1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 71 /// qualification. 72 /// FIXME: address space qualification? 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 76 } 77 78 /// Returns the canonical formal type of the given C++ method. 79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 80 return MD->getType()->getCanonicalTypeUnqualified() 81 .getAs<FunctionProtoType>(); 82 } 83 84 /// Returns the "extra-canonicalized" return type, which discards 85 /// qualifiers on the return type. Codegen doesn't care about them, 86 /// and it makes ABI code a little easier to be able to assume that 87 /// all parameter and return types are top-level unqualified. 88 static CanQualType GetReturnType(QualType RetTy) { 89 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 90 } 91 92 /// Arrange the argument and result information for a value of the given 93 /// unprototyped freestanding function type. 94 const CGFunctionInfo & 95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 96 // When translating an unprototyped function type, always use a 97 // variadic type. 98 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 99 /*instanceMethod=*/false, 100 /*chainCall=*/false, None, 101 FTNP->getExtInfo(), {}, RequiredArgs(0)); 102 } 103 104 static void addExtParameterInfosForCall( 105 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 const FunctionProtoType *proto, 107 unsigned prefixArgs, 108 unsigned totalArgs) { 109 assert(proto->hasExtParameterInfos()); 110 assert(paramInfos.size() <= prefixArgs); 111 assert(proto->getNumParams() + prefixArgs <= totalArgs); 112 113 paramInfos.reserve(totalArgs); 114 115 // Add default infos for any prefix args that don't already have infos. 116 paramInfos.resize(prefixArgs); 117 118 // Add infos for the prototype. 119 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 120 paramInfos.push_back(ParamInfo); 121 // pass_object_size params have no parameter info. 122 if (ParamInfo.hasPassObjectSize()) 123 paramInfos.emplace_back(); 124 } 125 126 assert(paramInfos.size() <= totalArgs && 127 "Did we forget to insert pass_object_size args?"); 128 // Add default infos for the variadic and/or suffix arguments. 129 paramInfos.resize(totalArgs); 130 } 131 132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 134 static void appendParameterTypes(const CodeGenTypes &CGT, 135 SmallVectorImpl<CanQualType> &prefix, 136 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 137 CanQual<FunctionProtoType> FPT) { 138 // Fast path: don't touch param info if we don't need to. 139 if (!FPT->hasExtParameterInfos()) { 140 assert(paramInfos.empty() && 141 "We have paramInfos, but the prototype doesn't?"); 142 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 143 return; 144 } 145 146 unsigned PrefixSize = prefix.size(); 147 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 148 // parameters; the only thing that can change this is the presence of 149 // pass_object_size. So, we preallocate for the common case. 150 prefix.reserve(prefix.size() + FPT->getNumParams()); 151 152 auto ExtInfos = FPT->getExtParameterInfos(); 153 assert(ExtInfos.size() == FPT->getNumParams()); 154 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 155 prefix.push_back(FPT->getParamType(I)); 156 if (ExtInfos[I].hasPassObjectSize()) 157 prefix.push_back(CGT.getContext().getSizeType()); 158 } 159 160 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 161 prefix.size()); 162 } 163 164 /// Arrange the LLVM function layout for a value of the given function 165 /// type, on top of any implicit parameters already stored. 166 static const CGFunctionInfo & 167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 168 SmallVectorImpl<CanQualType> &prefix, 169 CanQual<FunctionProtoType> FTP, 170 const FunctionDecl *FD) { 171 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 172 RequiredArgs Required = 173 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 174 // FIXME: Kill copy. 175 appendParameterTypes(CGT, prefix, paramInfos, FTP); 176 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 177 178 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 179 /*chainCall=*/false, prefix, 180 FTP->getExtInfo(), paramInfos, 181 Required); 182 } 183 184 /// Arrange the argument and result information for a value of the 185 /// given freestanding function type. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 188 const FunctionDecl *FD) { 189 SmallVector<CanQualType, 16> argTypes; 190 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 191 FTP, FD); 192 } 193 194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 195 // Set the appropriate calling convention for the Function. 196 if (D->hasAttr<StdCallAttr>()) 197 return CC_X86StdCall; 198 199 if (D->hasAttr<FastCallAttr>()) 200 return CC_X86FastCall; 201 202 if (D->hasAttr<RegCallAttr>()) 203 return CC_X86RegCall; 204 205 if (D->hasAttr<ThisCallAttr>()) 206 return CC_X86ThisCall; 207 208 if (D->hasAttr<VectorCallAttr>()) 209 return CC_X86VectorCall; 210 211 if (D->hasAttr<PascalAttr>()) 212 return CC_X86Pascal; 213 214 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 215 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 216 217 if (D->hasAttr<IntelOclBiccAttr>()) 218 return CC_IntelOclBicc; 219 220 if (D->hasAttr<MSABIAttr>()) 221 return IsWindows ? CC_C : CC_Win64; 222 223 if (D->hasAttr<SysVABIAttr>()) 224 return IsWindows ? CC_X86_64SysV : CC_C; 225 226 if (D->hasAttr<PreserveMostAttr>()) 227 return CC_PreserveMost; 228 229 if (D->hasAttr<PreserveAllAttr>()) 230 return CC_PreserveAll; 231 232 return CC_C; 233 } 234 235 /// Arrange the argument and result information for a call to an 236 /// unknown C++ non-static member function of the given abstract type. 237 /// (Zero value of RD means we don't have any meaningful "this" argument type, 238 /// so fall back to a generic pointer type). 239 /// The member function must be an ordinary function, i.e. not a 240 /// constructor or destructor. 241 const CGFunctionInfo & 242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 243 const FunctionProtoType *FTP, 244 const CXXMethodDecl *MD) { 245 SmallVector<CanQualType, 16> argTypes; 246 247 // Add the 'this' pointer. 248 if (RD) 249 argTypes.push_back(GetThisType(Context, RD)); 250 else 251 argTypes.push_back(Context.VoidPtrTy); 252 253 return ::arrangeLLVMFunctionInfo( 254 *this, true, argTypes, 255 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 256 } 257 258 /// Set calling convention for CUDA/HIP kernel. 259 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 260 const FunctionDecl *FD) { 261 if (FD->hasAttr<CUDAGlobalAttr>()) { 262 const FunctionType *FT = FTy->getAs<FunctionType>(); 263 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 264 FTy = FT->getCanonicalTypeUnqualified(); 265 } 266 } 267 268 /// Arrange the argument and result information for a declaration or 269 /// definition of the given C++ non-static member function. The 270 /// member function must be an ordinary function, i.e. not a 271 /// constructor or destructor. 272 const CGFunctionInfo & 273 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 274 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 275 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 276 277 CanQualType FT = GetFormalType(MD).getAs<Type>(); 278 setCUDAKernelCallingConvention(FT, CGM, MD); 279 auto prototype = FT.getAs<FunctionProtoType>(); 280 281 if (MD->isInstance()) { 282 // The abstract case is perfectly fine. 283 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 284 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 285 } 286 287 return arrangeFreeFunctionType(prototype, MD); 288 } 289 290 bool CodeGenTypes::inheritingCtorHasParams( 291 const InheritedConstructor &Inherited, CXXCtorType Type) { 292 // Parameters are unnecessary if we're constructing a base class subobject 293 // and the inherited constructor lives in a virtual base. 294 return Type == Ctor_Complete || 295 !Inherited.getShadowDecl()->constructsVirtualBase() || 296 !Target.getCXXABI().hasConstructorVariants(); 297 } 298 299 const CGFunctionInfo & 300 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 301 StructorType Type) { 302 303 SmallVector<CanQualType, 16> argTypes; 304 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 305 argTypes.push_back(GetThisType(Context, MD->getParent())); 306 307 bool PassParams = true; 308 309 GlobalDecl GD; 310 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 311 GD = GlobalDecl(CD, toCXXCtorType(Type)); 312 313 // A base class inheriting constructor doesn't get forwarded arguments 314 // needed to construct a virtual base (or base class thereof). 315 if (auto Inherited = CD->getInheritedConstructor()) 316 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 317 } else { 318 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 319 GD = GlobalDecl(DD, toCXXDtorType(Type)); 320 } 321 322 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 323 324 // Add the formal parameters. 325 if (PassParams) 326 appendParameterTypes(*this, argTypes, paramInfos, FTP); 327 328 CGCXXABI::AddedStructorArgs AddedArgs = 329 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 330 if (!paramInfos.empty()) { 331 // Note: prefix implies after the first param. 332 if (AddedArgs.Prefix) 333 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 334 FunctionProtoType::ExtParameterInfo{}); 335 if (AddedArgs.Suffix) 336 paramInfos.append(AddedArgs.Suffix, 337 FunctionProtoType::ExtParameterInfo{}); 338 } 339 340 RequiredArgs required = 341 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 342 : RequiredArgs::All); 343 344 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 345 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 346 ? argTypes.front() 347 : TheCXXABI.hasMostDerivedReturn(GD) 348 ? CGM.getContext().VoidPtrTy 349 : Context.VoidTy; 350 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 351 /*chainCall=*/false, argTypes, extInfo, 352 paramInfos, required); 353 } 354 355 static SmallVector<CanQualType, 16> 356 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 357 SmallVector<CanQualType, 16> argTypes; 358 for (auto &arg : args) 359 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 360 return argTypes; 361 } 362 363 static SmallVector<CanQualType, 16> 364 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 365 SmallVector<CanQualType, 16> argTypes; 366 for (auto &arg : args) 367 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 368 return argTypes; 369 } 370 371 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 372 getExtParameterInfosForCall(const FunctionProtoType *proto, 373 unsigned prefixArgs, unsigned totalArgs) { 374 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 375 if (proto->hasExtParameterInfos()) { 376 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 377 } 378 return result; 379 } 380 381 /// Arrange a call to a C++ method, passing the given arguments. 382 /// 383 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 384 /// parameter. 385 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 386 /// args. 387 /// PassProtoArgs indicates whether `args` has args for the parameters in the 388 /// given CXXConstructorDecl. 389 const CGFunctionInfo & 390 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 391 const CXXConstructorDecl *D, 392 CXXCtorType CtorKind, 393 unsigned ExtraPrefixArgs, 394 unsigned ExtraSuffixArgs, 395 bool PassProtoArgs) { 396 // FIXME: Kill copy. 397 SmallVector<CanQualType, 16> ArgTypes; 398 for (const auto &Arg : args) 399 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 400 401 // +1 for implicit this, which should always be args[0]. 402 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 403 404 CanQual<FunctionProtoType> FPT = GetFormalType(D); 405 RequiredArgs Required = 406 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 407 GlobalDecl GD(D, CtorKind); 408 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 409 ? ArgTypes.front() 410 : TheCXXABI.hasMostDerivedReturn(GD) 411 ? CGM.getContext().VoidPtrTy 412 : Context.VoidTy; 413 414 FunctionType::ExtInfo Info = FPT->getExtInfo(); 415 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 416 // If the prototype args are elided, we should only have ABI-specific args, 417 // which never have param info. 418 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 419 // ABI-specific suffix arguments are treated the same as variadic arguments. 420 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 421 ArgTypes.size()); 422 } 423 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 424 /*chainCall=*/false, ArgTypes, Info, 425 ParamInfos, Required); 426 } 427 428 /// Arrange the argument and result information for the declaration or 429 /// definition of the given function. 430 const CGFunctionInfo & 431 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 432 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 433 if (MD->isInstance()) 434 return arrangeCXXMethodDeclaration(MD); 435 436 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 437 438 assert(isa<FunctionType>(FTy)); 439 setCUDAKernelCallingConvention(FTy, CGM, FD); 440 441 // When declaring a function without a prototype, always use a 442 // non-variadic type. 443 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 444 return arrangeLLVMFunctionInfo( 445 noProto->getReturnType(), /*instanceMethod=*/false, 446 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 447 } 448 449 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 450 } 451 452 /// Arrange the argument and result information for the declaration or 453 /// definition of an Objective-C method. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 456 // It happens that this is the same as a call with no optional 457 // arguments, except also using the formal 'self' type. 458 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 459 } 460 461 /// Arrange the argument and result information for the function type 462 /// through which to perform a send to the given Objective-C method, 463 /// using the given receiver type. The receiver type is not always 464 /// the 'self' type of the method or even an Objective-C pointer type. 465 /// This is *not* the right method for actually performing such a 466 /// message send, due to the possibility of optional arguments. 467 const CGFunctionInfo & 468 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 469 QualType receiverType) { 470 SmallVector<CanQualType, 16> argTys; 471 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 472 argTys.push_back(Context.getCanonicalParamType(receiverType)); 473 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 474 // FIXME: Kill copy? 475 for (const auto *I : MD->parameters()) { 476 argTys.push_back(Context.getCanonicalParamType(I->getType())); 477 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 478 I->hasAttr<NoEscapeAttr>()); 479 extParamInfos.push_back(extParamInfo); 480 } 481 482 FunctionType::ExtInfo einfo; 483 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 484 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 485 486 if (getContext().getLangOpts().ObjCAutoRefCount && 487 MD->hasAttr<NSReturnsRetainedAttr>()) 488 einfo = einfo.withProducesResult(true); 489 490 RequiredArgs required = 491 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 492 493 return arrangeLLVMFunctionInfo( 494 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 495 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 496 } 497 498 const CGFunctionInfo & 499 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 500 const CallArgList &args) { 501 auto argTypes = getArgTypesForCall(Context, args); 502 FunctionType::ExtInfo einfo; 503 504 return arrangeLLVMFunctionInfo( 505 GetReturnType(returnType), /*instanceMethod=*/false, 506 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 507 } 508 509 const CGFunctionInfo & 510 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 511 // FIXME: Do we need to handle ObjCMethodDecl? 512 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 513 514 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 515 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 516 517 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 518 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 519 520 return arrangeFunctionDeclaration(FD); 521 } 522 523 /// Arrange a thunk that takes 'this' as the first parameter followed by 524 /// varargs. Return a void pointer, regardless of the actual return type. 525 /// The body of the thunk will end in a musttail call to a function of the 526 /// correct type, and the caller will bitcast the function to the correct 527 /// prototype. 528 const CGFunctionInfo & 529 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 530 assert(MD->isVirtual() && "only methods have thunks"); 531 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 532 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 533 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 534 /*chainCall=*/false, ArgTys, 535 FTP->getExtInfo(), {}, RequiredArgs(1)); 536 } 537 538 const CGFunctionInfo & 539 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 540 CXXCtorType CT) { 541 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 542 543 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 544 SmallVector<CanQualType, 2> ArgTys; 545 const CXXRecordDecl *RD = CD->getParent(); 546 ArgTys.push_back(GetThisType(Context, RD)); 547 if (CT == Ctor_CopyingClosure) 548 ArgTys.push_back(*FTP->param_type_begin()); 549 if (RD->getNumVBases() > 0) 550 ArgTys.push_back(Context.IntTy); 551 CallingConv CC = Context.getDefaultCallingConvention( 552 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 553 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 554 /*chainCall=*/false, ArgTys, 555 FunctionType::ExtInfo(CC), {}, 556 RequiredArgs::All); 557 } 558 559 /// Arrange a call as unto a free function, except possibly with an 560 /// additional number of formal parameters considered required. 561 static const CGFunctionInfo & 562 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 563 CodeGenModule &CGM, 564 const CallArgList &args, 565 const FunctionType *fnType, 566 unsigned numExtraRequiredArgs, 567 bool chainCall) { 568 assert(args.size() >= numExtraRequiredArgs); 569 570 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 571 572 // In most cases, there are no optional arguments. 573 RequiredArgs required = RequiredArgs::All; 574 575 // If we have a variadic prototype, the required arguments are the 576 // extra prefix plus the arguments in the prototype. 577 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 578 if (proto->isVariadic()) 579 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 580 581 if (proto->hasExtParameterInfos()) 582 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 583 args.size()); 584 585 // If we don't have a prototype at all, but we're supposed to 586 // explicitly use the variadic convention for unprototyped calls, 587 // treat all of the arguments as required but preserve the nominal 588 // possibility of variadics. 589 } else if (CGM.getTargetCodeGenInfo() 590 .isNoProtoCallVariadic(args, 591 cast<FunctionNoProtoType>(fnType))) { 592 required = RequiredArgs(args.size()); 593 } 594 595 // FIXME: Kill copy. 596 SmallVector<CanQualType, 16> argTypes; 597 for (const auto &arg : args) 598 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 599 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 600 /*instanceMethod=*/false, chainCall, 601 argTypes, fnType->getExtInfo(), paramInfos, 602 required); 603 } 604 605 /// Figure out the rules for calling a function with the given formal 606 /// type using the given arguments. The arguments are necessary 607 /// because the function might be unprototyped, in which case it's 608 /// target-dependent in crazy ways. 609 const CGFunctionInfo & 610 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 611 const FunctionType *fnType, 612 bool chainCall) { 613 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 614 chainCall ? 1 : 0, chainCall); 615 } 616 617 /// A block function is essentially a free function with an 618 /// extra implicit argument. 