1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "CGCXXABI.h" 17 #include "ABIInfo.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Attributes.h" 26 #include "llvm/Support/CallSite.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/InlineAsm.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 /***/ 34 35 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 36 switch (CC) { 37 default: return llvm::CallingConv::C; 38 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 39 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 40 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 41 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 42 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 43 // TODO: add support for CC_X86Pascal to llvm 44 } 45 } 46 47 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 48 /// qualification. 49 /// FIXME: address space qualification? 50 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 51 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 52 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 53 } 54 55 /// Returns the canonical formal type of the given C++ method. 56 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 57 return MD->getType()->getCanonicalTypeUnqualified() 58 .getAs<FunctionProtoType>(); 59 } 60 61 /// Returns the "extra-canonicalized" return type, which discards 62 /// qualifiers on the return type. Codegen doesn't care about them, 63 /// and it makes ABI code a little easier to be able to assume that 64 /// all parameter and return types are top-level unqualified. 65 static CanQualType GetReturnType(QualType RetTy) { 66 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 67 } 68 69 const CGFunctionInfo & 70 CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP) { 71 return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(), 72 SmallVector<CanQualType, 16>(), 73 FTNP->getExtInfo()); 74 } 75 76 /// \param Args - contains any initial parameters besides those 77 /// in the formal type 78 static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT, 79 SmallVectorImpl<CanQualType> &ArgTys, 80 CanQual<FunctionProtoType> FTP) { 81 // FIXME: Kill copy. 82 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 83 ArgTys.push_back(FTP->getArgType(i)); 84 CanQualType ResTy = FTP->getResultType().getUnqualifiedType(); 85 return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); 86 } 87 88 const CGFunctionInfo & 89 CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP) { 90 SmallVector<CanQualType, 16> ArgTys; 91 return ::getFunctionInfo(*this, ArgTys, FTP); 92 } 93 94 static CallingConv getCallingConventionForDecl(const Decl *D) { 95 // Set the appropriate calling convention for the Function. 96 if (D->hasAttr<StdCallAttr>()) 97 return CC_X86StdCall; 98 99 if (D->hasAttr<FastCallAttr>()) 100 return CC_X86FastCall; 101 102 if (D->hasAttr<ThisCallAttr>()) 103 return CC_X86ThisCall; 104 105 if (D->hasAttr<PascalAttr>()) 106 return CC_X86Pascal; 107 108 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 109 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 110 111 return CC_C; 112 } 113 114 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD, 115 const FunctionProtoType *FTP) { 116 SmallVector<CanQualType, 16> ArgTys; 117 118 // Add the 'this' pointer. 119 ArgTys.push_back(GetThisType(Context, RD)); 120 121 return ::getFunctionInfo(*this, ArgTys, 122 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 123 } 124 125 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) { 126 SmallVector<CanQualType, 16> ArgTys; 127 128 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); 129 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 130 131 // Add the 'this' pointer unless this is a static method. 132 if (MD->isInstance()) 133 ArgTys.push_back(GetThisType(Context, MD->getParent())); 134 135 return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD)); 136 } 137 138 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D, 139 CXXCtorType Type) { 140 SmallVector<CanQualType, 16> ArgTys; 141 ArgTys.push_back(GetThisType(Context, D->getParent())); 142 CanQualType ResTy = Context.VoidTy; 143 144 TheCXXABI.BuildConstructorSignature(D, Type, ResTy, ArgTys); 145 146 CanQual<FunctionProtoType> FTP = GetFormalType(D); 147 148 // Add the formal parameters. 149 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 150 ArgTys.push_back(FTP->getArgType(i)); 151 152 return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); 153 } 154 155 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D, 156 CXXDtorType Type) { 157 SmallVector<CanQualType, 2> ArgTys; 158 ArgTys.push_back(GetThisType(Context, D->getParent())); 159 CanQualType ResTy = Context.VoidTy; 160 161 TheCXXABI.BuildDestructorSignature(D, Type, ResTy, ArgTys); 162 163 CanQual<FunctionProtoType> FTP = GetFormalType(D); 164 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); 165 166 return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); 167 } 168 169 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) { 170 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 171 if (MD->isInstance()) 172 return getFunctionInfo(MD); 173 174 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 175 assert(isa<FunctionType>(FTy)); 176 if (isa<FunctionNoProtoType>(FTy)) 177 return getFunctionInfo(FTy.getAs<FunctionNoProtoType>()); 178 assert(isa<FunctionProtoType>(FTy)); 179 return getFunctionInfo(FTy.getAs<FunctionProtoType>()); 180 } 181 182 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) { 183 SmallVector<CanQualType, 16> ArgTys; 184 ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType())); 185 ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 186 // FIXME: Kill copy? 187 for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), 188 e = MD->param_end(); i != e; ++i) { 189 ArgTys.push_back(Context.getCanonicalParamType((*i)->getType())); 190 } 191 192 FunctionType::ExtInfo einfo; 193 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); 194 195 if (getContext().getLangOptions().ObjCAutoRefCount && 196 MD->hasAttr<NSReturnsRetainedAttr>()) 197 einfo = einfo.withProducesResult(true); 198 199 return getFunctionInfo(GetReturnType(MD->getResultType()), ArgTys, einfo); 200 } 201 202 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) { 203 // FIXME: Do we need to handle ObjCMethodDecl? 204 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 205 206 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 207 return getFunctionInfo(CD, GD.getCtorType()); 208 209 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 210 return getFunctionInfo(DD, GD.getDtorType()); 211 212 return getFunctionInfo(FD); 213 } 214 215 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, 216 const CallArgList &Args, 217 const FunctionType::ExtInfo &Info) { 218 // FIXME: Kill copy. 219 SmallVector<CanQualType, 16> ArgTys; 220 for (CallArgList::const_iterator i = Args.begin(), e = Args.end(); 221 i != e; ++i) 222 ArgTys.push_back(Context.getCanonicalParamType(i->Ty)); 223 return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); 224 } 225 226 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, 227 const FunctionArgList &Args, 228 const FunctionType::ExtInfo &Info) { 229 // FIXME: Kill copy. 230 SmallVector<CanQualType, 16> ArgTys; 231 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 232 i != e; ++i) 233 ArgTys.push_back(Context.getCanonicalParamType((*i)->getType())); 234 return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); 235 } 236 237 const CGFunctionInfo &CodeGenTypes::getNullaryFunctionInfo() { 238 SmallVector<CanQualType, 1> args; 239 return getFunctionInfo(getContext().VoidTy, args, FunctionType::ExtInfo()); 240 } 241 242 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy, 243 const SmallVectorImpl<CanQualType> &ArgTys, 244 const FunctionType::ExtInfo &Info) { 245 #ifndef NDEBUG 246 for (SmallVectorImpl<CanQualType>::const_iterator 247 I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I) 248 assert(I->isCanonicalAsParam()); 249 #endif 250 251 unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC()); 252 253 // Lookup or create unique function info. 254 llvm::FoldingSetNodeID ID; 255 CGFunctionInfo::Profile(ID, Info, ResTy, ArgTys.begin(), ArgTys.end()); 256 257 void *InsertPos = 0; 258 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos); 259 if (FI) 260 return *FI; 261 262 // Construct the function info. 263 FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getProducesResult(), 264 Info.getHasRegParm(), Info.getRegParm(), ResTy, 265 ArgTys.data(), ArgTys.size()); 266 FunctionInfos.InsertNode(FI, InsertPos); 267 268 bool Inserted = FunctionsBeingProcessed.insert(FI); (void)Inserted; 269 assert(Inserted && "Recursively being processed?"); 270 271 // Compute ABI information. 