ABI in effect.
108 static void adjustCXXMethodInfo(CodeGenTypes &CGT,
109                                 FunctionType::ExtInfo &extInfo,
110                                 bool isVariadic) {
111   if (extInfo.getCC() == CC_Default) {
112     CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
113     extInfo = extInfo.withCallingConv(CC);
114   }
115 }
116 
117 /// Arrange the argument and result information for a free function (i.e.
118 /// not a C++ or ObjC instance method) of the given type.
119 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
120                                       SmallVectorImpl<CanQualType> &prefix,
121                                             CanQual<FunctionProtoType> FTP) {
122   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
123   adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
124   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
125 }
126 
127 /// Arrange the argument and result information for a value of the
128 /// given freestanding function type.
129 const CGFunctionInfo &
130 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
131   SmallVector<CanQualType, 16> argTypes;
132   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
133 }
134 
135 static CallingConv getCallingConventionForDecl(const Decl *D) {
136   // Set the appropriate calling convention for the Function.
137   if (D->hasAttr<StdCallAttr>())
138     return CC_X86StdCall;
139 
140   if (D->hasAttr<FastCallAttr>())
141     return CC_X86FastCall;
142 
143   if (D->hasAttr<ThisCallAttr>())
144     return CC_X86ThisCall;
145 
146   if (D->hasAttr<PascalAttr>())
147     return CC_X86Pascal;
148 
149   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
150     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
151 
152   if (D->hasAttr<PnaclCallAttr>())
153     return CC_PnaclCall;
154 
155   if (D->hasAttr<IntelOclBiccAttr>())
156     return CC_IntelOclBicc;
157 
158   return CC_C;
159 }
160 
161 /// Arrange the argument and result information for a call to an
162 /// unknown C++ non-static member function of the given abstract type.
163 /// The member function must be an ordinary function, i.e. not a
164 /// constructor or destructor.
165 const CGFunctionInfo &
166 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
167                                    const FunctionProtoType *FTP) {
168   SmallVector<CanQualType, 16> argTypes;
169 
170   // Add the 'this' pointer.
171   argTypes.push_back(GetThisType(Context, RD));
172 
173   return ::arrangeCXXMethodType(*this, argTypes,
174               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
175 }
176 
177 /// Arrange the argument and result information for a declaration or
178 /// definition of the given C++ non-static member function.  The
179 /// member function must be an ordinary function, i.e. not a
180 /// constructor or destructor.
181 const CGFunctionInfo &
182 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
183   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
184   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
185 
186   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
187 
188   if (MD->isInstance()) {
189     // The abstract case is perfectly fine.
190     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
191   }
192 
193   return arrangeFreeFunctionType(prototype);
194 }
195 
196 /// Arrange the argument and result information for a declaration
197 /// or definition to the given constructor variant.
198 const CGFunctionInfo &
199 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
200                                                CXXCtorType ctorKind) {
201   SmallVector<CanQualType, 16> argTypes;
202   argTypes.push_back(GetThisType(Context, D->getParent()));
203   CanQualType resultType = Context.VoidTy;
204 
205   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
206 
207   CanQual<FunctionProtoType> FTP = GetFormalType(D);
208 
209   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
210 
211   // Add the formal parameters.
212   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
213     argTypes.push_back(FTP->getArgType(i));
214 
215   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
216   adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
217   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
218 }
219 
220 /// Arrange the argument and result information for a declaration,
221 /// definition, or call to the given destructor variant.  It so
222 /// happens that all three cases produce the same information.
223 const CGFunctionInfo &
224 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
225                                    CXXDtorType dtorKind) {
226   SmallVector<CanQualType, 2> argTypes;
227   argTypes.push_back(GetThisType(Context, D->getParent()));
228   CanQualType resultType = Context.VoidTy;
229 
230   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
231 
232   CanQual<FunctionProtoType> FTP = GetFormalType(D);
233   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
234   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
235 
236   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
237   adjustCXXMethodInfo(*this, extInfo, false);
238   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
239                                  RequiredArgs::All);
240 }
241 
242 /// Arrange the argument and result information for the declaration or
243 /// definition of the given function.
244 const CGFunctionInfo &
245 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
246   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
247     if (MD->isInstance())
248       return arrangeCXXMethodDeclaration(MD);
249 
250   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
251 
252   assert(isa<FunctionType>(FTy));
253 
254   // When declaring a function without a prototype, always use a
255   // non-variadic type.
256   if (isa<FunctionNoProtoType>(FTy)) {
257     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
258     return arrangeLLVMFunctionInfo(noProto->getResultType(), None,
259                                    noProto->getExtInfo(), RequiredArgs::All);
260   }
261 
262   assert(isa<FunctionProtoType>(FTy));
263   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
264 }
265 
266 /// Arrange the argument and result information for the declaration or
267 /// definition of an Objective-C method.
268 const CGFunctionInfo &
269 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
270   // It happens that this is the same as a call with no optional
271   // arguments, except also using the formal 'self' type.
272   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
273 }
274 
275 /// Arrange the argument and result information for the function type
276 /// through which to perform a send to the given Objective-C method,
277 /// using the given receiver type.  The receiver type is not always
278 /// the 'self' type of the method or even an Objective-C pointer type.
279 /// This is *not* the right method for actually performing such a
280 /// message send, due to the possibility of optional arguments.
281 const CGFunctionInfo &
282 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
283                                               QualType receiverType) {
284   SmallVector<CanQualType, 16> argTys;
285   argTys.push_back(Context.getCanonicalParamType(receiverType));
286   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
287   // FIXME: Kill copy?
288   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
289          e = MD->param_end(); i != e; ++i) {
290     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
291   }
292 
293   FunctionType::ExtInfo einfo;
294   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
295 
296   if (getContext().getLangOpts().ObjCAutoRefCount &&
297       MD->hasAttr<NSReturnsRetainedAttr>())
298     einfo = einfo.withProducesResult(true);
299 
300   RequiredArgs required =
301     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
302 
303   return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
304                                  einfo, required);
305 }
306 
307 const CGFunctionInfo &
308 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
309   // FIXME: Do we need to handle ObjCMethodDecl?
310   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
311 
312   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
313     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
314 
315   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
316     return arrangeCXXDestructor(DD, GD.getDtorType());
317 
318   return arrangeFunctionDeclaration(FD);
319 }
320 
321 /// Arrange a call as unto a free function, except possibly with an
322 /// additional number of formal parameters considered required.
323 static const CGFunctionInfo &
324 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
325                             const CallArgList &args,
326                             const FunctionType *fnType,
327                             unsigned numExtraRequiredArgs) {
328   assert(args.size() >= numExtraRequiredArgs);
329 
330   // In most cases, there are no optional arguments.
331   RequiredArgs required = RequiredArgs::All;
332 
333   // If we have a variadic prototype, the required arguments are the
334   // extra prefix plus the arguments in the prototype.
335   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
336     if (proto->isVariadic())
337       required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
338 
339   // If we don't have a prototype at all, but we're supposed to
340   // explicitly use the variadic convention for unprototyped calls,
341   // treat all of the arguments as required but preserve the nominal
342   // possibility of variadics.
343   } else if (CGT.CGM.getTargetCodeGenInfo()
344                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
345     required = RequiredArgs(args.size());
346   }
347 
348   return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
349                                      fnType->getExtInfo(), required);
350 }
351 
352 /// Figure out the rules for calling a function with the given formal
353 /// type using the given arguments.  The arguments are necessary
354 /// because the function might be unprototyped, in which case it's
355 /// target-dependent in crazy ways.
356 const CGFunctionInfo &
357 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
358                                       const FunctionType *fnType) {
359   return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
360 }
361 
362 /// A block function call is essentially a free-function call with an
363 /// extra implicit argument.
364 const CGFunctionInfo &
365 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
366                                        const FunctionType *fnType) {
367   return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
368 }
369 
370 const CGFunctionInfo &
371 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
372                                       const CallArgList &args,
373                                       FunctionType::ExtInfo info,
374                                       RequiredArgs required) {
375   // FIXME: Kill copy.
376   SmallVector<CanQualType, 16> argTypes;
377   for (CallArgList::const_iterator i = args.begin(), e = args.end();
378        i != e; ++i)
379     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
380   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
381                                  required);
382 }
383 
384 /// Arrange a call to a C++ method, passing the given arguments.
385 const CGFunctionInfo &
386 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
387                                    const FunctionProtoType *FPT,
388                                    RequiredArgs required) {
389   // FIXME: Kill copy.
390   SmallVector<CanQualType, 16> argTypes;
391   for (CallArgList::const_iterator i = args.begin(), e = args.end();
392        i != e; ++i)
393     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
394 
395   FunctionType::ExtInfo info = FPT->getExtInfo();
396   adjustCXXMethodInfo(*this, info, FPT->isVariadic());
397   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
398                                  argTypes, info, required);
399 }
400 
401 const CGFunctionInfo &
402 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
403                                          const FunctionArgList &args,
404                                          const FunctionType::ExtInfo &info,
405                                          bool isVariadic) {
406   // FIXME: Kill copy.
407   SmallVector<CanQualType, 16> argTypes;
408   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
409        i != e; ++i)
410     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
411 
412   RequiredArgs required =
413     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
414   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
415                                  required);
416 }
417 
418 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
419   return arrangeLLVMFunctionInfo(getContext().VoidTy, None,
420                                  FunctionType::ExtInfo(), RequiredArgs::All);
421 }
422 
423 /// Arrange the argument and result information for an abstract value
424 /// of a given function type.  This is the method which all of the
425 /// above functions ultimately defer to.
426 const CGFunctionInfo &
427 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
428                                       ArrayRef<CanQualType> argTypes,
429                                       FunctionType::ExtInfo info,
430                                       RequiredArgs required) {
431 #ifndef NDEBUG
432   for (ArrayRef<CanQualType>::const_iterator
433          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
434     assert(I->isCanonicalAsParam());
435 #endif
436 
437   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
438 
439   // Lookup or create unique function info.
