1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/MC/SubtargetFeature.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 /***/
37 
38 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
39   switch (CC) {
40   default: return llvm::CallingConv::C;
41   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
42   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
43   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
44   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
45   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
46   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
47   // TODO: add support for CC_X86Pascal to llvm
48   }
49 }
50 
51 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
52 /// qualification.
53 /// FIXME: address space qualification?
54 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
55   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
56   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
57 }
58 
59 /// Returns the canonical formal type of the given C++ method.
60 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
61   return MD->getType()->getCanonicalTypeUnqualified()
62            .getAs<FunctionProtoType>();
63 }
64 
65 /// Returns the "extra-canonicalized" return type, which discards
66 /// qualifiers on the return type.  Codegen doesn't care about them,
67 /// and it makes ABI code a little easier to be able to assume that
68 /// all parameter and return types are top-level unqualified.
69 static CanQualType GetReturnType(QualType RetTy) {
70   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
71 }
72 
73 /// Arrange the argument and result information for a value of the given
74 /// unprototyped freestanding function type.
75 const CGFunctionInfo &
76 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
77   // When translating an unprototyped function type, always use a
78   // variadic type.
79   return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
80                                  None, FTNP->getExtInfo(), RequiredArgs(0));
81 }
82 
83 /// Arrange the LLVM function layout for a value of the given function
84 /// type, on top of any implicit parameters already stored.  Use the
85 /// given ExtInfo instead of the ExtInfo from the function type.
86 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
87                                        SmallVectorImpl<CanQualType> &prefix,
88                                              CanQual<FunctionProtoType> FTP,
89                                               FunctionType::ExtInfo extInfo) {
90   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
91   // FIXME: Kill copy.
92   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
93     prefix.push_back(FTP->getArgType(i));
94   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
95   return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
96 }
97 
98 /// Arrange the argument and result information for a free function (i.e.
99 /// not a C++ or ObjC instance method) of the given type.
100 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
101                                       SmallVectorImpl<CanQualType> &prefix,
102                                             CanQual<FunctionProtoType> FTP) {
103   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
104 }
105 
106 /// Given the formal ext-info of a C++ instance method, adjust it
107 /// according to the C++ ABI in effect.
108 static void adjustCXXMethodInfo(CodeGenTypes &CGT,
109                                 FunctionType::ExtInfo &extInfo,
110                                 bool isVariadic) {
111   if (extInfo.getCC() == CC_Default) {
112     CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
113     extInfo = extInfo.withCallingConv(CC);
114   }
115 }
116 
117 /// Arrange the argument and result information for a free function (i.e.
118 /// not a C++ or ObjC instance method) of the given type.
119 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
120                                       SmallVectorImpl<CanQualType> &prefix,
121                                             CanQual<FunctionProtoType> FTP) {
122   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
123   adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
124   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
125 }
126 
127 /// Arrange the argument and result information for a value of the
128 /// given freestanding function type.
129 const CGFunctionInfo &
130 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
131   SmallVector<CanQualType, 16> argTypes;
132   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
133 }
134 
135 static CallingConv getCallingConventionForDecl(const Decl *D) {
136   // Set the appropriate calling convention for the Function.
137   if (D->hasAttr<StdCallAttr>())
138     return CC_X86StdCall;
139 
140   if (D->hasAttr<FastCallAttr>())
141     return CC_X86FastCall;
142 
143   if (D->hasAttr<ThisCallAttr>())
144     return CC_X86ThisCall;
145 
146   if (D->hasAttr<PascalAttr>())
147     return CC_X86Pascal;
148 
149   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
150     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
151 
152   if (D->hasAttr<PnaclCallAttr>())
153     return CC_PnaclCall;
154 
155   if (D->hasAttr<IntelOclBiccAttr>())
156     return CC_IntelOclBicc;
157 
158   return CC_C;
159 }
160 
161 /// Arrange the argument and result information for a call to an
162 /// unknown C++ non-static member function of the given abstract type.
163 /// The member function must be an ordinary function, i.e. not a
164 /// constructor or destructor.
165 const CGFunctionInfo &
166 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
167                                    const FunctionProtoType *FTP) {
168   SmallVector<CanQualType, 16> argTypes;
169 
170   // Add the 'this' pointer.
171   argTypes.push_back(GetThisType(Context, RD));
172 
173   return ::arrangeCXXMethodType(*this, argTypes,
174               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
175 }
176 
177 /// Arrange the argument and result information for a declaration or
178 /// definition of the given C++ non-static member function.  The
179 /// member function must be an ordinary function, i.e. not a
180 /// constructor or destructor.
181 const CGFunctionInfo &
182 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
183   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
184   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
185 
186   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
187 
188   if (MD->isInstance()) {
189     // The abstract case is perfectly fine.
190     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
191   }
192 
193   return arrangeFreeFunctionType(prototype);
194 }
195 
196 /// Arrange the argument and result information for a declaration
197 /// or definition to the given constructor variant.
198 const CGFunctionInfo &
199 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
200                                                CXXCtorType ctorKind) {
201   SmallVector<CanQualType, 16> argTypes;
202   argTypes.push_back(GetThisType(Context, D->getParent()));
203 
204   GlobalDecl GD(D, ctorKind);
205   CanQualType resultType =
206     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
207 
208   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
209 
210   CanQual<FunctionProtoType> FTP = GetFormalType(D);
211 
212   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
213 
214   // Add the formal parameters.
215   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
216     argTypes.push_back(FTP->getArgType(i));
217 
218   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
219   adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
220   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
221 }
222 
223 /// Arrange the argument and result information for a declaration,
224 /// definition, or call to the given destructor variant.  It so
225 /// happens that all three cases produce the same information.
226 const CGFunctionInfo &
227 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
228                                    CXXDtorType dtorKind) {
229   SmallVector<CanQualType, 2> argTypes;
230   argTypes.push_back(GetThisType(Context, D->getParent()));
231 
232   GlobalDecl GD(D, dtorKind);
233   CanQualType resultType =
234     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
235 
236   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
237 
238   CanQual<FunctionProtoType> FTP = GetFormalType(D);
239   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
240   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
241 
242   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
243   adjustCXXMethodInfo(*this, extInfo, false);
244   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
245                                  RequiredArgs::All);
246 }
247 
248 /// Arrange the argument and result information for the declaration or
249 /// definition of the given function.
250 const CGFunctionInfo &
251 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
252   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
253     if (MD->isInstance())
254       return arrangeCXXMethodDeclaration(MD);
255 
256   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
257 
258   assert(isa<FunctionType>(FTy));
259 
260   // When declaring a function without a prototype, always use a
261   // non-variadic type.
262   if (isa<FunctionNoProtoType>(FTy)) {
263     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
264     return arrangeLLVMFunctionInfo(noProto->getResultType(), None,
265                                    noProto->getExtInfo(), RequiredArgs::All);
266   }
267 
268   assert(isa<FunctionProtoType>(FTy));
269   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
270 }
271 
272 /// Arrange the argument and result information for the declaration or
273 /// definition of an Objective-C method.
274 const CGFunctionInfo &
275 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
276   // It happens that this is the same as a call with no optional
277   // arguments, except also using the formal 'self' type.
278   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
279 }
280 
281 /// Arrange the argument and result information for the function type
282 /// through which to perform a send to the given Objective-C method,
283 /// using the given receiver type.  The receiver type is not always
284 /// the 'self' type of the method or even an Objective-C pointer type.
285 /// This is *not* the right method for actually performing such a
286 /// message send, due to the possibility of optional arguments.
287 const CGFunctionInfo &
288 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
289                                               QualType receiverType) {
290   SmallVector<CanQualType, 16> argTys;
291   argTys.push_back(Context.getCanonicalParamType(receiverType));
292   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
293   // FIXME: Kill copy?
294   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
295          e = MD->param_end(); i != e; ++i) {
296     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
297   }
298 
299   FunctionType::ExtInfo einfo;
300   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
301 
302   if (getContext().getLangOpts().ObjCAutoRefCount &&
303       MD->hasAttr<NSReturnsRetainedAttr>())
304     einfo = einfo.withProducesResult(true);
305 
306   RequiredArgs required =
307     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
308 
309   return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
310                                  einfo, required);
311 }
312 
313 const CGFunctionInfo &
314 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
315   // FIXME: Do we need to handle ObjCMethodDecl?
316   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
317 
318   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
319     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
320 
321   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
322     return arrangeCXXDestructor(DD, GD.getDtorType());
323 
324   return arrangeFunctionDeclaration(FD);
325 }
326 
327 /// Arrange a call as unto a free function, except possibly with an
328 /// additional number of formal parameters considered required.
329 static const CGFunctionInfo &
330 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
331                             const CallArgList &args,
332                             const FunctionType *fnType,
333                             unsigned numExtraRequiredArgs) {
334   assert(args.size() >= numExtraRequiredArgs);
335 
336   // In most cases, there are no optional arguments.
337   RequiredArgs required = RequiredArgs::All;
338 
339   // If we have a variadic prototype, the required arguments are the
340   // extra prefix plus the arguments in the prototype.
341   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
342     if (proto->isVariadic())
343       required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
344 
345   // If we don't have a prototype at all, but we're supposed to
346   // explicitly use the variadic convention for unprototyped calls,
347   // treat all of the arguments as required but preserve the nominal
348   // possibility of variadics.
349   } else if (CGT.CGM.getTargetCodeGenInfo()
350                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
351     required = RequiredArgs(args.size());
352   }
353 
354   return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
355                                      fnType->getExtInfo(), required);
356 }
357 
358 /// Figure out the rules for calling a function with the given formal
359 /// type using the given arguments.  The arguments are necessary
360 /// because the function might be unprototyped, in which case it's
361 /// target-dependent in crazy ways.
362 const CGFunctionInfo &
363 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
364                                       const FunctionType *fnType) {
365   return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
366 }
367 
368 /// A block function call is essentially a free-function call with an
369 /// extra implicit argument.
370 const CGFunctionInfo &
371 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
372                                        const FunctionType *fnType) {
373   return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
374 }
375 
376 const CGFunctionInfo &
377 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
378                                       const CallArgList &args,
379                                       FunctionType::ExtInfo info,
380                                       RequiredArgs required) {
381   // FIXME: Kill copy.