272 getABIInfo().computeInfo(*FI); 273 274 // Loop over all of the computed argument and return value info. If any of 275 // them are direct or extend without a specified coerce type, specify the 276 // default now. 277 ABIArgInfo &RetInfo = FI->getReturnInfo(); 278 if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0) 279 RetInfo.setCoerceToType(ConvertType(FI->getReturnType())); 280 281 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); 282 I != E; ++I) 283 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) 284 I->info.setCoerceToType(ConvertType(I->type)); 285 286 bool Erased = FunctionsBeingProcessed.erase(FI); (void)Erased; 287 assert(Erased && "Not in set?"); 288 289 return *FI; 290 } 291 292 CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention, 293 bool _NoReturn, bool returnsRetained, 294 bool _HasRegParm, unsigned _RegParm, 295 CanQualType ResTy, 296 const CanQualType *ArgTys, 297 unsigned NumArgTys) 298 : CallingConvention(_CallingConvention), 299 EffectiveCallingConvention(_CallingConvention), 300 NoReturn(_NoReturn), ReturnsRetained(returnsRetained), 301 HasRegParm(_HasRegParm), RegParm(_RegParm) 302 { 303 NumArgs = NumArgTys; 304 305 // FIXME: Coallocate with the CGFunctionInfo object. 306 Args = new ArgInfo[1 + NumArgTys]; 307 Args[0].type = ResTy; 308 for (unsigned i = 0; i != NumArgTys; ++i) 309 Args[1 + i].type = ArgTys[i]; 310 } 311 312 /***/ 313 314 void CodeGenTypes::GetExpandedTypes(QualType type, 315 SmallVectorImpl<llvm::Type*> &expandedTypes) { 316 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { 317 uint64_t NumElts = AT->getSize().getZExtValue(); 318 for (uint64_t Elt = 0; Elt < NumElts; ++Elt) 319 GetExpandedTypes(AT->getElementType(), expandedTypes); 320 } else if (const RecordType *RT = type->getAsStructureType()) { 321 const RecordDecl *RD = RT->getDecl(); 322 assert(!RD->hasFlexibleArrayMember() && 323 "Cannot expand structure with flexible array."); 324 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 325 i != e; ++i) { 326 const FieldDecl *FD = *i; 327 assert(!FD->isBitField() && 328 "Cannot expand structure with bit-field members."); 329 GetExpandedTypes(FD->getType(), expandedTypes); 330 } 331 } else if (const ComplexType *CT = type->getAs<ComplexType>()) { 332 llvm::Type *EltTy = ConvertType(CT->getElementType()); 333 expandedTypes.push_back(EltTy); 334 expandedTypes.push_back(EltTy); 335 } else 336 expandedTypes.push_back(ConvertType(type)); 337 } 338 339 llvm::Function::arg_iterator 340 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 341 llvm::Function::arg_iterator AI) { 342 assert(LV.isSimple() && 343 "Unexpected non-simple lvalue during struct expansion."); 344 llvm::Value *Addr = LV.getAddress(); 345 346 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 347 unsigned NumElts = AT->getSize().getZExtValue(); 348 QualType EltTy = AT->getElementType(); 349 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 350 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 351 LValue LV = MakeAddrLValue(EltAddr, EltTy); 352 AI = ExpandTypeFromArgs(EltTy, LV, AI); 353 } 354 } else if (const RecordType *RT = Ty->getAsStructureType()) { 355 RecordDecl *RD = RT->getDecl(); 356 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 357 i != e; ++i) { 358 FieldDecl *FD = *i; 359 QualType FT = FD->getType(); 360 361 // FIXME: What are the right qualifiers here? 362 LValue LV = EmitLValueForField(Addr, FD, 0); 363 AI = ExpandTypeFromArgs(FT, LV, AI); 364 } 365 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 366 QualType EltTy = CT->getElementType(); 367 llvm::Value *RealAddr = Builder.CreateStructGEP(Addr, 0, "real"); 368 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); 369 llvm::Value *ImagAddr = Builder.CreateStructGEP(Addr, 1, "imag"); 370 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); 371 } else { 372 EmitStoreThroughLValue(RValue::get(AI), LV); 373 ++AI; 374 } 375 376 return AI; 377 } 378 379 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 380 /// accessing some number of bytes out of it, try to gep into the struct to get 381 /// at its inner goodness. Dive as deep as possible without entering an element 382 /// with an in-memory size smaller than DstSize. 383 static llvm::Value * 384 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 385 llvm::StructType *SrcSTy, 386 uint64_t DstSize, CodeGenFunction &CGF) { 387 // We can't dive into a zero-element struct. 388 if (SrcSTy->getNumElements() == 0) return SrcPtr; 389 390 llvm::Type *FirstElt = SrcSTy->getElementType(0); 391 392 // If the first elt is at least as large as what we're looking for, or if the 393 // first element is the same size as the whole struct, we can enter it. 394 uint64_t FirstEltSize = 395 CGF.CGM.getTargetData().getTypeAllocSize(FirstElt); 396 if (FirstEltSize < DstSize && 397 FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy)) 398 return SrcPtr; 399 400 // GEP into the first element. 401 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 402 403 // If the first element is a struct, recurse. 404 llvm::Type *SrcTy = 405 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 406 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 407 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 408 409 return SrcPtr; 410 } 411 412 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 413 /// are either integers or pointers. This does a truncation of the value if it 414 /// is too large or a zero extension if it is too small. 415 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 416 llvm::Type *Ty, 417 CodeGenFunction &CGF) { 418 if (Val->getType() == Ty) 419 return Val; 420 421 if (isa<llvm::PointerType>(Val->getType())) { 422 // If this is Pointer->Pointer avoid conversion to and from int. 423 if (isa<llvm::PointerType>(Ty)) 424 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 425 426 // Convert the pointer to an integer so we can play with its width. 427 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 428 } 429 430 llvm::Type *DestIntTy = Ty; 431 if (isa<llvm::PointerType>(DestIntTy)) 432 DestIntTy = CGF.IntPtrTy; 433 434 if (Val->getType() != DestIntTy) 435 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 436 437 if (isa<llvm::PointerType>(Ty)) 438 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 439 return Val; 440 } 441 442 443 444 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 445 /// a pointer to an object of type \arg Ty. 446 /// 447 /// This safely handles the case when the src type is smaller than the 448 /// destination type; in this situation the values of bits which not 449 /// present in the src are undefined. 450 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 451 llvm::Type *Ty, 452 CodeGenFunction &CGF) { 453 llvm::Type *SrcTy = 454 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 455 456 // If SrcTy and Ty are the same, just do a load. 457 if (SrcTy == Ty) 458 return CGF.Builder.CreateLoad(SrcPtr); 459 460 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); 461 462 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 463 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 464 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 465 } 466 467 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 468 469 // If the source and destination are integer or pointer types, just do an 470 // extension or truncation to the desired type. 471 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 472 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 473 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 474 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 475 } 476 477 // If load is legal, just bitcast the src pointer. 478 if (SrcSize >= DstSize) { 479 // Generally SrcSize is never greater than DstSize, since this means we are 480 // losing bits. However, this can happen in cases where the structure has 481 // additional padding, for example due to a user specified alignment. 