619 const CGFunctionInfo & 620 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 621 const FunctionType *fnType) { 622 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 623 /*chainCall=*/false); 624 } 625 626 const CGFunctionInfo & 627 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 628 const FunctionArgList ¶ms) { 629 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 630 auto argTypes = getArgTypesForDeclaration(Context, params); 631 632 return arrangeLLVMFunctionInfo( 633 GetReturnType(proto->getReturnType()), 634 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 635 proto->getExtInfo(), paramInfos, 636 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 637 } 638 639 const CGFunctionInfo & 640 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 641 const CallArgList &args) { 642 // FIXME: Kill copy. 643 SmallVector<CanQualType, 16> argTypes; 644 for (const auto &Arg : args) 645 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 646 return arrangeLLVMFunctionInfo( 647 GetReturnType(resultType), /*instanceMethod=*/false, 648 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 649 /*paramInfos=*/ {}, RequiredArgs::All); 650 } 651 652 const CGFunctionInfo & 653 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 654 const FunctionArgList &args) { 655 auto argTypes = getArgTypesForDeclaration(Context, args); 656 657 return arrangeLLVMFunctionInfo( 658 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 659 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 660 } 661 662 const CGFunctionInfo & 663 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 664 ArrayRef<CanQualType> argTypes) { 665 return arrangeLLVMFunctionInfo( 666 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 667 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 668 } 669 670 /// Arrange a call to a C++ method, passing the given arguments. 671 /// 672 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 673 /// does not count `this`. 674 const CGFunctionInfo & 675 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 676 const FunctionProtoType *proto, 677 RequiredArgs required, 678 unsigned numPrefixArgs) { 679 assert(numPrefixArgs + 1 <= args.size() && 680 "Emitting a call with less args than the required prefix?"); 681 // Add one to account for `this`. It's a bit awkward here, but we don't count 682 // `this` in similar places elsewhere. 683 auto paramInfos = 684 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 685 686 // FIXME: Kill copy. 687 auto argTypes = getArgTypesForCall(Context, args); 688 689 FunctionType::ExtInfo info = proto->getExtInfo(); 690 return arrangeLLVMFunctionInfo( 691 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 692 /*chainCall=*/false, argTypes, info, paramInfos, required); 693 } 694 695 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 696 return arrangeLLVMFunctionInfo( 697 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 698 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 699 } 700 701 const CGFunctionInfo & 702 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 703 const CallArgList &args) { 704 assert(signature.arg_size() <= args.size()); 705 if (signature.arg_size() == args.size()) 706 return signature; 707 708 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 709 auto sigParamInfos = signature.getExtParameterInfos(); 710 if (!sigParamInfos.empty()) { 711 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 712 paramInfos.resize(args.size()); 713 } 714 715 auto argTypes = getArgTypesForCall(Context, args); 716 717 assert(signature.getRequiredArgs().allowsOptionalArgs()); 718 return arrangeLLVMFunctionInfo(signature.getReturnType(), 719 signature.isInstanceMethod(), 720 signature.isChainCall(), 721 argTypes, 722 signature.getExtInfo(), 723 paramInfos, 724 signature.getRequiredArgs()); 725 } 726 727 namespace clang { 728 namespace CodeGen { 729 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 730 } 731 } 732 733 /// Arrange the argument and result information for an abstract value 734 /// of a given function type. This is the method which all of the 735 /// above functions ultimately defer to. 736 const CGFunctionInfo & 737 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 738 bool instanceMethod, 739 bool chainCall, 740 ArrayRef<CanQualType> argTypes, 741 FunctionType::ExtInfo info, 742 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 743 RequiredArgs required) { 744 assert(std::all_of(argTypes.begin(), argTypes.end(), 745 [](CanQualType T) { return T.isCanonicalAsParam(); })); 746 747 // Lookup or create unique function info. 748 llvm::FoldingSetNodeID ID; 749 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 750 required, resultType, argTypes); 751 752 void *insertPos = nullptr; 753 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 754 if (FI) 755 return *FI; 756 757 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 758 759 // Construct the function info. We co-allocate the ArgInfos. 760 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 761 paramInfos, resultType, argTypes, required); 762 FunctionInfos.InsertNode(FI, insertPos); 763 764 bool inserted = FunctionsBeingProcessed.insert(FI).second; 765 (void)inserted; 766 assert(inserted && "Recursively being processed?"); 767 768 // Compute ABI information. 769 if (CC == llvm::CallingConv::SPIR_KERNEL) { 770 // Force target independent argument handling for the host visible 771 // kernel functions. 772 computeSPIRKernelABIInfo(CGM, *FI); 773 } else if (info.getCC() == CC_Swift) { 774 swiftcall::computeABIInfo(CGM, *FI); 775 } else { 776 getABIInfo().computeInfo(*FI); 777 } 778 779 // Loop over all of the computed argument and return value info. If any of 780 // them are direct or extend without a specified coerce type, specify the 781 // default now. 782 ABIArgInfo &retInfo = FI->getReturnInfo(); 783 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 784 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 785 786 for (auto &I : FI->arguments()) 787 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 788 I.info.setCoerceToType(ConvertType(I.type)); 789 790 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 791 assert(erased && "Not in set?"); 792 793 return *FI; 794 } 795 796 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 797 bool instanceMethod, 798 bool chainCall, 799 const FunctionType::ExtInfo &info, 800 ArrayRef<ExtParameterInfo> paramInfos, 801 CanQualType resultType, 802 ArrayRef<CanQualType> argTypes, 803 RequiredArgs required) { 804 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 805 806 void *buffer = 807 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 808 argTypes.size() + 1, paramInfos.size())); 809 810 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 811 FI->CallingConvention = llvmCC; 812 FI->EffectiveCallingConvention = llvmCC; 813 FI->ASTCallingConvention = info.getCC(); 814 FI->InstanceMethod = instanceMethod; 815 FI->ChainCall = chainCall; 816 FI->NoReturn = info.getNoReturn(); 817 FI->ReturnsRetained = info.getProducesResult(); 818 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 819 FI->NoCfCheck = info.getNoCfCheck(); 820 FI->Required = required; 821 FI->HasRegParm = info.getHasRegParm(); 822 FI->RegParm = info.getRegParm(); 823 FI->ArgStruct = nullptr; 824 FI->ArgStructAlign = 0; 825 FI->NumArgs = argTypes.size(); 826 FI->HasExtParameterInfos = !paramInfos.empty(); 827 FI->getArgsBuffer()[0].type = resultType; 828 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 829 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 830 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 831 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 832 return FI; 833 } 834 835 /***/ 836 837 namespace { 838 // ABIArgInfo::Expand implementation. 839 840 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 841 struct TypeExpansion { 842 enum TypeExpansionKind { 843 // Elements of constant arrays are expanded recursively. 844 TEK_ConstantArray, 845 // Record fields are expanded recursively (but if record is a union, only 846 // the field with the largest size is expanded). 847 TEK_Record, 848 // For complex types, real and imaginary parts are expanded recursively. 849 TEK_Complex, 850 // All other types are not expandable. 851 TEK_None 852 }; 853 854 const TypeExpansionKind Kind; 855 856 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 857 virtual ~TypeExpansion() {} 858 }; 859 860 struct ConstantArrayExpansion : TypeExpansion { 861 QualType EltTy; 862 uint64_t NumElts; 863 864 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 865 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 866 static bool classof(const TypeExpansion *TE) { 867 return TE->Kind == TEK_ConstantArray; 868 } 869 }; 870 871 struct RecordExpansion : TypeExpansion { 872 SmallVector<const CXXBaseSpecifier *, 1> Bases; 873 874 SmallVector<const FieldDecl *, 1> Fields; 875 876 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 877 SmallVector<const FieldDecl *, 1> &&Fields) 878 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 879 Fields(std::move(Fields)) {} 880 static bool classof(const TypeExpansion *TE) { 881 return TE->Kind == TEK_Record; 882 } 883 }; 884 885 struct ComplexExpansion : TypeExpansion { 886 QualType EltTy; 887 888 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 889 static bool classof(const TypeExpansion *TE) { 890 return TE->Kind == TEK_Complex; 891 } 892 }; 893 894 struct NoExpansion : TypeExpansion { 895 NoExpansion() : TypeExpansion(TEK_None) {} 896 static bool classof(const TypeExpansion *TE) { 897 return TE->Kind == TEK_None; 898 } 899 }; 900 } // namespace 901 902 static std::unique_ptr<TypeExpansion> 903 getTypeExpansion(QualType Ty, const ASTContext &Context) { 904 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 905 return llvm::make_unique<ConstantArrayExpansion>( 906 AT->getElementType(), AT->getSize().getZExtValue()); 907 } 908 if (const RecordType *RT = Ty->getAs<RecordType>()) { 909 SmallVector<const CXXBaseSpecifier *, 1> Bases; 910 SmallVector<const FieldDecl *, 1> Fields; 911 const RecordDecl *RD = RT->getDecl(); 912 assert(!RD->hasFlexibleArrayMember() && 913 "Cannot expand structure with flexible array."); 914 if (RD->isUnion()) { 915 // Unions can be here only in degenerative cases - all the fields are same 916 // after flattening. Thus we have to use the "largest" field. 917 const FieldDecl *LargestFD = nullptr; 918 CharUnits UnionSize = CharUnits::Zero(); 919 920 for (const auto *FD : RD->fields()) { 921 if (FD->isZeroLengthBitField(Context)) 922 continue; 923 assert(!FD->isBitField() && 924 "Cannot expand structure with bit-field members."); 925 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 926 if (UnionSize < FieldSize) { 927 UnionSize = FieldSize; 928 LargestFD = FD; 929 } 930 } 931 if (LargestFD) 932 Fields.push_back(LargestFD); 933 } else { 934 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 935 assert(!CXXRD->isDynamicClass() && 936 "cannot expand vtable pointers in dynamic classes"); 937 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 938 Bases.push_back(&BS); 939 } 940 941 for (const auto *FD : RD->fields()) { 942 if (FD->isZeroLengthBitField(Context)) 943 continue; 944 assert(!FD->isBitField() && 945 "Cannot expand structure with bit-field members."); 946 Fields.push_back(FD); 947 } 948 } 949 return llvm::make_unique<RecordExpansion>(std::move(Bases), 950 std::move(Fields)); 951 } 952 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 953 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 954 } 955 return llvm::make_unique<NoExpansion>(); 956 } 957 958 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 959 auto Exp = getTypeExpansion(Ty, Context); 960 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 961 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 962 } 963 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 964 int Res = 0; 965 for (auto BS : RExp->Bases) 966 Res += getExpansionSize(BS->getType(), Context); 967 for (auto FD : RExp->Fields) 968 Res += getExpansionSize(FD->getType(), Context); 969 return Res; 970 } 971 if (isa<ComplexExpansion>(Exp.get())) 972 return 2; 973 assert(isa<NoExpansion>(Exp.get())); 974 return 1; 975 } 976 977 void 978 CodeGenTypes::getExpandedTypes(QualType Ty, 979 SmallVectorImpl<llvm::Type *>::iterator &TI) { 980 auto Exp = getTypeExpansion(Ty, Context); 981 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 982 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 983 getExpandedTypes(CAExp->EltTy, TI); 984 } 985 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 986 for (auto BS : RExp->Bases) 987 getExpandedTypes(BS->getType(), TI); 988 for (auto FD : RExp->Fields) 989 getExpandedTypes(FD->getType(), TI); 990 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 991 llvm::Type *EltTy = ConvertType(CExp->EltTy); 992 *TI++ = EltTy; 993 *TI++ = EltTy; 994 } else { 995 assert(isa<NoExpansion>(Exp.get())); 996 *TI++ = ConvertType(Ty); 997 } 998 } 999 1000 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1001 ConstantArrayExpansion *CAE, 1002 Address BaseAddr, 1003 llvm::function_ref<void(Address)> Fn) { 1004 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1005 CharUnits EltAlign = 1006 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1007 1008 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1009 llvm::Value *EltAddr = 1010 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1011 Fn(Address(EltAddr, EltAlign)); 1012 } 1013 } 1014 1015 void CodeGenFunction::ExpandTypeFromArgs( 1016 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1017 assert(LV.isSimple() && 1018 "Unexpected non-simple lvalue during struct expansion."); 1019 1020 auto Exp = getTypeExpansion(Ty, getContext()); 1021 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1022 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1023 [&](Address EltAddr) { 1024 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1025 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1026 }); 1027 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1028 Address This = LV.getAddress(); 1029 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1030 // Perform a single step derived-to-base conversion. 1031 Address Base = 1032 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1033 /*NullCheckValue=*/false, SourceLocation()); 1034 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1035 1036 // Recurse onto bases. 1037 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1038 } 1039 for (auto FD : RExp->Fields) { 1040 // FIXME: What are the right qualifiers here? 1041 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1042 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1043 } 1044 } else if (isa<ComplexExpansion>(Exp.get())) { 1045 auto realValue = *AI++; 1046 auto imagValue = *AI++; 1047 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1048 } else { 1049 assert(isa<NoExpansion>(Exp.get())); 1050 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1051 } 1052 } 1053 1054 void CodeGenFunction::ExpandTypeToArgs( 1055 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1056 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1057 auto Exp = getTypeExpansion(Ty, getContext()); 1058 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1059 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1060 : Arg.getKnownRValue().getAggregateAddress(); 1061 forConstantArrayExpansion( 1062 *this, CAExp, Addr, [&](Address EltAddr) { 1063 CallArg EltArg = CallArg( 1064 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1065 CAExp->EltTy); 1066 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1067 IRCallArgPos); 1068 }); 1069 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1070 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1071 : Arg.getKnownRValue().getAggregateAddress(); 1072 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1073 // Perform a single step derived-to-base conversion. 1074 Address Base = 1075 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1076 /*NullCheckValue=*/false, SourceLocation()); 1077 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1078 1079 // Recurse onto bases. 1080 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1081 IRCallArgPos); 1082 } 1083 1084 LValue LV = MakeAddrLValue(This, Ty); 1085 for (auto FD : RExp->Fields) { 1086 CallArg FldArg = 1087 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1088 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1089 IRCallArgPos); 1090 } 1091 } else if (isa<ComplexExpansion>(Exp.get())) { 1092 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1093 IRCallArgs[IRCallArgPos++] = CV.first; 1094 IRCallArgs[IRCallArgPos++] = CV.second; 1095 } else { 1096 assert(isa<NoExpansion>(Exp.get())); 1097 auto RV = Arg.getKnownRValue(); 1098 assert(RV.isScalar() && 1099 "Unexpected non-scalar rvalue during struct expansion."); 1100 1101 // Insert a bitcast as needed. 1102 llvm::Value *V = RV.getScalarVal(); 1103 if (IRCallArgPos < IRFuncTy->getNumParams() && 1104 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1105 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1106 1107 IRCallArgs[IRCallArgPos++] = V; 1108 } 1109 } 1110 1111 /// Create a temporary allocation for the purposes of coercion. 1112 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1113 CharUnits MinAlign) { 1114 // Don't use an alignment that's worse than what LLVM would prefer. 1115 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1116 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1117 1118 return CGF.CreateTempAlloca(Ty, Align); 1119 } 1120 1121 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1122 /// accessing some number of bytes out of it, try to gep into the struct to get 1123 /// at its inner goodness. Dive as deep as possible without entering an element 1124 /// with an in-memory size smaller than DstSize. 1125 static Address 1126 EnterStructPointerForCoercedAccess(Address SrcPtr, 1127 llvm::StructType *SrcSTy, 1128 uint64_t DstSize, CodeGenFunction &CGF) { 1129 // We can't dive into a zero-element struct. 1130 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1131 1132 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1133 1134 // If the first elt is at least as large as what we're looking for, or if the 1135 // first element is the same size as the whole struct, we can enter it. The 1136 // comparison must be made on the store size and not the alloca size. Using 1137 // the alloca size may overstate the size of the load. 1138 uint64_t FirstEltSize = 1139 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1140 if (FirstEltSize < DstSize && 1141 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1142 return SrcPtr; 1143 1144 // GEP into the first element. 1145 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1146 1147 // If the first element is a struct, recurse. 1148 llvm::Type *SrcTy = SrcPtr.getElementType(); 1149 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1150 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1151 1152 return SrcPtr; 1153 } 1154 1155 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1156 /// are either integers or pointers. This does a truncation of the value if it 1157 /// is too large or a zero extension if it is too small. 1158 /// 1159 /// This behaves as if the value were coerced through memory, so on big-endian 1160 /// targets the high bits are preserved in a truncation, while little-endian 1161 /// targets preserve the low bits. 1162 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1163 llvm::Type *Ty, 1164 CodeGenFunction &CGF) { 1165 if (Val->getType() == Ty) 1166 return Val; 1167 1168 if (isa<llvm::PointerType>(Val->getType())) { 1169 // If this is Pointer->Pointer avoid conversion to and from int. 1170 if (isa<llvm::PointerType>(Ty)) 1171 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1172 1173 // Convert the pointer to an integer so we can play with its width. 1174 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1175 } 1176 1177 llvm::Type *DestIntTy = Ty; 1178 if (isa<llvm::PointerType>(DestIntTy)) 1179 DestIntTy = CGF.IntPtrTy; 1180 1181 if (Val->getType() != DestIntTy) { 1182 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1183 if (DL.isBigEndian()) { 1184 // Preserve the high bits on big-endian targets. 