440   llvm::FoldingSetNodeID ID;
441   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
442 
443   void *insertPos = 0;
444   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
445   if (FI)
446     return *FI;
447 
448   // Construct the function info.  We co-allocate the ArgInfos.
449   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
450   FunctionInfos.InsertNode(FI, insertPos);
451 
452   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
453   assert(inserted && "Recursively being processed?");
454 
455   // Compute ABI information.
456   getABIInfo().computeInfo(*FI);
457 
458   // Loop over all of the computed argument and return value info.  If any of
459   // them are direct or extend without a specified coerce type, specify the
460   // default now.
461   ABIArgInfo &retInfo = FI->getReturnInfo();
462   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
463     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
464 
465   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
466        I != E; ++I)
467     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
468       I->info.setCoerceToType(ConvertType(I->type));
469 
470   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
471   assert(erased && "Not in set?");
472 
473   return *FI;
474 }
475 
476 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
477                                        const FunctionType::ExtInfo &info,
478                                        CanQualType resultType,
479                                        ArrayRef<CanQualType> argTypes,
480                                        RequiredArgs required) {
481   void *buffer = operator new(sizeof(CGFunctionInfo) +
482                               sizeof(ArgInfo) * (argTypes.size() + 1));
483   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
484   FI->CallingConvention = llvmCC;
485   FI->EffectiveCallingConvention = llvmCC;
486   FI->ASTCallingConvention = info.getCC();
487   FI->NoReturn = info.getNoReturn();
488   FI->ReturnsRetained = info.getProducesResult();
489   FI->Required = required;
490   FI->HasRegParm = info.getHasRegParm();
491   FI->RegParm = info.getRegParm();
492   FI->NumArgs = argTypes.size();
493   FI->getArgsBuffer()[0].type = resultType;
494   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
495     FI->getArgsBuffer()[i + 1].type = argTypes[i];
496   return FI;
497 }
498 
499 /***/
500 
501 void CodeGenTypes::GetExpandedTypes(QualType type,
502                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
503   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
504     uint64_t NumElts = AT->getSize().getZExtValue();
505     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
506       GetExpandedTypes(AT->getElementType(), expandedTypes);
507   } else if (const RecordType *RT = type->getAs<RecordType>()) {
508     const RecordDecl *RD = RT->getDecl();
509     assert(!RD->hasFlexibleArrayMember() &&
510            "Cannot expand structure with flexible array.");
511     if (RD->isUnion()) {
512       // Unions can be here only in degenerative cases - all the fields are same
513       // after flattening. Thus we have to use the "largest" field.
514       const FieldDecl *LargestFD = 0;
515       CharUnits UnionSize = CharUnits::Zero();
516 
517       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
518            i != e; ++i) {
519         const FieldDecl *FD = *i;
520         assert(!FD->isBitField() &&
521                "Cannot expand structure with bit-field members.");
522         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
523         if (UnionSize < FieldSize) {
524           UnionSize = FieldSize;
525           LargestFD = FD;
526         }
527       }
528       if (LargestFD)
529         GetExpandedTypes(LargestFD->getType(), expandedTypes);
530     } else {
531       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
532            i != e; ++i) {
533         assert(!i->isBitField() &&
534                "Cannot expand structure with bit-field members.");
535         GetExpandedTypes(i->getType(), expandedTypes);
536       }
537     }
538   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
539     llvm::Type *EltTy = ConvertType(CT->getElementType());
540     expandedTypes.push_back(EltTy);
541     expandedTypes.push_back(EltTy);
542   } else
543     expandedTypes.push_back(ConvertType(type));
544 }
545 
546 llvm::Function::arg_iterator
547 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
548                                     llvm::Function::arg_iterator AI) {
549   assert(LV.isSimple() &&
550          "Unexpected non-simple lvalue during struct expansion.");
551 
552   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
553     unsigned NumElts = AT->getSize().getZExtValue();
554     QualType EltTy = AT->getElementType();
555     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
556       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
557       LValue LV = MakeAddrLValue(EltAddr, EltTy);
558       AI = ExpandTypeFromArgs(EltTy, LV, AI);
559     }
560   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
561     RecordDecl *RD = RT->getDecl();
562     if (RD->isUnion()) {
563       // Unions can be here only in degenerative cases - all the fields are same
564       // after flattening. Thus we have to use the "largest" field.
565       const FieldDecl *LargestFD = 0;
566       CharUnits UnionSize = CharUnits::Zero();
567 
568       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
569            i != e; ++i) {
570         const FieldDecl *FD = *i;
571         assert(!FD->isBitField() &&
572                "Cannot expand structure with bit-field members.");
573         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
574         if (UnionSize < FieldSize) {
575           UnionSize = FieldSize;
576           LargestFD = FD;
577         }
578       }
579       if (LargestFD) {
580         // FIXME: What are the right qualifiers here?
581         LValue SubLV = EmitLValueForField(LV, LargestFD);
582         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
583       }
584     } else {
585       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
586            i != e; ++i) {
587         FieldDecl *FD = *i;
588         QualType FT = FD->getType();
589 
590         // FIXME: What are the right qualifiers here?
591         LValue SubLV = EmitLValueForField(LV, FD);
592         AI = ExpandTypeFromArgs(FT, SubLV, AI);
593       }
594     }
595   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
596     QualType EltTy = CT->getElementType();
597     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
598     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
599     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
600     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
601   } else {
602     EmitStoreThroughLValue(RValue::get(AI), LV);
603     ++AI;
604   }
605 
606   return AI;
607 }
608 
609 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
610 /// accessing some number of bytes out of it, try to gep into the struct to get
611 /// at its inner goodness.  Dive as deep as possible without entering an element
612 /// with an in-memory size smaller than DstSize.
613 static llvm::Value *
614 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
615                                    llvm::StructType *SrcSTy,
616                                    uint64_t DstSize, CodeGenFunction &CGF) {
617   // We can't dive into a zero-element struct.
618   if (SrcSTy->getNumElements() == 0) return SrcPtr;
619 
620   llvm::Type *FirstElt = SrcSTy->getElementType(0);
621 
622   // If the first elt is at least as large as what we're looking for, or if the
623   // first element is the same size as the whole struct, we can enter it.
624   uint64_t FirstEltSize =
625     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
626   if (FirstEltSize < DstSize &&
627       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
628     return SrcPtr;
629 
630   // GEP into the first element.
631   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
632 
633   // If the first element is a struct, recurse.
634   llvm::Type *SrcTy =
635     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
636   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
637     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
638 
639   return SrcPtr;
640 }
641 
642 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
643 /// are either integers or pointers.  This does a truncation of the value if it
644 /// is too large or a zero extension if it is too small.
645 ///
646 /// This behaves as if the value were coerced through memory, so on big-endian
647 /// targets the high bits are preserved in a truncation, while little-endian
648 /// targets preserve the low bits.
649 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
650                                              llvm::Type *Ty,
651                                              CodeGenFunction &CGF) {
652   if (Val->getType() == Ty)
653     return Val;
654 
655   if (isa<llvm::PointerType>(Val->getType())) {
656     // If this is Pointer->Pointer avoid conversion to and from int.
657     if (isa<llvm::PointerType>(Ty))
658       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
659 
660     // Convert the pointer to an integer so we can play with its width.
661     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
662   }
663 
664   llvm::Type *DestIntTy = Ty;
665   if (isa<llvm::PointerType>(DestIntTy))
666     DestIntTy = CGF.IntPtrTy;
667 
668   if (Val->getType() != DestIntTy) {
669     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
670     if (DL.isBigEndian()) {
671       // Preserve the high bits on big-endian targets.
672       // That is what memory coercion does.
673       uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType());
674       uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy);
675       if (SrcSize > DstSize) {
676         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
677         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
678       } else {
679         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
680         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
681       }
682     } else {
683       // Little-endian targets preserve the low bits. No shifts required.
684       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
685     }
686   }
687 
688   if (isa<llvm::PointerType>(Ty))
689     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
690   return Val;
691 }
692 
693 
694 
695 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
696 /// a pointer to an object of type \arg Ty.
697 ///
698 /// This safely handles the case when the src type is smaller than the
699 /// destination type; in this situation the values of bits which not
700 /// present in the src are undefined.
701 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
702                                       llvm::Type *Ty,
703                                       CodeGenFunction &CGF) {
704   llvm::Type *SrcTy =
705     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
706 
707   // If SrcTy and Ty are the same, just do a load.
708   if (SrcTy == Ty)
709     return CGF.Builder.CreateLoad(SrcPtr);
710 
711   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
712 
713   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
714     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
715     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
716   }
717 
718   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
719 
720   // If the source and destination are integer or pointer types, just do an
721   // extension or truncation to the desired type.
722   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
723       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
724     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
725     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
726   }
727 
728   // If load is legal, just bitcast the src pointer.
729   if (SrcSize >= DstSize) {
730     // Generally SrcSize is never greater than DstSize, since this means we are
731     // losing bits. However, this can happen in cases where the structure has
732     // additional padding, for example due to a user specified alignment.
733     //
734     // FIXME: Assert that we aren't truncating non-padding bits when have access
735     // to that information.
736     llvm::Value *Casted =
737       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
738     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
739     // FIXME: Use better alignment / avoid requiring aligned load.
740     Load->setAlignment(1);
741     return Load;
742   }
743 
744   // Otherwise do coercion through memory. This is stupid, but
745   // simple.
746   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
747   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
748   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
749   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
750   // FIXME: Use better alignment.
751   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
752       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
753       1, false);
754   return CGF.Builder.CreateLoad(Tmp);
755 }
756 
757 // Function to store a first-class aggregate into memory.  We prefer to
758 // store the elements rather than the aggregate to be more friendly to
759 // fast-isel.
760 // FIXME: Do we need to recurse here?
761 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
762                           llvm::Value *DestPtr, bool DestIsVolatile,
763                           bool LowAlignment) {
764   // Prefer scalar stores to first-class aggregate stores.