382   SmallVector<CanQualType, 16> argTypes;
383   for (CallArgList::const_iterator i = args.begin(), e = args.end();
384        i != e; ++i)
385     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
386   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
387                                  required);
388 }
389 
390 /// Arrange a call to a C++ method, passing the given arguments.
391 const CGFunctionInfo &
392 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
393                                    const FunctionProtoType *FPT,
394                                    RequiredArgs required) {
395   // FIXME: Kill copy.
396   SmallVector<CanQualType, 16> argTypes;
397   for (CallArgList::const_iterator i = args.begin(), e = args.end();
398        i != e; ++i)
399     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
400 
401   FunctionType::ExtInfo info = FPT->getExtInfo();
402   adjustCXXMethodInfo(*this, info, FPT->isVariadic());
403   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
404                                  argTypes, info, required);
405 }
406 
407 const CGFunctionInfo &
408 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
409                                          const FunctionArgList &args,
410                                          const FunctionType::ExtInfo &info,
411                                          bool isVariadic) {
412   // FIXME: Kill copy.
413   SmallVector<CanQualType, 16> argTypes;
414   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
415        i != e; ++i)
416     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
417 
418   RequiredArgs required =
419     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
420   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
421                                  required);
422 }
423 
424 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
425   return arrangeLLVMFunctionInfo(getContext().VoidTy, None,
426                                  FunctionType::ExtInfo(), RequiredArgs::All);
427 }
428 
429 /// Arrange the argument and result information for an abstract value
430 /// of a given function type.  This is the method which all of the
431 /// above functions ultimately defer to.
432 const CGFunctionInfo &
433 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
434                                       ArrayRef<CanQualType> argTypes,
435                                       FunctionType::ExtInfo info,
436                                       RequiredArgs required) {
437 #ifndef NDEBUG
438   for (ArrayRef<CanQualType>::const_iterator
439          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
440     assert(I->isCanonicalAsParam());
441 #endif
442 
443   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
444 
445   // Lookup or create unique function info.
446   llvm::FoldingSetNodeID ID;
447   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
448 
449   void *insertPos = 0;
450   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
451   if (FI)
452     return *FI;
453 
454   // Construct the function info.  We co-allocate the ArgInfos.
455   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
456   FunctionInfos.InsertNode(FI, insertPos);
457 
458   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
459   assert(inserted && "Recursively being processed?");
460 
461   // Compute ABI information.
462   getABIInfo().computeInfo(*FI);
463 
464   // Loop over all of the computed argument and return value info.  If any of
465   // them are direct or extend without a specified coerce type, specify the
466   // default now.
467   ABIArgInfo &retInfo = FI->getReturnInfo();
468   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
469     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
470 
471   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
472        I != E; ++I)
473     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
474       I->info.setCoerceToType(ConvertType(I->type));
475 
476   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
477   assert(erased && "Not in set?");
478 
479   return *FI;
480 }
481 
482 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
483                                        const FunctionType::ExtInfo &info,
484                                        CanQualType resultType,
485                                        ArrayRef<CanQualType> argTypes,
486                                        RequiredArgs required) {
487   void *buffer = operator new(sizeof(CGFunctionInfo) +
488                               sizeof(ArgInfo) * (argTypes.size() + 1));
489   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
490   FI->CallingConvention = llvmCC;
491   FI->EffectiveCallingConvention = llvmCC;
492   FI->ASTCallingConvention = info.getCC();
493   FI->NoReturn = info.getNoReturn();
494   FI->ReturnsRetained = info.getProducesResult();
495   FI->Required = required;
496   FI->HasRegParm = info.getHasRegParm();
497   FI->RegParm = info.getRegParm();
498   FI->NumArgs = argTypes.size();
499   FI->getArgsBuffer()[0].type = resultType;
500   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
501     FI->getArgsBuffer()[i + 1].type = argTypes[i];
502   return FI;
503 }
504 
505 /***/
506 
507 void CodeGenTypes::GetExpandedTypes(QualType type,
508                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
509   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
510     uint64_t NumElts = AT->getSize().getZExtValue();
511     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
512       GetExpandedTypes(AT->getElementType(), expandedTypes);
513   } else if (const RecordType *RT = type->getAs<RecordType>()) {
514     const RecordDecl *RD = RT->getDecl();
515     assert(!RD->hasFlexibleArrayMember() &&
516            "Cannot expand structure with flexible array.");
517     if (RD->isUnion()) {
518       // Unions can be here only in degenerative cases - all the fields are same
519       // after flattening. Thus we have to use the "largest" field.
520       const FieldDecl *LargestFD = 0;
521       CharUnits UnionSize = CharUnits::Zero();
522 
523       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
524            i != e; ++i) {
525         const FieldDecl *FD = *i;
526         assert(!FD->isBitField() &&
527                "Cannot expand structure with bit-field members.");
528         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
529         if (UnionSize < FieldSize) {
530           UnionSize = FieldSize;
531           LargestFD = FD;
532         }
533       }
534       if (LargestFD)
535         GetExpandedTypes(LargestFD->getType(), expandedTypes);
536     } else {
537       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
538            i != e; ++i) {
539         assert(!i->isBitField() &&
540                "Cannot expand structure with bit-field members.");
541         GetExpandedTypes(i->getType(), expandedTypes);
542       }
543     }
544   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
545     llvm::Type *EltTy = ConvertType(CT->getElementType());
546     expandedTypes.push_back(EltTy);
547     expandedTypes.push_back(EltTy);
548   } else
549     expandedTypes.push_back(ConvertType(type));
550 }
551 
552 llvm::Function::arg_iterator
553 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
554                                     llvm::Function::arg_iterator AI) {
555   assert(LV.isSimple() &&
556          "Unexpected non-simple lvalue during struct expansion.");
557 
558   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
559     unsigned NumElts = AT->getSize().getZExtValue();
560     QualType EltTy = AT->getElementType();
561     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
562       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
563       LValue LV = MakeAddrLValue(EltAddr, EltTy);
564       AI = ExpandTypeFromArgs(EltTy, LV, AI);
565     }
566   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
567     RecordDecl *RD = RT->getDecl();
568     if (RD->isUnion()) {
569       // Unions can be here only in degenerative cases - all the fields are same
570       // after flattening. Thus we have to use the "largest" field.
571       const FieldDecl *LargestFD = 0;
572       CharUnits UnionSize = CharUnits::Zero();
573 
574       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
575            i != e; ++i) {
576         const FieldDecl *FD = *i;
577         assert(!FD->isBitField() &&
578                "Cannot expand structure with bit-field members.");
579         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
580         if (UnionSize < FieldSize) {
581           UnionSize = FieldSize;
582           LargestFD = FD;
583         }
584       }
585       if (LargestFD) {
586         // FIXME: What are the right qualifiers here?
587         LValue SubLV = EmitLValueForField(LV, LargestFD);
588         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
589       }
590     } else {
591       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
592            i != e; ++i) {
593         FieldDecl *FD = *i;
594         QualType FT = FD->getType();
595 
596         // FIXME: What are the right qualifiers here?
597         LValue SubLV = EmitLValueForField(LV, FD);
598         AI = ExpandTypeFromArgs(FT, SubLV, AI);
599       }
600     }
601   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
602     QualType EltTy = CT->getElementType();
603     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
604     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
605     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
606     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
607   } else {
608     EmitStoreThroughLValue(RValue::get(AI), LV);
609     ++AI;
610   }
611 
612   return AI;
613 }
614 
615 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
616 /// accessing some number of bytes out of it, try to gep into the struct to get
617 /// at its inner goodness.  Dive as deep as possible without entering an element
618 /// with an in-memory size smaller than DstSize.
619 static llvm::Value *
620 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
621                                    llvm::StructType *SrcSTy,
622                                    uint64_t DstSize, CodeGenFunction &CGF) {
623   // We can't dive into a zero-element struct.
624   if (SrcSTy->getNumElements() == 0) return SrcPtr;
625 
626   llvm::Type *FirstElt = SrcSTy->getElementType(0);
627 
628   // If the first elt is at least as large as what we're looking for, or if the
629   // first element is the same size as the whole struct, we can enter it.
630   uint64_t FirstEltSize =
631     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
632   if (FirstEltSize < DstSize &&
633       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
634     return SrcPtr;
635 
636   // GEP into the first element.
637   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
638 
639   // If the first element is a struct, recurse.
640   llvm::Type *SrcTy =
641     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
642   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
643     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
644 
645   return SrcPtr;
646 }
647 
648 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
649 /// are either integers or pointers.  This does a truncation of the value if it
650 /// is too large or a zero extension if it is too small.
651 ///
652 /// This behaves as if the value were coerced through memory, so on big-endian
653 /// targets the high bits are preserved in a truncation, while little-endian
654 /// targets preserve the low bits.
655 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
656                                              llvm::Type *Ty,
657                                              CodeGenFunction &CGF) {
658   if (Val->getType() == Ty)
659     return Val;
660 
661   if (isa<llvm::PointerType>(Val->getType())) {
662     // If this is Pointer->Pointer avoid conversion to and from int.
663     if (isa<llvm::PointerType>(Ty))
664       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
665 
666     // Convert the pointer to an integer so we can play with its width.
667     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
668   }
669 
670   llvm::Type *DestIntTy = Ty;
671   if (isa<llvm::PointerType>(DestIntTy))
672     DestIntTy = CGF.IntPtrTy;
673 
674   if (Val->getType() != DestIntTy) {
675     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
676     if (DL.isBigEndian()) {
677       // Preserve the high bits on big-endian targets.
678       // That is what memory coercion does.
679       uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType());
680       uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy);
681       if (SrcSize > DstSize) {
682         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
683         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
684       } else {
685         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
686         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
687       }
688     } else {
689       // Little-endian targets preserve the low bits. No shifts required.
690       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
691     }
692   }
693 
694   if (isa<llvm::PointerType>(Ty))
695     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
696   return Val;
697 }
698 
699 
700 
701 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
702 /// a pointer to an object of type \arg Ty.