1185 // That is what memory coercion does. 1186 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1187 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1188 1189 if (SrcSize > DstSize) { 1190 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1191 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1192 } else { 1193 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1194 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1195 } 1196 } else { 1197 // Little-endian targets preserve the low bits. No shifts required. 1198 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1199 } 1200 } 1201 1202 if (isa<llvm::PointerType>(Ty)) 1203 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1204 return Val; 1205 } 1206 1207 1208 1209 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1210 /// a pointer to an object of type \arg Ty, known to be aligned to 1211 /// \arg SrcAlign bytes. 1212 /// 1213 /// This safely handles the case when the src type is smaller than the 1214 /// destination type; in this situation the values of bits which not 1215 /// present in the src are undefined. 1216 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1217 CodeGenFunction &CGF) { 1218 llvm::Type *SrcTy = Src.getElementType(); 1219 1220 // If SrcTy and Ty are the same, just do a load. 1221 if (SrcTy == Ty) 1222 return CGF.Builder.CreateLoad(Src); 1223 1224 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1225 1226 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1227 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1228 SrcTy = Src.getType()->getElementType(); 1229 } 1230 1231 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1232 1233 // If the source and destination are integer or pointer types, just do an 1234 // extension or truncation to the desired type. 1235 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1236 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1237 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1238 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1239 } 1240 1241 // If load is legal, just bitcast the src pointer. 1242 if (SrcSize >= DstSize) { 1243 // Generally SrcSize is never greater than DstSize, since this means we are 1244 // losing bits. However, this can happen in cases where the structure has 1245 // additional padding, for example due to a user specified alignment. 1246 // 1247 // FIXME: Assert that we aren't truncating non-padding bits when have access 1248 // to that information. 1249 Src = CGF.Builder.CreateBitCast(Src, 1250 Ty->getPointerTo(Src.getAddressSpace())); 1251 return CGF.Builder.CreateLoad(Src); 1252 } 1253 1254 // Otherwise do coercion through memory. This is stupid, but simple. 1255 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1256 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1257 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.AllocaInt8PtrTy); 1258 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1259 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1260 false); 1261 return CGF.Builder.CreateLoad(Tmp); 1262 } 1263 1264 // Function to store a first-class aggregate into memory. We prefer to 1265 // store the elements rather than the aggregate to be more friendly to 1266 // fast-isel. 1267 // FIXME: Do we need to recurse here? 1268 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1269 Address Dest, bool DestIsVolatile) { 1270 // Prefer scalar stores to first-class aggregate stores. 1271 if (llvm::StructType *STy = 1272 dyn_cast<llvm::StructType>(Val->getType())) { 1273 const llvm::StructLayout *Layout = 1274 CGF.CGM.getDataLayout().getStructLayout(STy); 1275 1276 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1277 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1278 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1279 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1280 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1281 } 1282 } else { 1283 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1284 } 1285 } 1286 1287 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1288 /// where the source and destination may have different types. The 1289 /// destination is known to be aligned to \arg DstAlign bytes. 1290 /// 1291 /// This safely handles the case when the src type is larger than the 1292 /// destination type; the upper bits of the src will be lost. 1293 static void CreateCoercedStore(llvm::Value *Src, 1294 Address Dst, 1295 bool DstIsVolatile, 1296 CodeGenFunction &CGF) { 1297 llvm::Type *SrcTy = Src->getType(); 1298 llvm::Type *DstTy = Dst.getType()->getElementType(); 1299 if (SrcTy == DstTy) { 1300 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1301 return; 1302 } 1303 1304 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1305 1306 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1307 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1308 DstTy = Dst.getType()->getElementType(); 1309 } 1310 1311 // If the source and destination are integer or pointer types, just do an 1312 // extension or truncation to the desired type. 1313 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1314 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1315 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1316 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1317 return; 1318 } 1319 1320 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1321 1322 // If store is legal, just bitcast the src pointer. 1323 if (SrcSize <= DstSize) { 1324 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1325 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1326 } else { 1327 // Otherwise do coercion through memory. This is stupid, but 1328 // simple. 1329 1330 // Generally SrcSize is never greater than DstSize, since this means we are 1331 // losing bits. However, this can happen in cases where the structure has 1332 // additional padding, for example due to a user specified alignment. 1333 // 1334 // FIXME: Assert that we aren't truncating non-padding bits when have access 1335 // to that information. 1336 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1337 CGF.Builder.CreateStore(Src, Tmp); 1338 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1339 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.AllocaInt8PtrTy); 1340 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1341 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1342 false); 1343 } 1344 } 1345 1346 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1347 const ABIArgInfo &info) { 1348 if (unsigned offset = info.getDirectOffset()) { 1349 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1350 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1351 CharUnits::fromQuantity(offset)); 1352 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1353 } 1354 return addr; 1355 } 1356 1357 namespace { 1358 1359 /// Encapsulates information about the way function arguments from 1360 /// CGFunctionInfo should be passed to actual LLVM IR function. 1361 class ClangToLLVMArgMapping { 1362 static const unsigned InvalidIndex = ~0U; 1363 unsigned InallocaArgNo; 1364 unsigned SRetArgNo; 1365 unsigned TotalIRArgs; 1366 1367 /// Arguments of LLVM IR function corresponding to single Clang argument. 1368 struct IRArgs { 1369 unsigned PaddingArgIndex; 1370 // Argument is expanded to IR arguments at positions 1371 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1372 unsigned FirstArgIndex; 1373 unsigned NumberOfArgs; 1374 1375 IRArgs() 1376 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1377 NumberOfArgs(0) {} 1378 }; 1379 1380 SmallVector<IRArgs, 8> ArgInfo; 1381 1382 public: 1383 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1384 bool OnlyRequiredArgs = false) 1385 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1386 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1387 construct(Context, FI, OnlyRequiredArgs); 1388 } 1389 1390 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1391 unsigned getInallocaArgNo() const { 1392 assert(hasInallocaArg()); 1393 return InallocaArgNo; 1394 } 1395 1396 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1397 unsigned getSRetArgNo() const { 1398 assert(hasSRetArg()); 1399 return SRetArgNo; 1400 } 1401 1402 unsigned totalIRArgs() const { return TotalIRArgs; } 1403 1404 bool hasPaddingArg(unsigned ArgNo) const { 1405 assert(ArgNo < ArgInfo.size()); 1406 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1407 } 1408 unsigned getPaddingArgNo(unsigned ArgNo) const { 1409 assert(hasPaddingArg(ArgNo)); 1410 return ArgInfo[ArgNo].PaddingArgIndex; 1411 } 1412 1413 /// Returns index of first IR argument corresponding to ArgNo, and their 1414 /// quantity. 1415 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1416 assert(ArgNo < ArgInfo.size()); 1417 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1418 ArgInfo[ArgNo].NumberOfArgs); 1419 } 1420 1421 private: 1422 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1423 bool OnlyRequiredArgs); 1424 }; 1425 1426 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1427 const CGFunctionInfo &FI, 1428 bool OnlyRequiredArgs) { 1429 unsigned IRArgNo = 0; 1430 bool SwapThisWithSRet = false; 1431 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1432 1433 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1434 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1435 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1436 } 1437 1438 unsigned ArgNo = 0; 1439 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1440 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1441 ++I, ++ArgNo) { 1442 assert(I != FI.arg_end()); 1443 QualType ArgType = I->type; 1444 const ABIArgInfo &AI = I->info; 1445 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1446 auto &IRArgs = ArgInfo[ArgNo]; 1447 1448 if (AI.getPaddingType()) 1449 IRArgs.PaddingArgIndex = IRArgNo++; 1450 1451 switch (AI.getKind()) { 1452 case ABIArgInfo::Extend: 1453 case ABIArgInfo::Direct: { 1454 // FIXME: handle sseregparm someday... 1455 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1456 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1457 IRArgs.NumberOfArgs = STy->getNumElements(); 1458 } else { 1459 IRArgs.NumberOfArgs = 1; 1460 } 1461 break; 1462 } 1463 case ABIArgInfo::Indirect: 1464 IRArgs.NumberOfArgs = 1; 1465 break; 1466 case ABIArgInfo::Ignore: 1467 case ABIArgInfo::InAlloca: 1468 // ignore and inalloca doesn't have matching LLVM parameters. 1469 IRArgs.NumberOfArgs = 0; 1470 break; 1471 case ABIArgInfo::CoerceAndExpand: 1472 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1473 break; 1474 case ABIArgInfo::Expand: 1475 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1476 break; 1477 } 1478 1479 if (IRArgs.NumberOfArgs > 0) { 1480 IRArgs.FirstArgIndex = IRArgNo; 1481 IRArgNo += IRArgs.NumberOfArgs; 1482 } 1483 1484 // Skip over the sret parameter when it comes second. We already handled it 1485 // above. 1486 if (IRArgNo == 1 && SwapThisWithSRet) 1487 IRArgNo++; 1488 } 1489 assert(ArgNo == ArgInfo.size()); 1490 1491 if (FI.usesInAlloca()) 1492 InallocaArgNo = IRArgNo++; 1493 1494 TotalIRArgs = IRArgNo; 1495 } 1496 } // namespace 1497 1498 /***/ 1499 1500 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1501 const auto &RI = FI.getReturnInfo(); 1502 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1503 } 1504 1505 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1506 return ReturnTypeUsesSRet(FI) && 1507 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1508 } 1509 1510 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1511 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1512 switch (BT->getKind()) { 1513 default: 1514 return false; 1515 case BuiltinType::Float: 1516 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1517 case BuiltinType::Double: 1518 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1519 case BuiltinType::LongDouble: 1520 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1521 } 1522 } 1523 1524 return false; 1525 } 1526 1527 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1528 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1529 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1530 if (BT->getKind() == BuiltinType::LongDouble) 1531 return getTarget().useObjCFP2RetForComplexLongDouble(); 1532 } 1533 } 1534 1535 return false; 1536 } 1537 1538 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1539 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1540 return GetFunctionType(FI); 1541 } 1542 1543 llvm::FunctionType * 1544 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1545 1546 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1547 (void)Inserted; 1548 assert(Inserted && "Recursively being processed?"); 1549 1550 llvm::Type *resultType = nullptr; 1551 const ABIArgInfo &retAI = FI.getReturnInfo(); 1552 switch (retAI.getKind()) { 1553 case ABIArgInfo::Expand: 1554 llvm_unreachable("Invalid ABI kind for return argument"); 1555 1556 case ABIArgInfo::Extend: 1557 case ABIArgInfo::Direct: 1558 resultType = retAI.getCoerceToType(); 1559 break; 1560 1561 case ABIArgInfo::InAlloca: 1562 if (retAI.getInAllocaSRet()) { 1563 // sret things on win32 aren't void, they return the sret pointer. 1564 QualType ret = FI.getReturnType(); 1565 llvm::Type *ty = ConvertType(ret); 1566 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1567 resultType = llvm::PointerType::get(ty, addressSpace); 1568 } else { 1569 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1570 } 1571 break; 1572 1573 case ABIArgInfo::Indirect: 1574 case ABIArgInfo::Ignore: 1575 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1576 break; 1577 1578 case ABIArgInfo::CoerceAndExpand: 1579 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1580 break; 1581 } 1582 1583 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1584 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1585 1586 // Add type for sret argument. 1587 if (IRFunctionArgs.hasSRetArg()) { 1588 QualType Ret = FI.getReturnType(); 1589 llvm::Type *Ty = ConvertType(Ret); 1590 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1591 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1592 llvm::PointerType::get(Ty, AddressSpace); 1593 } 1594 1595 // Add type for inalloca argument. 1596 if (IRFunctionArgs.hasInallocaArg()) { 1597 auto ArgStruct = FI.getArgStruct(); 1598 assert(ArgStruct); 1599 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1600 } 1601 1602 // Add in all of the required arguments. 1603 unsigned ArgNo = 0; 1604 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1605 ie = it + FI.getNumRequiredArgs(); 1606 for (; it != ie; ++it, ++ArgNo) { 1607 const ABIArgInfo &ArgInfo = it->info; 1608 1609 // Insert a padding type to ensure proper alignment. 1610 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1611 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1612 ArgInfo.getPaddingType(); 1613 1614 unsigned FirstIRArg, NumIRArgs; 1615 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1616 1617 switch (ArgInfo.getKind()) { 1618 case ABIArgInfo::Ignore: 1619 case ABIArgInfo::InAlloca: 1620 assert(NumIRArgs == 0); 1621 break; 1622 1623 case ABIArgInfo::Indirect: { 1624 assert(NumIRArgs == 1); 1625 // indirect arguments are always on the stack, which is alloca addr space. 1626 llvm::Type *LTy = ConvertTypeForMem(it->type); 1627 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1628 CGM.getDataLayout().getAllocaAddrSpace()); 1629 break; 1630 } 1631 1632 case ABIArgInfo::Extend: 1633 case ABIArgInfo::Direct: { 1634 // Fast-isel and the optimizer generally like scalar values better than 1635 // FCAs, so we flatten them if this is safe to do for this argument. 1636 llvm::Type *argType = ArgInfo.getCoerceToType(); 1637 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1638 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1639 assert(NumIRArgs == st->getNumElements()); 1640 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1641 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1642 } else { 1643 assert(NumIRArgs == 1); 1644 ArgTypes[FirstIRArg] = argType; 1645 } 1646 break; 1647 } 1648 1649 case ABIArgInfo::CoerceAndExpand: { 1650 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1651 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1652 *ArgTypesIter++ = EltTy; 1653 } 1654 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1655 break; 1656 } 1657 1658 case ABIArgInfo::Expand: 1659 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1660 getExpandedTypes(it->type, ArgTypesIter); 1661 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1662 break; 1663 } 1664 } 1665 1666 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1667 assert(Erased && "Not in set?"); 1668 1669 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1670 } 1671 1672 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1673 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1674 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1675 1676 if (!isFuncTypeConvertible(FPT)) 1677 return llvm::StructType::get(getLLVMContext()); 1678 1679 const CGFunctionInfo *Info; 1680 if (isa<CXXDestructorDecl>(MD)) 1681 Info = 1682 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1683 else 1684 Info = &arrangeCXXMethodDeclaration(MD); 1685 return GetFunctionType(*Info); 1686 } 1687 1688 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1689 llvm::AttrBuilder &FuncAttrs, 1690 const FunctionProtoType *FPT) { 1691 if (!FPT) 1692 return; 1693 1694 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1695 FPT->isNothrow()) 1696 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1697 } 1698 1699 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1700 bool AttrOnCallSite, 1701 llvm::AttrBuilder &FuncAttrs) { 1702 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1703 if (!HasOptnone) { 1704 if (CodeGenOpts.OptimizeSize) 1705 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1706 if (CodeGenOpts.OptimizeSize == 2) 1707 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1708 } 1709 1710 if (CodeGenOpts.DisableRedZone) 1711 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1712 if (CodeGenOpts.NoImplicitFloat) 1713 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1714 1715 if (AttrOnCallSite) { 1716 // Attributes that should go on the call site only. 1717 if (!CodeGenOpts.SimplifyLibCalls || 1718 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1719 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1720 if (!CodeGenOpts.TrapFuncName.empty()) 1721 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1722 } else { 1723 // Attributes that should go on the function, but not the call site. 1724 if (!CodeGenOpts.DisableFPElim) { 1725 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1726 } else if (CodeGenOpts.OmitLeafFramePointer) { 1727 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1728 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1729 } else { 1730 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1731 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1732 } 1733 1734 FuncAttrs.addAttribute("less-precise-fpmad", 1735 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1736 1737 if (CodeGenOpts.NullPointerIsValid) 1738 FuncAttrs.addAttribute("null-pointer-is-valid", "true"); 1739 if (!CodeGenOpts.FPDenormalMode.empty()) 1740 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1741 1742 FuncAttrs.addAttribute("no-trapping-math", 1743 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1744 1745 // Strict (compliant) code is the default, so only add this attribute to 1746 // indicate that we are trying to workaround a problem case. 1747 if (!CodeGenOpts.StrictFloatCastOverflow) 1748 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1749 1750 // TODO: Are these all needed? 1751 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1752 FuncAttrs.addAttribute("no-infs-fp-math", 1753 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1754 FuncAttrs.addAttribute("no-nans-fp-math", 1755 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1756 FuncAttrs.addAttribute("unsafe-fp-math", 1757 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1758 FuncAttrs.addAttribute("use-soft-float", 1759 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1760 FuncAttrs.addAttribute("stack-protector-buffer-size", 1761 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1762 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1763 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1764 FuncAttrs.addAttribute( 1765 "correctly-rounded-divide-sqrt-fp-math", 1766 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1767 1768 if (getLangOpts().OpenCL) 1769 FuncAttrs.addAttribute("denorms-are-zero", 1770 llvm::toStringRef(CodeGenOpts.FlushDenorm)); 1771 1772 // TODO: Reciprocal estimate codegen options should apply to instructions? 