482 // 483 // FIXME: Assert that we aren't truncating non-padding bits when have access 484 // to that information. 485 llvm::Value *Casted = 486 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 487 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 488 // FIXME: Use better alignment / avoid requiring aligned load. 489 Load->setAlignment(1); 490 return Load; 491 } 492 493 // Otherwise do coercion through memory. This is stupid, but 494 // simple. 495 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 496 llvm::Value *Casted = 497 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); 498 llvm::StoreInst *Store = 499 CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); 500 // FIXME: Use better alignment / avoid requiring aligned store. 501 Store->setAlignment(1); 502 return CGF.Builder.CreateLoad(Tmp); 503 } 504 505 // Function to store a first-class aggregate into memory. We prefer to 506 // store the elements rather than the aggregate to be more friendly to 507 // fast-isel. 508 // FIXME: Do we need to recurse here? 509 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 510 llvm::Value *DestPtr, bool DestIsVolatile, 511 bool LowAlignment) { 512 // Prefer scalar stores to first-class aggregate stores. 513 if (llvm::StructType *STy = 514 dyn_cast<llvm::StructType>(Val->getType())) { 515 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 516 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 517 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 518 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 519 DestIsVolatile); 520 if (LowAlignment) 521 SI->setAlignment(1); 522 } 523 } else { 524 CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 525 } 526 } 527 528 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 529 /// where the source and destination may have different types. 530 /// 531 /// This safely handles the case when the src type is larger than the 532 /// destination type; the upper bits of the src will be lost. 533 static void CreateCoercedStore(llvm::Value *Src, 534 llvm::Value *DstPtr, 535 bool DstIsVolatile, 536 CodeGenFunction &CGF) { 537 llvm::Type *SrcTy = Src->getType(); 538 llvm::Type *DstTy = 539 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 540 if (SrcTy == DstTy) { 541 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 542 return; 543 } 544 545 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 546 547 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 548 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 549 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 550 } 551 552 // If the source and destination are integer or pointer types, just do an 553 // extension or truncation to the desired type. 554 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 555 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 556 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 557 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 558 return; 559 } 560 561 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); 562 563 // If store is legal, just bitcast the src pointer. 564 if (SrcSize <= DstSize) { 565 llvm::Value *Casted = 566 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 567 // FIXME: Use better alignment / avoid requiring aligned store. 568 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 569 } else { 570 // Otherwise do coercion through memory. This is stupid, but 571 // simple. 572 573 // Generally SrcSize is never greater than DstSize, since this means we are 574 // losing bits. However, this can happen in cases where the structure has 575 // additional padding, for example due to a user specified alignment. 576 // 577 // FIXME: Assert that we aren't truncating non-padding bits when have access 578 // to that information. 579 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 580 CGF.Builder.CreateStore(Src, Tmp); 581 llvm::Value *Casted = 582 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); 583 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 584 // FIXME: Use better alignment / avoid requiring aligned load. 585 Load->setAlignment(1); 586 CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile); 587 } 588 } 589 590 /***/ 591 592 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 593 return FI.getReturnInfo().isIndirect(); 594 } 595 596 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 597 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 598 switch (BT->getKind()) { 599 default: 600 return false; 601 case BuiltinType::Float: 602 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float); 603 case BuiltinType::Double: 604 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double); 605 case BuiltinType::LongDouble: 606 return getContext().getTargetInfo().useObjCFPRetForRealType( 607 TargetInfo::LongDouble); 608 } 609 } 610 611 return false; 612 } 613 614 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 615 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 616 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 617 if (BT->getKind() == BuiltinType::LongDouble) 618 return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble(); 619 } 620 } 621 622 return false; 623 } 624 625 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 626 const CGFunctionInfo &FI = getFunctionInfo(GD); 627 628 // For definition purposes, don't consider a K&R function variadic. 629 bool Variadic = false; 630 if (const FunctionProtoType *FPT = 631 cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>()) 632 Variadic = FPT->isVariadic(); 633 634 return GetFunctionType(FI, Variadic); 635 } 636 637 llvm::FunctionType * 638 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool isVariadic) { 639 640 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; 641 assert(Inserted && "Recursively being processed?"); 642 643 SmallVector<llvm::Type*, 8> argTypes; 644 llvm::Type *resultType = 0; 645 646 const ABIArgInfo &retAI = FI.getReturnInfo(); 647 switch (retAI.getKind()) { 648 case ABIArgInfo::Expand: 649 llvm_unreachable("Invalid ABI kind for return argument"); 650 651 case ABIArgInfo::Extend: 652 case ABIArgInfo::Direct: 653 resultType = retAI.getCoerceToType(); 654 break; 655 656 case ABIArgInfo::Indirect: { 657 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 658 resultType = llvm::Type::getVoidTy(getLLVMContext()); 659 660 QualType ret = FI.getReturnType(); 661 llvm::Type *ty = ConvertType(ret); 662 unsigned addressSpace = Context.getTargetAddressSpace(ret); 663 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 664 break; 665 } 666 667 case ABIArgInfo::Ignore: 668 resultType = llvm::Type::getVoidTy(getLLVMContext()); 669 break; 670 } 671 672 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 673 ie = FI.arg_end(); it != ie; ++it) { 674 const ABIArgInfo &argAI = it->info; 675 676 switch (argAI.getKind()) { 677 case ABIArgInfo::Ignore: 678 break; 679 680 case ABIArgInfo::Indirect: { 681 // indirect arguments are always on the stack, which is addr space #0. 682 llvm::Type *LTy = ConvertTypeForMem(it->type); 683 argTypes.push_back(LTy->getPointerTo()); 684 break; 685 } 686 687 case ABIArgInfo::Extend: 688 case ABIArgInfo::Direct: { 689 // If the coerce-to type is a first class aggregate, flatten it. Either 690 // way is semantically identical, but fast-isel and the optimizer 691 // generally likes scalar values better than FCAs. 692 llvm::Type *argType = argAI.getCoerceToType(); 693 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { 694 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 695 argTypes.push_back(st->getElementType(i)); 696 } else { 697 argTypes.push_back(argType); 698 } 699 break; 700 } 701 702 case ABIArgInfo::Expand: 703 GetExpandedTypes(it->type, argTypes); 704 break; 705 } 706 } 707 708 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 709 assert(Erased && "Not in set?"); 710 711 return llvm::FunctionType::get(resultType, argTypes, isVariadic); 712 } 713 714 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 715 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 716 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 717 718 if (!isFuncTypeConvertible(FPT)) 719 return llvm::StructType::get(getLLVMContext()); 720 721 const CGFunctionInfo *Info; 722 if (isa<CXXDestructorDecl>(MD)) 723 Info = &getFunctionInfo(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 724 else 725 Info = &getFunctionInfo(MD); 726 return GetFunctionType(*Info, FPT->isVariadic()); 727 } 728 729 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 730 const Decl *TargetDecl, 731 AttributeListType &PAL, 732 unsigned &CallingConv) { 733 unsigned FuncAttrs = 0; 734 unsigned RetAttrs = 0; 735 736 CallingConv = FI.getEffectiveCallingConvention(); 737 738 if (FI.isNoReturn()) 739 FuncAttrs |= llvm::Attribute::NoReturn; 740 741 // FIXME: handle sseregparm someday... 