765   if (llvm::StructType *STy =
766         dyn_cast<llvm::StructType>(Val->getType())) {
767     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
768       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
769       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
770       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
771                                                     DestIsVolatile);
772       if (LowAlignment)
773         SI->setAlignment(1);
774     }
775   } else {
776     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
777     if (LowAlignment)
778       SI->setAlignment(1);
779   }
780 }
781 
782 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
783 /// where the source and destination may have different types.
784 ///
785 /// This safely handles the case when the src type is larger than the
786 /// destination type; the upper bits of the src will be lost.
787 static void CreateCoercedStore(llvm::Value *Src,
788                                llvm::Value *DstPtr,
789                                bool DstIsVolatile,
790                                CodeGenFunction &CGF) {
791   llvm::Type *SrcTy = Src->getType();
792   llvm::Type *DstTy =
793     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
794   if (SrcTy == DstTy) {
795     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
796     return;
797   }
798 
799   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
800 
801   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
802     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
803     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
804   }
805 
806   // If the source and destination are integer or pointer types, just do an
807   // extension or truncation to the desired type.
808   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
809       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
810     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
811     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
812     return;
813   }
814 
815   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
816 
817   // If store is legal, just bitcast the src pointer.
818   if (SrcSize <= DstSize) {
819     llvm::Value *Casted =
820       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
821     // FIXME: Use better alignment / avoid requiring aligned store.
822     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
823   } else {
824     // Otherwise do coercion through memory. This is stupid, but
825     // simple.
826 
827     // Generally SrcSize is never greater than DstSize, since this means we are
828     // losing bits. However, this can happen in cases where the structure has
829     // additional padding, for example due to a user specified alignment.
830     //
831     // FIXME: Assert that we aren't truncating non-padding bits when have access
832     // to that information.
833     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
834     CGF.Builder.CreateStore(Src, Tmp);
835     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
836     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
837     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
838     // FIXME: Use better alignment.
839     CGF.Builder.CreateMemCpy(DstCasted, Casted,
840         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
841         1, false);
842   }
843 }
844 
845 /***/
846 
847 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
848   return FI.getReturnInfo().isIndirect();
849 }
850 
851 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
852   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
853     switch (BT->getKind()) {
854     default:
855       return false;
856     case BuiltinType::Float:
857       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
858     case BuiltinType::Double:
859       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
860     case BuiltinType::LongDouble:
861       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
862     }
863   }
864 
865   return false;
866 }
867 
868 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
869   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
870     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
871       if (BT->getKind() == BuiltinType::LongDouble)
872         return getTarget().useObjCFP2RetForComplexLongDouble();
873     }
874   }
875 
876   return false;
877 }
878 
879 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
880   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
881   return GetFunctionType(FI);
882 }
883 
884 llvm::FunctionType *
885 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
886 
887   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
888   assert(Inserted && "Recursively being processed?");
889 
890   SmallVector<llvm::Type*, 8> argTypes;
891   llvm::Type *resultType = 0;
892 
893   const ABIArgInfo &retAI = FI.getReturnInfo();
894   switch (retAI.getKind()) {
895   case ABIArgInfo::Expand:
896     llvm_unreachable("Invalid ABI kind for return argument");
897 
898   case ABIArgInfo::Extend:
899   case ABIArgInfo::Direct:
900     resultType = retAI.getCoerceToType();
901     break;
902 
903   case ABIArgInfo::Indirect: {
904     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
905     resultType = llvm::Type::getVoidTy(getLLVMContext());
906 
907     QualType ret = FI.getReturnType();
908     llvm::Type *ty = ConvertType(ret);
909     unsigned addressSpace = Context.getTargetAddressSpace(ret);
910     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
911     break;
912   }
913 
914   case ABIArgInfo::Ignore:
915     resultType = llvm::Type::getVoidTy(getLLVMContext());
916     break;
917   }
918 
919   // Add in all of the required arguments.
920   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
921   if (FI.isVariadic()) {
922     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
923   } else {
924     ie = FI.arg_end();
925   }
926   for (; it != ie; ++it) {
927     const ABIArgInfo &argAI = it->info;
928 
929     // Insert a padding type to ensure proper alignment.
930     if (llvm::Type *PaddingType = argAI.getPaddingType())
931       argTypes.push_back(PaddingType);
932 
933     switch (argAI.getKind()) {
934     case ABIArgInfo::Ignore:
935       break;
936 
937     case ABIArgInfo::Indirect: {
938       // indirect arguments are always on the stack, which is addr space #0.
939       llvm::Type *LTy = ConvertTypeForMem(it->type);
940       argTypes.push_back(LTy->getPointerTo());
941       break;
942     }
943 
944     case ABIArgInfo::Extend:
945     case ABIArgInfo::Direct: {
946       // If the coerce-to type is a first class aggregate, flatten it.  Either
947       // way is semantically identical, but fast-isel and the optimizer
948       // generally likes scalar values better than FCAs.
949       llvm::Type *argType = argAI.getCoerceToType();
950       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
951         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
952           argTypes.push_back(st->getElementType(i));
953       } else {
954         argTypes.push_back(argType);
955       }
956       break;
957     }
958 
959     case ABIArgInfo::Expand:
960       GetExpandedTypes(it->type, argTypes);
961       break;
962     }
963   }
964 
965   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
966   assert(Erased && "Not in set?");
967 
968   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
969 }
970 
971 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
972   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
973   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
974 
975   if (!isFuncTypeConvertible(FPT))
976     return llvm::StructType::get(getLLVMContext());
977 
978   const CGFunctionInfo *Info;
979   if (isa<CXXDestructorDecl>(MD))
980     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
981   else
982     Info = &arrangeCXXMethodDeclaration(MD);
983   return GetFunctionType(*Info);
984 }
985 
986 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
987                                            const Decl *TargetDecl,
988                                            AttributeListType &PAL,
989                                            unsigned &CallingConv,
990                                            bool AttrOnCallSite) {
991   llvm::AttrBuilder FuncAttrs;
992   llvm::AttrBuilder RetAttrs;
993 
994   CallingConv = FI.getEffectiveCallingConvention();
995 
996   if (FI.isNoReturn())
997     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
998 
999   // FIXME: handle sseregparm someday...
1000   if (TargetDecl) {
1001     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1002       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1003     if (TargetDecl->hasAttr<NoThrowAttr>())
1004       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1005     if (TargetDecl->hasAttr<NoReturnAttr>())
1006       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1007 
1008     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1009       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1010       if (FPT && FPT->isNothrow(getContext()))
1011         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1012       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1013       // These attributes are not inherited by overloads.
1014       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1015       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1016         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1017     }
1018 
1019     // 'const' and 'pure' attribute functions are also nounwind.
1020     if (TargetDecl->hasAttr<ConstAttr>()) {
1021       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1022       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1023     } else if (TargetDecl->hasAttr<PureAttr>()) {
1024       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1025       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1026     }
1027     if (TargetDecl->hasAttr<MallocAttr>())
1028       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1029   }
1030 
1031   if (CodeGenOpts.OptimizeSize)
1032     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1033   if (CodeGenOpts.OptimizeSize == 2)
1034     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1035   if (CodeGenOpts.DisableRedZone)
1036     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1037   if (CodeGenOpts.NoImplicitFloat)
1038     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1039 
1040   if (AttrOnCallSite) {
1041     // Attributes that should go on the call site only.
1042     if (!CodeGenOpts.SimplifyLibCalls)
1043       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1044   } else {
1045     // Attributes that should go on the function, but not the call site.
1046     if (!CodeGenOpts.DisableFPElim) {
1047       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1048       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false");
1049     } else if (CodeGenOpts.OmitLeafFramePointer) {
1050       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1051       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1052     } else {
1053       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1054       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1055     }
1056 
1057     FuncAttrs.addAttribute("less-precise-fpmad",
1058                            CodeGenOpts.LessPreciseFPMAD ? "true" : "false");
1059     FuncAttrs.addAttribute("no-infs-fp-math",
1060                            CodeGenOpts.NoInfsFPMath ? "true" : "false");
1061     FuncAttrs.addAttribute("no-nans-fp-math",
1062                            CodeGenOpts.NoNaNsFPMath ? "true" : "false");
1063     FuncAttrs.addAttribute("unsafe-fp-math",
1064                            CodeGenOpts.UnsafeFPMath ? "true" : "false");
1065     FuncAttrs.addAttribute("use-soft-float",
1066                            CodeGenOpts.SoftFloat ? "true" : "false");
1067   }
1068 
1069   QualType RetTy = FI.getReturnType();
1070   unsigned Index = 1;
1071   const ABIArgInfo &RetAI = FI.getReturnInfo();
1072   switch (RetAI.getKind()) {
1073   case ABIArgInfo::Extend:
1074     if (RetTy->hasSignedIntegerRepresentation())
1075       RetAttrs.addAttribute(llvm::Attribute::SExt);
1076     else if (RetTy->hasUnsignedIntegerRepresentation())
1077       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1078     // FALL THROUGH
1079   case ABIArgInfo::Direct:
1080     if (RetAI.getInReg())
1081       RetAttrs.addAttribute(llvm::Attribute::InReg);
1082     break;
1083   case ABIArgInfo::Ignore:
1084     break;
1085 
1086   case ABIArgInfo::Indirect: {
1087     llvm::AttrBuilder SRETAttrs;
1088     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1089     if (RetAI.getInReg())
1090       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1091     PAL.push_back(llvm::
1092                   AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
1093 
1094     ++Index;
1095     // sret disables readnone and readonly
1096     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1097       .removeAttribute(llvm::Attribute::ReadNone);
1098     break;
1099   }
1100 
1101   case ABIArgInfo::Expand:
1102     llvm_unreachable("Invalid ABI kind for return argument");
1103   }
1104 
1105   if (RetAttrs.hasAttributes())
1106     PAL.push_back(llvm::
1107                   AttributeSet::get(getLLVMContext(),
1108                                     llvm::AttributeSet::ReturnIndex,
1109                                     RetAttrs));
1110 
1111   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1112          ie = FI.arg_end(); it != ie; ++it) {
1113     QualType ParamType = it->type;
1114     const ABIArgInfo &AI = it->info;
1115     llvm::AttrBuilder Attrs;
1116 
1117     if (AI.getPaddingType()) {
1118       if (AI.getPaddingInReg())
1119         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1120                                               llvm::Attribute::InReg));
1121       // Increment Index if there is padding.