1773 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1774 if (!Recips.empty()) 1775 FuncAttrs.addAttribute("reciprocal-estimates", 1776 llvm::join(Recips, ",")); 1777 1778 if (!CodeGenOpts.PreferVectorWidth.empty() && 1779 CodeGenOpts.PreferVectorWidth != "none") 1780 FuncAttrs.addAttribute("prefer-vector-width", 1781 CodeGenOpts.PreferVectorWidth); 1782 1783 if (CodeGenOpts.StackRealignment) 1784 FuncAttrs.addAttribute("stackrealign"); 1785 if (CodeGenOpts.Backchain) 1786 FuncAttrs.addAttribute("backchain"); 1787 1788 if (CodeGenOpts.SpeculativeLoadHardening) 1789 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1790 } 1791 1792 if (getLangOpts().assumeFunctionsAreConvergent()) { 1793 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1794 // convergent (meaning, they may call an intrinsically convergent op, such 1795 // as __syncthreads() / barrier(), and so can't have certain optimizations 1796 // applied around them). LLVM will remove this attribute where it safely 1797 // can. 1798 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1799 } 1800 1801 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1802 // Exceptions aren't supported in CUDA device code. 1803 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1804 1805 // Respect -fcuda-flush-denormals-to-zero. 1806 if (CodeGenOpts.FlushDenorm) 1807 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1808 } 1809 } 1810 1811 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1812 llvm::AttrBuilder FuncAttrs; 1813 ConstructDefaultFnAttrList(F.getName(), 1814 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1815 /* AttrOnCallsite = */ false, FuncAttrs); 1816 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1817 } 1818 1819 void CodeGenModule::ConstructAttributeList( 1820 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1821 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1822 llvm::AttrBuilder FuncAttrs; 1823 llvm::AttrBuilder RetAttrs; 1824 1825 CallingConv = FI.getEffectiveCallingConvention(); 1826 if (FI.isNoReturn()) 1827 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1828 1829 // If we have information about the function prototype, we can learn 1830 // attributes from there. 1831 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1832 CalleeInfo.getCalleeFunctionProtoType()); 1833 1834 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1835 1836 bool HasOptnone = false; 1837 // FIXME: handle sseregparm someday... 1838 if (TargetDecl) { 1839 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1840 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1841 if (TargetDecl->hasAttr<NoThrowAttr>()) 1842 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1843 if (TargetDecl->hasAttr<NoReturnAttr>()) 1844 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1845 if (TargetDecl->hasAttr<ColdAttr>()) 1846 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1847 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1848 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1849 if (TargetDecl->hasAttr<ConvergentAttr>()) 1850 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1851 1852 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1853 AddAttributesFromFunctionProtoType( 1854 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1855 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1856 // These attributes are not inherited by overloads. 1857 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1858 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1859 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1860 } 1861 1862 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1863 if (TargetDecl->hasAttr<ConstAttr>()) { 1864 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1865 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1866 } else if (TargetDecl->hasAttr<PureAttr>()) { 1867 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1868 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1869 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1870 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1871 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1872 } 1873 if (TargetDecl->hasAttr<RestrictAttr>()) 1874 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1875 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1876 !CodeGenOpts.NullPointerIsValid) 1877 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1878 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1879 FuncAttrs.addAttribute("no_caller_saved_registers"); 1880 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1881 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1882 1883 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1884 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1885 Optional<unsigned> NumElemsParam; 1886 if (AllocSize->getNumElemsParam().isValid()) 1887 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1888 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1889 NumElemsParam); 1890 } 1891 } 1892 1893 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1894 1895 if (CodeGenOpts.EnableSegmentedStacks && 1896 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1897 FuncAttrs.addAttribute("split-stack"); 1898 1899 // Add NonLazyBind attribute to function declarations when -fno-plt 1900 // is used. 1901 if (TargetDecl && CodeGenOpts.NoPLT) { 1902 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1903 if (!Fn->isDefined() && !AttrOnCallSite) { 1904 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1905 } 1906 } 1907 } 1908 1909 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1910 if (getLangOpts().OpenCLVersion <= 120) { 1911 // OpenCL v1.2 Work groups are always uniform 1912 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1913 } else { 1914 // OpenCL v2.0 Work groups may be whether uniform or not. 1915 // '-cl-uniform-work-group-size' compile option gets a hint 1916 // to the compiler that the global work-size be a multiple of 1917 // the work-group size specified to clEnqueueNDRangeKernel 1918 // (i.e. work groups are uniform). 1919 FuncAttrs.addAttribute("uniform-work-group-size", 1920 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1921 } 1922 } 1923 1924 if (!AttrOnCallSite) { 1925 bool DisableTailCalls = false; 1926 1927 if (CodeGenOpts.DisableTailCalls) 1928 DisableTailCalls = true; 1929 else if (TargetDecl) { 1930 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1931 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1932 DisableTailCalls = true; 1933 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1934 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1935 if (!BD->doesNotEscape()) 1936 DisableTailCalls = true; 1937 } 1938 } 1939 1940 FuncAttrs.addAttribute("disable-tail-calls", 1941 llvm::toStringRef(DisableTailCalls)); 1942 GetCPUAndFeaturesAttributes(TargetDecl, FuncAttrs); 1943 } 1944 1945 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1946 1947 QualType RetTy = FI.getReturnType(); 1948 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1949 switch (RetAI.getKind()) { 1950 case ABIArgInfo::Extend: 1951 if (RetAI.isSignExt()) 1952 RetAttrs.addAttribute(llvm::Attribute::SExt); 1953 else 1954 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1955 LLVM_FALLTHROUGH; 1956 case ABIArgInfo::Direct: 1957 if (RetAI.getInReg()) 1958 RetAttrs.addAttribute(llvm::Attribute::InReg); 1959 break; 1960 case ABIArgInfo::Ignore: 1961 break; 1962 1963 case ABIArgInfo::InAlloca: 1964 case ABIArgInfo::Indirect: { 1965 // inalloca and sret disable readnone and readonly 1966 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1967 .removeAttribute(llvm::Attribute::ReadNone); 1968 break; 1969 } 1970 1971 case ABIArgInfo::CoerceAndExpand: 1972 break; 1973 1974 case ABIArgInfo::Expand: 1975 llvm_unreachable("Invalid ABI kind for return argument"); 1976 } 1977 1978 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1979 QualType PTy = RefTy->getPointeeType(); 1980 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1981 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1982 .getQuantity()); 1983 else if (getContext().getTargetAddressSpace(PTy) == 0 && 1984 !CodeGenOpts.NullPointerIsValid) 1985 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1986 } 1987 1988 bool hasUsedSRet = false; 1989 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 1990 1991 // Attach attributes to sret. 1992 if (IRFunctionArgs.hasSRetArg()) { 1993 llvm::AttrBuilder SRETAttrs; 1994 if (!RetAI.getSuppressSRet()) 1995 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1996 hasUsedSRet = true; 1997 if (RetAI.getInReg()) 1998 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1999 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2000 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2001 } 2002 2003 // Attach attributes to inalloca argument. 2004 if (IRFunctionArgs.hasInallocaArg()) { 2005 llvm::AttrBuilder Attrs; 2006 Attrs.addAttribute(llvm::Attribute::InAlloca); 2007 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2008 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2009 } 2010 2011 unsigned ArgNo = 0; 2012 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2013 E = FI.arg_end(); 2014 I != E; ++I, ++ArgNo) { 2015 QualType ParamType = I->type; 2016 const ABIArgInfo &AI = I->info; 2017 llvm::AttrBuilder Attrs; 2018 2019 // Add attribute for padding argument, if necessary. 2020 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2021 if (AI.getPaddingInReg()) { 2022 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2023 llvm::AttributeSet::get( 2024 getLLVMContext(), 2025 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2026 } 2027 } 2028 2029 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2030 // have the corresponding parameter variable. It doesn't make 2031 // sense to do it here because parameters are so messed up. 2032 switch (AI.getKind()) { 2033 case ABIArgInfo::Extend: 2034 if (AI.isSignExt()) 2035 Attrs.addAttribute(llvm::Attribute::SExt); 2036 else 2037 Attrs.addAttribute(llvm::Attribute::ZExt); 2038 LLVM_FALLTHROUGH; 2039 case ABIArgInfo::Direct: 2040 if (ArgNo == 0 && FI.isChainCall()) 2041 Attrs.addAttribute(llvm::Attribute::Nest); 2042 else if (AI.getInReg()) 2043 Attrs.addAttribute(llvm::Attribute::InReg); 2044 break; 2045 2046 case ABIArgInfo::Indirect: { 2047 if (AI.getInReg()) 2048 Attrs.addAttribute(llvm::Attribute::InReg); 2049 2050 if (AI.getIndirectByVal()) 2051 Attrs.addAttribute(llvm::Attribute::ByVal); 2052 2053 CharUnits Align = AI.getIndirectAlign(); 2054 2055 // In a byval argument, it is important that the required 2056 // alignment of the type is honored, as LLVM might be creating a 2057 // *new* stack object, and needs to know what alignment to give 2058 // it. (Sometimes it can deduce a sensible alignment on its own, 2059 // but not if clang decides it must emit a packed struct, or the 2060 // user specifies increased alignment requirements.) 2061 // 2062 // This is different from indirect *not* byval, where the object 2063 // exists already, and the align attribute is purely 2064 // informative. 2065 assert(!Align.isZero()); 2066 2067 // For now, only add this when we have a byval argument. 2068 // TODO: be less lazy about updating test cases. 2069 if (AI.getIndirectByVal()) 2070 Attrs.addAlignmentAttr(Align.getQuantity()); 2071 2072 // byval disables readnone and readonly. 2073 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2074 .removeAttribute(llvm::Attribute::ReadNone); 2075 break; 2076 } 2077 case ABIArgInfo::Ignore: 2078 case ABIArgInfo::Expand: 2079 case ABIArgInfo::CoerceAndExpand: 2080 break; 2081 2082 case ABIArgInfo::InAlloca: 2083 // inalloca disables readnone and readonly. 2084 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2085 .removeAttribute(llvm::Attribute::ReadNone); 2086 continue; 2087 } 2088 2089 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2090 QualType PTy = RefTy->getPointeeType(); 2091 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2092 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2093 .getQuantity()); 2094 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2095 !CodeGenOpts.NullPointerIsValid) 2096 Attrs.addAttribute(llvm::Attribute::NonNull); 2097 } 2098 2099 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2100 case ParameterABI::Ordinary: 2101 break; 2102 2103 case ParameterABI::SwiftIndirectResult: { 2104 // Add 'sret' if we haven't already used it for something, but 2105 // only if the result is void. 2106 if (!hasUsedSRet && RetTy->isVoidType()) { 2107 Attrs.addAttribute(llvm::Attribute::StructRet); 2108 hasUsedSRet = true; 2109 } 2110 2111 // Add 'noalias' in either case. 2112 Attrs.addAttribute(llvm::Attribute::NoAlias); 2113 2114 // Add 'dereferenceable' and 'alignment'. 2115 auto PTy = ParamType->getPointeeType(); 2116 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2117 auto info = getContext().getTypeInfoInChars(PTy); 2118 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2119 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2120 info.second.getQuantity())); 2121 } 2122 break; 2123 } 2124 2125 case ParameterABI::SwiftErrorResult: 2126 Attrs.addAttribute(llvm::Attribute::SwiftError); 2127 break; 2128 2129 case ParameterABI::SwiftContext: 2130 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2131 break; 2132 } 2133 2134 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2135 Attrs.addAttribute(llvm::Attribute::NoCapture); 2136 2137 if (Attrs.hasAttributes()) { 2138 unsigned FirstIRArg, NumIRArgs; 2139 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2140 for (unsigned i = 0; i < NumIRArgs; i++) 2141 ArgAttrs[FirstIRArg + i] = 2142 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2143 } 2144 } 2145 assert(ArgNo == FI.arg_size()); 2146 2147 AttrList = llvm::AttributeList::get( 2148 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2149 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2150 } 2151 2152 /// An argument came in as a promoted argument; demote it back to its 2153 /// declared type. 2154 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2155 const VarDecl *var, 2156 llvm::Value *value) { 2157 llvm::Type *varType = CGF.ConvertType(var->getType()); 2158 2159 // This can happen with promotions that actually don't change the 2160 // underlying type, like the enum promotions. 2161 if (value->getType() == varType) return value; 2162 2163 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2164 && "unexpected promotion type"); 2165 2166 if (isa<llvm::IntegerType>(varType)) 2167 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2168 2169 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2170 } 2171 2172 /// Returns the attribute (either parameter attribute, or function 2173 /// attribute), which declares argument ArgNo to be non-null. 2174 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2175 QualType ArgType, unsigned ArgNo) { 2176 // FIXME: __attribute__((nonnull)) can also be applied to: 2177 // - references to pointers, where the pointee is known to be 2178 // nonnull (apparently a Clang extension) 2179 // - transparent unions containing pointers 2180 // In the former case, LLVM IR cannot represent the constraint. In 2181 // the latter case, we have no guarantee that the transparent union 2182 // is in fact passed as a pointer. 2183 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2184 return nullptr; 2185 // First, check attribute on parameter itself. 2186 if (PVD) { 2187 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2188 return ParmNNAttr; 2189 } 2190 // Check function attributes. 2191 if (!FD) 2192 return nullptr; 2193 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2194 if (NNAttr->isNonNull(ArgNo)) 2195 return NNAttr; 2196 } 2197 return nullptr; 2198 } 2199 2200 namespace { 2201 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2202 Address Temp; 2203 Address Arg; 2204 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2205 void Emit(CodeGenFunction &CGF, Flags flags) override { 2206 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2207 CGF.Builder.CreateStore(errorValue, Arg); 2208 } 2209 }; 2210 } 2211 2212 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2213 llvm::Function *Fn, 2214 const FunctionArgList &Args) { 2215 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2216 // Naked functions don't have prologues. 2217 return; 2218 2219 // If this is an implicit-return-zero function, go ahead and 2220 // initialize the return value. TODO: it might be nice to have 2221 // a more general mechanism for this that didn't require synthesized 2222 // return statements. 2223 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2224 if (FD->hasImplicitReturnZero()) { 2225 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2226 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2227 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2228 Builder.CreateStore(Zero, ReturnValue); 2229 } 2230 } 2231 2232 // FIXME: We no longer need the types from FunctionArgList; lift up and 2233 // simplify. 2234 2235 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2236 // Flattened function arguments. 2237 SmallVector<llvm::Value *, 16> FnArgs; 2238 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2239 for (auto &Arg : Fn->args()) { 2240 FnArgs.push_back(&Arg); 2241 } 2242 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2243 2244 // If we're using inalloca, all the memory arguments are GEPs off of the last 2245 // parameter, which is a pointer to the complete memory area. 2246 Address ArgStruct = Address::invalid(); 2247 const llvm::StructLayout *ArgStructLayout = nullptr; 2248 if (IRFunctionArgs.hasInallocaArg()) { 2249 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2250 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2251 FI.getArgStructAlignment()); 2252 2253 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2254 } 2255 2256 // Name the struct return parameter. 2257 if (IRFunctionArgs.hasSRetArg()) { 2258 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2259 AI->setName("agg.result"); 2260 AI->addAttr(llvm::Attribute::NoAlias); 2261 } 2262 2263 // Track if we received the parameter as a pointer (indirect, byval, or 2264 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2265 // into a local alloca for us. 2266 SmallVector<ParamValue, 16> ArgVals; 2267 ArgVals.reserve(Args.size()); 2268 2269 // Create a pointer value for every parameter declaration. This usually 2270 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2271 // any cleanups or do anything that might unwind. We do that separately, so 2272 // we can push the cleanups in the correct order for the ABI. 2273 assert(FI.arg_size() == Args.size() && 2274 "Mismatch between function signature & arguments."); 2275 unsigned ArgNo = 0; 2276 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2277 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2278 i != e; ++i, ++info_it, ++ArgNo) { 2279 const VarDecl *Arg = *i; 2280 const ABIArgInfo &ArgI = info_it->info; 2281 2282 bool isPromoted = 2283 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2284 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2285 // the parameter is promoted. In this case we convert to 2286 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2287 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2288 assert(hasScalarEvaluationKind(Ty) == 2289 hasScalarEvaluationKind(Arg->getType())); 2290 2291 unsigned FirstIRArg, NumIRArgs; 2292 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2293 2294 switch (ArgI.getKind()) { 2295 case ABIArgInfo::InAlloca: { 2296 assert(NumIRArgs == 0); 2297 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2298 CharUnits FieldOffset = 2299 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2300 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2301 Arg->getName()); 2302 ArgVals.push_back(ParamValue::forIndirect(V)); 2303 break; 2304 } 2305 2306 case ABIArgInfo::Indirect: { 2307 assert(NumIRArgs == 1); 2308 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2309 2310 if (!hasScalarEvaluationKind(Ty)) { 2311 // Aggregates and complex variables are accessed by reference. All we 2312 // need to do is realign the value, if requested. 