742 if (TargetDecl) { 743 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 744 FuncAttrs |= llvm::Attribute::ReturnsTwice; 745 if (TargetDecl->hasAttr<NoThrowAttr>()) 746 FuncAttrs |= llvm::Attribute::NoUnwind; 747 else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 748 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 749 if (FPT && FPT->isNothrow(getContext())) 750 FuncAttrs |= llvm::Attribute::NoUnwind; 751 } 752 753 if (TargetDecl->hasAttr<NoReturnAttr>()) 754 FuncAttrs |= llvm::Attribute::NoReturn; 755 756 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 757 FuncAttrs |= llvm::Attribute::ReturnsTwice; 758 759 // 'const' and 'pure' attribute functions are also nounwind. 760 if (TargetDecl->hasAttr<ConstAttr>()) { 761 FuncAttrs |= llvm::Attribute::ReadNone; 762 FuncAttrs |= llvm::Attribute::NoUnwind; 763 } else if (TargetDecl->hasAttr<PureAttr>()) { 764 FuncAttrs |= llvm::Attribute::ReadOnly; 765 FuncAttrs |= llvm::Attribute::NoUnwind; 766 } 767 if (TargetDecl->hasAttr<MallocAttr>()) 768 RetAttrs |= llvm::Attribute::NoAlias; 769 } 770 771 if (CodeGenOpts.OptimizeSize) 772 FuncAttrs |= llvm::Attribute::OptimizeForSize; 773 if (CodeGenOpts.DisableRedZone) 774 FuncAttrs |= llvm::Attribute::NoRedZone; 775 if (CodeGenOpts.NoImplicitFloat) 776 FuncAttrs |= llvm::Attribute::NoImplicitFloat; 777 778 QualType RetTy = FI.getReturnType(); 779 unsigned Index = 1; 780 const ABIArgInfo &RetAI = FI.getReturnInfo(); 781 switch (RetAI.getKind()) { 782 case ABIArgInfo::Extend: 783 if (RetTy->hasSignedIntegerRepresentation()) 784 RetAttrs |= llvm::Attribute::SExt; 785 else if (RetTy->hasUnsignedIntegerRepresentation()) 786 RetAttrs |= llvm::Attribute::ZExt; 787 break; 788 case ABIArgInfo::Direct: 789 case ABIArgInfo::Ignore: 790 break; 791 792 case ABIArgInfo::Indirect: 793 PAL.push_back(llvm::AttributeWithIndex::get(Index, 794 llvm::Attribute::StructRet)); 795 ++Index; 796 // sret disables readnone and readonly 797 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 798 llvm::Attribute::ReadNone); 799 break; 800 801 case ABIArgInfo::Expand: 802 llvm_unreachable("Invalid ABI kind for return argument"); 803 } 804 805 if (RetAttrs) 806 PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); 807 808 // FIXME: RegParm should be reduced in case of global register variable. 809 signed RegParm; 810 if (FI.getHasRegParm()) 811 RegParm = FI.getRegParm(); 812 else 813 RegParm = CodeGenOpts.NumRegisterParameters; 814 815 unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0); 816 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 817 ie = FI.arg_end(); it != ie; ++it) { 818 QualType ParamType = it->type; 819 const ABIArgInfo &AI = it->info; 820 unsigned Attributes = 0; 821 822 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 823 // have the corresponding parameter variable. It doesn't make 824 // sense to do it here because parameters are so messed up. 825 switch (AI.getKind()) { 826 case ABIArgInfo::Extend: 827 if (ParamType->isSignedIntegerOrEnumerationType()) 828 Attributes |= llvm::Attribute::SExt; 829 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 830 Attributes |= llvm::Attribute::ZExt; 831 // FALL THROUGH 832 case ABIArgInfo::Direct: 833 if (RegParm > 0 && 834 (ParamType->isIntegerType() || ParamType->isPointerType() || 835 ParamType->isReferenceType())) { 836 RegParm -= 837 (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; 838 if (RegParm >= 0) 839 Attributes |= llvm::Attribute::InReg; 840 } 841 // FIXME: handle sseregparm someday... 842 843 if (llvm::StructType *STy = 844 dyn_cast<llvm::StructType>(AI.getCoerceToType())) 845 Index += STy->getNumElements()-1; // 1 will be added below. 846 break; 847 848 case ABIArgInfo::Indirect: 849 if (AI.getIndirectByVal()) 850 Attributes |= llvm::Attribute::ByVal; 851 852 Attributes |= 853 llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); 854 // byval disables readnone and readonly. 855 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 856 llvm::Attribute::ReadNone); 857 break; 858 859 case ABIArgInfo::Ignore: 860 // Skip increment, no matching LLVM parameter. 861 continue; 862 863 case ABIArgInfo::Expand: { 864 SmallVector<llvm::Type*, 8> types; 865 // FIXME: This is rather inefficient. Do we ever actually need to do 866 // anything here? The result should be just reconstructed on the other 867 // side, so extension should be a non-issue. 868 getTypes().GetExpandedTypes(ParamType, types); 869 Index += types.size(); 870 continue; 871 } 872 } 873 874 if (Attributes) 875 PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes)); 876 ++Index; 877 } 878 if (FuncAttrs) 879 PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); 880 } 881 882 /// An argument came in as a promoted argument; demote it back to its 883 /// declared type. 884 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 885 const VarDecl *var, 886 llvm::Value *value) { 887 llvm::Type *varType = CGF.ConvertType(var->getType()); 888 889 // This can happen with promotions that actually don't change the 890 // underlying type, like the enum promotions. 891 if (value->getType() == varType) return value; 892 893 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 894 && "unexpected promotion type"); 895 896 if (isa<llvm::IntegerType>(varType)) 897 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 898 899 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 900 } 901 902 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 903 llvm::Function *Fn, 904 const FunctionArgList &Args) { 905 // If this is an implicit-return-zero function, go ahead and 906 // initialize the return value. TODO: it might be nice to have 907 // a more general mechanism for this that didn't require synthesized 908 // return statements. 909 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 910 if (FD->hasImplicitReturnZero()) { 911 QualType RetTy = FD->getResultType().getUnqualifiedType(); 912 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 913 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 914 Builder.CreateStore(Zero, ReturnValue); 915 } 916 } 917 918 // FIXME: We no longer need the types from FunctionArgList; lift up and 919 // simplify. 920 921 // Emit allocs for param decls. Give the LLVM Argument nodes names. 922 llvm::Function::arg_iterator AI = Fn->arg_begin(); 923 924 // Name the struct return argument. 925 if (CGM.ReturnTypeUsesSRet(FI)) { 926 AI->setName("agg.result"); 927 AI->addAttr(llvm::Attribute::NoAlias); 928 ++AI; 929 } 930 931 assert(FI.arg_size() == Args.size() && 932 "Mismatch between function signature & arguments."); 933 unsigned ArgNo = 1; 934 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 935 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 936 i != e; ++i, ++info_it, ++ArgNo) { 937 const VarDecl *Arg = *i; 938 QualType Ty = info_it->type; 939 const ABIArgInfo &ArgI = info_it->info; 940 941 bool isPromoted = 942 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 943 944 switch (ArgI.getKind()) { 945 case ABIArgInfo::Indirect: { 946 llvm::Value *V = AI; 947 948 if (hasAggregateLLVMType(Ty)) { 949 // Aggregates and complex variables are accessed by reference. All we 950 // need to do is realign the value, if requested 951 if (ArgI.getIndirectRealign()) { 952 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 953 954 // Copy from the incoming argument pointer to the temporary with the 955 // appropriate alignment. 956 // 957 // FIXME: We should have a common utility for generating an aggregate 958 // copy. 959 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 960 CharUnits Size = getContext().getTypeSizeInChars(Ty); 961 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 962 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 963 Builder.CreateMemCpy(Dst, 964 Src, 965 llvm::ConstantInt::get(IntPtrTy, 966 Size.getQuantity()), 967 ArgI.getIndirectAlign(), 968 false); 969 V = AlignedTemp; 970 } 971 } else { 972 // Load scalar value from indirect argument. 