703 ///
704 /// This safely handles the case when the src type is smaller than the
705 /// destination type; in this situation the values of bits which not
706 /// present in the src are undefined.
707 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
708                                       llvm::Type *Ty,
709                                       CodeGenFunction &CGF) {
710   llvm::Type *SrcTy =
711     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
712 
713   // If SrcTy and Ty are the same, just do a load.
714   if (SrcTy == Ty)
715     return CGF.Builder.CreateLoad(SrcPtr);
716 
717   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
718 
719   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
720     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
721     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
722   }
723 
724   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
725 
726   // If the source and destination are integer or pointer types, just do an
727   // extension or truncation to the desired type.
728   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
729       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
730     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
731     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
732   }
733 
734   // If load is legal, just bitcast the src pointer.
735   if (SrcSize >= DstSize) {
736     // Generally SrcSize is never greater than DstSize, since this means we are
737     // losing bits. However, this can happen in cases where the structure has
738     // additional padding, for example due to a user specified alignment.
739     //
740     // FIXME: Assert that we aren't truncating non-padding bits when have access
741     // to that information.
742     llvm::Value *Casted =
743       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
744     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
745     // FIXME: Use better alignment / avoid requiring aligned load.
746     Load->setAlignment(1);
747     return Load;
748   }
749 
750   // Otherwise do coercion through memory. This is stupid, but
751   // simple.
752   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
753   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
754   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
755   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
756   // FIXME: Use better alignment.
757   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
758       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
759       1, false);
760   return CGF.Builder.CreateLoad(Tmp);
761 }
762 
763 // Function to store a first-class aggregate into memory.  We prefer to
764 // store the elements rather than the aggregate to be more friendly to
765 // fast-isel.
766 // FIXME: Do we need to recurse here?
767 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
768                           llvm::Value *DestPtr, bool DestIsVolatile,
769                           bool LowAlignment) {
770   // Prefer scalar stores to first-class aggregate stores.
771   if (llvm::StructType *STy =
772         dyn_cast<llvm::StructType>(Val->getType())) {
773     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
774       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
775       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
776       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
777                                                     DestIsVolatile);
778       if (LowAlignment)
779         SI->setAlignment(1);
780     }
781   } else {
782     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
783     if (LowAlignment)
784       SI->setAlignment(1);
785   }
786 }
787 
788 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
789 /// where the source and destination may have different types.
790 ///
791 /// This safely handles the case when the src type is larger than the
792 /// destination type; the upper bits of the src will be lost.
793 static void CreateCoercedStore(llvm::Value *Src,
794                                llvm::Value *DstPtr,
795                                bool DstIsVolatile,
796                                CodeGenFunction &CGF) {
797   llvm::Type *SrcTy = Src->getType();
798   llvm::Type *DstTy =
799     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
800   if (SrcTy == DstTy) {
801     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
802     return;
803   }
804 
805   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
806 
807   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
808     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
809     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
810   }
811 
812   // If the source and destination are integer or pointer types, just do an
813   // extension or truncation to the desired type.
814   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
815       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
816     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
817     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
818     return;
819   }
820 
821   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
822 
823   // If store is legal, just bitcast the src pointer.
824   if (SrcSize <= DstSize) {
825     llvm::Value *Casted =
826       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
827     // FIXME: Use better alignment / avoid requiring aligned store.
828     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
829   } else {
830     // Otherwise do coercion through memory. This is stupid, but
831     // simple.
832 
833     // Generally SrcSize is never greater than DstSize, since this means we are
834     // losing bits. However, this can happen in cases where the structure has
835     // additional padding, for example due to a user specified alignment.
836     //
837     // FIXME: Assert that we aren't truncating non-padding bits when have access
838     // to that information.
839     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
840     CGF.Builder.CreateStore(Src, Tmp);
841     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
842     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
843     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
844     // FIXME: Use better alignment.
845     CGF.Builder.CreateMemCpy(DstCasted, Casted,
846         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
847         1, false);
848   }
849 }
850 
851 /***/
852 
853 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
854   return FI.getReturnInfo().isIndirect();
855 }
856 
857 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
858   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
859     switch (BT->getKind()) {
860     default:
861       return false;
862     case BuiltinType::Float:
863       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
864     case BuiltinType::Double:
865       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
866     case BuiltinType::LongDouble:
867       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
868     }
869   }
870 
871   return false;
872 }
873 
874 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
875   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
876     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
877       if (BT->getKind() == BuiltinType::LongDouble)
878         return getTarget().useObjCFP2RetForComplexLongDouble();
879     }
880   }
881 
882   return false;
883 }
884 
885 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
886   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
887   return GetFunctionType(FI);
888 }
889 
890 llvm::FunctionType *
891 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
892 
893   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
894   assert(Inserted && "Recursively being processed?");
895 
896   SmallVector<llvm::Type*, 8> argTypes;
897   llvm::Type *resultType = 0;
898 
899   const ABIArgInfo &retAI = FI.getReturnInfo();
900   switch (retAI.getKind()) {
901   case ABIArgInfo::Expand:
902     llvm_unreachable("Invalid ABI kind for return argument");
903 
904   case ABIArgInfo::Extend:
905   case ABIArgInfo::Direct:
906     resultType = retAI.getCoerceToType();
907     break;
908 
909   case ABIArgInfo::Indirect: {
910     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
911     resultType = llvm::Type::getVoidTy(getLLVMContext());
912 
913     QualType ret = FI.getReturnType();
914     llvm::Type *ty = ConvertType(ret);
915     unsigned addressSpace = Context.getTargetAddressSpace(ret);
916     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
917     break;
918   }
919 
920   case ABIArgInfo::Ignore:
921     resultType = llvm::Type::getVoidTy(getLLVMContext());
922     break;
923   }
924 
925   // Add in all of the required arguments.
926   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
927   if (FI.isVariadic()) {
928     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
929   } else {
930     ie = FI.arg_end();
931   }
932   for (; it != ie; ++it) {
933     const ABIArgInfo &argAI = it->info;
934 
935     // Insert a padding type to ensure proper alignment.
936     if (llvm::Type *PaddingType = argAI.getPaddingType())
937       argTypes.push_back(PaddingType);
938 
939     switch (argAI.getKind()) {
940     case ABIArgInfo::Ignore:
941       break;
942 
943     case ABIArgInfo::Indirect: {
944       // indirect arguments are always on the stack, which is addr space #0.
945       llvm::Type *LTy = ConvertTypeForMem(it->type);
946       argTypes.push_back(LTy->getPointerTo());
947       break;
948     }
949 
950     case ABIArgInfo::Extend:
951     case ABIArgInfo::Direct: {
952       // If the coerce-to type is a first class aggregate, flatten it.  Either
953       // way is semantically identical, but fast-isel and the optimizer
954       // generally likes scalar values better than FCAs.
955       llvm::Type *argType = argAI.getCoerceToType();
956       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
957         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
958           argTypes.push_back(st->getElementType(i));
959       } else {
960         argTypes.push_back(argType);
961       }
962       break;
963     }
964 
965     case ABIArgInfo::Expand:
966       GetExpandedTypes(it->type, argTypes);
967       break;
968     }
969   }
970 
971   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
972   assert(Erased && "Not in set?");
973 
974   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
975 }
976 
977 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
978   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
979   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
980 
981   if (!isFuncTypeConvertible(FPT))
982     return llvm::StructType::get(getLLVMContext());
983 
984   const CGFunctionInfo *Info;
985   if (isa<CXXDestructorDecl>(MD))
986     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
987   else
988     Info = &arrangeCXXMethodDeclaration(MD);
989   return GetFunctionType(*Info);
990 }
991 
992 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
993                                            const Decl *TargetDecl,
994                                            AttributeListType &PAL,
995                                            unsigned &CallingConv,
996                                            bool AttrOnCallSite) {
997   llvm::AttrBuilder FuncAttrs;
998   llvm::AttrBuilder RetAttrs;
999 
1000   CallingConv = FI.getEffectiveCallingConvention();
1001 
1002   if (FI.isNoReturn())
1003     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1004 
1005   // FIXME: handle sseregparm someday...
1006   if (TargetDecl) {
1007     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1008       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1009     if (TargetDecl->hasAttr<NoThrowAttr>())
1010       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1011     if (TargetDecl->hasAttr<NoReturnAttr>())
1012       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1013 
1014     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1015       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1016       if (FPT && FPT->isNothrow(getContext()))
1017         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1018       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1019       // These attributes are not inherited by overloads.
1020       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1021       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1022         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1023     }
1024 
1025     // 'const' and 'pure' attribute functions are also nounwind.
1026     if (TargetDecl->hasAttr<ConstAttr>()) {
1027       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1028       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1029     } else if (TargetDecl->hasAttr<PureAttr>()) {
1030       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1031       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1032     }
1033     if (TargetDecl->hasAttr<MallocAttr>())
1034       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1035   }
1036 
1037   if (CodeGenOpts.OptimizeSize)
1038     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1039   if (CodeGenOpts.OptimizeSize == 2)
1040     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1041   if (CodeGenOpts.DisableRedZone)
1042     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1043   if (CodeGenOpts.NoImplicitFloat)
1044     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1045 
1046   if (AttrOnCallSite) {
1047     // Attributes that should go on the call site only.
1048     if (!CodeGenOpts.SimplifyLibCalls)
1049       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1050   } else {
1051     // Attributes that should go on the function, but not the call site.