1122       ++Index;
1123     }
1124 
1125     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1126     // have the corresponding parameter variable.  It doesn't make
1127     // sense to do it here because parameters are so messed up.
1128     switch (AI.getKind()) {
1129     case ABIArgInfo::Extend:
1130       if (ParamType->isSignedIntegerOrEnumerationType())
1131         Attrs.addAttribute(llvm::Attribute::SExt);
1132       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1133         Attrs.addAttribute(llvm::Attribute::ZExt);
1134       // FALL THROUGH
1135     case ABIArgInfo::Direct:
1136       if (AI.getInReg())
1137         Attrs.addAttribute(llvm::Attribute::InReg);
1138 
1139       // FIXME: handle sseregparm someday...
1140 
1141       if (llvm::StructType *STy =
1142           dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1143         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1144         if (Attrs.hasAttributes())
1145           for (unsigned I = 0; I < Extra; ++I)
1146             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1147                                                   Attrs));
1148         Index += Extra;
1149       }
1150       break;
1151 
1152     case ABIArgInfo::Indirect:
1153       if (AI.getInReg())
1154         Attrs.addAttribute(llvm::Attribute::InReg);
1155 
1156       if (AI.getIndirectByVal())
1157         Attrs.addAttribute(llvm::Attribute::ByVal);
1158 
1159       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1160 
1161       // byval disables readnone and readonly.
1162       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1163         .removeAttribute(llvm::Attribute::ReadNone);
1164       break;
1165 
1166     case ABIArgInfo::Ignore:
1167       // Skip increment, no matching LLVM parameter.
1168       continue;
1169 
1170     case ABIArgInfo::Expand: {
1171       SmallVector<llvm::Type*, 8> types;
1172       // FIXME: This is rather inefficient. Do we ever actually need to do
1173       // anything here? The result should be just reconstructed on the other
1174       // side, so extension should be a non-issue.
1175       getTypes().GetExpandedTypes(ParamType, types);
1176       Index += types.size();
1177       continue;
1178     }
1179     }
1180 
1181     if (Attrs.hasAttributes())
1182       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1183     ++Index;
1184   }
1185   if (FuncAttrs.hasAttributes())
1186     PAL.push_back(llvm::
1187                   AttributeSet::get(getLLVMContext(),
1188                                     llvm::AttributeSet::FunctionIndex,
1189                                     FuncAttrs));
1190 }
1191 
1192 /// An argument came in as a promoted argument; demote it back to its
1193 /// declared type.
1194 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1195                                          const VarDecl *var,
1196                                          llvm::Value *value) {
1197   llvm::Type *varType = CGF.ConvertType(var->getType());
1198 
1199   // This can happen with promotions that actually don't change the
1200   // underlying type, like the enum promotions.
1201   if (value->getType() == varType) return value;
1202 
1203   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1204          && "unexpected promotion type");
1205 
1206   if (isa<llvm::IntegerType>(varType))
1207     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1208 
1209   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1210 }
1211 
1212 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1213                                          llvm::Function *Fn,
1214                                          const FunctionArgList &Args) {
1215   // If this is an implicit-return-zero function, go ahead and
1216   // initialize the return value.  TODO: it might be nice to have
1217   // a more general mechanism for this that didn't require synthesized
1218   // return statements.
1219   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1220     if (FD->hasImplicitReturnZero()) {
1221       QualType RetTy = FD->getResultType().getUnqualifiedType();
1222       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1223       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1224       Builder.CreateStore(Zero, ReturnValue);
1225     }
1226   }
1227 
1228   // FIXME: We no longer need the types from FunctionArgList; lift up and
1229   // simplify.
1230 
1231   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1232   llvm::Function::arg_iterator AI = Fn->arg_begin();
1233 
1234   // Name the struct return argument.
1235   if (CGM.ReturnTypeUsesSRet(FI)) {
1236     AI->setName("agg.result");
1237     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1238                                         AI->getArgNo() + 1,
1239                                         llvm::Attribute::NoAlias));
1240     ++AI;
1241   }
1242 
1243   assert(FI.arg_size() == Args.size() &&
1244          "Mismatch between function signature & arguments.");
1245   unsigned ArgNo = 1;
1246   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1247   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1248        i != e; ++i, ++info_it, ++ArgNo) {
1249     const VarDecl *Arg = *i;
1250     QualType Ty = info_it->type;
1251     const ABIArgInfo &ArgI = info_it->info;
1252 
1253     bool isPromoted =
1254       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1255 
1256     // Skip the dummy padding argument.
1257     if (ArgI.getPaddingType())
1258       ++AI;
1259 
1260     switch (ArgI.getKind()) {
1261     case ABIArgInfo::Indirect: {
1262       llvm::Value *V = AI;
1263 
1264       if (!hasScalarEvaluationKind(Ty)) {
1265         // Aggregates and complex variables are accessed by reference.  All we
1266         // need to do is realign the value, if requested
1267         if (ArgI.getIndirectRealign()) {
1268           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1269 
1270           // Copy from the incoming argument pointer to the temporary with the
1271           // appropriate alignment.
1272           //
1273           // FIXME: We should have a common utility for generating an aggregate
1274           // copy.
1275           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1276           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1277           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1278           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1279           Builder.CreateMemCpy(Dst,
1280                                Src,
1281                                llvm::ConstantInt::get(IntPtrTy,
1282                                                       Size.getQuantity()),
1283                                ArgI.getIndirectAlign(),
1284                                false);
1285           V = AlignedTemp;
1286         }
1287       } else {
1288         // Load scalar value from indirect argument.
1289         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1290         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1291 
1292         if (isPromoted)
1293           V = emitArgumentDemotion(*this, Arg, V);
1294       }
1295       EmitParmDecl(*Arg, V, ArgNo);
1296       break;
1297     }
1298 
1299     case ABIArgInfo::Extend:
1300     case ABIArgInfo::Direct: {
1301 
1302       // If we have the trivial case, handle it with no muss and fuss.
1303       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1304           ArgI.getCoerceToType() == ConvertType(Ty) &&
1305           ArgI.getDirectOffset() == 0) {
1306         assert(AI != Fn->arg_end() && "Argument mismatch!");
1307         llvm::Value *V = AI;
1308 
1309         if (Arg->getType().isRestrictQualified())
1310           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1311                                               AI->getArgNo() + 1,
1312                                               llvm::Attribute::NoAlias));
1313 
1314         // Ensure the argument is the correct type.
1315         if (V->getType() != ArgI.getCoerceToType())
1316           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1317 
1318         if (isPromoted)
1319           V = emitArgumentDemotion(*this, Arg, V);
1320 
1321         // Because of merging of function types from multiple decls it is
1322         // possible for the type of an argument to not match the corresponding
1323         // type in the function type. Since we are codegening the callee
1324         // in here, add a cast to the argument type.
1325         llvm::Type *LTy = ConvertType(Arg->getType());
1326         if (V->getType() != LTy)
1327           V = Builder.CreateBitCast(V, LTy);
1328 
1329         EmitParmDecl(*Arg, V, ArgNo);
1330         break;
1331       }
1332 
1333       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1334 
1335       // The alignment we need to use is the max of the requested alignment for
1336       // the argument plus the alignment required by our access code below.
1337       unsigned AlignmentToUse =
1338         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1339       AlignmentToUse = std::max(AlignmentToUse,
1340                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1341 
1342       Alloca->setAlignment(AlignmentToUse);
1343       llvm::Value *V = Alloca;
1344       llvm::Value *Ptr = V;    // Pointer to store into.
1345 
1346       // If the value is offset in memory, apply the offset now.
1347       if (unsigned Offs = ArgI.getDirectOffset()) {
1348         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1349         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1350         Ptr = Builder.CreateBitCast(Ptr,
1351                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1352       }
1353 
1354       // If the coerce-to type is a first class aggregate, we flatten it and
1355       // pass the elements. Either way is semantically identical, but fast-isel
1356       // and the optimizer generally likes scalar values better than FCAs.
1357       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1358       if (STy && STy->getNumElements() > 1) {
1359         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1360         llvm::Type *DstTy =
1361           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1362         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1363 
1364         if (SrcSize <= DstSize) {
1365           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1366 
1367           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1368             assert(AI != Fn->arg_end() && "Argument mismatch!");
1369             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1370             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1371             Builder.CreateStore(AI++, EltPtr);
1372           }
1373         } else {
1374           llvm::AllocaInst *TempAlloca =
1375             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1376           TempAlloca->setAlignment(AlignmentToUse);
1377           llvm::Value *TempV = TempAlloca;
1378 
1379           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1380             assert(AI != Fn->arg_end() && "Argument mismatch!");
1381             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1382             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1383             Builder.CreateStore(AI++, EltPtr);
1384           }
1385 
1386           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1387         }
1388       } else {
1389         // Simple case, just do a coerced store of the argument into the alloca.
1390         assert(AI != Fn->arg_end() && "Argument mismatch!");
1391         AI->setName(Arg->getName() + ".coerce");
1392         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1393       }
1394 
1395 
1396       // Match to what EmitParmDecl is expecting for this type.
1397       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1398         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1399         if (isPromoted)
1400           V = emitArgumentDemotion(*this, Arg, V);
1401       }
1402       EmitParmDecl(*Arg, V, ArgNo);
1403       continue;  // Skip ++AI increment, already done.
1404     }
1405 
1406     case ABIArgInfo::Expand: {
1407       // If this structure was expanded into multiple arguments then
1408       // we need to create a temporary and reconstruct it from the
1409       // arguments.