2313 Address V = ParamAddr; 2314 if (ArgI.getIndirectRealign()) { 2315 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2316 2317 // Copy from the incoming argument pointer to the temporary with the 2318 // appropriate alignment. 2319 // 2320 // FIXME: We should have a common utility for generating an aggregate 2321 // copy. 2322 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2323 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2324 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2325 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2326 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2327 V = AlignedTemp; 2328 } 2329 ArgVals.push_back(ParamValue::forIndirect(V)); 2330 } else { 2331 // Load scalar value from indirect argument. 2332 llvm::Value *V = 2333 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2334 2335 if (isPromoted) 2336 V = emitArgumentDemotion(*this, Arg, V); 2337 ArgVals.push_back(ParamValue::forDirect(V)); 2338 } 2339 break; 2340 } 2341 2342 case ABIArgInfo::Extend: 2343 case ABIArgInfo::Direct: { 2344 2345 // If we have the trivial case, handle it with no muss and fuss. 2346 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2347 ArgI.getCoerceToType() == ConvertType(Ty) && 2348 ArgI.getDirectOffset() == 0) { 2349 assert(NumIRArgs == 1); 2350 llvm::Value *V = FnArgs[FirstIRArg]; 2351 auto AI = cast<llvm::Argument>(V); 2352 2353 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2354 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2355 PVD->getFunctionScopeIndex()) && 2356 !CGM.getCodeGenOpts().NullPointerIsValid) 2357 AI->addAttr(llvm::Attribute::NonNull); 2358 2359 QualType OTy = PVD->getOriginalType(); 2360 if (const auto *ArrTy = 2361 getContext().getAsConstantArrayType(OTy)) { 2362 // A C99 array parameter declaration with the static keyword also 2363 // indicates dereferenceability, and if the size is constant we can 2364 // use the dereferenceable attribute (which requires the size in 2365 // bytes). 2366 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2367 QualType ETy = ArrTy->getElementType(); 2368 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2369 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2370 ArrSize) { 2371 llvm::AttrBuilder Attrs; 2372 Attrs.addDereferenceableAttr( 2373 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2374 AI->addAttrs(Attrs); 2375 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2376 !CGM.getCodeGenOpts().NullPointerIsValid) { 2377 AI->addAttr(llvm::Attribute::NonNull); 2378 } 2379 } 2380 } else if (const auto *ArrTy = 2381 getContext().getAsVariableArrayType(OTy)) { 2382 // For C99 VLAs with the static keyword, we don't know the size so 2383 // we can't use the dereferenceable attribute, but in addrspace(0) 2384 // we know that it must be nonnull. 2385 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2386 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2387 !CGM.getCodeGenOpts().NullPointerIsValid) 2388 AI->addAttr(llvm::Attribute::NonNull); 2389 } 2390 2391 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2392 if (!AVAttr) 2393 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2394 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2395 if (AVAttr) { 2396 llvm::Value *AlignmentValue = 2397 EmitScalarExpr(AVAttr->getAlignment()); 2398 llvm::ConstantInt *AlignmentCI = 2399 cast<llvm::ConstantInt>(AlignmentValue); 2400 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2401 +llvm::Value::MaximumAlignment); 2402 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2403 } 2404 } 2405 2406 if (Arg->getType().isRestrictQualified()) 2407 AI->addAttr(llvm::Attribute::NoAlias); 2408 2409 // LLVM expects swifterror parameters to be used in very restricted 2410 // ways. Copy the value into a less-restricted temporary. 2411 if (FI.getExtParameterInfo(ArgNo).getABI() 2412 == ParameterABI::SwiftErrorResult) { 2413 QualType pointeeTy = Ty->getPointeeType(); 2414 assert(pointeeTy->isPointerType()); 2415 Address temp = 2416 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2417 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2418 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2419 Builder.CreateStore(incomingErrorValue, temp); 2420 V = temp.getPointer(); 2421 2422 // Push a cleanup to copy the value back at the end of the function. 2423 // The convention does not guarantee that the value will be written 2424 // back if the function exits with an unwind exception. 2425 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2426 } 2427 2428 // Ensure the argument is the correct type. 2429 if (V->getType() != ArgI.getCoerceToType()) 2430 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2431 2432 if (isPromoted) 2433 V = emitArgumentDemotion(*this, Arg, V); 2434 2435 // Because of merging of function types from multiple decls it is 2436 // possible for the type of an argument to not match the corresponding 2437 // type in the function type. Since we are codegening the callee 2438 // in here, add a cast to the argument type. 2439 llvm::Type *LTy = ConvertType(Arg->getType()); 2440 if (V->getType() != LTy) 2441 V = Builder.CreateBitCast(V, LTy); 2442 2443 ArgVals.push_back(ParamValue::forDirect(V)); 2444 break; 2445 } 2446 2447 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2448 Arg->getName()); 2449 2450 // Pointer to store into. 2451 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2452 2453 // Fast-isel and the optimizer generally like scalar values better than 2454 // FCAs, so we flatten them if this is safe to do for this argument. 2455 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2456 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2457 STy->getNumElements() > 1) { 2458 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2459 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2460 llvm::Type *DstTy = Ptr.getElementType(); 2461 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2462 2463 Address AddrToStoreInto = Address::invalid(); 2464 if (SrcSize <= DstSize) { 2465 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2466 } else { 2467 AddrToStoreInto = 2468 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2469 } 2470 2471 assert(STy->getNumElements() == NumIRArgs); 2472 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2473 auto AI = FnArgs[FirstIRArg + i]; 2474 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2475 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2476 Address EltPtr = 2477 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2478 Builder.CreateStore(AI, EltPtr); 2479 } 2480 2481 if (SrcSize > DstSize) { 2482 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2483 } 2484 2485 } else { 2486 // Simple case, just do a coerced store of the argument into the alloca. 2487 assert(NumIRArgs == 1); 2488 auto AI = FnArgs[FirstIRArg]; 2489 AI->setName(Arg->getName() + ".coerce"); 2490 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2491 } 2492 2493 // Match to what EmitParmDecl is expecting for this type. 2494 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2495 llvm::Value *V = 2496 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2497 if (isPromoted) 2498 V = emitArgumentDemotion(*this, Arg, V); 2499 ArgVals.push_back(ParamValue::forDirect(V)); 2500 } else { 2501 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2502 } 2503 break; 2504 } 2505 2506 case ABIArgInfo::CoerceAndExpand: { 2507 // Reconstruct into a temporary. 2508 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2509 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2510 2511 auto coercionType = ArgI.getCoerceAndExpandType(); 2512 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2513 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2514 2515 unsigned argIndex = FirstIRArg; 2516 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2517 llvm::Type *eltType = coercionType->getElementType(i); 2518 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2519 continue; 2520 2521 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2522 auto elt = FnArgs[argIndex++]; 2523 Builder.CreateStore(elt, eltAddr); 2524 } 2525 assert(argIndex == FirstIRArg + NumIRArgs); 2526 break; 2527 } 2528 2529 case ABIArgInfo::Expand: { 2530 // If this structure was expanded into multiple arguments then 2531 // we need to create a temporary and reconstruct it from the 2532 // arguments. 2533 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2534 LValue LV = MakeAddrLValue(Alloca, Ty); 2535 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2536 2537 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2538 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2539 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2540 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2541 auto AI = FnArgs[FirstIRArg + i]; 2542 AI->setName(Arg->getName() + "." + Twine(i)); 2543 } 2544 break; 2545 } 2546 2547 case ABIArgInfo::Ignore: 2548 assert(NumIRArgs == 0); 2549 // Initialize the local variable appropriately. 2550 if (!hasScalarEvaluationKind(Ty)) { 2551 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2552 } else { 2553 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2554 ArgVals.push_back(ParamValue::forDirect(U)); 2555 } 2556 break; 2557 } 2558 } 2559 2560 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2561 for (int I = Args.size() - 1; I >= 0; --I) 2562 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2563 } else { 2564 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2565 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2566 } 2567 } 2568 2569 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2570 while (insn->use_empty()) { 2571 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2572 if (!bitcast) return; 2573 2574 // This is "safe" because we would have used a ConstantExpr otherwise. 2575 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2576 bitcast->eraseFromParent(); 2577 } 2578 } 2579 2580 /// Try to emit a fused autorelease of a return result. 2581 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2582 llvm::Value *result) { 2583 // We must be immediately followed the cast. 2584 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2585 if (BB->empty()) return nullptr; 2586 if (&BB->back() != result) return nullptr; 2587 2588 llvm::Type *resultType = result->getType(); 2589 2590 // result is in a BasicBlock and is therefore an Instruction. 2591 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2592 2593 SmallVector<llvm::Instruction *, 4> InstsToKill; 2594 2595 // Look for: 2596 // %generator = bitcast %type1* %generator2 to %type2* 2597 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2598 // We would have emitted this as a constant if the operand weren't 2599 // an Instruction. 2600 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2601 2602 // Require the generator to be immediately followed by the cast. 2603 if (generator->getNextNode() != bitcast) 2604 return nullptr; 2605 2606 InstsToKill.push_back(bitcast); 2607 } 2608 2609 // Look for: 2610 // %generator = call i8* @objc_retain(i8* %originalResult) 2611 // or 2612 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2613 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2614 if (!call) return nullptr; 2615 2616 bool doRetainAutorelease; 2617 2618 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2619 doRetainAutorelease = true; 2620 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2621 .objc_retainAutoreleasedReturnValue) { 2622 doRetainAutorelease = false; 2623 2624 // If we emitted an assembly marker for this call (and the 2625 // ARCEntrypoints field should have been set if so), go looking 2626 // for that call. If we can't find it, we can't do this 2627 // optimization. But it should always be the immediately previous 2628 // instruction, unless we needed bitcasts around the call. 2629 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2630 llvm::Instruction *prev = call->getPrevNode(); 2631 assert(prev); 2632 if (isa<llvm::BitCastInst>(prev)) { 2633 prev = prev->getPrevNode(); 2634 assert(prev); 2635 } 2636 assert(isa<llvm::CallInst>(prev)); 2637 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2638 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2639 InstsToKill.push_back(prev); 2640 } 2641 } else { 2642 return nullptr; 2643 } 2644 2645 result = call->getArgOperand(0); 2646 InstsToKill.push_back(call); 2647 2648 // Keep killing bitcasts, for sanity. Note that we no longer care 2649 // about precise ordering as long as there's exactly one use. 2650 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2651 if (!bitcast->hasOneUse()) break; 2652 InstsToKill.push_back(bitcast); 2653 result = bitcast->getOperand(0); 2654 } 2655 2656 // Delete all the unnecessary instructions, from latest to earliest. 2657 for (auto *I : InstsToKill) 2658 I->eraseFromParent(); 2659 2660 // Do the fused retain/autorelease if we were asked to. 2661 if (doRetainAutorelease) 2662 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2663 2664 // Cast back to the result type. 2665 return CGF.Builder.CreateBitCast(result, resultType); 2666 } 2667 2668 /// If this is a +1 of the value of an immutable 'self', remove it. 2669 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2670 llvm::Value *result) { 2671 // This is only applicable to a method with an immutable 'self'. 2672 const ObjCMethodDecl *method = 2673 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2674 if (!method) return nullptr; 2675 const VarDecl *self = method->getSelfDecl(); 2676 if (!self->getType().isConstQualified()) return nullptr; 2677 2678 // Look for a retain call. 2679 llvm::CallInst *retainCall = 2680 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2681 if (!retainCall || 2682 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2683 return nullptr; 2684 2685 // Look for an ordinary load of 'self'. 2686 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2687 llvm::LoadInst *load = 2688 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2689 if (!load || load->isAtomic() || load->isVolatile() || 2690 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2691 return nullptr; 2692 2693 // Okay! Burn it all down. This relies for correctness on the 2694 // assumption that the retain is emitted as part of the return and 2695 // that thereafter everything is used "linearly". 2696 llvm::Type *resultType = result->getType(); 2697 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2698 assert(retainCall->use_empty()); 2699 retainCall->eraseFromParent(); 2700 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2701 2702 return CGF.Builder.CreateBitCast(load, resultType); 2703 } 2704 2705 /// Emit an ARC autorelease of the result of a function. 2706 /// 2707 /// \return the value to actually return from the function 2708 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2709 llvm::Value *result) { 2710 // If we're returning 'self', kill the initial retain. This is a 2711 // heuristic attempt to "encourage correctness" in the really unfortunate 2712 // case where we have a return of self during a dealloc and we desperately 2713 // need to avoid the possible autorelease. 2714 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2715 return self; 2716 2717 // At -O0, try to emit a fused retain/autorelease. 2718 if (CGF.shouldUseFusedARCCalls()) 2719 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2720 return fused; 2721 2722 return CGF.EmitARCAutoreleaseReturnValue(result); 2723 } 2724 2725 /// Heuristically search for a dominating store to the return-value slot. 2726 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2727 // Check if a User is a store which pointerOperand is the ReturnValue. 2728 // We are looking for stores to the ReturnValue, not for stores of the 2729 // ReturnValue to some other location. 2730 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2731 auto *SI = dyn_cast<llvm::StoreInst>(U); 2732 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2733 return nullptr; 2734 // These aren't actually possible for non-coerced returns, and we 2735 // only care about non-coerced returns on this code path. 2736 assert(!SI->isAtomic() && !SI->isVolatile()); 2737 return SI; 2738 }; 2739 // If there are multiple uses of the return-value slot, just check 2740 // for something immediately preceding the IP. Sometimes this can 2741 // happen with how we generate implicit-returns; it can also happen 2742 // with noreturn cleanups. 2743 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2744 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2745 if (IP->empty()) return nullptr; 2746 llvm::Instruction *I = &IP->back(); 2747 2748 // Skip lifetime markers 2749 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2750 IE = IP->rend(); 2751 II != IE; ++II) { 2752 if (llvm::IntrinsicInst *Intrinsic = 2753 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2754 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2755 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2756 ++II; 2757 if (II == IE) 2758 break; 2759 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2760 continue; 2761 } 2762 } 2763 I = &*II; 2764 break; 2765 } 2766 2767 return GetStoreIfValid(I); 2768 } 2769 2770 llvm::StoreInst *store = 2771 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2772 if (!store) return nullptr; 2773 2774 // Now do a first-and-dirty dominance check: just walk up the 2775 // single-predecessors chain from the current insertion point. 2776 llvm::BasicBlock *StoreBB = store->getParent(); 2777 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2778 while (IP != StoreBB) { 2779 if (!(IP = IP->getSinglePredecessor())) 2780 return nullptr; 2781 } 2782 2783 // Okay, the store's basic block dominates the insertion point; we 2784 // can do our thing. 2785 return store; 2786 } 2787 2788 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2789 bool EmitRetDbgLoc, 2790 SourceLocation EndLoc) { 2791 if (FI.isNoReturn()) { 2792 // Noreturn functions don't return. 2793 EmitUnreachable(EndLoc); 2794 return; 2795 } 2796 2797 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2798 // Naked functions don't have epilogues. 2799 Builder.CreateUnreachable(); 2800 return; 2801 } 2802 2803 // Functions with no result always return void. 2804 if (!ReturnValue.isValid()) { 2805 Builder.CreateRetVoid(); 2806 return; 2807 } 2808 2809 llvm::DebugLoc RetDbgLoc; 2810 llvm::Value *RV = nullptr; 2811 QualType RetTy = FI.getReturnType(); 2812 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2813 2814 switch (RetAI.getKind()) { 2815 case ABIArgInfo::InAlloca: 2816 // Aggregrates get evaluated directly into the destination. Sometimes we 2817 // need to return the sret value in a register, though. 2818 assert(hasAggregateEvaluationKind(RetTy)); 2819 if (RetAI.getInAllocaSRet()) { 2820 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2821 --EI; 2822 llvm::Value *ArgStruct = &*EI; 2823 llvm::Value *SRet = Builder.CreateStructGEP( 2824 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2825 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2826 } 2827 break; 2828 2829 case ABIArgInfo::Indirect: { 2830 auto AI = CurFn->arg_begin(); 2831 if (RetAI.isSRetAfterThis()) 2832 ++AI; 2833 switch (getEvaluationKind(RetTy)) { 2834 case TEK_Complex: { 2835 ComplexPairTy RT = 2836 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2837 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2838 /*isInit*/ true); 2839 break; 2840 } 2841 case TEK_Aggregate: 2842 // Do nothing; aggregrates get evaluated directly into the destination. 2843 break; 2844 case TEK_Scalar: 2845 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2846 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2847 /*isInit*/ true); 2848 break; 2849 } 2850 break; 2851 } 2852 2853 case ABIArgInfo::Extend: 2854 case ABIArgInfo::Direct: 2855 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2856 RetAI.getDirectOffset() == 0) { 2857 // The internal return value temp always will have pointer-to-return-type 2858 // type, just do a load. 2859 2860 // If there is a dominating store to ReturnValue, we can elide 2861 // the load, zap the store, and usually zap the alloca. 