973 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 974 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); 975 976 if (isPromoted) 977 V = emitArgumentDemotion(*this, Arg, V); 978 } 979 EmitParmDecl(*Arg, V, ArgNo); 980 break; 981 } 982 983 case ABIArgInfo::Extend: 984 case ABIArgInfo::Direct: { 985 // If we have the trivial case, handle it with no muss and fuss. 986 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 987 ArgI.getCoerceToType() == ConvertType(Ty) && 988 ArgI.getDirectOffset() == 0) { 989 assert(AI != Fn->arg_end() && "Argument mismatch!"); 990 llvm::Value *V = AI; 991 992 if (Arg->getType().isRestrictQualified()) 993 AI->addAttr(llvm::Attribute::NoAlias); 994 995 // Ensure the argument is the correct type. 996 if (V->getType() != ArgI.getCoerceToType()) 997 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 998 999 if (isPromoted) 1000 V = emitArgumentDemotion(*this, Arg, V); 1001 1002 EmitParmDecl(*Arg, V, ArgNo); 1003 break; 1004 } 1005 1006 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce"); 1007 1008 // The alignment we need to use is the max of the requested alignment for 1009 // the argument plus the alignment required by our access code below. 1010 unsigned AlignmentToUse = 1011 CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType()); 1012 AlignmentToUse = std::max(AlignmentToUse, 1013 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1014 1015 Alloca->setAlignment(AlignmentToUse); 1016 llvm::Value *V = Alloca; 1017 llvm::Value *Ptr = V; // Pointer to store into. 1018 1019 // If the value is offset in memory, apply the offset now. 1020 if (unsigned Offs = ArgI.getDirectOffset()) { 1021 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1022 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1023 Ptr = Builder.CreateBitCast(Ptr, 1024 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1025 } 1026 1027 // If the coerce-to type is a first class aggregate, we flatten it and 1028 // pass the elements. Either way is semantically identical, but fast-isel 1029 // and the optimizer generally likes scalar values better than FCAs. 1030 if (llvm::StructType *STy = 1031 dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) { 1032 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1033 1034 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1035 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1036 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1037 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1038 Builder.CreateStore(AI++, EltPtr); 1039 } 1040 } else { 1041 // Simple case, just do a coerced store of the argument into the alloca. 1042 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1043 AI->setName(Arg->getName() + ".coerce"); 1044 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 1045 } 1046 1047 1048 // Match to what EmitParmDecl is expecting for this type. 1049 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 1050 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); 1051 if (isPromoted) 1052 V = emitArgumentDemotion(*this, Arg, V); 1053 } 1054 EmitParmDecl(*Arg, V, ArgNo); 1055 continue; // Skip ++AI increment, already done. 1056 } 1057 1058 case ABIArgInfo::Expand: { 1059 // If this structure was expanded into multiple arguments then 1060 // we need to create a temporary and reconstruct it from the 1061 // arguments. 1062 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1063 CharUnits Align = getContext().getDeclAlign(Arg); 1064 Alloca->setAlignment(Align.getQuantity()); 1065 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1066 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); 1067 EmitParmDecl(*Arg, Alloca, ArgNo); 1068 1069 // Name the arguments used in expansion and increment AI. 1070 unsigned Index = 0; 1071 for (; AI != End; ++AI, ++Index) 1072 AI->setName(Arg->getName() + "." + Twine(Index)); 1073 continue; 1074 } 1075 1076 case ABIArgInfo::Ignore: 1077 // Initialize the local variable appropriately. 1078 if (hasAggregateLLVMType(Ty)) 1079 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); 1080 else 1081 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), 1082 ArgNo); 1083 1084 // Skip increment, no matching LLVM parameter. 1085 continue; 1086 } 1087 1088 ++AI; 1089 } 1090 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1091 } 1092 1093 /// Try to emit a fused autorelease of a return result. 1094 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1095 llvm::Value *result) { 1096 // We must be immediately followed the cast. 1097 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1098 if (BB->empty()) return 0; 1099 if (&BB->back() != result) return 0; 1100 1101 llvm::Type *resultType = result->getType(); 1102 1103 // result is in a BasicBlock and is therefore an Instruction. 1104 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1105 1106 SmallVector<llvm::Instruction*,4> insnsToKill; 1107 1108 // Look for: 1109 // %generator = bitcast %type1* %generator2 to %type2* 1110 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1111 // We would have emitted this as a constant if the operand weren't 1112 // an Instruction. 1113 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1114 1115 // Require the generator to be immediately followed by the cast. 1116 if (generator->getNextNode() != bitcast) 1117 return 0; 1118 1119 insnsToKill.push_back(bitcast); 1120 } 1121 1122 // Look for: 1123 // %generator = call i8* @objc_retain(i8* %originalResult) 1124 // or 1125 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1126 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1127 if (!call) return 0; 1128 1129 bool doRetainAutorelease; 1130 1131 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1132 doRetainAutorelease = true; 1133 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1134 .objc_retainAutoreleasedReturnValue) { 1135 doRetainAutorelease = false; 1136 1137 // Look for an inline asm immediately preceding the call and kill it, too. 1138 llvm::Instruction *prev = call->getPrevNode(); 1139 if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev)) 1140 if (asmCall->getCalledValue() 1141 == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) 1142 insnsToKill.push_back(prev); 1143 } else { 1144 return 0; 1145 } 1146 1147 result = call->getArgOperand(0); 1148 insnsToKill.push_back(call); 1149 1150 // Keep killing bitcasts, for sanity. Note that we no longer care 1151 // about precise ordering as long as there's exactly one use. 1152 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1153 if (!bitcast->hasOneUse()) break; 1154 insnsToKill.push_back(bitcast); 1155 result = bitcast->getOperand(0); 1156 } 1157 1158 // Delete all the unnecessary instructions, from latest to earliest. 1159 for (SmallVectorImpl<llvm::Instruction*>::iterator 1160 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1161 (*i)->eraseFromParent(); 1162 1163 // Do the fused retain/autorelease if we were asked to. 1164 if (doRetainAutorelease) 1165 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1166 1167 // Cast back to the result type. 1168 return CGF.Builder.CreateBitCast(result, resultType); 1169 } 1170 1171 /// Emit an ARC autorelease of the result of a function. 1172 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1173 llvm::Value *result) { 1174 // At -O0, try to emit a fused retain/autorelease. 1175 if (CGF.shouldUseFusedARCCalls()) 1176 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1177 return fused; 1178 1179 return CGF.EmitARCAutoreleaseReturnValue(result); 1180 } 1181 1182 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) { 1183 // Functions with no result always return void. 1184 if (ReturnValue == 0) { 1185 Builder.CreateRetVoid(); 1186 return; 1187 } 1188 1189 llvm::DebugLoc RetDbgLoc; 1190 llvm::Value *RV = 0; 1191 QualType RetTy = FI.getReturnType(); 1192 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1193 1194 switch (RetAI.getKind()) { 1195 case ABIArgInfo::Indirect: { 1196 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1197 if (RetTy->isAnyComplexType()) { 1198 ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); 1199 StoreComplexToAddr(RT, CurFn->arg_begin(), false); 1200 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1201 // Do nothing; aggregrates get evaluated directly into the destination. 