1410       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1411       CharUnits Align = getContext().getDeclAlign(Arg);
1412       Alloca->setAlignment(Align.getQuantity());
1413       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1414       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1415       EmitParmDecl(*Arg, Alloca, ArgNo);
1416 
1417       // Name the arguments used in expansion and increment AI.
1418       unsigned Index = 0;
1419       for (; AI != End; ++AI, ++Index)
1420         AI->setName(Arg->getName() + "." + Twine(Index));
1421       continue;
1422     }
1423 
1424     case ABIArgInfo::Ignore:
1425       // Initialize the local variable appropriately.
1426       if (!hasScalarEvaluationKind(Ty))
1427         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1428       else
1429         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1430                      ArgNo);
1431 
1432       // Skip increment, no matching LLVM parameter.
1433       continue;
1434     }
1435 
1436     ++AI;
1437   }
1438   assert(AI == Fn->arg_end() && "Argument mismatch!");
1439 }
1440 
1441 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1442   while (insn->use_empty()) {
1443     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1444     if (!bitcast) return;
1445 
1446     // This is "safe" because we would have used a ConstantExpr otherwise.
1447     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1448     bitcast->eraseFromParent();
1449   }
1450 }
1451 
1452 /// Try to emit a fused autorelease of a return result.
1453 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1454                                                     llvm::Value *result) {
1455   // We must be immediately followed the cast.
1456   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1457   if (BB->empty()) return 0;
1458   if (&BB->back() != result) return 0;
1459 
1460   llvm::Type *resultType = result->getType();
1461 
1462   // result is in a BasicBlock and is therefore an Instruction.
1463   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1464 
1465   SmallVector<llvm::Instruction*,4> insnsToKill;
1466 
1467   // Look for:
1468   //  %generator = bitcast %type1* %generator2 to %type2*
1469   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1470     // We would have emitted this as a constant if the operand weren't
1471     // an Instruction.
1472     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1473 
1474     // Require the generator to be immediately followed by the cast.
1475     if (generator->getNextNode() != bitcast)
1476       return 0;
1477 
1478     insnsToKill.push_back(bitcast);
1479   }
1480 
1481   // Look for:
1482   //   %generator = call i8* @objc_retain(i8* %originalResult)
1483   // or
1484   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1485   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1486   if (!call) return 0;
1487 
1488   bool doRetainAutorelease;
1489 
1490   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1491     doRetainAutorelease = true;
1492   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1493                                           .objc_retainAutoreleasedReturnValue) {
1494     doRetainAutorelease = false;
1495 
1496     // If we emitted an assembly marker for this call (and the
1497     // ARCEntrypoints field should have been set if so), go looking
1498     // for that call.  If we can't find it, we can't do this
1499     // optimization.  But it should always be the immediately previous
1500     // instruction, unless we needed bitcasts around the call.
1501     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1502       llvm::Instruction *prev = call->getPrevNode();
1503       assert(prev);
1504       if (isa<llvm::BitCastInst>(prev)) {
1505         prev = prev->getPrevNode();
1506         assert(prev);
1507       }
1508       assert(isa<llvm::CallInst>(prev));
1509       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1510                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1511       insnsToKill.push_back(prev);
1512     }
1513   } else {
1514     return 0;
1515   }
1516 
1517   result = call->getArgOperand(0);
1518   insnsToKill.push_back(call);
1519 
1520   // Keep killing bitcasts, for sanity.  Note that we no longer care
1521   // about precise ordering as long as there's exactly one use.
1522   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1523     if (!bitcast->hasOneUse()) break;
1524     insnsToKill.push_back(bitcast);
1525     result = bitcast->getOperand(0);
1526   }
1527 
1528   // Delete all the unnecessary instructions, from latest to earliest.
1529   for (SmallVectorImpl<llvm::Instruction*>::iterator
1530          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1531     (*i)->eraseFromParent();
1532 
1533   // Do the fused retain/autorelease if we were asked to.
1534   if (doRetainAutorelease)
1535     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1536 
1537   // Cast back to the result type.
1538   return CGF.Builder.CreateBitCast(result, resultType);
1539 }
1540 
1541 /// If this is a +1 of the value of an immutable 'self', remove it.
1542 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1543                                           llvm::Value *result) {
1544   // This is only applicable to a method with an immutable 'self'.
1545   const ObjCMethodDecl *method =
1546     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1547   if (!method) return 0;
1548   const VarDecl *self = method->getSelfDecl();
1549   if (!self->getType().isConstQualified()) return 0;
1550 
1551   // Look for a retain call.
1552   llvm::CallInst *retainCall =
1553     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1554   if (!retainCall ||
1555       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1556     return 0;
1557 
1558   // Look for an ordinary load of 'self'.
1559   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1560   llvm::LoadInst *load =
1561     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1562   if (!load || load->isAtomic() || load->isVolatile() ||
1563       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1564     return 0;
1565 
1566   // Okay!  Burn it all down.  This relies for correctness on the
1567   // assumption that the retain is emitted as part of the return and
1568   // that thereafter everything is used "linearly".
1569   llvm::Type *resultType = result->getType();
1570   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1571   assert(retainCall->use_empty());
1572   retainCall->eraseFromParent();
1573   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1574 
1575   return CGF.Builder.CreateBitCast(load, resultType);
1576 }
1577 
1578 /// Emit an ARC autorelease of the result of a function.
1579 ///
1580 /// \return the value to actually return from the function
1581 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1582                                             llvm::Value *result) {
1583   // If we're returning 'self', kill the initial retain.  This is a
1584   // heuristic attempt to "encourage correctness" in the really unfortunate
1585   // case where we have a return of self during a dealloc and we desperately
1586   // need to avoid the possible autorelease.
1587   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1588     return self;
1589 
1590   // At -O0, try to emit a fused retain/autorelease.
1591   if (CGF.shouldUseFusedARCCalls())
1592     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1593       return fused;
1594 
1595   return CGF.EmitARCAutoreleaseReturnValue(result);
1596 }
1597 
1598 /// Heuristically search for a dominating store to the return-value slot.
1599 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1600   // If there are multiple uses of the return-value slot, just check
1601   // for something immediately preceding the IP.  Sometimes this can
1602   // happen with how we generate implicit-returns; it can also happen
1603   // with noreturn cleanups.
1604   if (!CGF.ReturnValue->hasOneUse()) {
1605     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1606     if (IP->empty()) return 0;
1607     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1608     if (!store) return 0;
1609     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1610     assert(!store->isAtomic() && !store->isVolatile()); // see below
1611     return store;
1612   }
1613 
1614   llvm::StoreInst *store =
1615     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1616   if (!store) return 0;
1617 
1618   // These aren't actually possible for non-coerced returns, and we
1619   // only care about non-coerced returns on this code path.
1620   assert(!store->isAtomic() && !store->isVolatile());
1621 
1622   // Now do a first-and-dirty dominance check: just walk up the
1623   // single-predecessors chain from the current insertion point.
1624   llvm::BasicBlock *StoreBB = store->getParent();
1625   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1626   while (IP != StoreBB) {
1627     if (!(IP = IP->getSinglePredecessor()))
1628       return 0;
1629   }
1630 
1631   // Okay, the store's basic block dominates the insertion point; we
1632   // can do our thing.
1633   return store;
1634 }
1635 
1636 /// Check whether 'this' argument of a callsite matches 'this' of the caller.
1637 static bool checkThisPointer(llvm::Value *ThisArg, llvm::Value *This) {
1638   if (ThisArg == This)
1639     return true;
1640   // Check whether ThisArg is a bitcast of This.
1641   llvm::BitCastInst *Bitcast;
1642   if ((Bitcast = dyn_cast<llvm::BitCastInst>(ThisArg)) &&
1643       Bitcast->getOperand(0) == This)
1644     return true;
1645   return false;
1646 }
1647 
1648 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1649                                          bool EmitRetDbgLoc) {
1650   // Functions with no result always return void.
1651   if (ReturnValue == 0) {
1652     Builder.CreateRetVoid();
1653     return;
1654   }
1655 
1656   llvm::DebugLoc RetDbgLoc;
1657   llvm::Value *RV = 0;
1658   QualType RetTy = FI.getReturnType();
1659   const ABIArgInfo &RetAI = FI.getReturnInfo();
1660 
1661   switch (RetAI.getKind()) {
1662   case ABIArgInfo::Indirect: {
1663     switch (getEvaluationKind(RetTy)) {
1664     case TEK_Complex: {
1665       ComplexPairTy RT =
1666         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy));
1667       EmitStoreOfComplex(RT,
1668                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1669                          /*isInit*/ true);
1670       break;
1671     }
1672     case TEK_Aggregate:
1673       // Do nothing; aggregrates get evaluated directly into the destination.
1674       break;
1675     case TEK_Scalar:
1676       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1677                         MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1678                         /*isInit*/ true);
1679       break;
1680     }
1681     break;
1682   }
1683 
1684   case ABIArgInfo::Extend:
1685   case ABIArgInfo::Direct:
1686     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1687         RetAI.getDirectOffset() == 0) {
1688       // The internal return value temp always will have pointer-to-return-type
1689       // type, just do a load.
1690 
1691       // If there is a dominating store to ReturnValue, we can elide
1692       // the load, zap the store, and usually zap the alloca.
1693       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1694         // Reuse the debug location from the store unless there is
1695         // cleanup code to be emitted between the store and return
1696         // instruction.
1697         if (EmitRetDbgLoc && !AutoreleaseResult)
1698           RetDbgLoc = SI->getDebugLoc();
1699         // Get the stored value and nuke the now-dead store.
1700         RV = SI->getValueOperand();
1701         SI->eraseFromParent();
1702 
1703         // If that was the only use of the return value, nuke it as well now.
1704         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1705           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1706           ReturnValue = 0;
1707         }
1708 
1709       // Otherwise, we have to do a simple load.
1710       } else {
1711         RV = Builder.CreateLoad(ReturnValue);
1712       }
1713     } else {
1714       llvm::Value *V = ReturnValue;
1715       // If the value is offset in memory, apply the offset now.