2862 if (llvm::StoreInst *SI = 2863 findDominatingStoreToReturnValue(*this)) { 2864 // Reuse the debug location from the store unless there is 2865 // cleanup code to be emitted between the store and return 2866 // instruction. 2867 if (EmitRetDbgLoc && !AutoreleaseResult) 2868 RetDbgLoc = SI->getDebugLoc(); 2869 // Get the stored value and nuke the now-dead store. 2870 RV = SI->getValueOperand(); 2871 SI->eraseFromParent(); 2872 2873 // If that was the only use of the return value, nuke it as well now. 2874 auto returnValueInst = ReturnValue.getPointer(); 2875 if (returnValueInst->use_empty()) { 2876 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2877 alloca->eraseFromParent(); 2878 ReturnValue = Address::invalid(); 2879 } 2880 } 2881 2882 // Otherwise, we have to do a simple load. 2883 } else { 2884 RV = Builder.CreateLoad(ReturnValue); 2885 } 2886 } else { 2887 // If the value is offset in memory, apply the offset now. 2888 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2889 2890 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2891 } 2892 2893 // In ARC, end functions that return a retainable type with a call 2894 // to objc_autoreleaseReturnValue. 2895 if (AutoreleaseResult) { 2896 #ifndef NDEBUG 2897 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2898 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2899 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2900 // CurCodeDecl or BlockInfo. 2901 QualType RT; 2902 2903 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2904 RT = FD->getReturnType(); 2905 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2906 RT = MD->getReturnType(); 2907 else if (isa<BlockDecl>(CurCodeDecl)) 2908 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2909 else 2910 llvm_unreachable("Unexpected function/method type"); 2911 2912 assert(getLangOpts().ObjCAutoRefCount && 2913 !FI.isReturnsRetained() && 2914 RT->isObjCRetainableType()); 2915 #endif 2916 RV = emitAutoreleaseOfResult(*this, RV); 2917 } 2918 2919 break; 2920 2921 case ABIArgInfo::Ignore: 2922 break; 2923 2924 case ABIArgInfo::CoerceAndExpand: { 2925 auto coercionType = RetAI.getCoerceAndExpandType(); 2926 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2927 2928 // Load all of the coerced elements out into results. 2929 llvm::SmallVector<llvm::Value*, 4> results; 2930 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2931 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2932 auto coercedEltType = coercionType->getElementType(i); 2933 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2934 continue; 2935 2936 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2937 auto elt = Builder.CreateLoad(eltAddr); 2938 results.push_back(elt); 2939 } 2940 2941 // If we have one result, it's the single direct result type. 2942 if (results.size() == 1) { 2943 RV = results[0]; 2944 2945 // Otherwise, we need to make a first-class aggregate. 2946 } else { 2947 // Construct a return type that lacks padding elements. 2948 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2949 2950 RV = llvm::UndefValue::get(returnType); 2951 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2952 RV = Builder.CreateInsertValue(RV, results[i], i); 2953 } 2954 } 2955 break; 2956 } 2957 2958 case ABIArgInfo::Expand: 2959 llvm_unreachable("Invalid ABI kind for return argument"); 2960 } 2961 2962 llvm::Instruction *Ret; 2963 if (RV) { 2964 EmitReturnValueCheck(RV); 2965 Ret = Builder.CreateRet(RV); 2966 } else { 2967 Ret = Builder.CreateRetVoid(); 2968 } 2969 2970 if (RetDbgLoc) 2971 Ret->setDebugLoc(std::move(RetDbgLoc)); 2972 } 2973 2974 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2975 // A current decl may not be available when emitting vtable thunks. 2976 if (!CurCodeDecl) 2977 return; 2978 2979 ReturnsNonNullAttr *RetNNAttr = nullptr; 2980 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2981 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2982 2983 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2984 return; 2985 2986 // Prefer the returns_nonnull attribute if it's present. 2987 SourceLocation AttrLoc; 2988 SanitizerMask CheckKind; 2989 SanitizerHandler Handler; 2990 if (RetNNAttr) { 2991 assert(!requiresReturnValueNullabilityCheck() && 2992 "Cannot check nullability and the nonnull attribute"); 2993 AttrLoc = RetNNAttr->getLocation(); 2994 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 2995 Handler = SanitizerHandler::NonnullReturn; 2996 } else { 2997 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 2998 if (auto *TSI = DD->getTypeSourceInfo()) 2999 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 3000 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3001 CheckKind = SanitizerKind::NullabilityReturn; 3002 Handler = SanitizerHandler::NullabilityReturn; 3003 } 3004 3005 SanitizerScope SanScope(this); 3006 3007 // Make sure the "return" source location is valid. If we're checking a 3008 // nullability annotation, make sure the preconditions for the check are met. 3009 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3010 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3011 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3012 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3013 if (requiresReturnValueNullabilityCheck()) 3014 CanNullCheck = 3015 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3016 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3017 EmitBlock(Check); 3018 3019 // Now do the null check. 3020 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3021 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3022 llvm::Value *DynamicData[] = {SLocPtr}; 3023 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3024 3025 EmitBlock(NoCheck); 3026 3027 #ifndef NDEBUG 3028 // The return location should not be used after the check has been emitted. 3029 ReturnLocation = Address::invalid(); 3030 #endif 3031 } 3032 3033 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3034 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3035 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3036 } 3037 3038 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3039 QualType Ty) { 3040 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3041 // placeholders. 3042 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3043 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3044 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3045 3046 // FIXME: When we generate this IR in one pass, we shouldn't need 3047 // this win32-specific alignment hack. 3048 CharUnits Align = CharUnits::fromQuantity(4); 3049 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3050 3051 return AggValueSlot::forAddr(Address(Placeholder, Align), 3052 Ty.getQualifiers(), 3053 AggValueSlot::IsNotDestructed, 3054 AggValueSlot::DoesNotNeedGCBarriers, 3055 AggValueSlot::IsNotAliased, 3056 AggValueSlot::DoesNotOverlap); 3057 } 3058 3059 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3060 const VarDecl *param, 3061 SourceLocation loc) { 3062 // StartFunction converted the ABI-lowered parameter(s) into a 3063 // local alloca. We need to turn that into an r-value suitable 3064 // for EmitCall. 3065 Address local = GetAddrOfLocalVar(param); 3066 3067 QualType type = param->getType(); 3068 3069 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 3070 "cannot emit delegate call arguments for inalloca arguments!"); 3071 3072 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3073 // but the argument needs to be the original pointer. 3074 if (type->isReferenceType()) { 3075 args.add(RValue::get(Builder.CreateLoad(local)), type); 3076 3077 // In ARC, move out of consumed arguments so that the release cleanup 3078 // entered by StartFunction doesn't cause an over-release. This isn't 3079 // optimal -O0 code generation, but it should get cleaned up when 3080 // optimization is enabled. This also assumes that delegate calls are 3081 // performed exactly once for a set of arguments, but that should be safe. 3082 } else if (getLangOpts().ObjCAutoRefCount && 3083 param->hasAttr<NSConsumedAttr>() && 3084 type->isObjCRetainableType()) { 3085 llvm::Value *ptr = Builder.CreateLoad(local); 3086 auto null = 3087 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3088 Builder.CreateStore(null, local); 3089 args.add(RValue::get(ptr), type); 3090 3091 // For the most part, we just need to load the alloca, except that 3092 // aggregate r-values are actually pointers to temporaries. 3093 } else { 3094 args.add(convertTempToRValue(local, type, loc), type); 3095 } 3096 3097 // Deactivate the cleanup for the callee-destructed param that was pushed. 3098 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3099 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3100 type.isDestructedType()) { 3101 EHScopeStack::stable_iterator cleanup = 3102 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3103 assert(cleanup.isValid() && 3104 "cleanup for callee-destructed param not recorded"); 3105 // This unreachable is a temporary marker which will be removed later. 3106 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3107 args.addArgCleanupDeactivation(cleanup, isActive); 3108 } 3109 } 3110 3111 static bool isProvablyNull(llvm::Value *addr) { 3112 return isa<llvm::ConstantPointerNull>(addr); 3113 } 3114 3115 /// Emit the actual writing-back of a writeback. 3116 static void emitWriteback(CodeGenFunction &CGF, 3117 const CallArgList::Writeback &writeback) { 3118 const LValue &srcLV = writeback.Source; 3119 Address srcAddr = srcLV.getAddress(); 3120 assert(!isProvablyNull(srcAddr.getPointer()) && 3121 "shouldn't have writeback for provably null argument"); 3122 3123 llvm::BasicBlock *contBB = nullptr; 3124 3125 // If the argument wasn't provably non-null, we need to null check 3126 // before doing the store. 3127 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3128 CGF.CGM.getDataLayout()); 3129 if (!provablyNonNull) { 3130 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3131 contBB = CGF.createBasicBlock("icr.done"); 3132 3133 llvm::Value *isNull = 3134 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3135 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3136 CGF.EmitBlock(writebackBB); 3137 } 3138 3139 // Load the value to writeback. 3140 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3141 3142 // Cast it back, in case we're writing an id to a Foo* or something. 3143 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3144 "icr.writeback-cast"); 3145 3146 // Perform the writeback. 3147 3148 // If we have a "to use" value, it's something we need to emit a use 3149 // of. This has to be carefully threaded in: if it's done after the 3150 // release it's potentially undefined behavior (and the optimizer 3151 // will ignore it), and if it happens before the retain then the 3152 // optimizer could move the release there. 3153 if (writeback.ToUse) { 3154 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3155 3156 // Retain the new value. No need to block-copy here: the block's 3157 // being passed up the stack. 3158 value = CGF.EmitARCRetainNonBlock(value); 3159 3160 // Emit the intrinsic use here. 3161 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3162 3163 // Load the old value (primitively). 3164 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3165 3166 // Put the new value in place (primitively). 3167 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3168 3169 // Release the old value. 3170 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3171 3172 // Otherwise, we can just do a normal lvalue store. 3173 } else { 3174 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3175 } 3176 3177 // Jump to the continuation block. 3178 if (!provablyNonNull) 3179 CGF.EmitBlock(contBB); 3180 } 3181 3182 static void emitWritebacks(CodeGenFunction &CGF, 3183 const CallArgList &args) { 3184 for (const auto &I : args.writebacks()) 3185 emitWriteback(CGF, I); 3186 } 3187 3188 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3189 const CallArgList &CallArgs) { 3190 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3191 CallArgs.getCleanupsToDeactivate(); 3192 // Iterate in reverse to increase the likelihood of popping the cleanup. 3193 for (const auto &I : llvm::reverse(Cleanups)) { 3194 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3195 I.IsActiveIP->eraseFromParent(); 3196 } 3197 } 3198 3199 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3200 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3201 if (uop->getOpcode() == UO_AddrOf) 3202 return uop->getSubExpr(); 3203 return nullptr; 3204 } 3205 3206 /// Emit an argument that's being passed call-by-writeback. That is, 3207 /// we are passing the address of an __autoreleased temporary; it 3208 /// might be copy-initialized with the current value of the given 3209 /// address, but it will definitely be copied out of after the call. 3210 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3211 const ObjCIndirectCopyRestoreExpr *CRE) { 3212 LValue srcLV; 3213 3214 // Make an optimistic effort to emit the address as an l-value. 3215 // This can fail if the argument expression is more complicated. 3216 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3217 srcLV = CGF.EmitLValue(lvExpr); 3218 3219 // Otherwise, just emit it as a scalar. 3220 } else { 3221 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3222 3223 QualType srcAddrType = 3224 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3225 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3226 } 3227 Address srcAddr = srcLV.getAddress(); 3228 3229 // The dest and src types don't necessarily match in LLVM terms 3230 // because of the crazy ObjC compatibility rules. 3231 3232 llvm::PointerType *destType = 3233 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3234 3235 // If the address is a constant null, just pass the appropriate null. 3236 if (isProvablyNull(srcAddr.getPointer())) { 3237 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3238 CRE->getType()); 3239 return; 3240 } 3241 3242 // Create the temporary. 3243 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3244 CGF.getPointerAlign(), 3245 "icr.temp"); 3246 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3247 // and that cleanup will be conditional if we can't prove that the l-value 3248 // isn't null, so we need to register a dominating point so that the cleanups 3249 // system will make valid IR. 3250 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3251 3252 // Zero-initialize it if we're not doing a copy-initialization. 3253 bool shouldCopy = CRE->shouldCopy(); 3254 if (!shouldCopy) { 3255 llvm::Value *null = 3256 llvm::ConstantPointerNull::get( 3257 cast<llvm::PointerType>(destType->getElementType())); 3258 CGF.Builder.CreateStore(null, temp); 3259 } 3260 3261 llvm::BasicBlock *contBB = nullptr; 3262 llvm::BasicBlock *originBB = nullptr; 3263 3264 // If the address is *not* known to be non-null, we need to switch. 3265 llvm::Value *finalArgument; 3266 3267 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3268 CGF.CGM.getDataLayout()); 3269 if (provablyNonNull) { 3270 finalArgument = temp.getPointer(); 3271 } else { 3272 llvm::Value *isNull = 3273 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3274 3275 finalArgument = CGF.Builder.CreateSelect(isNull, 3276 llvm::ConstantPointerNull::get(destType), 3277 temp.getPointer(), "icr.argument"); 3278 3279 // If we need to copy, then the load has to be conditional, which 3280 // means we need control flow. 3281 if (shouldCopy) { 3282 originBB = CGF.Builder.GetInsertBlock(); 3283 contBB = CGF.createBasicBlock("icr.cont"); 3284 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3285 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3286 CGF.EmitBlock(copyBB); 3287 condEval.begin(CGF); 3288 } 3289 } 3290 3291 llvm::Value *valueToUse = nullptr; 3292 3293 // Perform a copy if necessary. 3294 if (shouldCopy) { 3295 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3296 assert(srcRV.isScalar()); 3297 3298 llvm::Value *src = srcRV.getScalarVal(); 3299 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3300 "icr.cast"); 3301 3302 // Use an ordinary store, not a store-to-lvalue. 3303 CGF.Builder.CreateStore(src, temp); 3304 3305 // If optimization is enabled, and the value was held in a 3306 // __strong variable, we need to tell the optimizer that this 3307 // value has to stay alive until we're doing the store back. 3308 // This is because the temporary is effectively unretained, 3309 // and so otherwise we can violate the high-level semantics. 3310 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3311 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3312 valueToUse = src; 3313 } 3314 } 3315 3316 // Finish the control flow if we needed it. 3317 if (shouldCopy && !provablyNonNull) { 3318 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3319 CGF.EmitBlock(contBB); 3320 3321 // Make a phi for the value to intrinsically use. 3322 if (valueToUse) { 3323 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3324 "icr.to-use"); 3325 phiToUse->addIncoming(valueToUse, copyBB); 3326 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3327 originBB); 3328 valueToUse = phiToUse; 3329 } 3330 3331 condEval.end(CGF); 3332 } 3333 3334 args.addWriteback(srcLV, temp, valueToUse); 3335 args.add(RValue::get(finalArgument), CRE->getType()); 3336 } 3337 3338 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3339 assert(!StackBase); 3340 3341 // Save the stack. 3342 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3343 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3344 } 3345 3346 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3347 if (StackBase) { 3348 // Restore the stack after the call. 3349 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3350 CGF.Builder.CreateCall(F, StackBase); 3351 } 3352 } 3353 3354 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3355 SourceLocation ArgLoc, 3356 AbstractCallee AC, 3357 unsigned ParmNum) { 3358 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3359 SanOpts.has(SanitizerKind::NullabilityArg))) 3360 return; 3361 3362 // The param decl may be missing in a variadic function. 3363 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3364 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3365 3366 // Prefer the nonnull attribute if it's present. 3367 const NonNullAttr *NNAttr = nullptr; 3368 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3369 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3370 3371 bool CanCheckNullability = false; 3372 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3373 auto Nullability = PVD->getType()->getNullability(getContext()); 3374 CanCheckNullability = Nullability && 3375 *Nullability == NullabilityKind::NonNull && 3376 PVD->getTypeSourceInfo(); 3377 } 3378 3379 if (!NNAttr && !CanCheckNullability) 3380 return; 3381 3382 SourceLocation AttrLoc; 3383 SanitizerMask CheckKind; 3384 SanitizerHandler Handler; 3385 if (NNAttr) { 3386 AttrLoc = NNAttr->getLocation(); 3387 CheckKind = SanitizerKind::NonnullAttribute; 3388 Handler = SanitizerHandler::NonnullArg; 3389 } else { 3390 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3391 CheckKind = SanitizerKind::NullabilityArg; 3392 Handler = SanitizerHandler::NullabilityArg; 3393 } 3394 3395 SanitizerScope SanScope(this); 3396 assert(RV.isScalar()); 3397 llvm::Value *V = RV.getScalarVal(); 3398 llvm::Value *Cond = 3399 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3400 llvm::Constant *StaticData[] = { 3401 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3402 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3403 }; 3404 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3405 } 3406 3407 void CodeGenFunction::EmitCallArgs( 3408 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3409 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3410 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3411 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3412 3413 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3414 // because arguments are destroyed left to right in the callee. As a special 3415 // case, there are certain language constructs that require left-to-right 3416 // evaluation, and in those cases we consider the evaluation order requirement 3417 // to trump the "destruction order is reverse construction order" guarantee. 