1052     if (!CodeGenOpts.DisableFPElim) {
1053       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1054       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false");
1055     } else if (CodeGenOpts.OmitLeafFramePointer) {
1056       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1057       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1058     } else {
1059       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1060       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1061     }
1062 
1063     FuncAttrs.addAttribute("less-precise-fpmad",
1064                            CodeGenOpts.LessPreciseFPMAD ? "true" : "false");
1065     FuncAttrs.addAttribute("no-infs-fp-math",
1066                            CodeGenOpts.NoInfsFPMath ? "true" : "false");
1067     FuncAttrs.addAttribute("no-nans-fp-math",
1068                            CodeGenOpts.NoNaNsFPMath ? "true" : "false");
1069     FuncAttrs.addAttribute("unsafe-fp-math",
1070                            CodeGenOpts.UnsafeFPMath ? "true" : "false");
1071     FuncAttrs.addAttribute("use-soft-float",
1072                            CodeGenOpts.SoftFloat ? "true" : "false");
1073     FuncAttrs.addAttribute("ssp-buffer-size",
1074                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1075   }
1076 
1077   QualType RetTy = FI.getReturnType();
1078   unsigned Index = 1;
1079   const ABIArgInfo &RetAI = FI.getReturnInfo();
1080   switch (RetAI.getKind()) {
1081   case ABIArgInfo::Extend:
1082     if (RetTy->hasSignedIntegerRepresentation())
1083       RetAttrs.addAttribute(llvm::Attribute::SExt);
1084     else if (RetTy->hasUnsignedIntegerRepresentation())
1085       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1086     // FALL THROUGH
1087   case ABIArgInfo::Direct:
1088     if (RetAI.getInReg())
1089       RetAttrs.addAttribute(llvm::Attribute::InReg);
1090     break;
1091   case ABIArgInfo::Ignore:
1092     break;
1093 
1094   case ABIArgInfo::Indirect: {
1095     llvm::AttrBuilder SRETAttrs;
1096     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1097     if (RetAI.getInReg())
1098       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1099     PAL.push_back(llvm::
1100                   AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
1101 
1102     ++Index;
1103     // sret disables readnone and readonly
1104     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1105       .removeAttribute(llvm::Attribute::ReadNone);
1106     break;
1107   }
1108 
1109   case ABIArgInfo::Expand:
1110     llvm_unreachable("Invalid ABI kind for return argument");
1111   }
1112 
1113   if (RetAttrs.hasAttributes())
1114     PAL.push_back(llvm::
1115                   AttributeSet::get(getLLVMContext(),
1116                                     llvm::AttributeSet::ReturnIndex,
1117                                     RetAttrs));
1118 
1119   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1120          ie = FI.arg_end(); it != ie; ++it) {
1121     QualType ParamType = it->type;
1122     const ABIArgInfo &AI = it->info;
1123     llvm::AttrBuilder Attrs;
1124 
1125     if (AI.getPaddingType()) {
1126       if (AI.getPaddingInReg())
1127         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1128                                               llvm::Attribute::InReg));
1129       // Increment Index if there is padding.
1130       ++Index;
1131     }
1132 
1133     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1134     // have the corresponding parameter variable.  It doesn't make
1135     // sense to do it here because parameters are so messed up.
1136     switch (AI.getKind()) {
1137     case ABIArgInfo::Extend:
1138       if (ParamType->isSignedIntegerOrEnumerationType())
1139         Attrs.addAttribute(llvm::Attribute::SExt);
1140       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1141         Attrs.addAttribute(llvm::Attribute::ZExt);
1142       // FALL THROUGH
1143     case ABIArgInfo::Direct:
1144       if (AI.getInReg())
1145         Attrs.addAttribute(llvm::Attribute::InReg);
1146 
1147       // FIXME: handle sseregparm someday...
1148 
1149       if (llvm::StructType *STy =
1150           dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1151         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1152         if (Attrs.hasAttributes())
1153           for (unsigned I = 0; I < Extra; ++I)
1154             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1155                                                   Attrs));
1156         Index += Extra;
1157       }
1158       break;
1159 
1160     case ABIArgInfo::Indirect:
1161       if (AI.getInReg())
1162         Attrs.addAttribute(llvm::Attribute::InReg);
1163 
1164       if (AI.getIndirectByVal())
1165         Attrs.addAttribute(llvm::Attribute::ByVal);
1166 
1167       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1168 
1169       // byval disables readnone and readonly.
1170       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1171         .removeAttribute(llvm::Attribute::ReadNone);
1172       break;
1173 
1174     case ABIArgInfo::Ignore:
1175       // Skip increment, no matching LLVM parameter.
1176       continue;
1177 
1178     case ABIArgInfo::Expand: {
1179       SmallVector<llvm::Type*, 8> types;
1180       // FIXME: This is rather inefficient. Do we ever actually need to do
1181       // anything here? The result should be just reconstructed on the other
1182       // side, so extension should be a non-issue.
1183       getTypes().GetExpandedTypes(ParamType, types);
1184       Index += types.size();
1185       continue;
1186     }
1187     }
1188 
1189     if (Attrs.hasAttributes())
1190       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1191     ++Index;
1192   }
1193   if (FuncAttrs.hasAttributes())
1194     PAL.push_back(llvm::
1195                   AttributeSet::get(getLLVMContext(),
1196                                     llvm::AttributeSet::FunctionIndex,
1197                                     FuncAttrs));
1198 }
1199 
1200 /// An argument came in as a promoted argument; demote it back to its
1201 /// declared type.
1202 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1203                                          const VarDecl *var,
1204                                          llvm::Value *value) {
1205   llvm::Type *varType = CGF.ConvertType(var->getType());
1206 
1207   // This can happen with promotions that actually don't change the
1208   // underlying type, like the enum promotions.
1209   if (value->getType() == varType) return value;
1210 
1211   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1212          && "unexpected promotion type");
1213 
1214   if (isa<llvm::IntegerType>(varType))
1215     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1216 
1217   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1218 }
1219 
1220 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1221                                          llvm::Function *Fn,
1222                                          const FunctionArgList &Args) {
1223   // If this is an implicit-return-zero function, go ahead and
1224   // initialize the return value.  TODO: it might be nice to have
1225   // a more general mechanism for this that didn't require synthesized
1226   // return statements.
1227   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1228     if (FD->hasImplicitReturnZero()) {
1229       QualType RetTy = FD->getResultType().getUnqualifiedType();
1230       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1231       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1232       Builder.CreateStore(Zero, ReturnValue);
1233     }
1234   }
1235 
1236   // FIXME: We no longer need the types from FunctionArgList; lift up and
1237   // simplify.
1238 
1239   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1240   llvm::Function::arg_iterator AI = Fn->arg_begin();
1241 
1242   // Name the struct return argument.
1243   if (CGM.ReturnTypeUsesSRet(FI)) {
1244     AI->setName("agg.result");
1245     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1246                                         AI->getArgNo() + 1,
1247                                         llvm::Attribute::NoAlias));
1248     ++AI;
1249   }
1250 
1251   assert(FI.arg_size() == Args.size() &&
1252          "Mismatch between function signature & arguments.");
1253   unsigned ArgNo = 1;
1254   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1255   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1256        i != e; ++i, ++info_it, ++ArgNo) {
1257     const VarDecl *Arg = *i;
1258     QualType Ty = info_it->type;
1259     const ABIArgInfo &ArgI = info_it->info;
1260 
1261     bool isPromoted =
1262       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1263 
1264     // Skip the dummy padding argument.
1265     if (ArgI.getPaddingType())
1266       ++AI;
1267 
1268     switch (ArgI.getKind()) {
1269     case ABIArgInfo::Indirect: {
1270       llvm::Value *V = AI;
1271 
1272       if (!hasScalarEvaluationKind(Ty)) {
1273         // Aggregates and complex variables are accessed by reference.  All we
1274         // need to do is realign the value, if requested
1275         if (ArgI.getIndirectRealign()) {
1276           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1277 
1278           // Copy from the incoming argument pointer to the temporary with the
1279           // appropriate alignment.
1280           //
1281           // FIXME: We should have a common utility for generating an aggregate
1282           // copy.
1283           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1284           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1285           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1286           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1287           Builder.CreateMemCpy(Dst,
1288                                Src,
1289                                llvm::ConstantInt::get(IntPtrTy,
1290                                                       Size.getQuantity()),
1291                                ArgI.getIndirectAlign(),
1292                                false);
1293           V = AlignedTemp;
1294         }
1295       } else {
1296         // Load scalar value from indirect argument.
1297         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1298         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1299 
1300         if (isPromoted)
1301           V = emitArgumentDemotion(*this, Arg, V);
1302       }
1303       EmitParmDecl(*Arg, V, ArgNo);
1304       break;
1305     }
1306 
1307     case ABIArgInfo::Extend:
1308     case ABIArgInfo::Direct: {
1309 
1310       // If we have the trivial case, handle it with no muss and fuss.
1311       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1312           ArgI.getCoerceToType() == ConvertType(Ty) &&
1313           ArgI.getDirectOffset() == 0) {
1314         assert(AI != Fn->arg_end() && "Argument mismatch!");
1315         llvm::Value *V = AI;
1316 
1317         if (Arg->getType().isRestrictQualified())
1318           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1319                                               AI->getArgNo() + 1,
1320                                               llvm::Attribute::NoAlias));
1321 
1322         // Ensure the argument is the correct type.
1323         if (V->getType() != ArgI.getCoerceToType())
1324           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1325 
1326         if (isPromoted)
1327           V = emitArgumentDemotion(*this, Arg, V);
1328 
1329         // Because of merging of function types from multiple decls it is
1330         // possible for the type of an argument to not match the corresponding
1331         // type in the function type. Since we are codegening the callee
1332         // in here, add a cast to the argument type.
1333         llvm::Type *LTy = ConvertType(Arg->getType());
1334         if (V->getType() != LTy)
1335           V = Builder.CreateBitCast(V, LTy);
1336 
1337         EmitParmDecl(*Arg, V, ArgNo);
1338         break;
1339       }
1340 
1341       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1342 
1343       // The alignment we need to use is the max of the requested alignment for
1344       // the argument plus the alignment required by our access code below.
1345       unsigned AlignmentToUse =
1346         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1347       AlignmentToUse = std::max(AlignmentToUse,
1348                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1349 
1350       Alloca->setAlignment(AlignmentToUse);
1351       llvm::Value *V = Alloca;
1352       llvm::Value *Ptr = V;    // Pointer to store into.
1353 
1354       // If the value is offset in memory, apply the offset now.