1716       if (unsigned Offs = RetAI.getDirectOffset()) {
1717         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1718         V = Builder.CreateConstGEP1_32(V, Offs);
1719         V = Builder.CreateBitCast(V,
1720                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1721       }
1722 
1723       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1724     }
1725 
1726     // In ARC, end functions that return a retainable type with a call
1727     // to objc_autoreleaseReturnValue.
1728     if (AutoreleaseResult) {
1729       assert(getLangOpts().ObjCAutoRefCount &&
1730              !FI.isReturnsRetained() &&
1731              RetTy->isObjCRetainableType());
1732       RV = emitAutoreleaseOfResult(*this, RV);
1733     }
1734 
1735     break;
1736 
1737   case ABIArgInfo::Ignore:
1738     break;
1739 
1740   case ABIArgInfo::Expand:
1741     llvm_unreachable("Invalid ABI kind for return argument");
1742   }
1743 
1744   // If this function returns 'this', the last instruction is a CallInst
1745   // that returns 'this', and 'this' argument of the CallInst points to
1746   // the same object as CXXThisValue, use the return value from the CallInst.
1747   // We will not need to keep 'this' alive through the callsite. It also enables
1748   // optimizations in the backend, such as tail call optimization.
1749   if (CalleeWithThisReturn && CGM.getCXXABI().HasThisReturn(CurGD)) {
1750     llvm::BasicBlock *IP = Builder.GetInsertBlock();
1751     llvm::CallInst *Callsite;
1752     if (!IP->empty() && (Callsite = dyn_cast<llvm::CallInst>(&IP->back())) &&
1753         Callsite->getCalledFunction() == CalleeWithThisReturn &&
1754         checkThisPointer(Callsite->getOperand(0), CXXThisValue))
1755       RV = Builder.CreateBitCast(Callsite, RetAI.getCoerceToType());
1756   }
1757   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1758   if (!RetDbgLoc.isUnknown())
1759     Ret->setDebugLoc(RetDbgLoc);
1760 }
1761 
1762 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1763                                           const VarDecl *param) {
1764   // StartFunction converted the ABI-lowered parameter(s) into a
1765   // local alloca.  We need to turn that into an r-value suitable
1766   // for EmitCall.
1767   llvm::Value *local = GetAddrOfLocalVar(param);
1768 
1769   QualType type = param->getType();
1770 
1771   // For the most part, we just need to load the alloca, except:
1772   // 1) aggregate r-values are actually pointers to temporaries, and
1773   // 2) references to non-scalars are pointers directly to the aggregate.
1774   // I don't know why references to scalars are different here.
1775   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1776     if (!hasScalarEvaluationKind(ref->getPointeeType()))
1777       return args.add(RValue::getAggregate(local), type);
1778 
1779     // Locals which are references to scalars are represented
1780     // with allocas holding the pointer.
1781     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1782   }
1783 
1784   args.add(convertTempToRValue(local, type), type);
1785 }
1786 
1787 static bool isProvablyNull(llvm::Value *addr) {
1788   return isa<llvm::ConstantPointerNull>(addr);
1789 }
1790 
1791 static bool isProvablyNonNull(llvm::Value *addr) {
1792   return isa<llvm::AllocaInst>(addr);
1793 }
1794 
1795 /// Emit the actual writing-back of a writeback.
1796 static void emitWriteback(CodeGenFunction &CGF,
1797                           const CallArgList::Writeback &writeback) {
1798   const LValue &srcLV = writeback.Source;
1799   llvm::Value *srcAddr = srcLV.getAddress();
1800   assert(!isProvablyNull(srcAddr) &&
1801          "shouldn't have writeback for provably null argument");
1802 
1803   llvm::BasicBlock *contBB = 0;
1804 
1805   // If the argument wasn't provably non-null, we need to null check
1806   // before doing the store.
1807   bool provablyNonNull = isProvablyNonNull(srcAddr);
1808   if (!provablyNonNull) {
1809     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1810     contBB = CGF.createBasicBlock("icr.done");
1811 
1812     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1813     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1814     CGF.EmitBlock(writebackBB);
1815   }
1816 
1817   // Load the value to writeback.
1818   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1819 
1820   // Cast it back, in case we're writing an id to a Foo* or something.
1821   value = CGF.Builder.CreateBitCast(value,
1822                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1823                             "icr.writeback-cast");
1824 
1825   // Perform the writeback.
1826 
1827   // If we have a "to use" value, it's something we need to emit a use
1828   // of.  This has to be carefully threaded in: if it's done after the
1829   // release it's potentially undefined behavior (and the optimizer
1830   // will ignore it), and if it happens before the retain then the
1831   // optimizer could move the release there.
1832   if (writeback.ToUse) {
1833     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
1834 
1835     // Retain the new value.  No need to block-copy here:  the block's
1836     // being passed up the stack.
1837     value = CGF.EmitARCRetainNonBlock(value);
1838 
1839     // Emit the intrinsic use here.
1840     CGF.EmitARCIntrinsicUse(writeback.ToUse);
1841 
1842     // Load the old value (primitively).
1843     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV);
1844 
1845     // Put the new value in place (primitively).
1846     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
1847 
1848     // Release the old value.
1849     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
1850 
1851   // Otherwise, we can just do a normal lvalue store.
1852   } else {
1853     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
1854   }
1855 
1856   // Jump to the continuation block.
1857   if (!provablyNonNull)
1858     CGF.EmitBlock(contBB);
1859 }
1860 
1861 static void emitWritebacks(CodeGenFunction &CGF,
1862                            const CallArgList &args) {
1863   for (CallArgList::writeback_iterator
1864          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1865     emitWriteback(CGF, *i);
1866 }
1867 
1868 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
1869                                             const CallArgList &CallArgs) {
1870   assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee());
1871   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
1872     CallArgs.getCleanupsToDeactivate();
1873   // Iterate in reverse to increase the likelihood of popping the cleanup.
1874   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
1875          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
1876     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
1877     I->IsActiveIP->eraseFromParent();
1878   }
1879 }
1880 
1881 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
1882   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
1883     if (uop->getOpcode() == UO_AddrOf)
1884       return uop->getSubExpr();
1885   return 0;
1886 }
1887 
1888 /// Emit an argument that's being passed call-by-writeback.  That is,
1889 /// we are passing the address of
1890 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1891                              const ObjCIndirectCopyRestoreExpr *CRE) {
1892   LValue srcLV;
1893 
1894   // Make an optimistic effort to emit the address as an l-value.
1895   // This can fail if the the argument expression is more complicated.
1896   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
1897     srcLV = CGF.EmitLValue(lvExpr);
1898 
1899   // Otherwise, just emit it as a scalar.
1900   } else {
1901     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1902 
1903     QualType srcAddrType =
1904       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1905     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
1906   }
1907   llvm::Value *srcAddr = srcLV.getAddress();
1908 
1909   // The dest and src types don't necessarily match in LLVM terms
1910   // because of the crazy ObjC compatibility rules.
1911 
1912   llvm::PointerType *destType =
1913     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1914 
1915   // If the address is a constant null, just pass the appropriate null.
1916   if (isProvablyNull(srcAddr)) {
1917     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1918              CRE->getType());
1919     return;
1920   }
1921 
1922   // Create the temporary.
1923   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1924                                            "icr.temp");
1925   // Loading an l-value can introduce a cleanup if the l-value is __weak,
1926   // and that cleanup will be conditional if we can't prove that the l-value
1927   // isn't null, so we need to register a dominating point so that the cleanups
1928   // system will make valid IR.
1929   CodeGenFunction::ConditionalEvaluation condEval(CGF);
1930 
1931   // Zero-initialize it if we're not doing a copy-initialization.
1932   bool shouldCopy = CRE->shouldCopy();
1933   if (!shouldCopy) {
1934     llvm::Value *null =
1935       llvm::ConstantPointerNull::get(
1936         cast<llvm::PointerType>(destType->getElementType()));
1937     CGF.Builder.CreateStore(null, temp);
1938   }
1939 
1940   llvm::BasicBlock *contBB = 0;
1941   llvm::BasicBlock *originBB = 0;
1942 
1943   // If the address is *not* known to be non-null, we need to switch.
1944   llvm::Value *finalArgument;
1945 
1946   bool provablyNonNull = isProvablyNonNull(srcAddr);
1947   if (provablyNonNull) {
1948     finalArgument = temp;
1949   } else {
1950     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1951 
1952     finalArgument = CGF.Builder.CreateSelect(isNull,
1953                                    llvm::ConstantPointerNull::get(destType),
1954                                              temp, "icr.argument");
1955 
1956     // If we need to copy, then the load has to be conditional, which
1957     // means we need control flow.
1958     if (shouldCopy) {
1959       originBB = CGF.Builder.GetInsertBlock();
1960       contBB = CGF.createBasicBlock("icr.cont");
1961       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1962       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1963       CGF.EmitBlock(copyBB);
1964       condEval.begin(CGF);
1965     }
1966   }
1967 
1968   llvm::Value *valueToUse = 0;
1969 
1970   // Perform a copy if necessary.
1971   if (shouldCopy) {
1972     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1973     assert(srcRV.isScalar());
1974 
1975     llvm::Value *src = srcRV.getScalarVal();
1976     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1977                                     "icr.cast");
1978 
1979     // Use an ordinary store, not a store-to-lvalue.
1980     CGF.Builder.CreateStore(src, temp);
1981 
1982     // If optimization is enabled, and the value was held in a
1983     // __strong variable, we need to tell the optimizer that this
1984     // value has to stay alive until we're doing the store back.
1985     // This is because the temporary is effectively unretained,
1986     // and so otherwise we can violate the high-level semantics.
1987     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1988         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
1989       valueToUse = src;
1990     }
1991   }
1992 
1993   // Finish the control flow if we needed it.
1994   if (shouldCopy && !provablyNonNull) {
1995     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
1996     CGF.EmitBlock(contBB);
1997 
1998     // Make a phi for the value to intrinsically use.