1202 } else { 1203 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), 1204 false, Alignment, RetTy); 1205 } 1206 break; 1207 } 1208 1209 case ABIArgInfo::Extend: 1210 case ABIArgInfo::Direct: 1211 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1212 RetAI.getDirectOffset() == 0) { 1213 // The internal return value temp always will have pointer-to-return-type 1214 // type, just do a load. 1215 1216 // If the instruction right before the insertion point is a store to the 1217 // return value, we can elide the load, zap the store, and usually zap the 1218 // alloca. 1219 llvm::BasicBlock *InsertBB = Builder.GetInsertBlock(); 1220 llvm::StoreInst *SI = 0; 1221 if (InsertBB->empty() || 1222 !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) || 1223 SI->getPointerOperand() != ReturnValue || SI->isVolatile()) { 1224 RV = Builder.CreateLoad(ReturnValue); 1225 } else { 1226 // Get the stored value and nuke the now-dead store. 1227 RetDbgLoc = SI->getDebugLoc(); 1228 RV = SI->getValueOperand(); 1229 SI->eraseFromParent(); 1230 1231 // If that was the only use of the return value, nuke it as well now. 1232 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1233 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1234 ReturnValue = 0; 1235 } 1236 } 1237 } else { 1238 llvm::Value *V = ReturnValue; 1239 // If the value is offset in memory, apply the offset now. 1240 if (unsigned Offs = RetAI.getDirectOffset()) { 1241 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1242 V = Builder.CreateConstGEP1_32(V, Offs); 1243 V = Builder.CreateBitCast(V, 1244 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1245 } 1246 1247 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1248 } 1249 1250 // In ARC, end functions that return a retainable type with a call 1251 // to objc_autoreleaseReturnValue. 1252 if (AutoreleaseResult) { 1253 assert(getLangOptions().ObjCAutoRefCount && 1254 !FI.isReturnsRetained() && 1255 RetTy->isObjCRetainableType()); 1256 RV = emitAutoreleaseOfResult(*this, RV); 1257 } 1258 1259 break; 1260 1261 case ABIArgInfo::Ignore: 1262 break; 1263 1264 case ABIArgInfo::Expand: 1265 llvm_unreachable("Invalid ABI kind for return argument"); 1266 } 1267 1268 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1269 if (!RetDbgLoc.isUnknown()) 1270 Ret->setDebugLoc(RetDbgLoc); 1271 } 1272 1273 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1274 const VarDecl *param) { 1275 // StartFunction converted the ABI-lowered parameter(s) into a 1276 // local alloca. We need to turn that into an r-value suitable 1277 // for EmitCall. 1278 llvm::Value *local = GetAddrOfLocalVar(param); 1279 1280 QualType type = param->getType(); 1281 1282 // For the most part, we just need to load the alloca, except: 1283 // 1) aggregate r-values are actually pointers to temporaries, and 1284 // 2) references to aggregates are pointers directly to the aggregate. 1285 // I don't know why references to non-aggregates are different here. 1286 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1287 if (hasAggregateLLVMType(ref->getPointeeType())) 1288 return args.add(RValue::getAggregate(local), type); 1289 1290 // Locals which are references to scalars are represented 1291 // with allocas holding the pointer. 1292 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1293 } 1294 1295 if (type->isAnyComplexType()) { 1296 ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false); 1297 return args.add(RValue::getComplex(complex), type); 1298 } 1299 1300 if (hasAggregateLLVMType(type)) 1301 return args.add(RValue::getAggregate(local), type); 1302 1303 unsigned alignment = getContext().getDeclAlign(param).getQuantity(); 1304 llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type); 1305 return args.add(RValue::get(value), type); 1306 } 1307 1308 static bool isProvablyNull(llvm::Value *addr) { 1309 return isa<llvm::ConstantPointerNull>(addr); 1310 } 1311 1312 static bool isProvablyNonNull(llvm::Value *addr) { 1313 return isa<llvm::AllocaInst>(addr); 1314 } 1315 1316 /// Emit the actual writing-back of a writeback. 1317 static void emitWriteback(CodeGenFunction &CGF, 1318 const CallArgList::Writeback &writeback) { 1319 llvm::Value *srcAddr = writeback.Address; 1320 assert(!isProvablyNull(srcAddr) && 1321 "shouldn't have writeback for provably null argument"); 1322 1323 llvm::BasicBlock *contBB = 0; 1324 1325 // If the argument wasn't provably non-null, we need to null check 1326 // before doing the store. 1327 bool provablyNonNull = isProvablyNonNull(srcAddr); 1328 if (!provablyNonNull) { 1329 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 1330 contBB = CGF.createBasicBlock("icr.done"); 1331 1332 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1333 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 1334 CGF.EmitBlock(writebackBB); 1335 } 1336 1337 // Load the value to writeback. 1338 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 1339 1340 // Cast it back, in case we're writing an id to a Foo* or something. 1341 value = CGF.Builder.CreateBitCast(value, 1342 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 1343 "icr.writeback-cast"); 1344 1345 // Perform the writeback. 1346 QualType srcAddrType = writeback.AddressType; 1347 CGF.EmitStoreThroughLValue(RValue::get(value), 1348 CGF.MakeAddrLValue(srcAddr, srcAddrType)); 1349 1350 // Jump to the continuation block. 1351 if (!provablyNonNull) 1352 CGF.EmitBlock(contBB); 1353 } 1354 1355 static void emitWritebacks(CodeGenFunction &CGF, 1356 const CallArgList &args) { 1357 for (CallArgList::writeback_iterator 1358 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) 1359 emitWriteback(CGF, *i); 1360 } 1361 1362 /// Emit an argument that's being passed call-by-writeback. That is, 1363 /// we are passing the address of 1364 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 1365 const ObjCIndirectCopyRestoreExpr *CRE) { 1366 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 1367 1368 // The dest and src types don't necessarily match in LLVM terms 1369 // because of the crazy ObjC compatibility rules. 1370 1371 llvm::PointerType *destType = 1372 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 1373 1374 // If the address is a constant null, just pass the appropriate null. 1375 if (isProvablyNull(srcAddr)) { 1376 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 1377 CRE->getType()); 1378 return; 1379 } 1380 1381 QualType srcAddrType = 1382 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 1383 1384 // Create the temporary. 1385 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 1386 "icr.temp"); 1387 1388 // Zero-initialize it if we're not doing a copy-initialization. 1389 bool shouldCopy = CRE->shouldCopy(); 1390 if (!shouldCopy) { 1391 llvm::Value *null = 1392 llvm::ConstantPointerNull::get( 1393 cast<llvm::PointerType>(destType->getElementType())); 1394 CGF.Builder.CreateStore(null, temp); 1395 } 1396 1397 llvm::BasicBlock *contBB = 0; 1398 1399 // If the address is *not* known to be non-null, we need to switch. 1400 llvm::Value *finalArgument; 1401 1402 bool provablyNonNull = isProvablyNonNull(srcAddr); 1403 if (provablyNonNull) { 1404 finalArgument = temp; 1405 } else { 1406 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1407 1408 finalArgument = CGF.Builder.CreateSelect(isNull, 1409 llvm::ConstantPointerNull::get(destType), 1410 temp, "icr.argument"); 1411 1412 // If we need to copy, then the load has to be conditional, which 1413 // means we need control flow. 1414 if (shouldCopy) { 1415 contBB = CGF.createBasicBlock("icr.cont"); 1416 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 1417 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 1418 CGF.EmitBlock(copyBB); 1419 } 1420 } 1421 1422 // Perform a copy if necessary. 1423 if (shouldCopy) { 1424 LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 1425 RValue srcRV = CGF.EmitLoadOfLValue(srcLV); 1426 assert(srcRV.isScalar()); 1427 1428 llvm::Value *src = srcRV.getScalarVal(); 1429 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 1430 "icr.cast"); 1431 1432 // Use an ordinary store, not a store-to-lvalue. 