1355       if (unsigned Offs = ArgI.getDirectOffset()) {
1356         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1357         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1358         Ptr = Builder.CreateBitCast(Ptr,
1359                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1360       }
1361 
1362       // If the coerce-to type is a first class aggregate, we flatten it and
1363       // pass the elements. Either way is semantically identical, but fast-isel
1364       // and the optimizer generally likes scalar values better than FCAs.
1365       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1366       if (STy && STy->getNumElements() > 1) {
1367         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1368         llvm::Type *DstTy =
1369           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1370         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1371 
1372         if (SrcSize <= DstSize) {
1373           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1374 
1375           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1376             assert(AI != Fn->arg_end() && "Argument mismatch!");
1377             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1378             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1379             Builder.CreateStore(AI++, EltPtr);
1380           }
1381         } else {
1382           llvm::AllocaInst *TempAlloca =
1383             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1384           TempAlloca->setAlignment(AlignmentToUse);
1385           llvm::Value *TempV = TempAlloca;
1386 
1387           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1388             assert(AI != Fn->arg_end() && "Argument mismatch!");
1389             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1390             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1391             Builder.CreateStore(AI++, EltPtr);
1392           }
1393 
1394           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1395         }
1396       } else {
1397         // Simple case, just do a coerced store of the argument into the alloca.
1398         assert(AI != Fn->arg_end() && "Argument mismatch!");
1399         AI->setName(Arg->getName() + ".coerce");
1400         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1401       }
1402 
1403 
1404       // Match to what EmitParmDecl is expecting for this type.
1405       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1406         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1407         if (isPromoted)
1408           V = emitArgumentDemotion(*this, Arg, V);
1409       }
1410       EmitParmDecl(*Arg, V, ArgNo);
1411       continue;  // Skip ++AI increment, already done.
1412     }
1413 
1414     case ABIArgInfo::Expand: {
1415       // If this structure was expanded into multiple arguments then
1416       // we need to create a temporary and reconstruct it from the
1417       // arguments.
1418       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1419       CharUnits Align = getContext().getDeclAlign(Arg);
1420       Alloca->setAlignment(Align.getQuantity());
1421       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1422       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1423       EmitParmDecl(*Arg, Alloca, ArgNo);
1424 
1425       // Name the arguments used in expansion and increment AI.
1426       unsigned Index = 0;
1427       for (; AI != End; ++AI, ++Index)
1428         AI->setName(Arg->getName() + "." + Twine(Index));
1429       continue;
1430     }
1431 
1432     case ABIArgInfo::Ignore:
1433       // Initialize the local variable appropriately.
1434       if (!hasScalarEvaluationKind(Ty))
1435         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1436       else
1437         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1438                      ArgNo);
1439 
1440       // Skip increment, no matching LLVM parameter.
1441       continue;
1442     }
1443 
1444     ++AI;
1445   }
1446   assert(AI == Fn->arg_end() && "Argument mismatch!");
1447 }
1448 
1449 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1450   while (insn->use_empty()) {
1451     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1452     if (!bitcast) return;
1453 
1454     // This is "safe" because we would have used a ConstantExpr otherwise.
1455     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1456     bitcast->eraseFromParent();
1457   }
1458 }
1459 
1460 /// Try to emit a fused autorelease of a return result.
1461 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1462                                                     llvm::Value *result) {
1463   // We must be immediately followed the cast.
1464   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1465   if (BB->empty()) return 0;
1466   if (&BB->back() != result) return 0;
1467 
1468   llvm::Type *resultType = result->getType();
1469 
1470   // result is in a BasicBlock and is therefore an Instruction.
1471   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1472 
1473   SmallVector<llvm::Instruction*,4> insnsToKill;
1474 
1475   // Look for:
1476   //  %generator = bitcast %type1* %generator2 to %type2*
1477   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1478     // We would have emitted this as a constant if the operand weren't
1479     // an Instruction.
1480     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1481 
1482     // Require the generator to be immediately followed by the cast.
1483     if (generator->getNextNode() != bitcast)
1484       return 0;
1485 
1486     insnsToKill.push_back(bitcast);
1487   }
1488 
1489   // Look for:
1490   //   %generator = call i8* @objc_retain(i8* %originalResult)
1491   // or
1492   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1493   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1494   if (!call) return 0;
1495 
1496   bool doRetainAutorelease;
1497 
1498   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1499     doRetainAutorelease = true;
1500   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1501                                           .objc_retainAutoreleasedReturnValue) {
1502     doRetainAutorelease = false;
1503 
1504     // If we emitted an assembly marker for this call (and the
1505     // ARCEntrypoints field should have been set if so), go looking
1506     // for that call.  If we can't find it, we can't do this
1507     // optimization.  But it should always be the immediately previous
1508     // instruction, unless we needed bitcasts around the call.
1509     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1510       llvm::Instruction *prev = call->getPrevNode();
1511       assert(prev);
1512       if (isa<llvm::BitCastInst>(prev)) {
1513         prev = prev->getPrevNode();
1514         assert(prev);
1515       }
1516       assert(isa<llvm::CallInst>(prev));
1517       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1518                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1519       insnsToKill.push_back(prev);
1520     }
1521   } else {
1522     return 0;
1523   }
1524 
1525   result = call->getArgOperand(0);
1526   insnsToKill.push_back(call);
1527 
1528   // Keep killing bitcasts, for sanity.  Note that we no longer care
1529   // about precise ordering as long as there's exactly one use.
1530   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1531     if (!bitcast->hasOneUse()) break;
1532     insnsToKill.push_back(bitcast);
1533     result = bitcast->getOperand(0);
1534   }
1535 
1536   // Delete all the unnecessary instructions, from latest to earliest.
1537   for (SmallVectorImpl<llvm::Instruction*>::iterator
1538          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1539     (*i)->eraseFromParent();
1540 
1541   // Do the fused retain/autorelease if we were asked to.
1542   if (doRetainAutorelease)
1543     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1544 
1545   // Cast back to the result type.
1546   return CGF.Builder.CreateBitCast(result, resultType);
1547 }
1548 
1549 /// If this is a +1 of the value of an immutable 'self', remove it.
1550 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1551                                           llvm::Value *result) {
1552   // This is only applicable to a method with an immutable 'self'.
1553   const ObjCMethodDecl *method =
1554     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1555   if (!method) return 0;
1556   const VarDecl *self = method->getSelfDecl();
1557   if (!self->getType().isConstQualified()) return 0;
1558 
1559   // Look for a retain call.
1560   llvm::CallInst *retainCall =
1561     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1562   if (!retainCall ||
1563       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1564     return 0;
1565 
1566   // Look for an ordinary load of 'self'.
1567   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1568   llvm::LoadInst *load =
1569     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1570   if (!load || load->isAtomic() || load->isVolatile() ||
1571       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1572     return 0;
1573 
1574   // Okay!  Burn it all down.  This relies for correctness on the
1575   // assumption that the retain is emitted as part of the return and
1576   // that thereafter everything is used "linearly".
1577   llvm::Type *resultType = result->getType();
1578   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1579   assert(retainCall->use_empty());
1580   retainCall->eraseFromParent();
1581   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1582 
1583   return CGF.Builder.CreateBitCast(load, resultType);
1584 }
1585 
1586 /// Emit an ARC autorelease of the result of a function.
1587 ///
1588 /// \return the value to actually return from the function
1589 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1590                                             llvm::Value *result) {
1591   // If we're returning 'self', kill the initial retain.  This is a
1592   // heuristic attempt to "encourage correctness" in the really unfortunate
1593   // case where we have a return of self during a dealloc and we desperately
1594   // need to avoid the possible autorelease.
1595   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1596     return self;
1597 
1598   // At -O0, try to emit a fused retain/autorelease.
1599   if (CGF.shouldUseFusedARCCalls())
1600     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1601       return fused;
1602 
1603   return CGF.EmitARCAutoreleaseReturnValue(result);
1604 }
1605 
1606 /// Heuristically search for a dominating store to the return-value slot.
1607 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1608   // If there are multiple uses of the return-value slot, just check
1609   // for something immediately preceding the IP.  Sometimes this can
1610   // happen with how we generate implicit-returns; it can also happen
1611   // with noreturn cleanups.
1612   if (!CGF.ReturnValue->hasOneUse()) {
1613     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1614     if (IP->empty()) return 0;
1615     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1616     if (!store) return 0;
1617     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1618     assert(!store->isAtomic() && !store->isVolatile()); // see below
1619     return store;
1620   }
1621 
1622   llvm::StoreInst *store =
1623     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1624   if (!store) return 0;
1625 
1626   // These aren't actually possible for non-coerced returns, and we
1627   // only care about non-coerced returns on this code path.
1628   assert(!store->isAtomic() && !store->isVolatile());
1629 
1630   // Now do a first-and-dirty dominance check: just walk up the
1631   // single-predecessors chain from the current insertion point.
1632   llvm::BasicBlock *StoreBB = store->getParent();
1633   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1634   while (IP != StoreBB) {
1635     if (!(IP = IP->getSinglePredecessor()))
1636       return 0;
1637   }
1638 
1639   // Okay, the store's basic block dominates the insertion point; we
1640   // can do our thing.
1641   return store;
1642 }
1643 
1644 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1645                                          bool EmitRetDbgLoc) {
1646   // Functions with no result always return void.
1647   if (ReturnValue == 0) {
1648     Builder.CreateRetVoid();
1649     return;
1650   }
1651 
1652   llvm::DebugLoc RetDbgLoc;
1653   llvm::Value *RV = 0;
1654   QualType RetTy = FI.getReturnType();
1655   const ABIArgInfo &RetAI = FI.getReturnInfo();
1656 
1657   switch (RetAI.getKind()) {
1658   case ABIArgInfo::Indirect: {
1659     switch (getEvaluationKind(RetTy)) {
1660     case TEK_Complex: {
1661       ComplexPairTy RT =
1662         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy));
1663       EmitStoreOfComplex(RT,
1664                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1665                          /*isInit*/ true);
1666       break;
1667     }
1668     case TEK_Aggregate:
1669       // Do nothing; aggregrates get evaluated directly into the destination.