1999     if (valueToUse) {
2000       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2001                                                       "icr.to-use");
2002       phiToUse->addIncoming(valueToUse, copyBB);
2003       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2004                             originBB);
2005       valueToUse = phiToUse;
2006     }
2007 
2008     condEval.end(CGF);
2009   }
2010 
2011   args.addWriteback(srcLV, temp, valueToUse);
2012   args.add(RValue::get(finalArgument), CRE->getType());
2013 }
2014 
2015 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2016                                   QualType type) {
2017   if (const ObjCIndirectCopyRestoreExpr *CRE
2018         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2019     assert(getLangOpts().ObjCAutoRefCount);
2020     assert(getContext().hasSameType(E->getType(), type));
2021     return emitWritebackArg(*this, args, CRE);
2022   }
2023 
2024   assert(type->isReferenceType() == E->isGLValue() &&
2025          "reference binding to unmaterialized r-value!");
2026 
2027   if (E->isGLValue()) {
2028     assert(E->getObjectKind() == OK_Ordinary);
2029     return args.add(EmitReferenceBindingToExpr(E), type);
2030   }
2031 
2032   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2033 
2034   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2035   // However, we still have to push an EH-only cleanup in case we unwind before
2036   // we make it to the call.
2037   if (HasAggregateEvalKind &&
2038       CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
2039     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2040     if (RD && RD->hasNonTrivialDestructor()) {
2041       AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp");
2042       Slot.setExternallyDestructed();
2043       EmitAggExpr(E, Slot);
2044       RValue RV = Slot.asRValue();
2045       args.add(RV, type);
2046 
2047       pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject,
2048                   /*useEHCleanupForArray*/ true);
2049       // This unreachable is a temporary marker which will be removed later.
2050       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2051       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2052       return;
2053     }
2054   }
2055 
2056   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2057       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2058     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2059     assert(L.isSimple());
2060     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2061       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2062     } else {
2063       // We can't represent a misaligned lvalue in the CallArgList, so copy
2064       // to an aligned temporary now.
2065       llvm::Value *tmp = CreateMemTemp(type);
2066       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2067                         L.getAlignment());
2068       args.add(RValue::getAggregate(tmp), type);
2069     }
2070     return;
2071   }
2072 
2073   args.add(EmitAnyExprToTemp(E), type);
2074 }
2075 
2076 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2077 // optimizer it can aggressively ignore unwind edges.
2078 void
2079 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2080   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2081       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2082     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2083                       CGM.getNoObjCARCExceptionsMetadata());
2084 }
2085 
2086 /// Emits a call to the given no-arguments nounwind runtime function.
2087 llvm::CallInst *
2088 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2089                                          const llvm::Twine &name) {
2090   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2091 }
2092 
2093 /// Emits a call to the given nounwind runtime function.
2094 llvm::CallInst *
2095 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2096                                          ArrayRef<llvm::Value*> args,
2097                                          const llvm::Twine &name) {
2098   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2099   call->setDoesNotThrow();
2100   return call;
2101 }
2102 
2103 /// Emits a simple call (never an invoke) to the given no-arguments
2104 /// runtime function.
2105 llvm::CallInst *
2106 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2107                                  const llvm::Twine &name) {
2108   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2109 }
2110 
2111 /// Emits a simple call (never an invoke) to the given runtime
2112 /// function.
2113 llvm::CallInst *
2114 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2115                                  ArrayRef<llvm::Value*> args,
2116                                  const llvm::Twine &name) {
2117   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2118   call->setCallingConv(getRuntimeCC());
2119   return call;
2120 }
2121 
2122 /// Emits a call or invoke to the given noreturn runtime function.
2123 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2124                                                ArrayRef<llvm::Value*> args) {
2125   if (getInvokeDest()) {
2126     llvm::InvokeInst *invoke =
2127       Builder.CreateInvoke(callee,
2128                            getUnreachableBlock(),
2129                            getInvokeDest(),
2130                            args);
2131     invoke->setDoesNotReturn();
2132     invoke->setCallingConv(getRuntimeCC());
2133   } else {
2134     llvm::CallInst *call = Builder.CreateCall(callee, args);
2135     call->setDoesNotReturn();
2136     call->setCallingConv(getRuntimeCC());
2137     Builder.CreateUnreachable();
2138   }
2139 }
2140 
2141 /// Emits a call or invoke instruction to the given nullary runtime
2142 /// function.
2143 llvm::CallSite
2144 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2145                                          const Twine &name) {
2146   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2147 }
2148 
2149 /// Emits a call or invoke instruction to the given runtime function.
2150 llvm::CallSite
2151 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2152                                          ArrayRef<llvm::Value*> args,
2153                                          const Twine &name) {
2154   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2155   callSite.setCallingConv(getRuntimeCC());
2156   return callSite;
2157 }
2158 
2159 llvm::CallSite
2160 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2161                                   const Twine &Name) {
2162   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2163 }
2164 
2165 /// Emits a call or invoke instruction to the given function, depending
2166 /// on the current state of the EH stack.
2167 llvm::CallSite
2168 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2169                                   ArrayRef<llvm::Value *> Args,
2170                                   const Twine &Name) {
2171   llvm::BasicBlock *InvokeDest = getInvokeDest();
2172 
2173   llvm::Instruction *Inst;
2174   if (!InvokeDest)
2175     Inst = Builder.CreateCall(Callee, Args, Name);
2176   else {
2177     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2178     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2179     EmitBlock(ContBB);
2180   }
2181 
2182   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2183   // optimizer it can aggressively ignore unwind edges.
2184   if (CGM.getLangOpts().ObjCAutoRefCount)
2185     AddObjCARCExceptionMetadata(Inst);
2186 
2187   return Inst;
2188 }
2189 
2190 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2191                             llvm::FunctionType *FTy) {
2192   if (ArgNo < FTy->getNumParams())
2193     assert(Elt->getType() == FTy->getParamType(ArgNo));
2194   else
2195     assert(FTy->isVarArg());
2196   ++ArgNo;
2197 }
2198 
2199 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2200                                        SmallVector<llvm::Value*,16> &Args,
2201                                        llvm::FunctionType *IRFuncTy) {
2202   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2203     unsigned NumElts = AT->getSize().getZExtValue();
2204     QualType EltTy = AT->getElementType();
2205     llvm::Value *Addr = RV.getAggregateAddr();
2206     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2207       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2208       RValue EltRV = convertTempToRValue(EltAddr, EltTy);
2209       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2210     }
2211   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2212     RecordDecl *RD = RT->getDecl();
2213     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2214     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2215 
2216     if (RD->isUnion()) {
2217       const FieldDecl *LargestFD = 0;
2218       CharUnits UnionSize = CharUnits::Zero();
2219 
2220       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2221            i != e; ++i) {
2222         const FieldDecl *FD = *i;
2223         assert(!FD->isBitField() &&
2224                "Cannot expand structure with bit-field members.");
2225         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2226         if (UnionSize < FieldSize) {
2227           UnionSize = FieldSize;
2228           LargestFD = FD;
2229         }
2230       }
2231       if (LargestFD) {
2232         RValue FldRV = EmitRValueForField(LV, LargestFD);
2233         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2234       }
2235     } else {
2236       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2237            i != e; ++i) {
2238         FieldDecl *FD = *i;
2239 
2240         RValue FldRV = EmitRValueForField(LV, FD);
2241         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2242       }
2243     }
2244   } else if (Ty->isAnyComplexType()) {
2245     ComplexPairTy CV = RV.getComplexVal();
2246     Args.push_back(CV.first);
2247     Args.push_back(CV.second);
2248   } else {
2249     assert(RV.isScalar() &&
2250            "Unexpected non-scalar rvalue during struct expansion.");
2251 
2252     // Insert a bitcast as needed.
2253     llvm::Value *V = RV.getScalarVal();
2254     if (Args.size() < IRFuncTy->getNumParams() &&
2255         V->getType() != IRFuncTy->getParamType(Args.size()))
2256       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2257 
2258     Args.push_back(V);
2259   }
2260 }
2261 
2262 
2263 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2264                                  llvm::Value *Callee,
2265                                  ReturnValueSlot ReturnValue,
2266                                  const CallArgList &CallArgs,
2267                                  const Decl *TargetDecl,
2268                                  llvm::Instruction **callOrInvoke) {
2269   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2270   SmallVector<llvm::Value*, 16> Args;
2271 
2272   // Handle struct-return functions by passing a pointer to the
2273   // location that we would like to return into.
2274   QualType RetTy = CallInfo.getReturnType();
2275   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2276 
2277   // IRArgNo - Keep track of the argument number in the callee we're looking at.
2278   unsigned IRArgNo = 0;
2279   llvm::FunctionType *IRFuncTy =
2280     cast<llvm::FunctionType>(
2281                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2282 
2283   // If the call returns a temporary with struct return, create a temporary
2284   // alloca to hold the result, unless one is given to us.
2285   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
2286     llvm::Value *Value = ReturnValue.getValue();
2287     if (!Value)
2288       Value = CreateMemTemp(RetTy);
2289     Args.push_back(Value);
2290     checkArgMatches(Value, IRArgNo, IRFuncTy);
2291   }
2292 
2293   assert(CallInfo.arg_size() == CallArgs.size() &&
2294          "Mismatch between function signature & arguments.");
2295   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2296   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2297        I != E; ++I, ++info_it) {
2298     const ABIArgInfo &ArgInfo = info_it->info;
2299     RValue RV = I->RV;
2300 
2301     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2302 
2303     // Insert a padding argument to ensure proper alignment.
2304     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2305       Args.push_back(llvm::UndefValue::get(PaddingType));
2306       ++IRArgNo;
2307     }
2308 
2309     switch (ArgInfo.getKind()) {
2310     case ABIArgInfo::Indirect: {
2311       if (RV.isScalar() || RV.isComplex()) {
2312         // Make a temporary alloca to pass the argument.
2313         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2314         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2315           AI->setAlignment(ArgInfo.getIndirectAlign());
2316         Args.push_back(AI);
2317 
2318         LValue argLV =
2319           MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2320 
2321         if (RV.isScalar())
2322           EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
2323         else
2324           EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
2325 
2326         // Validate argument match.