1433 CGF.Builder.CreateStore(src, temp); 1434 } 1435 1436 // Finish the control flow if we needed it. 1437 if (shouldCopy && !provablyNonNull) 1438 CGF.EmitBlock(contBB); 1439 1440 args.addWriteback(srcAddr, srcAddrType, temp); 1441 args.add(RValue::get(finalArgument), CRE->getType()); 1442 } 1443 1444 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 1445 QualType type) { 1446 if (const ObjCIndirectCopyRestoreExpr *CRE 1447 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 1448 assert(getContext().getLangOptions().ObjCAutoRefCount); 1449 assert(getContext().hasSameType(E->getType(), type)); 1450 return emitWritebackArg(*this, args, CRE); 1451 } 1452 1453 assert(type->isReferenceType() == E->isGLValue() && 1454 "reference binding to unmaterialized r-value!"); 1455 1456 if (E->isGLValue()) { 1457 assert(E->getObjectKind() == OK_Ordinary); 1458 return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0), 1459 type); 1460 } 1461 1462 if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() && 1463 isa<ImplicitCastExpr>(E) && 1464 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 1465 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 1466 assert(L.isSimple()); 1467 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 1468 return; 1469 } 1470 1471 args.add(EmitAnyExprToTemp(E), type); 1472 } 1473 1474 /// Emits a call or invoke instruction to the given function, depending 1475 /// on the current state of the EH stack. 1476 llvm::CallSite 1477 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1478 ArrayRef<llvm::Value *> Args, 1479 const Twine &Name) { 1480 llvm::BasicBlock *InvokeDest = getInvokeDest(); 1481 if (!InvokeDest) 1482 return Builder.CreateCall(Callee, Args, Name); 1483 1484 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 1485 llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest, 1486 Args, Name); 1487 EmitBlock(ContBB); 1488 return Invoke; 1489 } 1490 1491 llvm::CallSite 1492 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1493 const Twine &Name) { 1494 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); 1495 } 1496 1497 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 1498 llvm::FunctionType *FTy) { 1499 if (ArgNo < FTy->getNumParams()) 1500 assert(Elt->getType() == FTy->getParamType(ArgNo)); 1501 else 1502 assert(FTy->isVarArg()); 1503 ++ArgNo; 1504 } 1505 1506 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 1507 SmallVector<llvm::Value*,16> &Args, 1508 llvm::FunctionType *IRFuncTy) { 1509 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1510 unsigned NumElts = AT->getSize().getZExtValue(); 1511 QualType EltTy = AT->getElementType(); 1512 llvm::Value *Addr = RV.getAggregateAddr(); 1513 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 1514 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 1515 LValue LV = MakeAddrLValue(EltAddr, EltTy); 1516 RValue EltRV; 1517 if (EltTy->isAnyComplexType()) 1518 // FIXME: Volatile? 1519 EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false)); 1520 else if (CodeGenFunction::hasAggregateLLVMType(EltTy)) 1521 EltRV = LV.asAggregateRValue(); 1522 else 1523 EltRV = EmitLoadOfLValue(LV); 1524 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); 1525 } 1526 } else if (const RecordType *RT = Ty->getAsStructureType()) { 1527 RecordDecl *RD = RT->getDecl(); 1528 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 1529 llvm::Value *Addr = RV.getAggregateAddr(); 1530 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1531 i != e; ++i) { 1532 FieldDecl *FD = *i; 1533 QualType FT = FD->getType(); 1534 1535 // FIXME: What are the right qualifiers here? 1536 LValue LV = EmitLValueForField(Addr, FD, 0); 1537 RValue FldRV; 1538 if (FT->isAnyComplexType()) 1539 // FIXME: Volatile? 1540 FldRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false)); 1541 else if (CodeGenFunction::hasAggregateLLVMType(FT)) 1542 FldRV = LV.asAggregateRValue(); 1543 else 1544 FldRV = EmitLoadOfLValue(LV); 1545 ExpandTypeToArgs(FT, FldRV, Args, IRFuncTy); 1546 } 1547 } else if (Ty->isAnyComplexType()) { 1548 ComplexPairTy CV = RV.getComplexVal(); 1549 Args.push_back(CV.first); 1550 Args.push_back(CV.second); 1551 } else { 1552 assert(RV.isScalar() && 1553 "Unexpected non-scalar rvalue during struct expansion."); 1554 1555 // Insert a bitcast as needed. 1556 llvm::Value *V = RV.getScalarVal(); 1557 if (Args.size() < IRFuncTy->getNumParams() && 1558 V->getType() != IRFuncTy->getParamType(Args.size())) 1559 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 1560 1561 Args.push_back(V); 1562 } 1563 } 1564 1565 1566 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 1567 llvm::Value *Callee, 1568 ReturnValueSlot ReturnValue, 1569 const CallArgList &CallArgs, 1570 const Decl *TargetDecl, 1571 llvm::Instruction **callOrInvoke) { 1572 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 1573 SmallVector<llvm::Value*, 16> Args; 1574 1575 // Handle struct-return functions by passing a pointer to the 1576 // location that we would like to return into. 1577 QualType RetTy = CallInfo.getReturnType(); 1578 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 1579 1580 // IRArgNo - Keep track of the argument number in the callee we're looking at. 1581 unsigned IRArgNo = 0; 1582 llvm::FunctionType *IRFuncTy = 1583 cast<llvm::FunctionType>( 1584 cast<llvm::PointerType>(Callee->getType())->getElementType()); 1585 1586 // If the call returns a temporary with struct return, create a temporary 1587 // alloca to hold the result, unless one is given to us. 1588 if (CGM.ReturnTypeUsesSRet(CallInfo)) { 1589 llvm::Value *Value = ReturnValue.getValue(); 1590 if (!Value) 1591 Value = CreateMemTemp(RetTy); 1592 Args.push_back(Value); 1593 checkArgMatches(Value, IRArgNo, IRFuncTy); 1594 } 1595 1596 assert(CallInfo.arg_size() == CallArgs.size() && 1597 "Mismatch between function signature & arguments."); 1598 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 1599 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 1600 I != E; ++I, ++info_it) { 1601 const ABIArgInfo &ArgInfo = info_it->info; 1602 RValue RV = I->RV; 1603 1604 unsigned TypeAlign = 1605 getContext().getTypeAlignInChars(I->Ty).getQuantity(); 1606 switch (ArgInfo.getKind()) { 1607 case ABIArgInfo::Indirect: { 1608 if (RV.isScalar() || RV.isComplex()) { 1609 // Make a temporary alloca to pass the argument. 1610 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1611 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 1612 AI->setAlignment(ArgInfo.getIndirectAlign()); 1613 Args.push_back(AI); 1614 1615 if (RV.isScalar()) 1616 EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, 1617 TypeAlign, I->Ty); 1618 else 1619 StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); 1620 1621 // Validate argument match. 1622 checkArgMatches(AI, IRArgNo, IRFuncTy); 1623 } else { 1624 // We want to avoid creating an unnecessary temporary+copy here; 1625 // however, we need one in two cases: 1626 // 1. If the argument is not byval, and we are required to copy the 1627 // source. (This case doesn't occur on any common architecture.) 1628 // 2. If the argument is byval, RV is not sufficiently aligned, and 1629 // we cannot force it to be sufficiently aligned. 1630 llvm::Value *Addr = RV.getAggregateAddr(); 1631 unsigned Align = ArgInfo.getIndirectAlign(); 1632 const llvm::TargetData *TD = &CGM.getTargetData(); 1633 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 1634 (ArgInfo.getIndirectByVal() && TypeAlign < Align && 1635 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) { 1636 // Create an aligned temporary, and copy to it. 1637 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1638 if (Align > AI->getAlignment()) 1639 AI->setAlignment(Align); 1640 Args.push_back(AI); 1641 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 1642 1643 // Validate argument match. 1644 checkArgMatches(AI, IRArgNo, IRFuncTy); 1645 } else { 1646 // Skip the extra memcpy call. 1647 Args.push_back(Addr); 1648 1649 // Validate argument match. 1650 checkArgMatches(Addr, IRArgNo, IRFuncTy); 1651 } 1652 } 1653 break; 1654 } 1655 1656 case ABIArgInfo::Ignore: 1657 break; 1658 1659 case ABIArgInfo::Extend: 1660 case ABIArgInfo::Direct: { 1661 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 1662 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 1663 ArgInfo.getDirectOffset() == 0) { 1664 llvm::Value *V; 1665 if (RV.isScalar()) 1666 V = RV.getScalarVal(); 1667 else 1668 V = Builder.CreateLoad(RV.getAggregateAddr()); 1669 1670 // If the argument doesn't match, perform a bitcast to coerce it. This 1671 // can happen due to trivial type mismatches. 