1670       break;
1671     case TEK_Scalar:
1672       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1673                         MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1674                         /*isInit*/ true);
1675       break;
1676     }
1677     break;
1678   }
1679 
1680   case ABIArgInfo::Extend:
1681   case ABIArgInfo::Direct:
1682     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1683         RetAI.getDirectOffset() == 0) {
1684       // The internal return value temp always will have pointer-to-return-type
1685       // type, just do a load.
1686 
1687       // If there is a dominating store to ReturnValue, we can elide
1688       // the load, zap the store, and usually zap the alloca.
1689       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1690         // Reuse the debug location from the store unless there is
1691         // cleanup code to be emitted between the store and return
1692         // instruction.
1693         if (EmitRetDbgLoc && !AutoreleaseResult)
1694           RetDbgLoc = SI->getDebugLoc();
1695         // Get the stored value and nuke the now-dead store.
1696         RV = SI->getValueOperand();
1697         SI->eraseFromParent();
1698 
1699         // If that was the only use of the return value, nuke it as well now.
1700         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1701           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1702           ReturnValue = 0;
1703         }
1704 
1705       // Otherwise, we have to do a simple load.
1706       } else {
1707         RV = Builder.CreateLoad(ReturnValue);
1708       }
1709     } else {
1710       llvm::Value *V = ReturnValue;
1711       // If the value is offset in memory, apply the offset now.
1712       if (unsigned Offs = RetAI.getDirectOffset()) {
1713         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1714         V = Builder.CreateConstGEP1_32(V, Offs);
1715         V = Builder.CreateBitCast(V,
1716                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1717       }
1718 
1719       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1720     }
1721 
1722     // In ARC, end functions that return a retainable type with a call
1723     // to objc_autoreleaseReturnValue.
1724     if (AutoreleaseResult) {
1725       assert(getLangOpts().ObjCAutoRefCount &&
1726              !FI.isReturnsRetained() &&
1727              RetTy->isObjCRetainableType());
1728       RV = emitAutoreleaseOfResult(*this, RV);
1729     }
1730 
1731     break;
1732 
1733   case ABIArgInfo::Ignore:
1734     break;
1735 
1736   case ABIArgInfo::Expand:
1737     llvm_unreachable("Invalid ABI kind for return argument");
1738   }
1739 
1740   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1741   if (!RetDbgLoc.isUnknown())
1742     Ret->setDebugLoc(RetDbgLoc);
1743 }
1744 
1745 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1746                                           const VarDecl *param) {
1747   // StartFunction converted the ABI-lowered parameter(s) into a
1748   // local alloca.  We need to turn that into an r-value suitable
1749   // for EmitCall.
1750   llvm::Value *local = GetAddrOfLocalVar(param);
1751 
1752   QualType type = param->getType();
1753 
1754   // For the most part, we just need to load the alloca, except:
1755   // 1) aggregate r-values are actually pointers to temporaries, and
1756   // 2) references to non-scalars are pointers directly to the aggregate.
1757   // I don't know why references to scalars are different here.
1758   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1759     if (!hasScalarEvaluationKind(ref->getPointeeType()))
1760       return args.add(RValue::getAggregate(local), type);
1761 
1762     // Locals which are references to scalars are represented
1763     // with allocas holding the pointer.
1764     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1765   }
1766 
1767   args.add(convertTempToRValue(local, type), type);
1768 }
1769 
1770 static bool isProvablyNull(llvm::Value *addr) {
1771   return isa<llvm::ConstantPointerNull>(addr);
1772 }
1773 
1774 static bool isProvablyNonNull(llvm::Value *addr) {
1775   return isa<llvm::AllocaInst>(addr);
1776 }
1777 
1778 /// Emit the actual writing-back of a writeback.
1779 static void emitWriteback(CodeGenFunction &CGF,
1780                           const CallArgList::Writeback &writeback) {
1781   const LValue &srcLV = writeback.Source;
1782   llvm::Value *srcAddr = srcLV.getAddress();
1783   assert(!isProvablyNull(srcAddr) &&
1784          "shouldn't have writeback for provably null argument");
1785 
1786   llvm::BasicBlock *contBB = 0;
1787 
1788   // If the argument wasn't provably non-null, we need to null check
1789   // before doing the store.
1790   bool provablyNonNull = isProvablyNonNull(srcAddr);
1791   if (!provablyNonNull) {
1792     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1793     contBB = CGF.createBasicBlock("icr.done");
1794 
1795     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1796     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1797     CGF.EmitBlock(writebackBB);
1798   }
1799 
1800   // Load the value to writeback.
1801   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1802 
1803   // Cast it back, in case we're writing an id to a Foo* or something.
1804   value = CGF.Builder.CreateBitCast(value,
1805                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1806                             "icr.writeback-cast");
1807 
1808   // Perform the writeback.
1809 
1810   // If we have a "to use" value, it's something we need to emit a use
1811   // of.  This has to be carefully threaded in: if it's done after the
1812   // release it's potentially undefined behavior (and the optimizer
1813   // will ignore it), and if it happens before the retain then the
1814   // optimizer could move the release there.
1815   if (writeback.ToUse) {
1816     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
1817 
1818     // Retain the new value.  No need to block-copy here:  the block's
1819     // being passed up the stack.
1820     value = CGF.EmitARCRetainNonBlock(value);
1821 
1822     // Emit the intrinsic use here.
1823     CGF.EmitARCIntrinsicUse(writeback.ToUse);
1824 
1825     // Load the old value (primitively).
1826     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV);
1827 
1828     // Put the new value in place (primitively).
1829     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
1830 
1831     // Release the old value.
1832     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
1833 
1834   // Otherwise, we can just do a normal lvalue store.
1835   } else {
1836     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
1837   }
1838 
1839   // Jump to the continuation block.
1840   if (!provablyNonNull)
1841     CGF.EmitBlock(contBB);
1842 }
1843 
1844 static void emitWritebacks(CodeGenFunction &CGF,
1845                            const CallArgList &args) {
1846   for (CallArgList::writeback_iterator
1847          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1848     emitWriteback(CGF, *i);
1849 }
1850 
1851 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
1852                                             const CallArgList &CallArgs) {
1853   assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee());
1854   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
1855     CallArgs.getCleanupsToDeactivate();
1856   // Iterate in reverse to increase the likelihood of popping the cleanup.
1857   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
1858          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
1859     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
1860     I->IsActiveIP->eraseFromParent();
1861   }
1862 }
1863 
1864 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
1865   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
1866     if (uop->getOpcode() == UO_AddrOf)
1867       return uop->getSubExpr();
1868   return 0;
1869 }
1870 
1871 /// Emit an argument that's being passed call-by-writeback.  That is,
1872 /// we are passing the address of
1873 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1874                              const ObjCIndirectCopyRestoreExpr *CRE) {
1875   LValue srcLV;
1876 
1877   // Make an optimistic effort to emit the address as an l-value.
1878   // This can fail if the the argument expression is more complicated.
1879   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
1880     srcLV = CGF.EmitLValue(lvExpr);
1881 
1882   // Otherwise, just emit it as a scalar.
1883   } else {
1884     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1885 
1886     QualType srcAddrType =
1887       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1888     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
1889   }
1890   llvm::Value *srcAddr = srcLV.getAddress();
1891 
1892   // The dest and src types don't necessarily match in LLVM terms
1893   // because of the crazy ObjC compatibility rules.
1894 
1895   llvm::PointerType *destType =
1896     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1897 
1898   // If the address is a constant null, just pass the appropriate null.
1899   if (isProvablyNull(srcAddr)) {
1900     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1901              CRE->getType());
1902     return;
1903   }
1904 
1905   // Create the temporary.
1906   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1907                                            "icr.temp");
1908   // Loading an l-value can introduce a cleanup if the l-value is __weak,
1909   // and that cleanup will be conditional if we can't prove that the l-value
1910   // isn't null, so we need to register a dominating point so that the cleanups
1911   // system will make valid IR.
1912   CodeGenFunction::ConditionalEvaluation condEval(CGF);
1913 
1914   // Zero-initialize it if we're not doing a copy-initialization.
1915   bool shouldCopy = CRE->shouldCopy();
1916   if (!shouldCopy) {
1917     llvm::Value *null =
1918       llvm::ConstantPointerNull::get(
1919         cast<llvm::PointerType>(destType->getElementType()));
1920     CGF.Builder.CreateStore(null, temp);
1921   }
1922 
1923   llvm::BasicBlock *contBB = 0;
1924   llvm::BasicBlock *originBB = 0;
1925 
1926   // If the address is *not* known to be non-null, we need to switch.
1927   llvm::Value *finalArgument;
1928 
1929   bool provablyNonNull = isProvablyNonNull(srcAddr);
1930   if (provablyNonNull) {
1931     finalArgument = temp;
1932   } else {
1933     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1934 
1935     finalArgument = CGF.Builder.CreateSelect(isNull,
1936                                    llvm::ConstantPointerNull::get(destType),
1937                                              temp, "icr.argument");
1938 
1939     // If we need to copy, then the load has to be conditional, which
1940     // means we need control flow.
1941     if (shouldCopy) {
1942       originBB = CGF.Builder.GetInsertBlock();
1943       contBB = CGF.createBasicBlock("icr.cont");
1944       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1945       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1946       CGF.EmitBlock(copyBB);
1947       condEval.begin(CGF);
1948     }
1949   }
1950 
1951   llvm::Value *valueToUse = 0;
1952 
1953   // Perform a copy if necessary.
1954   if (shouldCopy) {
1955     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1956     assert(srcRV.isScalar());
1957 
1958     llvm::Value *src = srcRV.getScalarVal();
1959     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1960                                     "icr.cast");
1961 
1962     // Use an ordinary store, not a store-to-lvalue.
1963     CGF.Builder.CreateStore(src, temp);
1964 
1965     // If optimization is enabled, and the value was held in a
1966     // __strong variable, we need to tell the optimizer that this
1967     // value has to stay alive until we're doing the store back.
1968     // This is because the temporary is effectively unretained,
1969     // and so otherwise we can violate the high-level semantics.
1970     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1971         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
1972       valueToUse = src;
1973     }
1974   }
1975 
1976   // Finish the control flow if we needed it.