3418 bool LeftToRight = 3419 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3420 ? Order == EvaluationOrder::ForceLeftToRight 3421 : Order != EvaluationOrder::ForceRightToLeft; 3422 3423 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3424 RValue EmittedArg) { 3425 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3426 return; 3427 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3428 if (PS == nullptr) 3429 return; 3430 3431 const auto &Context = getContext(); 3432 auto SizeTy = Context.getSizeType(); 3433 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3434 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3435 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3436 EmittedArg.getScalarVal()); 3437 Args.add(RValue::get(V), SizeTy); 3438 // If we're emitting args in reverse, be sure to do so with 3439 // pass_object_size, as well. 3440 if (!LeftToRight) 3441 std::swap(Args.back(), *(&Args.back() - 1)); 3442 }; 3443 3444 // Insert a stack save if we're going to need any inalloca args. 3445 bool HasInAllocaArgs = false; 3446 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3447 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3448 I != E && !HasInAllocaArgs; ++I) 3449 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3450 if (HasInAllocaArgs) { 3451 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3452 Args.allocateArgumentMemory(*this); 3453 } 3454 } 3455 3456 // Evaluate each argument in the appropriate order. 3457 size_t CallArgsStart = Args.size(); 3458 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3459 unsigned Idx = LeftToRight ? I : E - I - 1; 3460 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3461 unsigned InitialArgSize = Args.size(); 3462 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3463 // the argument and parameter match or the objc method is parameterized. 3464 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3465 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3466 ArgTypes[Idx]) || 3467 (isa<ObjCMethodDecl>(AC.getDecl()) && 3468 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3469 "Argument and parameter types don't match"); 3470 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3471 // In particular, we depend on it being the last arg in Args, and the 3472 // objectsize bits depend on there only being one arg if !LeftToRight. 3473 assert(InitialArgSize + 1 == Args.size() && 3474 "The code below depends on only adding one arg per EmitCallArg"); 3475 (void)InitialArgSize; 3476 // Since pointer argument are never emitted as LValue, it is safe to emit 3477 // non-null argument check for r-value only. 3478 if (!Args.back().hasLValue()) { 3479 RValue RVArg = Args.back().getKnownRValue(); 3480 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3481 ParamsToSkip + Idx); 3482 // @llvm.objectsize should never have side-effects and shouldn't need 3483 // destruction/cleanups, so we can safely "emit" it after its arg, 3484 // regardless of right-to-leftness 3485 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3486 } 3487 } 3488 3489 if (!LeftToRight) { 3490 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3491 // IR function. 3492 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3493 } 3494 } 3495 3496 namespace { 3497 3498 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3499 DestroyUnpassedArg(Address Addr, QualType Ty) 3500 : Addr(Addr), Ty(Ty) {} 3501 3502 Address Addr; 3503 QualType Ty; 3504 3505 void Emit(CodeGenFunction &CGF, Flags flags) override { 3506 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3507 if (DtorKind == QualType::DK_cxx_destructor) { 3508 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3509 assert(!Dtor->isTrivial()); 3510 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3511 /*Delegating=*/false, Addr); 3512 } else { 3513 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3514 } 3515 } 3516 }; 3517 3518 struct DisableDebugLocationUpdates { 3519 CodeGenFunction &CGF; 3520 bool disabledDebugInfo; 3521 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3522 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3523 CGF.disableDebugInfo(); 3524 } 3525 ~DisableDebugLocationUpdates() { 3526 if (disabledDebugInfo) 3527 CGF.enableDebugInfo(); 3528 } 3529 }; 3530 3531 } // end anonymous namespace 3532 3533 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3534 if (!HasLV) 3535 return RV; 3536 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3537 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3538 LV.isVolatile()); 3539 IsUsed = true; 3540 return RValue::getAggregate(Copy.getAddress()); 3541 } 3542 3543 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3544 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3545 if (!HasLV && RV.isScalar()) 3546 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); 3547 else if (!HasLV && RV.isComplex()) 3548 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3549 else { 3550 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3551 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3552 // We assume that call args are never copied into subobjects. 3553 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3554 HasLV ? LV.isVolatileQualified() 3555 : RV.isVolatileQualified()); 3556 } 3557 IsUsed = true; 3558 } 3559 3560 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3561 QualType type) { 3562 DisableDebugLocationUpdates Dis(*this, E); 3563 if (const ObjCIndirectCopyRestoreExpr *CRE 3564 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3565 assert(getLangOpts().ObjCAutoRefCount); 3566 return emitWritebackArg(*this, args, CRE); 3567 } 3568 3569 assert(type->isReferenceType() == E->isGLValue() && 3570 "reference binding to unmaterialized r-value!"); 3571 3572 if (E->isGLValue()) { 3573 assert(E->getObjectKind() == OK_Ordinary); 3574 return args.add(EmitReferenceBindingToExpr(E), type); 3575 } 3576 3577 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3578 3579 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3580 // However, we still have to push an EH-only cleanup in case we unwind before 3581 // we make it to the call. 3582 if (HasAggregateEvalKind && 3583 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3584 // If we're using inalloca, use the argument memory. Otherwise, use a 3585 // temporary. 3586 AggValueSlot Slot; 3587 if (args.isUsingInAlloca()) 3588 Slot = createPlaceholderSlot(*this, type); 3589 else 3590 Slot = CreateAggTemp(type, "agg.tmp"); 3591 3592 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3593 if (const auto *RD = type->getAsCXXRecordDecl()) 3594 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3595 else 3596 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3597 3598 if (DestroyedInCallee) 3599 Slot.setExternallyDestructed(); 3600 3601 EmitAggExpr(E, Slot); 3602 RValue RV = Slot.asRValue(); 3603 args.add(RV, type); 3604 3605 if (DestroyedInCallee && NeedsEHCleanup) { 3606 // Create a no-op GEP between the placeholder and the cleanup so we can 3607 // RAUW it successfully. It also serves as a marker of the first 3608 // instruction where the cleanup is active. 3609 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3610 type); 3611 // This unreachable is a temporary marker which will be removed later. 3612 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3613 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3614 } 3615 return; 3616 } 3617 3618 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3619 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3620 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3621 assert(L.isSimple()); 3622 args.addUncopiedAggregate(L, type); 3623 return; 3624 } 3625 3626 args.add(EmitAnyExprToTemp(E), type); 3627 } 3628 3629 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3630 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3631 // implicitly widens null pointer constants that are arguments to varargs 3632 // functions to pointer-sized ints. 3633 if (!getTarget().getTriple().isOSWindows()) 3634 return Arg->getType(); 3635 3636 if (Arg->getType()->isIntegerType() && 3637 getContext().getTypeSize(Arg->getType()) < 3638 getContext().getTargetInfo().getPointerWidth(0) && 3639 Arg->isNullPointerConstant(getContext(), 3640 Expr::NPC_ValueDependentIsNotNull)) { 3641 return getContext().getIntPtrType(); 3642 } 3643 3644 return Arg->getType(); 3645 } 3646 3647 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3648 // optimizer it can aggressively ignore unwind edges. 3649 void 3650 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3651 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3652 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3653 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3654 CGM.getNoObjCARCExceptionsMetadata()); 3655 } 3656 3657 /// Emits a call to the given no-arguments nounwind runtime function. 3658 llvm::CallInst * 3659 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3660 const llvm::Twine &name) { 3661 return EmitNounwindRuntimeCall(callee, None, name); 3662 } 3663 3664 /// Emits a call to the given nounwind runtime function. 3665 llvm::CallInst * 3666 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3667 ArrayRef<llvm::Value*> args, 3668 const llvm::Twine &name) { 3669 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3670 call->setDoesNotThrow(); 3671 return call; 3672 } 3673 3674 /// Emits a simple call (never an invoke) to the given no-arguments 3675 /// runtime function. 3676 llvm::CallInst * 3677 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3678 const llvm::Twine &name) { 3679 return EmitRuntimeCall(callee, None, name); 3680 } 3681 3682 // Calls which may throw must have operand bundles indicating which funclet 3683 // they are nested within. 3684 SmallVector<llvm::OperandBundleDef, 1> 3685 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3686 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3687 // There is no need for a funclet operand bundle if we aren't inside a 3688 // funclet. 3689 if (!CurrentFuncletPad) 3690 return BundleList; 3691 3692 // Skip intrinsics which cannot throw. 3693 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3694 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3695 return BundleList; 3696 3697 BundleList.emplace_back("funclet", CurrentFuncletPad); 3698 return BundleList; 3699 } 3700 3701 /// Emits a simple call (never an invoke) to the given runtime function. 3702 llvm::CallInst * 3703 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3704 ArrayRef<llvm::Value*> args, 3705 const llvm::Twine &name) { 3706 llvm::CallInst *call = 3707 Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); 3708 call->setCallingConv(getRuntimeCC()); 3709 return call; 3710 } 3711 3712 /// Emits a call or invoke to the given noreturn runtime function. 3713 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3714 ArrayRef<llvm::Value*> args) { 3715 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3716 getBundlesForFunclet(callee); 3717 3718 if (getInvokeDest()) { 3719 llvm::InvokeInst *invoke = 3720 Builder.CreateInvoke(callee, 3721 getUnreachableBlock(), 3722 getInvokeDest(), 3723 args, 3724 BundleList); 3725 invoke->setDoesNotReturn(); 3726 invoke->setCallingConv(getRuntimeCC()); 3727 } else { 3728 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3729 call->setDoesNotReturn(); 3730 call->setCallingConv(getRuntimeCC()); 3731 Builder.CreateUnreachable(); 3732 } 3733 } 3734 3735 /// Emits a call or invoke instruction to the given nullary runtime function. 3736 llvm::CallSite 3737 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3738 const Twine &name) { 3739 return EmitRuntimeCallOrInvoke(callee, None, name); 3740 } 3741 3742 /// Emits a call or invoke instruction to the given runtime function. 3743 llvm::CallSite 3744 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3745 ArrayRef<llvm::Value*> args, 3746 const Twine &name) { 3747 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3748 callSite.setCallingConv(getRuntimeCC()); 3749 return callSite; 3750 } 3751 3752 /// Emits a call or invoke instruction to the given function, depending 3753 /// on the current state of the EH stack. 3754 llvm::CallSite 3755 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3756 ArrayRef<llvm::Value *> Args, 3757 const Twine &Name) { 3758 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3759 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3760 getBundlesForFunclet(Callee); 3761 3762 llvm::Instruction *Inst; 3763 if (!InvokeDest) 3764 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3765 else { 3766 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3767 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3768 Name); 3769 EmitBlock(ContBB); 3770 } 3771 3772 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3773 // optimizer it can aggressively ignore unwind edges. 3774 if (CGM.getLangOpts().ObjCAutoRefCount) 3775 AddObjCARCExceptionMetadata(Inst); 3776 3777 return llvm::CallSite(Inst); 3778 } 3779 3780 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3781 llvm::Value *New) { 3782 DeferredReplacements.push_back(std::make_pair(Old, New)); 3783 } 3784 3785 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3786 const CGCallee &Callee, 3787 ReturnValueSlot ReturnValue, 3788 const CallArgList &CallArgs, 3789 llvm::Instruction **callOrInvoke, 3790 SourceLocation Loc) { 3791 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3792 3793 assert(Callee.isOrdinary() || Callee.isVirtual()); 3794 3795 // Handle struct-return functions by passing a pointer to the 3796 // location that we would like to return into. 3797 QualType RetTy = CallInfo.getReturnType(); 3798 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3799 3800 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3801 3802 // 1. Set up the arguments. 3803 3804 // If we're using inalloca, insert the allocation after the stack save. 3805 // FIXME: Do this earlier rather than hacking it in here! 3806 Address ArgMemory = Address::invalid(); 3807 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3808 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3809 const llvm::DataLayout &DL = CGM.getDataLayout(); 3810 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3811 llvm::Instruction *IP = CallArgs.getStackBase(); 3812 llvm::AllocaInst *AI; 3813 if (IP) { 3814 IP = IP->getNextNode(); 3815 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3816 "argmem", IP); 3817 } else { 3818 AI = CreateTempAlloca(ArgStruct, "argmem"); 3819 } 3820 auto Align = CallInfo.getArgStructAlignment(); 3821 AI->setAlignment(Align.getQuantity()); 3822 AI->setUsedWithInAlloca(true); 3823 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3824 ArgMemory = Address(AI, Align); 3825 } 3826 3827 // Helper function to drill into the inalloca allocation. 3828 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3829 auto FieldOffset = 3830 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3831 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3832 }; 3833 3834 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3835 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3836 3837 // If the call returns a temporary with struct return, create a temporary 3838 // alloca to hold the result, unless one is given to us. 3839 Address SRetPtr = Address::invalid(); 3840 Address SRetAlloca = Address::invalid(); 3841 llvm::Value *UnusedReturnSizePtr = nullptr; 3842 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3843 if (!ReturnValue.isNull()) { 3844 SRetPtr = ReturnValue.getValue(); 3845 } else { 3846 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 3847 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3848 uint64_t size = 3849 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3850 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 3851 } 3852 } 3853 if (IRFunctionArgs.hasSRetArg()) { 3854 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3855 } else if (RetAI.isInAlloca()) { 3856 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3857 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3858 } 3859 } 3860 3861 Address swiftErrorTemp = Address::invalid(); 3862 Address swiftErrorArg = Address::invalid(); 3863 3864 // Translate all of the arguments as necessary to match the IR lowering. 3865 assert(CallInfo.arg_size() == CallArgs.size() && 3866 "Mismatch between function signature & arguments."); 3867 unsigned ArgNo = 0; 3868 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3869 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3870 I != E; ++I, ++info_it, ++ArgNo) { 3871 const ABIArgInfo &ArgInfo = info_it->info; 3872 3873 // Insert a padding argument to ensure proper alignment. 3874 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3875 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3876 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3877 3878 unsigned FirstIRArg, NumIRArgs; 3879 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3880 3881 switch (ArgInfo.getKind()) { 3882 case ABIArgInfo::InAlloca: { 3883 assert(NumIRArgs == 0); 3884 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3885 if (I->isAggregate()) { 3886 // Replace the placeholder with the appropriate argument slot GEP. 3887 Address Addr = I->hasLValue() 3888 ? I->getKnownLValue().getAddress() 3889 : I->getKnownRValue().getAggregateAddress(); 3890 llvm::Instruction *Placeholder = 3891 cast<llvm::Instruction>(Addr.getPointer()); 3892 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3893 Builder.SetInsertPoint(Placeholder); 3894 Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3895 Builder.restoreIP(IP); 3896 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3897 } else { 3898 // Store the RValue into the argument struct. 3899 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3900 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3901 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3902 // There are some cases where a trivial bitcast is not avoidable. The 3903 // definition of a type later in a translation unit may change it's type 3904 // from {}* to (%struct.foo*)*. 3905 if (Addr.getType() != MemType) 3906 Addr = Builder.CreateBitCast(Addr, MemType); 3907 I->copyInto(*this, Addr); 3908 } 3909 break; 3910 } 3911 3912 case ABIArgInfo::Indirect: { 3913 assert(NumIRArgs == 1); 3914 if (!I->isAggregate()) { 3915 // Make a temporary alloca to pass the argument. 3916 Address Addr = CreateMemTempWithoutCast( 3917 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 3918 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3919 3920 I->copyInto(*this, Addr); 3921 } else { 3922 // We want to avoid creating an unnecessary temporary+copy here; 3923 // however, we need one in three cases: 3924 // 1. If the argument is not byval, and we are required to copy the 3925 // source. (This case doesn't occur on any common architecture.) 3926 // 2. If the argument is byval, RV is not sufficiently aligned, and 3927 // we cannot force it to be sufficiently aligned. 3928 // 3. If the argument is byval, but RV is not located in default 3929 // or alloca address space. 3930 Address Addr = I->hasLValue() 3931 ? I->getKnownLValue().getAddress() 3932 : I->getKnownRValue().getAggregateAddress(); 3933 llvm::Value *V = Addr.getPointer(); 3934 CharUnits Align = ArgInfo.getIndirectAlign(); 3935 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3936 3937 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3938 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3939 TD->getAllocaAddrSpace()) && 3940 "indirect argument must be in alloca address space"); 3941 3942 bool NeedCopy = false; 3943 3944 if (Addr.getAlignment() < Align && 3945 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3946 Align.getQuantity()) { 3947 NeedCopy = true; 3948 } else if (I->hasLValue()) { 3949 auto LV = I->getKnownLValue(); 3950 auto AS = LV.getAddressSpace(); 3951 if ((!ArgInfo.getIndirectByVal() && 3952 (LV.getAlignment() >= 3953 getContext().getTypeAlignInChars(I->Ty))) || 3954 (ArgInfo.getIndirectByVal() && 3955 ((AS != LangAS::Default && AS != LangAS::opencl_private && 3956 AS != CGM.getASTAllocaAddressSpace())))) { 3957 NeedCopy = true; 3958 } 3959 } 3960 if (NeedCopy) { 3961 // Create an aligned temporary, and copy to it. 3962 Address AI = CreateMemTempWithoutCast( 3963 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 3964 IRCallArgs[FirstIRArg] = AI.getPointer(); 3965 I->copyInto(*this, AI); 3966 } else { 3967 // Skip the extra memcpy call. 3968 auto *T = V->getType()->getPointerElementType()->getPointerTo( 3969 CGM.getDataLayout().getAllocaAddrSpace()); 3970 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 3971 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 3972 true); 3973 } 3974 } 3975 break; 3976 } 3977 3978 case ABIArgInfo::Ignore: 3979 assert(NumIRArgs == 0); 3980 break; 3981 3982 case ABIArgInfo::Extend: 3983 case ABIArgInfo::Direct: { 3984 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3985 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3986 ArgInfo.getDirectOffset() == 0) { 3987 assert(NumIRArgs == 1); 3988 llvm::Value *V; 3989 if (!I->isAggregate()) 3990 V = I->getKnownRValue().getScalarVal(); 3991 else 3992 V = Builder.CreateLoad( 3993 I->hasLValue() ? I->getKnownLValue().getAddress() 3994 : I->getKnownRValue().getAggregateAddress()); 3995 3996 // Implement swifterror by copying into a new swifterror argument. 