1672 if (IRArgNo < IRFuncTy->getNumParams() && 1673 V->getType() != IRFuncTy->getParamType(IRArgNo)) 1674 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 1675 Args.push_back(V); 1676 1677 checkArgMatches(V, IRArgNo, IRFuncTy); 1678 break; 1679 } 1680 1681 // FIXME: Avoid the conversion through memory if possible. 1682 llvm::Value *SrcPtr; 1683 if (RV.isScalar()) { 1684 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 1685 EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty); 1686 } else if (RV.isComplex()) { 1687 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 1688 StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); 1689 } else 1690 SrcPtr = RV.getAggregateAddr(); 1691 1692 // If the value is offset in memory, apply the offset now. 1693 if (unsigned Offs = ArgInfo.getDirectOffset()) { 1694 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 1695 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 1696 SrcPtr = Builder.CreateBitCast(SrcPtr, 1697 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 1698 1699 } 1700 1701 // If the coerce-to type is a first class aggregate, we flatten it and 1702 // pass the elements. Either way is semantically identical, but fast-isel 1703 // and the optimizer generally likes scalar values better than FCAs. 1704 if (llvm::StructType *STy = 1705 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 1706 SrcPtr = Builder.CreateBitCast(SrcPtr, 1707 llvm::PointerType::getUnqual(STy)); 1708 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1709 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 1710 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 1711 // We don't know what we're loading from. 1712 LI->setAlignment(1); 1713 Args.push_back(LI); 1714 1715 // Validate argument match. 1716 checkArgMatches(LI, IRArgNo, IRFuncTy); 1717 } 1718 } else { 1719 // In the simple case, just pass the coerced loaded value. 1720 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 1721 *this)); 1722 1723 // Validate argument match. 1724 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 1725 } 1726 1727 break; 1728 } 1729 1730 case ABIArgInfo::Expand: 1731 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 1732 IRArgNo = Args.size(); 1733 break; 1734 } 1735 } 1736 1737 // If the callee is a bitcast of a function to a varargs pointer to function 1738 // type, check to see if we can remove the bitcast. This handles some cases 1739 // with unprototyped functions. 1740 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 1741 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 1742 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 1743 llvm::FunctionType *CurFT = 1744 cast<llvm::FunctionType>(CurPT->getElementType()); 1745 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 1746 1747 if (CE->getOpcode() == llvm::Instruction::BitCast && 1748 ActualFT->getReturnType() == CurFT->getReturnType() && 1749 ActualFT->getNumParams() == CurFT->getNumParams() && 1750 ActualFT->getNumParams() == Args.size() && 1751 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 1752 bool ArgsMatch = true; 1753 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 1754 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 1755 ArgsMatch = false; 1756 break; 1757 } 1758 1759 // Strip the cast if we can get away with it. This is a nice cleanup, 1760 // but also allows us to inline the function at -O0 if it is marked 1761 // always_inline. 1762 if (ArgsMatch) 1763 Callee = CalleeF; 1764 } 1765 } 1766 1767 unsigned CallingConv; 1768 CodeGen::AttributeListType AttributeList; 1769 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); 1770 llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), 1771 AttributeList.end()); 1772 1773 llvm::BasicBlock *InvokeDest = 0; 1774 if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) 1775 InvokeDest = getInvokeDest(); 1776 1777 llvm::CallSite CS; 1778 if (!InvokeDest) { 1779 CS = Builder.CreateCall(Callee, Args); 1780 } else { 1781 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 1782 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); 1783 EmitBlock(Cont); 1784 } 1785 if (callOrInvoke) 1786 *callOrInvoke = CS.getInstruction(); 1787 1788 CS.setAttributes(Attrs); 1789 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1790 1791 // If the call doesn't return, finish the basic block and clear the 1792 // insertion point; this allows the rest of IRgen to discard 1793 // unreachable code. 1794 if (CS.doesNotReturn()) { 1795 Builder.CreateUnreachable(); 1796 Builder.ClearInsertionPoint(); 1797 1798 // FIXME: For now, emit a dummy basic block because expr emitters in 1799 // generally are not ready to handle emitting expressions at unreachable 1800 // points. 1801 EnsureInsertPoint(); 1802 1803 // Return a reasonable RValue. 1804 return GetUndefRValue(RetTy); 1805 } 1806 1807 llvm::Instruction *CI = CS.getInstruction(); 1808 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 1809 CI->setName("call"); 1810 1811 // Emit any writebacks immediately. Arguably this should happen 1812 // after any return-value munging. 1813 if (CallArgs.hasWritebacks()) 1814 emitWritebacks(*this, CallArgs); 1815 1816 switch (RetAI.getKind()) { 1817 case ABIArgInfo::Indirect: { 1818 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1819 if (RetTy->isAnyComplexType()) 1820 return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); 1821 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 1822 return RValue::getAggregate(Args[0]); 1823 return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy)); 1824 } 1825 1826 case ABIArgInfo::Ignore: 1827 // If we are ignoring an argument that had a result, make sure to 1828 // construct the appropriate return value for our caller. 1829 return GetUndefRValue(RetTy); 1830 1831 case ABIArgInfo::Extend: 1832 case ABIArgInfo::Direct: { 1833 llvm::Type *RetIRTy = ConvertType(RetTy); 1834 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 1835 if (RetTy->isAnyComplexType()) { 1836 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 1837 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 1838 return RValue::getComplex(std::make_pair(Real, Imag)); 1839 } 1840 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1841 llvm::Value *DestPtr = ReturnValue.getValue(); 1842 bool DestIsVolatile = ReturnValue.isVolatile(); 1843 1844 if (!DestPtr) { 1845 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 1846 DestIsVolatile = false; 1847 } 1848 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 1849 return RValue::getAggregate(DestPtr); 1850 } 1851 1852 // If the argument doesn't match, perform a bitcast to coerce it. This 1853 // can happen due to trivial type mismatches. 1854 llvm::Value *V = CI; 1855 if (V->getType() != RetIRTy) 1856 V = Builder.CreateBitCast(V, RetIRTy); 1857 return RValue::get(V); 1858 } 1859 1860 llvm::Value *DestPtr = ReturnValue.getValue(); 1861 bool DestIsVolatile = ReturnValue.isVolatile(); 1862 1863 if (!DestPtr) { 1864 DestPtr = CreateMemTemp(RetTy, "coerce"); 1865 DestIsVolatile = false; 1866 } 1867 1868 // If the value is offset in memory, apply the offset now. 1869 llvm::Value *StorePtr = DestPtr; 1870 if (unsigned Offs = RetAI.getDirectOffset()) { 1871 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 1872 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 1873 StorePtr = Builder.CreateBitCast(StorePtr, 1874 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1875 } 1876 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 1877 1878 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1879 if (RetTy->isAnyComplexType()) 1880 return RValue::getComplex(LoadComplexFromAddr(DestPtr, false)); 1881 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 1882 return RValue::getAggregate(DestPtr); 1883 return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy)); 1884 } 1885 1886 case ABIArgInfo::Expand: 1887 llvm_unreachable("Invalid ABI kind for return argument"); 1888 } 1889 1890 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 1891 } 1892 1893 /* VarArg handling */ 1894 1895 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 1896 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 1897 } 1898