1977   if (shouldCopy && !provablyNonNull) {
1978     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
1979     CGF.EmitBlock(contBB);
1980 
1981     // Make a phi for the value to intrinsically use.
1982     if (valueToUse) {
1983       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
1984                                                       "icr.to-use");
1985       phiToUse->addIncoming(valueToUse, copyBB);
1986       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
1987                             originBB);
1988       valueToUse = phiToUse;
1989     }
1990 
1991     condEval.end(CGF);
1992   }
1993 
1994   args.addWriteback(srcLV, temp, valueToUse);
1995   args.add(RValue::get(finalArgument), CRE->getType());
1996 }
1997 
1998 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1999                                   QualType type) {
2000   if (const ObjCIndirectCopyRestoreExpr *CRE
2001         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2002     assert(getLangOpts().ObjCAutoRefCount);
2003     assert(getContext().hasSameType(E->getType(), type));
2004     return emitWritebackArg(*this, args, CRE);
2005   }
2006 
2007   assert(type->isReferenceType() == E->isGLValue() &&
2008          "reference binding to unmaterialized r-value!");
2009 
2010   if (E->isGLValue()) {
2011     assert(E->getObjectKind() == OK_Ordinary);
2012     return args.add(EmitReferenceBindingToExpr(E), type);
2013   }
2014 
2015   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2016 
2017   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2018   // However, we still have to push an EH-only cleanup in case we unwind before
2019   // we make it to the call.
2020   if (HasAggregateEvalKind &&
2021       CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
2022     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2023     if (RD && RD->hasNonTrivialDestructor()) {
2024       AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp");
2025       Slot.setExternallyDestructed();
2026       EmitAggExpr(E, Slot);
2027       RValue RV = Slot.asRValue();
2028       args.add(RV, type);
2029 
2030       pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject,
2031                   /*useEHCleanupForArray*/ true);
2032       // This unreachable is a temporary marker which will be removed later.
2033       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2034       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2035       return;
2036     }
2037   }
2038 
2039   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2040       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2041     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2042     assert(L.isSimple());
2043     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2044       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2045     } else {
2046       // We can't represent a misaligned lvalue in the CallArgList, so copy
2047       // to an aligned temporary now.
2048       llvm::Value *tmp = CreateMemTemp(type);
2049       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2050                         L.getAlignment());
2051       args.add(RValue::getAggregate(tmp), type);
2052     }
2053     return;
2054   }
2055 
2056   args.add(EmitAnyExprToTemp(E), type);
2057 }
2058 
2059 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2060 // optimizer it can aggressively ignore unwind edges.
2061 void
2062 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2063   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2064       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2065     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2066                       CGM.getNoObjCARCExceptionsMetadata());
2067 }
2068 
2069 /// Emits a call to the given no-arguments nounwind runtime function.
2070 llvm::CallInst *
2071 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2072                                          const llvm::Twine &name) {
2073   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2074 }
2075 
2076 /// Emits a call to the given nounwind runtime function.
2077 llvm::CallInst *
2078 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2079                                          ArrayRef<llvm::Value*> args,
2080                                          const llvm::Twine &name) {
2081   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2082   call->setDoesNotThrow();
2083   return call;
2084 }
2085 
2086 /// Emits a simple call (never an invoke) to the given no-arguments
2087 /// runtime function.
2088 llvm::CallInst *
2089 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2090                                  const llvm::Twine &name) {
2091   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2092 }
2093 
2094 /// Emits a simple call (never an invoke) to the given runtime
2095 /// function.
2096 llvm::CallInst *
2097 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2098                                  ArrayRef<llvm::Value*> args,
2099                                  const llvm::Twine &name) {
2100   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2101   call->setCallingConv(getRuntimeCC());
2102   return call;
2103 }
2104 
2105 /// Emits a call or invoke to the given noreturn runtime function.
2106 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2107                                                ArrayRef<llvm::Value*> args) {
2108   if (getInvokeDest()) {
2109     llvm::InvokeInst *invoke =
2110       Builder.CreateInvoke(callee,
2111                            getUnreachableBlock(),
2112                            getInvokeDest(),
2113                            args);
2114     invoke->setDoesNotReturn();
2115     invoke->setCallingConv(getRuntimeCC());
2116   } else {
2117     llvm::CallInst *call = Builder.CreateCall(callee, args);
2118     call->setDoesNotReturn();
2119     call->setCallingConv(getRuntimeCC());
2120     Builder.CreateUnreachable();
2121   }
2122 }
2123 
2124 /// Emits a call or invoke instruction to the given nullary runtime
2125 /// function.
2126 llvm::CallSite
2127 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2128                                          const Twine &name) {
2129   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2130 }
2131 
2132 /// Emits a call or invoke instruction to the given runtime function.
2133 llvm::CallSite
2134 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2135                                          ArrayRef<llvm::Value*> args,
2136                                          const Twine &name) {
2137   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2138   callSite.setCallingConv(getRuntimeCC());
2139   return callSite;
2140 }
2141 
2142 llvm::CallSite
2143 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2144                                   const Twine &Name) {
2145   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2146 }
2147 
2148 /// Emits a call or invoke instruction to the given function, depending
2149 /// on the current state of the EH stack.
2150 llvm::CallSite
2151 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2152                                   ArrayRef<llvm::Value *> Args,
2153                                   const Twine &Name) {
2154   llvm::BasicBlock *InvokeDest = getInvokeDest();
2155 
2156   llvm::Instruction *Inst;
2157   if (!InvokeDest)
2158     Inst = Builder.CreateCall(Callee, Args, Name);
2159   else {
2160     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2161     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2162     EmitBlock(ContBB);
2163   }
2164 
2165   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2166   // optimizer it can aggressively ignore unwind edges.
2167   if (CGM.getLangOpts().ObjCAutoRefCount)
2168     AddObjCARCExceptionMetadata(Inst);
2169 
2170   return Inst;
2171 }
2172 
2173 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2174                             llvm::FunctionType *FTy) {
2175   if (ArgNo < FTy->getNumParams())
2176     assert(Elt->getType() == FTy->getParamType(ArgNo));
2177   else
2178     assert(FTy->isVarArg());
2179   ++ArgNo;
2180 }
2181 
2182 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2183                                        SmallVectorImpl<llvm::Value *> &Args,
2184                                        llvm::FunctionType *IRFuncTy) {
2185   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2186     unsigned NumElts = AT->getSize().getZExtValue();
2187     QualType EltTy = AT->getElementType();
2188     llvm::Value *Addr = RV.getAggregateAddr();
2189     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2190       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2191       RValue EltRV = convertTempToRValue(EltAddr, EltTy);
2192       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2193     }
2194   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2195     RecordDecl *RD = RT->getDecl();
2196     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2197     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2198 
2199     if (RD->isUnion()) {
2200       const FieldDecl *LargestFD = 0;
2201       CharUnits UnionSize = CharUnits::Zero();
2202 
2203       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2204            i != e; ++i) {
2205         const FieldDecl *FD = *i;
2206         assert(!FD->isBitField() &&
2207                "Cannot expand structure with bit-field members.");
2208         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2209         if (UnionSize < FieldSize) {
2210           UnionSize = FieldSize;
2211           LargestFD = FD;
2212         }
2213       }
2214       if (LargestFD) {
2215         RValue FldRV = EmitRValueForField(LV, LargestFD);
2216         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2217       }
2218     } else {
2219       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2220            i != e; ++i) {
2221         FieldDecl *FD = *i;
2222 
2223         RValue FldRV = EmitRValueForField(LV, FD);
2224         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2225       }
2226     }
2227   } else if (Ty->isAnyComplexType()) {
2228     ComplexPairTy CV = RV.getComplexVal();
2229     Args.push_back(CV.first);
2230     Args.push_back(CV.second);
2231   } else {
2232     assert(RV.isScalar() &&
2233            "Unexpected non-scalar rvalue during struct expansion.");
2234 
2235     // Insert a bitcast as needed.
2236     llvm::Value *V = RV.getScalarVal();
2237     if (Args.size() < IRFuncTy->getNumParams() &&
2238         V->getType() != IRFuncTy->getParamType(Args.size()))
2239       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2240 
2241     Args.push_back(V);
2242   }
2243 }
2244 
2245 
2246 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2247                                  llvm::Value *Callee,
2248                                  ReturnValueSlot ReturnValue,
2249                                  const CallArgList &CallArgs,
2250                                  const Decl *TargetDecl,
2251                                  llvm::Instruction **callOrInvoke) {
2252   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2253   SmallVector<llvm::Value*, 16> Args;
2254 
2255   // Handle struct-return functions by passing a pointer to the
2256   // location that we would like to return into.
2257   QualType RetTy = CallInfo.getReturnType();
2258   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2259 
2260   // IRArgNo - Keep track of the argument number in the callee we're looking at.
2261   unsigned IRArgNo = 0;
2262   llvm::FunctionType *IRFuncTy =
2263     cast<llvm::FunctionType>(
2264                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2265 
2266   // If the call returns a temporary with struct return, create a temporary
2267   // alloca to hold the result, unless one is given to us.
2268   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
2269     llvm::Value *Value = ReturnValue.getValue();
2270     if (!Value)
2271       Value = CreateMemTemp(RetTy);
2272     Args.push_back(Value);
2273     checkArgMatches(Value, IRArgNo, IRFuncTy);
2274   }
2275 
2276   assert(CallInfo.arg_size() == CallArgs.size() &&
2277          "Mismatch between function signature & arguments.");
2278   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2279   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2280        I != E; ++I, ++info_it) {
2281     const ABIArgInfo &ArgInfo = info_it->info;
2282     RValue RV = I->RV;
2283 
2284     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2285 
2286     // Insert a padding argument to ensure proper alignment.
2287     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2288       Args.push_back(llvm::UndefValue::get(PaddingType));
2289       ++IRArgNo;
2290     }
2291 
2292     switch (ArgInfo.getKind()) {
2293     case ABIArgInfo::Indirect: {
2294       if (RV.isScalar() || RV.isComplex()) {
2295         // Make a temporary alloca to pass the argument.