2327         checkArgMatches(AI, IRArgNo, IRFuncTy);
2328       } else {
2329         // We want to avoid creating an unnecessary temporary+copy here;
2330         // however, we need one in three cases:
2331         // 1. If the argument is not byval, and we are required to copy the
2332         //    source.  (This case doesn't occur on any common architecture.)
2333         // 2. If the argument is byval, RV is not sufficiently aligned, and
2334         //    we cannot force it to be sufficiently aligned.
2335         // 3. If the argument is byval, but RV is located in an address space
2336         //    different than that of the argument (0).
2337         llvm::Value *Addr = RV.getAggregateAddr();
2338         unsigned Align = ArgInfo.getIndirectAlign();
2339         const llvm::DataLayout *TD = &CGM.getDataLayout();
2340         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2341         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2342           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2343         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2344             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2345              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2346              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2347           // Create an aligned temporary, and copy to it.
2348           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2349           if (Align > AI->getAlignment())
2350             AI->setAlignment(Align);
2351           Args.push_back(AI);
2352           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2353 
2354           // Validate argument match.
2355           checkArgMatches(AI, IRArgNo, IRFuncTy);
2356         } else {
2357           // Skip the extra memcpy call.
2358           Args.push_back(Addr);
2359 
2360           // Validate argument match.
2361           checkArgMatches(Addr, IRArgNo, IRFuncTy);
2362         }
2363       }
2364       break;
2365     }
2366 
2367     case ABIArgInfo::Ignore:
2368       break;
2369 
2370     case ABIArgInfo::Extend:
2371     case ABIArgInfo::Direct: {
2372       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2373           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2374           ArgInfo.getDirectOffset() == 0) {
2375         llvm::Value *V;
2376         if (RV.isScalar())
2377           V = RV.getScalarVal();
2378         else
2379           V = Builder.CreateLoad(RV.getAggregateAddr());
2380 
2381         // If the argument doesn't match, perform a bitcast to coerce it.  This
2382         // can happen due to trivial type mismatches.
2383         if (IRArgNo < IRFuncTy->getNumParams() &&
2384             V->getType() != IRFuncTy->getParamType(IRArgNo))
2385           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2386         Args.push_back(V);
2387 
2388         checkArgMatches(V, IRArgNo, IRFuncTy);
2389         break;
2390       }
2391 
2392       // FIXME: Avoid the conversion through memory if possible.
2393       llvm::Value *SrcPtr;
2394       if (RV.isScalar() || RV.isComplex()) {
2395         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2396         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2397         if (RV.isScalar()) {
2398           EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
2399         } else {
2400           EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
2401         }
2402       } else
2403         SrcPtr = RV.getAggregateAddr();
2404 
2405       // If the value is offset in memory, apply the offset now.
2406       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2407         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2408         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2409         SrcPtr = Builder.CreateBitCast(SrcPtr,
2410                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2411 
2412       }
2413 
2414       // If the coerce-to type is a first class aggregate, we flatten it and
2415       // pass the elements. Either way is semantically identical, but fast-isel
2416       // and the optimizer generally likes scalar values better than FCAs.
2417       if (llvm::StructType *STy =
2418             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2419         llvm::Type *SrcTy =
2420           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2421         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2422         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2423 
2424         // If the source type is smaller than the destination type of the
2425         // coerce-to logic, copy the source value into a temp alloca the size
2426         // of the destination type to allow loading all of it. The bits past
2427         // the source value are left undef.
2428         if (SrcSize < DstSize) {
2429           llvm::AllocaInst *TempAlloca
2430             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2431           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2432           SrcPtr = TempAlloca;
2433         } else {
2434           SrcPtr = Builder.CreateBitCast(SrcPtr,
2435                                          llvm::PointerType::getUnqual(STy));
2436         }
2437 
2438         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2439           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2440           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2441           // We don't know what we're loading from.
2442           LI->setAlignment(1);
2443           Args.push_back(LI);
2444 
2445           // Validate argument match.
2446           checkArgMatches(LI, IRArgNo, IRFuncTy);
2447         }
2448       } else {
2449         // In the simple case, just pass the coerced loaded value.
2450         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2451                                          *this));
2452 
2453         // Validate argument match.
2454         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2455       }
2456 
2457       break;
2458     }
2459 
2460     case ABIArgInfo::Expand:
2461       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2462       IRArgNo = Args.size();
2463       break;
2464     }
2465   }
2466 
2467   if (!CallArgs.getCleanupsToDeactivate().empty())
2468     deactivateArgCleanupsBeforeCall(*this, CallArgs);
2469 
2470   // If the callee is a bitcast of a function to a varargs pointer to function
2471   // type, check to see if we can remove the bitcast.  This handles some cases
2472   // with unprototyped functions.
2473   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2474     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2475       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2476       llvm::FunctionType *CurFT =
2477         cast<llvm::FunctionType>(CurPT->getElementType());
2478       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2479 
2480       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2481           ActualFT->getReturnType() == CurFT->getReturnType() &&
2482           ActualFT->getNumParams() == CurFT->getNumParams() &&
2483           ActualFT->getNumParams() == Args.size() &&
2484           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2485         bool ArgsMatch = true;
2486         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2487           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2488             ArgsMatch = false;
2489             break;
2490           }
2491 
2492         // Strip the cast if we can get away with it.  This is a nice cleanup,
2493         // but also allows us to inline the function at -O0 if it is marked
2494         // always_inline.
2495         if (ArgsMatch)
2496           Callee = CalleeF;
2497       }
2498     }
2499 
2500   unsigned CallingConv;
2501   CodeGen::AttributeListType AttributeList;
2502   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2503                              CallingConv, true);
2504   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2505                                                      AttributeList);
2506 
2507   llvm::BasicBlock *InvokeDest = 0;
2508   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2509                           llvm::Attribute::NoUnwind))
2510     InvokeDest = getInvokeDest();
2511 
2512   llvm::CallSite CS;
2513   if (!InvokeDest) {
2514     CS = Builder.CreateCall(Callee, Args);
2515   } else {
2516     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2517     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2518     EmitBlock(Cont);
2519   }
2520   if (callOrInvoke)
2521     *callOrInvoke = CS.getInstruction();
2522 
2523   CS.setAttributes(Attrs);
2524   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2525 
2526   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2527   // optimizer it can aggressively ignore unwind edges.
2528   if (CGM.getLangOpts().ObjCAutoRefCount)
2529     AddObjCARCExceptionMetadata(CS.getInstruction());
2530 
2531   // If the call doesn't return, finish the basic block and clear the
2532   // insertion point; this allows the rest of IRgen to discard
2533   // unreachable code.
2534   if (CS.doesNotReturn()) {
2535     Builder.CreateUnreachable();
2536     Builder.ClearInsertionPoint();
2537 
2538     // FIXME: For now, emit a dummy basic block because expr emitters in
2539     // generally are not ready to handle emitting expressions at unreachable
2540     // points.
2541     EnsureInsertPoint();
2542 
2543     // Return a reasonable RValue.
2544     return GetUndefRValue(RetTy);
2545   }
2546 
2547   llvm::Instruction *CI = CS.getInstruction();
2548   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2549     CI->setName("call");
2550 
2551   // Emit any writebacks immediately.  Arguably this should happen
2552   // after any return-value munging.
2553   if (CallArgs.hasWritebacks())
2554     emitWritebacks(*this, CallArgs);
2555 
2556   switch (RetAI.getKind()) {
2557   case ABIArgInfo::Indirect:
2558     return convertTempToRValue(Args[0], RetTy);
2559 
2560   case ABIArgInfo::Ignore:
2561     // If we are ignoring an argument that had a result, make sure to
2562     // construct the appropriate return value for our caller.
2563     return GetUndefRValue(RetTy);
2564 
2565   case ABIArgInfo::Extend:
2566   case ABIArgInfo::Direct: {
2567     llvm::Type *RetIRTy = ConvertType(RetTy);
2568     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2569       switch (getEvaluationKind(RetTy)) {
2570       case TEK_Complex: {
2571         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2572         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2573         return RValue::getComplex(std::make_pair(Real, Imag));
2574       }
2575       case TEK_Aggregate: {
2576         llvm::Value *DestPtr = ReturnValue.getValue();
2577         bool DestIsVolatile = ReturnValue.isVolatile();
2578 
2579         if (!DestPtr) {
2580           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2581           DestIsVolatile = false;
2582         }
2583         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2584         return RValue::getAggregate(DestPtr);
2585       }
2586       case TEK_Scalar: {
2587         // If the argument doesn't match, perform a bitcast to coerce it.  This
2588         // can happen due to trivial type mismatches.
2589         llvm::Value *V = CI;
2590         if (V->getType() != RetIRTy)
2591           V = Builder.CreateBitCast(V, RetIRTy);
2592         return RValue::get(V);
2593       }
2594       }
2595       llvm_unreachable("bad evaluation kind");
2596     }
2597 
2598     llvm::Value *DestPtr = ReturnValue.getValue();
2599     bool DestIsVolatile = ReturnValue.isVolatile();
2600 
2601     if (!DestPtr) {
2602       DestPtr = CreateMemTemp(RetTy, "coerce");
2603       DestIsVolatile = false;
2604     }
2605 
2606     // If the value is offset in memory, apply the offset now.
2607     llvm::Value *StorePtr = DestPtr;
2608     if (unsigned Offs = RetAI.getDirectOffset()) {
2609       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2610       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2611       StorePtr = Builder.CreateBitCast(StorePtr,
2612                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2613     }
2614     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2615 
2616     return convertTempToRValue(DestPtr, RetTy);
2617   }
2618 
2619   case ABIArgInfo::Expand:
2620     llvm_unreachable("Invalid ABI kind for return argument");
2621   }
2622 
2623   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2624 }
2625 
2626 /* VarArg handling */
2627 
2628 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2629   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2630 }
2631