3997 // We'll write back in the normal path out of the call. 3998 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3999 == ParameterABI::SwiftErrorResult) { 4000 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4001 4002 QualType pointeeTy = I->Ty->getPointeeType(); 4003 swiftErrorArg = 4004 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4005 4006 swiftErrorTemp = 4007 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4008 V = swiftErrorTemp.getPointer(); 4009 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4010 4011 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4012 Builder.CreateStore(errorValue, swiftErrorTemp); 4013 } 4014 4015 // We might have to widen integers, but we should never truncate. 4016 if (ArgInfo.getCoerceToType() != V->getType() && 4017 V->getType()->isIntegerTy()) 4018 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4019 4020 // If the argument doesn't match, perform a bitcast to coerce it. This 4021 // can happen due to trivial type mismatches. 4022 if (FirstIRArg < IRFuncTy->getNumParams() && 4023 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4024 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4025 4026 IRCallArgs[FirstIRArg] = V; 4027 break; 4028 } 4029 4030 // FIXME: Avoid the conversion through memory if possible. 4031 Address Src = Address::invalid(); 4032 if (!I->isAggregate()) { 4033 Src = CreateMemTemp(I->Ty, "coerce"); 4034 I->copyInto(*this, Src); 4035 } else { 4036 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 4037 : I->getKnownRValue().getAggregateAddress(); 4038 } 4039 4040 // If the value is offset in memory, apply the offset now. 4041 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4042 4043 // Fast-isel and the optimizer generally like scalar values better than 4044 // FCAs, so we flatten them if this is safe to do for this argument. 4045 llvm::StructType *STy = 4046 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4047 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4048 llvm::Type *SrcTy = Src.getType()->getElementType(); 4049 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4050 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4051 4052 // If the source type is smaller than the destination type of the 4053 // coerce-to logic, copy the source value into a temp alloca the size 4054 // of the destination type to allow loading all of it. The bits past 4055 // the source value are left undef. 4056 if (SrcSize < DstSize) { 4057 Address TempAlloca 4058 = CreateTempAlloca(STy, Src.getAlignment(), 4059 Src.getName() + ".coerce"); 4060 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4061 Src = TempAlloca; 4062 } else { 4063 Src = Builder.CreateBitCast(Src, 4064 STy->getPointerTo(Src.getAddressSpace())); 4065 } 4066 4067 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 4068 assert(NumIRArgs == STy->getNumElements()); 4069 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4070 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 4071 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 4072 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4073 IRCallArgs[FirstIRArg + i] = LI; 4074 } 4075 } else { 4076 // In the simple case, just pass the coerced loaded value. 4077 assert(NumIRArgs == 1); 4078 IRCallArgs[FirstIRArg] = 4079 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4080 } 4081 4082 break; 4083 } 4084 4085 case ABIArgInfo::CoerceAndExpand: { 4086 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4087 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4088 4089 llvm::Value *tempSize = nullptr; 4090 Address addr = Address::invalid(); 4091 Address AllocaAddr = Address::invalid(); 4092 if (I->isAggregate()) { 4093 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4094 : I->getKnownRValue().getAggregateAddress(); 4095 4096 } else { 4097 RValue RV = I->getKnownRValue(); 4098 assert(RV.isScalar()); // complex should always just be direct 4099 4100 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4101 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4102 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4103 4104 // Materialize to a temporary. 4105 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 4106 CharUnits::fromQuantity(std::max( 4107 layout->getAlignment(), scalarAlign)), 4108 "tmp", 4109 /*ArraySize=*/nullptr, &AllocaAddr); 4110 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4111 4112 Builder.CreateStore(RV.getScalarVal(), addr); 4113 } 4114 4115 addr = Builder.CreateElementBitCast(addr, coercionType); 4116 4117 unsigned IRArgPos = FirstIRArg; 4118 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4119 llvm::Type *eltType = coercionType->getElementType(i); 4120 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4121 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4122 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4123 IRCallArgs[IRArgPos++] = elt; 4124 } 4125 assert(IRArgPos == FirstIRArg + NumIRArgs); 4126 4127 if (tempSize) { 4128 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4129 } 4130 4131 break; 4132 } 4133 4134 case ABIArgInfo::Expand: 4135 unsigned IRArgPos = FirstIRArg; 4136 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4137 assert(IRArgPos == FirstIRArg + NumIRArgs); 4138 break; 4139 } 4140 } 4141 4142 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4143 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4144 4145 // If we're using inalloca, set up that argument. 4146 if (ArgMemory.isValid()) { 4147 llvm::Value *Arg = ArgMemory.getPointer(); 4148 if (CallInfo.isVariadic()) { 4149 // When passing non-POD arguments by value to variadic functions, we will 4150 // end up with a variadic prototype and an inalloca call site. In such 4151 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4152 // the callee. 4153 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4154 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4155 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4156 } else { 4157 llvm::Type *LastParamTy = 4158 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4159 if (Arg->getType() != LastParamTy) { 4160 #ifndef NDEBUG 4161 // Assert that these structs have equivalent element types. 4162 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4163 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4164 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4165 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4166 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4167 DE = DeclaredTy->element_end(), 4168 FI = FullTy->element_begin(); 4169 DI != DE; ++DI, ++FI) 4170 assert(*DI == *FI); 4171 #endif 4172 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4173 } 4174 } 4175 assert(IRFunctionArgs.hasInallocaArg()); 4176 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4177 } 4178 4179 // 2. Prepare the function pointer. 4180 4181 // If the callee is a bitcast of a non-variadic function to have a 4182 // variadic function pointer type, check to see if we can remove the 4183 // bitcast. This comes up with unprototyped functions. 4184 // 4185 // This makes the IR nicer, but more importantly it ensures that we 4186 // can inline the function at -O0 if it is marked always_inline. 4187 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4188 llvm::FunctionType *CalleeFT = 4189 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4190 if (!CalleeFT->isVarArg()) 4191 return Ptr; 4192 4193 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4194 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4195 return Ptr; 4196 4197 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4198 if (!OrigFn) 4199 return Ptr; 4200 4201 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4202 4203 // If the original type is variadic, or if any of the component types 4204 // disagree, we cannot remove the cast. 4205 if (OrigFT->isVarArg() || 4206 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4207 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4208 return Ptr; 4209 4210 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4211 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4212 return Ptr; 4213 4214 return OrigFn; 4215 }; 4216 CalleePtr = simplifyVariadicCallee(CalleePtr); 4217 4218 // 3. Perform the actual call. 4219 4220 // Deactivate any cleanups that we're supposed to do immediately before 4221 // the call. 4222 if (!CallArgs.getCleanupsToDeactivate().empty()) 4223 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4224 4225 // Assert that the arguments we computed match up. The IR verifier 4226 // will catch this, but this is a common enough source of problems 4227 // during IRGen changes that it's way better for debugging to catch 4228 // it ourselves here. 4229 #ifndef NDEBUG 4230 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4231 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4232 // Inalloca argument can have different type. 4233 if (IRFunctionArgs.hasInallocaArg() && 4234 i == IRFunctionArgs.getInallocaArgNo()) 4235 continue; 4236 if (i < IRFuncTy->getNumParams()) 4237 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4238 } 4239 #endif 4240 4241 // Compute the calling convention and attributes. 4242 unsigned CallingConv; 4243 llvm::AttributeList Attrs; 4244 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4245 Callee.getAbstractInfo(), Attrs, CallingConv, 4246 /*AttrOnCallSite=*/true); 4247 4248 // Apply some call-site-specific attributes. 4249 // TODO: work this into building the attribute set. 4250 4251 // Apply always_inline to all calls within flatten functions. 4252 // FIXME: should this really take priority over __try, below? 4253 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4254 !(Callee.getAbstractInfo().getCalleeDecl() && 4255 Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { 4256 Attrs = 4257 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4258 llvm::Attribute::AlwaysInline); 4259 } 4260 4261 // Disable inlining inside SEH __try blocks. 4262 if (isSEHTryScope()) { 4263 Attrs = 4264 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4265 llvm::Attribute::NoInline); 4266 } 4267 4268 // Decide whether to use a call or an invoke. 4269 bool CannotThrow; 4270 if (currentFunctionUsesSEHTry()) { 4271 // SEH cares about asynchronous exceptions, so everything can "throw." 4272 CannotThrow = false; 4273 } else if (isCleanupPadScope() && 4274 EHPersonality::get(*this).isMSVCXXPersonality()) { 4275 // The MSVC++ personality will implicitly terminate the program if an 4276 // exception is thrown during a cleanup outside of a try/catch. 4277 // We don't need to model anything in IR to get this behavior. 4278 CannotThrow = true; 4279 } else { 4280 // Otherwise, nounwind call sites will never throw. 4281 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4282 llvm::Attribute::NoUnwind); 4283 } 4284 4285 // If we made a temporary, be sure to clean up after ourselves. Note that we 4286 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4287 // pop this cleanup later on. Being eager about this is OK, since this 4288 // temporary is 'invisible' outside of the callee. 4289 if (UnusedReturnSizePtr) 4290 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4291 UnusedReturnSizePtr); 4292 4293 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4294 4295 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4296 getBundlesForFunclet(CalleePtr); 4297 4298 // Emit the actual call/invoke instruction. 4299 llvm::CallSite CS; 4300 if (!InvokeDest) { 4301 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4302 } else { 4303 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4304 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4305 BundleList); 4306 EmitBlock(Cont); 4307 } 4308 llvm::Instruction *CI = CS.getInstruction(); 4309 if (callOrInvoke) 4310 *callOrInvoke = CI; 4311 4312 // Apply the attributes and calling convention. 4313 CS.setAttributes(Attrs); 4314 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4315 4316 // Apply various metadata. 4317 4318 if (!CI->getType()->isVoidTy()) 4319 CI->setName("call"); 4320 4321 // Insert instrumentation or attach profile metadata at indirect call sites. 4322 // For more details, see the comment before the definition of 4323 // IPVK_IndirectCallTarget in InstrProfData.inc. 4324 if (!CS.getCalledFunction()) 4325 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4326 CI, CalleePtr); 4327 4328 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4329 // optimizer it can aggressively ignore unwind edges. 4330 if (CGM.getLangOpts().ObjCAutoRefCount) 4331 AddObjCARCExceptionMetadata(CI); 4332 4333 // Suppress tail calls if requested. 4334 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4335 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4336 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4337 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4338 } 4339 4340 // 4. Finish the call. 4341 4342 // If the call doesn't return, finish the basic block and clear the 4343 // insertion point; this allows the rest of IRGen to discard 4344 // unreachable code. 4345 if (CS.doesNotReturn()) { 4346 if (UnusedReturnSizePtr) 4347 PopCleanupBlock(); 4348 4349 // Strip away the noreturn attribute to better diagnose unreachable UB. 4350 if (SanOpts.has(SanitizerKind::Unreachable)) { 4351 if (auto *F = CS.getCalledFunction()) 4352 F->removeFnAttr(llvm::Attribute::NoReturn); 4353 CS.removeAttribute(llvm::AttributeList::FunctionIndex, 4354 llvm::Attribute::NoReturn); 4355 } 4356 4357 EmitUnreachable(Loc); 4358 Builder.ClearInsertionPoint(); 4359 4360 // FIXME: For now, emit a dummy basic block because expr emitters in 4361 // generally are not ready to handle emitting expressions at unreachable 4362 // points. 4363 EnsureInsertPoint(); 4364 4365 // Return a reasonable RValue. 4366 return GetUndefRValue(RetTy); 4367 } 4368 4369 // Perform the swifterror writeback. 4370 if (swiftErrorTemp.isValid()) { 4371 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4372 Builder.CreateStore(errorResult, swiftErrorArg); 4373 } 4374 4375 // Emit any call-associated writebacks immediately. Arguably this 4376 // should happen after any return-value munging. 4377 if (CallArgs.hasWritebacks()) 4378 emitWritebacks(*this, CallArgs); 4379 4380 // The stack cleanup for inalloca arguments has to run out of the normal 4381 // lexical order, so deactivate it and run it manually here. 4382 CallArgs.freeArgumentMemory(*this); 4383 4384 // Extract the return value. 4385 RValue Ret = [&] { 4386 switch (RetAI.getKind()) { 4387 case ABIArgInfo::CoerceAndExpand: { 4388 auto coercionType = RetAI.getCoerceAndExpandType(); 4389 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4390 4391 Address addr = SRetPtr; 4392 addr = Builder.CreateElementBitCast(addr, coercionType); 4393 4394 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4395 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4396 4397 unsigned unpaddedIndex = 0; 4398 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4399 llvm::Type *eltType = coercionType->getElementType(i); 4400 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4401 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4402 llvm::Value *elt = CI; 4403 if (requiresExtract) 4404 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4405 else 4406 assert(unpaddedIndex == 0); 4407 Builder.CreateStore(elt, eltAddr); 4408 } 4409 // FALLTHROUGH 4410 LLVM_FALLTHROUGH; 4411 } 4412 4413 case ABIArgInfo::InAlloca: 4414 case ABIArgInfo::Indirect: { 4415 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4416 if (UnusedReturnSizePtr) 4417 PopCleanupBlock(); 4418 return ret; 4419 } 4420 4421 case ABIArgInfo::Ignore: 4422 // If we are ignoring an argument that had a result, make sure to 4423 // construct the appropriate return value for our caller. 4424 return GetUndefRValue(RetTy); 4425 4426 case ABIArgInfo::Extend: 4427 case ABIArgInfo::Direct: { 4428 llvm::Type *RetIRTy = ConvertType(RetTy); 4429 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4430 switch (getEvaluationKind(RetTy)) { 4431 case TEK_Complex: { 4432 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4433 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4434 return RValue::getComplex(std::make_pair(Real, Imag)); 4435 } 4436 case TEK_Aggregate: { 4437 Address DestPtr = ReturnValue.getValue(); 4438 bool DestIsVolatile = ReturnValue.isVolatile(); 4439 4440 if (!DestPtr.isValid()) { 4441 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4442 DestIsVolatile = false; 4443 } 4444 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4445 return RValue::getAggregate(DestPtr); 4446 } 4447 case TEK_Scalar: { 4448 // If the argument doesn't match, perform a bitcast to coerce it. This 4449 // can happen due to trivial type mismatches. 4450 llvm::Value *V = CI; 4451 if (V->getType() != RetIRTy) 4452 V = Builder.CreateBitCast(V, RetIRTy); 4453 return RValue::get(V); 4454 } 4455 } 4456 llvm_unreachable("bad evaluation kind"); 4457 } 4458 4459 Address DestPtr = ReturnValue.getValue(); 4460 bool DestIsVolatile = ReturnValue.isVolatile(); 4461 4462 if (!DestPtr.isValid()) { 4463 DestPtr = CreateMemTemp(RetTy, "coerce"); 4464 DestIsVolatile = false; 4465 } 4466 4467 // If the value is offset in memory, apply the offset now. 4468 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4469 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4470 4471 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4472 } 4473 4474 case ABIArgInfo::Expand: 4475 llvm_unreachable("Invalid ABI kind for return argument"); 4476 } 4477 4478 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4479 } (); 4480 4481 // Emit the assume_aligned check on the return value. 4482 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4483 if (Ret.isScalar() && TargetDecl) { 4484 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4485 llvm::Value *OffsetValue = nullptr; 4486 if (const auto *Offset = AA->getOffset()) 4487 OffsetValue = EmitScalarExpr(Offset); 4488 4489 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4490 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4491 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4492 OffsetValue); 4493 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4494 llvm::Value *ParamVal = 4495 CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue( 4496 *this).getScalarVal(); 4497 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4498 } 4499 } 4500 4501 return Ret; 4502 } 4503 4504 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4505 if (isVirtual()) { 4506 const CallExpr *CE = getVirtualCallExpr(); 4507 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4508 CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(), 4509 CE ? CE->getBeginLoc() : SourceLocation()); 4510 } 4511 4512 return *this; 4513 } 4514 4515 /* VarArg handling */ 4516 4517 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4518 VAListAddr = VE->isMicrosoftABI() 4519 ? EmitMSVAListRef(VE->getSubExpr()) 4520 : EmitVAListRef(VE->getSubExpr()); 4521 QualType Ty = VE->getType(); 4522 if (VE->isMicrosoftABI()) 4523 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4524 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4525 } 4526