2296         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2297         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2298           AI->setAlignment(ArgInfo.getIndirectAlign());
2299         Args.push_back(AI);
2300 
2301         LValue argLV =
2302           MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2303 
2304         if (RV.isScalar())
2305           EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
2306         else
2307           EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
2308 
2309         // Validate argument match.
2310         checkArgMatches(AI, IRArgNo, IRFuncTy);
2311       } else {
2312         // We want to avoid creating an unnecessary temporary+copy here;
2313         // however, we need one in three cases:
2314         // 1. If the argument is not byval, and we are required to copy the
2315         //    source.  (This case doesn't occur on any common architecture.)
2316         // 2. If the argument is byval, RV is not sufficiently aligned, and
2317         //    we cannot force it to be sufficiently aligned.
2318         // 3. If the argument is byval, but RV is located in an address space
2319         //    different than that of the argument (0).
2320         llvm::Value *Addr = RV.getAggregateAddr();
2321         unsigned Align = ArgInfo.getIndirectAlign();
2322         const llvm::DataLayout *TD = &CGM.getDataLayout();
2323         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2324         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2325           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2326         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2327             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2328              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2329              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2330           // Create an aligned temporary, and copy to it.
2331           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2332           if (Align > AI->getAlignment())
2333             AI->setAlignment(Align);
2334           Args.push_back(AI);
2335           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2336 
2337           // Validate argument match.
2338           checkArgMatches(AI, IRArgNo, IRFuncTy);
2339         } else {
2340           // Skip the extra memcpy call.
2341           Args.push_back(Addr);
2342 
2343           // Validate argument match.
2344           checkArgMatches(Addr, IRArgNo, IRFuncTy);
2345         }
2346       }
2347       break;
2348     }
2349 
2350     case ABIArgInfo::Ignore:
2351       break;
2352 
2353     case ABIArgInfo::Extend:
2354     case ABIArgInfo::Direct: {
2355       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2356           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2357           ArgInfo.getDirectOffset() == 0) {
2358         llvm::Value *V;
2359         if (RV.isScalar())
2360           V = RV.getScalarVal();
2361         else
2362           V = Builder.CreateLoad(RV.getAggregateAddr());
2363 
2364         // If the argument doesn't match, perform a bitcast to coerce it.  This
2365         // can happen due to trivial type mismatches.
2366         if (IRArgNo < IRFuncTy->getNumParams() &&
2367             V->getType() != IRFuncTy->getParamType(IRArgNo))
2368           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2369         Args.push_back(V);
2370 
2371         checkArgMatches(V, IRArgNo, IRFuncTy);
2372         break;
2373       }
2374 
2375       // FIXME: Avoid the conversion through memory if possible.
2376       llvm::Value *SrcPtr;
2377       if (RV.isScalar() || RV.isComplex()) {
2378         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2379         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2380         if (RV.isScalar()) {
2381           EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
2382         } else {
2383           EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
2384         }
2385       } else
2386         SrcPtr = RV.getAggregateAddr();
2387 
2388       // If the value is offset in memory, apply the offset now.
2389       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2390         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2391         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2392         SrcPtr = Builder.CreateBitCast(SrcPtr,
2393                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2394 
2395       }
2396 
2397       // If the coerce-to type is a first class aggregate, we flatten it and
2398       // pass the elements. Either way is semantically identical, but fast-isel
2399       // and the optimizer generally likes scalar values better than FCAs.
2400       if (llvm::StructType *STy =
2401             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2402         llvm::Type *SrcTy =
2403           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2404         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2405         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2406 
2407         // If the source type is smaller than the destination type of the
2408         // coerce-to logic, copy the source value into a temp alloca the size
2409         // of the destination type to allow loading all of it. The bits past
2410         // the source value are left undef.
2411         if (SrcSize < DstSize) {
2412           llvm::AllocaInst *TempAlloca
2413             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2414           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2415           SrcPtr = TempAlloca;
2416         } else {
2417           SrcPtr = Builder.CreateBitCast(SrcPtr,
2418                                          llvm::PointerType::getUnqual(STy));
2419         }
2420 
2421         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2422           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2423           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2424           // We don't know what we're loading from.
2425           LI->setAlignment(1);
2426           Args.push_back(LI);
2427 
2428           // Validate argument match.
2429           checkArgMatches(LI, IRArgNo, IRFuncTy);
2430         }
2431       } else {
2432         // In the simple case, just pass the coerced loaded value.
2433         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2434                                          *this));
2435 
2436         // Validate argument match.
2437         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2438       }
2439 
2440       break;
2441     }
2442 
2443     case ABIArgInfo::Expand:
2444       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2445       IRArgNo = Args.size();
2446       break;
2447     }
2448   }
2449 
2450   if (!CallArgs.getCleanupsToDeactivate().empty())
2451     deactivateArgCleanupsBeforeCall(*this, CallArgs);
2452 
2453   // If the callee is a bitcast of a function to a varargs pointer to function
2454   // type, check to see if we can remove the bitcast.  This handles some cases
2455   // with unprototyped functions.
2456   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2457     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2458       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2459       llvm::FunctionType *CurFT =
2460         cast<llvm::FunctionType>(CurPT->getElementType());
2461       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2462 
2463       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2464           ActualFT->getReturnType() == CurFT->getReturnType() &&
2465           ActualFT->getNumParams() == CurFT->getNumParams() &&
2466           ActualFT->getNumParams() == Args.size() &&
2467           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2468         bool ArgsMatch = true;
2469         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2470           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2471             ArgsMatch = false;
2472             break;
2473           }
2474 
2475         // Strip the cast if we can get away with it.  This is a nice cleanup,
2476         // but also allows us to inline the function at -O0 if it is marked
2477         // always_inline.
2478         if (ArgsMatch)
2479           Callee = CalleeF;
2480       }
2481     }
2482 
2483   unsigned CallingConv;
2484   CodeGen::AttributeListType AttributeList;
2485   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2486                              CallingConv, true);
2487   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2488                                                      AttributeList);
2489 
2490   llvm::BasicBlock *InvokeDest = 0;
2491   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2492                           llvm::Attribute::NoUnwind))
2493     InvokeDest = getInvokeDest();
2494 
2495   llvm::CallSite CS;
2496   if (!InvokeDest) {
2497     CS = Builder.CreateCall(Callee, Args);
2498   } else {
2499     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2500     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2501     EmitBlock(Cont);
2502   }
2503   if (callOrInvoke)
2504     *callOrInvoke = CS.getInstruction();
2505 
2506   CS.setAttributes(Attrs);
2507   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2508 
2509   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2510   // optimizer it can aggressively ignore unwind edges.
2511   if (CGM.getLangOpts().ObjCAutoRefCount)
2512     AddObjCARCExceptionMetadata(CS.getInstruction());
2513 
2514   // If the call doesn't return, finish the basic block and clear the
2515   // insertion point; this allows the rest of IRgen to discard
2516   // unreachable code.
2517   if (CS.doesNotReturn()) {
2518     Builder.CreateUnreachable();
2519     Builder.ClearInsertionPoint();
2520 
2521     // FIXME: For now, emit a dummy basic block because expr emitters in
2522     // generally are not ready to handle emitting expressions at unreachable
2523     // points.
2524     EnsureInsertPoint();
2525 
2526     // Return a reasonable RValue.
2527     return GetUndefRValue(RetTy);
2528   }
2529 
2530   llvm::Instruction *CI = CS.getInstruction();
2531   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2532     CI->setName("call");
2533 
2534   // Emit any writebacks immediately.  Arguably this should happen
2535   // after any return-value munging.
2536   if (CallArgs.hasWritebacks())
2537     emitWritebacks(*this, CallArgs);
2538 
2539   switch (RetAI.getKind()) {
2540   case ABIArgInfo::Indirect:
2541     return convertTempToRValue(Args[0], RetTy);
2542 
2543   case ABIArgInfo::Ignore:
2544     // If we are ignoring an argument that had a result, make sure to
2545     // construct the appropriate return value for our caller.
2546     return GetUndefRValue(RetTy);
2547 
2548   case ABIArgInfo::Extend:
2549   case ABIArgInfo::Direct: {
2550     llvm::Type *RetIRTy = ConvertType(RetTy);
2551     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2552       switch (getEvaluationKind(RetTy)) {
2553       case TEK_Complex: {
2554         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2555         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2556         return RValue::getComplex(std::make_pair(Real, Imag));
2557       }
2558       case TEK_Aggregate: {
2559         llvm::Value *DestPtr = ReturnValue.getValue();
2560         bool DestIsVolatile = ReturnValue.isVolatile();
2561 
2562         if (!DestPtr) {
2563           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2564           DestIsVolatile = false;
2565         }
2566         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2567         return RValue::getAggregate(DestPtr);
2568       }
2569       case TEK_Scalar: {
2570         // If the argument doesn't match, perform a bitcast to coerce it.  This
2571         // can happen due to trivial type mismatches.
2572         llvm::Value *V = CI;
2573         if (V->getType() != RetIRTy)
2574           V = Builder.CreateBitCast(V, RetIRTy);
2575         return RValue::get(V);
2576       }
2577       }
2578       llvm_unreachable("bad evaluation kind");
2579     }
2580 
2581     llvm::Value *DestPtr = ReturnValue.getValue();
2582     bool DestIsVolatile = ReturnValue.isVolatile();
2583 
2584     if (!DestPtr) {
2585       DestPtr = CreateMemTemp(RetTy, "coerce");
2586       DestIsVolatile = false;
2587     }
2588 
2589     // If the value is offset in memory, apply the offset now.
2590     llvm::Value *StorePtr = DestPtr;
2591     if (unsigned Offs = RetAI.getDirectOffset()) {
2592       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2593       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2594       StorePtr = Builder.CreateBitCast(StorePtr,
2595                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2596     }
2597     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2598 
2599     return convertTempToRValue(DestPtr, RetTy);
2600   }
2601 
2602   case ABIArgInfo::Expand:
2603     llvm_unreachable("Invalid ABI kind for return argument");
2604   }
2605 
2606   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2607 }
2608 
2609 /* VarArg handling */
2610 
2611 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2612   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2613 }
2614